
Lecture Notes on
Natural Numbers

15-317: Constructive Logic
Frank Pfenning

Lecture 6
September 10, 2009

1 Introduction

In this lecture we discuss the type of natural numbers. They serve as a
prototype for a variety of inductively defined data types, such as lists or
trees. Together with quantification as introduced in the previous lecture,
this allow us to reason constructively about natural numbers and extract
corresponding functions. The constructive system for reasoning logically
about natural numbers is called intuitionistic arithmetic or Heyting arithmetic.

2 Induction

As usual, we think of the type of natural numbers as defined by its intro-
duction form. Note, however, that nat is a type rather than a proposition. It
is possible to completely unify these concepts to arrive at type theory, some-
thing we might explore later in this course. For now, we just specify cases
for the typing judgment t : τ that was introduced in the previous lecture
on quantification, but for which we have seen no specific instances yet. We
distinguish this from M : A which has the same syntax, but relates a proof
term to a proposition instead of a term to a type.

There are two introduction rules, one for zero and one for successor.

0 : nat
natI0

n : nat

s n : nat
natIs

This definition has a different character from the previous definitions. For
example, we defined the meaning of A∧B true from the meanings of A true

LECTURE NOTES SEPTEMBER 10, 2009



L6.2 Natural Numbers

and the meaning of B true, all of which are propositions. It is even differ-
ent from the proof term assignment rules where, for example, we defined
〈M,N〉 : A ∧ B in terms of M : A and N : B. In each case, the proposition
is decomposed into its parts.

Here, the types in the conclusion and premise of the natIs rules are the
same, namely nat. Fortunately, the term n in the premise is a part of the
term s n in the conclusion, so the definition is not circular.

But what should the elimination rule be? We cannot decompose the
proposition into its parts, so we decompose the term instead. This is similar
to disjunction in that it proceeds by cases, accounting for the possibility that
a given n of type nat is either 0 or s x for some x.

n : nat C(0) true

x : nat C(x) true
u

...
C(s x) true

C(n) true
natEx,u

In words: In order to prove property C of a natural number n we have
to prove C(0) and also C(s x) under the assumption that C(x) for a new
parameter x. The scope of x and u is just the rightmost premise of the rule.
This corresponds exactly to proof by induction, where the proof of C(0)
is the base case, and the proof of C(s x) from the assumption C(x) is the
induction step.

We managed to state this rule without any explicit appeal to universal
quantification, using parametric judgments instead. We could, however,
write it down with explicit quantification, in which case it becomes:

∀n:nat. C(0)⊃(∀x:nat. C(x)⊃C(s x))⊃C(n)

for an arbitrary property C of natural numbers. It is an easy exercise to
prove this with the induction rule above.

To illustrate this rule in action, we start with a very simple property:
every natural number is either 0 or has a predecessor. First, a detailed in-
duction proof in the usual mathematical style.

Theorem: ∀x:nat. x = 0 ∨ ∃y:nat. x = s y.
Proof: By induction on x.

Case: x = 0. Then the left disjunct is true.

LECTURE NOTES SEPTEMBER 10, 2009



Natural Numbers L6.3

Case: x = s x′. Then the right disjunct is true: pick y = x′ and
observe x = s x′ = s y.

Next we write this in the formal notation of inference rules. We sug-
gest the reader try to construct this proof step-by-step; we show only the
final deduction. We assume there is either a primitive or derived rule of
inference called refl expressing reflexivity of equality on natural numbers
(n = n).

x : nat

0 = 0
refl

0 = 0 ∨ ∃y:nat. 0 = s y
∨IL

x′ : nat s x′ = s x′ refl

∃y:nat. s x′ = s y
∃I

s x′ = 0 ∨ ∃y:nat. s x′ = s y
∨IR

x = 0 ∨ ∃y:nat. x = s y
natEx′,u

∀x:nat. x = 0 ∨ ∃y:nat. x = s y
∀Ix

This is a simple proof by cases and does not use the induction hypothesis,
which would have been labeled u.

In the application of the induction rule natE we used the property C(x),
which is a proposition with the free variable x of type nat. To write it out
explicitly:

C(x) = (x = 0 ∨ ∃y:nat. x = s y)

While getting familiar with formal induction proofs it may be a good idea
to write out the induction formula explicitly.

As a second example we specify a function which tests if its argument is
even or odd. For this purpose we assume a doubling function 2× . Equality
is decided by an oracle.

Theorem: ∀x:nat. (∃y. x = 2× y) ∨ (∃z. x = s (2× z)).
Proof: By induction on x.

Case: x = 0. Then pick y = 0 since 0 = 2× 0.

Case: x = s x′. By induction hypothesis we have either ∃y. x′ =
2× y or ∃z. x′ = s (2× z). We distinguish these two cases.

Case: ∃y. x′ = 2× y. Then the second disjunct holds because
we can pick z = y: x = s x′ = s (2× y).

