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Abstract
Advances in supervised learning with deep neural net-
works have enabled robust classification in many real
world domains. An interesting question is if such ad-
vances can also be leveraged effectively for compu-
tational creativity. One insight is that because evo-
lutionary algorithms are free from strict requirements
of mathematical smoothness, they can exploit powerful
deep learning representations through arbitrary compu-
tational pipelines. In this way, deep networks trained
on typical supervised tasks can be used as an ingredi-
ent in an evolutionary algorithm driven towards creativ-
ity. To highlight such potential, this paper creates novel
3D objects by leveraging feedback from a deep network
trained only to recognize 2D images. This idea is tested
by extending previous work with Innovation Engines,
i.e. a principled combination of deep learning and evo-
lutionary algorithms for computational creativity. The
results of this automated process are interesting and rec-
ognizable 3D-printable objects, demonstrating the cre-
ative potential for combining evolutionary computation
and deep learning in this way.

Introduction
There have recently been impressive advances in training
deep neural networks (DNNs; Goodfellow, Bengio, and
Courville 2016) through stochastic gradient descent (SGD).
For example, such methods have led to significant advances
on benchmark tasks such as automatic recognition of images
and speech, sometimes matching human performance. (He
et al. 2015). While impressive, such advances have gener-
ally been limited to supervised classification tasks in which
a large number of labeled examples is available. Such a pro-
cess cannot readily create interesting, unexpected outputs.

As a result, DNNs have not precipitated similar advances
in creative domains. Creating new artifacts does not fit
naturally into the paradigm of SGD, because (1) creativ-
ity often lacks a clear error signal and (2) creative systems
are often non-differentiable as a whole, i.e. they may en-
compass arbitrary computation that lacks the mathematical
smoothness necessary for SGD. Combining evolutionary al-
gorithms (EAs) with DNNs can remedy both issues. One
powerful such combination is explored in this paper: The
latent knowledge of the DNN can be leveraged as a reward
signal for an EA; and evaluation in an EA can freely incor-
porate arbitrary computation.

Figure 1: Approach. Each iteration a new offspring CPPN
is generated, which is used to generate a 3D vector field.
The marching cubes algorithm extracts a 3D model from
this field, which is rendered from several perspectives. The
rendered images are input into an image-recognition DNN,
and its output confidences supply selection signals for MAP-
Elites, thereby driving evolution to find 3D objects that the
DNN increasingly cannot distinguish from real-world ones.

Building upon Nguyen, Yosinski, and Clune (2015b), the
main idea in this paper is that classification DNNs can be
coupled with creative EAs to enable cross-modal content
creation, where a DNN’s knowledge of one modality (e.g.
2D images) is exploited to create content in another modal-
ity (e.g. 3D objects). While the EA in Nguyen, Yosinski, and
Clune (2015b) created images from an image-based DNN,
SGD can also do so (Yosinski et al. 2015). In contrast,
the system described here creates 3D models from a 2D im-
age recognition DNN, making use of a non-differentiable
rendering engine and an expressive evolutionary compu-
tation (EC) representation called a compositional pattern-
producing network (CPPN; Stanley 2007). In this way, the
unique advantages of both EAs and DNNs are combined:
EAs can leverage compressed genetic representations and
evaluate individuals in flexible ways (e.g. bridging informa-
tion modalities), while DNNs can create high-level object
representations as a byproduct of supervised training.

The paper’s approach (Figure 1) combines an image-
recognition DNN with a diversity-generating EA (MAP-
Elites; Mouret and Clune 2015), to realize an Innovation
Engine (Nguyen, Yosinski, and Clune 2015b). The exten-
sion here is that the genetic encoding of EndlessForms.com
(Clune and Lipson 2011) enables automatic sculpting of 3D
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models. In particular, evolved objects are rendered with a
3D engine from multiple perspectives, resulting in 2D im-
ages that can be evaluated by the DNN. The classification
outputs of the DNN can then serve as selection pressure for
MAP-Elites to guide search. In this way, it is possible to
create novel 3D models from a DNN, enabling creative syn-
thesis of new models from only labeled images.

The product of running this system is a collection of
3D objects from 1, 000 categories (e.g. banana, basketball,
bubble), many of which are indistinguishable to the DNN
from real-world objects. A chosen set of objects is then 3D
printed, showing the possibility of automatic production of
novel real-world objects. Further, a user study of evolved
artifacts demonstrates that there is a link between DNN con-
fidence and human recognizability. In this way, the results
reveal that Innovation Engines can automate the creation of
interesting and often recognizable 3D objects.

