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CORRECTION NOTE TO “PROOF THEORY FOR
NON-NORMAL MODAL LOGICS:
THE NEIGHBOURHOOD FORMALISM
AND BAsic REsSuULTS”

SARA NEGRI
University of Helsinki, Finland
sara.negri@helsinki.fi

The sequent calculus G3n for system E presented in my paper Proof theory
for non-normal modal logics: The neighbourhood formalism and basic results (this
Journal, vol. 4(4), pp. 1241-1286, 2017) is not cut free. This can be seen by showing
that the valid sequent z : O(A&B) = O(B&A) is not derivable without a cut. The
reason for this problem is the form of the left rule for <1, with the formula y : A in
the antecedent of the conclusion

yea,y:AA<a, = A
y:AA<a, = A

L«

A similar form, used for example for LO allows to reduce the number of premisses
(from two to one): so instead of the rule

r:0AT=AzRy y:Az:0AT=A o
x: 04T = A

one can use the equivalent rule

y: A xRy, x:0A T = A
cRy,z: 0A, T = A

In this way, an application of rule LO is licenced just when we have an accessibility
atom of the form xRy in the antecedent of the conclusion. The reason why a similar
reduction doesn’t work in the case under discussion is that the formula y : A doesn’t
behave like a relational atom: it can be principal in a right rule and therefore a cut

We thank Nicola Olivetti and Tiziano Dalmonte for pointing out the problem discussed in this note.
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with left premiss derived by a right rule with y : A principal and left premiss derived
by L <t with y: A, A < a in the conclusion cannot be permuted.

We can obtain a cut-free sequent calculus for system of E by just avoiding the
simplification step used for LO and using the rule with two premisses

A<Qa,l'=s=Ay:A yca,A<da,l'= A
A<al'=A

L«

Here y is an arbitrary label, but it is enough—by the usual argument that shows
analyticity as an application of height-preserving substitution of labels—to restrict
the rule to labels in the conclusion.

All the results stated in the paper hold with the two-premiss version of the rule;
obvious modifications to account for the new form of the rule are needed in Lemma
3.3, Lemma 4.2, Lemma 4.5, Theorem 4.9, Theorem 5.3, Definition 5.4, and Lemma
5.5. For completeness, these modifications are detailed below.

Lemma 3.3. Rule RE is admissible in G3E.

Proof. By the following derivation:

r:A=z:B y:B...=>...y:A y€a...=>...y€a
alFY A= alF¥ B 3.2 y:B,acI(z),alrY A,A<da=z:0B,y€a
a€l(x),alrY AJ)A<a=x:0B,altY B a € I(z),alr? AJ/A<a=x:0B,B<a
a€I(x),alr¥ AJ/A<a=x:0B
r:0A=z:0B

RO

LO
QED

Lemma 4.2(2). Sequents of the following form are derivable in G3n* for arbitrary
formulas A and B in the propositional modal language of G3n*:

2. A<da,l'=>AAa

Proof. 2. By the following derivation

r:AA<al=Azcax:A z€a,v: A A<al' = Axca
r:AA<a, = Azca
A<Qa,l'=AAQa

L«

R <

where one topsequent is derivable by inductive hypothesis and the other is initial.
QED
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CORRECTION NOTE

Lemma 4.5(13).

13. If Fy A<a,'=Athent, A<a,I'=Ay:Aand b,y €a,A<a,'= A.
Theorem 4.9. Cut is admissible in G3n*.

Proof. 4. The cut formula is A < a, principal in both premisses of cut. We have:

D
r: ATl =Az€a A<al"=Ay:A yea,A<a ' = A
T=AA<a < Adal = AN
LI = A, A

L«

Cut

The cut is converted as follows:

I'=>AAda y€a,Ada, ' = A

D(y/z) Cut
= A,Ada A<da ' =Ay:A y: A=A, y€a y €a, I, = A A o
Cut ut
LT = AA,y: A y: A T2 T = A2 A/
I3 12 & A3 A2 Cut
< o Ot
I, T"=AA

where the two upper cuts are of reduced cut height and the lower ones of reduced
weight of cut formula because w(y € a) < w(A < a), w(y: A) <w(4d < a). QED

Theorem 5.3. If I' = A is derivable in G3n* (respectively G3nM*, G3nC*,
G3nIN*), then it is valid in the class of neighbourhood frames (respectively neigh-
bourhood frames which are supplemented, closed under intersection, containing the
unit) with the * properties.

Proof. If the last rule is L <, assume that the premisses A < a,I' = A,z : A,
y € a,A < a,I' = A are valid, and let (p,0) be an arbitrary SN-realisation with
)M Epe A<dal = Az: Aand 2) M E,0 y € a,A < a,T = A and
assume M |=,, A < a,T'. If (1) gives that there is B in A such that M |=,, B
we are done. Else we have p(z) € [A]; since by assumption [A] C o(a), we have
p(z) € o(a), thus M |=,, x € a. From (2) and it follows that there is B in A such
that M =, , B. QED

Definition 5.4(L <1). We say that a branch in a proof search from the endsequent
up to a sequent I' = A is saturated with respect to a rule L < if the following
condition holds

(L<)If A<aand yarein [T, theny €aisin 'or y: A isin A.

xiii
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Lemma 5.5(d). Let B = {I'; = A;} be a saturated branch in a proof-search tree
for I' = A. Then there exists a countermodel M to I' = A, which makes all the
formulas in T true, and all the formulas in A false.

Proof. (d) If A < ais in I, let y be an arbitrary world in the model, that is, by
definition of M, a label in [I". Then by by saturation y € aisin I or y : A is in A,
so by inductive hypothesis M [, sy : A or M =, y € a. Overall, this means that
M, A<a. QED

Xiv Received October 2017



IN MEMORIAM: GRIGORI E. MINTS, 1939-2014

SOLOMON FEFERMAN
Stanford University, Stanford CA 94305-2125, USA
s.feferman@gmail.com

VLADIMIR LIFSCHITZ

Department of Computer Science, University of Texas at Austin
2817 Speedway, Stop D9500, Austin TX 78712-0233, USA
v1@cs.utexas.edu

On May 29, 2014, ten days before his 75th birthday, Grigori (“Grisha”) Mints
died at Stanford, California of cardiac arrest; he had suffered a serious stroke a month
before from which he never recovered. At the time of his death Mints held the posi-
tion of Professor of Philosophy at Stanford University with courtesy appointments
in Mathematics and Computer Science. His death unexpectedly cut short a distin-
guished and highly active career marked by a prodigious output of great breadth in
logic and its applications. This included three books [4,[5,/9], another ten more of
which he was an editor or translator, over 200 articles and over 3000 (!) reviews.
His main contributions were to proof theory, constructive mathematics, intuitionistic
logic, modal logic, and automated deduction.

Mints was born on June 7, 1939 in Leningrad, USSR (currently St. Petersburg,
Russia). He obtained the B.S. and M.S. in Mathematics from Leningrad State
University (currently St. Petersburg State University) in 1961, with a thesis on
proof search in the classical predicate calculus. Working under the direction of
Nikolai A. Shanin, Mints obtained the Ph.D. in Mathematics at the Leningrad S. U.
in 1965, with a thesis on predicate and operator variants for theories of constructive
mathematics (cf. the translation in [1]). Finally, in 1990 he was awarded the D. Sc.
in Mathematics at the Leningrad S. U. for a work on proof transformations and
synthesis of programs. Mints was elected to the Estonian Academy of Sciences in
2008 and to the American Academy of Arts and Sciences in 2010.

From 1961 to 1979 Mints held the position of Research Associate at the Leningrad
Branch of the Steklov Mathematics Institute. After submitting his request to emi-
grate from the Soviet Union in 1979, he resigned his position at the Steklov Institute

This article originally appeared in the Bull. of Symbolic Logic 21 (2015) 31-33. Copyright is held
by the Association for Symbolic Logic and it is being reprinted here with their permission.

Vol. 4 No. 4 2017
IfCoLog Journal of Logics and their Applications



S. FEFERMAN AND V. LIFSCHITZ

so as not to endanger the situation of his colleagues there by his possible associa-
tion with them. In the difficult period that followed, among other things Mints
supported himself by doing programming jobs and translating books and articles
on logic from English into Russian. Meanwhile he was able to establish connections
with the Institute of Cybernetics in Tallinn, Estonia, where he obtained a part time
position as Research Associate from 1980 to 1984. This turned into a full time po-
sition as Senior Research Associate from 1985 to 1991. Mints was finally permitted
to emigrate to the United States in that year, when he was appointed Professor of
Philosophy at Stanford University.

The direction of Mints’ early work was determined to a large extent by the
main interests of Nikolai A. Shanin, who, along with Andrei A. Markov, Jr., led
a research group at the Steklov Institute devoted to “Russian-style” constructive
mathematicsE] Shanin’s group also worked on automated reasoning, with emphasis
on generating “natural” proofs, to which Mints made a number of contributions. His
work in this period was also distinguished among other things by several publications
on analogues of Herbrand’s theorem for intuitionistic logic. Another highlight is
the famous article, “What can be done in PRA?” [2] (original Russian in 1976),
whose main result was obtained independently by Charles Parsons and by Gaisi
Takeuti. Mints’ book [4] contains the English translations from the Russian of a
selection of thirteen of his articles on proof theory from the period up to 1979E]
These concentrate on normalization theorems for classical, intuitionistic and modal
systems as well as their applications to coherence theorems in category theory.

While in Tallinn, Mints studied the mathematical principles behind the program
synthesizer PRIZ, designed by a group at the Institute of Cybernetics led by Enn
Tyugu. Estonian computer scientists thought that their algorithm was complete,
but Mints came up with an example that PRIZ could not handle. The algorithm
was then improved, and Mints established the completeness of the new version in
joint work with Tyugu in 1982.

At Stanford, Mints became one of the mainstays of the interdepartmental pro-
gram in logic, teaching the subject at all levels, advising students, and directing
doctoral dissertations. Together with Solomon Feferman, he led the seminar in logic
and the foundations of mathematics. His research work continued unabated along
all the general lines given above. In addition, among other things, his work [10]

Tn his article [3], Mints surveyed work in the USSR on proof theory and constructive mathe-
matics from 1925 to 1969. See also the article [12] with Sergey I. Nikolenko.

2Most regrettably, the volume [4] provides no information regarding the original publication
data for these articles, not even their dates. These can be reconstructed from a C.V. that Mints
prepared for the Stanford Philosophy Department in 2007 that is referred to but not repeated in
later expansions of it.

814



IN MEMORIAM: GRIGORI E. MINTS, 1939-2014

with Philip Kremer on dynamic topological logic initiated an interesting new di-
rection, and he contributed to linear logic for intuitionistic and natural deduction
systems [7,8]. But, most importantly, in proof theory he was noted for almost
single-handedly extending Hilbert’s “epsilon substitution method” to various first-
order and second-order subsystems of analysis, as in [6,[11,13}|14], with work still in
progress at the time of his death.

At the professional level Mints was a member of a number of editorial boards,
and of program and organizing committees for various meetings, both national and
international, in which he was also an active participant. Of special concern to him
was the continued fostering of ties with colleagues in the former Soviet Union. The
last conference that he helped organize and at which he spoke, entitled “Philosophy,
Mathematics, Linguistics: Aspects of Interaction 2014”, was held at the Steklov
Institute in St. Petersburg in the month of April, 2014; cf. http://www.pdmi.ras.
ru/EIMI/2014/PhML/. Sadly, it was from that meeting that he returned with an
illness that led in the end to his death.

Besides his extensive and enduring contributions to our subject, Grisha Mints
is remembered by his colleagues, friends and students with great affection as a very
warm human being — always accessible, patient, and ready to help — and for his
general intellectual enthusiasm married with a keen sense of humor illuminated by
a surprising font of historical knowledge.

Acknowledgements. We are grateful to Marianna Rozenfeld, Yuri Gurevich,
Vladik Kreinovich, and William Tait for their helpful comments on a draft of this
piece.
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GRIGORI MINTS, A PROOF THEORIST IN THE
USSR: SOME PERSONAL RECOLLECTIONS IN A
SCIENTIFIC CONTEXT

SERGEI SOLOVIEV*
IRIT, Université de Toulouse, Toulouse, France
soloviev@irit.fr

Abstract

The paper is based on my recollections of Grigori Mints (1939-2014) com-
pleted by a survey of his research work in a scientific context. I speak mostly
about the Soviet period of his life and work (until 1991), and sometimes go
beyond the purely scientific aspects to show the atmosphere of these times.

Keywords: Grigori Mints, Biography, Logic in the USSR, History of Logic.

1

I first met Grigori when I was a second-year undergraduate at the FacultyF_-] of Math-
ematics and Mechanics of Leningrad State University at the end of 1975 or in the
beginning of 1976[%1 In the middle of our third year, we had to choose our specializa-
tion, and I had been considering mathematical logic as an option; simultaneously, I
had been working on a project on uniform contact schemas under the supervision of
N. K. Kossovsky, but I was attracted to the more theoretical aspects of logic. I had
an acquaintance, Michael Gelfond, who was one of my teachers at the school N230
(a high school specialized in mathematics). He also was an associate of the Group
of Mathematical Logic at the Leningrad Department of Mathematical Institute of
the Academy of Sciences (usually called LOMI), where he defended his PhD thesis

*Partially supported by the Government of the Russian Federation Grant 074-U01 awarded to
the ITMO University, St. Petersburg, Russia (associated researcher).

'More or less corresponds to School, as in Ozford School of English.

2He was often called “Grisha”, a more familiar form, but for me Grigori sounds more appropriate
because during several years he was my adviser.
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in 1974@ Gelfond advised me to go to the seminar of the Group of Mathematical
Logic that was held at LOMI on Mondays, and to approach Mints.

I do not remember, whether I had to call Mints before and get an appointment.
To enter LOMI I had to say that I go to the seminar because it was open to the
colleagues of other institutes. To Mints I had to mention Gelfond’s recommendation.
In any case, when I approached Mints he suggested me to take the Russian transla-
tion of S. C. Kleene’s “Mathematical Logic” [13], the so called “Red Kleene’ﬁ, and
solve all the exercises. In fact, I never solved all of them because after some time,
when I solved approximately one third (taken from all chapters), we had a much
more lengthy and substantial discussion, and Mints proposed me to think about
some original problems that were not merely exercises.

At this time he was much interested by some applications of proof theory to
the theory of categories. It was Jim Lambek who first noticed the link between
categories with additional structure and deductive systems. He published a series
of three papers called “Deductive systems and categories” [20H22]. Let me mention
that two of these papers appeared in Springer Lecture Notes in Mathematics and
were accessible in the LOMI’s scientific library. Mints knew also about S. Mac
Lane’s works on coherence, but as far as I remember, most of all his attention
was attracted by the recent paper by Mann [24] on the connection between the
equivalence of proofs and the equality of morphisms in Cartesian Closed Categories
probably because (in difference from Lambek) it considered natural deductions that
were well known to Mints. This connection opened an interesting perspective in
that certain problems of category theory, first of all the so called coherence problems
(problems of commutativity of diagrams) may have nice proof-theoretical solutions.

In this essay I will try to render my impression of the style of Grigori Mints
as a researcher. He was always very open, receptive towards the newest tendencies
in all domains of world science related to proof theory and logic. Of course my
impressions are subjective, and alone they cannot give a true idea of the whole
extent and significance of his works, but I will try to complete this subjective part
by a more academic survey based on publications, documents, and testimonies of
G. E. Mints colleagues and friends.

Among the events that impressed me at this early period of my acquaintance with
Mints was the visit (and talk) of an outstanding logician, G. Kreisel (1923-2015) to
LOMI in June 1976 that Mints organized.

3The head of the Group of Mathematical Logic (and Gelfond’s PhD adviser) was N. Shanin.
Gelfond emigrated to the United States in 1978. He is now a professor of computer science at Texas
Tech University.

“The translation (in red cover) was published in 1973. The book was translated by Yu. A.
Gastev. Mints was the editor of the translation.
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The weather was unusually cold, but the central heating was already switched
off because it was June.

At this time the building that LOMI occupied todayE] was under renovation and
the institute was temporarily “exiled” to a former school far from the city center. It
stood in an inner courtyard surrounded by gray buildings heavily styled since they
were built in Stalin’s times. Understandably, the conditions were more crowded.
The group of mathematical logicians used a former classroom, and the seminars
were held in the same room. I remember several tables, chairs, and a large worn
leather divan, an object of amused pride in the group. Kreisel had to use an ordinary
school blackboard for his talk. I also recall his coat, that seemed to me to be too
light for such cold weather. Later I learned that these light coats protected against
cold and rain much better than those “Made in USSR”".

At that time I hardly asked myself what role Kresiel had played in the develop-
ment of Mints as a scientist. I had no idea of the intense correspondence that Mints
had with western scientists, often in spite of the obstacles and complexities typical
of life in the USSR. Later I have heard from Mints that he considered Kreisel as
one of his teachersﬂ He corresponded with many other Western scientists as well,
for example, with A. S. Troelstra (b. 1939), S. Feferman (b. 1928), S. Mac Lane
(1909-2005). In the archive of A. S. Troelstra first mention of the correspondence
with G. E. Mints may be found in 197(]

To give a better impression of “I’air du temps”, it is worth to mention that the
fact of correspondence with the West did not seem strange to me at all - the idea
that science is indivisible, and the borders should not be an obstacle for scientific
exchanges, was common among academic researchers and the university people at
this time. The academic community in the USSR remembered very well that before
the Revolution of 1917 and even in 1920s scientists easily published papers and
exchanged letters in all main European languages (cf. [85]), and did not want the
return of Stalin’s times.

Not long after my acquaintance with Mints I was invited to visit him at home — of
course in connection with the problems he wanted to propose. A modest flat in one
of the many areas of recent housing development, rather far (about 30 min. by tram
or bus) from underground stations. Grigori lived there with his wife and daughter.
I remember an impressive mathematical library — yellow spines of Springer Lecture

597, Fontanka river embankment in the historic center.

50ne of the fruits of this early collaboration between Mints and Kreisel was a lengthy paper
published in Springer Lecture Notes |16]. At the end of this paper there is an appendix, and the
authors notice that it is based on correspondence between two of them - obviously Mints and Kreisel.

"See Index of the Troelstra Archive, https://www.illc.uva.nl/Research/Publications/
Reports/X-2003-01.text.pdf.
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Notes in Mathematics, foreign journals...

The third year at the University (in my case 1976/77) was the year of specializa-
tion, the scientific domain for the future graduation had to be chosen. I was included
in the group of geometry and mathematical logics. The University administration
agreed that Mints, who did not work at the University, would become my scientific
adviser, and later supervisor of my graduate work. About these years, from 1977 to
1980, it is worth to speak in more detail.

The main problem that Mints proposed me to consider was the so called coher-
ence problem for Cartesian Closed Categories. In proof-theoretical formulation, I
had to prove that all logical derivations of certain classes are equivalent.

There were also lesser problems, that later turned out to be of independent
interest, for example, the problem of transformations of derivations that preserved
their equivalence. Mints suggested to read an old paper (1953) by G. F. Rose [87]
where an interesting transformation of formulas (the decreasing of implicative depth)
was considered, and to generalize it to the derivations. It required to go to the library
of LOMI and make a considerable effort with English that I did not yet know well,
but the paper was there and the effort within the limits of possible.

Georg Kreisel clearly distinguished what he called the “General Proof Theory”
and the “Theory of Proofs” |17]:

A working definition of Proof Theory is essentially interested in what is tradi-
tionally called the essence or, equivalently, ‘defining property’ of proofs, namely
their being valid arguments... general proof theory develops such refinements
as the distinction between different kinds of validity, for example, logical or
constructive validity (and other) familiar from the foundational literature... In
contrast, the Theory of Proofs questions the utility of these distinctions com-
pared to taking for granted the validity at least of currently used principles.
Instead, this theory studies such structural features as the length of proofs and
especially relations between proofs and other things, so to speak, ‘the role of
proofs’..

As far as I know, Mints shared his views, and his own works mostly belong
to the theory of proofs in Kreisel’s sense. His interest in Categorical Logic, where
logical derivations are seen as morphisms in appropriate categories, and equivalence
relations on derivations generated by categorical semantics are studied, is in line
with this approach.

In this period Mints wrote two long papers [52,[56], that considered the corre-
spondence between certain systems of propositional logic and categories with addi-
tional structure. Main results included a solution of the “word problem” (equality of
morphisms) in free categories with additional structure of several types: closed, sym-
metric closed, monoidal closed, symmetric monoidal closed, and cartesian closed, in
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all cases based on verification of the equivalence of derivations. As the main tool, the
normalization of lambda-terms associated with derivations was used. Normalization
at this time was relatively well explored by proof theorists, but its use for accu-
rate and extensive study of categorical properties of proofs was new. Mints knew
about a work of Mann [24] who used normalization for partial characterization of
morphisms in Cartesian Closed Categories, and wanted to complete and extend his
approach. Mints knew also about works of Lambek [20-22] and Kelly-Mac Lane [12],
who with some success used cut—elimination[ﬂ Some of the systems considered by
Mints correspond to what is called nowadays, after Girard’s work [8], multiplicative
linear logic. In his paper [44], 10 years before Girard, Mints cited several papers
by Anderson and Belnap (e.g., [1]), Kreisel [15], and Prawitz [86]. Some indirect
influence of Lambek [19] may be possible.

One of two papers, published in Kiev [56], was hard to find, and Mints gave me
the manuscript to read.

At this period, when I wrote under Mints’ direction my diploma work, he had
also one PhD student, Ali Babayev. His story had some flavour of mathematical
romantics. I mention it, because it shows Mints as an attentive and caring supervisor.
Ali was first sent from Azerbaidjan to Moscow for an internship under supervision
of a prominent algebraist and logician Sergei Adian, but it did not go very well,
and Ali felt himself somewhat lost. Mints met him during a visit to Moscow and
invited to LOMI, to try to do a PhD thesis there under his own supervision. One of
the problems that Mints suggested to Ali was identical to my own — he had to look
for a proof of the so called coherence theorem for canonical morphisms in Cartesian
Closed Categories, but we had to use different methods (Ali — lambda-calculus and
natural deduction, and myself — Gentzen sequent calculus). Of course, Ali, as a
PhD student had to work on several other problems. He had to explore other kinds
of Closed Categories, for example, the so called Biclosed Categories, and related
coherence problems. In the end we proved the coherence theorem for Cartesian
Closed Categories more or less simultaneously.

Main results of this period of my work under direction of G. E. Mints were
published in three papers in the volume 88 of “Zapiski” (1979). A long paper
on coherence theorem contained two independent proofs, one obtained by Ali and
another by myself [89]. Another paper [90] considered the preservation of equivalence
of derivations under reduction of formula’s depth by Rose’s method. The third [91],
a note of 3 pages, presented an example of exponential growth of length of natural
deductions that correspond in a standard way to the sequential ones.

8Cut-elimination alone does not permit to define normal forms, and so is not enough to solve
the problem of equivalence.
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Mints published in the same volume two papers about various normalization
problems concerning the arithmetical deductions and deductions in predicate calcu-
lus [57,58]. To me and Ali — the younger generation — it was difficult to figure out
that for him a long and a very fruitful period of relatively peaceful creative work
will soon come to an end.

2

All personal recollections have only limited meaning if they are not presented in a
larger context, based on documents and information gathered from other people.
This section is mostly devoted to an outline of such a more objective context.

Grigori Efroimovich Mints was born in Leningrad on June 7, 1939. The names
of his parents were Efroim Borukhovich Mints and Lea Mendelevna Novik.

A few more biographical details. During the war, the family was evacuated
and afterwards returned to Leningrad. In 1946 Grigori entered the school N©241
at Oktyabrski district of the city of Leningrad. As an overwhelming majority in
his generation, at the age of 14 he was enrolled to “Komsomol” (the union of com-
munist youth). Of course, at this period of Soviet history for most of its members
“Komsomol” was no more a bridge to the career in communist party, but mere
formality. He finished school in 1956 and in the same year passed the exams and
entered the Faculty of Mathematics and Mechanics of Leningrad State University,
together with other future members of the Group of Mathematical Logic, S. Yu.
Maslov (1939-1982) and G. V. Davydov. At the same time their future wives were
enrolled.

Mints was taken to the section of computational mathematics’} that had at this
time a “mixed” reputation in comparison with pure mathematics. On the one hand,
the students of this section were considered as an elite of a sort, one had to have the
very good marks at the entrance exams, at the other there was a risk because the
graduates often were send to the institutes that worked on secret military projects,
the so called “postboxes”, since their street addresses were not publicly known.
Remember that Soviet nuclear and space programs had at this time their “golden
era”, and they needed enormous amount of computations. By the way, it was also a
refuge for cybernetics, that was not approved by Marxist philosophers, but they had
no access to projects that had military significance. For a former student go to a
“postbox” meant that it will be difficult to communicate with colleagues outside, and
impossible to have contacts abroad. Happily for Mints and his friends, about 1956
the situation started to relax, and this permitted Mints, Maslov, and Davydov to be

9In 1957 another future logician, V. P. Orevkov, also entered mathematical faculty.
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recruited immediately after graduation by LOMI, and become first junior members
of the Group of Mathematical Logic just organized there under the leadership of one
of the creators of constructive approach in mathematics, N. A. Shanin (cf. [26]).

In the end of 1960/61 academic year Mints defended his dimploma’s work under
the title “An Algorithm for Proof-Search in the Classical Predicate Calculus”, and
was awarded the diploma “with excellence” in the specialty “mathematics”. He was
immediately recruited by LOMI, and had to begin his work there on August 1st.
His initial position was that of a research assistant, and he remained at this post a
bit more than one year.

In 1962 the first two scientific papers by Mints were published in “Doklady” of
the Academy of Sciences of the USSR (DAN) [30.31].

In 1963 he was elected by the Academic Council of LOMI to the position of
Junior Researcher.

It followed afterwards almost two decades of uninterrupted and very impressive
progress. In 1979 the official report signed by the administration of LOMI when
the candidature of G. E. Mints for the position of senior researcher was proposed to
Academic Council mentions that he has 60 published research papers and 13 articles
for Mathematical Encyclopedia, Encyclopedia of Cybernetics, and other editions of
similar kind. Mints was a member of the Group of Mathematical Logic, and this
group itself was a remarkable association of the very talented and highly motivated
researchers. In particular, it was developed and programmed by this group one of the
first algorithms for automated proof-search in propositional and predicate calculus.
All members of the group participated in this project.

As we shall see, one may discern more or less clearly the stages when the new
interests became manifest in Mints’ published works. A “cumulative effect” is obvi-
ous, i.e., the intensive research work helps to master new subjects faster, and on a
deeper level.

During first 3—4 years at LOMI, proof theory, which is to become later the center
of G. E. Mints interests, seems not yet to take a central position. In 1963 the joint
paper (with V. P. Orevkov) “A generalization of the theorems of V. I. Glivenko and
G. Kreisel to a class of formulae of the predicate calculus” is published in DAN [32].
The name of G. Kreisel, who played later a very important role in Mints’ scientific
development, first appears in this early publication. In 1964 a long (54 p.) paper
“On predicate and operator variants of the formation of theories of constructive
mathematics” was published in “Trudy” of the Steklov Institute of Mathematics [33].
It contained main results of Mints’ PhD (“candidate of sciences”) thesis, defended
in 1965.

Until the end of his work at LOMI Mints remained a junior research fellow. With
other members of the Group of Mathematical Logic he often got “bonuses” (i.e.,
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complements to salary) for successful research. Generally speaking, the position of
a junior researcher for a “candidate of sciences” at this time was not something
unusual, though if we take into account the high research activity, typical for Mints,
it seems rather questionable. His promotion to the position of a senior research
fellow was considered only in the last months before he resigned. I discuss this
below.

In 1965 the “Nauka” editions published the joint work that partly reflected the
collective efforts of Logic Group in the development of an algorithm for automated
proof search [5]. According to Mints annual reports, he participated in the de-
velopment of the program modules that concerned classical propositional calculus,
classical predicate calculus with functional symbols, and in programming of the
module “extraction” of this algorithm. The program ran on one of the first Soviet
computers “Ural”.

After the defense of his “candidate nauk” (PhD) thesis the scope of G. E. Mints
work quickly expanded. He got into problems related to the central themes of
mathematical logic in the XXth century. At the same time it became clear that its
core was certainly the theory of proofs.

A personal feature of his style was an intense work on translations and surveys,
and detailed comments to these translations and papers written by other researchers,
that often contained the original results.

For example, in 1967 the collection of translations that included classical works in
proof theory (papers by Gentzen, Goédel, Kleene and others), called “Mathematical
theory of logical inference” was published [28]. Mints translated there four papers
and wrote the 39 pages appendix “Herbrand Theorem” [42]. It contains, in partic-
ular, his own results about admissibility of substitution of terms for terms, used to
correct an error in Herbrand’s proof.

The survey [27] (a joint paper with S. Yu. Maslov and V. P. Orevkov) was first
work by Mints to be published abroad.

He wrote several appendices to the Russian translation of Kleene’s “Mathemat-
ical Logic” [13].

In 1974 he published a long paper on the modal logics “The Lewis System and
the System T” as an appendix to the Russian translation of R. Feys’ book on modal
logic [45].

An important survey [48] was published in 1975.

The same year a long “educational” paper [16] (the already mentioned joint work
with Kreisel and Simpson) was published in the Springer Lecture Notes.

He wrote several appendices on proof theory to the Russian translation of Bar-
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wise’s “Handbook of Mathematical Logic{%)

Back to the 60es, among other works that illustrate the rapid thematic expan-
sion of Mints’ work, let me mention his papers on modal logic [34], on Skolem’s
method of quantifier elimination [36], on embedding operations |35, and on admis-
sible rules [3§]. His work on Skolem’s method for constructive predicate calculus was
presented at the ICM in Moscow in 1966. (The collective work on machine proof
search was also presented there.)

Until the end of 60s the most important works of Mints were published in the
Proceedings of Steklov Mathematical Institute (MIAN), and the short announce-
ments of important results in “Doklady” of the Academy of Sciences (DAN). In the
end of 60s the requirements for the papers to be published in the LOMI’s own se-
ries, “Zapiski” were changed. The longer papers that contained the full proofs and
a detailed analysis of the problems under consideration could be published.

The simplification of publishing process, according to my experience, in many
cases may be stimulating for research. Since 1967, when the first volume of “Zapiski”
devoted to logic (vol. 4) appeared, until the end of his work at LOMI, almost all
major works written by Mints were published there.

The “Zapiski” in the 60s—80s represented, to my opinion, an interesting example
of a balance between creative research work and the selection process for publication.
The papers were accepted for publication only after a talk at the Logic Seminar. To
be presented, the talk had to be approved, usually on the basis of the short abstract,
by the senior members of the Logic Group@ When the volume was prepared, the
text was read by some colleagues who played the role of referees. It is clear, that
with this method of selection the results strongly depend on the ethical and scientific
level of a research collective, but if it is scientifically and ethically adequate then the
efficiency may be much higher than with “blind” selection methods that are common
nowadays and assume certain level of mutual distrust.

I shall not give below a detailed account of all Mints works of the years that
follow, because they are too numerous to be considered in this paper, but outline
the main directions of his research and speak about some of the most significant
papers.

The main topics that attracted the attention of G. E. Mints when he worked at
LOMI are roughly the following:

First of all, his interest to general problems of proof theory, such as cut elimina-
tion, normalization, behavior of quantifier rules (including Herbrand theorem), never

10Russian translation of “Handbook” was published in 4 volumes, v. 4, “Proof Theory” with
these appendices was published in 1982.
HHere only science mattered, and in this sense Mints of course was one of senior members.
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disappeared. It may be said, that this interest was always present as a background
or at a technical side even when the main theme was different.
Other topics were:

Modal logic

Derived and admissible rules

Infinite derivations and arithmetic

Substructural and categorical logics

Theory of Hilbert’s e-symbol

Modal logic. All Mints’ works on modal logic concern certain proof-theoretical
aspects of modal systems. For example, embedding operations considered in [34]
are the operations that transform the derivations of one system in the derivations
of another. Some other Mints’ papers of this period on modal logic: [37,39, 45,
55]. A connection with provability logics is to be noticed, e.g., in the beginning
of the paper [39] Mints says: “necessity ... is interpreted as provability in classical
propositional calculus’@

Derived and admissible rules. [38/43|. These papers may be seen as important
steps towards the works of V. Rybakov and others, who obtained the criteria of
admissibility of inference rules in large classes of logics (see, e.g., [88]).

Infinite derivations and arithmetic. [41.|47./49,50,57,58]. Probably the most
cited is [50]. The approach proposed by Mints (to consider transfinite derivations
but study them using finitistic means) turned out to be very fruitful for extraction
of constructive content of classical proofs (see, e.g., the recent book [14]).

Substructural and categorical logics. [44,52,56]. As Mints himself explained
in the end of [52], his cut-elimination theorem for relevant logic [44] provided the
substantial part of the normalization proof for the system that he developed for
symmetric monoidal closed categories in [52]. His use of proof theory in these papers
is quite elegant. The reader may see three kinds of logical systems in interaction:
Hilbert-style systems, Gentzen calculi, and natural deduction. They are used to

12The connection between modal logic and provability logic is known since Godel [9], but Mints’
work may be seen as one of the inspirations for future fundamental works on provability logic, for
example, by Artemov [2].
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represent and explore various aspects of categorical structures. It becomes clear
that not just some isolated methods, but the approach of the theory of proofs “as
a whole” has a deep affinity with the theory of categories with structure (closed,
symmetric closed, monoidal closed, symmetric monoidal closed, cartesian closed
categories etc.). No doubt, these works contributed greatly to the development of
categorical logic in its proof-theoretical aspect. These works and their ideas are still
“in circulation”. Let us cite, for example, [14] and [95] (especially Ch. 8).

Theory of Hilbert’s e-symbol. Mints (with Smirnov [92] and Dragalin [6]) ini-
tiated the research on e-symbol in the USSR, though before 1979 he published only
one work on this subject [46]. Mints continued to work actively on the theory of the
g-operator after 1979. His last papers on the e-operator were [82-84]. It is inter-
esting to notice that [46] keeps its actuality, even now. Bruno Woltzenlogel Paleo
who works actually on e-operator (in collaboration with Giselle Reis) stressed its
relevance in e-mail that he sent to me recently [T_ﬂ

As an attentive reader would notice, Mints edited some of the volumes of “Za-
piski” cited above. He was an editor of several books translated from English
(e.g. [13]) and himself translated from English and German. He wrote many ar-
ticles on mathematical logic for the Mathematical Encyclopedia, the Encyclopedia
of Cybernetics, and even for the Great Soviet Encyclopedia (third edition).

I mention this to give a better idea of his “multidirectional” activity.

He was among regular participants of Sergey Maslov’s seminar, also known as
the seminar on the general theory of systems. According to the recollections of Inna
DavydovaE] the seminar started at 1967, and initially the meetings were organized
at the Faculty of Mathematics and Mechanics of the university. Later the seminar
moved to S. Maslov’s home because of the administrative pressure (I had myself an
opportunity to attend it in the end of the 70s — beginning of the 80s).

Mints himself wrote in the foreword to the English edition of [80]:

The intellectual influence of the Maslov family was not restricted, however, to
their scientific achievements. Their home in Leningrad (now St. Petersburg)
was a meeting place of a seminar where talks on social and scientific problems
were presented. One has to feel the gravity of the ideological pressure of a total-
itarian state to appreciate the importance of such a free forum. The emergence
of such seminars seems to be characteristic of intellectual life under oppressive
regimes: recall Zilsel’s seminar in Vienna where Goédel presented in January

136 of October 2015.
'See http://www.mathsoc.spb.ru/pers/maslov. Gennady Davydov and his wife Inna were
friends and colleagues of Mints and Maslov.
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1938 his overview of possibilities for continuing Hilbert’s program. Another
forum for dissident thought in the USSR was provided by a samizdat (unoffi-
cially published) journal “Summa” edited by S. Maslov which was designed as
a review journal for samizdat publications.

Among the speakers were, for example, the philologist Vyacheslav Ivanov, a
Foreign Fellow of British Academy since 1977 and Academician of Russian Academy
of Sciences since 2000, the geneticist Raissa Berg, c¢f. the Columbia University
Archivﬂ, the literary critic and memoirist Lidiya Ginzburg (cf. [7]).

