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Abstract

Existing Database Management Systems (DBMSs) do
not handle efficiently multi-dimensional data such as
boxes, polygons, or even points in a multi-dimensional
space. We examine access methods for these data with
two design goals in mind: (a) efficiency in terms of
search speed and space overhead and (b) ability to be
integrated in a DBMS easily. We propose a method to
map multidimensional objects into points in a 1-
dimensional space; thus, traditional primary-key access
methods can be applied, with very few extensions on the
part of the DBMS. We propose such mappings based on
fractals; we implemented the whole method on top of a
B +-tree, along with several mappings. Simulation exper-
iments on several distributions of the input data show
that a modified Hilbert curve gives the best results, even
when compared to R-trees [7].

1. Introduction.
Existing Database Management Systems (DBMSs)

handle efficiently numbers and character strings, but not
multi-dimensional data such as boxes, polygons, or even
points in a multi-dimensional space. Multi-dimensional
data arise in many applications, including: Cartography
[21], Computer-Aided Design (CAD) and VLSI design
systems [14], [8], computer vision and robotics [1],
traditional databases (a record with k attributes
corresponds to a point in a k -d space), rule indexing in
expert database systems [20], etc..

Our goal here is to design a method with the fol-
lowing two characteristics:
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1) Fast response on geometric queries.

2) Ability to be integrated easily in a DBMS.

We mainly focus on range queries (or region queries) on
a collection of rectangles: Given a rectangular region
(user window), find all the objects that intersect it. A
special case of the range query is the point query: Given
a certain point in the space, find all the objects that con-
tain it. To avoid many disk accesses, a good method
should ideally store on the same page those rectangles
that are geometrically "similar".

We restrict the geometric objects to be rectangles
that are aligned with the axes; the reason is that a general
geometric shape is frequently represented by its
minimum enclosing rectangle.

The main idea in the proposed method is to use
two consecutive transformations, to map spatial objects
into 1-dimensional points. Thus, we can use ANY pri-
mary key access method (e.g. B-tree). For the rest of this
work, the method will be called DOT (for DOuble
Transformation).

Good distance-preserving mappings are essential
for the performance of the method. We examine space-
filling curves, also known as "fractals" [10]. These
curves, such as the Peano curve and the Hilbert curve,
define a path that traverses the points in a N ×N square
grid. These curves can be generalized for higher dimen-
sionality spaces.

The paper is organized as follows: Section 2 gives
a brief survey and classification of known spatial access
methods. Section 3 describes the proposed approach and
alternative distance preserving mappings. Section 4
compares the alternatives using analysis, exhaustive
enumeration, as well as simulation with a B +-tree as the
underlying primary-key file structure. It also compares
the alternative designs of DOT to R-trees [7], which is
one of the main spatial access methods. Section 5
presents the conclusions and future research directions.



2. Survey
The problem is to store and retrieve spatial objects on
secondary store (disk). As mentioned before, a general
object is represented by its minimum enclosing rectangle.
Access methods for such rectangles form three classes
[18], [19]. We examine the first two in more detail,
because they are necessary to describe the proposed
DOT method.

Class 1: Methods that transform the rectangles into
points in a space of higher dimensionality [9]. For exam-
ple, a 2-d rectangle with sides parallel to the axes is
characterized by four coordinates, and thus it can be con-
sidered as a point in a 4-d space. Therefore, secondary
key access methods can be used. Figure 2.1 shows an
example with line segments (1-d rectangles) and their
transformations. The Figure also shows the transforma-
tion of a range query, say, (qstart , qend ): xstart <qend and
xend >qstart . Without loss of generality, the (1-d) address
space is normalized to the segment (0,1). Note that there
are no points outside the triangle {(0,0), (0,1), (1,0)} in
the transformed space.
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Figure 2.1.
Some line segments (2.1a) and their

transformations (2.1b) along with the
transformation of the query (qstart , qend ).

