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Abstract

The adjustment of the leg during running was addressed using a spring-mass model with a fixed landing angle of attack. The
objective was to obtain periodic movement patterns. Spring-like running was monitored by a one-dimensional stride-to-stride
mapping of the apex height to identify mechanically stable fixed points.

We found that for certain angles of attack, the system becomes self-stabilized if the leg stiffness was properly adjusted and a
minimum running speed was exceeded. At a given speed, running techniques fulfilling a stable movement pattern are characterized
by an almost constant maximum leg force. With increasing speed, the leg adjustment becomes less critical. The techniques predicted
for stable running are in agreement with experimental studies.

Mechanically self-stabilized running requires a spring-like leg operation, a minimum running speed and a proper adjustment of leg
stiffness and angle of attack. These conditions can be considered as a movement criterion for running. © 2002 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

An almost sinusoidal pattern of the ground reaction
force is observed in many types of fast animal and
human locomotion (Cavagna et al., 1964, 1977; Alex-
ander et al., 1986; Full et al., 1991; Farley et al., 1993).
Although this includes both energy production (muscle
fibers) and absorption (soft tissue, ligaments, muscles)
the leg stiffness is surprisingly constant during the stance
time.

Blickhan (1989) and McMahon and Cheng (1990)
introduced a simple spring-mass model to approximate
this generally observed force pattern. This representa-
tion of the leg by a linear spring was successfully applied
by biologists (Blickhan and Full, 1993; Farley et al.,
1993; Farley and Gonzalez, 1996), sport scientists
(Arampatzis et al., 1999; Seyfarth et al., 1999), and
bioengineers (Herr, 1998) to describe and predict animal
and human locomotion. However, there is only little
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known about the advantages of this type of leg
operation.

The spring-like loading of a segmented leg can be
achieved by elastic operation of the leg joints. To
guarantee a homogeneous loading of the leg joints,
nonlinear torque-angular displacement characteristics
(M ~ A@") with exponents v >1.5 are necessary (Seyfarth
et al., 2000). For forcibly loaded legs, this characteristic
may be supported by passive properties of the tendons
connecting the muscles to the skeleton. Experimentally
observed exponents in tendon stress—strain relationships
(Ker, 1981) are well suited to result in almost linear
spring-like behavior of the leg (Seyfarth et al., 2001).
Therefore, the linear leg spring is a concept to solve the
kinematic redundancy problem of a segmented leg.

If a movement objective (e.g. performance criteria) is
given, the spring-like leg behavior may guide to under-
stand technical aspects of locomotion as shown for the
long jump (Seyfarth et al., 1999). Here, the maximum
jumping distance specifies the required adjustment of leg
stiffness and angle of attack. Unfortunately, such an
objective is not known for running yet.

An approach to predict the leg spring adjustment in
running was made by Blickhan (1989) and McMahon
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Nomenclature
o angle of attack
A/ amount of leg shortening

Alyvax maximum leg shortening

Fyvax  maximum leg force

kigg  leg stiffness

(1ec  leg length

4o leg length at touch-down (and take-off in the
model)

m body mass

w eigenfrequency

vy, vy components of the center of mass velocity
X,y coordinates of the center of mass

Vi apex height at stride i

Yo initial apex height

YTD touch-down height

and Cheng (1990), which showed that for given
parameters (running speed, leg stiffness, angle of attack)
the spring-mass model might produce symmetric trajec-
tories of the center of mass. Nevertheless, they did not
prove whether the predicted solutions are stable with
respect to deviations in landing conditions or leg
stiffness. More recently, Schwind (1998) showed that
for a running spring-mass system only symmetric stance
phases with respect to the vertical axis might result in
cyclic movement trajectories. As there is no analytical
solution of the planar spring-mass system known, he
investigated the system by using nonlinear spring
characteristics and adapted controllers. The stability of
the system with a simple linear spring was not
investigated.

The aim of this study is to investigate the stability of
spring-like leg operation during running at a constant
speed. Therefore, a stride-to-stride analysis of a con-
servative spring-mass model is used. At given initial
conditions we identify appropriate leg adjustments
(stiffness, angle of attack) resulting in a periodic running
pattern. The number of successful strides serves as a
measure for periodicity. The variation of the stride
number for different leg adjustments provides a measure
of running robustness. The predicted leg operation for
periodic running movements is compared to an experi-
mental study on human running.