Background
The next section first reviews previous approaches to cre-
ative generation of objects. After that, deep learning and
MAP-Elites are described; together they form a concrete im-
plementation of the Innovation Engine approach, which is
applied in this paper’s experiments and is reviewed last.

Creative Object Generation
EndlessForms.com (Clune and Lipson 2011) is a collabora-
tive interactive evolution website similar to Picbreeder.org
(Secretan et al. 2008), but where users collaborate to evolve
diverse 3D objects instead of 2D images. Using the same
genetic encoding, this paper attempts to automate the cre-
ativity of EndlessForms.com users, similarly to how Inno-
vation Engines were originally applied (Nguyen, Yosinski,
and Clune 2015b) to automate the human-powered collab-
orative evolution in Picbreeder (Secretan et al. 2008). Im-
portantly, this work builds upon previous approaches that
exploit combinations of ANNs and EC (Baluja, Pomerleau,
and Jochem 1994) or classifiers and EC (Correia et al. 2013;
Machado, Correia, and Romero 2012) for automatic pattern-
generation. Other similar approaches have applied EAs in
directed ways to evolve objects with particular functionali-
ties, like tables, heat-sinks, or boat hulls (Bentley 1996).

Shape grammars are another approach to generating mod-
els (Stiny and Gips 1971), where iteratively-applied gram-
matical rules enable automatic creation of models of a par-
ticular family. However, such grammars are often specific
to particular domains, and require human knowledge to cre-
ate and apply. The procedural modeling community also
explores methods to automatically generate interesting ge-
ometries (Yumer et al. 2015), although such approaches are
also subject to similar constraints as shape grammars.

Perhaps the most similar approach is that of Horn et al.
(2015), where a user-supplied image is analyzed through
four metrics, and a vase is shaped through an EA to match
such characteristics. Interestingly, the approach here could
be adapted in a similar direction to create sculptures inspired
by user-provided images (by matching DNN-identified fea-
tures instead of hand-designed ones), or even to create novel
sculptures in the style of famous artists or sculptors (Gatys,

Ecker, and Bethge 2015); such possibilities are described in
greater detail in the discussion section.

Deep Learning
Although the idea of training multi-layer neural networks
through back-propagation of error is not new, advances in
computational power, in the availability of data, and in the
understanding of many-layered ANNs, have culminated in
a high-interest field called deep learning (Goodfellow, Ben-
gio, and Courville 2016). The basic idea is to train many-
layered (deep) neural networks on big data through SGD.

Deep learning approaches now achieve cutting-edge per-
formance in diverse benchmarks, including image, speech,
and video recognition; natural language processing; and ma-
chine translation (Goodfellow, Bengio, and Courville 2016).
Such techniques are generally most effective when the task
is supervised, i.e. the objective is to learn a mapping between
given inputs and outputs, and when training data is ample.
Importantly, the output of the DNN (and the error signal)
must be composed only from differentiable operations.

One focus of deep learning is object recognition, for
which the main benchmark is the ImageNet dataset (Deng
et al. 2009). ImageNet is composed of millions of images,
labeled from 1, 000 categories spanning diverse real-world
objects, structures, and animals. DNNs trained on ImageNet
are beginning to exceed human levels of performance (He
et al. 2015), and the learned feature representations of such
DNNs have proved useful when applied to other image com-
prehension tasks (Razavian et al. 2014). In this paper, DNNs
are applied to sculpt 3D objects by providing feedback to the
MAP-Elites EA, which is described next.

MAP-Elites
While most EAs are applied as optimization algorithms,
there are also EAs driven instead to collect a wide diversity
of high-quality solutions (Pugh et al. 2015; Laumanns et al.
2002; Saunders and Gero 2001). Because of their drive to-
wards diverse novelty, such algorithms better fit the goals of
computational creativity than EAs with singular fixed goals.

One simple and effective such algorithm is the multi-
dimensional archive of phenotypic elites (MAP-Elites) algo-
rithm (Mouret and Clune 2015), which is designed to return
the highest-performing solution for each point in a space of
user-defined feature dimensions (e.g. the fastest robot for
each combination of different heights and weights). The
idea is to instantiate a large space of inter-related problems
(1, 000 in this paper), and use the current-best solutions for
each problem as stepping stones to reach better solutions for
any of the other ones. That is, solutions to easier problems
may aid in solving more complex ones. Note that only a
cursory description of MAP-Elites is provided here; Mouret
and Clune (2015) provides a complete introduction.

