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Evolution is an important sub-area of study in biological science, whereby the evolutionary history,
or phylogeny, would shed light on the genetic linkage and the functional correlation for the species
under consideration. Many kinds of species data can be deployed for the task and many phylogeny
reconstruction methods have been examined in the literature. A quartet approach is to build a local
phylogeny for every4 species, which is called a quartet for these4 species, and then to assemble a
phylogeny for the whole set of species satisfying the topological constraints imposed by these quartets
built. In practice, those predicted quartets might not agree each other and the optimization problem,
the well-known Maximum Quartet Consistency (MQC) problem, is to construct a phylogeny to satisfy
a maximum number of the predicted quartets. An equivalent representation for the MQC problem
through searching for a certain ultrametric matrix via Answer Set Programming has recently been
proposed. This paper follows the approach and presents a number of optimization techniques to speed
up the searching process. The experimental results on both the simulated and real datasets suggest that
the new representation combined with Constraint Programming presents a unique perspective to the
MQC problem.

1. Introduction

A fundamental problem in computational biology is to retrieve the history of a set of species
by reconstructing their evolutionary tree. Such a tree, also called aphylogeny, has its leaves
labeled with the given species, while the internal nodes represent extinct or hypothesized
ancestors. If the phylogeny is rooted, then its root represents a common ancestor of all
the species. Species data used to reconstruct a phylogeny often consist of DNA or protein
sequences, besides their morphological characteristics. In many cases, the huge amount
of genomic data limit the number of species that can be analyzed at one time. In the
last two decades, quartet based methods for reconstructing phylogenies have received a
considerable amount of attention in the computational biology community.9,12 The quartet-
based phylogeny reconstruction is to first build a subtree of phylogeny for every subset of4
species (quartet) and then rely on some combinatorial algorithms to construct a phylogeny
on the entire set of species. Such methods are based on the principle that constructing small
phylogenies is easier, and often more reliable as they allow for more intensive analysis.
Tree criteria like maximum likelihood, which are computationally horrendous on larger
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trees, can be solved exactly on quartets (note that there are only three possible resolved
trees to consider for every4 species).

In the ideal case where all quartets are “correct”, the task of assembling an overall phy-
logeny is easy and can be done inO(n5) time,6 wheren is the number of species under
consideration. In practice, however, some quartets might be ambiguous (and thus missing)
or even erroneous. Therefore, the set of quartets might be incomplete and might con-
tain conflicting quartets. These properties complicate the overall phylogeny construction
but also raise the computational interest. The parsimony goal is to construct a phylogeny
which respects as many quartets as possible. However, such an optimization problem turns
out to be hard.12 To the best of our knowledge, existing exact algorithms13 are all of ex-
haustive search nature, which however is generally infeasible as the size of search space is
huge (there are (2n−5)!

(n−3)! 2n−3 unrooted resolved phylogenies onn leaves to choose from8).
There are a lot of efforts put on the approximation side. To name a few, the heuristics of
Sattath and Tversky15 and Bandelt and Dress2 combine some clustering procedures with a
pairwise similarity or neighborliness scores derived from the quartets; one novel variation
on the scoring approach is described by Ben-Dor et al.,3 where instead of constructing a
similarity score for clustering, they embed thosen leaves as points in then-dimensional
Euclidean spaceRn using semi-definite programming and then apply a nearest neighbor
clustering procedure to finish the task; Dekker4 proposed another method for constructing
phylogenies from quartets and other sub-phylogenies using some quartet inference rules.
The Short Quartet Methodproposed in Erdos et al.5 constructs phylogenies using some
inference rules and greedy selection of quartets.

In next section, we briefly introduce the definitions for a number of objects used in this
paper. We then describe the target combinatorial optimization problems. Section 3 gives
the outline of the new representation for the phylogeny reconstruction problem to satisfy the
maximum number of quartets. For the details, the readers may refer to a preceding paper.17

In Section 4, we present a number of nice structural properties of the new representation
which can be taken advantage of to prune the search space more efficiently. Section 5
presents the experimental results with comparisons made to the phylogenies constructed
using Phylogeny Inference Package (PHYLIP).7 We conclude the paper in Section 6.