Class 2: Methods that use space filling curves to map a
k -d space onto a 1-d space. Such methods have been
suggested, among others, by Orenstein [11], [12]. The
idea is to transform each k -dimensional object to a set of
line segments, using Peano’s space filling curve [15].
The Peano curve induces an ordering of the k -d points,
giving a unique value (z −value ) to each grid point
(pixel). The term z −ordering denotes the way that rec-
tangles are mapped to a set of line segments on the Peano
curve. The z −value of a pixel is the binary value of the
string that is created by interleaving the binary represen-
tations of its x - and y -coordinates. For example, rectan-
gle "A" in Figure 2.2 corresponds to one pixel and has
the z −value of 0101; a larger quadrant has as its
z −value the common prefix of the z −values of the pixels
it contains (eg., rectangle "B" in Figure 2.2 has the
z −value of 11). The transformation of a rectangle is a
set of z −values (variable-length bit strings), each

corresponding to a quadrant that the rectangle completely
covers. In Figure 2.2, rectangle "C" has to be split; the
corresponding z −values of the pieces are 0010 and 1000
respectively. Overlapping objects can be detected using
the so-called "spatial join" [11] which is a simple exten-
sion of the natural join. This way minimal changes are
required in database systems to support spatial opera-
tions.

The only problem with this approach is the proli-
feration of records to store, because each rectangle is
divided into many pieces. The proposed DOT method
avoids this problem, as we shall see later.
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Figure 2.2.
Illustration of the z −ordering method [12].
Shuffling function: the point (x 1x 2, y 1y 2)

gives (x 1y 1x 2y 2)

Class 3: Methods that divide the original space into
appropriate sub-regions. The sub-regions may be over-
lapping, such as in R-trees [7] [16] or they may be dis-
joint, such as in the "cell"-trees [6] or in the R +-trees
[19].

3. Proposed approach
The proposed method suggests pipelining the

transformations of Class 1 and Class 2 of the survey sec-
tion. The resulting method enjoys the best of both
worlds, avoiding the drawbacks of its individual transfor-
mation:

g like the z −ordering of Class 2, it can be easily
integrated in DBMS;

g like the members of Class 1, it does not have to
divide the rectangles into pieces that fit the qua-
drants of the address space (while the z −ordering
does have to), thus avoiding the proliferation of the
records to be stored.

The method works as follows (see Figure 3.1):



Step 0. A spatial object from a k -d space is
represented by its minimum enclosing rectan-
gle.

Step 1. The rectangle is transformed into a point in a
2k -d space [9]. This transformation is called
first transformation.

Step 2. A distance preserving mapping [11] is used to
map this point to a point in an 1-dimensional
space. This transformation is called second
transformation.

Definitions: The k -dimensional space that the rectangles
are in will be called initial space; the 2k -dimensional
space resulting after Step 1 will be called intermediate
space, and the 1-dimensional space after Step 2 will be
called final space.

The x-value of a rectangle is defined as the value
of the corresponding point in the final space, when the
mapping "x" is used as the second transformation. "x"
can be any mapping, eg., as we shall see next, the tri-
Hilbert one, the tri-Peano one etc. For example, for the
mapping in Figure 3.1, the x -values of segments A and B
are 0 and 7 respectively.

In all the drawings, the grid cells in the intermedi-
ate space are represented by their upper-left corner
(marked by little squares). This means that all the points
that fall in a given grid cell are mapped to the upper-left
corner of this cell. Of course, this digitization need not
compromise the accuracy of the representation: the coor-
dinates of the rectangles are already represented with
finite accuracy, and the grid in the intermediate space can
have arbitrarily fine granularity.
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Figure 3.1. Illustration of the proposed
approach ("Double Transformation").

Step 0 may be slightly modified, if there is too
much "dead space" between the object and its enclosing
rectangle, e.g, a concave lake in a map, or a beltway
road. With minor changes in the upcoming algorithms,
the object can be divided into a few pieces, either manu-
ally or automatically. Each of the pieces can be
represented by its minimum enclosing rectangle, thus
reducing the dead space at the expense of replicating
information [13]) Notice that this part is completely
optional in the proposed method, as opposed to the Class

2 methods, where the partitioning of each object is man-
datory.

