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Graph theoretic properties of proteins can be used to perceive the differences between correctly 
folded proteins and well designed decoy sets. 3D protein structures of proteins are represented with 
graphs. We used two different graph representations: Delaunay tessellations of proteins and contact 
map graphs. Graph theoretic properties for both graph types showed high classification accuracy for 
protein discrimination. Fisher, linear, quadratic, neural network, and support vector classifiers were 
used for the classification of the protein structures. The best classifier accuracy was over 98%.  
Results showed that characteristic features of graph theoretic properties can be used in the detection 
of native folds. 

1 Introduction 

Proteins are the major players responsible for almost all the functions within the cell. 
Protein function, moreover, is mainly determined by its structure. Several experimental 
methods already exist to obtain the protein structure, such as x-ray crystallography and 
NMR. All of these methods, however, have their limitations: they are neither cost nor 
labor effective. Therefore, an imminent need arises for computational methods that 
determine protein structure which will reveal clues about the mechanism of its function. 
Determining the rules governing protein function will enable us to design proteins for 
specific function and types of interactions. [1] This course of action has vast application 
areas ranging from the environmental to the pharmaceutical industries. Additionally, these 
designed proteins should have native like protein properties to perform their function 
without destabilizing under physiological conditions. 

There are several methods developed to find the three dimensional structure of 
proteins. Since these models are created by computer programs their overall structural 
properties may differ from those of native proteins. There is a need for distinguishing near 
native like structures (accurate models) from those that do not show native like structural 
properties.  This paper aims to define a function that can distinguish the native protein 
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structures from artificially generated non native like protein structures. The proposed 
function can also be used in the protein folding problem as well as domain recognition 
and structural alignment of proteins. 

2 Methods 

The evaluation function consists of two parts: the network properties of the graphs 
obtained from the proteins and the contact potentials. Graphs are employed to solve many 
problems in protein structure analysis as a representation method. [2, 3]  Protein structure 
can be converted into a graph where the nodes represent the Cα atoms of the residues and 
the links between them represent interactions (or contacts) between these residues.  
 The two most commonly used representations of 3D structures of proteins in graph 
theory are contact maps and Delaunay tessellated graphs [4, 5]. Both graphs can be 
represented as an N×N matrix S for a protein which has N residues. If the residues are in 
contact the          , otherwise                     [6, 7]. Contact definition differs for both graphs. In 
contact map, if the distance between Cα atoms of residues i and j is smaller than a cut-off 
value then they are considered to be in contact. Several distances ranging from 6.5 Aº  to 
8 Aº have been used in the literature. 6.8 Aº has been found to be a good definition of a 
contact between residues, therefore in our work we used 6.8 Aº as the contact cut off 
value [5]. 

On the other hand, Delaunay tessellated graphs consist of partitions produced between 
a set of points. A point is represented by an atom position in the protein for each residue.  
This atom position can be chosen as α carbon, β carbon or the center of mass of the side 
chain. There is a certain way to connect these points by edges so as to have Delaunay 
simplices which form non-overlapping tetrahedrals [4]. A Delaunay tessellated graph 
includes the neighborhood (contact) information of these Delaunay simplices. In this 
work, we used Qhull program to derive the Delaunay tessellated graph of our proteins 
using the alpha carbon atoms as simplices [8, 21].  

Several network properties of the graphs are employed to distinguish the graphs of 
native proteins from those obtained from artificially created near native conformations, 
called decoy sets. The first network property is the degree or connectivity k which is the 
number of edges incident of a vertex i [4]. The average degree of a protein structure is 
calculated by the mean of the degree distribution of the graph. If the average degree is 
high, this points out to a globular structure where many residues establish many contacts 
with each other. Unfolded proteins would have very low average degree value. Natural 
proteins folds are compact, and measures using the compactness of the proteins can 
distinguish the native folds from those of artificially generated decoy set. The second 
graph property is the second connectivity which is calculated by the sum of the contacts 
of each neighbor of a node.  The second connectivity is a measure we defined that also 
shows the compactness of the graph. If the structure is composed of small compact 
domains rather than one globular structure, the structure would have high average degree 
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but low second connectivity numbers. The attractiveness of this value is its ability to 
distinguish such structures.  

The third graph property is the clustering coefficient which measures how well the 
neighbors are connected to each other, thus forming a network of contacts (clique). The 
clustering coefficient C for each node is calculated by  
 

)1(
2
−

=
kk
E

C n
n

 
 
where En is the actual edges between the neighbors of the residue n and k is the degree. If 
all the neighbors of a node i are connected to each other, then they form a tight clique and 
the Ci value becomes 1. The clustering coefficient of the graph C is the average of all the 
Cn values [4, 9]. 