MAP-Elites requires a domain-specific measure of per-
formance, and a mapping between solutions and the feature
space. For example, if the aim is to evolve a variety of
different-sized spherical objects, the performance measure
could be a measure of roundness, while the feature space di-
mension could be object size. In this way, MAP-Elites has a
mechanism to separate the quality criterion (e.g. roundness)
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from dimension(s) of desired variation (e.g. size). In prac-
tice, because the feature space is often continuous, it is first
discretized into a finite set of niches.

A map of elite solutions is then constructed, that main-
tains the current elite solution and its corresponding per-
formance score for each niche. When a new solution is
evaluated, it is mapped to its niche, and its performance is
compared to that of its niche’s current elite. If the newly-
evaluated solution scores higher than the the old elite indi-
vidual, it replaces the old elite in the niche, and the niche’s
score is updated accordingly.

Evolution is initialized with an empty map, which is
seeded by evaluating a fixed number of random solutions.
A fixed budget of evaluations is then expended by repeat-
edly choosing a solution at random from the map, mutating
it, and then evaluating it. After all evaluations have been ex-
hausted, the final map is returned, which is the collection of
the best solution found in each niche.

Innovation Engines
The MAP-Elites algorithm described above can be used to
realize an Innovation Engine (Nguyen, Yosinski, and Clune
2015b). Like the DeLeNoX approach (Liapis et al. 2013),
Innovation Engines combine (1) EAs that can generate and
collect diverse novelty with (2) DNNs that are trained to dis-
tinguish novelty and evaluate its quality. The hope is that
such an architecture can produce a stream of interesting cre-
ative artifacts in whatever domain it is applied to.

This paper builds on the initial implementation in
Nguyen, Yosinski, and Clune (2015b), where a pretrained
image recognition DNN is combined with MAP-Elites to
automatically evolve human-recognizable images. In that
work, the space of MAP-Elites niches was defined as the
1, 000 object categories within the ImageNet dataset (Deng
et al. 2009), which is a common deep learning benchmark
task (note that the same space of niches is applied here).
CPPNs that represent images (as in Picbreeder; Secretan et
al. 2007) were evolved, and the performance measure for
MAP-Elites was to maximize the DNN’s confidence that an
evolved image is of a specific object category. An evolution-
ary run thus produced a collection of novel images, many
of which resembled creative depictions of real-world ob-
jects. The work was not only accepted into a competitive
university art show, but won an award (Nguyen, Yosinski,
and Clune 2015b). The work here expands upon such image
evolution, applying a similar technique to evolve 3D objects.

Note that the current version of Innovation Engines can
be seen in Boden’s terminology as realizing exploratory
creativity but not transformational creativity (Boden 1996).
That is, while the algorithm has a broadly expressive space
of images or objects to search through, its conception of
what objects are interesting and why they are interesting is
fixed. In the future, unsupervised deep learning may pro-
vide a mechanism to extend innovation engines with aspects
of transformational creativity (Nguyen, Yosinski, and Clune
2015b); for example, the DeLeNoX system uses unsuper-
vised autoencoder neural networks to iteratively transform
its creative space (Liapis et al. 2013).

Approach
While ideally advances in deep learning would also benefit
computational creativity, creative domains often encompass
arbitrary computation and reward signals that are not eas-
ily combined with the gradient descent algorithm. The ap-
proach here is thus motivated by the insight that EAs, unlike
DNNs, are not limited to pipelines of computation in which
each stage is differentiable. In particular, one interesting
possibility enabled by EAs is to exploit the latent knowl-
edge of the DNN to create structures with entirely different
modality than with which the DNN’s was trained.

For example, it is not clear how SGD can extract 3D ob-
jects from an image-recognition network, because there is
no natural differentiable mechanism to translate from a 3D
representation of an object to the 2D pixel representation
used by image-recognition DNNs. In contrast, EC represen-
tations of 3D objects can be rendered to 2D pixel images
through non-differentiable rendering engines; and the re-
sulting images can interface with trained image-recognition
DNNs. While it might be possible to train a 3D object recog-
nition DNN (e.g. with necessary technical advances and an
appropriate dataset), there are diverse cross-modal possibil-
ities that EAs enable (particular examples can be found in
the discussion section). In other words, this idea provides
a general mechanism for creative cross-modal linkage be-
tween EAs and DNNs, which respects the advantages of
both methods: EAs do not require differentiability, while
DNNs better leverage big data and computational efficiency
to learn powerful hierarchies of abstract features.