Case: ∃z. x′ = s (2× z). Then the first disjunct holds because
we can pick y = s z: x = s x′ = s (s (2 × z)) = 2 × (s z)
by properties of 2× .

LECTURE NOTES SEPTEMBER 10, 2009



L6.4 Natural Numbers

We start the transcription of this proof.

0 = 2× 0 ∨ . . .

(∃y. 0 = 2× y) ∨ . . .
∃I

x′ : nat (∃y. x′ = 2× y) ∨ (∃z. x′ = s (2× z))
u

...
(∃y. s x′ = 2× y) ∨ (∃z. s x′ = s (2× z))

(∃y. x = 2× y) ∨ (∃z. x = s (2× z))
natEx′,u

∀x:nat. (∃y. x = 2× y) ∨ (∃z. x = s (2× z))
∀Ix

From here, we proceed by an ∨E applied to u, followed by an ∃E in
each branch, naming the y and z that are known to exist. Unfortunately,
the 2-dimensional notation for natural deductions which is nice and direct
for describing and reasoning about the rules, is not so good for writing
actual formal deductions.

3 Local Proof Reduction

We check that the rules are locally sound and complete. For soundness, we
verify that no matter how we introduce the judgment n : nat, we can find a
more direct proof of the conclusion. In the case of natI0 this is easy to see,
because the second premise already establishes our conclusion.

0 : nat
natI0

E
C(0) true

x : nat C(x) true
u

F
C(s x) true

C(0) true
natEx,u

=⇒R
E

C(0) true

The case where n = s n′ is more difficult. Intuitively, we should be using
the deduction of the second premise for this case.

LECTURE NOTES SEPTEMBER 10, 2009



Natural Numbers L6.5

D
n′ : nat

s n′ : nat
natIs

E
C(0) true

x : nat C(x) true
u

F
C(s x) true

C(s n′) true
natEx,u

=⇒R

D
n′ : nat

D
n′ : nat

E
C(0) true

x : nat C(x) true
u

F
C(s x) true

C(n′) true
natEx,u

[n′/x]F ′

C(s n′) true

It is difficult to see in which way this is a reduction: D is duplicated, E per-
sists, and we still have an application of natE. The key is that the term we
are eliminating with the applicaton of natE becomes smaller: from s n′ to
n′. In hindsight we should have expected this, because the term is also the
only component getting smaller in the second introduction rule for natural
numbers.

The computational content of this reduction is more easily seen in a
different context, so we move on to discuss primitive recursion.

The question of local expansion does not make sense in our setting. The
difficulty is that we need to show that we can apply the elimination rules in
such a way that we can reconstitute a proof of the original judgment. How-
ever, the elimination rule we have so far works only for the truth judgment,
so we cannot really reintroduce n : nat. The next section will give us the
tool.

4 Primitive Recursion

Reconsidering the elimination rule for natural numbers, we can notice that
we exploit the knowledge that n : nat, but we only do so when we are try-
ing to establish the truth of a proposition, C(n). However, we are equally
justified in using n : nat when we are trying to establish a judgment of the

LECTURE NOTES SEPTEMBER 10, 2009



L6.6 Natural Numbers

form t : τ . The rule then becomes

n : nat t0 : τ

x : nat r : τ...
ts : τ

R(n, t0, x. r. ts) : τ
natEx,r

Here, R is a new term constructor,1 t0 is the case where n = 0, and ts
captures the case where n = s n′. In the latter case x is a new parameter
introduced in the rule that stands for n′. r stands for the result of the func-
tion R when applied to n′, which corresponds to an appeal to the induction
hypothesis.

The local reduction rules may help explain this. We first write then
down just on the terms, where they are computation rules.

R(0, t0, x. r. ts) =⇒R t0
R(s n′, t0, x. r. ts) =⇒R [R(n′, t0, x. r. ts)/r][n′/x] ts

These are still quite unwieldy, so we consider a more readable schematic
form, called the schema of primitive recursion. If we write

f(0) = t0
f(s x) = ts(x, f(x))

where the only occurence of f on the right-hand side is applied to x, then
we could have defined f explicitly with

f = λx.R(x, t0, x. r. ts(x, r)).