Graph properties can only capture overall structural properties of the proteins but do 
not measure physiochemical interactions between the atoms that are in contact in the 
folded form. The second part of the evaluation function uses contact potentials to capture 
the favorability of physicochemical interactions between the contacting residues of the 
folded protein. Contact potentials are statistical potentials that are calculated from 
experimentally known 3D structures of proteins which calculate the frequencies of 
occurrences of all possible contacts and convert them into energy values so that 
frequently occurring contacts have favorable contact scores. This method is an 
approximation to actual physico-chemical potentials but they have been shown to work as 
target energy functions on the protein folding problem [7, 8, 12, 13]. 

In this study, the average contact potential scores were calculated using contact 
potential matrix by Jernigan et. al. [10]. There are other contact potential matrices that are 
widely used as well [11], since they are highly correlated with each other, we found it 
sufficient to use Jernigan matrix to see the discriminative power of contact potentials in 
our problem. The degree, clustering coefficient, second connectivity and their moments 
along with Jernigan potential scores are employed as dimensions of the classification 
methods. Using the average values causes loss of information on the distribution of each 
variable; therefore we used moments to better capture the distributions of all the features.  

Several classification methods are used to find out whether the graph theoretic 
properties can discriminate the native proteins while determining which graph 
representation and data classification method yields the best results.  

3 Background and Related Works 

Several attempts have been made to define a function to distinguish native folds from 
incorrectly folded proteins. In early studies, Novotny et. al. looked at various concepts 
such as solvent-exposed side-chain non-polar surface, number of buried ionizable groups, 
and empirical free energy functions that incorporate solvent effects for ability to 
discriminate between native folds and those misfolded ones in 1988 [25]. Vajda et. al. 
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used combination of hydrophobic folding energy and the internal energy of proteins 
which showed importance of relaxation of bond lengths and angles contributing to the 
internal energy terms in detection of native folds [2, 22]. 

McConkey et. al. have used contact potentials as well to distinguish native proteins. 
They calculated the contacts from Voronoi tessellated graphs of the native proteins and 
the decoy sets. They assumed a normal distribution of contact energy values and 
calculated the z scores to show if the native protein has a very high z-score compared to 
z-score of the decoy structures (or the contact energy of the native structure ranks high 
compared to decoy structures created for that structure). The scoring function can 
effectively distinguish 90% of the native structures on several decoy sets created from 
native protein structures [14]. 

Another scoring function derived by Wang et. al. is based on calculating distances 
(RMSD) between all the Cα atoms in native proteins and other conformations in given 
decoy sets. They show their function distinguish better than other functions depending on 
the quality of the decoy sets [15]. 

Beside the knowledge based potentials, approximate free energy potentials are also 
used to discriminate native proteins by Gatchel et. al. [15]. In their approach they defined 
a free energy potential that combines molecular mechanics potentials with empirical 
solvation and entropic terms. Their free energy potential’s discrimination power improved 
when the internal energy of the structure was added to the solvation energy. [16] 

The hydrophobic effect on protein folding and its importance to discrimination of 
proteins is also stated by Fain et. al. Their approach is based on discovering optimal 
hydrophobic potentials for this specific problem, by using different optimization methods. 
[17] 

Using graph properties to distinguish native folds was first done by Taylor et. al. 
They state that using degree, clustering coefficient, and the average path length 
information can help distinguish native proteins. They determine a short list based on 
these properties. The natives’ appearance in the short list indicates that these properties 
can distinguish the native like structures. Of 43 structures set in which they worked, the 
native was placed in the short list in 27 of them. [4] 

All of the previous works do not treat the problem as a classification problem; they 
only check whether the native structure ranks high according to their scoring scheme. 
Several classification and clustering methods such as neural network based approaches 
and support vector machines have been widely used in other successful applications 
related to protein structure. The success of the classification depends on the features that 
are used to discriminate the classes [7, 18, 19].   

In this paper we use combination of contact potentials (to capture the 
physicochemical interactions between the contacting residues that are formed upon 
folding) and network properties of the graph (which shows compactness of the structure).  
Using these values as the feature vectors, we used several classification methods to 
distinguish native and decoy protein classes.  
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4 Dataset 

The first data set employed in the experiments, which is from PISCES database[20], has 
1364 non-homologous proteins, and their resolution < 2.2Å, crystallographic R factor < 
0.23, and maximum pair wise sequence identity < 30%. The second data set consists of 
1364 artificially generated and well designed decoy set; the third one is 101 artificially 
generated straight helices. Decoy sets are generated by randomly locating Cα atoms at 
about 3.83A° distance while avoiding the self-intersection of Cα atoms and keeping the 
globular structure approximately at the same size and shape of an average protein [4]. 
Further details of decoy set generation stage can be found in the article of Wang et. al. 
[26]. 