This paper realizes a proof-of-concept of cross-modal
linkage, shown in Figure 1, wherein 3D objects are rep-
resented with the EndlessForms.com encoding (Clune and
Lipson 2011). This encoding represents a mapping from
3D coordinate space to material density, by using a CPPN
(which is similar to a neural network function approxima-
tor). Inspired by regularities of biological organisms, activa-
tion functions in such CPPNs are drawn from a set chosen to
reflect such regularities, thereby enabling representing com-
plex patterns compactly.

In more detail, the CPPN takes as input Cartesian coordi-
nates and generates as its output the density of material to be
placed in that coordinate. The CPPN is then queried sys-
tematically across the 3D coordinate space, resulting in a 3D
scalar field. Next, the marching cubes algorithm (Lorensen
and Cline 1987) constructs a mesh that wraps the scalar field,
by defining the object’s boundary as a threshold of material
density. Note that the EndlessForms.com encoding is ex-
tended here to enable more detailed models that vary in color
across their surface. To accomplish this effect, outputs are
added to the CPPN that specify the HSV color of each voxel,
enabling the creation of objects with detailed colors.

To evaluate an individual, this encoding is combined with
a rendering engine that produces several rendered images of
the encoded object from different perspectives. Then these
rendered images are input into a pretrained DNN to pro-
duce performance signals for the MAP-Elites EA. The cho-
sen DNN is the BLVC reference GoogleNet from the Caffe
model zoo (Jia et al. 2014), a freely-available DNN similar
in architecture to GoogLeNet (Szegedy et al. 2015).
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As in Nguyen, Yosinski, and Clune (2015b), the under-
lying MAP-Elites algorithm’s space of niches is defined by
the 1, 000 discrete object classes that the DNN can recog-
nize (which span household objects, animals, and vehicles).
Performance for each niche is defined as the DNN’s confi-
dence that the generated artifact is an example of the class
the niche represents. In particular, the confidences of the
six renders for each class are multiplied together; this was
shown in preliminary experiments to improve performance.

Rendering Improvements
To improve the render quality of the 3D objects, two ad-
ditions to the algorithm are considered: (1) enabling light-
ing and material properties of the object to evolve, and (2)
enabling the background color to evolve. Overall, render-
ing quality is important because the DNN is trained on real-
world photographs, and therefore may rely on features such
as lighting or background context to discriminate between
objects. As a result, the success of the approach may depend
on the kinds of images that are possible or easy to represent.

For this reason, in addition to the CPPN, the genome has
four evolvable floating-point numbers that encode parame-
ters of lighting (the diffuse and ambient intensities) and the
object’s material (its shininess and its specular component);
and three evolvable parameters that encode the HSV of the
background color. All such parameters have a fixed chance
of mutating when a new offspring is produced.

These extensions enable evolution to control aspects of a
rendered image unrelated to evolving a 3D object. For ex-
ample, adjusting the background color can help control for
a superficial discriminative feature that may always corre-
late with the presence of certain objects. For example, fish
may nearly always be found in the context of water, and so
a DNN may only recognize an evolved object as a fish if it
is rendered against a blue background.

Search Improvements
To improve the effectiveness of the underlying MAP-Elites
search process, two additions are considered: (1) adding
niches that represent more general classes of objects to en-
able incremental learning; and (2) biasing search away from
exploring niches that produce fewer innovations.

Previous work found it was difficult to evolve images for
very specific classes (e.g. nuanced breeds of dogs; Nguyen,
Yosinski, and Clune 2015b), which preliminary experiments
confirmed was also problematic for evolving 3D objects.
Because of how supervised training of DNNs generally
works, the 1, 000 target categories in ImageNet only rep-
resent the finest level of granularity. That is, SGD works
most easily when an image is associated with only one label,
even when broader categorical information is available. Be-
cause the niches for MAP-Elites are directly imported from
the DNN’s target categories, the EA must directly evolve to-
wards specific nuanced categories. However, learning gen-
eral concepts, e.g. distinguishing a dog from other animals,
often provides scaffolding for learning more nuanced ones,
e.g. distinguishing a pug from a french bulldog.