To verify this, apply f to 0 and apply the reduction rules and also apply f
to s n for an arbitrary n and once again apply the reduction rules.

f(0) =⇒R R(0, t0, x. r. ts(x, r))
=⇒R t0

and
f(s n) =⇒R R(s n, t0, x. r. ts(x, r))

=⇒R ts(n, R(n, t0, x. r. ts(x, r)))
= ts(n, f(n))

1R suggests recursion

LECTURE NOTES SEPTEMBER 10, 2009



Natural Numbers L6.7

The last equality is justified by a (meta-level) induction hypothesis, because
we are trying to show that f(n) = R(n, t0, x. r. ts(x, r))

To be completely formal, we would also have to define the function
space on data, which comes from the following pair of introduction and
elimination rules for τ →σ. Since they are completely analogous to impli-
cation, except for using terms instead of proof terms, we will not discuss
them further

x : τ...
s : σ

λx:τ. s : τ →σ
→I

s : τ →σ t : τ

s t : σ
→E

The local reduction is

(λx:τ. s) t =⇒R [t/x]s

Now we can define double via the schema of primitive recursion.

double(0) = 0
double(s x) = s (s (double x))

We can read off the closed-form definition if we wish:

double = λn. R(n, 0, x. r. s (s r))

From now on we will be content with using the schema of primitive
recursion. We define addition and multiplication, as exercises.

plus(0) = λy. y
plus(s x) = λy. s ((plus x) y)

times(0) = λy. 0
times(s x) = λy. (plus ((times x) y)) y

5 Proof Terms

With proof terms for primitive recursion in place, we can revisit and make
a consistent proof term assignment for the elimination form with respect to
the truth of propositions.

LECTURE NOTES SEPTEMBER 10, 2009



L6.8 Natural Numbers

n : nat M0 : C(0) true

x : nat u : C(x) true
u

...
Ms : C(s x) true

R(n, M0, x. u.Ms) : C(n) true
natEx,u

The local reductions we discussed before for terms representing data,
also work for these proofs terms, because they are both derived from slightly
different variants of the elimination rules (one with proof terms, one with
data terms).

R(0,M0, x. u.Ms) =⇒R M0

R(s n′,M0, x. u.Ms) =⇒R [R(n′,M0, x. u.Ms)/u][n′/x]Ms

We can conclude that proofs by induction correspond to functions de-
fined by primitive recursion, and that they compute in the same way.

Returning to the earlier example, we can now write the proof terms,
using for proofs of equality (whose computational content we do not care
about).

Theorem: ∀x:nat. x = 0 ∨ ∃y:nat. x = s y.
Proof: By induction on x.

Case: x = 0. Then the left disjunct is true.

Case: x = s x′. Then the right disjunct is true: pick y = x′ and
observe x = s x′ = s y.

The extracted function has the form

pred = λx:nat. R(x, inl , x. r. inr〈x, 〉)

More easily readable is the ML version, where we have eliminated the com-
putationally irrelevant parts from above.

datatype nat = Z | S of nat;
datatype nat_option = Inl | Inr of nat
(* pred : nat -> nat_option *)
fun pred Z = Inl
| pred (S x) = Inr x

LECTURE NOTES SEPTEMBER 10, 2009



Natural Numbers L6.9

Theorem: ∀x:nat. (∃y. x = 2× y) ∨ (∃z. x = s (2× z)).
Proof: By induction on x.

Case: x = 0. Then pick y = 0 since 0 = 2× 0.

Case: x = s x′. By induction hypothesis we have either ∃y. x′ =
2× y or ∃z. x′ = s (2× z). We distinguish these two cases.

Case: ∃y. x′ = 2× y. Then the second disjunct holds because
we can pick z = y: x = s x′ = s (2× y).

Case: ∃z. x′ = s (2× z). Then the first disjunct holds because
we can pick y = s z: x = s x′ = s (s (2 × z)) = 2 × (s z)
by properties of 2× .

half = λx:nat. R(x, inl〈0, 〉,
x. r. case r of inl u ⇒ let 〈y, 〉 = u in inr 〈y, 〉

| inr w ⇒ let 〈z, 〉 = w in inl 〈s z, 〉

or, in ML, where half(2 × n) returns Even(n) and half(2 × n + 1)
returns Odd(n).

datatype nat = Z | S of nat;
datatype parity = Even of nat | Odd of nat
(* half : nat -> parity *)
fun half Z = Even Z
| half (S x) = (case half x

of Even y => Odd y
| Odd z => Even (S z))

6 Local Expansion

Using primitive recursion, we can now write a local expansion.

D
n : nat =⇒E

D
n : nat 0 : nat

natI0
x : nat

s x : nat
natIs

R(n, 0, x. r. s x) : nat
natEx,r

A surprising observation about the local expansion is that it does not
use the recursive result, r, which corresponds to a use of the induction
hypothesis. Consequently, a simple proof-by-cases would also have been
locally sound and complete.

LECTURE NOTES SEPTEMBER 10, 2009



L6.10 Natural Numbers

This is a reflection of the fact that the local completeness property we
have does not carry over to a comparable global completeness. The diffi-
culty is the well-known property that in order to prove a proposition A by
induction, we may have to first generalize the induction hypothesis to some
B, prove B by induction and also prove B⊃A. Such proofs do not have the
subformula property, which means that our strict program of explaining
the meaning of propositions from the meaning of their parts breaks down
in arithmetic. In fact, there is a hierarchy of arithmetic theories, depending
on which propositions we may use as induction formulas.

LECTURE NOTES SEPTEMBER 10, 2009