In 1982 Maslov died tragically in a car accident.

In May 1979 the administration of LOMI finally considered Mints as a candidate
for promotion to the position of senior researcher. On May 3 Mints signed an official
request to submit his application, and the director of LOMI, L. D. Faddeev, endorsed
the request. The meeting of the Academic Council of LOMI that had to consider the
candidature was prepared as usual. On May 10 a recommendation was signed by
the chef of Logic Group, N. A. Shanin. On May 25 an official appreciation of Mints
research activity was signed by “troika” (direction, party secretary, and trade-union
secretary). On June 28 the Academic Council of LOMI voted in favor of Mints
candidature: 0 “against”, 17 “for” (all of the present) of 21 members.

I do not know exactly what happened afterwards, but on August 31 Mints sub-
mitted another request, to be discharged from his position from 8 October.

The reasons of this abrupt change are not completely clear. The vote of the
Council of LOMI was not the last step, after all it was only the Leningrad De-
partment of the Mathematical Institute in Moscow (MIAN). The decision had to
be confirmed there, and only after that the director of LOMI might sign the ap-
pointment order. Usually the confirmation came more or less automatically, but not
always.

According to V. P. Orevkov, the direction of MIAN suggested Mints to make a
presentation before the Academic Counsil there, and this was unusual. The general
situation in the Academy of Sciences did not look well, for example, there were
some known cases of antisemitism, and in some of these cases the director of MIAN
I. M. Vinogradov was involved (see, e.g., the following letter of the Academician
S. P. Novikov to one of his colleagues: http://www.mi.ras.ru/~snovikov/pont.
pdf). Mints might learn that his appointment will be blocked at MIAN. He also
might be informed about some external pressure that would make the promotion
virtually impossible (for example, due to his “too extensive” international contacts
not approved by authorities).

http://www.columbia.edu/cu/lweb/archival/collections/1dpd_6761446/
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He would not like to continue as a Junior Researcher in such a circumstance.
At the same time he might be reasonably convinced that, due to the same interna-
tional contacts, he will be able to find a good employment at one of the Western
universitied ]

All colleagues who knew Mints and with whom I had an opportunity to discuss
the events of 1979 (in particular, at Mints’ memorial conference in August 2015)
agree, that Mints asked to be discharged on his own request from LOMI because
he decided to emigrate and wanted to save from blame Shanin, who, as the chef of
Logic Group, would be otherwise held “administratively responsible”. It seems that
the decision to emigrate was taken somewhere between June and August.

It was not possible to emigrate freely from the USSR at this time, and Mints
could not know that his emigration request will be refused by the authorities.

3

If Mints remained at LOMI, he would certainly become my PhD adviser after I
graduated in 1979. In reality it was no more possible. He discussed this question
with Shanin, and Shanin agreed to take me as his PhD student. It turned out,
though, that finally the theme of my PhD thesis (defended in 1984) was essentially
inspired by my graduate work under Mints supervision.

Shanin helped me a lot as far as the presentation of my results was concerned,
advised on formulations that must be satisfactory from constructive point of view,
but did not intervene much in the content.

I had some opportunities to discuss mathematics with Mints. I remember him
to discuss the “Algebra of Proofs” by Szabo [93] and the problem that was called
(I do not remember, already at this time or later) the Mac Lane’s conjecturﬂ He
advised me to write S. Mac Lane about my work. I did, and our correspondence
continued until the mid-90es.

Among other situations, I remember a very unpleasant moment in autumn of
1981 when I was contacted by the KGB who wanted to “ask some questions”. I had
no courage to refuse and was met in a park by a KGB officer in civilian clothes who
did just that: asked questions about correspondence with abroad, about Maslov’s
seminar ... I tried to tell nothing of importance, and in spite of his explicit request to

16T already mentioned M. Gelfond who emigrated in 1978. Another colleague of Mints, V. Lifs-
chitz, who defended his thesis under Shanin’s supervision in 1969, emigrated to the USA in 1976.
Both very quickly found an employment. However I am not sure that I am able to list all possible
reasons.

" The conjecture says that the category of vector spaces is a complete model w.r.t. the axiomatic
theory of Symmetric Monoidal Closed Categories.
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tell nobody, I informed Mints, Maslov and Shanin about this situation, but otherwise
I remember nothing in my behavior to be especially proud of. Luckily for me their
interest dissolved after a couple more meetings, probably they did not have anything
serious in store.

The first half of the 80s, were for Mints a “time of troubles”. He submitted an
emigration request to the authorities an got a refusal. He had problems to find a
job.

Of course his scientific research never completely stopped. Maybe it is a right
place to say that one of his most impressive traits was calm, but almost religious
devotion to science, and he had to find possibilities to do what he considered as his
duty in a new and much less friendly environment.

At the same time there was nothing fanatical in this devotion, there certainly
remained place for social life and human relations. For example after the tragic
death of Sergei Maslov in 1982, Maslov’s daughter Elena and his widow Nina for
many years could count on his unwavering friendshidr_gl

He had some contracts for translation with “Mir” and “Nauka” editions and tried
to keep a usual level of scientific activity due to intense work on translations in spite
of all difficulties and without an appropriate institutional affiliation. In 1981 “Mir”
published the translation of G. Kreisel’s selected papers [18] where Mints translated
about 90 percent of the book. In a short autobiographical note published in [84], for
the period 1979-1985 the collaboration with “Mir” and “Nauka” publishing houses is
mentioned. In 1983 the translations (with Mints as one of translators) of Barwise’s
“Handbook of mathematical logic” [3] and Chang and Lee’s “Symbolic Logic and
Mechanical Theorem Proving” |4] were published. The A. P. Ershov’s archive{l;g] con-
tains the correspondence between Ershov and Mints about the project to translate
H. Barendregt’s “A-calculus”. This project finally was accepted, not without diffi-
culties and delays, and the translation was published by “Mir” in 1985. Still, this
sort of contracts could not give any stability, and would disappear if no adequate
research position would be found.

Some hope of improvement came from his new contacts with Enn Tyugu and
other Estonian scientists. Due to these contacts Mints had temporary invitations
to Tallinn Institute of Cybernetics. The papers [59-62] were published. In 1983 he
was an editor, with Enn Tyugu, of [63]. Joint papers [64,/65] are written for this
collection. He wrote also a contribution (with Enn Tyugu) [66] to the proceedings
of the IIIth Conference “Application of methods of mathematical logic” in Tallinn.

However, how far from natural his situation was, is illustrated by the fact that

18Tt is not only part of my personal recollections, see, e.g., the A. P. Ershov’s archive, http:
//ershov-arc.iis.nsk.su/archive/eaindex.asp, Mints to Ershov, letter of 17 Sept. 1982.
*“See http://ershov-arc.iis.nsk.su/archive/eaindex.asp
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from September 1983 to April 1985 he worked as a Senior Researcher at a comput-
ing center in the institute called Lengipromyasomolprom, that belonged to a large
“holding” of Leningrad meat-processing plants (one of economic experiments of the
late Soviet period

In 1984 Mints helped to invite Saunders Mac Lane, though he of course could
not be his “host” officially. Mac Lane came with his wife Dorothy, who had to use
a wheelchair. As Mac Lane wrote:

In September 1984 we made another successful trip with the wheelchair, this
time to Moscow, Leningrad and Helsinki. The occasion was an international
conference and analysis to celebrate the anniversary of the Steklov Institute,
the mathematical institute of the Soviet Academy of Sciences. [23, p. 303]

In Leningrad Mints himself was a principal “guide” to Saunders and Dorothy.
By grace of him, I had an opportunity to meet Mac Lane and discuss mathematics.
I remember also how all of us visited the Alexander Nevsky Monastery and its
historical necropolis, where Leonard Euler was buried.

After the death of Brezhnev in November 1982 the USSR entered the period of
rapid political changes, though it was difficult to see at the beginning how far the
changes will go.

In a quick succession Andropov, and after his death Chernenko, took office of the
Communist Party’s General Secretary. Chernenko in his turn died in March 1985.

I remember the dinner after the defence of the PhD (“candidate nauk”) thesis by
Valentine Shehtman. Shehtman was from Moscow, but to organize his defence there
was more difficult, the reasons being far from scientific. He had his viva at LOMI,
and booked in advance for the evening a private room at Metropole restaurant,
one of the oldest and most traditional in Leningrad. It happened that at the same
time the period of mourning because of Chernenko’s death was declared, and the
restaurant was unusually quiet.

I remember this as a kind of photograph: Mints, Shanin, Slissenko, Shehtman,
Orevkov, Matiyasevich, Sochylina (the only woman), Ruvim Gurevicﬂ all in rather
somber costumes (pure coincidence, not related to official mourning), all without
ties (not a coincidence - somebody joked then that Shanin took as his students only
those who do not wear a tie). I remember also a general feeling that the times are
changing. They truly did.

20This is confirmed by a document preserved at Tallinn Institute of Cybernetics.

2INot to be confused with Youri Gurevich. I knew Ruvim since my student years at the faculty
of mathematics and mechanics. He was a gifted mathematician, his best known result concerns the
so called Tarski High School Algebra Problem [10]. He emigrated in 1987 and died prematurely in
1989.
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Let me quote again Mac Lane who visited the USSR again in 1987 (this time
Mac Lane went first to Moscow, then to Thilisi in Georgia, to Leningrad and finally
to Estonia, where Mints now worked):

We then made a special trip to Thilisi, Georgia, which was then still part of
Soviet Union. But discontent over the political system was in the air ... From
Leningrad we continued to Estonia, where I gave a talk at the Institute of
Cybernetics in Tallinn and we were again greeted warmly by colleagues, both
in Tallinn and at the University of Tartu. In Estonia too, we were much aware
of the limits of freedom of speech. However, only a few weeks later glasnost
and big changes took place in the Soviet system. Amazing! Within a few days,
Georgians, Russians, Estonians, all were now allowed to communicate without
fear.( [23], p. 331.)

Since April 1985 Mints was fully employed as a Senior Researcher at the Institute
of Cybernetics of the Estonian Academy of Sciences in Tallinn. I have outlined in
the previous section the main directions of his research in the 60s and the 70s. In
the 80s his main contributions were certainly in the domain of computer science
logic. He participated actively in a pioneering research on structural synthesis of
programs (SSP), the proof-theoretical aspects of structural synthesis being mostly
his responsibility@

If we look today what came out of these studies then we shall see that some
research still continues (see [94], and the bibliography there) but we may have an
impression that the topic remains rather limited. In fact, it would be fair to take
into account the historical context and the role of SSP in this context, because for
proof theoretical methods in computer science the 80s were an early “heroic” period.

The attempts to use computers for proof search and verification started in the
60s, but the 70s and the 80s had seen the first steps to implement the idea that
proofs themselves may have something to do with structuration and execution of
programs. For example, the Prolog language, created in 1972 by A. Colmerauer and
Ph. Roussel, was then a “hot topic” among proof theorists interested in applications.
Another “hot topic” was the Curry-Howard correspondence [11].

In the 1970s R. Milner with his group created at Edinburgh university the ML
programming language, based essentially on the principles of typed A-calculus. In
his paper on LCF (logic for computable functions) Milner wrote:“The connection
between programs and logic is now recognized as a leading topic of research in the
theory of computing.” [29], p.146.

P. Martin-Lof was developing his Type Theory, that plays a central role in many

22Essentially, it is a form of automated synthesis of programs, based on intuitionistic proposi-
tional calculus.
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modern “proof-assistants”. The importance of proof theory in programming was
rapidly increasing.

In a narrow, strictly technical sense, the SSP may seem today a relatively limited
topic but the research and development of the SSP in the 80s and the 90s contributed
a lot to the much greater domain called now formal methods in programming.

The research position in Tallinn that Mints finally got did not diminish the
intensity of his work, but he certainly should feel a relief finding himself again a
member of a highly motivated research group, and in a more adequate status than
before. One may be not particularly interested in career-making, promotions and
honors, but still feel sharply that your work is not properly appreciated.

At Mints’ Memorial Conference in St. Petersburg, V. Lifshitﬂ mentioned that
Mints was sometimes nicknamed a “minister of information’24 Estonia in Soviet
times was in many ways closer to the West than the rest of the Soviet Union,
including better possibilities of scientific exchange, and this also should look for him
as an improvement.

In 1986 Estonia was the venue of the IVth All-Union conference “Application of
methods of mathematical logic”. Mints was one of its organizers, and edited (with
P. Lorents) the proceedings [70].

The trip to Tallinn by train from Leningrad took only 6 hours. Many Leningrad
residents enjoyed the visits to Estonian capital, especially to its historical center, an
almost intact medieval city. The previous, IIIrd conference “Applications of methods
of mathematical logic” in 1983, happened on the mainland, we were staying at the
Olympic village in the Tallinn neighbourhood called Pirita, and often visited the
city center.

This time the organizers had a more exotic plan. Its mere possibility seems to
be a sign of changing times. A modest cruise ship that belonged to the Estonian
Maritime Rescue was somewhat contracted, and the participants went from Tallinn
to the Saaremaa island (part of the Estonian SSR). We stayed on the ship, but
the conference meetings were organized at the Kuressaare Castle, a former bishop’s
stronghold.

Since 1986, after a long pause, Mints’ papers were again published in interna-
tional journals, for example rapidly appeared [71.|74-77].

In 1988 he was one of the organizers of COLOG-88, an international conference
on computer science logic in Tallinn. With Per Martin-Lof he edited the proceedings

Z1ike Mints, he defended his PhD thesis at LOMI (with Shanin as adviser). He emigrated in
1976 and is now professor at the University of Texas at Austin.

24By the way, Mints wrote reviews for “Zentralblatt”, “Mathematical Reviews” etc. since 1973.
The total number of his reviews in “Zentralblatt” database is now 474. About 150 were written
when he worked in Estonia (and about 15 before).
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of this conference [72|. He also published a long paper there [73].

The early 80s were difficult years, and had some profound personal consequences
for Mints. They marked the end of his first marriage, because his first family fi-
nally decided not to emigrate. Later, when he moved to Estonia, they remained in
Leningrad, that since 1991 is again called St. Petersburg.

I remember my meeting with Grigori and his second wife, Marianna, in Tallinn.
It was probably during COLOG-88 or in 1989. Before the fall of the USSR, I visited
the Institute of Cybernetics a few more times. One evening Mints invited me to his
home, a kind of studio in some academic residence, the type doctoral students or
post-docs might have. As far as I remember, it was stuff with scientific literature.
We had some tea there surrounded by the bookshelves.

Mints probably still had plans to emigrate, but they could not be definite. In
1989 he defended his Dr. Sci. thesiﬁ titled “Transformations of Proofs and Program
Synthesis”. The defense took place at the Leningrad State University on April 26,
1989. In November 1989, he was promoted to the position of leading (or principal)
researcher at the Tallinn Institute of Cybernetics.

In 1987 the borders started to open, and we could now easily go to the places
that would seem impossible a few years ago. In fact, in the summer 1989, I was able
to attend the ASL Logic Colloquium in West Berlin, just three months before the
fall of the Berlin Wall. In 1990 I visited Mac Lane at the University of Chicago, and
attended the Logic Colloquium ’90 in Helsinki.

Mints was one of the invited speakers at both the Logic Colloquium 89 and the
Logic Colloquium ’90. In Helsinki it was probably the last time we met each other
as Soviet citizens.

He was now in his element, at ease as a member of the top-level international
scientific community that does not think much about borders. Of course, nothing
was definitely settled yet in the ordinary, more mundane aspects of a scientist’s life.

Enn Tyugu remembers:

We visited Stanford for three months in spring of 1990. He was proposed to be a
lecturer of logic instead of Barwise who took his sabbatical, I guess, in the same
autumn. He impressed the Stanford people so much that he got the permanent
professorship there, moved to Stanford and left our institute in August 1991@

It seems symbolic that one of the Mints’ last papers that Mints had published
when the Soviet Union still existed was a survey on proof theory in the USSR [78].

ZThe degree that still exists in Russia, and is considered to be higher than PhD It may be com-
pared to state doctorate that existed in many European countries until recently, and to habilitation
that exists now.

26F-mail to the author, March 24, 2016.
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I was never able to visit Mints when he worked at Stanford there (1991-2014),

though I did see him many times on other occasions. Let this period be the subject
of another paper.
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Abstract

The author remembers his meetings and discussions with a remarkable
mathematician and logician Grigori (Grisha) Mints.

I remember Grisha Mints when he was still a student. He entered the Faculty of
Mathematics and Mechanics (“math-mech”) of Leningrad State University when
I graduated (1956), and while I was a doctoral student (since 1958) I met him
sometimes. In fact, his closest friend — Sergey Maslov — a future renowned logician,
attended, when he was in his terminal class at school, a mathematical seminar
organized at math-mech for the school children, where I was a tutor during a whole
year. So when I met him at the faculty, he usually was with Grisha, they were
inseparable. And they both, rather early, have selected mathematical logic as their
specialty. They both were among the best students of their promotion. By this
reason, and also because the Spring of 1956 was the high time of the Khrushchev
liberal “thaw”, their scientific adviser N. A. Shanin, himself one of the principal
followers of A. A. Markov (Jr.), could persuade the administration of the Academy
of Sciences that both have to be taken to the post-graduate school at the Leningrad
Department of the Steklov mathematical institute (LOMI). Note, that in Soviet
times, when the director of the Mathematical institute (MIAN in Moscow) was
I. M. Vinogradov, a notorious antisemite, for a Jew (as Mints) or half-Jew (as
Maslov) to be taken as a post-graduate was a rare exception, even more so to be
taken as a staff memberﬂ Their successive research, activity, openness for human

The author would like to thank Sergei Soloviev for the English translation.

!There were only a few Jews — members of the MIAN — Mathematical Institute of Russian
Academy of Sciences (Moscow and Lenigrad Department as well) during the long directorship of
Vinogradov. The exceptions were, of course, admitted by Vinogradov himself for some reason.
On rare occasions he yielded to the lengthy appeal of some well-known mathematicians such as
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contact, helped their adviser N. A. Shanin to take them first as post-graduates and
later as staff members.

Together with other young colleagues, they organized the research group that
they called with a provocative irony “TREPLQO”. In Russian, it was an abbreviation
for “Teoretichestkaya Razrabotka Evristicheskogo Poiska Logicheskih Obosnovanii”
(“Theoretical Development of Heuristic Search of Logical Justifications”). This ab-
breviation sounded almost like “windbag” in Russian.

The plans were magnificent: to develop a mathematical theory of the machine
proof of mathematical statements. To my knowledge, this aim is not yet reached,
but there were surely some achievements; the role of Mints in this group was very
significant. In the end of the 60s, N. A. Shanin delivered at the meetings of the
Leningrad mathematical society a series of talks that presented the work of the
group. Later, in the 70s, I invited the logicians (S. Maslov, and Yu. Matiyasevich)
to my seminar in order to give talks about their work. I remember particularly the
talk by G. Mints: he spoke about the recent result of L. Harrington [2] concerning
the possible abnormal growth of the lower bound in the classical Ramsey problem.
Afterwards we often discussed with him this and other themes.

To describe him as a mathematician, I have to say that he had a very broad
interest in mathematics, including group theory, theory of dynamic systems, and
functional analysis. He strived to apply logical methods to these domains and often
obtained new proofs of known results by his methods. This helped to understand
better the mainsprings of the proofs, etc. But new results require more penetration
in a given domain. It was of interest to discuss with him general mathematical
concepts. Grisha was always interested in philosophical aspects of mathematical
theories, and we found there a common ground for many discussions. I remember
our discussions concerning the Burnside type problems, ergodic theorems, concepts
of universality, etc.. For our last meeting he prepared several extracts from Hardy’s
book [I] as comments to my presentation [4] about the connections of mathematics
and its possible applications. I know that he had discussions also with D. K. Faddeev,
Yu. I. Manin, and other well known mathematicians, who were attentive to his
opinions.

In the end of the 60s and the beginning of the 70s, S. Maslov organized at his
home a social and political seminar that had a very large scope, and Grisha was one

A. A. Markov, Yu. V. Linnik, among others, who asked him to accept their successful students. This
happened very rarely and in fact I know that the Director regretted later his giving in to pressure
and tried to “correct” what he considered as “defect”. For example, S. Maslov was discharged
from LOMI in 1970s, as well as Mints who was discharged following his decision to emigrate from
the country. Remember, the outstanding mathematician V. A. Rokhlin was also dismissed from
Moscow MIAN. This situation changed only after the end of Vinogradov’s ditrectorship of MIAN.

842



ABOUT GRISHA MINTS

of its participants. When Mints decided to emigrate, he naturally had, as always at
that time, the unpleasant consequences at the institute, and had to quit, because,
moreover, he became a “refuznik”. Soon he moved to Tallinn, where quickly, and
apparently, successfully got a new position, learned Estonian, found his place and
even doctoral students.

Later he moved to the USA and obtained a chair at Stanford. His predecessor
there was J. Barwise, with whom he had common interests, and who moved to
Indiana University. I met him more than once, and visited his home when I was in
the States, that is, Berkeley and Stanford (after 1990). With him I sent to the USA
in 1990 the copies of all the issues of our illegal (in Soviet times) journal of social
and political surveys “Summa” that was edited by Maslov, and where I actively
participated (in the end of the 70s and the beginning of the 80s). When I visited
Berkeley I donated these typed copies of “Summa” to the Slavic department in
Bankroft library at UC Berkeley, where they may be consulted now. All the issues
where collected in one volume called “‘Summa’ for free thought” and published in
2002 by the “Zvezda” publishing house at St. Petersburg [3].

According to my observations, G. Mints in the States worked fruitfully and
became an active participant of mathematical events. He came many times to
his native St. Petersburg where he had many colleagues and friends and where
he participated in organization and the work of various conferences.

In my memory, he remained as a thoughtful, modest and witty man, far from
indifferent not only to science, in particular mathematics and logic, but to all aspects
of the complex modern life.

His premature and sudden demise is very saddening.
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Abstract

Kant considers his Critique of Pure Reason to be founded on the act of
judging and the different forms of judgement, hence, take pride of place in his
argumentation. The consensus view is that this aspect of the Critique of Pure
Reason is a failure because Kant’s logic is far too weak to bear such a weight.
Here we show that the consensus view is mistaken and that Kant’s logic should
be identified with geometric logic, a fragment of intuitionistic logic of great
foundational significance.

1 Preview

Below the reader will find a condensed revisionist account of Kant’s so-called ‘general
logic’, usually thought to be substandard, even when compared with the traditional
logic of his day [4][| Ultimately our interest is in the formalisation of Kant’s ‘tran-
scendental logic’ (for which see [1]), but since transcendental logic takes its starting

The paper was originally presented at the conference “Philosophy, Mathematics, Linguistics: As-
pects of Interaction 2012”7 (PhMIL-2012), held on May 22-25, 2012 at the Euler International
Mathematical Institute, St. Petersburg. We are grateful to the referees for insightful comments.

'Not to mention the scathing verdicts from the standpoint of modern logic which we take to
have started with Frege and Strawson.
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point in the judgement forms listed in the Table of Judgement (most of which have
their origin in general logic) we must take a close look at the actual logical forms
of these judgements. The result of this investigation is that Kant’s general logic is
not monadic, not finitary, not classical, and perhaps linear rather than intuitionis-
tic. We will here not elaborate on the last point?] but we will restrict ourselves to
stating a completeness theorem identifying Kant’s general logic with a fragment of
intuitionistic logic.

2 Validity in general logic

The key to any insightful formalisation of Kant’s logic is the observation that judge-
ments in Kant’s sense participate in two kinds of logics: general logic and transcen-
dental logic. Here is how Kant introduces ‘general logic’ in the first Critique [7]:

[Gleneral logic abstracts from all the contents of the cognition of the understand-
ing and of the difference of its objects, and has to do with nothing (A55-6/B80)
but the mere form of thinking. (A54/B78)

And later, with a slightly different emphasis:

General logic abstracts [...] from all content of cognition, i.e. from any rela-
tion of it to the object, and considers only the logical form in the relation of
cognitions to one another, i.e. the form of thinking in general. (A55/B79)

So what is the ‘mere form of thinking’?
The first two paragraphs of the Jasche Logik [5] marvel at the fact that all of
nature, including ourselves, is bound by rules. It continues:

Like all our powers, the understanding is bound in its actions to rules [...]
Indeed, the understanding is to be regarded in general as the source and the
faculty for thinking rules in general [...] [T]he understanding is the faculty for
thinking, i.e. for bringing the representations of the senses under rules.

From this it derives a characterisation of logic:

Since the understanding is the source of rules, the question is thus, according
to what rules does it itself operate? [...] If we now put aside all cognition
that we have to borrow from objects and merely reflect on the use just of
the understanding, we discover those of its rules which are necessary without
qualification, for any purpose and without regard to any particular objects,
because without them we would not think at all. [...] [T]his science of the

2Grigori Mints was planning on studying the connection between Kant’s disjunctive judgement
and multiplicative linear logic.
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necessary laws of the understanding and of reason in general, or what is one
and the same, of the mere form of thought as such, we call logic. [5, pp. 527-8]
(cf. also A52/B76)

To appreciate the real import of this passage, one must resist the temptation to
consider logic as consisting of a motley set of inference rules, such as modus ponens
and syllogistic inferences, even though the Jdsche Logik will later list these too. Two
definitions are pertinent here:

§58 A rule is an assertion under a universal condition. [5, p. 615]

Here it is important to bear in mind Kant’s notion of universal representation as
‘a representation of what is common in several objects’ [5, §1, p. 589]. A rule is,
therefore, applicable to a domain of indefinite extension.
The second definition is that of an inference of reason:
§56 An inference of reason is the cognition of the necessity of a proposition

through the subsumption of its condition under a given universal rule. [5,
p. 614]

At this point we will not yet provide an elaborate explanation of the notion of
‘condition’, but the reader is invited to take modus ponens as a concrete example. We
then have the following sequence of ideas: (i) the understanding operates according
to rules, (ii) the understanding’s operations are necessary insofar as they pertain
to the formal features of rules, and (iii) the most general formal principle is rule-
application (or rule composition — as we shall see the distinction was not always
made in those days). Thus Kant’s logic has a general and constructive definition of
validity, a consequence of the meaning of ‘rule’. The Jédsche Logik will give concrete
instances of this most general principle, such as modus ponens, but the full force of
the principle will only become apparent when we come to discuss the true logical
form of Kant’s ‘judgements’. We must note here that the general inference principle
limits logic to judgements that can be seen as rules. We view Kant’s emphasis on
rules and their structural properties as marking the ‘formal’ character of his general
logic. The definition of validity just given should be contrasted with the Bolzano-
Tarski definition of validity: ‘an argument is valid if its conclusion is true whenever
its premises are’ — for in this part of Kant’s logic (what he calls ‘general logic’) there
is no truth yet, there are only rules. A different kind of logic, ‘transcendental logic’
will introduce truth.

3 Three definitions of judgement and a Table ...

Any modern logic textbook makes a strict separation between syntax, semantics and
consequence relation, and makes no reference at all to psychological processes that
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may be involved in a concrete case of asserting a syntactically well-formed sentence.
These processes are studied in psycholinguistics, and start from the assumption that
there are specific syntactic and semantic binding processes at work in the brain. For
logical theorising such psycholinguistic approaches are deemed to be irrelevant. For
Kant they are in fact of the essence, and his definitions of judgement also contain a
cognitive component.

But the reader trying to piece together Kant’s views on logic may be forgiven
a sense of bewilderment when she finds not one but three seemingly very different
definitions of ‘judgement’, none of which specifies a syntactic form, together with a
‘Table of Judgement’ which specifies some syntactic forms (for example, categorical,
hypothetical, disjunctive, with various other subdivisions), without an indication of
how these forms relate to the three definitions. Lastly, there are the examples of
judgements that Kant uses in various works, whose logical forms do not fit easily in
the Table of Judgement. This looks unpromising material, but we shall show that
Kant’s logic is nevertheless coherent and surprisingly relevant to modern concerns.

Let us begin with the three definitions of judgement:

A judgement is the representation of the unity of the consciousness of various
representations, or the representation of their relation insofar as they constitute
a concept. [5, p. 597]

A judgement is nothing but the manner in which given cognitions are brought
to the objective unity of apperception. That is the aim of the copula is in them:
to distinguish the objective unity of given representations from the subjective
[...] Only in this way does there arise from this relation a judgement, i.e. a
relation that is objectively valid ... ]E| (B141-2)

Judgements, when considered merely as the condition of the unification of rep-
resentations in a consciousness, are rules. (Prol. § 23; see [§])

Even for those unfamiliar with Kant’s technical vocabulary it will be obvious that
‘unity’ plays a central role in all three definitions. These are different ways of saying
that the expressions occurring in a judgement must be bound together so that they
can be simultaneously present to consciousness. The first definition posits unity
simply as a requirement. The second says that unity in a judgement is achieved
if the judgement has ‘relation to an object’. The third definition links unity to the
meaning of a judgement. Just as an example: if for a hypothetical judgement @ —
there exists a rule transforming a proof of @ into a proof of VP, then that judgement

3Where ‘objectively valid’ means ‘having relation to an object’, which is not the same as ‘true
of the object’.
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is unified. If the hypothetical is a truth functional material implication, then an-
tecedent and consequent are independent, hence this is not a unified representation.
The presence of a notion of unity of representation raises three questions: (i) what
has this got to do with formal logic?, (ii) is there a relation between the unity and
the reference to objects occurring in the second definition? and (iii) what is the
relation between unity and the concrete forms of judgement given in the Table of
Judgement?

3.1 Objects, concepts and general logic

Categorical judgements are composed of concepts, and objects ‘fall under’ conceptsﬁ
in a sense hinted at in the following note:

Refi. 3042 Judgement is a cognition of the unity of given concepts: namely,
that B belongs with various other things x, y, z under the same concept A, or
also: that the manifold which is under B also belongs under A, likewise that
the concepts A and B can be represented through a concept B. [9, p. 58]

It appears that both concepts and objects may fall under a given concept C. The
given concept is therefore transitive in the sense that if (concept) M belongs to C
(by being a subconcept) and (object) a belongs under M, then a belongs under C.
Kant uses this semantics for concepts in his ‘principle for categorical inferences of
reason’:

What belongs to the mark of a thing also belongs to the thing itself. [5, p. 617]

The next note supplies more information about these objects ‘in the logical sense’ (so
called because they make a cameo appearance in the section ‘The logical employment
of the understanding’ (A68-9/B93)).

Refi. 4634 We know any object only through predicates that we can say or think
of it. Prior to that, whatever representations are found in us are to be counted
only as materials for cognition but not as cognition. Hence an object is only a
something in general that we think through certain predicates that constitute
its concept. In every judgment, accordingly, there are two predicates that we
compare with one another, of which one, which comprises the given cognition
of the object, is the logical subject, and the other, which is to be compared
with the first, is called the logical predicate. If I say: a body is divisible, this
means the same as: Something x, which I cognize under the predicates that
together comprise the concept of a body, I also think through the predicate of
divisibility. [9, p. 149]

4Kant also uses the phrases ‘object a belongs under concept C’ and ‘C belongs to a’.
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What this Reflexion tells us is that an object is generic (or most general) for the
‘predicates that constitute its concept’, and that the quantifier ‘something x’ ranges
over such generic objects only.

The same idea is prominent in the section of CPR entitled ‘On the logical use of
the understanding in general’:

[T]he understanding can make no other use of concepts than that of judging by
means of them. Since no representation pertains the object immediately except
intuition alone, a concept is thus never immediately related to an object, but is
always related to some other representation of it (whether that be an intuition
or itself already a concept). Judgement is therefore the mediate cognition of an
object, hence the representation of a representation of it. (A68/B93)

An object is therefore rather like what logicians call a type: i.e. a setﬂ p(x) of
formulas containing at least the free variable x;ﬁ free variables not identical to x can
be replaced by formal parameters representing objects, hence specified by a type. As
an example, consider the predicate ‘body’ and the type x is a massive body which
orbits star y’ — which can be used to defined the predicate ‘planet’, by existential
quantification over y or by replacing y by a formal parameter (representing the Sun,
say). Let T be the theory of the relevant concepts. If M is a concept, we say that
M(x) belongs to p(x) if Typ(x) F M(x). For example, if T contains

Vx(A(x) A3yB(x,y) — M(x)),

then p(x) = {A(x),3yB(x,y)} belongs to M(x). It is technically convenient to in-
troduce suitable constants witnessing a type: if p(x) is a (consistent) type, let a,
be a new constant satisfying p(ap)ﬂ These constants correspond to the ‘objects in
general’ that we encountered in Reflezion 4634. One may then view p(x) and a,
as determining the same object; and in this formal sense we have that M belongs to
ap.

The next question to consider is whether Kant’s theory of concepts puts a bound
on the complexity of concepts, i.e. the complexity of the types belonging under the
concept. The p(x) given in the previous paragraph can be viewed as a single positive
primitive formulas:

Definition 1. A formula is positive primitive if it is constructed from atomic for-
mulas using only V, (infinite) \/,/\, 3, L.

5In our context a finite set.
SRelations enter Kant’s logic especially in connection with the hypothetical judgement (see sec-
tion; furthermore, as Hodges observed in [4], traditional logic allowed relations in syllogisms.
The constant ap implicitly depends on the parameters and free variables (x excluded) occurring

in p(x).
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Suppose M, P are concepts all of whose subconcepts can be defined using positive
primitive types (equivalently, formulas). The judgement ‘all M are P’ — or in the
language of Reflerion 4634: ‘To everything x, to which M belongs, also P belongs
— may then be expressed as

AV vxp(x) = q(x),

pPEM qEP

which is equivalent to

vx(\/ px) = \/ q(x),

peEM qeP

and this formula satisfies the definition of a geometric implication:

Definition 2. A formula is geometric or a geometric implication if it is of the form
vx(0(x) — P(x)), where 0 and P positive primitive.

As it turns out, Kant’s theories of concepts and of judgements contain the re-
sources to restrict the complexity of p(x) to positive primitive. The reason for this
is that the complexity of the relation ‘M (x) belongs to p(x)’ is at most that of geo-
metric implications. For the proof we must refer the reader to [1]; but a sketch will
be given in section

Geometric logic — the inferential relationships between geometric formulas — is
therefore naturally suggested by Kant’s theory of concepts. We will see that the
logical form of Kant’s own examples of judgements (in so far as they are ‘objectively
valid’ (see section ) is that of geometric implications. As a consequence, we can
show by means of ‘dynamical proofs’ of geometric implications that judgements can
be viewed as rules:

Judgements, when considered merely as the condition of the unification of rep-
resentations in a consciousness, are rules. (Prol. §23; see [8])

3.2 Unity, objects and transcendental logic

The second characterisation of judgement maintains that if a judgement has a certain
kind of unity (the ‘objective unity of apperception’) then it relates to an object —
has ‘objective validity’ — and can express a truth or falsehood of that object; it
is ‘truth-apt’, in modern terminology. This is the domain of transcendental logic,
which Kant defines as follows:

[...] a science of pure understanding and of the pure cognition of reason, by
means of which we think objects completely a priori. Such a science, which
would determine the origin, the domain, and the objective validity of such
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cognitions, would have to be called transcendental logic since it has to do merely
with the laws of the understanding and reason, but solely insofar as they are
related to objects a priori and not, as in the case of general logic, to empirical
as well as pure cognitions of reason without distinction. (A57/B81-2)

For Kant, perceiving objects about which judgements can be made is an instance
of what would now be called the binding problem: objects are always given as
a ‘manifold’ of parts and features, which have to be bound together through a
process of synthesis. What is very distinctive about Kant’s treatment here is that
the binding that binds expressions in judgement together at the same time binds
parts and features together with a view toward constructing an object out of sensory
material that relates to the judgement. Therefore the binding process, necessary to
bring separately perceived parts and features together, is in the end a complex logical
operation, described by transcendental logic:

Transcendental logic is the expansion of the elements of the pure cognition of
the understanding and the principles without which no object can be thought at
all (which is at the same time a logic of truth). For no cognition can contradict
it without at the same time losing all content, i.e. all relation to any object,
hence all truth. (A62-3/B87)

In the Critique, transcendental logic is not recognisably presented as a logic, and it
is commonly thought that it cannot be so presented. The article [1] shows otherwise,
mainly by focussing on the semantics of transcendental logic. There is a vast differ-
ence between the notion of object as it occurs in first order models, and in Kant’s
logic. In the former, objects are mathematical entities supplied by the metatheory,
usually some version of set theory. These objects have no internal structure, at least
not for the purposes of the model theory. Kant’s notions of object, as they occur
in the semantics furnished by transcendental logic, are very different. For instance,
there are ‘objects of experience’, somehow constructed out of sensory material; tran-
scendental logic deals with a priori and completely general principles which govern
the construction of such objects, and relate judgements to objects so that we may
come to speak of true judgements.