2. Problem Descriptions

For a set of4 speciesS = {s1, s2, s3, s4}, there are three possible resolved quartets. These
three quartets are shown in Figure 1. For simplicity, we use[12 | 34] to denote the quartet
in which the path connectings1 ands2 does not intersect the path connectings3 ands4 (as
shown in Figure 1(a)). LetQ denote the set of quartets built in the first step of a quartet
based phylogeny reconstruction, which can be done by various approaches. If there exists
one overall phylogenyT such that the quartetq ∈ Q is the same as the quartet derived from
T for the4 species, then we sayT satisfiesq or q is consistentwith T ;

TheMaximum Quartet Consistency(MQC) problem can be stated as follows:

INSTANCE: A setQ of quartets on species setS = {s1, s2, . . . , sn}.
GOAL: Find a phylogenyT to satisfy a maximum number of quartets inQ.
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Figure 1. Three possible resolved quartets for subset{s1, s2, s3, s4}.

It is known that whenQ is complete, MQC is NP-hard but admits a PTAS.11 WhenQ isn’t
complete, MQC is MAX SNP-hard.11

Given a rooted phylogenyT on S = {s1, s2, . . . , sn}, the least common ancestorof
two leaf nodessi andsj in T is the common ancestor ofsi andsj furthest away from
the root, denoted as LCA(si, sj). A labeling schemefor phylogenyT is a mapping from
the set of internal nodes inT to the set of integers{1, 2, . . . , n − 1}. Note that there are
exactlyn − 1 internal nodes inT and each node can be labeled by any number in the set
{1, 2, . . . , n− 1}. Let M(i, j) denote the label of the internal node LCA(si, sj). (Without
loss of generality,M(i, i) is set to0.) Consequently, for two pairs of leaf nodes(si, sj) and
(sk, s`), we haveM(i, j) = M(k, `) if and only if LCA(si, sj) = LCA(sk, s`). A labeling
scheme isultrametric if along any root to leaf path, the labels of the internal nodes on the
path is strictly decreasing. One phylogeny together with an ultrametric labeling scheme is
called anultrametric phylogeny.

Let M be ann×n symmetric matrix with its entry values taken from{0, 1, 2, . . . , n−
1}. M is ultrametric if M(i, i) = 0 for everyi, M(i, j) > 0 for every pairi 6= j, and for
every triplet(i, j, k) there are two equal values amongM(i, j), M(j, k), andM(i, k), and
they are greater than the third value.

Theorem 2.1. 17 Given a set of speciesS = {s1, s2, . . . , sn} and a phylogenyT on S,
there exists an ultrametric labeling scheme forT and the resultant matrixM is ultrametric.

3. Solving MQC via Constraint Programming

The following two theorems tell that constructing a phylogeny to satisfy a maximum num-
ber of quartets is equivalent to the search for an ultrametric matrix to satisfy the maximum
number of quartets.

Theorem 3.1. 17 A quartet[ab | cd] is consistent with a phylogenyT if and only if any
ultrametric labeling schemeM of T satisfies:

min{M(a, c),M(b, d)} > min{M(a, b), M(c, d)}.

An n× n ultrametric matrixM satisfies a quartet[ab | cd], or the quartet isconsistent
with M , if min{M(a, c),M(b, d)} > min{M(a, b),M(c, d)} holds.

Theorem 3.2. 17 Given a setQ of quartets on a set of speciesS = {s1, s2, . . . , sn} and an
ultrametric phylogenyT onS, T satisfies a maximum number of quartets inQ if and only
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if the corresponding ultrametric matrixM onS satisfies the maximum number of quartets
in Q.