2. Methods
2.1. Experimental data acquisition and analysis

In order to prove the predictions of the running
model, the dynamic and kinematic parameters during
bare-foot running were recorded in an experimental
study with 12 students (body weight m = 69.5+9.8 kg,
height 1.77+0.08 m). The subjects were instructed to
run across a force plate (initial leg length 7/ =
0.94+0.06m) at moderate speed (vx = 4.6+0.5m/s).
In total 67 contact phases were analyzed in terms of
ground reaction forces and kinematic landmarks of the

stance leg (hip, knee, ankle and ball of the foot) with a
sampling rate of 500 Hz.

During the contact phase, the leg length /1pg was
defined as the distance between the hip and the ball of
the foot. The leg stiffness kg was defined by

kieg = Fymax/A/max, (1)

where Fpax denotes the maximum amount of the
ground reaction force and A/yax the amount of
maximum leg shortening A/ = ¢y — /1 gg(f) (Seyfarth
et al., 1999).

2.2. The spring-mass model

Running can be described as a subsequent series of
stance and flight phases (Fig. 1). The trajectory of the
center of mass m is determined by the gravitational force
(during flight and stance phase) and by the force
generated by the stance leg during the contact phase.
During the flight phase, the horizontal velocity remains
constant whereas the vertical velocity crosses zero at the
apex. This particular condition is used to define one
stride within a periodic running pattern as the move-
ment from one apex to the other includes one stance
phase.

The operation of the stance leg, landing at a certain
angle of attack oy, is represented by a linear spring with
the stiffness k gg and the nominal position 7y. The
length 7, is equal to the initial leg length to fulfill zero
leg force at touch-down. The leg behavior for different
body masses m remains kinematically unchanged as long
as the leg stiffness kg is properly adjusted to the body
mass, i.e. the eigenfrequency w = +/k/m 1is kept
constant.

2.3. Landing and take-off conditions

To describe periodic ground contacts of a spring-mass
model the instant of touch-down after a flight phase
must be characterized uniquely. In our approach, touch-
down occurs if the center of mass reaches the critical
height ytp, which is a consequence of the fixed angle of
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Fig. 1. The spring-mass model for running. The leg spring is
characterized by the stiffness ki gg and the nominal length 7, which
is the leg length at touch-down and take-off. In our approach, the leg
orientation at touch-down is characterized by a given angle of attack
op. During the flight phase the horizontal velocity is constant. One
stride can be defined as the movement from one apex (height y;) to the
next (height y;,1). As the vertical velocity vanishes at these conditions
the state of the system is uniquely characterized by the apex height and
the horizontal velocity, e.g., as an initial condition (o, vx ).

attack o and the initial leg length Z, at touch-down
YTD = /0 sin . (2)

Take-off occurs if the initial leg length is reached
again /1 gg(tro) = /. During the flight phase, the center
of mass trajectory is simply determined by the gravita-
tional acceleration. The model does not describe the leg
movement during this period.

2.4. Simulation parameter setup

To investigate the periodic behavior of the bouncing
spring-mass model, we start the simulation at the apex
of the flight phase with following initial conditions of
the point mass: xo =0, yo =79 = 1m, a horizontal
velocity vxo and zero vertical velocity vy = 0. The
model parameters are the body mass m, the leg stiffness
kLgg, the initial leg length 7, the angle of attack «y and
the gravitational acceleration ¢ = 9.81 m/s”.

2.5. Stability analysis

For given initial conditions and a set of model
parameters, the system may (1) slow down and fall
consequently, (2) overrun a step and fall, or (3) remain
in a periodic movement pattern. The number of steps to
fall n is counted. In condition (3), this number is infinite
(n = o0). In the numerical simulation, the calculation
was stopped at n = 24,

The stability of the periodically operating spring-mass
system can be analyzed using a return map in a one-
parameter representation of the state vector: As the
system is conservative, the sum of kinetic and potential
energy is constant. During the flight phase, the system

energy is merely characterized by the velocity and
vertical position of the center of mass. Furthermore, at
the apex of the flight phase (vy = 0) only the apex height
and the horizontal velocity are influencing the center of
mass trajectory. Due to the landing condition (fixed leg
angle with respect to the ground), the horizontal
position during flight has no influence on the system
behavior. Therefore, we can set the x coordinate at apex
to zero. For a given system energy, we can use the apex
height to characterize the complete state vector.