The second transformation must preserve the dis-
tance as much as possible. We suggest mappings based
on the Hilbert curve, which outperformed its competitors
in our experiments on 2-, 3- and 4- dimensional grids [4].
Traditional distance preserving mappings apply to square
grids; in DOT, the second mapping has to operate on a
triangular grid (see middle drawing of Figure 3.1).
Therefore we modify the original Hilbert and Peano
curves, by ignoring the grid-points below the diagonal
and by joining the remaining trails of the curve in
ascending x-value order. We designed and implemented
such mappings for triangular grids. By convention, these
triangular mappings will be named after their square
counterparts, with the prefix "tri-".

A brief introduction to the traditional space-filling
curves is necessary: In a general, k -dimensional space, a
space-filling curve starts with path on a k -dimensional
grid of side 2. The path visits every point in the grid
exactly once without crossing itself. This basic curve is
said to be of order 1. To derive a curve of order n , each
vertex of the basic curve is replaced by the curve of
order n −1, which may be appropriately rotated and/or
reflected. Figures 3.2 and 3.3 respectively show the trad-
itional Peano and Hilbert curves of order 1, 2 and 3 in the
2-dimensional space.
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Figure 3.2. Peano curves of order 1, 2, and 3.
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Figure 3.3. Hilbert curves of order 1, 2, and 3.

Figures 3.4, 3.5 and 3.6 show the trails for the the tri-
row, tri-Peano and tri-Hilbert curves of order 2 (4×4
grids), as well as for their square counterparts. Note that
the tri-column mapping will have the same performance
with the tri-row one, if the queries are uniformly distri-
buted.

The calculation of the Peano-value of a point is
trivial, by shuffling the binary representations of its coor-
dinates. The calculation of the Hilbert-value of a point in
a 2- or higher dimensionality space is more complicated,
because the reflection and rotation of the basic pattern



Figure 3.4.
Row and tri-row ordering for

a 4×4 grid.

Figure 3.5.
Peano and tri-Peano ordering for

a 4×4 grid.

Figure 3.6.
Hilbert and tri-Hilbert ordering for

a 4×4 grid.

has to be accounted for. The algorithm is discussed by
Bially [2], where he uses a finite state automaton
approach. In a technical report [5] we describe the algo-
rithms that transform a pair of (x ,y ) coordinates to the
corresponding tri-Peano and tri-Hilbert value, as well as
the inverse, for the 2-dimensional space.

The algorithm that find the transformation of a
query in the final space deserves some discussion. For
example, in the setting of Figure 3.1, the (point) query
qstart =qend =0.25 is transformed to the range query
[0,0.25]×[0.25,1] in the intermediate space, which
becomes the range [0,6] in the final space. In general,
the goal is to find which ranges of the final space contain
qualifying elements. The query has to undergo two
transformations:

1. In the intermediate space, the query corresponds to
the rectangular area in Figure 2.1.

2. In the final space, the query becomes a set of s line
segments, say, {[l 1, h 1], . . . , [ls , hs ] }. The
resulting set of range queries in the final space can
be easily answered by the underlying primary key
access method.

The idea of the second step is that the intermediate
space is recursively divided and each of the pieces is
checked against the query region [ 5] Each recursive call
returns a set of ranges of the final space; the union of
these sets (after collapsing consecutive ranges to one) is
the result.

All the examples we have presented are for 2-
dimensional (intermediate) spaces. This is done just for
the purpose of illustration; the proposed space filling
curves can be generalized for higher dimensionality
(intermediate) spaces. Thus, the DOT method can be
applied to any dimensions of initial space.

4. Performance Results
The setting we have in mind is as follows: Con-

sider a set of k -dimensional rectangles; each is assigned
a value (x -value) according to the proposed DOT
method; the records of the rectangles are stored in a B +-
tree, using the x -values as primary keys. Note that not
all possible x -values have to be present; only the existing
points of the final space are stored. In this setting, the
best measure for the response time is the number of disk
accesses that the average range query requires.