3.3 The Table of Judgement (A70/B95)

The three definitions describe judgement either in terms of certain cognitive oper-
ations (‘unity of representations’) or in terms of a function that a judgement has
to perform (establishing ‘relation to an object’). There is no hint of a specific form
of judgement here. We find such hints in the Table of Judgement, but there we do
not find a comparison with definitions of judgement; e.g. the Critique’s definition
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occurs only at (B141-2), way after the Table of Judgement is introduced. This raises
the problem of how we know that the forms proposed in the Table satisfy the three
definitions, and conversely, how for instance the functional characterisation given at
(B141-2) leads to specific forms of judgement.

We now turn to the forms of judgement listed in the Table of Judgement, and
we discuss (some of) the inferences in which these judgements participate, in part
to emphasise the many differences between Kant’s logic and modern logic{ﬂ We will
also comment on the relation between the Table of Judgement and the Table of
Categories (A80/B106), although a full treatment is beyond the scope of this paper.

We will begin our discussion with the title ‘Relation” (A70/B95), where we find

Relation
Categorical
Hypothetical
Disjunctive

3.3.1 Categorical judgements

These are judgements in subject-predicate form, combined with quantifiers and op-
tional negation, which can occur on the copula and on the concepts occurring in the
judgement. The Table of Judgement further specifies categorical judgements with
regard to Quantity and Quality:

Quantity
Universal
Particular
Singular

In the Table of Categories we find a corresponding list of ‘pure concepts of the
understanding’:

Of Quantity
Unity
Plurality
Totality

The precise correspondence between judgement forms and Categories is a matter of
controversy. Here we argue on logical grounds that Kant intended a correspondence
between the universal judgement and Unity, between the particular judgement and
Plurality, and between the singular judgement and Totalityﬂ

8See note 1.
9See Frede and Kriiger [3] for a different correspondence linking the singular judgement and
Unity.
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As explained in section the universal judgement ‘all M are P’, or as Kant
would have it ‘To everything x to which M belongs, also P belongs’, should not be
interpreted as the classical Vx(M(x) — P(x)), but as

v\ pe) =\ g,
PEM qepP
and because the subject is maintained ‘assertorically’, not ‘problematically’, we re-
quire that the types in M do not contain 1. These types are therefore satisfiable —
meaning that the (nonempty) collection of M’s is given as that which the judgement
is about, and the quantifier ‘To everything x’ is restricted to M, not to some universe
of discourse.

The association ‘universality — unity’ is motivated by the fact that in the univer-
sal judgement ‘all M are P’ the predicate P makes no distinctions among the things
falling under the subject M. Relative to P, M can hence be taken as a unit.

The things falling under M form a plurality that is not a unity (with respect to
the predicate P) if there are true particular judgements ‘some M are P’ and ‘some
M are not P’

In an unpublished note about the relation between universal and singular judge-
ment, Kant writes:

Refl. 3068 In the universal concept the sphere [=extension| of a concept is
entirely enclosed in the sphere of another concept; [...] in the singular judge-
ment, a concept that has no sphere at all is consequently merely enclosed as a
part under the sphere of another concept. Thus singular judgements are to be
valued equally with the universal ones, and conversely, a universal judgement
is to be considered a singular judgement with regard to the sphere, much as if
it were only one by itself. [9, p. 62]

Now consider (B111), where we read ‘Thus allness (totality) is nothing other
than plurality considered as a unity [...]’

Taking a plurality M to be a totality involves considering M as a unity, which
means that a pair of judgements ‘some M are P’ and ‘some M are not P’ is replaced
by one of ‘all M are P’ and ‘all M are not P. M is thus totally determined with
respect to the available predicates. Since M cannot be divided using a predicate, this
means that the concept M is used singularly, and hence a universal judgement ‘all
M are P’ can equivalently be regarded as the singular judgement ‘M is P’, whence
the correspondence between the singular judgement and totality.

Quality
Affirmative
Negative
Infinite

854



KaNT’s LoGIic REVISITED

There is no need for our present purposes to dwell extensively on this Category, ex-
cept to say that Kant makes a distinction between sentence negation as in the neg-
ative particular judgement ‘some A are not B’ and predicate negation, represented
by the infinite judgement ‘some A are non-B’; which is affirmative but requires in-
finitary logic for its formalisation: \/gc_g (some A are C). Hence Kant’s logic is not
finitary. The difference with classical first order logic will only increase as we go on.

3.3.2 Hypothetical judgements

It would be a mistake to identify Kant’s hypothetical judgements with a proposi-
tional conditional p — q, let alone material implication as defined by its truth table:
a material implication need not have any rule-like connection between antecedent
and consequent. Here is the definition in the Jdsche Logik:

The matter of hypothetical judgements consists of two judgements that are
connected to each other as ground and consequence. One of these judgements,
which contains the ground, is the antecedent, the other, which is related to it as
consequence, is the consequent, and the representation of this kind of connection
of two judgements to one another for the unity of consciousness is called the
consequentia which constitutes the form of hypothetical judgements. [5, p. 601,

par. 59]7

This definition seems to say that the hypothetical is a propositional connective, and
some of Kant’s examples fall into this category:

If there is perfect justice, then obstinate evil will be punished. (A73/B98)

However, other examples exhibit a more complex structure, involving relations,
variables and binding. In the context of a discussion of the possible temporal rela-
tions between cause and effect Kant writes in CPR:

If T consider a ball that lies on a stuffed pillow and makes a dent in it as a cause,
it is simultaneous with its effect. (A203/B246)

The hypothetical that can be distilled from this passage is:
If a ball lies on a stuffed pillow, it makes a dent in that pillow.

From this we see that (i) the antecedent and consequent need not be closed judge-
ments but may contain variables, and (ii) antecedent and consequent may contain
relations and existential quantifiers.

OHere it is of interest to observe that in the same paragraph consequentia is also used to refer
to an inference.
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We now give an extended quote from the Prolegomena §29 [8] which provides an-
other example of a hypothetical judgement whose logical structure likewise exhibits
the features listed in (i) and (ii) above:

It is, however, possible that in perception a rule of relation will be found, which
says this: that a certain appearance is constantly followed by another (though
not the reverse); and this is a case for me to use a hypothetical judgement and,
e.g., to say: If a body is illuminated by the sun for long enough, it becomes
warm. Here there is of course not yet the necessity of connection, hence not
yet the concept of cause. But I continue on, and say: if the above proposition,
which is merely a subjective connection of perceptions, is to be a proposition of
experience, then it must be regarded as necessarily and universally valid. But
a proposition of this sort would be: The sun through its light is the cause of
the warmth. The foregoing empirical rule is now regarded as a law, and indeed
as valid not merely of appearances, but of them on behalf of a possible experi-
ence, which requires universally and therefore necessarily valid rules [...] the
concept of a cause indicates a condition that in no way attaches to things, but
only to experience, namely that experience can be an objectively valid cogni-
tion of appearances and their sequence in time only insofar as the antecedent
appearance can be connected with the subsequent one according to the rule of
hypothetical judgements. [8, p. 105]

The logical form of the first hypothetical (a ‘judgement of perception’) is something
like:

If x is illuminated by y between time t and time s and s —t > d and the
temperature of x at t is v, then there exists a w > 0 such that the temperature
of xat sisv+wand v+w > c,

where d is the criterion value for ‘long enough’ and ¢ a criterion value for ‘warm’. We
find all the ingredients of polyadic logic here: relations and quantifier alterations.
The causal connection which transforms the judgement into a ‘judgement of expe-
rience’ arises when the existential quantifiers are replaced by explicitly definable
functions.

We now move on to the logical properties of the hypothetical judgement. Here it
is of some importance to note that the term consequentia, characterising the logical
form of the hypothetical, is also used to describe the inferences from the hypothetical:

The consequentia from the ground to the grounded, and from the negation of
the grounded to the negation of the ground, is valid. [5, p. 623]

Furthermore, the negation of a hypothetical is not deﬁnedH This strongly suggests
that the hypothetical judgement is really a license for inferences. Indeed, in the

HNote that the negation of a categorical judgement is defined, although its properties do seem
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Jasche Logik Kant characterises inferences such as modus ponens and modus tollens
as immediate inferences and as such needing only one premise, not two premises [5,
p. 623]. Modern proof systems conceive of modus ponens as a two-premise inference,
p implies q and p, therefore q. But Kant does not think of it in this way. He thinks
of it as an inference with premise p, conclusion q, which is governed by a license
for inference. This strongly suggests that Kant does not have a single entailment
relation, as in modern logicB but only local entailment relations defined by specific
inferences. We end this discussion of the hypothetical judgement with a further
twist: its logical properties change when it is considered in a causal context, i.e. in
transcendental logic:

When the cause has been posited, the effect is posited <posita causa ponitur
effectusy already flows from the above. But when the cause has been cancelled,
the effect is cancelled <sublata causa tollitur effectusy is just as certain; when the
effect has been cancelled, the cause is cancelled <sublato effectu tollitur causa» is
not certain, but rather the causality of the cause is cancelled <tollitur causalitas
causae. [0l p.336-7]

3.3.3 Disjunctive judgements

These are again not what one would think, judgements of the form p V q. The
Jische Logik provides the following definition:

A judgement is disjunctive if the parts of the sphere of a given concept deter-
mine one another in the whole or toward a whole as complements [...] [A]ll
disjunctive judgements represent various judgements as in the community of a
sphere [...] [O]lne member determines every other here only insofar as they
stand together in community as parts of a whole sphere of cognition, outside of
which, in a certain relation, nothing may be thought.(Jasche Logik, §27, 28) [5,
pp. 602-3]

As examples Kant provides:

Every triangle is either right-angled or not right-angled.
A learned man is learned either historically, or in matters of reason.

Thus the logical form is something like Vx(C(x) — A(x)V B(x)), where C represents
the whole, A, B its parts; here it is not immediately clear whether the parts can be
taken to exist outside the context of the whole. But actually the situation is much

to be weaker than classical negation: ‘some A are not B’ is the negation of ‘All A are B’, but it
is a moot point whether the negative particular judgement has existential import. Its infinitive
counterpart does have existential import.

12See Hodges [4] for relevant discussion.
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more complicated. The Jdsche Logik equivocates between concepts and judgements
making up the whole, and this is intentional, as we read in the Vienna Logic:

The disjunctive judgment contains the relation of different judgment insofar as
they are equal, as membra dividentia, to the sphaera of a cognitio divisa. E.g.,
All triangles, as to their angles, are either right-angled or acute or obtuse. I
represent the different members as they are opposed to one another and as,
taken together, they constitute the whole sphaera of the cognitio divisa. This
is in fact nothing other than a logical division, only in the division there does
not need to be a conceptus divisus; instead, it can be a cognitio divisa. E.g., If
this is not the best world, then God was not able or did not want to create a
better one. This is the division of the sphaera of the cognition that is given to
me. [5, p. 374-5]

So it is not just concepts that can be divided in the familiar way, also cognitions
(Erkenntnisse), including judgements, can be so divided. What this means for the
complexity of Kant’s logic can be seen if we look at the expanded example in the
Dohna-Wundlacken Logic:

If this world is not the best, then God either was unfamiliar with a better
[one] or did not wish to create it or could not create [it], etc. Together these
constitute the whole sphaera. [5, p. 498]

It will be instructive to formalise this example. Let wy be the actual world, G a
constant denoting God, let B(wp, w) represent ‘w is a better world than wy, and let
Uf(G,w), Uw(G,w), Uc(G,w) represent: ‘God was unfamiliar with w’, ‘God was
unwilling to create w’ and ‘God was unable to create w’, respectively. We then get
the combined hypothetical-disjunctive judgement:

IwB(wg, w) — Yw(B(wo,w) — (UAG,w) V Uw(G,w) V Uc(G,w))).

It is to be noted that this hypothetical-disjunctive judgement consists entirely of
relations, and that the division is formulated in terms of singular judgements con-
taining a parameter (‘God’) and a variable. As in the case of the hypothetical
judgement, the negation for a disjunctive judgement is not defined, which suggests
that it is actually a license for inferences, using quantified forms of the disjunctive
syllogism, for example:

1. Starting from the premise ‘God is familiar with a better world’ (which is taken
to imply JIw(B(wp,w) A =Uf(G,w))) now introduces the positive primitive
formula Iw(B(wy, w) V (Uw(G,w) V Ua(G,w))).

2. Similarly the premise ‘God is familiar with all better worlds’ yields the formula
Yw(B(wo, w) — (Uw(G,w) V Ua(G,w))).
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Kant evidently believes these inferences are perfectly proper cases of the disjunctive
syllogism, but the present-day reader may well ask whether his general logic has the
resources to break down these inferences in smaller steps. But if the hypothetical
and the disjunctive judgement are licenses for inferences, this means that they can
be taken as given as far as general logic is concerned (much like a Prolog program
is taken as given and is used only to derive atomic facts). This somewhat eases the
burden on general logic, in the sense that it need not have the resources to prove
hypothetical and disjunctive judgements.

As we did for the hypothetical judgement, we will also look at the intended
transcendental use of the disjunctive judgement:

The same procedure of the understanding when it represents to itself the sphere
of a divided concept, it also observes in thinking of a thing as divisible; and
just as in the first case the members of the division exclude each other, and yet
are connected in one sphere, so in the latter case the understanding represents
to itself the parts of the latter as being such that existence pertains to each of
them (as substances) exclusively of the others, even while they are combined
together in one whole. (B113)

The disjunctive judgement is said to involve the cognitive act of dividing a thing,
while keeping the resulting parts simultaneously active in one representation. Here
we are concerned with the logical principles that Kant’s disjunction satisfies. Kant
gives as inferences valid for a disjunctive judgement C — AV B, the two halves of
the so-called disjunctive syllogism:

C and —A implies B
C and A implies —B.

These inference rules are considerably weaker than those that are valid for the clas-
sical or intuitionistic disjunction, and remind one of the multiplicative disjunction
of linear logic. Can one impose stronger inference rules on the disjunction? That is
doubtful. For example, the standard right disjunction rule in sequent calculus:

= AA
I'= AVB,A
is invalid for Kant, because it allows the addition of an arbitrary B to A, without
the guarantee that A, B constitute a whole.

An additional consideration is the connection with divisibility; here the parts
must be present simultaneously, which is what the rule just given expresses. This
formulation lends some credibility to Kant’s association of the disjunctive judgement
with the category of simultaneity in the third Analogy of Experience. However, the
new formulation raises the issue of what one should say if A and B are identical. Kant

859



T. ACHOURIOTI AND M. VAN LAMBALGEN

makes an important distinction between two kinds of identity in ‘On the amphiboly
of concepts of reflection’:

If an object is presented to us several times, but always with the same inner
determinations, then it is always exactly the same if it counts as an object of
pure understanding, not many but only one thing; but if it is appearance, then
[...] however identical everything may be in regard to [concepts], the difference
of the places of these appearances at the same time is still an adequate ground
for the numerical difference of the object (of the senses) itself. Thus, in the
case of two drops of water one can completely abstract from all inner difference
(of quality and quantity), and it is enough that they be intuited in different
places at the same time for them to be held to be numerically different. (A263-
4/B319-20)

Suppose one has a ‘whole’ that is divided into spatially distinct parts that have ‘the
same inner determinations’. This hypothetical situation suggests that a logic for
Kant’s disjunction does not include a rule for (right) contraction:

= AAA
= AA
But in that case also the standard rule for left disjunction introduction:

LA= A NB=A
NAVB=A

must be dropped because otherwise right contraction becomes derivable. Instead,
one would have a rule like:

LA=A LB=A
LAVB=AA

3.4 Logical form of judgements

Looking back at our examples we see that, with one exception (the negative particu-
lar judgement, which, as discussed in [1] was meant by Kant to be purely negative),
they are all geometric judgements. Geometric logic, i.e. the logic of geometric formu-
las, plays an important role in several branches of mathematics, Euclidean geometry
being one but not the only example. More germane to our purposes is a result in
[1], which shows that all objectively valid judgements in the sense of (B141-2) must
be finite conjunctions of geometric implications.
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3.5 ‘Functions of unity in judgements’: dynamical proofs

In a dynamical proof one takes a geometric theory[lgl as defining a consequence
relation holding between two sets of facts. An example, taken from Coquand [2],
illustrates the idea. The theory is{'¥]

1. P(x) A U(x) — Q(x) V JyR(x,y)
2. P(x) A Q(x) — L

3. P(x) A R(x,y) = S(x)

4. P(x) A T(x) = Ux)

5. UX) A S(x) — VX))V Qx)

And here is an example of a derivation of V(ag) from P(ag), T(ap):

We give some comments on the derivation. The dynamical proof just given can
also be taken to prove Vx(P(x) AT(x) — V(x)), where the proof is the link between
antecedent and consequent, hence a ‘function of unity’. Furthermore, the geometric
theory defines the consequence relation, hence the geometric implications occurring
in it can be seen as inference rules. Disjunctions lead to branching of the tree, as we
see in (1) and (5). The existential quantifier in formula (1) introduces a new term
in the proof, here a;, which appears in the right branch of (1). This constant is
the ‘object in general’ of Reflexion 4634. Lastly, a fact is derivable if it appears on

13We assume the geometric implications in the theory have antecedents consisting of conjunctions
of atomic formulas only.
1YWe omit the universal quantifiers.
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every branch not marked by L, which leaves V(ap). If X is a collection of facts whose
terms are collected in I, F a fact with terms in I, and T a geometric theory, then
there exists a dynamical proof of F from X if and only if T, X F F in intuitionistic
logic.

It is clear how a dynamical proof of a geometric implication from a geometric
theory proceeds: if T is the geometric theory and Vx(t(x) — 6(X)) the geometric
implication (T is a conjunction of atomic formulas, and for simplicity take 0 an ex-
istentially quantified conjunction 8’ of atomic formulas; we interpret 8 as a set),
choose new terms not occurring in either T or Vx(t(x) — (X)), plug these terms
into T and construct a dynamical proof tree with the sets 6’ at the leaves. There
may occur terms in 0 not in T; these have to be quantified existentially. Introduce
any other existential quantifiers on 0’ as required by 6. The result is an intuition-
istic derivation of Vx(t(x) — 0(x)) from T. Conversely, if there is an intuitionistic
derivation of Vx(t(x) — 0(x)) from T, then there exists a dynamical proof in the
sense just sketched.

Dynamical proofs as a semantics for geometric implications can explain Kant’s
characterisation of judgements as rules, as well as ‘a unity of the consciousness of
various representations’; after all, the diagram represents ‘unity’ as a single spatial
representation. What remains to be done is to situate a judgement’s ‘objective
validity’ relative to its other properties.

4 Completeness of the Table of Judgement

In [1] it is argued that (i) Kant’s implied semantics for logic is radically different from
that of classical first order logic, (ii) the implied semantics, centered around Kant’s
three different notions of object, can be given a precise mathematical expression,
thus leading to a formalised transcendental logic, and (iii) on the proposed semantics,
Kant’s formal logic turns out to be geometric logic.

It is not appropriate to repeat the technical exposition here, so we will follow a
different strategy starting from Kant’s most fundamental characterisation of judge-
ment:

A judgement is nothing but the manner in which given cognitions are brought
to the objective unity of apperception. (B141)

A judgement is the act of binding together mental representations; this is what the
term ‘unity’ refers to. The aim of judgement is indicated by means of the word
‘objective’, which is Kant’s terminology for ‘having relation to an object’. But for
Kant, objects are not found in experience, but they are constructed (‘synthesised’)
from sensory matter under the guidance of the Categories, which are defined as
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‘concepts of an object in general, by means of which the intuition of an object
is regarded as determined in respect of one of the logical functions of judgement’
(B128). It is here that judgement plays an all-important role, since Kant’s idea is
that objects are synthesised through the act of making judgements about them.

Technically, these acts of synthesis are modelled as a kind of possible worlds
structure (an ‘inverse system’), where the possible worlds are finite first order models
whose elements are partially synthesised objects, except for the unique top-world
(the ‘inverse limit’) which represents (the idea of) fully synthesised objects. Bringing
a (formal) judgement @ to the ‘objective unity of apperception’ is now characterised
by the property: for any such possible worlds structure, if ¢ is true on all worlds,
then ¢ is also true on the top-world. That is to say, if ¢ is true for all stages of
synthesis of an object, then @ is true of some fully synthesised object. Kant calls
judgements @ satisfying this conditional property ‘objectively valid. It turns out
that the objectively valid formulas are exactly the geometric formulas. It follows
that no judgement whose logical form is more complex than that allowed by the
Table of Judgement can be objectively valid, i.e. this Table is complete.

It is of some interest that the key idea in the proof sheds light on Kant’s logical
reinterpretation of the Categories of Quantity as constraints on concepts (B113-6):

In every cognition of an object there is, namely, unity of the concept, which
one can call qualitative unity insofar as by that only the unity of the compre-
hension of the manifold of cognition is thought, as, say, the unity of the theme
in a play, a speech, or a fable. Second, truth in respect of the consequences.
The more true consequences from a given concept, the more indication of its
objective reality. One could call this the qualitative plurality of the marks
that belong to a concept as a common ground ... Third, finally, perfection,
which consists in plurality conversely being traced back to the unity of the con-
cept, and agreeing completely with this one and no other one, which one can
call qualitative completeness (totality).

The phrase ‘unity of the theme in a play’ is probably a reference to Aristotle’s ‘unity
of action’ in tragedy, where

the structural union of the parts [must be] such that, if any one of them is
displaced or removed, the whole will be disjointed and disturbed. For a thing
whose presence or absence makes no visible difference, is not an organic part of
the whole (Poetics, VIII).

Hence we read ‘qualitative unity’ as the requirement that the concept under consid-
eration is integrated with other concepts by means of a theory, and is invariant under
structure-preserving mappings (homomorphisms). The latter requirement forces all
subconcepts of the given concept to have the same logical complexity. We are now
in a position to spell out the logical meaning of B113-6 in formal terms.
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Let C be a concept which satisfies ‘qualitative unity’ and let T be the first order
theory witnessing ‘qualitative unity’. Define a ‘qualitative plurality’ £ by

Y(x)={0(x) | TEVx(C(x) — 6(x)),0 pos. prim.}.

Because we may have, for each 0, ‘some 0 aren’t C’, for all we know X could be a
proper plurality. But ‘qualitative completeness’ now becomes provable:

L(x), Tk Cx),
hence by compactness there is positive primitive T(x) such that
T E Vx(t(x) <« C(x)).

It follows that, as announced in section 3.1, universal judgements ‘all M are P’ can be
expressed as geometric implications, provided the concepts M, P satisfy ‘qualitative
unity’.

In summary, we have shown that after formalisation, Kant’s general logic turns
out to be at least as rich as geometric logic, while it coincides with it when taking into
account the semantics of judgements dictated by ‘transcendental logic’FE] This latter
result is but one example of interesting metalogical theorems that may be proved
about Kant’s logic; B113-6, formally reinterpreted as a theorem about definability
of concepts, is another.
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Abstract

This paper presents a result based on the joint project with Grisha Mints.
An ordinal-free proof of the complete cut-elimination theorem for I1}-C A + BI
with the w-rule for (not only arithmetical) but arbitrary sequents is presented
by iterating an extension of Buchholz’ Q-rule by the author and Mints.

1 Introduction

Takeuti showed the consistency of ITI{-C' Ay by proving a partial cut-elimination the-
orem for it in 1958 |19]|1_1 In 1970, Tait gave a constructive proof of the consistency of
33-DC (dependent choice) [18]. After these works, logicians of Feferman-Schiitte’s
school including Buchholz, Pohlers, Jager,... have developed proof-theoretic methods
for impredicative systems in perspicuous ways. In particular, they have developed
infinitary proof theory while Takeuti had worked only on finitary proof figures as
Gentzen.

Here, one should mention Grisha Mints’ pioneering contribution to connect these
different ways of proof-theory [10]. In particular, he proposed a way of enriching
infinitary derivations by finite ones. This line of investigation has been developed
further by Buchholz [5-7] by showing that there is a precise correspondence between
finitary proof theory and infinitary one. Also, Mints proposed a general schema of
proving the normalization theorem for a finitary system using one of the correspond-
ing infinitary system [12].

*This work was partially supported by KAKENHI 16K16690.
! Although he also proved the consistency of II{-C A + BI in 1967 20|, the highlight among
Takeuti’s consistency results would be this earlier paper [19].
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Going back to the history of proof theory, Rathjen and Arai independently ob-
tained ordinal analysis for T13-C'A [2-4,[15H17] in 1990’s, which is much stronger
than any iterations of IT}-C'A. In these results, complicated proof-theoretic ordinal
notation systems have played a crucial role. When a strong impredicative theory
is considered, proof-theoretic ordinals are needed even for defining the derivability
relation of a suitable infinitary system.

In 2000’s, Bill Tait posed a problem whether we can provide an ordinal-free proof
of the complete cut-elimination theorem for IT}-C' A with the w—ruleﬂ Grisha Mints
had had a similar direction to prove the cut-elimination theorem or the termination
of e-substitution method for impredicative theoriesﬂ At that time, I had some
communication with Tait by e-mail. When I asked some questions about his work
on type theory, Tait kindly introduced me to Grisha Mints. We also discussed about
Tait’s problem about an ordinal-free proof of the cut-elimination theorem, and then
Grisha suggested me to work on the joint project to give an affirmative answer to itﬂ
Since Buchholz already gave an ordinal-free proof of a partial cut-elimination for his
Q-rule, we hoped to use this method in some suitable way. Indeed, the joint paper
with Grisha [1] is the first important step for this project; we extended Buchholz’
Q-rule for the lightface case to obtain the complete cut-elimination theorem for (not
only arithmetical but) arbitrary sequents. In this paper, an ordinal-free proof of the
complete cut-elimination theorem for arbitrary derivations of the full I} — C A+ BT
with the w-rule is presented by extending the result of the joint paper E This result
provides another proof of Yasugi’s cut-elimination theorem for the full I} —C A+ BI
with the w-rule using an extension of Takeuti’s ordinal diagrams based on arbitrary
countable ordinals [22].

Finally, the author of the present paper would like to express his deepest grati-
tude to Grisha’s kindness, advice, and support.

2We remark that Girard’s proof published in 1971 of the strong normalization for second-order
polymorphic calculus (System F) is not considered as a solution here. This is because, according to
Tait, such a proof of the cut-elimination must involve only reasoning about well-founded trees like
inductive definitions. For a modern presentation of Girard’s proof, we refer to [9).

3Indeed, Mints gave two different ordinal-free proofs of the termination of e-substitution method
for the theory of non-iterated inductive definition called I.D; [13}14].

40ur joint works had been done mainly by e-mail. I met Grisha in person four times; I met
him for the first time in Munich (2008). After this meeting, I visited to Stanford University twice
(2008, 2010) and invited him to Keio University in Tokyo (2010).

5When I obtained some results concerning this paper, I asked Grisha to become the co-author
of the paper. He declined my offer since much works are done by me according to him, thus I should
become the sole author.
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1.1 Structure of this Paper

The present paper consists of 6 sections. After introducing the basic definitions in
Section 2, we define the infintary systems BIf}, BIZ, | and BI* in Section 3.

In Section 4, we define the operators R (one-step reduction), £ (reducing the cut-
rank by 1), &, (reducing the cut-rank until 0), and D,, (eliminating the impredicative
cuts) on derivations in BI®. Finally, we define the substitution operator S%( .

In Section 5, we introduce Bl,,, which is I1}-C A + BI with the w-rule. To take
care of Takeuti’s explicit/implicit distinction, we introduce another system BI{.

In Section 6, we define an embedding map ¢g* from derivations in BI, into the
derivations in BI. By the theorems obtained so far, our main result is proved.

2 Preliminaries

First, we define a language L for second-order arithmetic and the set PV(A) of
free predicate variables in A which are in the scope of a second-order quantifier.
We adopt Buchholz and Schiitte’s definition in our setting [8] and remark that the
notion of PV (A) is essentially introduced by Takeuti [19,20].

0 is a term. If ¢ is a term, then S(¢) is a term. If R is an n-ary predicate symbol
for an m-ary primitive recursive relation and ti,...,t,, are terms, then R(¢1,...,t,,) is a
formula. If X is unary predicate variable and ¢ is a term, then X (¢) is a formula.
These are atomic formulas. If A is an atomic formula, then —A is a formula. A and
—A where A is atomic are literals. If A is a literal, then PV (A) := (. If A and B
are formulas, then A A B and AV B are formulas. PV(AA B) = PV(AV B) :=
PV(A)uU PV(B). If A(0) is a formula, then VxA(z) and JzA(x) are formulas.
PV (VzA(z)) = PV(3zA(x)) :== PV(A(0)). If A is a formula, then VXA and 3X A
are formulas. PV (VXA) = PV(3XA) :={Y|Y € FV(A) and Y # X}.

As usual, sequents are finite sets of formulas. Moreover, if A is a formula, then
FV(A) is the set of free predicate variables occurring in A. Similarly, if T' is a
sequent, we define FV(I") := Uger FV(A). We use the following syntactic variables:
A, B,CF for formulas, I') A for sequents, and i, j, k,[, m,n for natural numbers.
Next we define the notions of weak and strong formulas as follows. Every literal is
a weak formula. If A and B are weak, then A A B, and AV B are weak. If A(0)
is weak, then VxA(z) and 3xA(x) are weak. If A(X) is weak and X &€ PV (A(X)),
then VX A(X) and 3X A(X) are weak formulas. If A is not weak, then A is strong.
We define PV (T") := Uaer(PV(A4)).

Example 1. 3X(X(¢t) AVYY () is weak, but IX(X(¢t) AVY (X () AY())) is
strong.
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A quantifier in AAB, AV B,VzA(x), 3z A(x) is weak (strong) if the corresponding
quantifier in A, B, A(0) is weak (strong). The indicated quantifier VX or 3X is called
weak (strong) if 3X A or VX A is weak (strong). Any other quantifier in 3X A, VXA
is weak (strong) if the corresponding quantifier in A is weak (strong).

If A is a formula which is not atomic, then its negation —A is defined using
de Morgan’s laws. The set of true literals is denoted by TRUE. T denotes an
expression of the form Az.A(x) called abstraction where A(0) is a formula. If T is
an abstraction of the form Az.A(x), then A[X/T| denotes an expression obtained
by replacing every X (t) occurring in it by A(¢) (after renaming of bound variables
if necessary). An abstraction A\z.A(x) is called arithmetical, weak, or strong if the
corresponding formula A(0) is arithmetical, weak, or strong respectively. Note that
if VXA(X) is a weak formula and T' is a weak abstraction, then A[X/T] is also a
weak formula.

Now, the notion of rk(A) is defined as follows.

rk(A ) =0 if A is a weak formula.

rk(AN B) =rk(AV B) := max(rk(A),rk(B)) + 1 if AA B is strong.

rk(Vz ( ) =rk(3xA(x)) :=rk(A(0)) + 1 if Vo A(z) or 3z A(x) is strong.
rk(VXA(X)) =rk(3XA(X)) :==rk(A(X)) + 1 if YXA(X) or IXA(X) is strong.

Next we define a formal language on which our infinitary systems are defined,
but before introducing this language, we need an intermediate language called L.

Definition 1. The language L€ is obtained from L in the following way: (1) Terms
and formulas of L are also terms and formulas of L¢. (2) If A is a formula of L, then
A° obtained by adding the superscript e is also a formula of L°.

Remark 1. Informally, A€ is a formula in a derivation which is not traced into any
cut-rule in the derivation. Such a formula is called “explicit” by Takeuti [21].

We adopt Buchholz and Schiitte’s ramified language [8] into the present setting
by considering Takeuti’s explicit / implicit distinction.

Definition 2. Language L*
1. The terms of L* are the same as terms of L°.

2. The formulas of L* are obtained by the following replacements from ones of
Le:

(a) Any formula A€ is unchanged,
(b) A formula A without e is replaced in the following way:

i. Every free predicate variable X is replaced by X" for some n € w.
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ii. Every strong predicate quantifier VX, 3X is replaced by VX%, 3 X%,
respectively.

Let A be a formula in L* and let A~ denote the result of deleting all superscripts
e and n in A. We define the rank of A by rk(A) := rk(A™). We define PV (A) :=
PV(A™). Ais called a literal, an arithmetical formula, a weak formula, or a strong
formula if A~ is such a formula. T denotes an abstraction as in L. An abstraction
Ax.A(z) is called arithmetical, weak, or strong if A(0) is arithmetical, weak, or strong
respectively. If A is a formula without e which is not atomic, then its negation = A*
is defined by de Morgan’s laws as before.

Definition 3. Level for L*

1. lev(A®) :=
2. lev(A) :==0if A is a literal, and A # X" (¢t), ~X"(¢t) for some n € w.
3. lev(X"(t)) = lev(=X"(t)) := n.

5. lev(VzA(z)) = lev(FzA(z)) := lev(A(0)).

6. lev(VXA(X)) := lev(A(X?)) if VX A(X) is weak.
7. lev(IXA(X)

(

(

(

4. lev(A A B) = lev(A V B) := maz(lev(A), lev(B)).

(

(

(3X ) = lev(A(X?)) + 1 if IXA(X) is weak.
(

8. lev(VXYA(X)) :=lev(IXYA(X)) = w if VXA(X) or IXA(X) is strong.

Example 2. lev(3X(X(t) AY?(¥))) = 1, lev(3X¥ (X (#) AVY (X (t) AY (H)))) = w.

3 The Systems BIY,BI‘" ,, and BI"

In this section, we introduce the infinitary systems with the €,,41-rules based on L*.
Following Buchholz’ notation from [7], only the minor formulas, and the principal
formulas are shown explicitly in inference symbols. Any rule below is supposed to
be closed under weakening and contains contraction.

If I be an inference symbol, then we write A(I) and |I| to indicate the set of
principal formulas of I and the index set of I, respectively. Moreover, U;¢|y (A (D))
is the set of the minor formulas of I. If d = I(d;);c|7|, then d; is the subderivation
of d indexed by i. I'(d) denotes the end-sequent of d. If I' is a sequent, then
lev(l') := maz(lev(A)|A € T). Eigenvariables of Ayya(x) and Qn41 may occur
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free only in the premises, but not in the conclusion. To denote that Y™ is the
eigenvariable of an inference symbol I, we use the notation !Y"! and write
-Ai(D)

. v
7A(I) ly™!

where i € [I]. We use the same notation for the eigenvariable Y (without superscript
n) of an inference symbol I.

Since we are taking care of the explicit/implicit distinction, there are two rules
deriving A or A€ in the cases of arithmetical rules. For a compact notation, we write
Aldl for a formula A with a possible occurrence of e, that is, for both cases that A
has e and not so. When we write A, Blel there are four possibilities; A, B, A€, B,
A, B¢, or A¢ Bf. For the inference symbols, we use the following notation; if we
write

[e]
I"'Ai
Alel

where ¢ € ||, then we mean that Age] = A¢ if and only if AlYl = A°,

Definition 4. The systems BI{, BI%,; (0 < n), and BI*

1. BI{ consists of the following inference rules.

(Axa) A

where either A = {Al]} € TRUE or A~ = {C,~C} with the condition that

(a) C is an atomic formula in L, and

(b) A~ is the result of deleting all superscripts e and n of D € A.

A([)e] A[le] . AE:]
(A(aonaye) (Ao A Ayl (V(onAl)[e]) (A v Ay where k € {0,1}
LA L A(k)le)

TN T k R S
(/\(VmA(r))[e]) V:UA(&:)[E] forall n € w (\/EL’L'A({L')[e]) Ele(x)[e} where k € w
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n A(Y™
(Avx A(x)) VX(A(X)> Y™l where lev(VX A(X)) = n.

