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This paper proposes series of methods for measuring the similarity of protein structures.

In the proposed methods, an original protein structure is transformed into a distance
matrix, which is regarded as a two-dimensional image. Then, the similarity of two protein
structures is measured by a kind of compression ratio of the concatenated image. We
employed several image compression algorithms: JPEG, GIF, PNG, IFS, and SPC, and

audio compression algorithms: MP3 and FLAC. We applied the proposed method to
clustering of protein structures. The results of computational experiments suggest that
SPC has the best performance.
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1. Introduction

Analysis of protein structures is an important topic in bioinformatics and compu-
tational biology. In particular, classification of protein structures is important and
thus many studies have been done and several databases have been developed such
as SCOP1 and CATH.2 Classification of protein structures is usually done based on
some measure of the similarity between protein structures.

However, an agreement on which is the best similarity measure is not yet ob-
tained and a variety of structure comparison methods have been proposed. Most of
existing methods are based on protein structure alignment. Various methodologies
have been employed for protein structure alignment, which include double dynamic
programming,3 iterative improvement,4 combinatorial extension,5 comparisons of
distance matrices,6 use of partial order graphs,7 and contact map overlap.8 In most
of structure alignment methods, some scoring function is defined for measuring the
quality of the obtained alignment. Then, the structure alignment problem is defined
as finding a structure alignment with the optimal or near optimal score. However,
score functions are defined in more or less ad-hoc manners and there is no consen-
sus or theoretical justification. Furthermore, many of existing structure alignment
methods are not very efficient.

Krasnogor and Pelta recently proposed a novel approach to measuring the sim-
ilarity of protein structures.9 Their method is similar to the contact map overlap
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(CMO) approach.8 In their method, each protein structure is transformed into a 0-1
matrix, which is further regarded as a 0-1 sequence. Then, two protein structures
are compared based on the compression ratio of the sequence obtained by concate-
nating two 0-1 sequences. Their method is quite simple to implement and very fast.
They demonstrated the usefulness of the method by means of application to clus-
tering of protein structures. It is worthy to mention that several works have been
done on measuring the similarity of biological sequences based on data compression
approach.10,11

Though the approach by Krasnogor and Pelta is novel and useful, the distances
between residues are truncated into 0 or 1. As a result, the similarity measure
depends on the threshold, which should be determined by try and error. The same
drawback applies to CMO,8 In this paper, we try to overcome this drawback using a
very simple idea. We employ image compression in place of sequence compression.
Each distance matrix (not 0-1 matrix) is directly compressed by using an image
compression algorithm. In this paper, we examine the following image compression
algorithms: JPEG, GIF, PNG, IFS, and SPC, and audio compression algorithms:
MP3 and FLAC. We apply the proposed methods to clustering of protein structures
as in.9

The organization of the paper is as follows. We begin with a brief review the
method by Krasnogor and Pelta. Next, we present our proposed methods. Then,
we describe details and results of computational experiments. Finally, we conclude
with future work.

2. Structure Comparison Using Sequence Compression

Krasnogor and Pelta employed sequence compression to measure the similarity of
two proteins. Their method is based on the universal similarity metric (USM), which
was originally proposed by Li et al.11 USM is based on Kolmogorov complexity. The
Kolmogorov complexity K(o) of an object o is defined to be the length of the shortest
program P for a Universal Turing Machine U that is required to output o.12 That
is, K(o) is defined by

K(o) = min{|P | | P is a program such that U(P ) = o}.

K(o) is considered to be a measure of the amount of information contained in o.
Besides, the conditional Kolmogorov complexity of o1 given o2 is defined by

K(o1|o2) = min{|P | | P is a program such that U(P, o2) = o1},

where U(P, o2) = o1 means that program P outputs o1 when o2 is given. Based on
these, information distance between two objects o1 and o2 can be defined as

InfDist(o1, o2) = max( K(o1|o2), K(o2|o1) ).

Since this distance is not normalized, USM was proposed as a normalized measure:11

USM(o1, o2) =
max( K(o1|o∗2), K(o2|o∗1) )

max( K(o1), K(o2) )
,
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where o∗i denotes the shortest program for oi.
It is well-known that Kolmogorov complexity of a given object is not computable.

Thus, Krasnogor and Pelta employed a sequence compression algorithm (‘compress’
command in UNIX). Let C(s) be the size of the compressed sequence of s. They
used C(o1) and C(o1 · o2) − C(o2) in place of K(o1) and K(o1|o∗2) respectively,
where o1 · o2 denotes the concatenation of two sequences o1 and o2. It should be
noted that ok is a 0-1 sequence obtained from a contact map Mk of protein Pk,
where Mk[i, j] = 1 if the distance between ith residue and jth residue is less than
threshold Θ, otherwise Mk[i, j] = 0. ok is obtained by simple raster scanning of
matrix Mk.