The only disadvantage of this measure is that it
depends not only on the mappings used, but also on the
capacity of the disk pages, the number and distributions
of rectangles etc.. A measure that depends only on the
mapping is the number of clusters that the average query
retrieves. For a given second transformation "x", a clus-
ter is defined to be a group of points with consecutive
"x"-values. The proposed measure is a good indication
of how good a clustering a distance-preserving mapping
can achieve: If a range query retrieves few clusters, then
it is likely to require few disk accesses on the actual file.
For example, the query of Figure 3.1 retrieves only one
cluster (namely, the one with endpoints [0,6]).

We have ran two types of experiments, using an
1-dimensional initial space (i.e., the rectangles are line
segments), with a 2-dimensional intermediate space.
First, we examined the average number of clusters that
alternative space-filling curves result into, by exhaustive
enumeration or analysis. Then, we measured the number
of disk accesses under several input data distributions,
for the R-trees and for alternative designs of the DOT
method.

For the tri-row ordering, we have derived the
number of clusters analytically: If N is the size of the
side of the grid, the average number of clusters for all
possible range queries is given by the formula

Call =
N (N +1)/2

i =0
Σ

N −1

j =i
Σ

N −1

(N −j −1)+N

(1)

The average number of clusters for all possible point
queries is:

C 0 = (N −1)/2+1/N (2)

Table 4.1 shows the average number t of clusters for all



possible range queries for the tri-row ordering, the tri-
Peano curve and the tri-Hilbert curve. Table 4.2 shows
the same measure for point queries only. In both cases,
the tri-Hilbert curve is the best, retrieving approximately
half as many clusters as its competitors.

Order n tri-row tri-Hilbert tri-Peano

1 1.00 1.00 1.00
2 1.40 1.20 1.30
3 2.56 1.78 2.33
4 5.12 3.06 4.79
5 10.39 5.70 10.00
6 21.03 11.02 20.59

Table 4.1
Average number of clusters for

all possible range queries

Order n tri-row tri-Hilbert tri-Peano

1 1.00 1.00 1.00
2 1.75 1.50 1.75
3 3.63 2.50 3.63
4 7.56 4.50 7.56
5 15.53 8.50 15.53
6 31.52 16.50 31.52

Table 4.2
Average number of clusters for

all possible point queries

Having the above strong indication that the tri-
Hilbert curve should perform well, we also run more
realistic, simulation experiments to measure the actual
number of disk accesses. We used a pseudo-random
number generator and we created line segments in the
initial space, such that their transformations form three
types of distribution in the intermediate space:

1. The first type is the "strip" distribution (abbrevia-
tion S.) shown in Figure 4.1(a). It corresponds to
the case where there are many, small rectangles;
then, the transformed points in the intermediate
space are located in a narrow strip above the diag-
onal. It seems that this distribution appears often
in practical applications [17].

2. The second distribution is called "double-
strip"(abbreviation D.S.); this is the case where
there are many small rectangles with a few large
rectangles within certain sizes (see Figure 4.1(b)).
We feel this is a practical distribution, too: For
example, in a VLSI design, there are many small
gates and a few long busses.

3. The third distribution is "strip plus
uniform"(abbreviation S+U); it corresponds to the
case where there are many small rectangles with a
few large rectangles in uniform random sizes (Fig-
ure 4.1(c)).
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Figure 4.1
Three types of data distribution

Using each of our triangular space-filling curves, we
mapped these points into one-dimensional points and
stored them in a B + tree (one B + tree for each triangular
mapping with each data set). The leaf and internal node
capacity of the B + tree with page size 512 are 25 and 63.
The leaf and internal node capacity of the B + tree with
page size 1024 are 46 and 127. A 128 X 128 grid is used
for each data set with 1000 line segments. A 256 X 256
grid is used for each data set with 5000 line segments. A
512 X 512 grid is used for each data set with 10000 line
segments.