Thus, the idea is to artificially create more general niches
by aggregating the specific categories together. Because the

WordNet database (Miller 1995) underlies the categories of
images in ImageNet, hierarchical relations in WordNet can
be leveraged to cluster semantically similar categories. In
particular, a tree is constructed consisting of all the Ima-
geNet categories, with directed edges added for each hyper-
nym relationship, from the more specific class to the more
general one. Non-leaf nodes in this graph thus represent in-
creasingly general concepts, which can be added to MAP-
Elites to augment the more specific ones. Given the classi-
fication outputs of the DNN for a particular rendered image,
the score for any of the added niches is calculated for by
summing the confidences of all the leaf nodes beneath it, i.e.
all the hyponym nodes. Because individuals can be main-
tained that maximize general concepts, additional pathways
for incremental learning are enabled for evolution.

The second addition biases MAP-Elites away from ex-
pending resources on niches that have proved unproductive.
In particular, each MAP-Elites niche is augmented with a
decrementing counter. Each counter is initialized to a fixed
value (10 in the experiments here) that determines the rela-
tive probability of choosing that niche for reproduction.

A niche’s counter is decremented when an offspring gen-
erated from the niche’s current champion does not replace
any existing individuals in the map of elites (i.e. the niche is
penalized because it did not lead to an innovation). If instead
the offspring displaces other champions, then the counters
for the initial niche and the niches of all displaced champi-
ons are reset to their initial maximum value.

Experimental Setup
The basic setup is replicated from Nguyen, Yosinski, and
Clune (2015b), wherein the MAP-Elites algorithm is driven
by the classification outputs of a DNN. However, the DNN
here processes several renderings of a 3D object instead
of a single image. In particular, the object is rendered
six times, successively rotated by 45 degrees increments
around its y-axis (yaw). The motivation is to encourage
the evolution of objects that resemble the desired class
when viewed head-on from a variety of perspectives. Ev-
ery alternating rendering is also rotated 5 degrees around
its x-axis (pitch), to encourage further robustness. The
voxel field for the EndlessForms.com encoding is given a
resolution of 20 x 20 x 20 units, striking a balance be-
tween possible model detail and the computational cost
of querying the CPPN for each voxel. Full source code,
experimental results (including downloadable model files,
and renders from all six evaluated perspectives), and user
study data are freely available from the project website:
http://jal278.github.io/iccc2016/.

Ablation Experiments
One practical concern is that evaluation of an individual
is expensive computationally, as it requires (1) querying a
CPPN 8, 000 times to generate the 20× 20× 20 scalar field
from which marching cubes produces a model, (2) rendering
an image of that resulting model multiple times (here, 6),
and (3) evaluating the rendered images with a large DNN.
The DNN evaluation in particular is the computational bot-
tleneck and depends upon capable GPUs to be time-efficient.
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Figure 2: Performance of evolutionary runs. (a) The performance of incremental ablations of the proposed algorithm is shown
averaged over ten independent runs. Performance is measured by averaging the confidence of the DNN first over all renderings
of a particular object, and then over all object classes. All distinctions between methods are significant (p < 0.05), highlighting
that the improvements both to lighting and to the search algorithm facilitate evolving objects that the DNN more confidently
classifies. Note that error bars reflect standard error. (b) The performance over evaluations of the two long runs is shown,
anecdotally highlighting how including both search and rendering additions appears also to result in long-term improvements.
Many niches evolve towards high-confidence (18.2% of niches in S+R and 15.1% of niches in R only achieved confidence
scores > 0.85 when averaged over object renderings). However, evolution in niches representing highly-specific objects (e.g.
one breed of dog) or geometrically-complex ones (e.g. a grocery store) often stagnates.

As a result, performing a single run to highlight the full po-
tential of the system (2.5 million evaluations) took around
three weeks on the hardware available to the experimenters
(a modern gaming laptop with a high-quality GPU).

To inform the longer runs, a series of shorter ablation runs
(250, 000 evaluations each) were first performed to validate
algorithmic features. In particular, three algorithms were
compared: a baseline (control) algorithm, the same algo-
rithm augmented with the rendering improvements, and an
algorithm with both the rendering and search improvements.
The idea is to examine whether the added features result in
better performance, thereby providing guidance for what al-
gorithm should be applied when generating the main results.