3. Similarity Metric Based on Image and Audio Compression

We define a contact map Mk of protein Pk as the distance matrix between residues

as Mk[i, j] =
√

(rk[i] − rk[j])2, where rk[i] denotes the three-dimensional coordinate
of ith C-alpha atom of Pk.

We transform the contact map Mk to a raw image format, PPM (Portable Pixel
Map), and a raw audio format, WAV. PPM can represent (28)3 = 16777216 colors
using 3 bytes memory for a pixel, where each byte is used for red, green, and blue,
respectively, zero means black color, and 16777215(= (28)3 − 1) means white color.
We transform Mk[i, j] to the corresponding pixel with the color of the integer part of
cMk[i, j], where c is a constant, and we set c = 4 · (28)2 = 262144 in the experiment
section. If cMk[i, j] is greater than or equal to (28)3 = 16777216, we set the color
white. Fig. 1c and 1d show examples of such images for proteins 1ash and 1aa9,
respectively. In order to concatenate two images horizontally, the two images must
have the same height. Therefore, we fill the smaller image with black color to the
height of the other (See Fig. 1c).

On the other hand, WAV can represent (28)2 = 65536 sounds using an integer of
[−32768, 32767]. We transform Mk[i, j] to the sound with the integer part, Ak[i, j],
of c′Mk[i, j] − 32768, where c′ is a constant, and we set c′ = 500 in the experiment
section. If the integer value of a sound is greater than 32767, we set it 32767. We
concatenate two audios as follows: o1 ·o2 = S(A1, 2) ·S(A2, 2) ·S(A1, 3) ·S(A2, 3) · · · ,
where S(Ak, b) = Ak[1, 1+b] · · ·Ak[nk−b, nk], and nk denotes the number of residues
of protein Pk. That is, we concatenated diagonals of A1 and A2.

Krasnogor and Pelta approximated K(o1|o∗2) of USM by C(o1 · o2) − C(o2).
However, C(o1 · o2) is not always equal to C(o2 · o1). Therefore, we approximate
K(o1|o∗2) by max(C(o1 · o2) − C(o2), C(o2 · o1) − C(o2)). Then, the approximated
USM for image and audio compression, AUSM, is given as follows:

AUSM(o1, o2) =
max( C(o1 · o2), C(o2 · o1) ) − min( C(o1), C(o2) )

max( C(o1), C(o2) )
.
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(a)
(b)

(c) (d)

(e)

Fig. 1. An example of compressed images. (a) 1ash. (b) 1aa9. (c) The image of 1ash, which is
filled with black color to the height of 1aa9. (d) The image of 1aa9. (e) The concatenated image
of 1ash and 1aa9.
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4. Computational Experiments

4.1. Image Compression Algorithms

We employed the following image compression algorithms. In this subsection, we
briefly review their algorithms.

4.1.1. JPEG

JPEG is usually lossy compression. An image is split into blocks of eight by eight
pixels. A two-dimensional forward discrete cosine transform (DCT) is done for every
blocks. After quantization, the image is compressed using Huffman coding.13

4.1.2. GIF

GIF is based on the Lempel-Ziv algorithm,14 which is a dictionary coder. It reads
an input sequence, constructs a dictionary dynamically, and replaces the sequence
with words of the dictionary.

4.1.3. PNG

PNG is also based on the Lempel-Ziv algorithm,14 and uses Huffman coding,13

where PNG has been developed to replace GIF. The compression rate of PNG is
often higher than that of GIF.

4.1.4. IFS

IFS stands for Iterated Function Systems, is a quadtree-based fractal image
coder/decoder, and was implemented by Polvere.15 The software called Mars
is available from http://inls.ucsd.edu/∼fisher/Fractals/Mars-1.0.tar.gz.
Note that the software can accept only grayscale images using one byte memory for
a pixel as raw image files.

4.1.5. SPC

SPC is a lossless image compression, and was developed by Said and Pearlman.16

It uses a simple pyramid multiresolution scheme enhanced with predictive coding,
and contains S (Sequential) transform and P (Prediction) transform.

In S transform, a sequence c[i] is transformed to two sequences l[i] and h[i] with
half the length so that the average variance of the two sequences is smaller than the
variance of the original sequence if the correlation coefficient of c[2i] and c[2i + 1]
is larger than 1

3 . Since h[i] often has small variance in image compression, we can
reduce the errors of linearly predicted values for h[i] using l[i]s and h[i + 1].

These transformations are done sequentially to the rows and columns of an
image. Finally, these sequences are encoded using Huffman or arithmetic coding.
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The software is available from http://www.cipr.rpi.edu/research/SPIHT/

EW Code/lossless.tar.gz. Note that the software can accept only grayscale im-
ages as raw image files.