LAY .. (nEew
(Avxeacx)) (VXZA()(() €w) (Y™ ) pew!

Y
(Avxa(x)e) VX A(X) !

yn —AY") T ~A(T)°

( ﬁVXwA(X))WA(AXv) ( ﬁVXA(X)e)_‘VTW with arbitrary T'

(Cuta) 4 Q)_‘A (Ae Li)

where L := set of all L*-formulas without e.
2. BIY 1 is obtained by adding the following rules to BI{.

A (g€ VX A(X)))
(Q-vxa) VX A(X)

where lev(VXA(X)) = n.

A LA, (g€ VX A(X)))
(Qﬂ‘v’XA) @

Y™ where lev(VXA(X)) =n.

with

IVXA(X)|:={(d, Z") : d is a cut-free derivation in BI%
with lev(I'(d)) < n, and Z is a predicate variable with Z" & F'V (A4 zn))}
with A(g zny :=T'(d)\ {A(Z")}.

3. BI® := {J,c,, BIZ.
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4 Complete cut-elimination theorem for BI”

In this section, we prove the complete cut-elimination theorem for the infinitary
system BI? introduced in the previous section (Corollary 1). Moreover, we define
the substitution operator S5 (Theorem 5) which will be needed in Section 6.

Definition 5. Cut-Degree

Let I be an inference symbol and d a derivation in BI®.

rk(C)+1 if I = Cutc;

0 otherwise.

1. dg(I) :== {

2. dg(I(dr)rer)) := sup({dg(I)} U{dg(d)|T € [I]}).

We write
dbo T

if dg(d) < a and I'(d) C I'. In what follows, we may assume that I'(d) = I" without
loss of generality unless otherwise noted.

Lemma 1. If d -, T',C with literal C € L', then there exists a derivation d Fu
I, cCe.

Proof. Assume d , I, C. The proof is by induction on d. The crucial case is that
dis Axp and A = {C,-C!l}. Then set d’ := Axas with A’ = {C¢,~Clc}. Other
cases are treated using the induction hypothesis (IH). O

We define an operator R¢ which transforms an impredicative cut into Qn+1, and
does one-step reduction for other cuts in the standard way.

Theorem 1. For C € L there is an operator Ro on derivations in BI such that
ifdoFa I,C, dy Fo T, 2C, and 7k(C) < a with o < w, then Ro(dy,dy) o T

Proof. By double induction on do(:= Io(doi)ie|1,|) and d1(:= I1(d1j)je|r,))- Note that
the formulas C in I'(dp) and —~C in I'(d; ) do not have the superscript e. If C' ¢ A(Ip)
or =C' ¢ A(I), then the claim follows from IH. We consider only important cases
which are different from [1,7].

1. do is an axiom C,—~Cl.

It follows that ~C!¢l € T, and T, =C!¢l = I'. We define R (do, dy) := d}, which
is obtained from d; by Lemma 1 if =Cl¢l = =Ce.
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2. C € A(lp), and -C € A().
It is impossible that both C' and —C' are true literals.
(a) C =VXCy(X). If lev(C) = n, then lev(=C) =n + 1.
Now do = A& (doo) and dy = Q-c(dig)gejc|. Using TH and QY7 we
define N
Re(do, di) = QL6 (Re(doo, di), Ro(do, dig))gefo.

(b) C = VX“Ch(X). do = Nc(doi)icw and di = V_(dio). In this case,
we have dig b I, =Co(YF),~C for some k € w. By IH, we have
Re(dog, d1) Fm T, Co(YF) and Re(do, dig) Fm T, ~Co(Y*). We see that
rk(C) > rk(Co(Y'*)). Therefore we define

Rc(do, dl) = Cutco(yk) (Rc(doo, dl), Rc(do, le))-

This complete the proof. O
Iterating R, we define an operator £ which reduces cut-degree by 1.

Theorem 2. There is an operator € on derivations in BI** such that if d Fot1 T,
then £(d) Fp, T

Proof. By induction on d. We consider only the crucial case d = Cutc(dy, d1) with
C € L'. Other cases are treated using IH.
By IH, we have £(dop) b, I', C, and E(dy) by, I', =C. Define

E(d) :=Re(E(dp), E(dy)).-
This complete the proof. O

Using &, we can define an operator &, which reduces cut-degree to 0.

Theorem 3. There is an operator &, on derwations in BI such that if d Fo, T,
then &E,(d) ko T.

Proof. By induction on d. We consider only the crucial case d = Cutc(dy,d;) with
C € L*. In this case, dy ko, I',C, and d; +, T, =C.

By IH, &,(do) Fo T',C, and &,(d1) to I',=C. Let rk(C) := m, then we see
Cutc(Eu(do), Eu(dr)) Fma1 T. Let £ be m + 1 applications of the operator £.
We define

Eo(d) == EM TN (Cuto(E,(do), Euldr))) Fo T

This complete the proof. ]
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Now we define the collapsing operator D,, eliminating Qz\:;( A(X) with m =
lev(VXA(X)) if dg(d) = 0, lev(T'(d)) < n, and n < m.

Theorem 4. There is an operator D,, such that if d o T' and lev(T') < n, then
BEY 5 D, (d) o T

Proof. By induction on d. We consider only the important cases. Other cases are
treated using [H. Let I be the last inference symbol of d.

1. I= QZJXA(X) with lev(VXA(X)) =m and n < m.

In this case d = QY7\ 4 ) (dr)reqojuvxacx)- Then Y™ ¢ FV(T), do o
I'A(Y™) and dg Fo T', A, for all ¢ € VXA(X)| with lev(A,) < m. By IH,
BI2 5 D,u(do) - T, A(Y™), and Y™ ¢ FV(I(Dp(do))\{A(Y™)}). We define
g0 := (D (dp),Y™) € [VXA(X)|. Hence, using IH again, we can define

Don(Q2x a0x) (dr) reforupvx acx))) = Dn(dg,) € BI;.

2. 1= QZJLXA(X) with lev(VXA(X)) =m and m < n.
Using TH, we define the required derivation QZ:XA(X) (Dn(dr))regoruyx Ax))»

which is in BI{ since m < n.

3. Otherwise.
By IH, Dy (d;) > BI}} for i € |I|. Then, we define Dy(d) := I(Dn(di))icir| €
BIS!. An important case is that [ = ZVXA(X)e. In this case, I'(d) contains
VX A(X)®, but lev(-VXA(X)) = 0 by Definition 3.
O
Remark 2. Note that D, (d) is a cut-free derivation in BIS}.

Corollary 1. If d € BI* and lev(I'(d)) < n, then there exists d' € BI¥® such that
d - T(d).

Proof. By Theorems 3 and 4, we have D,,(&,(d)) € BI - T. O

An interpretation from L€ into L* is a function which assigns a number *(X) € w
to each predicate variable X. Given an interpretation x, for any L¢-formula A we
define the L*-formula A* as follows: If A = B¢, then A* := A; otherwise A* results
from A by replacing every free predicate variable X by X" with n := x(X), and
every strong predicate quantifier VX, 34X by VX« 3X¥ respectively.
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Lemma 2. For any formula F' of L and an interpretation x, the following sequents
are cut-free provable in BI: {F*,—F*} {F* —~F¢}, {F°¢,~F°}.

Proof. The proof is by induction on F. The interesting case would be F' = VX Fj.
We have to consider three subcases. Now, we treat only the most interesting case,
that is, aim to prove {F¢, (=F)*}. Let n + 1 := lev(=VXF{) with -VXF; =
(=YX Ep)*. Moreover, we write Fj(X"™) to denote a formula obtained from Fy(X)
by replacing X with X" and each other free predicate variable Z with Z™ where
m = *(Z).

By IH, we have BI® o E§, —Fg(X™). If we consider any g € |VX Fp|, we obtain
the following derivation:

q: Dg, Fg(X™)  Fg, ~F5(X")
-
~VXFy Fg S
VX F§ VXF§ vy

Cutp,

Then we obtain the required cut-free derivation by applying Theorem 3. ]

If T* is an abstraction in L*, then we define the substitution operator S, under
some suitable conditions. Let 7%~ be the result by eliminating all superscripts e and
n occurring in T*. Then, (I, A®)[X™/T*] := T'[X™/T*], A[X/T*~]¢ where A€ is a
set of explicit formulas.

Theorem 5. There is an operator S%(*m such that if
1. BE}>dFoT,
2. Xm ¢ PV(I'), and
3. k<m,

then BIt 5 SX" (d) o T[X™/T].

Proof. By induction on d. Let d be I(d;)c|z|-

1. k=0.
If dis Axa with A7 = {X(¢),-X(¢)}, then we apply Lemma 2. Oth-
erwise, we define S (d) = Iyxm7)(S7 (di))igyr- For example, assume

that d = Ayyay)(do). Then, X™ does not occur free in VY A(Y) since
X™ ¢ PV(VYA(Y)). Hence we can apply IH to dy and use Ayy 4(y) to obtain
the required derivation.
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2. k=n+ 1. By induction on d.

(a) I= QﬁVYA(Y), QﬁVYA(y) with [ = l@U(VYA(Y))
We consider only d = Q-yy av)(dg)ge|-vyar) with I < n. We have
X™ & FV(-VYA(Y)) because X™ ¢ PV(T). If X™ € FV(A,), then
I<n<n+1=k<m<lev(A;). This contradicts lev(A,) < I. Hence,
X™m g FV(=VYA(Y),A,). Now we can apply IH to d; and Q_yy 4y to
get the required derivation.

(b) Otherwise.
Use IH and apply the same inference rule.

5 The systems BI, and BI

In this section, we introduce a system BI,, which corresponds to II}-C' A+ BI with the
w-rule. To take care of the explicit/implicit distinction, we introduce an additional
system BI{, based on the language L°.

Definition 6. The systems BI, and BI}

1. BI,, consists of the following inference rules.

(Axa) A
where A = {A} C TRUE or A ={C,—~C?} with atomic C

Ag Ay K Ay
(/\Ao/\Al) AO A A]. (\/Ao\/Al) m Where k € {O’ ]'}
AN A(k)
(Avza(z)) TVrA(r)  rallnew (Vizaw) 2,4 Where k € w
A(Y) A -4
Y
(Avxacx)) VXAX) ! (Ra)™

T _‘A(T)
( —‘VXA(X)) _\VXA(X)
with
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(a) "VXA(X) is a weak formula or
(b) T'=Ay.(Yy).

2. BI{, is based on the language L¢ and consists of the following inference rules:

(Axa) A
where A = {Al} € TRUE or A = {C, =Cl?} with atomic C

Al , A
(Acaonani) (4, a4y (Vagvaye) Ay A where k € {0,1}
AW forallnew . A(k)l
(Avea()e) Vo A(z)l (\/HajA(a:)[e]) W where k € w
AW) A -A
(Nixacoe) gxaxy@ Y Ry (A€ D)
ﬁA(T)[e]

(Vo acoye) XA
with

(a) "VXA(X) is a weak formula or

(b) T'=Xy.(Yy).

6 The complete cut-elimination theorem for BI,

Let * denote an interpretation from L€ into L* assigning a number (X ) € w to each
X. We define the embedding function ¢g* from derivations in BI{, into derivations

BI* depending on * below (Theorem 6).

Recall that an “explicit” formula in L€ is obtained assigning the superscript e to
the corresponding one in L, and Al®l means a “possible occurrence” of e. Similarly,
set T'lel := {Alel . A € T'}. For example, there are four cases if I' = {B,C}, that is,
{B,C}, {B¢,C}, {B,C¢}, and {B¢, C*}.

The next lemma is easy to see:
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Lemma 3. If BI, -1, then BI, I Tl for all cases of TIe.
Proof. The proof is by induction on d in BI,,. O
<

We define deg(d) where d is a derivation in BI{, in such a way that dg(g*(d))
deg(d).

Definition 7. deg(d)
Let d be a derivation in BI,.
1. deg(d) := max(rk(A(T)),deg(dy)) if I = \/ZVXA(X) and 0 < lev(-VXA) < w.
2. deg(d) := max(rk(C),deg(dy),deg(d1)) If I = Re.
3. deg(I(dr)r¢|r)) = sup{deg(d.)|T € |I|} otherwise.
To define the embedding function g*, we need the following definition:
Definition 8. %(X/n)

Let be * be an interpretation from L€ to L*. A wariant interpretation of *(X/n)
of x is defined by
n ifX=Y,

*(X/n)(Y) =
A/m)(¥) {*(Y) otherwise.
If ' is a set of formulas in L¢, then I'* := {A*|A € T'}.

Theorem 6. Let x be an interpretation. Then there is an embedding function g*
such that if BI5, > d - T, then BI 3 g*(d) Faega) I

Proof. By induction on d. We consider only important cases.
1. d = Axa.
This case is obvious since Axa« is again an axiom in BI®.
2. d= /\(AO/\Al)[e](dO’ dy).

Let A = (Ag A Ap)lel. By IH, we have g*(d;) Faeg(a) I (Age])*. Hence, we
define

g*(d) :== N\~ (9"(do), 9" (d1)) Faeg(ay I, A™.

3. d= /\inA(X)e(dO)
Note that Y is the eigenvariable of the last inference rule. Using IH, we define

g7 (d) := Nix acx)e (9 (do)) Faeg(ay I, VX A(X)“.

880



AN ORDINAL-FREE PrROOF OF THE COMPLETE CUT-ELIMINATION THEOREM

4. d= /\\)%/XA(X)(dO)-
In this case, dg F T', A(Y),VX A(X) where Y is an eigenvariable. We consider
two subcases.

(a) VXA(X) is a weak formula.
In what follows, we write (VX A(X))* as VX A(X)*. Moreover, A* denotes
the formula obtained from A by replacing every free predicate variable Z
except for X by Z™ with m := *(Z).
Let n = lev(VX A(X)").
By IH, we have

g* Y™ (dy) Faeg(do) I's VX A(X)™, A*(Y™).

Therefore, we define

g*(d) == Ayxacxy (677 (o)) Facg(a) T VX A(X)".
(b) Otherwise.

Using IH, we define

g*(d) :== /\VXWA*(X) (9*(Y/n)(d0)>new I_deg;(d) [ VXY A" (X).

5. d = VTxax)(do)-
do T, "V X A(X), ~A(T).

(a) "VXA(X) is a weak formula.
Let lev(-VXA(X)*) =n+ 1. We write A*[X/T] as A*(T).
Using IH, we define

g (d) == Qyx ax) (Ras(r)(S7+ (dg)), g% (do))gepx acx)|-

Then we see
9" (d) Faeg(ay I'", "V X A(X).
(b) Otherwise.
Now T = \y.(Yy). By TH, g*(do) Faeg(ae) I =A*(Y™), -V X*A*(X)
where x assigns Y™ to Y. We define g*(d) := V_yxwa(x)+(9"(d0)) Faeg(ay
I —-VX“A*(X).

6. d=\VIyxax)e(do).
Use TH and the same inference symbol. Note that \/7,, A(x)e is an inference
symbol in BI.
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7. d = Ru(do, dy).

Using TH and Theorem 1, we define g*(d) := Ra=(g*(do), 9" (d1)) Faeg(a) I'*
O

Now, 0 is the interpretation which assigns X° to each predicate variable X.

Then, the embedding function based on 0 is denoted by ¢° (cf. Theorem 6).

Now we are in position to prove the main theorem of this paper.

Theorem 7. If Bl, > d+ T, then there exists d' such that Bl, > d o T.

Proof. Let d be a derivation in BI,,. We define I'® := {A°|A € I'}. Then, by Lemma
3, we obtain the derivation d® such that BI;, > d° F I'°. By Theorem 6, we have
BI? 5 ¢%(d°) Faeg(a) (0€)°. Note that (I'°)® = T'® and lev((I'°)°) = 0. Using
Theorems 3 and 4, we get BI 3 Dy(£,(g%(d®))) Fo T¢. By deleting the superscript
e, we obtain the required derivation d’ such that BI,, > d' ko .

O]
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Abstract

Our understanding of the first-order theory of the class of all local rings
Z/p™Z as p and n vary comes from the Ax-Kochen-Ershov analysis of the rings
of p-adic integers. This analysis does not directly produce axioms. In this paper
we give fairly explicit axioms for the class.

Keywords: Model Theory, Henselian Fields.

1 Introduction

1.1 Dedication

We dedicate this paper to Grisha’s memory, with a feeling he might have found it
congenial. Beneath its model-theoretic surface are some unresolved issues about ex-
tracting axioms for reducts from axioms for richer structures (in this case axioms for
quotients from axioms for Henselian valuation rings) and we regret not having had
a chance to discuss this with Grisha. We did not meet that often, but were inspired
by his intellect and his charm. A. Macintyre is grateful for the chances he had to
discuss with Grisha issues about proving hard number theory in Peano Arithmetic.
Our work on Zilber’s Problem [§] can be construed as showing that the natural quo-
tient structures of models of Peano Arithmetic are completely axiomatized without
any induction axioms, because of the work of Ax-Kochen and Ershov and Feferman-
Vaught. Both of us fondly (but very sadly) remember our last meetings with him,
at AIMS in Palo Alto, during a workshop on analogues of Hilbert’s 10th Problem.

*Supported by a Leverhulme Emeritus Fellowship.
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1.2 p-adics and the Z/p"Z

In the mid 1960’s Ax-Kochen [2] [3, 4] and Ershov [I4} [I5] 16] proved fundamental
theorems about the logic of Henselian valued fields. These theorems seem assured of
a permanent place among the most important in “applied model theory”. Combined
with Ax’s work on the elementary theory of finite fields [I], they constitute an
indispensable repertoire for those who try to connect logic to algebra and number
theory.

The work of the above authors on p-adic fields and then on the theory of finite
fields gives a rather indirect proof of the decidability of the class of all finite local
rings of the form Z/p"7Z, as p and n vary. We discuss this below, but simply note
for now that we have no recollection of ever having seen any other proof of the
decidability. If there is no other proof, this is rather intriguing. In any case there
cannot be a trivial proof, since one can interpret the theory of finite fields in the
theory of the local rings mentioned above. We note in passing that one can show, by
adding the Feferman-Vaught method [I7] to the mix (or by a much later argument
using model theory of adeles [I3], which also depends on Feferman-Vaught) that the
theory of all rings Z/nZ is decidable. We note too that Rabin [25] showed that the
theory of finite commutative rings is undecidable, from which it follows by Feferman-
Vaught that the theory of finite local rings is undecidable. We believe that merely
finding explicit axioms for the theory of the class of rings Z/p"Z is a problem with
proof-theoretic resonance. We achieve a non-optimal solution to this in the present

paper.

1.3 Formalism

The logic of valued fields has rather more formalism than one meets in most areas
of applied logic. The basic structures involve a field K (the valued field), a field k
(the residue field), an ordered abelian group I' (the value group), the valuation ring
V', the multiplicative group K*, the valuation v from K* to I', and the residue map
res from V to k. All of these notions are interpretable in the one-sorted structure
consisting of the field with the valuation ring V' distinguished. In fact, in all the
cases discussed below, V' is definable [7]. However, V' is not always definable, and
there is sometimes a need to use the one-sorted L,ingsy With a predicate, for the
valuation ring, adjoined to the ring language. The basic language for the analysis
below is Lyings, the usual first-order language for unital rings, with +, -, —, 0 and 1.
When we pass to sorted formalisms, L,ings is appropriate for both K and k. For I
we have the standard language Loag (ordered abelian groups), with 4+, —, 0 and <.
However, if I' is discretely ordered, as it always will be in this paper, it is better to
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augment the preceding by a symbol “1” for the least positive element, giving Lpoaa
(discretely ordered abelian groups).

Experience has shown that we get the clearest picture if we look at valued fields
in a 3-sorted formalism, with (roughly) sorts corresponding to K, k and I', each
with their natural formalism, and certain intra-sortal functions like v and res. The
literature is a little casual on all this, because the natural maps are not total on the
sorts. While there is little danger of error in current practice, we choose to make our
intra-sortal maps total, at the cost of modifying slightly the K and I" sorts and/or
their formalisms. As is traditional we augment either of our languages for ordered
abelian groups by adding a symbol oo for an element larger than all the others.
There is no problem in defining an extension of +, preserving the universal axioms
for +. But there is a problem for —, exactly as regards the interpretation of co — co.
We choose to interpret this as having value 0, thereby losing some laws connecting
+ and - . This is however inconsequential, as the set I' is definable, as is its ordered
group structure. We call the resulting sort the enlarged I'- sort. Now v is a regular
intrasortal map from the K-sort to the enlarged I'-sort, if we put v(0) = oo as usual.

What to do about the res map, since it is not totally defined on K7 We could
do something similar to the preceding by modifying the k-sort by adding another oo
and using a place. But it is better to use an angular component map ac modulo k.
There is no such map in general, but any valued field has an elementary extension
with such a map, and for our analysis of definability this is enough. ac is total on
K to k, and what is required of it is that it respects -, maps 1 to 1, and 0 to 0, and
agrees with res on the units of V, i.e the elements of value 0. We are going to be
dealing only with cases where K has characteristic 0 and v is unramified, and then
we take ac(p) = 1 if k has finite characteristic p.

The formalism just presented is called Lpepef—pqs in honour of Denef and Pas
who devised it [24]. It provides refined analysis of definitions, and has been used to
great effect in work on motivic integration and uniformity of p-adic integrals. We
already used this formalism in [I1] on Henselizations of p-adic valuations (where
p can be non-standard) on non-standard models of Peano Arithmetic. Another
language with similar virtues was discovered earlier by Basarab [5], but we will not
need it here. In this paper we use the above formalism to provide an analysis of
definitions in certain uniserial local rings, making essential use both of Ax-Kochen-
Ershov and Denef-Pas. It is curious that no such analysis has been undertaken
long ago. Our interest in the topic came from a question of Boris Zilber about
interpretability in quotient rings of nonstandard models of arithmetic. Prior to
working on Zilber’s Problem and writing the paper dedicated to A. Woods [11], we
have looked at residue fields of models of Peano Arithmetic and considered p-adic
issues in this setting for many years, see [23], [9], [10].
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2 From Ax-Kochen, Ershov and Ax to the analysis of
quotient rings

The most comprehensive result from the 1960’s (holding in any of the formalisms
mentioned above) is

Theorem 1. Suppose K1 and Ko are Henselian and k1 and ko are of characteristic 0.
Then K1 = Ky < ki =ky and 'y = 1.

There is an important extension of this to give a result about elementary exten-
sions [2, 3, 4, 16].

Of much more importance for number theory is the situation when k has char-
acteristic p # 0. When also K has characteristic p, there is an important result due
to Robinson when K is algebraically closed [26], beyond that there is only a series of
elaborations of an idea going back to Kaplansky [20], (see [12], [21]). When K has
characteristic 0, one understands very well some cases, those of finite ramification
[16], but the general case remains mysterious. We have no need here for the general
finitely ramified case, and so restrict ourselves to the basic case of Q.

As valued field, Q, is completely axiomatized by

1. Henselian.

2. Residue field of cardinality p.

3. I is a model of Presburger arithmetic with least positive element 1.
4. v(p) = 1.

See [4].

Moreover, the valuation ring V' is existentially, and universally, definable in L,
[7]. Qp is model-complete in Lyjngs, and indeed has a useful quantifier-elimination
in terms of power predicates [22].

Each Qy, is decidable [4]. When £ has characteristic 0, K is decidable (in Lyngs,v)
if and only if k£ and I" are decidable [2, 3, 4, 14, 15, 16].

Finally, we present the most important ingredient for our work, namely the work
of Denef and Pas. The following (see [24]) is a variant of their main result, tailored
to our needs.

Theorem 2. There is a computable function DP from the set of Lpenef—pas for-
mulas to itself, and a computable function 3 from the set of Lpenef—pas formulas to
N, such that for any Lpenef—pas formula ¥, DP(V) has the same free variables as
U but has no bound variables of sort K, so that if K is a Henselian valued field in
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Lpenef—pas, and k has characteristic not a prime less than 3(¥) then ¥ and DP(V)
are equivalent in K.

In this paper we consider logical questions about the quotient rings V/{y : v(y) >
v} (written henceforward as V., where 7 is a non-negative element of I).

Consider first the case K = Q,, so V = Z, and I' = Z. A typical v is a positive
integer n and then V, is naturally the quotient ring by p", a finite, innocuous local
ring. The interesting questions are about the class of such rings, for fixed p and
varying n. Decidability and a uniform analysis of definitions are the key issues.
That the class is decidable is certainly not obvious. It is not known to us who first
proved decidability. The interesting thing is that decidability is an easy consequence
of decidability of the valued field Q,, but seems not easy to prove directly. As far as
the structure of definable sets is concerned, this is not at all obvious even given the
Macintyre quantifier-elimination for the p-adics [22]. Equally, the axiomatization of
the p-adics casts no immediate light on axiomatization of the quotient rings as n
varies, and p is fixed.

Next one asks for a corresponding analysis as p and n vary. The Z/p"Z are finite
local rings, the quotient rings of Z,, as p varies. Note that now one can interpret F,
uniformly, as residue fields, so any analysis of decidability and definability should
be as difficult as Ax’s great paper [1]. Note the curious fact that Ax asks at the end
of his paper about the decidability of the class of all Z/mZ as m varies, evidently
unaware of the fact that decidability follows from his work and that of Feferman-
Vaught.

For our purposes the key results of Ax are those on ultraproducts of finite fields
and of p-adic fields [1]. The infinite fields which satisfy the theory of all finite fields
are exactly the perfect fields F with absolute Galois group Z and such that every
absolutely irreducible curve over F' has a point in F' (the restriction to curves is a
refinement by Geyer [I8] of Ax’s basic Lang-Weil analysis in [1]). Such fields are
called pseudofinite. A startling result of Ax [1] is that characteristic 0 pseudofi-
nite fields are exactly those elementarily equivalent to nonprincipal ultraproducts of
prime fields. From this and Ax-Kochen-Ershov one readily proves that the class of
all Q, is decidable, thus giving, via interpretability, the decidability of the class of
all rings Z/p"7Z, a result which could hardly have been known prior to [1].

There is a natural uniform quantifier-elimination for pseudofinite fields (origi-
nally by Kiefe, see [18]), and this can readily be made into a natural quantifier-
elimination for the class of all Q, [12]. But this alone does not give a nice quantifier-
elimination for the class of all Z/p™Z. The goal of this paper is to axiomatize the
class of all Z/p"Z in Lyipgs-

Note at the outset that if K is Henselian and ~ is a positive element of V' then
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V, is local, and the quotient map V — V, is local, so V, is Henselian. We have
a more general project to study the model theory of finite local rings (which are
automatically Henselian), and we have an ongoing project to consider nonstandard
primes p and nonstandard integers n and analyze definitions in the corresponding
quotient rings which turn out to be Henselian local [8].

3 Towards the Axioms

3.1 The basic rings

Henceforward K is an Henselian field, as in first section, with valuation ring V/,
maximal ideal p of V', residue field k, value group I'; valuation v and an angular
component still to be specified. Let v be a positive element of I' and R the Henselian
local ring V. Clearly, the maximal ideal of R is p1+ {y : v(y) > 7}, and the residue
field is naturally k.

3.2 Truncated valuations

The ring R carries a truncated valuation, in a sense which we now explain. For
possible future reference we pass to a more general setting. Let I'Z° be the non-
negative part of I'. We say A is an initial segment of I'ZY if A is a nonempty subset
of I'29 and is closed downwards under the order on I'. Let I be the set of elements
of V' whose value is either oo or bigger than every element of A. It is clearly an ideal
in V, and V — V/I is a morphism of local rings. Moreover, since V' is Henselian
V/I is Henselian.

There are two cases. Firstly, suppose A is the set of all § less than ~ for some
fixed v. Then this is just the case mentioned in the previous subsection. This is
the only case considered in this paper, but one should note that for I' not discretely
ordered the case where A consists of the § <~ occurs too, and is rather different.

Suppose A # T, and consider vy from V/I to AU {co} given by

lL.vif(z+I) =0 ifxel,
2. vi(z+1)=v(z)ifz ¢ 1.

The function vy is clearly well-defined. We refer to this map as the truncation of v
to A.

Such maps occur naturally, for example in [19], where the author studies various
important truncated discrete valuation rings. For Hiranouchi, however, these are
Artinian local rings with principal maximal ideal, the former restriction being quite
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unnatural from a model-theoretic point of view (the second is, however, first-order).
Certainly the rings Z/p"Z are examples of Hiranouchi’s notion.

The most obvious laws satisfied by the above truncation (written now simply as
“v”, for convenience of notation) are:

1. v is a map from R onto A U {co} where R is a local ring, and A is a set with
an ordering < with a least element 0, and co > [ for each | € A;

2. v(0) = o0 iff x = 0;

3. v(@ +y) > min(u(z), o(y));

4. zly = v(@) < o(y);

5. v(z) =v(y) <= x = yu for some unit v in R;
6. the maximal ideal p is principal.

Property (5) is equivalent to saying that the ideal generated by x and the ideal
generated by y coincide iff x and y have the same valuation. We now identify I’
inside R as, firstly, the set of principal nonzero ideals. (0) is identified with oo,
the maximal ideal p corresponds to 1 in the Presburger model and if A has a top
element 7 then it corresponds to the (unique) principal ideal above (0). Since R
comes from a valuation domain where divisibility is a linear order, the same is true
for principal ideals and the linear order is given by reverse inclusion. The operation
+ on I' comes from (z) + (y) = (xy), and v(x) = (z) the ideal generated by x.

From (1)-(6) it follows that there is an operation + on A U {co} making it into
the nonnegative part of a truncated ordered abelian group, by showing that v(xy)
depends only on v(x) and v(y), and then defining v(z) + v(y) as v(zy). One gets
the following laws:

1. + is commutative and associative, with neutral element 0;
2. x4+ 0o = o0

3. Ifr+y=x+ztheneithery=zorx+y=x+ 2= o0;
4. If x < y then y = z + 2 for some z.

One goes routinely to the notion of truncated ordered abelian group. The following
is proved in [8], and was first done by Derakhshan and Macintyre in unpublished
work on the adeles:
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Theorem 3. The nonnegative part of a truncated ordered abelian group is always
given by taking an ordered abelian group I' with oo adjoined, and an initial segment
A of ', and taking + to be defined by

1. If x and y and x +y are in A, where + is the group operation, then this is the
+ in the sense of I' with co adjoined.

2. Otherwise x + 1y is 00.

In this paper we are mainly interested in truncations of models of Presburger
Arithmetic, and we refer to them as Presburger truncations. These can be of two
kinds, depending on whether the initial segment has or does not have a last element
(of course the truncation always has a last element {oo}, but we are distinguishing
the two cases where {oo} has or does not have an immediate predecessor). Our main
theorems will be about the case when the initial segment has a last element, but we
consider the other case as well.

We note that if a truncated ordered abelian group A U {oo} comes from a dis-
cretely ordered abelian group, and contains the least positive element, and R is a
commutative ring with a truncated valuation onto A U {oo}, then R is a local ring
with principal maximal ideal (but R need not be Artinian). This is a simple exercise.

3.3 Presburger type of the penultimate element

In this subsection we assume that R has a truncated valuation onto a Presburger
truncation AU{oo} and A has a last element 7. 7 is the penultimate element of the
Presburger truncation. In the case of R =Zy, 7 =n — 1. If we construe 7 as living
in a model of Presburger extending A then 7 has model-theoretic type (relative to
Presburger) given by the atomic formulas x = n (n € N) and = r modulo m
(m e N, m > 2and 0 < r < m) satisfied by 7 (this set is independent of the
ambient Presburger model, and indeed depends only on the segment determined by
7, and thus depends only on A). Note that any formula of the form > n or n > z
is Boolean definable from the formulas we listed.

The essential point here is that for any non-negative elements v and § in a model
of Presburger they satisfy the same formula iff they have the same Presburger type
as given by the above simple conditions.

Now suppose that R is a local ring with truncated valuation to a Presburger
truncation AU{oo} with penultimate element 7. In terms of principal ideals 7 is the
minimal ideal above (0), and this can easily be expressed in R. If ¢ is an element of
A we define Rj as the quotient ring of R by the ideal of elements of value at least §
(thereby generalizing a notion given earlier for a valuation ring V).
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Lemma 1. Uniformly in R one can express in R in Lyings the Presburger type of 7.

Proof. If T satisfies the formula = n one expresses in R that 7 = n by saying that
there is a chain of nonzero principal ideals of length n, and none of length n + 1.
If 7 satisfies the formula x = r(mod m) one expresses in R that 7 = r(mod m)
by saying that there is  with v(z) = 7 and (z) is a minimal prime ideal and there
is a descending chain of length r of principal ideals where the first one is p, there is
no ideal between two consecutive ones, and the last ideal is (w) with v(w) = r and
x = wb™, for some b. ]

3.4 Natural R and their ultraproducts

For us the natural local rings are Z/p"Z as p and n > 1 vary. Any K which is a model
of the theory T of the class of all Z/p"Z is elementarily equivalent to an ultraproduct
[IpZ/p"Z for some ultrafilter D on set of pairs (p,n) (hence it is a pseudofinite
ring), and it is also elementarily equivalent to the ultraproduct [[p Z,/p"Z, since
L|p"Z = Zy/p"Z,. By Ax’s result the residue fields of these are models of either
prime finite fields or pseudofinite fields of characteristic 0. Let FinPrim be the
class of finite prime fields. Then Ax’s result shows that Th(FinPrim) is exactly
the theory of the class of pseudofinite fields of characteristic 0, and also the theory
of all characteristic zero ultraproducts of finite fields. So the residue fields of the
preceding ultraproducts of finite local rings are models of Th(FinPrim), and any
model of Th(FinPrim) is elementarily equivalent to the residue ring of one of the
preceding ultraproducts.

We first want axioms for residue fields of models of T', and later axioms for the
theory T along the line of Ax, Kochen, Ershov. We will use the result of Denef and
Pas to get explicit axioms in our case with Presburger truncations as value sets,
and not groups. The truncated value structure for Z/p"Z is [0,n — 1] U {co}, and
for [[pZ/p"Z is []p[0,n — 1] U {oco}. The theory of the Presburger truncation is
uniquely determined by the Presburger type of the last element different from oo,
and the same holds for the theory of Presburger truncation of [ Z/p"Z.

We consider R arising as follows. Let K be an Henselian valued field, of char-
acteristic 0, with residue field k, valuation ring V', and value group I' a model of
Presburger Arithmetic. We require that k£ is a model of the theory of finite prime
fields. We require too that if & = F,, then v(p) = 1. Then we select v > 0 in V
and we consider R = V. This is of course a special case of the construction in 3.2,
with A = {7 : 7 < ~v}. Now R is local and has a truncated valuation to A U {oco},
a Presburger truncation. Our main objective is to find axioms for all such R. We
already have some, but to get all we need the Denef-Pas Theorem for the field K.
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So we pass to the many-sorted formalism, with sorts for K, k and I" with oo,
adjoined as usual, and connecting maps v and ac. The latter is available in an
elementary extension of K and we can just assume K has an ac. We do have to
make some basic decisions about the choice of ac, as terms like ac(1) have to get a
definite meaning. Note that if one has a partial angular component on a subring it
is possible to extend it to an angular component on an elementary extension.

If k£ has characteristic 0 we take ac(n) = n, for all n € Z. If k has characteristic
p, and so is elementarily equivalent to @, by our choice of conditions on K, and
n = p*ny, with n; prime to p, we can take ac(n) = ni. Recall that the Denef-Pas
analysis is uniform in choices of ac.

Now let U be a sentence in the language of rings. Consider the subset of T’
consisting of the positive v such that V, = W. This is definable in the Denef-
Pas language by a formula © with a single free I'-variable, and thus, by the Main
Theorem, by the DP(©) formula with the same free variable, and no bound variables
of sort K, except possibly when k is some [, and p < §(©). For each of the remaining
finitely many p < 5(©) we can appeal to the nice theorem that in Q,, the value group
is stably embedded to replace DP(0©) by a Presburger formula (see Corollary 5.25
n [27]). The outcome is that we can replace, uniformly, DP(©) by a DP*(0) with
a single free I'-variable, which defines, uniformly in all the K we have chosen, the
subset of I' consisting of the positive v such that V, = . Only finitely many ac(n)
occur, and these can be replaced by n except when k£ has characteristic p and p
divides n. There are only finitely many such p, and thus we may computably avoid
the use of ac by a slight modification of DP*(©) with the same properties.