According to Theorem 3.2, the MQC problem is equivalent to the problem of finding
an ultrametric matrix that satisfies the maximum number of quartets, which can be formu-
lated into aConstraint Programmingproblem.17 In the problem, the input consists ofn2

variablesM(i, j) whose domain is{0, 1, . . . , n − 1}, and a setQ of quartets onS. The
constraint set contains “symmetry constraints”, “ultrametric constraints”ultra(i, j, k), and
“quartet constraints”q(i, j, k, `) for quartet[ij | k`] ∈ Q. The goal is to find a solution
to the set of variables such that all symmetry and ultrametric constraints are satisfied and a
maximum number of quartet constraints are satisfied.

For every triplet(i, j, k) of distinct indices, amongM(i, j), M(j, k), andM(i, k) there
must be two equal values which is greater than the third value. This is theultrametric
constraintinvolving (i, j, k) and is denoted asultra(i, j, k). ultra(i, j, k) is satisfied if
and only if one of the following three constraints is satisfied:

• M(i, j) = M(i, k) > M(j, k);
• M(i, j) = M(j, k) > M(i, k);
• M(j, k) = M(i, k) > M(i, j).

According to Theorem 3.1, one quartet[ij | k`] is satisfied if and only if at least one of the
following two constraints is satisfied:

• M(i, k) > M(i, j) andM(j, `) > M(i, j);
• M(i, k) > M(k, `) andM(j, `) > M(k, `).

This is thequartet consistency constrainton [ij | k`] and is denotedq(i, j, k, `).

4. Optimizations

In a constraint programming problem, there are generally two ways to speed up the com-
putation, one is to reduce the number of variables and the other is to reduce the size of the
domain for each variable. We present three speedup strategies specific to the problem in
the follow three subsections, each of which takes advantage of some structural properties of
the optimal phylogeny. Our experimental results show that they all help reduce the running
time significantly.

4.1. Breaking the Symmetry

This might not be quartet specific but rather ultrametric matrix specific. The observation is
that an ultrametric matrixM is symmetric and therefore instead of putting the symmetry
as constraints, we would rather use it to reduce the number of variables. OnlyM(i, j) with
1 ≤ i < j ≤ n becomes a variable, which gives only1

2 (n2 − n) variables at the end.
Consequently, we remove all symmetry constraints from the constraint set. Similarly, we
would only consider ultrametric constraintsultra(i, j, k) such that1 ≤ i < j < k ≤ n

and quartet consistency constraintsq(i, j, k, `) such that1 ≤ i < j ≤ n, 1 ≤ k < ` ≤ n,
and1 ≤ i < k ≤ n.
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4.2. Reducing the Number of Species

The implementation of this strategy depends on the quality of the quartet setQ. Observe
that in an optimal phylogenyT if two speciessi andsj are siblings, then anyT -induced
quartet involving bothsi andsj must have the form of[ij | ∗∗]. The question we ask
is, under what kind of condition, we can infer that in any (or one) optimal phylogeny for
Q speciessi andsj are siblings? The importance of the ability to answer the question is
that once we conclude speciessi andsj to be siblings, we can “merge” them into a super-
species, remove all quartets involving both of them, suitably replace quartets involving
exactly one of them, and thus reduce the original problem to a problem with one less
species. We remark that reducing the number of species by one is about to reduce the
computational time by one magnitude.

For a pair of species(si, sj) and a quartetq involving both of them (and two other
species), the pairconflictsq if q is not in the form of[ij | ∗∗]. For a pair of species(si, sj)
and the quartet on{si, sa, sb, sc}, if we changesi to sj in the quartet and the resultant
quartet is same as the given quartet on{sj , sa, sb, sc}, then4-subsets{si, sa, sb, sc} and
{sj , sa, sb, sc} areexchangeableon pair(si, sj); otherwise, they arenonexchangeableon
pair (si, sj).

Theorem 4.1. Given a complete setQ of quartets on species setS = {s1, s2, . . . , sn},
a pair of speciessi and sj must be siblings in any optimal phylogeny if the number of
nonexchangeable pairs on(si, sj) plus the number of quartets conflicting(si, sj) is strictly
less thanb (n−3)

2 c.