Ablation Results
The results of the comparison are shown in Figure 2(a). The
order of final performance levels achieved by the algorithmic
variants reflects that adding the tested components signifi-
cantly improves performance (p < 0.05; all tests are Mann-
Whitney U-tests unless otherwise specified).

Both the rendering and search improvements comprise
multiple sub-improvements; to better understand each com-
ponent’s relative contribution, shorter ablation experiments
were conducted (10 independent runs of 70, 000 evalua-
tions each). For search improvements, pruning unproduc-
tive niches provided greater benefit than did only including
more general niches (p < 0.05), but both improved perfor-
mance over the control algorithm (p < 0.05). For rendering
improvements, allowing the background color to evolve sig-
nificantly increased performance, while allowing lighting to
evolve did not (p < 0.05). However, because they do not
decrease performance, and because preliminary experiments
revealed that lighting enabled more interesting aesthetic ef-
fects, lighting changes are included in the full experiments.

Main Experimental Results
Informed by the ablation experiments, two long runs were
conducted (2.5 million evaluations). To verify anecdotally
that the conclusions from the ablation experiments are likely
to generalize to such longer runs, one run, called S+R, in-

cluded the full suite of improvements (i.e. both search and
rendering), while the other run, R only, included only the
rendering improvements. The gross performance character-
istics of the long runs are shown in Figure 2(b), and suggest
that the algorithmic additions result in performance gains
that persist even over runs with many more evaluations.

A curated gallery of high-confidence evolved objects is
shown in Figure 3. To highlight the quality of learned object
representations, mutations of selected objects are shown in
Figure 4. Overall, the objects exhibit an interesting diversity
and in most cases the connection between the object and the
real world object class is evident.

3D Printing the Automatically Generated Objects
Because the output of the creative process are textured 3D
models, it is possible to bring them into reality through 3D
printing. A small selection of evolved objects was chosen
from the results of both runs. In particular, objects were
chosen that (1) were possible to print, (2) were colorful, and
(3) highlighted interesting features used by DNNs to clas-
sify images. Model files were uploaded to the Shapeways
commercial 3D printing service to be printed in their color
sandstone material. The results of this process are shown
in Figure 5. Note that many of the objects were too fragile
to directly be printed (because their structures were too thin
in particular areas). However, optimization criteria could be
injected into the search process to mitigate such fragility.

To test the fidelity of the 3D printing process, the above
photographs (without inlays) were also input to the train-
ing DNN, and the resulting highest-scored categories were
recorded. The evolved Starfish was correctly classified by
the DNN’s first choice, while the Mushroom was classified
first as a bolete (a type of wild mushroom), and the sixth
ranked choice was the broader (correct) mushroom class.
The Jellyfish was classified by first choice as a conch, and
as jellyfish by the network’s fifth choice. The Hammerhead
was interestingly classified first as a hammer, and as eighth
choice by the true hammerhead shark label. Finally, the
Goldfinch was classified by fifth choice as a lorikeet, and
as ninth choice a hummingbird; both also are colorful birds.
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Figure 3: Gallery of automatically generated high-confidence objects. A curated selection of high-confidence champions
from both the S+R and R only runs. Representing multiple copies of the same object (e.g. Banana, Ice Lolly, and Matchstick)
helps maximize DNN confidence. The system often evolves roughly rotationally-symmetric objects (e.g. Goblet, Joystick,
Bubble), both because many classes of real-world objects are symmetric in such a way and because it is the easiest way to
maximize DNN confidence from all rendered perspectives. However, objects such as Conch, Mask, and Dalmatian show that
asymmetric and more complex geometries can also evolve when necessary to maximize DNN confidence. Overall, the results
show the promise of Innovation Engines for cross-modal creativity. Best viewed in color.

The conclusion is that even after crossing the reality gap,
key features of objects are still be recognized by the DNN.

User Study
A user study was conducted to explore whether humans saw
the resemblance of the evolved objects to their respective
categories. In particular, 20 fixed survey questions were cre-
ated by sampling from niches within which evolution suc-
cessfully evolved high-confidence objects.