To compare our methods with R -tree, we also
stored the line segments into a R -tree. We chose a R -
tree that uses linear split algorithm with nodes at least
half full, because the search performance of a R -tree is
not very sensitive to the choice of the split algorithm [7].
For the experiment, the root of the B + tree and the R -tree
were assumed to be permanently stored in main memory.
Tables 4.3 and 4.4 show the average number of pages
touched per qualifying record, for all possible point
queries in the initial space (which has N distanct points)
with page size 512 bytes and 1024 bytes, respectively.
The results are calculated by the formula

t =

i =1
Σ
N

(number of qualifying records)

i =1
Σ
N

(number of pages read)

In all cases, the tri-Hilbert curve behaves better
than its competitors, confirming our intuition and the
preliminary experiments of Tables 4.1 and 4.2. In our
experiments, the DOT method using the tri-Hilbert curve
achieved consistently better results over the R -tree (up to
more than 50% savings) and over the tri-Peano-based
DOT version. The tri-Peano curve is better than the tri-
row curve.



data B + tree

N distri. R -tree tri-H tri-P tri-R

1000 S 0.183 0.133 0.182 0.522
1000 D.S 0.128 0.087 0.115 0.247
1000 S+U 0.156 0.092 0.111 0.247

5000 S 0.125 0.106 0.142 0.880
5000 D.S 0.103 0.074 0.091 0.357
5000 S+U 0.101 0.077 0.094 0.351

10000 S 0.121 0.100 0.130 1.315
10000 D.S 0.099 0.065 0.074 0.381
10000 S+U 0.103 0.069 0.079 0.358

Table 4.3
Pages touched per qualifying record,

for all possible point queries
with page size 512 bytes.

data B + tree

N distr. R -tree tri-H tri-P tri-R

1000 S 0.140 0.085 0.108 0.211
1000 D.S 0.121 0.061 0.075 0.135
1000 S+U 0.121 0.055 0.078 0.137

5000 S 0.084 0.049 0.064 0.257
5000 D.S 0.070 0.035 0.042 0.114
5000 S+U 0.078 0.036 0.043 0.110

10000 S 0.072 0.058 0.075 0.501
10000 D.S 0.058 0.041 0.047 0.216
10000 S+U 0.060 0.044 0.053 0.223

Table 4.4
Pages touched per qualifying record,

for all possible point queries
with page size 1024 bytes.

5. Conclusions - Future research.
The main contribution of this work is the proposal

of the DOT method, which maps k -dimensional rectan-
gles to 1-dimensional points. Thus, any primary key
access method can be used to handle spatial data; the
only functions that are needed are (a) the function that
maps a k -d rectangle to an 1-d point and (b) the function
that maps a k -d query to a set of 1-d ranges. These func-
tions are a few hundred lines of C code long. The rest of
the complexity (insertion, deletions, locking, con-
currency etc.) is handled by the underlying primary-key
data structure, such as a B-tree. The additional advan-
tages of using a DOT on a B-tree are that

(a) the space utilization is bounded

(b) the B-tree will adapt itself automatically to skewed
distributions of data.

(c) the B-tree code is readily available in every DBMS

Thus, the method can be easily integrated in any rela-
tional DBMS, enhancing it with the ability to handle spa-
tial objects.

We have mainly focused on rectangular queries;
however, queries of arbitrary shape can be handled
easily, by dividing the shape into rectangle (e.g, in a
quadtree fashion).

Additional, minor contributions are:

1) the experimentation among the space filling
curves, which pinpoints that the Hilbert and tri-
Hilbert curves are the most promising methods.

2) the implementation of the DOT method (with all
its alternative designs) on a B +-tree; this shows the
applicability of the method on a real DBMS.

3) The simulation comparison of the DOT method
against the R-trees, which showed that the pro-
posed method consistently outperforms the R-
trees.

Future work includes:

1) Comparison of the DOT method with other spatial
access methods. such as the R +-trees [3], [19],
the z -ordering method [12] e.t.c.

2) Analytical study of the space filling curves to find
the one with the best clustering properties (or to
prove that the Hilbert curve is the best).

Acknowledgements: The authors would like to thank
Jiang-Hsing Chu for providing the B +-tree package, as
well as for his help with the experiments.
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