The projection of the apex height from one stride (y;)
to the next (y;1) defines a return map (stride-to-stride
analysis). Here, periodic movements require solutions
with y;11 = y; (fixed points). A stable periodic trajectory
additionally requires a slope within [—1,1] of the return
map y;.1(y;) in the neighborhood of the fixed point.
Bistable solutions do not exist as only symmetric contact
phases may result in a periodic movement pattern
(Schwind, 1998).

2.6. Simulation tools

For the numerical integration of the spring-mass
model, we used Matlab 5.3® (The MathWorks Inc.) and
the built-in Simulink® tool with the odel13 Integrator
(absolute and relative error tolerance le-5). The simula-
tion results were checked by a 10 times higher accuracy.

3. Results

The analysis of the spring-mass system revealed that
there exist leg adjustments (leg stiffness, angle of attack),
which lead into periodic limit cycles in the movement
pattern. These solutions proved to be robust with
respect to adjustment errors and variations in kinematic
parameters (speed, initial apex height). After giving
some representative examples we will analyze the
mechanisms of self-stabilizing running by using a
stride-to-stride analysis of the spring-mass model.

3.1. Variability in leg adjustment for a given system
energy (speed, apex height)

In Fig. 2A the stability of the spring-mass running
was investigated for a given initial apex height
(0 = 1m) and speed (vxo = Sm/s), different leg stiff-
ness ki gg and angles of attack oy. Periodic running
patterns were present within a ‘J’-shaped region in the
(09, kLgg)-plane. Thereby, different leg stiffness empiri-
cally adapted to the angle of attack with

1
k]_EG(OC) = m const (3)

resulted in periodic solutions. According to the depicted
function (solid line in Fig. 2A) the constant amounts to
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Fig. 2. Stable running requires a proper adjustment of leg stiffness kg, angle of attack oy and running speed vx . The integration stopped if the
point mass fell onto the ground (y = 0) or the step number exceeded 24 (right grayscale). In each diagram (A—C) one parameter was kept constant:
(A) running speed, (B) angle of attack, and (C) leg stiffness k1 gg. In (A) experimental data for running at 4.6 +0.5m/s are denoted by small circles O.
To fit with the simulation parameters, the individual leg stiffness was scaled to a body mass of 80 kg. The arrow points to a solid line described by a
function with k- (1—sin ) = const. Initial conditions: yp = 1 m, vxo = 5m/s, vy = 0m/s. Model parameters: k; gg = 20kN/m, m = 80kg, [y = I m,

oy = 68.

1600 N/m and equals approximately the maximum leg
force Fyax divided by the leg length at touch-down 7.
For a leg stiffness kg between 16 and 24 kN/m angles
of attack within 64° and 71° were predicted.

Small variations in the leg stiffness (2.4 kN/m) and
angle of attack (+1°) were tolerated by the system
without leaving the periodic running pattern (see below:
return maps of the apex height, Fig. 3A).

The experimental data showed a fairly good coin-
cidence with the predicted leg adjustments. The subjects
used different strategies: either stiff legs with steep
angles of attack or more compliant legs with flatter
angles.

3.2. Influence of speed

The influence of the horizontal apex velocity on the
leg adjustment was investigated in Figs. 2B and C.
Following statements can be made:

(1) Running with constant techniques (leg stiffness and
angle of attack) requires a minimum speed (here
about 3.5m/s).

(2) With increasing speed the leg adjustment for stable
running becomes less sensitive, i.e. larger variations
in leg stiffness and angle of attack are tolerated by
the system.

(3) Higher running velocities require either a higher leg
stiffness assuming a constant angle of attack
(Fig. 2B) or flatter angles of attack for a constant

leg stiffness (Fig. 2C). Both strategies are competi-
tive, e.g. deficits in leg stiffness may be compensated
to a certain degree by flatter leg angles (compare
Fig. 2A). The ‘J’-shaped region of stable running in
Fig. 2A is shifted to higher stiffness values and
flatter angles of attack for increased running speeds.
The general shape of the region remains similar
although the region is enlarged (compare Fig. 2B
and C).