Each question asked the user to rank three images by their
resemblance to the sampled category. One image was a ren-
dering of an evolved object classified by the DNN with high
confidence (i.e. the highest-confidence rendering for the in-
tended category; always > 0.95). A second image was a
rendering classified with moderate confidence (i.e. the ren-
dering with score closest to 0.2, which is still qualitatively
distinguished from the base expectation of 0.001). The third
image was of an evolved object classified with high confi-
dence as belonging to an arbitrarily-chosen distractor cate-
gory. The idea is to see whether user rankings of the objects’
resemblance to the true class agree with the DNN’s ranking
(i.e. high confidence, moderate confidence, distractor).

Twenty-three subjects were recruited using a social media
post to fill out an online survey; the order of questions was
fixed, but the order of images within each question was ran-
domized. Users generally ranked images in an order similar
to that of the DNN (Figure 6); the conclusion is that high-
confidence objects generally bear semantic resemblance to
the category they are optimized to imitate.

Discussion
The basic framework presented here could be used with
DNNs trained on other image datasets to generate distinct

types of 3D objects and scenes. For example, combining a
DNN trained on the Places dataset (Zhou et al. 2014) with
Google’s deep dream visualization (Mordvintsev, Olah, and
Tyka 2015) resulted in images of fantastical architectures,
highlighting the potential for architectural creativity embed-
ded in such a DNN. Thus substituting this paper’s approach
for deep dream may likewise yield interesting 3D architec-
tural creations. Similarly, DNNs trained to recognize other
things could be leveraged to create diverse artifact types, e.g.
3D flowers, cars, or faces (pretrained DNNs for each such
type of data are available from the Caffe model zoo).

The approach in this paper could also generalize to other
kinds of cross-modal creation through non-differentiable
computation. For example, a DNN trained to distinguish
different speakers (Lee et al. 2009) could be leveraged to
evolve parameters for speech synthesis engines, potentially
resulting in diverse but realistic settings for speech synthe-
sizers without human tuning. Another possibility is auto-
matic creation of music; just as optimizing CPPN-based im-
ages led to more qualitatively interesting results than did
optimization of a naive pixel-based representation (Nguyen,
Yosinski, and Clune 2015b), optimizing CPPN-based repre-
sentations of music (Hoover and Stanley 2009) fed through
a music-recognition DNN (Lee et al. 2009) might similarly
enable automatic generation of compositions with more co-
herent or interesting structure.

One possibility to enable more open-ended creativity
would be to leverage high-level features encoded by the
DNN to guide search, instead of only the classification la-
bels. The novelty search algorithm (Lehman and Stanley
2011) could be applied to create objects that span the space
of high-level representations. Because the features compos-
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Figure 4: Accessible variation from evolved objects. First,
twenty mutants of the Pedestal (top) and Perfume (bottom)
champions were generated. For both rows, the original
model is shown on the far left, followed to its right by three
examples of interesting mutants. The conclusion is that in
addition to the final objects, evolution also produces interest-
ing object representations that can be leveraged for further
creative purposes, e.g. interactive evolution.

ing the representation are constrained by their relation to
classifying objects, exploration of such a space may yield
a diversity of interesting objects. Conversely, the system
could also be made more directed in interesting or interac-
tive ways. For example, a novel 3D object might be opti-
mized to mimic the high-level DNN features (Razavian et
al. 2014) of a user-provided image, creating possibilities for
human-machine artistic collaboration. Interestingly, such an
approach could additionally be combined with the StyleNet
objective function (Gatys, Ecker, and Bethge 2015) to sculpt
objects inspired by a photograph, and cast in the style of a
separate artwork or sculpture.

Finally, while created for computational creativity, the ap-
proach may also have implications for deployed deep learn-
ing systems. Nguyen, Yosinski, and Clune (2015a) sug-
gested that DNNs may easily be fooled, given complete con-
trol of how an image is presented to the DNN. However,
real world recognition systems may employ many (poten-
tially unknown/unseen) cameras, which may preclude di-
rectly fooling such a system with a generated image. How-
ever, because evolved objects can be 3D printed, and be-
cause evolved objects are often recognized by diverse DNNs
(data not shown), it may be possible to confound real-world
deep learning recognition systems with such printed arti-
facts, even those based on multiple unseen cameras.

Conclusion
This paper introduced a framework for exploiting deep neu-
ral networks to enable creativity across modalities and input
representations. Results from evolving 3D objects through
feedback from an image recognition DNN demonstrate the
viability of the approach: A wide variety of stylized, novel
3D models were generated that humans could recognize.
The conclusion is that combining EC and deep learning in
this way provides new possibilities for creative generation
of meaningful and novel content from large labeled datasets.
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