Proof. Let n1 denote the number of of quartets conflicting(si, sj) andn2 denote the num-
ber of nonexchangeable pairs on(si, sj). We partition the quartet setQ into three parts
(see Table 1). Every quartet in Part 1 does not involve speciessi neithersj ; every quartet
in Part 2 involves exactly one species ofsi andsj ; every quartet in Part 3 involves both
speciessi andsj . Quartets in Part 2 can be paired up to have three other species in com-
mon, that is, they have the form of{si, sa, sb, sc} and{sj , sa, sb, sc}. Each such pair is
either exchangeable or nonexchangeable.

Table 1. PartitionQ into three parts.

Part Quartets
1 quartets not involving any ofsi andsj

{sa, sb, sc, sd}
2 quartets involving exactly one ofsi andsj

{si, sa, sb, sc}, {sj , sa, sb, sc}
3 quartets involving both ofsi andsj

{si, sj , sa, sb}

An argument to show the contradiction is done by proving that for any phylogenyT1 in
which si andsj are not siblings, a new phylogenyT2 in which si andsj are siblings can
be constructed to satisfy more quartets thanT1, using the fact thatn1 + n2 < n−3

2 . For the
page limit we omit the detailed proof here.
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4.3. Reducing the Domain Size

We define theheightof an internal nodev in a rooted phylogeny as the maximum number
of internal nodes along any path fromv to a leaf node in the subtree rooted byv. For any
rooted phylogenyT , we can label each internal node by its height. This gives an ultrametric
labeling scheme forT . Suppose we know in advance height of the root, denoted byh. Then
the domain of variables for the target ultrametric matrix can be reduced to{1, 2, . . . , h}.
What complicates the search of the target ultrametric matrix is that we do not knowh in
advance.

Theorem 4.2. Given a quartet setQ on species setS = {s1, s2, . . . , sn}, there exists a
rooted phylogenyT which satisfies a maximum number of quartets inQ and the height of
the root is at mostdn

2 e.

Proof. The proof is done by re-rooting phylogenyT , if its height is greater thandn
2 e,

while maintaining the number of quartets satisfied. The process is done by first discarding
the root ofT to get an unrooted phylogeny denoted asT ′. Note that an unrooted phylogeny
can be rooted on any of the possible2n− 3 edges without changing the satisfied subset of
quartet. InT ′, the longest path between any two leaf nodes has a maximum number ofn

internal nodes. We can rootT ′ on the edge which is in the middle of the longest path. This
way, every path from root to a leaf node has a maximum number ofdn

2 e internal nodes.
In such a way, we obtain a new rooted phylogenyT ′ which satisfies the same number of
quartets asT and the height of its root is at mostdn

2 e.

From Theorem 4.2, we conclude that in the search of a target ultrametric matrix, we
can limit the domain of variables to be{1, 2, . . . , dn

2 e}. Furthermore, we can restrict that
only the least common ancestor of two leaf siblings can be labeled by1, and if two species
(si, sj) can not be siblings in any optimal phylogeny, the domain of matrix variableM(i, j)
is reduced to{2, 3, . . . , dn

2 e}.
To determine that two species(si, sj) can not be siblings in any optimal phylogeny, we

take advantage of some existing fast phylogeny construction heuristics (such as neighbor-
joining14 to get a near-optimal phylogeny on the input quartet setQ, which gives a lower
bound of the MQC problem. In other words, suppose the near-optimal phylogeny can
satisfyk quartets in a complete quartet setQ on S = {s1, s2, . . . , sn}; then any optimal
phylogeny will have a maximum

((
n
4

)− k
)

unsatisfied quartets inQ.

Theorem 4.3. Given a complete quartet setQ on species setS = {s1, s2, . . . , sn}, a
pair of speciessi and sj must not be siblings in any optimal phylogeny if the number of
conflicting quartets plus the number of nonexchangeable pairs on(si, sj) is greater than((

n
4

)− k
)
.