The feature values in the data set possessed large variations in some cases. Therefore, 
to see the impact of outliers in classification accuracy, we performed a simple outlier 
analysis technique based on the elimination of all the values that are three standard 
deviations away from the mean for the given data set. Approximately 9% of the data was 
eliminated for each dataset.  

5 Results 

Average degree, clustering coefficient, second connectivity are used as structural features. 
Besides the averages for the properties, moments of the probability distributions were 
calculated for each property such as standard deviation, skewness and kurtosis of the 
distributions whereas skewness measures the asymmetry of the distribution and kurtosis 
measures the "peakedness" of the distribution. Average Jernigan potential scores are 
given as sequence dependent energy features. These features are supplied as input vector 
to several classification methods in PRTools [19]. We first tested which graph 
representation method is more suitable for the given problem. The results from Delaunay 
tessellated graphs and contact map results are given in Table 1. The contact map had 
much better prediction accuracy since it captures actual compactness information of the 
protein structure. In some cases, tessellated graphs may represent the distant residues as if 
they are in close contact; this representation may be the reason for the difference in 
classification accuracy.  

We  randomly selected half of the data five times and performed a five fold cross 
validation on each data set to reduce to run time for the classifiers especially for the 
support vector classifier. The classification accuracy and two standard deviation 
neighborhood of these values are shown in the tables. 
Table 1. indicates that the best classification accuracy was obtained from normal density 
based quadratic classifier (qdc) [19]. Even though some of the other classifiers performed 
very close to the qdc, we proceeded to focus on qdc for the rest of the paper.  Table 1.  
also shows that outlier analysis improved the results by a minimum of 1 % independent of 
the classification method used.  

We optimized the SVM results using kernel parameters (σ) and regularization 
parameters (C) for each of the kernel function separately. Changing the regularization 
parameter (C) did not affect classification error rates. After parameter optimization the 
best results from SVM were obtained when the polynomial kernel was used with while σ 
was 2. 
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Table 1. Classification accuracy table using all the features including the moment values 
 Contact Maps Delaunay Tes. 

Classifier  After OA Before OA After OA Before OA 
Support vector class.  98.02%± 0.44  96.47%± 0.93  94.78%± 1.62  93.56%± 1.12 
Norm. dens. based linear  98.72%± 0.53  97.12%± 1.02  94.85%± 1.67  93.41%± 0.94 
Norm. dens. based quad.  98.87%± 0.49  98.08%± 1.32  94.81%± 1.20  92.91%± 0.52 
Binary decision tree  95.61%± 1.97  94.04%± 1.88  85.77%± 2.01  82.23%± 4.17 
Quadratic classifier  98.54%± 0.71  98.11%± 0.88  94.97%± 1.13  93.51%± 0.74 
Linear perceptron  95.28%± 1.56  93.98%± 1.13  50.46%±10.81  54.46%± 8.53 
Random neural network  96.76%± 0.76  95.40%± 1.72  88.81%± 2.27  86.10%± 2.13 
k-nearest neighbor (k=3)  97.67%± 1.26  95.93%± 0.98  85.06%± 0.82  83.95%± 2.32 
Parzen classifier  97.04%± 0.86  95.25%± 1.12  85.89%± 2.43  84.51%± 2.94 
Parzen density based  98.59%± 0.56  97.12%± 1.77  88.62%± 3.08  86.66%± 2.71 
Naive Bayes classifier  96.24%± 1.77  95.17%± 1.11  87.70%± 2.14  82.99%± 1.92 
Normal densities based  96.86%± 1.67  96.35%± 1.56  89.88%± 1.37  86.04%± 2.39 
Subspace classifier  93.85%± 2.96  93.93%± 1.56  85.52%± 2.82  82.18%± 1.24 
Scaled nearest mean  96.26%± 1.22  96.41%± 1.36  89.20%± 1.23  86.35%± 1.37 
Nearest mean  83.84%± 2.35  84.23%± 3.02  74.78%±10.72  69.39%±17.02 

 
Different combinations of features are used in normal density based quadratic 

classifier to discover the effect of these features on classification accuracy and some of 
the results are summarized in Table 2. When we use degree, clustering coefficient, second 
connectivity, and contact potential score together, classification accuracy is close to 99%. 
Even without contact potential score, the method had 98.13% ( kCS) prediction accuracy 
using only the graph properties after outlier analysis. Use of Jernigan contact potentials 
only decreased the classification accuracy drastically to 51.77%. 
   