3.3. Return map of the apex height

To prove the stability in running for an infinite
number of steps we are now focusing on only one stride
cycle between two apexes. Taking the conservative
nature of the spring-mass system into account we can
reduce the apex state vector to one free parameter (see
methods): the apex height y;. The relationship between
the apex height of two proceeding flight phases y;;1();)
is shown in Fig. 3 for a horizontal velocity of 5m/s, a leg
stiffness kg = 20 kN/m and different angles of attack
op. The configurations with a maximum number of steps
(n = 24 for oy = 67°, 68°; Fig. 2A) proved to result in
periodic running movements with stable fixed points in
the return map y;;1(y;). Lower angles of attack («p =
66°) may still result in a certain number of steps but with
decreasing running velocity and increasing vertical
excursions (Fig. 2A). This is a consequence of the
adjacent alignment of the y;.(y;)-curve with the
diagonal y; | = y;.
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Fig. 3. (A) Return map of the apex height y;,1(y;) of two subsequent flight phases and (B) trajectories of center of mass during one stride for different
angles of attack o including regions of periodic and aperiodic movements (initial apex condition and model parameters corresponding to Fig. 2).
Periodic running movements require fixed points y; = y;;; (holds for ap = 67°, 68°, 69°). A stable fixed point requires additionally a slope of the
Vir1(yi)-function between [—1, 1] in the neighborhood (holds for oy = 67°, 68° at the lower fixed point). Two examples of the local behavior next to
the fixed points are illustrated for oy = 67° and 69° in the magnified region in (A). For a given angle of attack o variations in the apex height can be
tolerated by the system without loosing the periodicity until the upper intersection is reached. Furthermore, periodicity is also lost if either the
landing height yp is missed in the following step (op = 69°) or if the system increases the vertical excursions (zy = 66°) (B).

In contrast, increasing the angle of attack (xy = 69°)
leads to a sudden fall. Although a limited number of
steps is possible within a small neighborhood of the
intersection with the diagonal y;,| = y; (Fig. 3A), a fall
occurs if the landing height yrp cannot be reached by
the apex of the following flight phase y;y;.

4. Discussion

Our investigation was based on the spring-mass
model with a fixed adjustment of the landing leg. Due
to the simplicity of this approach, it was possible to
explore the configuration space of the system. It allowed
us to identify periodic limit cycles using a stride number
analysis and a stride-to-stride analysis in terms of a one-
dimensional return map of the apex height.

Spring-like leg operation within the proper conditions
facilitates control during periodic running exercises. The
system showed mechanically stable solutions for a
variety of chosen leg adjustments as long as a minimum
running speed was exceeded. Different angles of attack
may result in a stable running pattern if the leg stiffness
is properly adapted. The simulation showed that there is
a ‘J’-shaped dependency in the adjustment of angle of
attack to leg stiffness for a stable running pattern with
given speed. This resulted in an almost constant

maximum leg force independent of the chosen leg
compliance.

In the long jump, a similar leg adjustment was
identified (Seyfarth et al., 1999) for maximum jumping
distance assuming a spring-like leg. For a given speed,
different angles of attack and leg stiffness may result in
the same jumping distance. In contrast to running, here
an asymmetric contact phase is used.

4.1. Comparison with experimental studies

Adaptations in the chosen angle of attack similar to
our findings has been observed during running for
largely different animals (Farley et al. 1993) and humans
(Farley and Gonzalez, 1996).

In our experimental data angles of attack between 65°
and 75° were used within a speed range of 4-5m/s. The
estimated leg stiffness values are higher as compared to
other studies as we used the hip position of the stance leg
to approximate the center of mass. This resulted in
smaller leg lengths and a smaller magnitude of leg
shortening during ground contact. However, the dis-
tribution within the (k, og)-space largely agrees with the
prediction of the model.

With increasing speed experimental observations
showed mostly either constant or increasing leg stiffness
(Farley et al., 1993; Arampatzis et al., 1999). However,
in some cases even smaller leg stiffness may be used
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(e.g. kangaroos). Farley et al. (1993) found that the
angle swept by the leg during the stance phase always
increased with speed (i.e. a decrease in the angle of
attack og). The experimentally observed adjustments in
leg angle correspond to the changes predicted by the
spring-mass model for a constant leg stiffness (Fig. 2C).