Let us now unpack the structure of the many-sorted DP*(0). There are no
bound K-variables, and no free ones, so no terms ac(t) or v(t) for nonclosed K-
terms t. There are no intersortal functions between the k and I' sorts, so we may
readily show that DP*(0) is (logically) equivalent to a Boolean combination of
quantifier-free K-sentences, k-sentences and I' formulas in a single variable ~. Since
K is of characteristic 0, the truth value of open K-sentences is independent of K and
so such sentences can be erased. We already erased the ac(n), so the k-sentences
are equivalent, for p computably sufficiently large (via the Lang-Weil estimates)
to Boolean combinations of solvability statement saying that certain f € Z[z| are
solvable. For the remaining finitely many p we isolate each case by the clause p = 0
(remember k is a model of the theory of finite prime fields!), and have a disjunction
of such equations over the finitely many p, outside our computable cofinite set, such
that the given £ sentence holds in [F),.

As regards the Presburger formulas in the variable v, these are Boolean com-
binations of various v = n and congruence conditions modulo various m, where
m,n € N.
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Now we have a serious result about the class of all R as above. We recall that
we showed that the Presburger conditions on the penultimate element of A U {oo}
are expressible in the ring R. Also, it is obvious that residue field conditions are
expressible in R since the maximal ideal is definable. Thus we have:

Theorem 4.

1. The elementary theory of a ring R as above is determined by the elementary
theory of the residue field and the Presburger type of v, and these can be given
independently.

2. There are computable maps D1, Ds, and D3 defined on ring sentences ¥ so
that D1(¥) is a finite set of polynomials in one variable over Z, Do(¥) is a
finite set of integers and Ds(W¥) is an integer > 2, so that the truth value of
U in R is determined by which elements of D1(¥) are solvable in the residue
field, which element of Do(V), if any, is equal to v, and what is the congruence
class of v modulo D3 ().

Proof. Both parts (except for the remark about independence in (1)) are immediate
from the preceding discussion. For the independence, just take an allowed k ( a
model of the theory of finite prime fields), and a model I" of Presburger with an
element ~ realizing a Presburger type s. We can assume I is an ultrapower of Z,
using an ultrafilter D on an index set I. If k is IF,, let K be the ultra power of Q,
with respect to I and D. Then V, is the required local ring. O

We note that the D;’s (j = 1,2, 3) are, in our present knowledge, rapidly growing.
For particular cases of known bounds for such problems, in connection with Artin’s
Conjecture, see [6].

4 Refining the Axioms

4.1 Which R come from a K?

The limitation in what we have done above is that the R we considered were assumed
to be quotients of valuations rings of K subject to various conditions. Now we want
to find axioms for general local rings R that will guarantee that they are at least
elementarily equivalent to a local ring coming from a K. We have some quite explicit
conditions on the R that interest us, namely:

1. R is alocal ring, with a truncated valuation onto some Presburger truncation,
with a last element below oco.
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2. R is Henselian.
3. The residue field is a model of the theory of finite prime fields.

We have stressed that these axioms are all first-order. It is fairly clear that the
analysis above in terms of D1, Dy, D3 can be reformulated in terms of first-order
axioms for the R coming from K, and we can then add these to the preceding (1),
(2), (3). The problem is that we do not have a very explicit version of the D,
and we believe that such an explicit version would require very explicit quantitative
information about quantifier elimination in the theory of finite prime fields and in
the theory of p-adic fields. Despite the obvious interest of having such information,
none has been obtained.

Despite the lack of explicitness, it is useful to draw some consequences from what
we done so far. Once more, start with an R, a local ring which is of the form V,
with V the valuation ring of a Henselian K as above. Let us interpret what we have
got out of Denef-Pas. Let us look at Rj, a local ring got from R by dividing out a
principal ideal generated by a single element x of value v, with « in the maximal
ideal of R. Now R and R; have the same residue field, namely k. The ring Ry
is of course a quotient of V', namely V,, and the preceding analysis applies to it
(and of course we use the uniformity of the preceding analysis). Thus if v and
have the same Presburger type then R and R; are elementarily equivalent. Thus
in any R as above, and for any ring sentence ¥, the set of 7 such that ¥ holds in
R/{y : v(y) > m} differs finitely (at certain standard elements) from a finite union
of arithmetical progressions with modulus m. This “periodicity” seems not to have
been observed before. It gives the following

Theorem 5. Let U be a ring sentence, as above. Then by the D1, Ds, D3 analysis
there exist m and n in N, a set E of residues modulo m and a subset B of [1,n], each
computable from U, together with a finite set Pol of elements of Z[x] and a set Sol
of subsets of Pol, also given computably from U, so that (uniformly in the quotient
rings R of Henselian K, as above) ¥ holds in R iff

1. For some Y € Sol and all f € Pol fis solvable in k iff f €Y, and

2. If T is the penultimate element of the Presburger truncation of R then either
T € B or 7 is congruent modulo m to an element of E.

Suppose that we add, for each ¥, an axiom giving the equivalence with the given
(1) and (2) (note that this can be done computably). Let ¥ be the resulting set of
axioms, with no assumption being made that the models R of 3 come from Henselian
fields.
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Theorem 6. Let R be a model of 2. Then R is elementarily equivalent to a quotient
of a Henselian field valued in a Presburger group and with residue field a model of
Th(FinPrim).

Proof. If R is a model of ¥ then it has the same residue field and value group as
an unramified Henselian field K with the required properties and with an element
having the same Presburger type as the penultimate element of the Presburger
truncation of R. Now pick a sentence W. The criterion for ¥ to hold in V,, is exactly
the same as that for ¥ to hold in R, and depends only on the residue field and the
type of the penultimate element of the Presburger truncation of R. O

Of course we would like to replace elementary equivalence by isomorphism in the
above Theorem. We have a construction that seems close to giving this refinement,
but it is complicated, and we prefer to prepare a sequel in which this matter is
resolved. For most purposes it is enough to know the quotients up to elementary
equivalence.

5 Induction

Since we have shown that any R under consideration above is elementarily equivalent
to one with value group Z, it follows that the nonnegative part of the value group of
R satisfies “definable induction” where we allow sets definable in the ring language
using constants. This is known for Henselian fields with value group a Z-group
and residue field a model of the theory of prime fields, which are unramified (i.e.,
v(p) = 1) if the residue field has characteristic p (see [2, 3, 4]). This in turn relates
to the stable embedding of the value group in such cases [27], and we easily see that
this stable embedding is true in the truncated cases we have considered here.

The main point to emphasize is that though induction is not mentioned in the
axiom, nor any pigeonhole principle, the induction scheme and an obvious pigeonhole
scheme are derivable from the axioms X.

Acknowledgements. We are deeply grateful to the anonymous referee for point-
ing out many obscurities in earlier versions. We have tried to take account of all of
the referee’s suggestions.
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1 Introduction

The most fundamental relation between classical and intuitionistic logic is given by
the following facts:

e intuitionistic logic is contained in classical logic, in the sense that the set of
provable intuitionistic sentences is a subset of the set of classical sentences,

e provable sentences A of classical logic can be translated into provable sentences
B of intuitionistic logic such that A and B are classically equivalent.

The most important consequence of these facts is the equiconsistency of intuitionistic
and classical theories; the classical theories have just to be replaced by their equiva-
lent translations. This refutes the original claim that the consistency of intuitionistic
(constructive) systems might be self-evident. Godel even interpreted the existence
of a translation of classical logic and Peano arithmetic into intuitionistic logic and
Heyting arithmetic as a proof that intuitionistic logic and Heyting arithmetic are
in fact richer than classical logic and Peano arithmetic, because in the intuitionistic
framework one can distinguish formulas which are classically equivalent, while both
frameworks have the same consistency strength [12].

Most historical embeddings are defined via stepwise translations: first the axioms
are translated and the results shown to be provable in intuitionistic logic; second it is
proven inductively that the intuitionistic provability of the translation is propagated
through the rules [7,[11}/13,|15/16,/18]. The original aim of these embeddings is to
establish a relation between classical and intuitionistic provability but not between
the proofs themselves. For a general framework to compare the provability of various
translations see [10].

In this paper we investigate the impact of such embdeddings on the complexity
of first-order proofs where we choose the sequent calculi LK and LJ. In particular
we compare the computational complexity of transformations from classical cut-free
proofs of sentences A to intuitionistic cut-free proofs of the translations B of A
for various types of translations. We also define a new extension of the Glivenko
translation to first-order logic resulting in an improvement of the Kuroda translation
(for first-order logic). The complexity of the extended Glivenko translation of cut-
free LK-proofs into cut-free LJ-proofs is shown to be elementary by using CERES
(cut-elimination by resolution) [4].

The paper is organized as follows: In Section [2] we define the basic concepts for
our analysis. In Section [3|we define various translations and investigate their compu-
tational complexity. While the Kolmogorov translation and the extended Glivenko
translation can be computed in polynomial time, we show that an optimized form of
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the Kolmogorov translation is of nonelementary complexity. While the Kolmogorov
translation maps cut-free proofs into cut-free proofs this does not hold for the ex-
tended Glivenko translation. So the complexity of translations into cut-free proofs
would have to be established by the complexity of cut-elimination. Instead of step-
wise cut-elimination a la Gentzen we use CERES (cut-elimination by resolution), a
global proof analysis method, to establish an elementary bound on the complex-
ity of translating cut-free classical proofs with only weak quantifiers into cut-free
intuitionistic proofs. We prove, in fact, a more general result for classical cut-free
proofs of sequents of the form Aq,..., A, F with only weak quantifiers, yielding the
complexity of the extended Glivenko translation for the weak quantifier fragment as
a corollary.

2 Preliminaries

Definition 1 (strong and weak quantifiers). If (Vx) occurs positively (negatively) in
B then (Vx) is called a strong (weak) quantifier. If (3x) occurs positively (negatively)
in B then (3z) is called a weak (strong) quantifier. If S is a sequent Ay,..., A,
Bi,...,B,, then quantifiers occurring in S are strong (weak) according to their
status in (A1 A---ANAp) = (B1V---V Bp).

Definition 2 (complexity). If F is a formula in predicate logic then its complexity
||F|| is the number of symbols occurring in F. Similarly the complexity of a proof
¢, denoted by ||¢]|, is the number of symbol occurrences in .

Our complexity analysis aims at the distinction between proof transformations
of elementary and those of nonelementary complexity. A specific role play the bound
functions e and s:

Definition 3. Let ¢ : N x N — N and s: N — N be defined as:

e(0,n) = nforneN, e(m+1,n)= 2¢0m1) for m,n € N,
s(n) = e(n,1) for n € N.
A function g : N — N is called elementary if there exists a nondeterministic Turing

machine M computing g and a number k£ € N with timey(n) < e(k,n) for all
n € N, where timeys(n) is the computing time of M on input n.

Remark 1. It is not hard to show that the function s in Definition [3]is not elementary.
The nonelementary complexity of cut-elimination is typically proven by using s as
lower bound (see [21] and [19]).
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The following definition applies to all proof transformations, though we will
investigate mainly transformations from LK to LJ in this paper. The calculi LK
and LJ are defined as in [9] with the only difference that we use multisets and do
not need the exchange rules.

Definition 4. Let T be a mapping from proofs to proofs. T is called elementary if
there exists a nondeterministic Turing machine M computing T'(¢) on input ¢ and
an elementary function h s.t. for all proofs ¢ timeps(¢) < h(||¢||).

If the computing time is bounded by an elementary function so is the size of
the output: if T is an elementary proof transformation then there exists also an
elementary function g such that for all proofs ¢:

(%) 1)l < gllell)-

If (%) holds for T" we speak about an elementary output complexity. However, for
establishing upper bounds, output complexity (comparing just the lengths of ¢ and
its transformation 7'(¢)) is not sufficiently informative. Consider, e.g., the following
transformation to be defined below. Given a traditional embedding T from classical
to intuitionistic logic (let us say the Kolmogorov translation) we define a new embed-
ding 7" in the following way: T'(A) = A — A if A is provable in intuitionistic logic
and T"(A) = T(A) otherwise. Note that, clearly, T'(A) is logically equivalent to A
in classical logic. The mapping can be extended to proofs by translating classical
proofs of intuitionistically provable formulas A into (trivial intuitionistic) proofs of
A — A; if A is not intuitionistically provable we choose the original translation 7.
Then, obviously, there exists an elementary function g (the bound on the original
transformation 7T") such that (x) holds also for 77 and T” has elementary output com-
plexity. On the other hand, 7" is not even computable as it is undecidable whether
a formula is provable in intuitionistic logic. Therefore there is no recursive bound on
the computing time of T”. To exclude pathological transformations like this one, or
at least to dismantle their complexities, we choose nondeterministic time complex-
ity as the main complexity measure for our transformations. Note, however, that
for establishing lower bounds, output complexity gives more information that just
estimating the computing time of T'(¢). To make our results sharper we use time
complexity for upper bounds and output complexity for lower bounds.

3 On elementary translations of classical to intuitionis-
tic proofs

In this paper we basically investigate two translations from classical to intuitionistic
logic: the Kolmogorov translation (double negation is used for any occurrence of a

904



ON THE COMPLEXITY OF TRANSLATIONS

logical connective) and the Glivenko translation (the formula as a whole is doubly
negated) and its extendion to first-order logic. We also investigate a new extended
form of the Glivenko translation; this translation is largely defined as the Kuroda
translation with the difference that only strong occurrences of Va.A(z) is translated
to Vz.—~—A(z). Finally we introduce a so-called optimized translation where the
translated formulas can be simplified via propositional tautologies. For a good survey
of different negative translation see [§].

3.1 The Kolmogorov translation

We first define the translation of formulas and afterwards the translation of proofs.
We denote that translation (on formulas and proofs) by W

Definition 5 (Kolmogorov translation for formulas [15]).

Y (A) = ~A for atoms A, Yk (=B) =~k (B),
’LﬂK(B ¢ C) = _\ﬁ(i/}K(B) o ZZJK(C)) for o € {/\,\/, —)},
wK(Q:EB) = —|—|Q:E.¢K(B) for Q € {V, 3}

Next we define a translation of sequents:

Definition 6 (Kolmogorov translation of sequents). By Definition |5, for every A
there exists a B s.t. ¢¥x(A) = ==B. So if ¢Yx(A) = =B we define ¢} (A) = -B
(i.e. for all A we get 9} (A) = Y (A4)).

Let S be the sequent Aq,..., A, F By,..., By, and g for formulas as in Defi-
nition 5. Then we define

Vi (S) =Y (A1),..., ¥k (An), Vi (B1), ..., ¥k (Bn) F,

For A = Ay,..., A, we write Y (A) for Y (A1),...,¥x(A,) (the same for
Ui (A)).

The translation of proofs via 1, which we denote by Vg, is defined stepwise
via the last inference in the proof to be translated. A particular feature of this
translation is the absence of the cut rule (except for the simulation of cut itself),
hence cut-free proofs are directly translated to cut-free proofs.

Definition 7 (Kolmogorov translation of proofs). We first translate the (atomic)
axioms:

K-ax: V(A F A) = ¢(A) where ¢(A) is an intuitionistic proof of the sequent
-—A,~A . Note that, as A is an atom, ~—A, A= Vg (A), Vi (A)F.
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Now we assume inductively that we have already translated the proofs @1, @2 of
S, 52 to proofs Ui (p1) of Ui (S1) and to Wi (p2) of Wi (Sy). Consider a binary
rule joining @1, w2 to a proof ¢ of a sequent S. Then we construct a proof Vg (¢) of
Uk (S). The case of unary rules is analogous. We illustrate the transformation on
the rules A., A; — 1,V,., cut which are the last inferences of . The other cases are
analogous. Remember that -9} (A) = ¥k (A) for all formulas A.

K-A;: Let ¢ be the proof

(¢1) (¢2)
AFB,C AFB,D

A-B.OAD v

Then we define ¥ (¢) as

(‘IJK(%)) (Vi (p2))
Vi (A), Vi (B), ¢ (C)F Vi (A), Vi (B), Y5 (D) E
Vi(A), U (B F 05 (C) " (A, e (B) F ~ic (D)
Vi (A ), Vi (B) F 5 (C) A5 (D)
1/1K(«4),¢?<(B)ﬁ( & (C) Nk (D))

T

Ar

K

Note that —an( AT (D) = Y (C) A (D) and the end sequent of W g ()
is Y (A), V5 (B),v5(C A D) - what is exactly what we need.

K-A;—1: Let ¢ =
(1)
C,AFB

crnDArB M

Then Vg (p) =

(Vi (1)
Vi (C), YK (A), Y5 (B) -
Vi (C) ANYi(D), v (A), Y5 (B) -
Vi (A), Y5 (B) F = (v (C) ANpr (D))
(YK (C) NPk (D)), i (A), Y5 (B) F

By definition of ¢, the end-sequent of Uk (¢) is Y (CAD), ¢Yx (A), 5 (B) F.

Nl

r

K-V, Let p =
(1)
AF B, A(u)
AF B,Vz.A(x)
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Then Y (p) =
(Ve (901))
VK (A), Vi (B), P (Au)) -
U (A), P (B) F P (A(u))

r

Yy

K

1/11(( ) Vi (B) b Va1pg (A(z))
¢K( )7 (B),_\VQZ ¢K(A(x)) =
Note that the end-sequent of U (¢) is Y (A), V5 (B), Y5 (Vr.A(x)) F.

K-cut: Let ¢ =
(1) (p2)
THFAA ATIFA
T.IFA A W
Then we define Ui () as
(Ui (p1))

r

Uk (D), Y5 (A) F =i (A) Vi (A), v (), v (A) F
Note that =% (A) = Yk (A).

Proposition 1. The transformation Vg, the Kolmogorov transformation of LK-
proofs into LJ-proofs is

cut

(a) computable in polynomial time,
(b) transforms cut-free proofs into cut-free proofs.

Proof. (a) Consider an LK-proof ¢ and its translation ¥ (). Let K be a con-
stant greater or equal to the maximal number of sequents added in a transfor-
mation step of Ui and

o = max{||S|| S is a sequent in ¢}, nodes(¢) = number of nodes in .

For every sequent we have |9 (5)] < 4% ||S|. We assume K > 4. Then it is
easy to show by induction on the structure of ¢ that there exists a nondeter-
ministic Turing machime M computing W such that

timeyr (@) < K % o * nodes(p) < K * ||¢||?.
(b) Obvious as WUk (¢) contains cut only if there is a cut in ¢; the transformation

of all rules, except the cut rule, does not use cut.
O
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3.2 The extended Glivenko translation

The Glivenko translation [11,18] is originally defined for propositional logic and is
much simpler than the Kolmogorov translation: indeed if A is propositional and
classically valid (provable in LK) then ——A is intuitionistically valid (provable in
LJ). The Glivenko translation cannot be simply applied to first-order formulas as
the universal quantifier needs a special treatment (two additional “—”s have to be
introduced). In this paper we improve the treatment of the universal quantifier
by introducing the additional —— only for positive polarity. However, for proof
transformations, we have to distinguish whether a formula is an ancestor of a cut
formula or not (in the cut rule one and the same formula occurs in two polarities).

Definition 8 (the extended Glivenko formula transformation). We define a mapping
Y¢a from first-order formulas to first order formulas in the following way:

A) = —|—\¢G( ) for all formulas A,

AB) =9&(A) ApG(B), dg(AN B) = ¢g(A) Ag(B),

V B) = ¢4(A) VG (B), vg(AV B) =14g(A)Vig(B),

— B) = 1/1(;( )V Y (B), ¢5(A—>B)=¢§(A)—>¢5(B),
)—ﬁwc( ), ¢é(ﬁA)—ﬁ¢G( )
E))—HHJ%DG( (2)), Yg(Fz.A(z)) = Fv.4hg(A(z)),

)
) = Vae.~=pb(A(z)), bg(Ve.A(r)) = Vg (Az)),
) =15 (A) = A for atoms A.

?/)G
lb

Remark 2. Note that our extension of the Glivenko translation [11] differs from the
Kuroda translation [16] in the handling of the universal quantifier. While, in the
Kuroda translation, 1 (Vz.A) = ¢ (Va.A) = Vz.~—A independent of the polarity,
we have two different translations 1, wg of Vx.A dependent on the polarity. For
instance our translation of Vz.A — Vx.B (for A and B atoms) is

—~=(Vz.A(z) — Vz.-=A(x), instead of == (Vr.——A(z) — Ve.~—A(z).

In order to extend the Glivenko transformation above to proofs we have to define
translations for sequents first: if S: I' - A is a sequent we define

a(S) =F va(AT —\/A)

where A I' denotes the conjunction of formulas in I', \/ A the disjunction of formulas
in A. Note that

Foa(AT =V A) =F ==(A\vgT) = \/¥4(A)), where
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VoA, An) =Yg (A1), g (An), V5 (A - An) = 05 (A1), - 05 (An).
We first define the proof transformation W for cut-free proofs.
The Glivenko translation for cut-free proofs:

We define the proof transformation inductively via the last rule applied in a proof.
We carry out the construction in detail for the LK-rules

\/7'17 /\T7 —r, vT’a Ell? vla ElT-
e the case V,11:

Let ¢ be the proof

(¢1)
THA A
—
TFAAVDB

We assume that we already have an LJ-proof

Ve (p1) of F-=(Avgl) = (\/&(A) vyE(A).

We have to define an LJ-proof
Ualp) of F=—(AUGI) = (VUEA) V (B5(A) Vg (B))).
To make things simpler we introduce the following abbreviations:
Ave(T) =GNV UE(A) = D, ¢b(A) = Fyb(B) = H.

Then the task is to use the LJ-proof ¥ (¢1) of F =—(G — (D V F)) for constructing
an LJ-proof of
F==(G— (DV(FVH)).

We define g (p) =

(Pa(e1)) (Xv,1)
- ==(G = (DV F)) =~(G — (DV F)) F ==(G — (D V (F V H))

(G — (DV (FV H))

cut

where yv,, is an obvious LJ-proof.

e The case A;:
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Let p =
(¢1) (¢2)
TFAA THAB

I'AAAB "

We assume inductively that we already have proofs

Te(p1) of F==(AYg(T) = (V5 (D) Vi (A))) and
Ve (p2) of = ==(Avg(T) = (VYE(A) Vg (B))).

We have to construct a proof ¥g(e) of
F (A v = (\V9E(D) V (0 (A) AvE(B))).
We define G = A5 (T), D =V ¢L(A), F = ¢/ (A), H = ¢/ (B). Now
Ue(p1) proves F——(G = (DV F)), Ug(ps) proves F (G — (D V H)).
To define ¢ (p) we construct a proof x, of
-=(G = (DV F)),~~(G = (DV H)) F ~~(G = (DV (F A H)))

and use two cuts, one with W(p1), the other with Ug(p2).

It remains to define xa,; XA, =
9]
G,G,G— (DVF),G— (DVH)FDV(FAH)
G,G—(DVF),G— (DVH)FDV(FAH)
G—-(DVF),G— (DVH)FG— (DV(FAH))
G (DVF),G > (DVH),~(G—= (DV(EANH))F

Cl

r

~~(G = (DVF)),~~(G — (DV H)),~(G— (DV (FANH))) F Gt )

—~(G = (DVF),—(G = (DVH) F —(G = (DV (FAH))

where ' =

D-D Vo1 (obvious)
DEDV(FENH) T HFFFAH
DED . HDFDV(FNH) " HFFDV(FAH) \/'2
DFDV(EAH) H,DVFFDV(FAH) !

GG DVHDVEFDV(FAH)
GG G,G = (DVH),DVFFDV(FAH)

G,G,G— (DVF),G— (DVH)FDV (FAH)

e The case —,:
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Let ¢ be the LK-proof
(1)

ATHA B
A A—>B
By induction hypothesis we may assume that there exists an LJ-proof
Va(p1) of = —==((vg(A /\/\¢G \/?/)G ) VPG (B))).-
We have to construct an LJ-proof
Va(p) of F==(A\vgT) = (Veg(A (4) = ¢5(B)))-

We abbreviate:

G=N\va), D=\ v(A), F=vg(A), H=1v4i(B).

Thus ¥ (p1) is an LI-proof of F =—=((FAG) — (DV H)), and we need an LJ-proof
of
F-==(G— (DV(F— H)).

We first prove the lemma
(S1): —((FAG) = (DVH))F-—(—-~(FAG) — —-—(DV H))
which is an instance of the (easily) LJ-provable sequent
(X =2Y)F (X - -Y).
So let x be the LJ-proof of Sy. A cut with ¥ (p1) then gives the proof x' of
F==(=—(FAG)— —-—(DV H)).
Let x” be an LJ-proof of
—=(-=(FAG) = —-—~(DVH))F-~(G— (DV(F — H)).
Then a cut of x' and x” eventually gives ¥ (p) with the end-sequent
F--(G— (DV(F — H)).
It remains to define x”. " =
(x2) (X3
(G- (DVF —-H)F-~(FANG) —-—~(DVH),~(G— (DV(F—H))t
-(G—» DV F —H)),~(G—=(DV(F—H)),—~(FANG)—-—-(DVH)F

~(G = (DV(F > H)),—~(FAG) > ——(DVH)F
“~(~~(FAG) = —~(DVH) F (G — (DV(F — H))

—1

C
(_‘l + _‘T)*

911



M. BaAaz AND A. LEITSCH

Where xo =

(X4)
-(FAG),G,F+-H

“(FAG),GFF > H
~(FAG),GEDV (F — H)
~(FAG)FG— (DV(F — H))
“(FAG).—~(G = (DV(F = H))F
(G (DV(F = ) F——FANG)
and y4 is a short and obvious LJ-proof. We define x5 =

r2

r

T

(xe)
(xs) HG+F—H
D,GFDV(F—H) HGFDV(F—H) "

DFG—(DV(F—H) =~ HFG—(DV(F—H)

D.~(G = (DV(F S H)F H,ﬁ(G—>(D\/(F—>H))%;l
DVH,~(G— (DV(F—H)F :
~~(DVH),~(G— (DV(F — H)) -

_‘T‘+_‘l

where x5, xg are trivial LJ-proofs.
e The case V,:

Let ¢ =

(1)
'+ A, C(u)

L+AVeC(z) "
By induction hypothesis we assume that we have an LJ-proof
Va(pr) of F (g (T) = (WE(A) Vi (C(u))).
we define C' = ¢5(T), D = ¥ (A),C = 5 (C(u)).
We first construct an LJ-proof

x1 of ==(C — (D V C(u))) F ==((C A =D) — C(u)).
by combining ¥ (1) and x1 by cut we obtain a proof
x2 of F==((C A=D) — C(u)).

We use an LI-proof y3 of ~=((C'A—=D) — C(u)) F =—(C' A—=D) — ——C(u) and cut
x2 with x3. The result is a proof

x4 of F==(C A=D) = —=C(u).
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We cut x4 with an obvious LJ-proof x5 of
——(C' A =D) = ==C(u), =~(C A =D) F ==C(u)

and obtain a proof xg of ==(C A =D) F ==C(u).

Note that u is not free in ~—(C'A=D) (as u is not free in ¢4 ('), % (A)). We define
X7 =
(xe)
——(C A=D) F ==C(u)

A T

—\ﬁ(c VAN ﬂD) FVa.—— (x) N
F —=—(C A =D) — Yz.~—C(z)

Let xs be an LJ-proof of
(XAY)=>ZF (X AY) = Z).
Thne using cut between y7 and xs(C, ﬁD,Vx.—'—'CA'(:c)) gives a proof
x9 of F==((C A=D) — VYz.~-C(z)).
Let x10(X,Y, Z) be an LJ-proof of
—(XAY) = 2)F =(X = (YVZ2)).
Then a cut of x9 with x10(C, D,‘v’m.—'—CA’(az)) gives a proof
x11 of F==(C = (D VVz.==C(z))).
By definition the last sequent is
(g (T) = (VE(A) VVz.m i (C(2))))

which is ¢¥e(I F A, V2. A(z)) (note that 1) (Vz.C(z)) = Vo.~—¢L(C(z)) by defini-
tion of ¢g). Therefore y1; is the desired proof Ug(p).

e The case J;:
Let p =
(1)
C(u), ' A .
.C(z),TFA
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where u is not free in I'; A. By induction hypothesis we assume that we have a proof
Ue(py) of
(g (C(w) A (T)) = ¢4 (A)).

we define C(u) = g (C(u)), C =1g(), D =g(A).

Let x1(X,Y) be an LI-proof of =—(X — Y) F (==X — ==Y). We use x1(C(u) A
C, D) and cut it with the proof U (p1). The result is a proof

x2 of F==(C(u) A C) = —=D.
Then we cut y2 with an LJ-proof y3(—~—(C(u) A C), ~—D) for
x3(X,Y) being an LJ-proof of X, X — Y F Y and obtain a proof

x4 of ==(C(u) A C) F ==D.

Let x5(X,Y) be an LJ-proof of X, Y F =—=(X AY). Then cutting x5(C(u), C) with
X4 gives a proof
x6 of C(u),C+ —=—D.

Let x7 be an LJ-proof of =D F =—=D. Then we define yg =

- (xe)
F—-D
(X?) C’(u),CA -
-DF-—-D -—--D,C(u),CHF
= cut
C(u),C,—~D F
and xg = (xe)
X8
(j( ),C,—D F
30.0(z),C,~DF .
— N1+ N2+ ¢
Jx C( YAC, =D n
r 1
2.C(x)NC),-D F

-3
~~((3z.C(x) A C) F ——D
- —=((F32.C(x) A C) = ~=D

Note that u does not occur free in C, D (which is 15 (T),15(A)). Finally, let
x10(X,Y") be an LJ-proof of - (-—X — —==Y) — =—=(X — Y). Then by cutting xg
and x10(3z.C(x) A C, D) we obtain a proof

r

x11 of =—((3z.C(z) A C) — D)
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which (by 95 (F2.C(x)) = Jz.4p5(C(x))) is an LJ-proof of ¢¢(Iz.C(z),I' - A) and
we define ¥ (¢) = x11.

e The case V;: analogous to ;.
e The case 3,:

Let p =

(¢1)
'+ A C(t)

LA 32.C(x) "

we assume that we already have a proof Wg(p1) of b —=(¥5(T) — (v&h(A) vV
Y& (C(t)))). Like in the case V, (proof x7) we obtain an LJ-proof

o1 of == (Y (T) A =G (A)) F Iz (C(2))

Then we cut with of a proof x5 (to be defined below) of
Jz. L (C(x)) F ~=3.4pf(C(z)) and obtain a proof

02 of ==(Yg(T) A= (A)) F =3y (C()).

The remaining part of the derivation is the same as in case V, and we obtain a proof
Ve(p) of 2=(vg(T) = (& (A) V¢ (32.0(2))).

We set C(z) = ¥4 (C(x)) and define x3:

N

Clu) - C(u)

() F 32.C(x)
Cu), ~3z.C(x)
——C(u), -3z.C(z)
~—C(u),F -—=3z.C(x)
Jz.-—C(z) F =—32.C(x)

—_

ﬂr+_|l

J;

Note that a similar derivation for the universal quantifier is impossible: Ya.~—C(z) -
—=Vz.C'(x) is not derivable in LJ! This concludes the translations of cut-free proofs.

The extended Glivenko translation for proofs with cuts:

As the cut-formula appears in both polarities the translation of V. A(z) via ¥ does
not work:

we have ¥ (Vo.A(z)) = Vo5 (A(z)) but vh(Vo.A(z)) = Vo~ b(A(2)).
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So we define a translation 1, (a variant of ¢¢) for formulas which are ancestors of
a cut in a proof: ¢r(A) = == (A), where 9 is not sensitive to polarity and, in
particular, ¢ (V. A(z)) = Yo.— -5 (A(x)). We define the proof transformation W,
corresponding to the extended Glivenko translation with cut.

Definition 9. Let I' H A be a sequent occurring in an LK-proof ¢. Then I' can
be partitioned into formulas I'. which are ancestors of a cut-formula and formulas
I’ which are ancestors of a formula in the end-sequent; in the same way we can
partition A into A, and A.. Therefore any sequent I' - A occurring in ¢ can be
translated as follows:

wG’(Fm Fe F Aw Ae) =
_'_‘((/\ w/G(FC) N qua’(re)) - (V 7!}2}(Ac) v \/@ZJZS(Ae)))

It remains to simulate the cut rule. Let x be a subproof of ¢ of the form

(Xl) (Xz)
Fe,Teb A, A, A AT TTe F A, A

FC) HC7 F€7 HE }_ AC? Aea AC7 A@

cut

and assume we have already constructed the proofs W¢ (x1) and ¥&(x2). Then
Ue(x1) is a proof of

SN GET A ABET) = (V 9BV V65D V E5(4)))

and U (x2) is a proof of
“((We(A) A N6 Me) A N\ vg (L)) = (\ va(Ae) vV (A

Let us define
= AveTo) A N\vg(Te))
= Vue(ao) vV vh(Ae),
= Ave(l) A N\ vg(I)),

( )

)-

)

H T QW
|

= \/1/10 Ac \/\/@% e
A* = (A

Then V¢ (x1) proves - ~—(B — (C'V A*)) and U (x2) proves F == ((A*AD) = E).
We define ¢ (x) as

)

(W (x1) (W5 (x2)
F=—(B = (CVA*) F-=((A*AD)~ E)
F==(B = (CVA ) A=-=((A"AD) > E) " o

- ~=((BAD) — (CVE)) cut
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where g is a LJ-proof of the sequent
-—(B—= (CVA)A-~((A*"AD) = E)F—-=((BAD)— (CVE)).
Note that =—((B A D) — (C' V E)) is just ¢¥g(Te, e, e, Il F Ac, Ac, Ac, Ae).

Remark 3. If we had used the extended Glivenko translation without taking care of
the cut status of the formula the end-sequent of ¢ could be of the form

-—=(B — (CV-"=A")AN—-~((A"AND) - E)F-—((BAD)— (CVE)).
But this sequent is not provable in LJ.
Example 1. Let A, B, C be formulas and ¢ be a proof of the form

(¢1) (v2)
Ve.A+Voe.B VYx.BFVz.C

Ve.AFVz.C

cut

Then V¥ (p) =
(PG (1) (Ve (p2)
F == (Vo.apg(A) = VoL (B)) b == (Vo= (B) = Vo.m 4 (0))
- (Ve abg(A) = Ve (B) A -~(Vem—dp(B) = Ve m—di(C) " e
F == (Vrpg(A) = Ve~ b(C))

cut

where ¢ is an LJ-proof of

(Vo5 (A) = Vo= (B)) A == (Ve.mp(B) = Vo.~—(0)) F
(V.o (A) = Vx.—'—'wg((}’)).

Theorem 1. The transformation U¢ from proofs ¢ of S in LK to proofs ¥ (p) of
Y (S) is computable in nondeterministic polynomial time.

Proof. Let ¢ be a proof of S. The situation is similar to that of the Kolmogorov
translation. Again we define a constant K which is bigger than the number of
sequents added in a rule simulation and ¢ as the maximal complexity of a sequent
in ¢. Every simulation step of a rule in LK requires LJ-proofs with < K rule
applications. Moreover there exists a constant ¢ s.t. |[Vg(5)| < cx*||S|. Here we
have to observe that the LJ-simulations have auxiliary proofs with axioms of the
form A+ A, where A is nonatomic. But A+ A has a proof from atomic axioms of
a complexity linear in || Al (see [3]). Therefore, like for W g, there exists a constant
L and a nondeterministic Turing machine M computing ¥ such that

timey (@) < L+ o % nodes(p) < L * ||
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Remark 4. In contrast to the Kolmogorov translation, cut-free proofs are trans-
lated to proofs with cut. We will deal with the complexity of translating cut-free
LK-proofs of - A into cut-free LJ-proofs of 1(A) using another form of proof
transformation in Section [l

3.3 Optimized translations

Translations of formulas A (provable in LK) to formulas A* (provable in LJ) can
be simplified by first simplifying the formulas A under logical equivalence based on
propositional tautologies; i.e. we first replace A by a tautologically equivalent Ay
and then define A7. We consider the Kolmogorov translation ¢k under such a form
of optimization. We define a formula transformation s; simplifying formulas:

o If Ais an atom then sf(A) = A.
o If A is a tautology we define sf(A) = T.
o If A is a tautology we set s¢(A4) = L.

e If neither A nor —A is a tautology and A = BoC for o € {A,V,—} we define
sf(A) =o0(sf(B)oss(C)) where o is the following simplification operator:

—o(FANL)=0(LAF)=1,0(FANT)=0(TAF)=F,
—o(FV9l)=0(LVF)=F,0(FVT)=0(TVF)=T,
—o(l—=>F)=T,0(F—>1)==-F,0(T - F)=F,0o(F—>T)=T.

o If neither A nor —A is a tautology and A = —B then s¢(A) = o(—s¢(B)) for
o(-T)=1L,0(-L)=T.