4.2. Audio Compression Algorithms

In addition, we employed the following audio compression algorithms.

4.2.1. MP3

MP3 uses MDCT (Modified Discrete Cosine Transform), and is a lossy compression
format.

4.2.2. FLAC

FLAC (Free Lossless Audio Codec) is a lossless compression format (http://flac.
sourceforge.net/). FLAC is similar to SPC, and uses simple polynomial fitting
and general linear predictive coding. Special Huffman coding called Rice coding can
be applied for residual errors. In order to obtain the best compression, we used
”–best” option.

4.3. Data

We used a dataset in Krasnogor and Pelta,9 which was first used in Chew and
Kedem.17 The dataset contains proteins identified by their PDB codes. We obtained
their PDB-style files (version 1.71) with coordinates from the Astral database18 as
follows (See Table 1): 16 globins (1ash, 1eca, 1hlb, 1hlm, 1ithA, 1mba, 1myt, 2hbg,
2lhb, 3sdhA, 1babA, 1babB, 1flp, 1lh2, 2vhbA, 5mbn), 2 all alpha proteins except
globins (1cnpB, 1jhgA), 7 all beta proteins (1qa9B, 1cd8, 1cdb, 1ci5A, 1hnf, 1neu,
1qfoA), 4 TIM barrels (4enl, 2mnr, 1chrA1, 6xia), and 6 alpha and beta proteins
except TIM barrels (1ct9A1, 1aa9, 1gnp, 1qraA, 5p21, 6q21A).

4.4. Experiments

For each pair of proteins included in the Chew-Kedem dataset, we generated two
raw image files, o1 and o2, and the two concatenated image files, o1 · o2 and o2 · o1,
from the two three-dimensional structures, and also raw audio files. We applied the
above compression algorithms, JPEG, GIF, PNG, IFS, SPC, MP3, and FLAC, re-
spectively, to the raw files, and calculated AUSM(o1, o2). We obtained hierarchical
clustering results using the nearest neighbor (single linkage) method.

5. Results

Fig. 2 and 3 show the clustering results on the Chew-Kedem dataset for the com-
pression algorithms, JPEG, GIF, PNG, IFS, SPC, MP3, and FLAC. We can see
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Table 1. The Chew-Kedem dataset.

Class of SCOP Family Proteins

All alpha a.1.1.2a 1ash, 1eca, 1hlb, 1hlm, 1ithA, 1mba, 1myt, 2hbg, 2lhb,

3sdhA, 1babA, 1babB, 1flp, 1lh2, 2vhbA, 5mbn
a.4.12.1 1jhgA
a.39.1.2 1cnpB

All beta b.1.1.1 1qa9B, 1cd8, 1cdb, 1ci5A1, 1hnf, 1neu, 1qfoA

Alpha and beta c.1.11.1b 4enl
c.1.11.2b 2mnr, 1chrA1

c.1.15.3b 6xia
c.26.2.1 1ct9A1
c.37.1.8c 1aa9, 1gnp, 1qraA, 5p21, 6q21A

Note: a Globins, b TIM beta/alpha-barrel, and c G proteins.

from these figures that SPC classified the dataset best. Although two all alpha pro-
teins (1jhg and 1cnp) and three all beta proteins (1qa9, 1cdb and 1ci5) were mixed
in the clustering result by Krasnogor and Pelta,9 and an all beta protein (1hnf) was
classified in globins, our SPC result classified all beta proteins correctly. The two all
alpha proteins (1jhg and 1cnp) and all beta proteins were mixed in PNG similarly
to the result by Krasnogor and Pelta. However, 1hnf was correctly classified in all
beta proteins in PNG. Although GIF and PNG use similar compression algorithms,
the result of PNG was better.

6. Conclusions

We proposed image and audio compression-based approach to measuring the sim-
ilarity of protein structures, and applied them to the Chew-Kedem dataset. The
clustering result by SPC image compression algorithm was the best in several im-
age and audio compression algorithms, and was comparable to or better than that
by Krasnogor and Pelta. Almost all image compression algorithms have been de-
veloped based on the property that neighbor pixels often have similar colors in
images. However, similar substructures located at distant locations should also be
compressed. Therefore, it is considered that the best performance was obtained
with the SPC algorithm. It is expected that better similarity measure is obtained
by improving the SPC algorithm. In addition, values handled by image compression
algorithms are restricted to integers of a few bytes. In this paper, we transformed
distances between residues of a protein to integers. In future work, we would like to
develop compression algorithms for distances with real values.
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Fig. 2. The clustering results on the Chew-Kedem dataset for image compressions, (a) JPEG,
(b) GIF, (c) PNG, (d) IFS, and (e) SPC.
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Fig. 3. The clustering results on the Chew-Kedem dataset for audio compressions, (f) MP3 and
(g) FLAC.


