numpy.reshape() in Python
By using numpy.reshape() function we can give new shape to the array without changing data. Sometimes we need to change only the shape of the array without changing data at that time reshape() function is very much useful.
Basic Syntax
Following is the basic syntax for Numpy reshape() function:
numpy.reshape(arr, new_shape, order)
And the parameters are:
Parameter | Description |
---|---|
arr | array which should be reshaped |
new_shape | new shape for array which should be compatible with original shape, int or tuple of int. |
order | ‘C’ for C style, ‘F’ for F style (Fortran Style) , ‘A’ for Fortran like order if the array is stored in Fortran like contiguous memory else C style |
Returns
This function returns reshaped array
Example
Below is an example for Numpy reshape() function:
# Python Program for numpy.reshape() function import numpy as np array = np.arange(12); print("Original array : \n", array) # shape array with 2 rows and 4 columns array = np.arange(12).reshape(2, 6) print("\nReshaped array with 2 rows and 6 columns : \n", array) # shape array with 2 rows and 4 columns array = np.arange(12).reshape(4 ,3) print("\nReshaped array with 4 rows and 3columns : \n", array) # shape array with 2 rows and 4 columns array = np.arange(12).reshape(3 ,4) print("\nReshaped array with 3 rows and 4 columns : \n", array) # Constructs 3D array array = np.arange(12).reshape(2, 3, 2) print("\nOriginal array reshaped to 3D view : \n", array)
The output should be:
Original array :
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
Reshaped array with 2 rows and 6 columns :
[[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11]]
Reshaped array with 4 rows and 3columns :
[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11]]
Reshaped array with 3 rows and 4 columns :
[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]]
Original array reshaped to 3D view :
[[[ 0, 1],
[ 2, 3],
[ 4, 5]],
[[ 6, 7],
[ 8, 9],
[10, 11]]]
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
Reshaped array with 2 rows and 6 columns :
[[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11]]
Reshaped array with 4 rows and 3columns :
[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11]]
Reshaped array with 3 rows and 4 columns :
[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]]
Original array reshaped to 3D view :
[[[ 0, 1],
[ 2, 3],
[ 4, 5]],
[[ 6, 7],
[ 8, 9],
[10, 11]]]
LATEST POSTS
-
numpy.clip() in Python
-
Java String Substring
-
numpy.loadtxt() in Python
-
Binary Search in C
-
Bubble Sort in Java
-
numpy.ndarray.flatten() in Python
-
Python raw_input() function with Example
-
Numpy Zeros np.zeros() in Python
-
numpy.append() in Python
-
C++ strncmp() function with example
-
numpy.ones() in Python
-
numpy.argmin() in Python