Definition 10 (optimized Kolmogorov translation). For all formulas A we define

VKo(A) = Vi (sf(A)).

Remark 5. Note that ¢, fulfils all the required properties: A <+ ¥ (s5(A)) is prov-
able in LK and 1 (s7(A)) is provable in LJ. Moreover, the formula transformation
is computable in exponential time (which is the cost for computing sy).

For a sequent of the form S: F A we define Wg,(S) =+ Wio(A). We have seen
that Wy is a polynomial nondeterminstic proof transformation mapping cut-free
proofs in LK to cut-free proofs in LJ. While the formula transformation ¢, is ele-
mentary (computable in exponential time) there exists no corresponding elementary
transformation for cut-free proofs:

Lemma 1. There exists a sequence of formulas Fy, s.t.
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(1) There are cut-free LK-proofs of ¢, of = Hy which are computable in nonde-
terministic elementary time.

(2) For all cut-free LK-proofs 1 of & xo(Hy) we have ||]] > 1/2 % s(n) (see
Definition 3).

Proof. In [21] Statman proved the nonelementary complexity of cut-elimination. In
particular, he defined a sequence of formulas Gy, s.t. ||Gy| < k™ (for a constant k
independent of n) and there are proofs ¢,, of G, (with cut formulas Ay, ..., A2, y1)
with [|@n|| < h(]|Gy||) for all n (where h is an elementary function independent
of n), but ||| > 1/2 % s(n) on cut-free proofs 1) of G,. In [2] Statman’s proof
sequence is formalized in LK. As the cut formulas are closed, the proofs ¢, with
cuts Aj, ..., As,11 can be transformed into cut-free proofs of A1 — Aq,..., 4, —
A, F G, and, finally, into cut-free proofs

oy of = Hy for H, = (A1 = A) A AN (A, = Ay)) = Gy

The construction of ¢} can be done in nondeterministic polynomial time in terms
of ||en|l. Therefore there exists an elementary function g and a nondeterministic
Turing machine M computing ¢}, s.t.

tim@M(l_ Hn) < g(HHnH)

Thus the sequents - H,, have “short” cut-free LK-proofs. Now let us consider
FYko(Hy). As Yk, eliminates all tautologies we get

Fko(Hy) =F Gy.

But, by definition of the G,,, there is no elementary bound on cut-free proofs of
F G, in terms of ||G,||. In particular there is no sequence of cut-free proofs 1, of
F Y ko(Hy,) which can be computed in elementary time. O

The following theorem states that the proof complexities of the translations ¥ g
and 9x, strongly differ.

Theorem 2. There are sequences of formulas = H, s.t. there exists cut-free LJ-
proofs xn of & Y (H,) which can be computed in elementary time, but there exists
no elementary bound on the lengths of cut-free LI-proofs of = g o(Hy).

Proof. By (1) in Lemmal[I] we obtain a sequence of cut-free LK-proofs of - H,, which
can be computed in elementary time. By Proposition [1| we also obtain a sequence
of cut-free LJ-proofs of - ¥ (H,) which can be computed in elementary time. By
(2) in Lemma 1 there is no elementary bound on cut-free LK-proofs of - ¢, (Hy),
thus there is no such bound on the LJ-proofs of these sequents. ]
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Remark 6. Theorem [2]does not only hold for the Kolmogorov translation but also for
the extended Glivenko translation and, more generally, for any proof transformation
obtained from a negative translation. If negative translations induce additional cuts
(like in the extended Glivenko translation) we do not have a direct transformation
of cut-free proofs into cut-free proofs; but in all cases where the complexity of
the elimination of these additional cuts is elementary (and thus below the worst
case complexity of cut-elimination) a similar result as this of Theorem 2 can be
obtained. Negative translations are widely used in proof mining (see e.g. [14]).
Theorem 2 indicates a potential impact of propositional optimizations (by increasing
the complexity of proof normalization) on the results in the analysis of mathematical
proofs.

4 The method CERES

In Section 3 we defined several proof transformations from LK to LJ based on
stepwise translation of inferences. In this section we introduce a method of proof
transformation (from LK to LK with only atomic cuts) which is radically different
as it is global and takes into account the structure of the whole proof. This method,
called CERES [4,)5], is a cut-elimination method that is based on resolution. We will
apply CERES to investigate the complexity of translating cut-free proofs of - A (for A
without strong quantifiers) into cut-free proofs of - ¢ (A) (the Glivenko translation
of A).

CERES roughly works as follows: The structure of a proof ¢ containing cuts is
encoded in an unsatisfiable set of clauses CL(¢p) (the characteristic clause set of ).
A resolution refutation of CL(¢) then serves as a skeleton for an atomic cut normal
form, a new proof which contains at most atomic cuts. The corresponding proof
theoretic transformation uses so-called proof projections ¢[C] for C' € CL(y), which
are simple cut-free proofs extracted from ¢ (proving end-sequent S extended by the
atomic sequent C'). In [5] it was shown that CERES outperforms reductive methods
of cut-elimination (a la Gentzen or Tait) in computational complexity: there are
infinite sequences of proofs where the computing time of CERES is nonelementarily
faster than that of the reductive methods; on the other hand a nonelementary speed-
up of CERES via reductive methods is shown impossible.

4.1 CERES in classical logic

In this section we describe the original CERES method which was designed for classical
logic. Given an LK-proof ¢ of a skolemized sequent I' - A, the main steps of
(classical) CERES are:
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1. Extraction of the characteristic clause set CL(y).
2. Construction of a resolution refutation of CL(y).
3. Extraction of a set of projections 7 (C) for every C' € CL(yp).

4. Merging of refutation and projections into a proof ¢* (a CERES-normal form)
with only atomic cuts.

For extracting CL(y) we need the concept of formula ancestors, which is defined
below.

Definition 11 (Formula ancestor). Let v be a formula occurrence in a sequent
calculus proof . If v is a principal formula occurrence of an inference then the
occurrences of the auxiliary formula (formulas) in the premises are ancestors of v. If
v is principal formula of a weakening or occurs in an axiom then v has no ancestor.
If v is not a principal occurrence then the corresponding occurrences in contexts of
the (premise) premises are ancestors of v. The ancestor relation is then defined as
the reflexive transitive closure.

We will use the following proof as our running example to clarify the definitions
below.

Example 2. Below we give a proof with two cuts where the cut ancestors are
marked with *.

P(y) - P(y)*

P+ Pla) P(y), CP(y)* -
~P(a), P(a)* - Ply) F (-=P(y)*
—P(a) F (~P(a))* :l Vz.P(z) F (-=P(y))* lv
-P(a), (=—P(a))* Vz.P(z) b (Vo.—=P(z)* "
=P(a), Vz.—m=P(x))* - ! Vz.P(z) - Q(b), (Vz.—m—P(z))* Tt
~P(a),Ya.P(x) - Q) PP P EPE)
=P(a) - Vz.P(z) — Q(b) P(c) + P(c) A,

—P(a), P(c) F (Vz.P(z) — Q(b)) A P(c)

Intuitively, the clause set extraction consists in collecting all atomic ancestors of
the cuts which occur in the axioms of the proof. The clauses are formed depending
on how these atoms are related via binary inferences in the proof.

Definition 12 (Clause). A sequent I' - A is called a clause if I and A are multisets
of atoms.

Definition 13 (Characteristic clause-set). Let ¢ be a proof of a skolemized sequent.
The characteristic clause set is built recursively from the leaves of the proof until
the end sequent. Let v be a sequent in this proof. Then:
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e If v is an axiom, then CL(v) contains the sub-sequent of v composed only of
cut ancestors.

o If v is the result of the application of a unary rule on a sequent u, then

CL(v) = CL(p)

e If v is the result of the application of a binary rule on sequents p; and pus,
then we distinguish two cases:

— If the rule is applied to ancestors of the cut formula, then CL(r) =
CL(p1) U CL(p2)

— If the rule is applied to ancestors of the end sequent, then CL(v) =
CL(p1) x CL(p2)

Wherd}
CL(p1) x CL(u2) ={Co D | C € CL(u1), D € CL(u2)}-

If vy is the root node CL(1yp) is called the characteristic clause set of .

The clause set of our proof ¢ from Example |2 is
CL(¢) ={P(a) - P(c); P(a),P(c)b; = P(y),P(c); Pc)F P(y)}

The next step is to obtain a resolution refutation of C'L(y). It is thus important
to show that this set is always refutable.

Theorem 3. Let ¢ be a proof of a skolemized end-sequent. Then the characteristic
clause set CL(y) is refutable.

Proof. In [1},4]; basically the proof consists in the construction of an LK-derivation
of the empty sequent from CL(p), thus obtaining a refutation of CL(y). O

Definition 14 (Resolution calculus). The resolution calculus consists of the follow-
ing rules:
TFAA TLAFA DA AFA THAAA
I'o,Io - Ao, Ao To,ActAc ' Tok Ao, Ac "

Where o is the most general unifier of A and A’. It is also required that I' - A, A
and IV, A’ = A’ are variable disjoint. A resolution derivation from a set of clauses C
is tree derivation based on the rules above where all clauses in the leaves are variants
of clauses in C. A resolution derivation of F from C is called a resolution refutation
of C.

!The operation o represents the merging of sequents, i.e., (T A)o (IFA) =T, T" F A, A,
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Example 3. We give a resolution refutation of CL(p) for ¢ in Example 2:

P, PlOr P@FPE P@.POF
Plor - P(2), P(c) P(a), P(a) -
R Cy
F P(2) P(a) R
}7

Each clause in the clause set will have a projection associated with it. A pro-
jection of a clause C is a derivation built from ¢ by taking the axioms in which the
atoms of C occur and all the inferences that operate on end-sequent ancestors. As
a result, the end-sequent of a projection will be the end-sequent of ¢ extended by
the atoms of C.

Definition 15 (Projections). Let ¢ be a proof and & the last (lower most) inference
with conclusion v. We define S(v) as the sequent occurring at node v and p(v) as
the set of projections {7(C)|C € CL(v)}. Each projection 7(C) is a cut-free proof
of the sequent S(vp) o C' where vy is the root node and S(vp) the end-sequent.

e If ¢ is an axiom, then p(r) = {¢}.
o If £ is a unary rule with premise u:

— If € operates on a cut ancestor, then p(v) = p(u).

— If € operates on an end-sequent ancestor, then p(v) is the set of:

m(C)
¢

§

such that 7(C;) € p(u).
o If £ is a binary rule with premises p; and psa:

— If € operates on a cut ancestor, then p(v) = p(p1) U p(u2).

— If £ operates on an end-sequent ancestor, then p(v) is the set of:

2

¢

such that 7(C}) € p(u1) and 7(C7) € p(ua).

x(ChH) 7(C?
(C7) (J)é
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In each step, it might be necessary to weaken the auxiliary formulas of an inference.
Moreover, if not all formulas of the end-sequent are present after constructing the
projection, they are weakened as well.

Note that no rule operates on cut ancestors, therefore they occur as atoms in
the end-sequent of the projections.

Example 4. The projection of ¢ (as defined in Example 2) to the clause
F P(y), P(c) (where these atoms are marked with ) is

P(y) - P(y)*
Va.P(z) F P(y)*
ve.P(2) FQW), Py , Pl F Py
FVa.P(z) — Q(b), P(y)* P(e) b P(o), P(e) |
P(c) - P(y)*, P(c)*, (Vz.P(z) = Q(b)) A P(c) ;}l
—P(a), P(c) - P(y)*, P(c)*, (Vo.P(x) — Q(b)) A P(c)

Given the projections and a grounded resolution refutation, it is possible to build
a proof @ of I' - A with only atomic cuts.

Vi

T

r

Definition 16 (Context product). Let C be a sequent and ¢ be an LK derivation
with end-sequent S such that no free variable in C occurs as eigenvariable in . We
define the context product C' x ¢ (which gives a derivation of C' o S) inductively:

e If ¢ consists only of an axiom, then C' % ¢ is composed by one sequent: C' o S.

e If © ends with a unary rule &:
/

(p/
s
g ¢
then we assume that C' x ¢’ is already defined and thus C % ¢ is:

C*
C’OS’g
CoS

Since C' does not contain free variables which are eigenvariables of ¢, the
context product is well defined also for & = V,., 3;.

e If ¢ ends with a binary rule &:

Y1 P2
S1 So
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then assume that C'x 1 and C % g are already defined. We define C' % ¢:

Cxp1 Cxipg
0051 COS2

CoCoS *5
Cos ¢

if € is a multiplicative rule; in case £ is additive no additional contractions are needed.

If we apply all most general unifiers in the resolution proof v we obtain a proof
in LK (in fact only contractions and cut remain). If yo is such a proof and we
apply a substitution replacing all variables by a constant symbol we obtain a ground
resolution refutation. Note that after applying the most general unifiers to v we
obtain a derivation in LK where the resolution rule becomes a cut rule. For a
formal definition see [1].

Example 5. Consider the resolution refutation v in example [3| and apply the sub-
stitution o: {x < a, z « a}; then we receive the ground resolution refutation v': vo
where 7/ =

P(c) - P(a) P(a),P(c)F out
P(c), P(c) ‘ P(a)F P(¢) P(a),P(c) ut
P(e) + F P(a), P(c) cut P(a),P(a) - ‘
F P(a) P(a) F
= cut

Note that 4/ is an LK-refutation of ground instances of clauses in CL(yp).

Definition 17 (CERES normal form). Let ¢ be an LK proof of a skolemized sequent
S, CL(yp) its clause set and p a grounded resolution refutation of CL(yp). We first
construct ¢’ = S x . Note that this is a derivation of S from a set of axioms C oS,
with C' € CL(y), which are exactly the end-sequents of the projections 7(C) of .
Now we define ¢(p) by replacing all axioms of ¢’ by the respective projections. By
definition, ¢(p) is an LK proof of S with only atomic cuts. We call it the CERES
normal form of ¢ with respect to o.

Example 6. Consider the characteristic clause set
CL(¢) ={C1: P(a) F P(c);Cy: P(a),P(c) F;Cs: + P(y), P(c); Cyq: P(c) - P(y)}

and the grounded resolution refutation 4’ from Example [5| Then ¢(v'), the CERES
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normal form of ¢, is defined as

m(Cy)o w(Cq)o

(P(e), P() ol T & (O w(Co)o
(PPl " rCy)o , (P@.P@P)elT cut
(F P(a)) oT® “ T P@nernr
5 cut
T

where I' = =P(a), P(c) - (Vx.P(z) — Q(b)) A P(c) is the end-sequent of .

4.2 CERES in intuitionistic logic

For CERES in classical logic any resolution refutation of the characteristic clause set
CL(¢p) of a proof ¢ can serve as a skeleton for a CERES-normal form. In intuitionistic
logic, however, this is impossible as the resulting CERES normal form may be classi-
cal. The example below [20] demonstrates that the result may be even essentially
classical, in the sense that even by eliminating the cuts in the classical CERES-normal
form we do not obtain an intuitionistic proof.

Example 7. Let ¢ be the following (propositional) LJ-proof:

PP
(-P)", PF
PP _ w .
P -PF &Py, =Pk P EP
PF P* “Pr(-P) "~ _(P,-=PFP " P*-=PFP !
PrP VP Sprpvp . CPF—P=P " PPEPoP
PV-PF P~V P : P*V-PF-—~P=P . :

PV-PF-—-P—P
For ¢ in Example [7] we obtain
CL(g)={P+P; FP ; PFk}.

In most resolution refinements tautologies can be eliminated without loss of com-
pleteness. So we “ignore” the clause P F P and construct the following obvious
resolution refutation v =

FP Pk

- R

The next step is to construct the projections o[ P] and ¢[P F]|. We will use
so-called o-projections to facilitate the analysis. The only difference to the regular
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projections is the lack of a weakening of the left-side formula P V =P in the end.

Prp
FP,-P "
— _|l
~—~PF P PEP

~—~PFP*P ' . P ,—PFP
FPr PP " PPr-—Po>P

s

The inferences marked by 1 violate the restrictions of LJ. This makes it a classical
non-intuitionistic derivation.

Putting the projections and the refutation + together we obtain the following
CERES-normal form:

_pPEP*

Fpr-p T

e — _|l

PP, PP,
—PF P*, P P* ——PF P

T

FP*—-P—P " P°F-—PP
F——P — P,——P — P

F——P—P
Pv-PF—--P—>P

cut

(a

wq

The proof is essentially classical as it contains a derivation of -——P — P which
is not intuitionistically provable. If the full projections are used the situation is the
same. The left formula PV —P would be weakened in the projections and not used
in the proof of =——P + P at all. We see that, after applying CERES based on the
refutation ~y, we got a proof with atomic cuts, but of a classical formula.

We have seen above that CERES, when applied to intuitionistic proofs, may yield
CERES-normal forms which are classical. There are, however, subclasses of intuition-
istic proofs where the usual CERES method works, provided we restrict the resolution
calculus (i.e. we use resolution refinements) and apply a postprocessing procedure
to the CERES-normal form. Indeed, if ¢ is a skolemized proof of a sequent I'
(the succedent of the end-sequent is empty) and the resolution refutation belongs
to the negative refinement of resolution then the CERES normal form (defined as in
Definition [I7] can be transformed into an intuitionistic proof.

Definition 18. An LJ-proof ¢ of S belongs to the class LJ_ if S is skolemized and
is of the form T" I-.

Definition 19 (Negative resolution refinement). A resolution derivation is called
negative if, in every application of the rule R, one of the clauses in the premise is
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negative and the only factoring rule is C} applied to negative clauses, i.e. all rules

are of the form:
'-A,A BI'F I'A,B+

I'o,IVo - Ao I'o, Ao -

@

where I' - A, A and B,I” | are variable disjoint and o is a most general unifier of
A and B. Negative resolution deductions are defined like in Definition

Theorem 4. The negative resolution refinement is complete.
Proof. By Theorem 3.6.1. in [17] and by sign renaming. O

Example 8. The resolution refutation defined in Example 3 is a negative resolution
refutation.

From Theorems [3] and [4] we conclude that there is always a negative resolution
refutation of the clause set.

We have seen in Example [4] that, even for intuitionistic input proofs, the pro-
jections obtained from it might be classical. But, for proofs in LJ_, projections of
negative clauses are always valid intuitionistic derivations.

Theorem 5 ( [20]). Let ¢ be an LJ-proof. Then the projections of negative clauses
are valid LJ derivations.

Proof. The projections are obtained by applying inferences from ¢ that operate on
end-sequent ancestors. Since this is an LJ-proof, these are initially valid intuition-
istic inferences. The only thing that changes on the projections’ sequents (to which
the inferences are applied) is the occurrence of extra atoms from the clause. Given
the single conclusion restriction of LJ, the only time this is violated is when atoms
occur on the right side of the sequent. As this is not the case for negative clauses,
the rules in the projections of such clauses will be single conclusion and therefore
the projection itself will be a valid LJ derivation. O

This procedure of obtaining a negative CERES normal form from an LJ proof
@ is called negative CERES and we will denote the proof with atomic cuts obtained
by ¢. The only modification of negative CERES over the CERES method is the
enforcement of negative resolution.

Since we are using negative resolution and the end-sequent of ¢ is negative, every
atomic cut in ¢ will have the shape:

TFAA AT+
I,T'FA

cut
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Note that, since projections might be classical derivations, ¢ may also be a
classical proof. Nevertheless it can be transformed again into an intuitionistic proof
by removing the atomic cuts.

Since the original proof was in a single conclusion calculus, we know that every
sequent with more than one formula on the right side must contain at most one end-
sequent ancestor, the other formulas being atomic cut-ancestors. Therefore, if we
can eliminate the atomic cuts maintaining always at most one end-sequent ancestor
on the right side of every sequent, we will obtain an LJ proof. Now we show how
to achieve this by insisting on a specific discipline for reductive cut-elimination.

Definition 20 (Left-shift cut-elimination [20]). Let ¢ be an LJ-proof with only
atomic cuts. We call left-shift cut-elimination the process of removing the atomic
cuts that, starting from the top most cuts down, (1) permutes the cut over all the
rules of its left branch until reaching an axiom and (2) eliminates the cut by using
the proof on its right branch. The permutation rules (1) are

(1) (¢1) (2)
I F A A (02) ©EALA TLAE
TFA A I, Ak T T F A e
. cut ey
ITFA - OTFA
(1) ,(<P2) / (1) (@:f/)
DAL A TUEAY () EALA AT ()
ITFAAA ATE 0" T F A I* - A’
T, T F A, A v 0,0, T FA,A
(1) / (Sﬁz)l / (@2)/ (@3/)
M A* I A" A - A™* A AT+
) (903) (901) ) ) cut
TTFAAA AT"F I* - A* I T F A
0T, T"F A, A s DT, T"F A, A

The elimination rule (2) is

()
AFA T/ AF (¢)

var Mrar

Theorem 6 ( [20]). Let ¢ be a proof in LI_ and ¢ the negative CERES normal
form obtained with negative CERES. Then eliminating the cuts from @ using left-
shift cut-elimination yields an LJ-proof.

Proof. Although ¢ is an LJ proof, each inference p in ¢ might be applied to a multi-
ple conclusion sequent because of atomic cut-ancestors. By reductively eliminating
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the cuts, we make sure that the resulting sequents in the proof contain no atomic
cut-ancestors on the right, but there is no guarantee that they will all be single con-
clusion. This can be ensured by two things: (1) ¢ is a proof of a negative sequent
and (2) left-shift cut-elimination is used to eliminate the atomic cuts from ¢.

Let p be an inference in ¢ that was an instance of an inference in ¢ (which
was originally applied to a single conclusion sequent). All the other inferences in ¢
will be eliminated after reductive cut-elimination. We have thus to show that after
left-shift cut-elimination, every p will be applied to a single conclusion sequent.

First note that every inference p is applied to a sequent such that its right
context contain at most one end-sequent ancestor, the other formulas being atomic
cut ancestors. Now observe that, in the reduction rules of Definition the p in
the resulting derivation is always applied to a sequent whose right context contains
strictly less formulas then in the original derivation. Moreover, these are all the rules
necessary for eliminating the atomic cuts, as there is no right contraction of the cut-
formulas because there is no right contraction in the negative resolution fragment.
After eliminating all the cuts, every p will be applied to a sequent whose right
context contains at most one end-sequent ancestor and no cut ancestors, exactly as
it was in ¢.

Second, upon actually eliminating the cut (see Definition 20), the derivation used
is a negative projection which, by Theorem [5 is an LJ derivation.

The final proof is therefore a valid LJ proof. O

5 Transforming cut-free proofs into cut-free proofs

We have shown in Section 3 how to translate proofs in classical logic to proofs
in intuitionistic logic. All these transformations were elementary. But if we have
a classical cut-free proof ¢ of S its extended Glivenko translation g (¢) contains
cuts. Clearly we can transform Ug () into a cut-free intuitionistic proof ¢ of ¥(S)
using reductive cut-elimination. But the worst-case complexity of cut-elimination is
nonelementary. A way to solve the problem could be to investigate the complexity of
reductive cut-elimination in proofs of type ¥ (p). We choose a different approach
by solving a more general proof transformation problem from LK to LJ by using
the CERES-method and results from Section 4.2l The results in this section are
based on [6], but the complexity analysis and the connection of the results with the
Glivenko transformation are improved.

Below we show some complexity results about CERES.

Theorem 7. There exists a nondeterministic Turing machine M and an elementary
function h s.t., given a proof ¢, a resolution refutation o of CL(p), M computes a
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CERES normal form ¢ of ¢, s.t. timep (@, 0) < h(||¢]l, [loll)

Proof. We investigate the complexity of computing a CERES-normal form given the
input proof ¢ and a resolution refutation ¢ of CL(yp). Now let M be a nonde-
terministic Turing machine performing the following computation, given (¢, o) as
input:

(1) construct a resolution refutation g of CL(yp),

)
(2) compute a ground resolution refutation ¢’ of g via substitution o,

(3) instantiate the proof projections via o,

(4) insert the instantiated proof projections into o'

Step (2) is computable in exponential time in ||g|| (computation of a global unifier).
(3) can be performed in time < ||¢||r(¢’) for any projection where 7(¢’) is the size
of a maximal term occurring in ¢’; note that (o) < ||¢'||. (4) can be computed in
time < o' x p(¢p, 0') where p is the maximal complexity of an instantiated projection.
But p(p, o) < ||l¢llr(¢’). Putting things together we obtain an elementary function
H s.t.

timenr (¢, 0) < H([[#], [lol)-
U

Theorem 8. Let ¢ be a negative CERES normal form of an LJ- proof ¢ and let g
be the cut-free LJ-proof obtained after applying left-shift cut-elimination to ¢. Then
po can be computed in linear time.

Proof. Given the transformations in Definition 20 (which are all the rules necessary
for eliminating the atomic cuts), observe that the right-hand side uses only those
derivations that were already present on the left, without duplicates. Thus left-shift
cut-elimination does not increase the number of inference nodes in the proof. As the
transformation rules (2) in Definition 20 even eliminates an inference, ¢g contains
less inferences than @, provided there is at least one cut in ¢. Still the rules in
Definition 20 may mildly increase the symbolic size of a proof. Note that e.g. in the
first rule we may have ||[T*|| > ||T'|| (p may be V; and a large term is eliminated (top-
down) by the rule which now occurs twice in the result). But this increase happens
for every rule p (coming from a left-hand-side of a cut) only once, and the material
causing the increase is already present in the original proof. Therefore, there exists
a constant ¢ such that: ||po|| < c* ||¢] and ¢ can be computed in linear time in

- O
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Remark 7. The worst-case complexity for the elimination of atomic cuts is expo-
nential in general. In fact, given a CERES normal form based on an arbitrary
resolution refutation, cut-elimination may lead to an exponential increase in size.
That cut-elimination is linear for negative CERES normal forms is due to the fact
that there are no right contractions on the atoms of the cuts and proof duplication
can be avoided. The price to pay is that negative CERES normal forms may be
exponential in the minimal size of CERES normal forms.

Proposition 2. Let ¢ be a proof of a skolemized sequent S. Then CL(y) can be
computed in exponential time.

Proof. Consider the clause term O(p) (for a definition see [5] and [1]). O(y) is
computable in linear time from . The evaluation of O(y) to CL(y) (which, basically
is the computation of a conjunctive normal form from a negation normal form) can
be done in exponential time. ]

In [5] a comparison of reductive cut-elimination and CERES was given. It turned
out that reductive cut-elimination is, in some sense, redundant w.r.t. CERES. The
measure of redundancy is the well known subsumption principle from automated
deduction.

Let T' be a multiset of formulas; by set(I') we describe the set defined by the
elements in I'.

Definition 21 (subsumption). Let C: I' = A and D: II - A be clauses. We define
C C D if set(I") C set(II) and set(A) C set(A). We define C' <, D if there exists a
substitution ¥ s.t. C¥ C D. Let C,D be sets of clauses; then C <,; D if for every
clause D € D there exists a C € C s.t. C <  D.

Proposition 3. Let ¢ be a proof of a skolemized sequent S and ¥ be a proof ob-
tained from ¢ via (one or more) cut-elimination steps of Gentzen’s reductive method
(without eliminating atomic cuts). Then CL(p) <ss CL(9).

Proof. In [1,5]. O

The subsumption principle can be extended from sets of clauses to resolution
deductions: let us assume that C and D are sets of clauses s.t. C <, D, D is
unsatisfiable and & a resolution refutation of D. Then there exists a resolution
refutation v of C which “subsumes” §. « is in fact smaller than ¢, i.e. ||y| < ||d].
For a formal definition of subsumption among resolution derivations see Definition
6.6.4 in [1]. The subsumption property of resolution refutations will be used in the
proof of Theorem [9}

We define the classical analogue to the class LJ_:

932



ON THE COMPLEXITY OF TRANSLATIONS

Definition 22. An LK-proof ¢ of S belongs to the class LK_ if S is skolemized
and is of the form I" F-.

Our aim is to construct an elementary translation from LK_ to LJ_ in preserv-
ing the end-sequent.

Definition 23. A proof transformation ® is called end-sequent preserving if for all
proofs ¢ of a sequent S ®(¢) is a proof of S.

Theorem 9. There exists an elementary end-sequent preserving proof transforma-
tion ® from cut-free proofs in LK_ to cut-free proofs in LI_. That means there
exists an elementary function g and a nondeterministic Turing machine M comput-
ing ® s.t. for all cut-free proofs ¢ in LK_ we have timepy () < g(||¢l])-

Proof. Let us consider a cut-free (classical) proof ¢ of the skolemized sequent
S: Aj,..., Ay F (i.e. there are no strong quantifiers in the A;).

Now consider our proof transformation 7" for T'(¢) =

(¢)

Ay Anb
A (¥)
- A A A Ak
A A F cut

where A = Ay A--- AN A, and ¢ is a cut-free intuitionistic proof of length polynomial
in ||Al|. T(¢) proves the same end-sequent as ¢ and can be constructed in time
polynomial in ||¢|. Now observe that the cut-formula —A on the left branch of
the cut has only weak quantifiers, and only strong quantifiers on the right branch.
Now we apply reductive cut-elimination to T'(¢), eliminate the quantifiers in the
cuts (i.e. we break down the proof to propositional cuts) and obtain a proof x;
this transformation can be done in double exponential time - here we are doing cut-
elimination in classical logic! Putting things together x can be computed from ¢ in
time t(||¢||) for an elementary function ¢.

Now negative CERES comes into play: consider the characteristic clause set
CL(T(¢)) and let C" be the characteristic clause set of y. Note that C’ is a set of
ground clauses (indeed we may assume that in a proof containing no strong quan-
tifiers only ground terms are introduced by the quantifier rules). As ||x| < t(||¢
C’ can be computed within ¢(||¢||): I} steps for a constant ¢ by Propositiong
As C' is ground, the computation of a shortest negative resolution refutation ¢’ can
be done in nondeterministic exponential time in ||C’|| i.e. within ¢/(]|p|): df (¥
for some constant d (note that the number of different negative clauses definable
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over the ground atoms is at most exponential). By Proposition |3| there exists a
resolution refutation ¢ of CL(v¢) s.t. ¢ <ss ¢ and, by definition of subsumption,
lloll < |1¢']]. Moreover, o is also a negative resolution refutation as negative clauses
can only be subsumed by negative clauses or by the empty clause. Clearly also ¢
can be computed within nondeterministic exponential time t”(||¢||).

So we refute CL(T'(¢)) with o and get a CERES-normal form ¢*. By Theorem 7]
we can compute ¢* in time < h(||T(v)]], |lo]|) for an elementary function h and, as
lloll < t"(|le]l) and T'(¢) is polynomial in ||¢]|| there exists an elementary function ¢’
s.t. ¢* can be computed in time < ¢'(||¢||).

As ¢’ is the shortest negative resolution refutation of C’ there are no tautological
clauses occurring in ¢’ (note that a shortest negative resolution refutation never
contains tautologies!). As a consequence also p does not contain tautological clauses.
Now consider the proof T'(¢). As all inferences in ¢ (within 7'(¢)) go into the cut
formula —A, the clauses of the characteristic clause sets coming from ¢ are all
tautologies. But these tautologies are not used in p! It follows that all projections
used in the CERES normal form ¢* come from the intuitionistic part of the proof.
But note that, in this case, ¢* can be transformed into an intuitionistic cut-free
proof ¢ via the method described in Theorem [6] in linear time. This is the last step
of the transformation which gives a proof in LJ_ and, putting things together, the
whole transformation can be done in elementary time g. O

We illustrate the transformation of Theorem 9 with an example. Let ¢ be the
LK proof:

Pfat Pfa
Pa,Pfat Pfa,Pffa w_}
Pat Pfa,Pfa— Pffa
F Pa— Pfa,Pfa— Pffa
b 32.(Px — Pfx),3x.(Px — Pfx) "
- 3z.(Px — Pfx) "
“3z.(Pz — Pfz)F |

T

r

Then we can construct Z = T'(¢), which proves the same end-sequent but has a
full intuitionistic proof on the right branch of the cut:
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PaF Pa Pfaf Pfa
Pa — Pfa,Pat Pfa
Pa — Pfak Pa— Pfa
Po — Pfat 3x.(Pz — Pfx)
Jz.(Px — Pfz) + 3x.(Pz — Pfx)
o —3z.(Px — Pfx),3x.(Px — Pfx) :ZT
—3z.(Px — Pfz) —3z.(Px — Pfz) b —3z.(Pxz — Pfx)
F ——-3z.(Pz — Pfz) o -3z.(Pz — Pfxz),»—3z.(Px — Pfxz) F o
—3z.(Pz — Pfx) - cut

T

T

l

We apply the negative CERES method to this proof. The clause set extracted
is the following:

CL(E) ={PfatF Pfa ; F Pa ; Pfat}

Note that the tautological clause Pfa F P fa, which came from the classical part
of E can be eliminated. The only possible (negative) refutation is p:

F Pa
FPfa

Since g uses clauses that come from the intuitionistic side of =, these are the
only projections we need:

7(F Pa) :
PaF Pa
Pat Pa,Pfa
F Pa,Pa — Pfa
F Pa,3x.(Pr — Pfx) "
“32.(Pz — Pfz)F Pa

I

T

m(Pfak):
PfaF Pfa_

Pfa,Pat Pfa
Pfak Pao— Pfa
Pfat 3z.(Pr — Pfx) "
Pfa,~3c.(Pr — Pfo)F

r
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Note that the projection of the negative clause is intuitionistic, but the other
one is classical. Then we can compute the CERES normal form ¢:

Pfat Pfa w, Pfat Pfa w
Pfat Pfa,Pffa ", Pfa,PaF Pfa
- Pfa, Pfa = Pffa PfaF Pa— Pfa

+ Pfa,32x.(Px — Pfx) =" Pfat 3x.(Pr — Pfx) "
—3Jx.(Px — Pfx)+ Pfa B Pfa,—3z.(Px — Pfx)F B
—3Jx.(Px — Pfx),~3x.(Px — Pfx) F
—3Jz.(Pzx — Pfx) b

cut

By performing left-shift cut-elimination, we obtain the LJ proof :

Pfal Pfa
Pfa,Pat Pfa
Pfat Pa— Pfa
Pfat 3xv.(Pr — Pfx) "
“3z.(Pr > Pfz),Pfar
—3Jz.(Px — Pfx),Pfat Pffa
—Jdz.(Px — Pfx)F Pfa— Pffa
—3x.(Px — Pfx) + 3z.(Px — Pfx) ~
~3z.(Pz — Pfa),—32.(Pr — Pfz) - :l
—3Jx.(Px — Pfx)

wy

T

r

Now we can apply Theorem 9 to the extended Glivenko translation.
Corollary 1. There exists a proof transformation T with the following properties:

(1) For any cut-free LK-proof ¢ of a sequent = A (where A is a formula without
strong quantifiers) T(p) is a cut-free LI- proof of - 1 (A),

(2) T can be computed in elementary time.