Proof. Let n1 be the number of of quartets conflicting(si, sj) andn2 be the number of
nonexchangeable pairs on(si, sj).

Supposesi andsj are siblings in an optimal phylogenyT . To achieve this phylogeny,
we need change at least those quartets that conflict(si, sj) and at least one quartet of each
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nonexchangeable pair on(si, sj). This gives at leastn1 + n2 quartets that are not satisfied
by T , which is a contradiction.

5. Computational Results

We have proposed a number of speedup strategies for the Constraint Programming for-
mulation for the MQC problem. To investigate the performance and usefulness of these
strategies and the formulation, we performed experiments on both artificial datasets and a
real dataset. The experiments were done on an IBM P690 computer with a Power 4 1.7
GHz processor.

5.1. Artificial Dataset

We describe first how we generated the artificial datasets. For a given numbern of species,
we generated a random binary tree to act as their phylogeny and extract one quartet for
every four species from the phylogeny. This gives a compatible set of

(
n
4

)
quartets. We

then changed some arbitrarily selected quartets to give the setQ. The number of changed
quartets is a given percentage (p, ranging from5% to 20%) of the total number of quartets.
(We also set the number of unchanged quartets to be a lower boundk of our solution.)

The computational results are summarized in Table 2, which show that our program
was able to reconstruct an optimal phylogeny for up to 25 species in 102 hours with quartet
error rate as large as20%. For significance comparison purpose, consider the computational
results reported by Ben-Doret al.,3 who also solve the MQC problem optimally. They were
able to solve instances containing up to20 species and a computational time of128 hours
for the most complicated case on a SUN Ultra 4 with 300MHz, which by a rough scaling is
not as fast as we can do. Further more fair comparisons between our method and Ben-Dor’s
method are undergoing, and will be reported elsewhere.

Table 2. Computational time on artificial datasets.

n p time n p time
10 5% 0.03 seconds 15 5% 0.05 seconds
10 10% 0.05 seconds 15 10% 0.54 seconds
10 15% 0.05 seconds 15 15% 0.68 seconds
10 20% 0.06 seconds 15 20% 0.81 seconds
20 5% 40 minutes 25 5% 6 hours
20 10% 6 hours 25 10% 89 hours
20 15% 8 hours 25 15% 102 hours
20 20% 8 hours 25 20% 102 hours

Table 3 shows how Theorems 4.1 and 4.3 work in our computations. In the table,p1

is the percentage of siblings found by Theorem 4.1 andp2 is the percentage of non-sibling
species found by Theorem 4.3. Intuitively, the less number of unsatisfied quartets, the more
number of siblings can be discovered. In our experiments, we found that when the number
of unsatisfied quartets is less than5% of total number of quartets, we could find all the
siblings in the optimal phylogeny. We could also find all the species that can not be a
sibling to any other species due to the good quality lower bound used in our computations.
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Table 3. Performance of speedup strategies.

p p1 p2

5% 100% 100%
10% 95% 100%
15% 82% 100%
20% 41% 100%

Tables 2 and 3 also show that the quartet error rate may affect the performance greatly,
typically when the number of species under consideration exceeds15. When the error
rate is less than10%, the problem can be solved more efficiently. Therefore, a better
quality quartet inference technique would be very helpful in the quartet based phylogeny
reconstruction process.

5.2. A Prokaryote Dataset

In our experiments, we computed an optimal phylogeny for a set of species containing20
Prokaryote and5 Eukaryote species. We adopt the naming and abbreviation convention in
the paper of Hao et al.10

The “Bergey Code” of every Prokaryote species is a shorthand of the classification
given in the 2001 edition ofBergey’s Manuals of Systematics Bacteriology16, which col-
lects the most comprehensive taxonomic information of Prokaryote. For the first letter of
Bergey Code, ’A’ means Archaea and ’B’ means ’Bacteria’. The following digits give
the code of species phylum, class, order, family and genus. For example,Ureaplasma
urealyticum (urepa)is listed under Phylum BXIII (Firmicutes) - Class II (Mollicutes) - Or-
der I (Mycoplasmatales) - Family I (Mycoplasmataceae) - Genus IV (Ureaplasma). We
changed all Roman numerals to Arabic and wrote the lineage as B13.2.1.1.4, dropping the
taxonomic units and the Latin names.10