In human, running at different stride frequencies for a
given speed almost constant peak ground reaction forces
were observed for largely different leg stiffness and
angles of attack (Farley and Gonzalez, 1996). This
supports our observation in Eq. (3) indicating a constant
leg force within the region of stable running.

The minimum running speed predicted in this study is
about twice the natural transition speed between human
walking and running (Margaria, 1938; Thorstensson
and Roberthson, 1987). Running at low speeds requires
a careful adjustment (control) of the mechanical
parameters. In consequence, step-by-step adjustments
would be necessary. Sensory information must be taken
into account. These feedback mechanisms are also
present in faster running, but some studies indicate a
reduced sensory sensitivity during fast movements
(Collins et al., 1998; Simonsen and Dyhre-Poulsen,
1999). This corresponds to the increased robustness of
the mechanical system with higher speed.

Recently Donelan and Kram (2000) investigated
dynamic similarity in human running using simulated
reduced gravity. Comparing the kinematic and dynamic
parameters at different running speeds they found that
no single parameter is sufficient to uniquely characterize
dynamically similar movements.

The behavior of the spring-mass model can be scaled
by substituting the leg stiffness, the body mass, the leg
length and the gravitational constant with one dimen-
sionless constant (introduced as relative leg stiffness by
Blickhan and Full, 1993) using transformations in space
and time (Blickhan, 1989). Although the flight phase
was not considered previously it proves to hold even for
a periodically running spring-mass system (due to the
nature of the differential equations for the flight phase).
According to our findings stable running requires a
proper adjustment of (scaled) leg stiffness, angle of
attack and (scaled) speed (similar to Fig. 2).

The experimental evidences of the model predictions
lead to the conclusion that mechanically self-stabilized
running requires a spring-like leg operation with a
minimum running speed as well as a proper adjustment
of the leg stiffness and the angle of attack. These
conditions can be considered as a movement criterion
for running.

4.2. Variability in leg adjustment and possible muscular
limitations

With increasing speed different leg strategies become
possible. The decision which strategy is appropriate for

which animal requires to take properties of the musculo-
skeleton system into account.

To fulfill periodic running elastic operation on the
musculo-skeletal level is of advantage. At high speeds
flat angles of attack would lead to high lengthening rates
of the muscle-tendon complex. With increasing stretch-
ing velocity, muscles may not any more be able to
compensate the eccentric losses by concentric work.
Here, compliant elastic tendons or long muscle fibers
may reduce the effective muscle fiber velocity and
consequently support high running speeds at flat angles
of attack.

In contrast, steep angles of attack would require to
build up leg forces rapidly. Therefore, stiff tendons and
strong muscles would be necessary. Thus, depending on
the muscle and tendon properties either the maximum
muscle fiber velocity or the maximum fiber force
capability would determine the strategy used with
increasing running speed. In addition, stiff strategies
would increase load to the skeleton and hamper
exteroception. Furthermore, increased loads and load-
ing rates of the musculature result in increased meta-
bolic costs (Kram and Taylor, 1990).

Even though the animal’s leg represents a nonconser-
vative system special steps can be taken to provide
stability, i.e. a return to the envisioned periodic
condition without changing control (Wagner and
Blickhan, 1999). The influence of this intrinsic stability
at the muscle-skeleton level on stable movement
strategies of the global system will be subject of further
investigations.

4.3. Outlook

The spring-mass model is probably the simplest
template of fast legged locomotion (Full and Ko-
ditschek, 1999). It was successfully applied to different
movement patterns (bipedal, quadrupedal, hexapedal)
in sagittal and horizontal plane (Blickhan and Full,
1993; Kubow and Full, 1999). Based on the mechanisms
of running identified with the spring-mass model it is
possible to derive the appropriate movement criteria for
bi- and quadrupedal systems.

In humans, an alternate contact of both legs is
characteristic but also synchronous leg operation can be
realized with two legs (e.g. kangaroos, birds). Here, the
arrangement of the legs and the mechanical properties
of the supported body must be taken into account to
identify the appropriate manner of leg operation with
two legs. Multiple legged systems can take advantage of
mechanically self-stabilized spring-like running if the
integral stiffness of several legs contacting the ground
simultaneously is properly adjusted. However, elastic
operation is not necessary at every individual leg as long
as the integral behavior remains the same (McMahon,
1985).
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