Proof. We extend ¢ by a —: [ rule and obtain a cut-free proof ¢’ of —A F. By
Theorem 9 there exists a intuitionistic cut-free proof ¢’ of —=A F which can be
computed in elementary time (in [|¢’||). We obtain an intuitionistic cut-free proof x
of =—A just by appending —: r to ¢’. As A does not contain strong quantifiers we
have 1g(A) = =—A and so x is a proof of - )g(A). Obviously x can be constructed
in elementary time (in ||¢||). O
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6 Conclusion

We have analyzed the complexity of proof tranlations defined via the formula trans-
formations of Kolmogorov and Glivenko. We proved using CERES that, for the
Glivenko translation, cut-free LK-proofs of S without strong quantifiers can be
translated into cut-free LJ-proofs of U (S) in elementary time. It remains an open
question whether the same result could be obtained by reductive cut-elimination of
the translations W (¢) within LJ and, even, whether reductive cut-elimination in
this class is elementary at all. We did not investigate proof translations based on
the Godel-Gentzen translation and the question whether elementary translations of
cut-free proofs into cut-free proofs via this translations exist. Also a methodological
comparison of CERES and reductive cut-elimination methods on proof classes defined
by negative translations is left to future research.
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1 Introduction

Logical systems modeling reasoning and multi-agent environments, computation
truth values and vote taking decisions are popular areas nowadays in Information
Sciences and Knowledge Representation (cf. e.g. M. Kracht [28], Francesco Belar-
dinelli, Alessio Lomuscio [9], W. van der Hoek and M. Wooldridge [44]). In this
paper we would like to contribute to these areas with our recent results concerning
the syntactic description of unification.

Unification is one of the important tools in automated deduction; as a concept
it was originated in Computer Science (cf. F. Baader and W. Snyder [5]). Later the
concept of unifiability was applied and studied for various non-classical logics. For
example, the problem of unification in intuitionistic logic and in propositional modal
logics over K4 was investigated by S. Ghilardi using the technique of projective
formulas, — [17, 19} [16] I8, 20] (this is an application of ideas from the field of
projective algebras). In these papers the problem of constructing finite complete
sets of unifiers was solved for the logics considered and efficient algorithms were
found. Unification in the field of Computer Science appeared initially in the form
of the possibility of transforming two different terms into syntactically equivalent
ones (by the replacing its variables, cf. [31), 27]), that eventually changed course
to the study of semantic equivalence (cf. Baader et al. [5, [I]). For the majority
of non-classical logics (modal, intuitionistic, temporal, etc.) there are special dual
equational theories of algebraic systems, so their unification problems are interpreted
into the corresponding logic-unificational counterparts ([3, 4, 2]). The unification
problem can be generalized to a more difficult question: whether the formula can
be converted into a theorem after replacing only some of the variables (keeping the
rest, as a set of parameters, intact). This problem has been studied and solved for
some modal and intuitionistic logics (cf. e.g. V. Rybakov [32] [33], [34] for the case of
intuitionistic logic itself and modal logics S4 and Grz).

The approach based on the ideas of projective formulas proved to be useful
and effective in dealing with admissibility and the basis of admissible rules (cf.
Jerabek [24], 25] 26], Iemhoff, Metcalfe [22] 23]). If algorithms for the construction
of computable finite sets of unifiers are found, it directly gives a solution of the
admissibility problem.

Temporal logic is also a very dynamic area of mathematical logic and computer
science (cf. Gabbay and Hodkinson [15), 13, [14]). In particular, LTL (linear temporal
logic) has significant applications in the field of Computer Science (cf. Manna, Pnueli
[29, B0], Vardi [46, 45]). The solution to the problem of admissibility for rules in
LTL was found by Rybakov [36] (cf. also [35]), the basis of admissible rules in LT L
was constructed by Babenyshev and Rybakov in [6] (and for the case without the
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operator Until - in [35]).

The solution of the unification problem for formulas with coefficients in LT L
has been found by Rybakov [37, 40] and its analogs were also re-settled for basic
modal and intuitionistic logic in [38, [39]. In particular, in [37], it was proved that
not all formulas unifiable in LT'L are projective, and [40] proved the projectivity of
any unified formulas in LTL,, (to recall, LT L,, is a fragment of LT L, with only the
operator Until, no NEXT). In the paper of Dzik and Wojtylak [II] the same result
was obtained for the modal linear logic S4.3.

In [41], V. Rybakov found a description of all non-unifiable formulas in a broad
class of modal logics: in the extensions of S4 and [K4 + 01 = 1 € L] and also
constructed finite bases for rules which are passive in these logics. Using results
from [7], following closely this technique, in our paper [8] we find a criterion for non-
unifiability of formulas in the linear temporal logic of knowledge with multi-agent
relations — LFPK, and construct a basis for inference rules which are passive in this
logic.

So, we obtained theorems syntactically describing non-unifiable formulas and
basis for passive inference rules in linear temporal logic with multi-agent logical op-
erations in time-point states (cf. [8]). Verifying and analyzing our proofs we recently
observed that the results might be transferred to a wide class of logics - all logics
where the universal modality might be modeled by any possible terms composed
from native logical operations (recall that the universal modality, first investigated
in Goranko and Passy [21], is regarded nowadays as a standard constructor in modal
logic; see, e.g., Blackburn et al. [I0]). As a result, actually, all schemes of proofs
from [8] may be transferred to this more general case.

The main results of this our paper are Theorems [2| and [3| describing syntactic
conditions for formulas to be not unifiable and bases for passive inference rules for
all logics with an expressible universal modality. In the final sections we apply these
theorems to various logics, in particular to linear temporal logics with time states
with agents logical operations, and even to some branching time logics.

2 Definitions, notation, logics with universal modality

We first recall relational semantics for modal and temporal logics. A relational
frame (n-frame) F is a tuple (W, Ry,...,R,), where W is a non-empty set (the
base), and for all i, R; C W x W. We use the notation |F'| for the set W; and
a € F will abbreviate a € |F|. A frame F is said to be rooted if there exists
a € |F| such that, for any b # a in |F|, there are ay,...,am_1,an € |F| such that
aR; a1R;,a9 ... R;, _am-1R;, am = b, where R;; are some accessibility relations
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from F. A waluation V of a set P of proposition letters in F' is a mapping V : P —
271 ie. V(q) C |F| for any ¢ € P. An n-frame F together with a valuation V of
some set of letters P is called a (Kripke — Hintikka) relational model (based on F).
The notation (F,a) IFy g means a € V(q); if (F,a) IFy ¢ we say that the letter ¢ is
true at a with respect to V.

The language of multi-modal propositional logics consists of a countable set of
proposition letters (denoted by Latin letters, possibly with subscripts), Boolean
logical operations, and a finite set of unary modal operations O;, 1 < ¢ < n. The
formation rules for formulas are standard. The formula <;« is the abbreviation for
the formula —=0,—a. A multi-modal logic (or, to be more precise, an n-modal logic)
is a set £ of formulas containing all classical tautologies, the axioms O;(p — ¢q) —
(O;p — O,q) for all i, and closed under substitutions, Modus Ponens, and the rules
of necessitation: for all formulas A if A € £ then 0;A € £ as well (for every ¢). In
the sequel multi-modal logics are called just “logics™.

For any model with a valuation V', the truth relation with respect to V is ex-
tended to all Boolean formulas built from the set of letters P in a standard way.
Computation of the truth values for modal operations are as follows:

(F,a) lFy DjA — Vb e \F|(aR]b = (F,b) Iy A)).

For a frame F' and a formula A we write F' |- A if for any valuation V on F and
any a € |F| (F,a) IFy A holds.

For any class of frames K, L(K) := {A | VF € K, F |- V} is the multi-modal
logic generated by the class K. The majority of popular modal logics coincide with
L(K) for some K. Such logics are said to be Kripke complete; there are some
modal logics which are not Kripke complete, though they are sophisticate examples
constructed in order to disprove the conjecture of Kripke completeness for all logics
(cf. K. Fine, S. K. Thomason, J. van Benthem [12], 42} [43].

Temporal logics are similar to modal logics, but with the assumption that one
of the accessibility relations from the frames F' generating these logics, e.g. Ry, is
responsible for modeling the passing of time. In this case two modalities for Ry are
reserved, one — is the O itself, and another one Dfl where the second one is based
on the relation Rl_l, the converse to R;. The first relation is referred as always in
the future, and the second one - as always in the past (and they are usually denoted
as Op and Op).

We may extend multi-modal logics and temporal (single modal or multi-modal)
ones to logics possessing a universal modality as follows. Assume that the language of
a logic is extended by a new modal operation O, and that the rule for computation
for truth values of formulas with applications of O is as follows:
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Va, (F,a) IFy OpA < Vb € |F|(F,b) Iy A].

In other words, Oy A says that the formula A is true always and everywhere, so
it acts as a universal quantifier and is therefore called the universal modality.

Definition 1. A logic £ is said to be one with universal modality if its language
contains the modality O, and there is a class of frames K, such that £ = L(K).

Now we recall some definitions and already known results related to the notion
of unification and to “passive inference rules”, as they first appeared in [41] and then
in [7].

Definition 2. A formula A(pi,...,p,) is unifiable in a logic L iff there is a tuple
of formulas By, ..., B, such that A(Bi,...,B,) € L, (B1,...,B,) is said to be its
unifier).

Definition 3. Some formulas A(p1,...,pn) and B(p1, ..., py) are said to be unifiable
in a logic £ iff the formula

[A(p1,-.-,pn) = B(p1,-- -, o) AN (B(p1,---,pn) = A1, ,0n))]

(the latter formula is usually abbreviated by A(p1,...,pn) = B(p1,...,pn)) is unifi-
able in £ and the corresponding unifier Bj,..., B, is said to be the unifier for
formulas A and B.

We consider below only Kripke complete logics £ (that is £ = L(K) for some
class of frames K) with the property that -0;1 € L, for all j (L = p A —p, that is,
any of its frames do not have maximal R; irreflexive worlds (and minimal irreflexive
worlds, — for temporal logics)). The restriction to only Kripke-complete logics follows
from the proof technique below, where it is indeed necessary. The proof technique
only works for such logics. The property —0; L € £ is necessary for our proofs as
well (for the inductive steps in the proofs would work).

In this case, if a logic is decidable, generally speaking, it is an easy task to verify
whether a formula or two formulas are unifiable in this logic. It is immediate to see
that it is sufficient to look for unifiers among formulas T and L, cf. e.g.

Corollary 1 (Corollary 2.7 from [41]). For all superintuitionistic logics and modal
logics extending logics S4 or K4 + 01 = L, unifiers for unifiable formulas can be
effectively computed; if they (unifiers) exist then some substitution replacing letters
by formulas T or L will be a unifier.
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The presence of the equivalence O = | above is essential too, since otherwise
a possibly increasing sequence of operations O applied to L will not have a clear
visible computable bound.

This corollary is rather evident, however if we wish to characterize all formulas
which are not unifiable, to obtain a general mathematical theorem describing all
such formulas, it is not so immediate. The following result was known:

Theorem 1 (2.10 from [41]). For any modal logic L extending S4 and any modal
formula o, o is not unifiable in L iff the formula

Oa— | \/ OpAOp
eVar(a)

is provable in L (that is this formula belongs to L, as to the set of its theorems).

Though such logics do not have universal modality. Recall that an inference rule
is an expression r := Ay, ..., A,/B where B and all A; are some formulas in the
language of a certain logic. The letters of these formulas are called its variables.

We aim to characterize the inference rules which are passive, those whose
premises are not unifiable. Recall that:

Definition 4. Let r := Aj, ..., A, /B be an inference rule, r is said to be passive
for a logic L if for any substitution g of formulas instead of variables in r, we never
have g(A1) € L& ... & g(A,) € L. In other words, r is a passive rule if the formulas
from its premise do not have common unifiers.

We would like to characterize such rules in a syntactic way, to find some bases
for them. That is we actually wish to describe formulas which are not unifiable pure
syntactically, in a sense — to axiomatize them.

Definition 5. For any given rule r := Aj,..., A, /B, r is a consequence of a sequence
of rules r; := Ay/By, ..., r := An/By in a logic L if there is a derivation in £
of the conclusion B from the premises of the rule r, as a hypothesis, by means of
rules from rq, ..., ,, theorems of £ and postulated rules of £ (e.g. modus ponens
(for classical propositional logic or the intuitionistic logics) and Goedel necessitation
rule A/0;A for modal logics).

Definition 6. A set of rules B, is a basis for a set of rules S, in a logic £ if any
rule r € S, is a consequence of some rules from B, in L.

944



MULTI-AGENT TEMPORAL LOGICS

3 A criterion of non-unifiability

Let £ be a Kripke complete logic (that is £ = L(K) for some class of frames K) with
the property ~0; L € L, for all j (that is all frames F' € K do not have maximal
irreflexive w.r.t. any R; worlds (and minimal irreflexive — for the case of temporal
logics)). Let £ has the universal modality Op.

Theorem 2. A formula A is non-unifiable in L iff the formula

OpA — \/ Sup AN Oy—p
eVar(A)

is a theorem in L.

Proof. The proof will go by reduction to absurdum. Assume that

OpA — \/ OupAOy-p| el

peVar(A)

but, at the same time, the formula A is unifiable in L.
Then by definition of the unifier, there is a substitution g such that g(A) € L.
Because L is closed under substitutions, we obtain

g(OpA — L \/ Sup A Oy—pl) € L.

eVar(A)

We know that £ = L(K) for some class of frames K. Take an arbitrary frame
F € K for L. Consider the valuation V for all letters ¢ of formulas g(p), where
p € Var(A), on the F, where V(q) = (. It is easy to show by induction on the
length of formulas B constructed out of letters ¢ that:

Vbe F,Yec€ F:blFy B< clhy B.

The inductive step for operations O; follows from our assumption that -0O; 1 € L.
Consequently,

Voe F:blfy \/  Ouglp) AOg(-p).
peVar(A)

At the same time,
Vbe F:blkg(OpA)
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since g(A) € L. Thereby,

Vbe F:b Jryg(OpA — L \/  OupAOupl)

eVar(A)

which contradicts the hypothesis:

g(OpA — L \/ Sup A Oy—pl) € L.

eVar(A)

In the opposite direction, assume that the formula A is non-unifiable in £, but
at the same time

DUA_)L \/ SOup A Oy—p ¢£

eVar(A)

Then there is a certain L-frame F' € K, that disproves this formula:

da € F': <F, a> FyvOpA — L \/ SOup A y—p
eVar(A)

That is (F,a) IFy OyA and (F,a) Iy [\/pevar(A) <>Up/\<>U—|p}. Because we

have that (F,a) Iy [vaVar(A) Sup A <>U—|p} and Oy is the universal modality, it
immediately follows that for all p € Var(A) either (1) Vb € F(b Iy p) or (2) Vb €
F(blky —p).

Choose the substitution g for all of variables p from the formula A as follows:
Vp € Var(A) : g(p) = T if (1) holds and g(p) = L in the case if (2) is the case.
Using that (F,a) IFy Oy A we immediately obtain that g is a unifier for the formula
A (using again that £ = L(K) and -0;L € L, for all j). Therefore, the formula A
is unifiable in L. O

4 Passive inference rules
Below we always assume that £ is a logic with the properties which were required

in the previous section (that is: £ is a Kripke complete logic: £ = L(K) for some
class of frames K and —~0; L € L, for all j) and let £ to have the universal modality.
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Theorem 3. The rules

Vi<i<n Cupi AN Ou—pi
T = T

form a basis for all passive inference rules in any such logic L.

Proof. Evidently we have

Ou |\ OupAou—p
peVar(A)

— \/ Sup Ay
peVar(A)

is a theorem of £. Hence by Theorem 2 the formula

A= L \/ SOup A Oy—p

eVar(A)

is not unifiable in £, thus, any rule r,, is passive.

Let us assume that a rule Ry := Aj,..., A, /B is passive for £. Then the rule
Ry := Ay A--- N A, /B is also passive and the formula A; A--- A A, is not unifiable
in £. Applying Theorem 2, we conclude:

(a) Oy(A1A---NA,) — L \/ Cup NOy—p| € L.

eVar(Ai1A-NAy)

Applying Godel’s rule w.r.t. Oy to the premise of Ry we may derive the formula
Oy(AiA---ANAy). Using this, (a) and the modus ponens rule we derive the formula
[Vpevar(ain-nan) Qup A Ou=p).

From this formula, applying the rule r,,, where n is the number of variables in the
conjunction of A1 A--- A A,, we can derive the formula L. Using that 1L — B € L
and modus ponens, we derive B. Thus, all rules r,, form a basis for all rules passive
in L. ]

5 Applications: Temporal logics of agents knowledge
with universal modality

Now we approach the central part of the paper — the application to Multi-Agent

Temporal logics as well as other ones where the universal modality is not present in

the language, but can be modeled by compound formulas in the native language of
the given logics.
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Consider first the standard linear temporal logic LTL, with operations Until and
Since. The language of LTL extends the language of Boolean logic by operations
N (next), U (until) and S (since). The formulas of LTL are built up from a set
Prop of atomic propositions (synonymously — propositional letters). The set of all
formulas is closed w.r.t. applications of Boolean operations, the unary operation N
(next) and the binary operations U (until) and S (since).

The semantics for LTL uses infinite transition systems (runs, computations),
which we describe in terms of linear Kripke structures based on natural numbers.
These structures can be represented as quadruples

M = (N, <,Next, V),

where N is the set of all natural numbers, < is the standard order on N, Next
is the binary relation, where a Next b means b is the number next to a. We can
also consider here the operation Previous which is the opposite to Next. All the
following results will be valid for this case as well). A valuation V of any set of
letters S assigns truth values to elements of S. So, for any p € S, V(p) C N, V(p)
is the set of all n from N where p is true (w.r.t. V).

The triple (N, <,Next) is a Kripke frame which we will denote by F. For any
Kripke frame the truth values can be extended from propositions of S to arbitrary
formulas constructed from these propositions as follows:

Vp € Prop (F,a)lFy p ©la € NA a€ V(p);

(F,a) lFy AN B <[[(F,a) lky Al A [(F,a) IFy B]l;

(F,a) lFy —=A ©not[(F,a) IFy A;

(F,a) Fy NA <vb[(a Next b) = (F,b) -y Al;

(F,a) IFy A UB <3b[(a < b) A ((F,b) IFy B)A

Ve[la < e <b) = (F,c) by Al

(F,a) lFy A S B <3b[(b < a) A ((F,b) IFy B)A
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Ve[(b<c<a)= (F,c) lFy Al

Using operations U, S and N we can define all standard temporal and modal
operations. For instance, FA (A holds eventually, which, in terms of modal logic,
means A is possible (denotation &t A)), can be described as trueUA. Therefore,
in this language, we can also define the modal operation O (as Ot A := =01 —-A).
Modal operation &~ directed to past may be defined as O~ A := trueSA, respec-
tively O~ A := =07 —A.

The logic LTL is the set of all formulas which are true at all such models. It is
clear that the universal modality may be expressed in this logic as Oyp := OTpAO " p.
Therefore we may directly transfer the results from the previous section to this logic.

Theorem 4. Theorems 2 and 3 hold for LTL.

Now we wish to obtain our earlier results from [8] using the theorems of the
previous section; that is, we want to describe non-unifiability and passive rules for
the linear temporal logic with Multi-Agents modalities for Multi-Agent Knowledge.

First we recall the definitions and notation from that earlier paper. The alpha-
bet of the language for the logic LXK includes a countable set of propositional
variables P := {p1,...,pn,... }, brackets (,) default Boolean logical operations and
a variety of unary modal operators {Op,0p,0y,...,0,}. The name LFPK is
supposed to abbreviate the sequence of words logic, future, past, knowledge.

The formation rules for formulas are: every propositional variable p € P is a
well-formed formulae (wff), and if A is a wff, then so are Op A, OpA, O;A, for i € I.
Logical operations Cp, Op, ©; are defined using the logical operations Op, Op, O;
as usual Op = -Op—, Op = -0Op—, O; = -0,

The meanings of the modal operations described are as follows. For OpA: A is
true at all previous and at the current point in time; for OpA: A is true at the given
time point and will be true at all future points. The formula 0O;A means that A is
true at all informational states which are available for the agent ¢ in a current time
state.

Semantics for the language of LLFPE models linear and discrete streams of the
computational process, at which each point in time is associated with an integer
number n € Z.

Definition 7. Temporal k-modal Kripke-frame is a tuple

T = <WT7R17R27 .. ‘7Rk>7

where Wr is a non-empty set of worlds, Ry,..., Ry are some binary relations on
Wy, where Ry = Ry* := {(a,b)| (b,a) € Ry} is the converse relation to R;.
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Definition 8. Let F' = (Wp, Ry, ..., Ry) is a Kripke-frame, then VR; R;-cluster (if
exists) is the subset C% € Wr such that Vv, z € C% : (vR;2)&(2R;v) and Vz € W,
Yo € O : ((vR;z&2R;v) = z € Cf). For any relation R;, C(v) is the R;-cluster
s.t. v € Cfi or the cluster, generated by the element v.

Definition 9. LFPK-frame is a temporal (n 4+ 2)-modal Kripke-frame
T = <ZT7RF7RP7R17' "7Rn>7

where Rp = REI and:
a. Zrp is the disjoint union of clusters of states
C', t € Z (Z is the set of all integer numbers), and C'* C® = ) if t; # to;
b. Vti,ts € Z, if t1 < ty then Ya € C*"',Vb € C*2(aRpb) and (bRpa).
None other relations via Rp and Rp are allowed.
c. Ry, ..., R, are some equivalence relations in each separate cluster C*.

Definition 10. A model My on a LFPK-frame T is a tuple My = (T, V'), where
V is a valuation of a set of propositional letters p € Pon T, i.eVp € P [V(p) C Zp].

Given a model My = (T, V), where T is a LF PK-frame Z7 we compute truth
values of formulas at states w € Zr as follows:

AT, w) IFy pew e V(p);

. <T, w) by OpA & Vz e ZT(U)RFZ = <T, Z> Iy A),

. <T, ’LU) Iy OpA & Vz € ZT(’LURPZ = <T, z> Iy A),

Nie I, (T ,w) IFy 0;A S V2 € Zp(wRiz = (T, z) IFy A).

AT, w) Fy AV B < [((T,w) IFy A) or ((T,w) IFy B)];
(T,w) IFy AN B < [((T,w) Iky A) and ((T,w) IFy B));
(T,w) lFy A — B < [((T,w) IFy B) or not({T,w) IFy A)l;
(T,w) Fy =A< [not((T,w) IFy A)];

If a formula A is true at any element of a frame 7" w.r.t. any valuation V, we
say A is true at the frame T and write T I A.

0.0 o

= e o

Definition 11. The temporal Linear Future/Past logic LE'PK (of agents knowl-
edge) is the set of all LF PK-formulas valid (true) on all frames: LFPK = {A |
A€ Fml(LMFPEY YT (T I A)}. If a formula A is a member of LFPK, then we say
that A is a theorem of LFPK.

It is immediate to see that the formula Opp A Opp models the universal modality
in LFPK. Therefore again we may directly transfer the results from the previous
section to this logic.
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Theorem 5 ([8]). Theorems 2 and 3 hold for LFPK.

And now we would like to obtain an yet more general result. We will consider
some semantic models for not just linear but branching time. Such models look as
follows. Let n be a given fixed natural number. Any such model M is compound
from some arbitrary set .S of models M; based on some LFPK frames which are
glued in the following way.

The model M is based on all models from .S, all these models are sub-models of
M, and M has no states which do not belong to any model from S. For any two
different models M;, and M,, from S, there are some two clusters C, and Cj from
M;, and M;, respectively, such that there is a zig-zag passageway of length at most
n in the model M by time to future and to past from C, into Cp.

Note that such models might be very complicated and differently compound,
even with possible common whole intervals of states. The truth values of formulas
with Op and Op may be calculated in such models M as usual in temporal/modal
models. the only distinction with our previous case is that the time sometimes
may be branching, though not compulsory branching in each cluster. Since we have
bounded by n time-zigzag, the formula

(DFDP)n-Hp A (DPDF)n-Hp

represents the universal modality in all such models (for fixed n).

Let L(n) be the logic generated by a (any given) class of arbitrary models con-
structed as described above. We call this logic branching time multi-agent logic with
bounded time zigzag. Then L(n) has expressible universal modality, and therefore

Theorem 6. Theorems 2 and 3 hold for L(n).

6 Conclusion

Our paper describes (algorithmically and syntactically) formulas which are not unifi-
able in a wide class modal, temporal and multi-agent logics from areas close to In-
formation Sciences and general Computer Science. The important case for future
investigation is the case of similar logics but without the request for logics to be
Kripke complete. We may see that our Theorem |1| does not requires Kripke com-
pleteness, but later the methods which we use here need logics to be Kripke complete.
Second open problem is to extend such results to the branching time temporal log-
ics without restriction to bounded time-zig-zag. The next interesting question is
to attempt to model in our framework the agents’ accessibility relations, which are
not equivalence relations but some other, as linear, some branching structure with
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hierarchy, etc, that is to consider the case when agents accessibility relations are
more complicated, and to extend our results to such logics.
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AND ACKERMANN-LIKE FUNCTION THEORY
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Abstract

We discuss a feature of the natural language of mathematics — the implicit
dynamic introduction of functions — that has, to our knowledge, not been
captured in any formal system so far. If this feature is used without limitations,
it yields a paradox analogous to Russell’s paradox. Hence any formalism
capturing it has to impose some limitations on it. We sketch two formalisms,
both extensions of Dynamic Predicate Logic, that innovatively do capture
this feature, and that differ only in the limitations they impose onto it.
One of these systems is based on Ackermann-like Function Theory, a novel
foundational theory of functions that is inspired by Ackermann Set Theory
and that interprets ZFC.

Keywords: Dynamic Predicate Logic, Function Introduction, Ackermann Set
Theory, Function Theory.

1 Dynamic predicate logic

Dynamic predicate logic (DPL) [7] is a formalism whose syntax is identical to that
of standard first-order predicate logic (PL), but whose semantics is defined in such
a way that the dynamic nature of natural language quantification is captured in the
formalism:

1. If a farmer owns a donkey, he beats it.

2. PL: Vo Yy (farmer(z) A donkey(y) A owns(z,y) — beats(z,y)).
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3. DPL: 3z (farmer(z) A 3y (donkey(y) A owns(z,y))) — beats(x,y).

In PL, 3] is not a sentence, since the rightmost occurrences of x and y are free. In
DPL, a variable may be bound by a quantifier even if it is outside its scope. The
semantics is defined in such a way that 3 is equivalent to[2l So in DPL, 3 captures
the meaning of [I] while being more faithful to its syntax than 2.

1.1 DPL semantics

We present DPL semantics in a way slightly different but logically equivalent to
its definition by Groenendijk and Stokhof in [7]. Structures and assignments are
defined as for PL: A structure S specifies a domain |S| and an interpretation a® for
every constant, function or relation symbol a in the language. An S-assignment is a
function from variables to |S|. Let Gg denote the set of S-assignments. Given two
assignments g, h, we define g[z]h to mean that g differs from h at most in what it
assigns to the variable z. Given a DPL term ¢, we recursively define

g(t) if ¢t is a variable,
()% =<qt° if ¢ is a constant symbol,
t1|6, ..oy |ty if t is of the form f(t1,...,t,).
(g, ta]2) i f the form f(t1,...,tn)

Groenendijk and Stokhof [7] define an interpretation function [-]s from DPL for-
mulae to subsets of Gg x Gg. We instead recursively define for every g € Gg an
interpretation function [-]% from DPL formulae to subsets of Ggﬂ

L [T]% = {9}

[tr = t2]% := {h|h = g and [1]§ = [t2)%}

[R(t1,...,t2)]% == {h|h = g and ([t1]%, ..., [t2]%) € R}.

[=¢]% := {h|h = g and there is no k € [p]%}.

[ A )% = {hlthere is a k s.t. k € [p]% and h € [¢]E}.

[ — ¢]% := {h|h = g and for all k s.t. k € [¢]%, there is a j s.t. j € [¢/]5}.

A AN e R

7. [3z ¢]% := {h|there is a k s.t. k[z]g and h € [p]%}.

¢ V1 and Vz ¢ are defined to be a shorthand for —(—p A —¢)) and Jz T — ¢
respectively.

1This can be viewed as a different currying of the uncurried version of Groenendijk and Stokhof’s
interpretation function.
2The condition h = ¢ in cases 2, 3, 4 and 6 implies that the defined set is either ¢ or {g}.
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2 Implicit dynamic introduction of function symbols

Functions are often dynamically introduced in an implicit way in mathematical texts.
For example, |10] introduces the additive inverse function on the reals as follows:

(a) For each a there is a real number —a such that a + (—a) = 0. [10, p. 1]

Here the natural language quantification “there is a real number —a” locally (i.e.
inside the scope of “For each a”) introduces a new real number to the discourse. But
since the choice of this real number depends on a and we are universally quantifying
over a, it globally (i.e. outside the scope of “For each a”) introduces a function “—"
to the discourse.

The most common form of implicitly introduced functions are functions whose
argument is written as a subscript, as in the following example:

(b) Since f is continuous at t, there is an open interval I; containing ¢ such that
|f(x) — f(t)] < 1if z € I; N]a,b. [10, p. 62]

If one wants to later explicitly call the implicitly introduced function a function, the
standard notation with a bracketed argument is preferred:

(c) Suppose that, for each vertex v of K, there is a vertex g(v) of L such that
f(stg(v)) Cstr(g(v)). Then g is a simplicial map V(K) — V(L), and |g| = f.
[8, p. 19]

When no uniqueness claims are made about the object locally introduced to
the discourse, implicit function introduction presupposes the existence of a choice
function, i.e. presupposes the Axiom of Choice. We hypothesise that the naturalness
of such implicit function introduction in mathematical texts contributes to the wide-
spread feeling that the Axiom of Choice must be true.

Implicitly introduced functions generally have a restricted domain and are not
defined on the whole universe of the discourse. In the example (c), g is only defined
on vertices of K and not on vertices of L. Implicit function introduction can also
be used to introduce multi-argument functions, but for the sake of simplicity and
brevity, we restrict ourselves to unary functions in this paper.

If the implicit introduction of functions is allowed without limitations, one can
derive a contradiction:

(d) For every function f, there is a natural number g(f) such that

g(f):{o if f edom(f)and f(f)#0,
1 if f ¢ dom(f) or f(f)=0.

957



M. CRAMER

Then g is defined on every function, i.e. g(g) is defined. But from the definition
of g, g(g) = 0 iff g(g) # 0.

This contradiction is due to the unrestricted function comprehension that is implic-
itly assumed when allowing implicit introductions of functions without limitations.
Unrestricted function comprehension could be formalised as an axiom schema as
follows:

Axiom Schema 1 (Unrestricted function comprehension). For every formula
o(z,y), the following is an axiom: Va Jy ¢(z,y) — 3f Vx o(z, f(x)).

The inconsistency of unrestricted function comprehension is analogous to the
inconsistency of unrestricted set comprehension, i.e. Russell’s paradox.

Russell’s paradox led to the abandonment of unrestricted comprehension in set
theory. Two radically different approaches have been undertaken for restricting set
comprehension: Russell himself restricted it through his Ramified Theory of Types,
which was later simplified to Simple Type Theory (STT), mainly known via Church’s
formalisation in his simply typed lambda calculus [2]. On the other hand, the risk
of paradoxes like Russell’s paradox also contributed to the development of ZFC
(Zermelo-Fraenkel set theory with the Axiom of Choice), which allows for a much
richer set theoretic universe than the universe of simply typed sets. Since all the
axioms of ZFC apart from the Axiom of Extensionality, the Axiom of Foundation
and the Axiom of Choice are special cases of comprehension, one can view ZFC as
an alternative way to restrict set comprehension.

Similarly, the above paradox must lead to the abandonment of unrestricted func-
tion comprehension. The type-theoretic approach is easily adapted to functions, so
we will first sketch the system that formalises this approach, Typed Higher-Order
Dynamic Predicate Logic. For an untyped approach, there is no clear way to trans-
fer the limitations that ZFC puts onto set comprehension to the case of function
comprehension. However, there is an axiomatization of set theory (with classes)
called Ackermann set theory that is a conservative extension of ZFC. It turns out
that the limitations that Ackermann set theory poses on set comprehension can be
transferred to the case of function comprehension, and hence to the case of implicit
dynamic function introduction.

The need to deal with implicit function introduction arose for us in the context
of the Naproche project, a project aiming at automatic formalisation of natural
language mathematics [3/5,6]. It has been implemented in the Naproche system
using type restrictions as in Typed Higher-Order Dynamic Predicate Logic, and we
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plan to implement it using the less strict restrictions of the untyped Higher-Order
Dynamic Predicate Logic in a future version of the system.

3 Typed higher-order dynamic predicate logic

In this section, we extend DPL to a system called Typed Higher-Order Dynamic
Predicate Logic (THODPL), which formalises implicit dynamic function introduc-
tion, and also allows for explicit quantification over functions. THODPL has vari-
ables typed by the types of STT. In the below examples we use x and y as variables
of the basic type ¢, and f as a variable of the function type i — 7. A complex term is
built by well-typed application of a function-type variable to an already built term,
c.g. f(@) or f(f(2)).

The distinctive feature of THODPL syntax is that it allows not only variables
but any well-formed terms to come after quantifiers. So is a well-formed formula:

vz 3f(z) R(z, f(2)), (1)
Vo Jy R(z,vy), (2)
3f (Vz R(z, f(z))). (3)

The semantics of THODPL is to be defined in such a way that (1) has the same
truth conditions as (2). But unlike (2), (1) dynamically introduces the function
symbol f to the context, and hence turns out to be equivalent to (3)).

We now sketch how these desired properties of the semantics can be achieved.
In THODPL semantics, an assignment assigns elements of |S| to variables of type
i, functions from |S| to |S| to variables of type i — i etc. Additionally, an assign-
ment can also assign an object (or function) to a complex term. For example, any
assignment in the interpretation of 3f(z) R(z, f(z)) has to assign some object to
f(x). The definition of g[x|h can now naturally be extended to a definition of g[t]h
for terms ¢. The definition of [t]$ has to be adapted in the natural way to account
for function variables.

Just as in the case of DPL semantics, we recursively define an interpretation [-]%
from DPL formulae to subsets of Gg (the cases 1-5 of the recursive definition are as

in Section [1.1]):

6. [y = ¥]% := {h|h differs from g in at most some function variables fi,..., f,
(where this choice of function variables is maximal), and there is a variable
z such that for all k € [p]%, there is an assignment j € [¢]% such that
J(fi(x)) = h(fi)(k(z)) for 1 <i <n, and if n > 0 then k[x]g}.

7. [3t ¢]% := {h|there is a k s.t. k[t]g and h € [p]&}.
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In order to make case [0] of the definition more comprehensible, let us consider
its role in determining the semantics of (1), i.e. of 3z T — 3f(z) R(z, f(x)): First
note that [3f(z) R(z, f(x))]% is the set of assignments j satisfying R(z, f(z)) (i.e.
for which [R(z, f(z)) Zg is non-empty) such that j[f(z)|k. Furthermore note that
[3z T]% is the set of assignments k such that k[z]g. So by case 6 with n =1,

[3z T — 3f(z) R(z, f(z))]% = {h|h[f]g and there is a variable z such that for all
k such that k[x]g, there is an assignment j satis-
fying R(x, f(x)) such that j[f(z)]k and j(f(z)) =
h(f)(k(z)), and k[z]g}

= {h|h[f]g and for all k such that k[z]g, there is an
assignment j satisfying R(x, f(z)) such that j[f(z)]k
and j(f(z)) = h(f)(k(x))}
= {h|h[f]g and for all k such that k[z]h, k satisfies
R(z, f(z))}
= [3f (Vz R(z, f(2)))]%.
The type restrictions THODPL imposes may be too strict for some applications:
Mathematicians sometimes do make use of functions that do not fit into the corset
of strict typing, e.g. a function defined on both real numbers and real functions. To

overcome this restriction, we will introduce an untyped variant HODPL in Section
[6l But for this, we require some foundational preliminaries.

4 Ackermann set theory

Ackermann set theory [1] postulates not only sets, but also proper classes which are
not setsE| The sets are distinguished from the proper classes by a unary predicate
M (from the German word “Menge” for “set”).

Ackermann presented a pure version of his theory without urelements, and a
separate version with urelements, which we will present here. The language of
Ackermann set theory contains three predicates: A binary predicate €, a unary
predicate M and a unary predicate U for urelements. We introduce L(z) (“x is
limited”) as an abbreviation for M(z) V U(x). The idea is that sets and urelements
are objects of limited size, and are distinguished from the more problematic classes
of unlimited size.