The input data to this experiment were the whole genome sequences of these25 species
we downloaded from NCBI.1 Briefly, we used their whole genome sequences to compute
a distance matrix using a measure proposed in the paper of Hao et al.10 We then apply the
Four-Point Method6 on the distance matrix to infer a quartet for every subset of4 species.
This gives a compatible set of

(
25
4

)
= 12650 quartets.

Using the distance matrix for the25 species alone, a phylogeny can be constructed
by calling a neighbor-joining executable provided by PHYLIP package.7 The output phy-
logeny and the phylogeny constructed by our program are shown in Figure 2. It can be
seen that both phylogenies support the classifications provided byBergey’s Manuals of
Systematics Bacteriology16 quite well in the overall structure and in many details. Dur-
ing our construction, we found six of the eight pairs siblings in the optimal phylogeny
before doing Constraint Programming computation. Each pair of found siblings are very
close based on the Bergey’s classification. This shows that our optimization methods can
not only reduce the computational time, but also give a good preview of the relationships
among species.

It is interesting to see that out of the total amount of12650 quartets, the PHYLIP phy-
logeny satisfies only10750 of them, and ours satisfies216 more (86.7%). Looking more
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Figure 2. (a) Phylogeny produced by PHYLIP package; (b) Phylogeny produced by our program.

closely, there are two main differences between these two phylogenies. First, the phylogeny
generated by PHYLIP falsely put one Eukaryote species into Prokaryote category. This is
corrected by the phylogeny generated by our method. Second, the phylogeny generated
by PHYLIP package putRhilo very close toArgt5w andRhime . By examining the
distance matrix directly, we found that the distance betweenRhilo andRhime is very
small compared to other distance entries; and this was probably the reason why PHYLIP
put these three species together in its phylogeny. On contrary, the phylogeny produced by
our program not only considered this small distance, which led to the fact that the path con-
nectingArgt5w andRhime only contains three internal nodes, but also considered all the
other distance entries involving one of them. Therefore, it gave a more accurate position
of Rhilo . Compared to the phylogeny generated by PHYLIP, our phylogeny seems more
accurate and reflects the true relationships among these species.

From this experiment on a real dataset, we can see that the solution of the MQC prob-
lem has the ability of correcting phylogenies from other heuristic phylogeny construction
methods. Although those heuristic methods are fast and could generate phylogenies on
larger numbers of species, their phylogenies may not be as accurate as ours, despite the
fact that our method needs more computational time.

6. Conclusions and Future Work

We have proposed a number of optimization strategies for a new formulation of the MQC
problem through Constraint Programming. The formulation, together with our speedup
strategies, might lead us to a new perspective of the problem, as our preliminary experi-
ments on both simulated and read datasets showed that the proposed approach outperforms
previous exact algorithms proposed for the MQC problem. Although in the worst case our
approach of solving the MQC problem still takes exponential time, it allows the incorpora-
tion of the domain knowledge into the search process. In the ideal case, we might be able
to encode the target matrix variables such that the exponential behavior becomes a rare
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occurrence, and the average behavior is acceptable for practical use.
Currently, our encoding scheme can solve instances containing up to25 species in

around4 days in a1.7GHz processor. One of the most important future work we want to
pursue is to improve our encoding scheme to further speed up the computation. Our goal
is set for solving instances containing80 species within a day, and thus to provide another
fast way to optimal phylogeny construction.

We have mentioned that there exist quite a number of algorithms and heuristics in the
literature for solving the MQC problem either optimally or approximately. Our immediate
goal is to conduct an extensive comparison between our method and these existing ones, on
both phylogeny quality and computation time. With these tasks set, our ultimate goal is to
fully explore the structure properties of the MQC problem and to design a quartet specific
solver.
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