Table 2. Classification accuracy rates for different combination of properties with moments. (k: Degree. C: 
Clustering coefficient. S: Second Connectivity. . J: Profile Score from Jernigan et. al.. OA: Outlier Analysis) 

 Contact Maps Delaunay Tes. 
 After OA Before OA After OA Before OA 

kCSJ  98.87%± 0.25  98.08%± 0.66  94.81%± 0.60  92.91%± 0.26 
CSJ  98.95%± 0.28  97.82%± 0.41  94.60%± 1.18  91.13%± 1.06 
SJ  98.15%± 0.25  98.22%± 0.16  89.53%± 0.93  88.36%± 0.48 
kC  98.72%± 0.17  97.26%± 0.34  94.72%± 0.32  92.01%± 0.86 
k  96.74%± 0.41  96.27%± 0.74  88.68%± 1.21  87.23%± 0.90 
kCS  98.13%± 0.60  97.60%± 0.10  94.19%± 1.26  92.12%± 1.17 
kS  96.93%± 0.81  95.73%± 0.86  90.43%± 0.74  87.80%± 1.08 
J  51.77%± 0.23  48.53%± 0.62  47.71%± 0.84  44.45%± 1.12 

 
Structural properties have more discriminating power, using the degree (k) 

distribution only we could accurately classify the native and non native structures with 
96.74% accuracy. Addition of second connectivity information did not improve the 
accuracy much. Cliquishness (C) along with degree (k) distribution improved the 
classification accuracy to 98.72%. Using only the degree and the second connectivity 
resulted in 96.93% classification accuracy.  
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6 Conclusion and Discussion 

The difference of this study from previous studies can be summarized in four points: 
• Using contact maps to derive the structural properties of the proteins yielded 

much better results than tessellated graphs. 
• Combining structural and physicochemical features distinguished the native 

folds.  
• Graph properties have much more discriminative power than the contact 

potentials. 
• Representing the problem as a classification problem, testing the success rate of 

several classification methods, and building an optimized predictor that can 
predict native folds about 99 % accuracy. 

Classification using the contact potentials only resulted in 51% five fold cross 
validation accuracy using the quadratic classifier. Thus it is apparent that the structural 
features are necessary for accurate prediction. As can be seen from the results additional 
contribution to the prediction accuracy from contact potentials was assumed at less than 
1%. Even the non native structures can create favorable interactions between contacting 
residues so the contact potentials alone are not sufficient to distinguish native structures. 

Important structural features were the degree and the clustering coefficient. The 
second connectivity did not contribute much to the classification accuracy since it is 
highly correlated to the degree. Previous works focused on the eligibility of different 
kinds of potentials in discrimination of native folds; this work indicates that structural 
properties are more important features and, furthermore, these properties can be 
employed for other problems related to protein structure. This work also shows that 
contact map provides a better representation of protein structure. 

One drawback of our method is all the features that are used in a way capture 
different aspects of compactness of the protein structure. Our function might fail when 
trying to identify natively unfolded proteins from random generated counterparts. Since 
an important feature in the discrimination process is compactness of structure, the method 
would rule out disordered regions as decoy sets, even though this disorder is a 
characteristic feature of native states and is functional as well (eg: calcineurin) Such 
proteins constitute a small subset of all the known protein structures and out of the scope 
of the proposed work. In addition to this, if decoy sets are generated from naturally 
unfolded proteins, the native proteins would have more contacts than the artificially 
generated structures of these native proteins and therefore these naturally unfolded 
proteins could be captured by our function [23]. This needs to be explored further in a 
future study. 

Another application of our function is to distinguish bad models from good ones 
(computer generated structures) for protein structure prediction competitions (CASP) 
[24]. As a preliminary study, we tested the method on CASP VI data set of 59 proteins 
and 28956 model predictions. Our method correctly assigned 58 proteins as native and 
6118 model structures as non native. The predicted non native structures had more than 
12 Aº root mean square deviation (rmsd) from the crystal structure. The non native 
structures assigned as native had much smaller rmsd to the corresponding crystal 
structures. This shows that the graph properties can easily filter out the bad models. We 
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are currently working on finding a function using graph properties that can measure 
closeness of the prediction to the crystal structure on CASP VII data sets and compare it 
with other ranking methods.   
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