The axioms of Ackermann set theory with urelements are as follows:

3Note, however, that unlike the more well-known class theory NBG, Ackermann set theory also
allows for proper classes that contain proper classes.
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o Extensionality axiom: Ve Vy Vz (z € x > z € y) =z =y).

e Class comprehension axiom schema: Given a formula F(y) (possibly with
parametersﬁ) that does not have x among its free variables, the following is an

Wy (F(y) = L(y)) = 3 ¥y (y € o F(y).

o Set comprehension axiom schema: Given a formula F(y) (possibly with pa-
rameters that are limitedEI) that does not have x among its free variables and
does not contain the symbol M, the following is an axiom:

Yy (F(y) = L(y)) = 3z (M(z) AVy (y € < F(y))).

e FElements and subsets of sets are limited:
Ve Vy (M(y) A (z €yVVz(z€x—2z€y)) — L(y)).

So unlimited set comprehension is replaced by two separate comprehension sche-
mata, one for class comprehension and one for set comprehension. In both cases,
the comprehension is restricted by the constraint that only limited objects satisfy
the property that we are applying comprehension to. But for set comprehension,
we have the additional constraint that the property may not be defined using the
setness predicate or using a proper class as parameter. Ackermann justified this
approach by appeal to a definition of “set” from Cantor’s work [1].

If an Axiom of Foundation for sets is added, Ackermann set theory turns out to
be — in what it says about sets — precisely equivalent to ZF [9]. But this equivalence
is not a triviality: It is especially hard to establish Replacement for the sets of
Ackermann set theory.

5 Ackermann-like function theory

Now we transfer the ideas of a comprehension limited in this way from set compre-
hension to function comprehension. For this a dichotomy similar to that between
sets and classes has to be imposed on functions. We propose the terms function and
map respectively for this dichotomy, and call the theory resulting from these limi-
tations on function comprehension Ackermann-like Function Theory (AFT). AFT

4This means that F may actually be of the form F (2,y), and that these parameters are univer-
sally quantified in the axiom:
vz (Yy (F(2,y) > M(y)) = Ja Vy (y € z < F(Z,y))).

SFormally, with the parameters made explicit, the set comprehension axiom schema reads as
follows:
Vzi,...,2n (L(z1) Ao AL(zn) = (Vy (F(21,...,2n,y) = L(y)) — 3z M(z) AVy (y € = <
Fzte o2 0)).

961



M. CRAMER

can be shown to be equiconsistent with Ackermann set theory and hence with ZFC
(see Theorem 4| below).
The language of Ackermann-like function theory (Lapr) contains

e a unary predicate F for functions,

e a unary predicate U for urelements,

e a constant symbol u for undefinedness, and

e a binary function symbol a for function application.

Instead of a(f,t) we usually simply write f(t). We write L(x) instead of U(z) VF(x).
The undefinedness constant u is needed for formalising the idea that a function
is only defined for certain values and undefined for others. In this language, the
unrestricted function comprehension schema would be as follows:

Axiom Schema 2 (Unrestricted function comprehension in Lapr). Given a vari-
able z and formulae P(z) and R(z,z) (possibly with parameters), the following is an
axiom: Vz (P(z) — 3z R(z,x)) — 3f (-U(f)AVz ((P(z) = R(z, f(2))) AN (=P(z) —
f(z) = w))).

Analogously to the case of Ackermann set theory, AFT has separate compre-
hension schemata for maps and functions. The restriction that is imposed on both
schemata now is Vz Vo (R(z,z) — L(2) A L(z)). In the function comprehension
schema, in which F(f) appears among the conclusions we may draw about f, the
additional restriction is that the formula R(z,x) may not contain the symbol F and
may not have unlimited objects as parameters.

Additionally to these comprehension schemata, AFT has

e a function extensionality axiom,

e an axiom stating that any value a function takes and any value a function is
defined at is limited, and

e an axiom stating that submaps of functions are functions.

In AFT one can interpret Ackermann set theory with Foundation, and hence
ZFC (see Theorems || and 3| below). Since the map and function comprehension
schemata presuppose the existence of choice maps and choice functions, the Axiom
of Choice naturally comes out true in these interpretations.

We now state the main theorems about AFT. Their proofs can be found in the
author’s PhD thesis [5, pp. 58-62].
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Theorem 1 (Theorem 4.2.7 in [5, p. 58]). AFT interprets Ackerman set theory with
urelements and the Axiom of Choice.

Theorem 2 (Theorem 4.2.20 in [5, p. 61)). Ackermann set theory with the Axiom
of Foundation and the Axiom of Global Choice interprets AFT.

Theorem 3 (Theorem 4.2.8 in [5, p. 59]). AFT interprets ZFC.

Theorem 4 (Corollary in [5, p. 62]). AFT is equiconsistent with ZF'C.

6 Higher-order dynamic predicate logic

Now we are ready to sketch the untyped Higher-Order Dynamic Predicate Logic
(HODPL). The restriction we impose on implicit function introduction are those
imposed by AFT. AFT gives us untyped maps, which always have a restricted
domain. So instead of using types to syntactically restrict the possible arguments for
a given function term, we implement a semantic restriction on function application
by integrating a formal account of presuppositions into the HODPLE] HODPL
syntax thus allows for any term to be applied to any number of arguments to form
a new term.

Besides the binary “=", HODPL has two unary logical relation symbols, U for
urelements and F for functions. HODPL syntax does not depend on a signature,
as we do not allow for constant, function and relation symbols other than “=", U
and F. These can be mimicked by variables that respectively denote a non-function,
denote a normal function or denote a function that only takes two predesignated
urelements (“booleans”) as values.

The domain of a structure always has to be a model of AFT. The possibility
of presupposition failure is implemented in HODPL semantics by making the inter-
pretation function partial rather than total. For conveniently talking about partial
functions, we use the notation def(f(z)) to abbreviate that f is defined on x.

We define the partial interpretation function [[]]% C Gg x Gg by specifying its
domain and its values trough a simultaneous recursion (the cases 3-8 of the second
part are as in THODPL):

e Domain of [-]%:

1. def([U(t)]2) iff (1] # u®.
2. def([F()]%) iff [1]% # u®.

6See [4] for an introduction to presuppositions in mathematical texts.
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def([T]%)-

def([t1 = t2]%) iff [t1]2 # v and [t2]% # u”.

def([~]) iff def([]%).

def([p A ]%) iff def([¢]2) and for all h € [p]%, def([1]%).
def([p — ]%) iff def([¢]%) and for all h € [p]%, def([]%).
def([3t ©]%) iff for all h s.t. ht]g, def([¢]%).

.OON.C“F”PPO

e Values of [-]%:

L. [U(#)]% := {hlg = h and [t} € U}
2. [F#)]% = {hlg = h and [t]] € F°}.

One can define a sound proof system for HODPL that can prove everything
provable in AFT: In the author’s PhD thesis, a proof system for an extension of
HODPL is defined [5, pp. 108-113] and proven to be sound [5, pp. 147, 148] and
complete [5, pp. 156-176]. The details of this proof system are beyond the scope of
this paper.

7 Conclusion

We have studied a feature of the natural language of mathematics that has previ-
ously not been studied by other logicians or linguists, the implicit dynamic function
introduction, exemplified by constructs of the form “for every z there is an f(x) such
that ...”. If this feature is used without limitations, it yields a paradox analogous to
Russell’s paradox. Hence any formalism capturing it has to impose some limitations
on it. We have sketched two higher-order extensions of Dynamic Predicate Logic,
Typed Higher-Order Dynamic Predicate Logic (THODPL) and Higher-Order Dy-
namic Predicate Logic (HODPL), which capture this feature, and which differ only
in the limitations they impose onto it. HODPL is based on Ackermann-like Function
Theory, a novel foundational theory of functions that is inspired by Ackermann Set
Theory and that interprets ZFC.

References

[1] W. Ackermann. Zur Axiomatik der Mengenlehre. Mathematische Annalen, 131:336—
345, 1956.

[2] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56-68, 1940.

964



IMpPLICIT DYNAMIC FUNCTION INTRODUCTION AND AFT

[3] M. Cramer, B. Fisseni, P. Koepke, D. Kiihlwein, B. Schroder, and J. Veldman. The
Naproche Project — Controlled Natural Language Proof Checking of Mathematical
Texts. In CNL 2009 Workshop, LNAI 5972, pages 170-186, 2010.

[4] M. Cramer, D. Kiihlwein, and B. Schroder. Presupposition Projection and Accommo-
dation in Mathematical Texts. In Semantic Approaches in Natural Language Process-
ing: Proceedings of the Conference on Natural Language Processing 2010 (KONVENS),
pages 29-36. Universaar, 2010.

[6] Marcos Cramer. Proof-checking mathematical texts in controlled natural language. PhD
thesis, Universitdt Bonn, 2013.

[6] Marcos Cramer. The Naproche system: Proof-checking mathematical texts in controlled
natural language. Sprache und Datenverarbeitung — International Journal for Language
Data Processing, 38(1-2):9-33, 2014.

[7] J. Groenendijk and M. Stokhof. Dynamic Predicate Logic. Linguistics and Philosophy,
14(1):39-100, 1991.

[8] M. Lackenby. Topology and Groups. Retrieved December 1, 2016, from http://
people.maths.ox.ac.uk/lackenby/tg050908.pdf, 2008. Lecture Notes.

[9] W. Reinhardt. Ackermann’s set theory equals ZF. Annals of Mathematical Logic,
2:189-249, 1970.

[10] W. Trench. Introduction to Real Analysis. Prentice Hall, 2003.

965 Received 6 December 2016


http://people.maths.ox.ac.uk/lackenby/tg050908.pdf
http://people.maths.ox.ac.uk/lackenby/tg050908.pdf




LocoLOGY AND LoOcCALISTIC LOGIC:
MATHEMATICAL AND EPISTEMOLOGICAL ASPECTS

MicHEL DE GLAS
SPHERE, CNRS-Université Paris Diderot
5, rue Thomas Mann 75205 Paris Cedex 13 France
michel.deglas@univ-paris-diderot.fr

Abstract

The object of this paper is to present and thoroughly study a new logic,
called localistic logic, the essential features of which are as follows. First, it
relies upon a rejection of the positive paradox axiom and a weakening of the
deduction theorem. Second, the localistic logic provides locology with a logical
framework. Third, the concepts of prelocus and locus provide logic (and loco-
logy) with a categorical substratum.

Keywords: Locology, Localistic Logic, Prelocus, Locus, Constructivism.

Introduction

One may point out, in modern mathematics, many mathematical, logical and philo-
sophical oppositions to Cantor’s transfinite “paradise”. As is well known, Kronecker,
Poincaré, Brouwer, Weyl, Feferman, and some others are particularly reluctant to
accept Cantor’s conception of the continuum (“The actual infinite is not required
for the mathematics of the physical world”, Feferman says).

Surprisingly enough, topology has never really been touched by the criticisms on
set theory and actual infinity, although it incorporates many problematic notions of
set theory. For instance, unless one chooses to consider non-7; topological spaces
(i.e. spaces of little mathematical significance and of practically no use in applied
domains), boundaries are lines of Lebesgue-measure zero. Next, contrary to what
intuition suggests, the operators of interior and closure are idempotent. Moreover,

Talk at the conference “Philosophy, Mathematics, Linguistics: Aspects of Interaction 2012”
(PhML-2012), held on May 22-25, 2012 at the Euler International Mathematical Institute.

Vol. 4 No. 4 2017
IfCoLog Journal of Logics and their Applications



M. DE GLAS

the concept of neighbourhood, which is supposed to model the notion of proximity
or nearness, is somehow transitive. It is not difficult to prove that all these counter-
intuitive and mathematically hard to accept situations are immediate consequences
of the actual infinity, particularly of the atomic nature of the continuum.

The various attempts to generalize point-set topology take place in the course
of “point elimination”. It is on this road that one can meet abstract spaces (first
studied by Hausdorff who took the notion of open set as a primitive in the study of
continuity in such spaces), Heyting algebras (which arose from the epistemological
deliberations of Brouwer), pointless topology (where open-set lattices are taken as
primitive notions, irrespective of whether they are composed of points), point-wise,
or formal, topology (an intuitionistic approach to topology, based upon Martin-Lof’s
type theory, which proves to be slightly more restrictive than pointless topology).
A further step in the process of (pointless) abstraction may be taken by considering
the category of locales (whose objects are complete lattices equipped with the in-
finite distributive law, and whose morphisms are maps preserving finite meets and
arbitrary joins), which, according to many category-theorists is the structure within
which pointless topology must be developed. Whatever one may think of the latter
assertion, an essential feature of the results available is that they all invoke non
constructive principles: the localistic framework allows to give classical theorems of
topology constructive proofs. What one can gain by doing constructive topology is
that there are contexts in which one may like to do “topology” but one does not
wish to assume the law of excluded middle or the axiom of choice. Such contexts
are called topoi. Apart from this alleged constructive aspect, there are nevertheless
several results which say that, from one point of view (i.e., when one works with
spatial locales), working with locales is doing nothing more than a disguised version
of classical point-set topology. One may, of course, consider non spatial locales but
very little work has been done on specific applications of such tools. Furthermore,
large parts of the theory of locales can be internalized in any topos and a topos is
nothing but a category which is sufficiently “like” the category of sets for one to
carry out set-theoretical constructions inside it. Point-wise (or formal) topology is
related to pointless topology by the adjunction (in the category-theoretic sense of
the word) between the category of locales and the category of topological spaces. In
the case of spatial locales, the adjunction reduces to an adjoint equivalence between
the category of spatial locales and the category of sober topological spaces. Thus
the point-wise and the pointless approaches are essentially equivalent as soon as one
wishes to deal with spatiality.

The overall gain possibly provided by pointless or point-wise topology is thus
quite limited. The basic reason is that, despite the generalization provided by the
“elimination” of points and whatever the level of abstraction is, the algebraic struc-
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tures implied by these approaches are essentially the same as those defined in a
point-set topological framework.

Locology [1,2/5H7] has been elaborated by the author as an alternative to topology
in order to provide new mathematically and philosophically acceptable and fruitful
solutions to the above mentioned problems. It allows in particular, from the giving
of a reflexive (and possibly symmetric) relation, which may be seen as a relation
of resemblance or as the measure of a granularity over some carrier set, to redefine
most concepts of topology in a more satisfactory way: the concepts of core and
shadow, which are substituted for that of interior and closure, are not idempotent;
to any subset in a locological space may be associated its frontier and its boundary
(the former being divided into its inner and outer parts), the distinction between
the two entities being of prime importance both from a mathematical and an episte-
mological viewpoint (mathematically speaking, a frontier has a certain “thickness”;
epistemologically speaking, it allows to distinguish between punctuality and indi-
visibility); the relevant algebraic structure is that of a complete and complemented,
but not distributive, lattice with a semi-implication. The distinction, in locology,
between boundaries (which have no analogue in the world of “real” entities) and
frontiers allows, in particular, to revisit some fundamental problems left open by
topology (and mereotopology): that of contiguity and contact [2]. These problems
originate from the set-theoretical and topological definition of the continuum and
the consecutive failure in the treatment of boundaries. It also leads to formalize,
in an essentially new way, the key concepts of categorization [7]. Locological spaces
encompass Poincaré-Zeeman tolerances spaces [9,/10,/13], Choquet’s pretopological
spaces [3,/12], and mathematical morphology. The study of locological concepts
and the structure thus implied allow to understand why these three (independent)
streams of research have not been followed up.

The anti-realism at the root of the rejection of actual infinity and the Cantorian
conception of the continuum is, as is well known, intimately related with the anti-
realism (or anti-platonism) in logic which leads to substructural logics, in particular
intuitionistic logic. However, the topology/locology alternative, sketched above,
suggests, first, that the criticisms addressed to topology translate to intuitionistic
logic, and, second that a new logic of which locology would be the “geometric”
counterpart is needed.

Localistic logic, the definition and the study of which are the object of Section
2, meets this requirement. We first prove that, contrary to the intuitionists’ claim,
the law of excluded middle is in no way a principle of omniscience and is perfectly
compatible with a constructive view of logic and mathematics, and that the excluded
middle and the reductio ad absurdum are not in general mutually dependent. Next,
localistic logic allows to revisit the question of the admissibility, from a constructivist
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viewpoint, of the thinning on the left (also called the positive paradox axiom), i.e.
A - (B - A) and the thinning on the right, i.e. A - (~ A - B), which are admitted
by both classical and intuitionistic logics. It is worth noticing that this question was
raised by the first intuitionists: Kolmogorov rejected A — (~ A - B) but accepted
A - (B - A); Glivenko, whose axiomatization was the one adopted by Gentzen,
raised the same question but eventually followed Heyting in keeping both thinning
on the right and thinning on the left. This question has also been tackled by relevant
logics, the first axiomatization of which was actually proposed by another Russian
intuitionist, Orlov. The rejection of both thinning on the right and thinning on
the left by relevant logics is the main departure from intuitionistic logic. However,
the various versions of relevant logics fall short of an interesting semantics (i.e. a
semantics where the truth-values may be expressed in terms of classes of objects).

Localistic logic leads to rejection of A - (B — A) on the basis that, if A may
be derived from a set I" of hypotheses (I' = A) then there is no reason that, for any
B, B - A may be derived gratis prodeo (I' - B - A). However, this may hold for
some I's, in particular for I' = @: if + A then - B - A (a theorem may be derived
from anything). What relevantists did not actually realize is that a theorem is more
than a formula deduced from an empty set of hypotheses. As far as thinning on
the right is concerned, the localistic argument is as follows: A — (~ A — B) being
related to the reductio ad absurdum, its (in)admissibility depends on some further
assumptions. A study of propositional and predicate logics is performed in Section 2.
An essential feature is, as alluded to above, the weakening of the deduction theorem.

Section 3 is devoted to the study of the categorical substratum of localistic logic.
It is shown that the theory of (pre)loci provides localistic logic with a category-
theoretic basis. However, the role played by localistic logic for loci theory is not quite
analogous to that played by topoi theory for intuitionistic logic. Indeed localistic
logic cannot be seen as an internal logic of a locus. On the contrary, it may be
seen as emerging from a (pre)locus. We may prove however the equivalence between
locus-validity and localistic provability.

1 Locology

Let X be a set and let A be a reflexive relation on X: zAz, for any = in X. The
relation A is to be thought of as a resemblance or an indistinguishability relation
on X. The set A[z] = {y:xzAy} of A-relatives of x, the elements of which may be
seen as being close to (or resembling, or being indistinguishable from) z, is called
the halo of . As A may be defined as a map X — p(X), z —> A[z], we denote by
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A(A) the set
A(A4) = U Alz]

TeA

so that A[z] = A({z}). Next, one defines the following two operators h and s which
associate to any A in p(X) its core and its shadow respectively. More precisely, let
h:p(X) — p(X) be the operator which associates to any A its core

h(A) = {z e X : A[z] c A}.

Immediate properties follow:

(1) h(A) € A, h(X) = X,
(2) If Ac B then h(A) € h(B),
(3) ho h(A) < h(A),

(4) h(AUB) 2 h(A) UR(B),
(5) h(Mi Ai) =N h(4;).

It is worth emphasizing that, contrary to the properties of an interior operator
in topology, h is not idempotent (unless A is assumed to be transitive). On the other
hand, property (5) holds for infinite intersections.

The shadow operator is defined in a dual way. It associates to any A € p(X) its
shadow s(A) defined by

s(A)={ze X : A\[z]n A=}

The operators h and s are interdefinable since clearly

s(A) = h(A),

where A denotes the complement of A. Immediate properties of s then come out:

(1) s(A) 2 4, s(v) =2,

(2) If Ac B, then s(A) c s(B),
(3) 50 5(4) 2 5(A),

(4) s(AnB) cs(A)ns(B),

(5) s(U; 4i) = U; s(A)).

Like h, the operator s is not idempotent and, unlike topology, equality (5) holds
for infinite unions.

The idea of using a reflexive (and symmetric) relation to recapture the intuitive
notion of indistinguishability is not new. That of having recourse to non idempotent
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“interior” or “closure” operators is not without predecessors either. The former idea
can be traced back to Poincaré’s works on the physical continuum. As claimed
by Poincaré [9], “the raw result of experience may be expressed by the relation
A=B,B=C,A<(C, which may be taken as a formula of the physical continuum?.
Here, A = B is to be understood as “A and B are indistinguishable”, and A = B is
then a reflexive and symmetric relation over the collection of entities under study.
This approach was exploited by Zeeman [13] in his works on tolerance spaces.

The idea of a non idempotent closure operator can be traced back to Choquet’s
paper on pretopology [3]. Such an operator is nowadays referred to as a Cech
closure operator [12]. Depending upon the properties it is equipped with (isotony,
accretivity, sub-linearity, ...) the resulting spaces are called extended topologies [8|,
neighbourhood spaces [4], Smyth spaces [11], or pretopologies.

However these two streams of research have not been followed up. The basic
reasons seems to be the following. The Poincaré-Zeeman approach is essentially
geometric and is then deprived of an algebraic (and a logical) content: there is
nothing, in tolerance spaces, which can play the role of the lattice of open sets in
a topological space. In a symmetric way, the approaches pertaining to the stream
initiated by Choquet have a poor geometric content. Furthermore, they lead to very
poor algebraic structures too: as a generalization of the Kuratowski closure algebra,
the algebra {cl(A): A c X}, where ¢l denotes the generalized closure operator, fails,
for instance, to be sup-complete, so that the disjunction of objects of the algebra
cannot be defined. If A and B are “closed” sets, nothing can be said of the entity
“A and B” (apart from the fact that, in general, An B is not “closed”). These
limitations are insurmountable.

Owing to the property (5) of h and s, the corresponding algebras, as will be seen
below, have much stronger properties. Many results may then be derived, most of
which are not derivable in a generalized closure space or in a tolerance space.

We consider the two families:

L={h(A): Ac X},

K={s(A): Ac X).

It is clear that £={A: Ae K} and K = {A: Ae L}. In view of the properties of
h, (£,n) is a complete and bounded inf-semi-lattice. However, for A and B in L,
A u B may not be an element of £. Indeed, given A and B there may not exist C'
€ p (X) such that h(C) = Au B. Hence (£, U) is not a sup-semi-lattice. We may
however define, for A and B in L:

AuB=(Y{CeL:C2A,C2B},
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the existence of which is guaranteed by the inf-completeness and the boundedness
of L. Au B is thus the least upper bound of the set of objects of £ which contain
AuB. Thus (£, n, u) is a complete lattice. But it fails to be distributive. Indeed we
may have An B=AnC and AuB=AuC and B # C, the equality B = C being
a necessary and sufficient condition for a lattice to be distributive. Furthermore

hoMA)=({BeLl:BcA},

for any A ¢ X. Hence
Aoh(A)c AchoA(A),

where the equality holds on the right-hand side iff A € £, and then
AuB=ho)AuUB),

for any A, B e L.

The lattice (£,n,u) is called a locology and X a locological space. Despite the
differences between locology and topology (non-distributivity of £, completeness of
L, non-idempotency of h and s), the consequences of which are of prime importance,
it is quite clear that the objects of £ bear some resemblance with open sets in a
topological space. However, £ may be defined as

L={AcX:A=ho)\(A)}

The operator ho A is accretive, order-preserving, and idempotent. Hence h o) is
an algebraic closure operator, i.e. a closure operator in p (X) viewed as an ordered
set. Of course, it is not a topological closure operator since e.g. ho A(AuU B) #
hoA(A)UhoA(B). This means that the objects of £ have something in common
with closed sets in topology.

A dual analysis may be carried out for the algebra

K={s(A): Ac X}.
Indeed, if one defines, for A, B € K,
AnB=J{CeK:CcA,CcB},
then (K,m,u) is a complete, but not distributive lattice, where, furthermore:
hoA(A) = {Cek:Bc A},

AnB=hoAANB),
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and, if A is symmetric,

hoX(A)=MXoh(A)
AnB=Xoh(ANnB)

The fact that /C may be rewritten as

K={AcX:A=hoA(A)}={AcX:A=ho)(A)}
and, if A is symmetric, as
K={AcX:A=Xoh(A)}

shows that the objects of K have a superficial similarity with closed sets in a topo-
logical space and a deeper resemblance with open sets in a topological space.

This may seem paradoxical at first glance. It is, however, a key point of locology.
To more accurately specify this, one first has to revisit the concept of a boundary.
The critical analysis of the concept of a boundary in topology leads us to actually
define two different concepts: to any region A, one associates its frontier and its
boundary, the former being divided into its inner and outer parts.

To any A ¢ X, one associates its inner frontier 9;,(A) = A(A) n A and its
outer frontier Oput(A) = M(A) n A. The frontier of A is then 9(A) = 0;,(A) U
Dout (A) = A(A) N A(A). Among many properties, which follow from their definition,
a remarkable property is the idempotency of 9;, and Oy which follows from

h[Bin(A)] = h[Opur(A)] = 2.

The epistemological significance of these equalities is that locology allows us to
distinguish between punctuality and indivisibility (these two notions being unduly
identified to each other in topology). Indeed, 9;,,(A) and 9yt (A) may be considered,
on the one hand, as indivisible since they have empty cores and, on the other hand,
as having a certain “thickness” (unless A coincides with the diagonal of the carrier
set X).

One may now define the concept of a boundary. The boundary of A ¢ X is
defined to be the core of its frontier

B(A) = h(9(A)).
Since d(A) = X (A) n X (A), one has

B(A) =hoA(A)nho(A).
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Hence

(1) B(A) = B(A) e L,

(2) AN B(A) = Ao h(A),
(3) AUB(A) = ho A(A),
(4) Ae Liff B(A) € A,

(5) Ae Kif Anp(A) = 2.

Thus, as already alluded to above, objects of £ and K have properties in common
with closed sets and open sets in topology, respectively: any A in £ contains its
boundary; any A in K is disjoint from its boundary.

This shows that locology allows us, not only, to define purely locological concepts
(the core h, the shadow s, the frontiers 0, and Jy,:) which have no counterpart in
topology, but also concepts that may be seen as “quasi topological” (the operators
hoX and Aoh, the boundary () with common features and essential differences with
their topological pendants. It may also be shown that topology is the limit case of
locology corresponding to an infinitely small granularity.

Given a locological space X, one may define in £ the unary operator - by setting
—~A = h(A), the core of the complement of A. The operator - clearly satisfies

Hence, - is a complementation in £ and an orthocomplementation iff A is sym-
metric (these properties being not equivalent in a non distributive lattice). Antici-
pating on the next section, this translates into logical terms as follows. First, (1)-(3)
show that, contrary to the intuitionists’ claim, the law of excluded middle is in no
way a principle of omniscience: for any A € £, A and -A are disjoint and their
disjunction AL —-A covers the universe, but there may exist objects of X that do not
belong to either of A and -A. Second, (3) and (4) show that the law of excluded
middle and the reductio ad absurdum may not be interdependent.

Next, for any A and B in L, let = be the binary operator defined by

A= B=h(AuB),

the essential properties of which are
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(1) A=B=Xiff AcB,
(2)
(3)Am(A=>B)cB

4 (A=B)n(A=C)c A= (BnO),
5) (A=B)n(B=0)cA=C,

(6)

6 CcA=1B

However, the reciprocal to (6), i.e.

AnCcB
CcA=1B

holds only if £ is distributive (in which case £ is a Boolean algebra) i.e. only if A
is transitive. Therefore, = is not, strictly speaking, an implication. It implies, in

particular, that
A=X

B=A=X
holds but
A= (B=A)+X.

Anticipating, once again, on the following section, this inequality translates into the
non-validity of the positive paradox axiom (thinning on the left).

Similarly, although
A=C=X B=C=X

(AuB)=C=X

holds, one generally has
(A=C)n(B=C)¢(AuB)=C.

The properties of = (called, from now on, a semi-implication) and of the disjunction
U, as compared to those enjoyed by the corresponding operators in a Boolean or a
Heyting algebra (hence in classical and intuitionistic logics), are essential features
of the locological framework from a logico-algebraic viewpoint.

One may then define, as a natural abstraction of the above algebraic structure,
the concept of A-algebra. A A-algebra is a 5-tuple (L, A, Vv, -, =) such that

(1) (L,A,V) is a lattice with a least element 0 and a greatest element 1.

(2) (L,=) satisfies
a=>b=1iff a <0,
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an(a=0b)<b,
(a=b)n(b=rc)<(a=c),
(a=b)A(a=c)<a= (brc).

(3) (L,-) satisfies
-a=a =0,

——a = a.

where a <biff anb=a.

Theorem 1.1. In a A-algebra L, the following properties hold:

(a) - is an order-reversing involution.
(b) an-a=0.
(¢c) =(avbd)==an=b;=(arb)=-av-b.
(d) a= b is increasing wrt a and decreasing wrt b.
(€) av
() (ea=b)r(a=>c)=a= (brc).
(g) (avb)=>c<(a=c)A(b=c).
(h) ifc<a=bthenanc<b.

)

(i

ifanc<bthenl=c<a=b.

]

From now on, we will consider locologies whose underlying relation A is symmet-

ric, i.e., locologies that are orthocomplemented, as lattices.

Theorem 1.2. (a) Any locology is a A-algebra. (b) Any A-algebra (L,A,V,—,=)

may be embedded into a locology on some set.

Proof. (a) is obvious. To prove (b), consider the MacNeille completion L* of L, i.e.

L*={A":AeL}cp(l)
where A* is defined, for any A € L, by

Ma={m:a<m,for any a € A},
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A* ={x:x <m,for any me A}.

If A=@ then My = L and A* =0 where 0 is the least element of A. Hence (L*,c,N)
is a complete inf-semi-lattice with a least element 0. It may then be equipped with
the structure of a complete lattice (L*,<,n,v*) by setting

A*V*B*=({CeL":C2A",C2B*}.

The image under the transformation A — A* of a singleton a of L is the subset
{be L :b<a} which will be denoted (a |). Let T be the set {(a |) :a € L}. The
mapping a — (a |) € T is obviously one-to-one and onto. Since a <bin L iff (a |) €
(b)) in T, identifying {a} with a leads to considering a mapping f: L — T € L* |
a — (a ). One may then easily prove that f is a monomorphism. O

2 Localistic logic

The language of propositional localistic logic (LL for short) has an alphabet con-
sisting of proposition symbols: pg, p1,..., connectors: A, v, —, <, 1, and auxiliary
symbols: (,). The set ® of formulas is the smallest set X such that

(1) p;eX,ieN, 1e X,

(2) If ¢, Y e X, then dAY, dV, p>peX.

The axioms and the inference rules for propositional LL are instances of one of the
following forms, where ~ ¢ stands for ¢ -1 and ¢ < 9 stands for (¢ > ) A (Y > ¢):

Axioms

Al 1> ¢

A2a  GAY > o

A2b  HAY > 1

A3 (6= E)A(d~X) ~ (&~ (A X))
Al (p>d) A —>x) > (6= X)

Aba ¢V

A5b oV

A6 (oA (9—>0) >0

AT  ~nvp o @
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Inference rules

Ry ©0-0
(4
R2 9
Y=o
Ry O XV-oX
(pvep) = x
A formula is said to be provable, denoted +r1, ¢ or simply + ¢, iff there exists a
sequence ¢1, o, ..., ¢, of formulas such that ¢, = ¢ and, for any i < n, ¢; is either

an axiom or follows form earlier formulas in the sequence by a rule of inference from
{R1, R2, R3}. A waluation v is a mapping v : ¢ — (L,A,V,-, =), where L is a
A-algebra, such that

v(Ll) =0,

v(@ A1) =v(d) Av(e),

v(p Vi) =v(d) vu(y),

v(¢ =) = () = v(¢),
v(~ @) = -v(9).

Let L be a A-algebra. A formula ¢ € ® is L-valid iff, for any algebra v,v(¢) =1, the
greatest element of L.

Theorem 2.1. + ¢ iff ¢ is L-valid for any A-algebra L.

The above completeness theorem deals only with the equivalence between prov-
ability and validity in a A-algebra. One now has to consider deducibility from a set
" of formulas (which, as usual, may be thought of as hypotheses). Unlike the classi-
cal and the intuitionistic cases, the extension from provability (- ¢) to deducibility
from I' (I' + ¢) is far from obvious. It leads, in particular, to the non-validity of the
deduction theorem.

We say that ¢ is deducible from a set I' of formulas, denoted I' + ¢, iff either
¢ is provable (- ¢) or there exists a sequence ¢1,...,¢, = ¢ of formulas such that
each ¢; is either an axiom or a formula of I or follows from earlier formulas in the
sequence by the inference rule R1.

We say that ¢ is I'-valid, denoted I = ¢ iff, for any L and any valuation v, there
exists I'g € I', 'y finite, such that

N v(v) <v(9).

7€l
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Theorem 2.2. If ¢ + 1), then + ¢ — .

Proof. Two cases have to be considered. If + ¢ then + ¢ — ¢ by R2. If # v then
¢ + 1 means that 1) may be deduced from ¢, A1-A7 plus R1. As Rl is the only
inference rule, unless ¢ and ¢ are the same formula (in which case the statement of
the theorem is trivially true), ¢ - ¢ — 1. But this holds iff - ¢ — 1. O

We seem to be well on the way to a proof of the deduction theorem. Indeed,
from theorem [2.2] which asserts
o

¢ =1

and consequently

¢17¢27"'7¢an
F(P1Agan-Adp) >

we might expect that, for any I,

_I're
Lry—¢

However, we have the
Theorem 2.3. '+ ¢ does not entail I' - — ¢.

Proof. Suppose that I" - ¢ implies I' - ¢ — ¢ for any 1. Then, applying theorem
2.2 above and theorem below, I E ¢ implies " £ ¢ - ¢ for any 1. A necessary
and sufficient condition is that v(¢) = v(¢) > v(¢) for any valuation v. Such an
inequality generally does not hold. O

We must emphasize the contrast between the validity of

Yo
FY =9

and the non-validity of
Lo
et —>o
i.e. of the deduction theorem. The validity of the former means that either + ¢ and
then + 1 — ¢ (a theorem may be deduced from anything) or # ¢ in which case 1)
F o iff -y — ¢, ie. iff » - ¢ has already been proved. The validity of the latter
would mean that if ¢ may be deduced from I' U {¢)} then, irrespective of whether
¥ (or ¥ — ¢) appears or not in the deduction of ¢, 1 - ¢ may be deduced, gratis
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prodeo, from T'. Such a scheme is not allowed in a localistic framework. Although
highly non constructive, this derivation is possible in intuitionistic logic.

It must be clear that the weakening of the deduction theorem (or, equivalently,
the non-validity of the positive paradox axiom ¢ - (¢» - ¢) ) is the logical coun-
terpart of the non-distributivity of a A-algebra, which itself is the translation in
algebraic terms of the non-idempotency of the shadow and the core operators in a
locological space.

A set T" of formulas is said to be consistent if I' 1. Otherwise, it is said to be
inconsistent. I' is said to be complete iff, for any formula ¢, I' - ¢ or I' +~ ¢.

Theorem 2.4. (a) IfT" U {¢} is consistent then T #~ ¢. (b) If T is complete, then
the reciprocal to (a) holds.

Proof. (a) Let T' u{¢} be consistent and suppose that I =~ ¢. Then I', ¢ +~ ¢. But,
since I', ¢ + ¢, then I', ¢ +1, a contradiction.

(b) If I' ¥~ ¢, since I' is complete, I' + ¢. Suppose that I'; ¢ -1. Then I' ~1, and
I' -~ ¢, a contradiction. O

Theorem 2.5. I' is consistent iff I' is satisfiable.

Proof. (a) If T' is satisfiable, then there exists a valuation v such that v (y) =1 for
any v € I'. Suppose I' is not consistent. Then I' + L and therefore I'g - L for some
[y c T, Ty finite. Setting I'g = {71, V2, --., Y} leads to v1, Y2, ..., 7 + L, i.e.
Fo(yi Ay Aces Ayy) and B~ (71 A2 A= Ayy). Thus, v(yr A2 A= AY,) =0, a
contradiction.

(b) Let I be consistent. From part (a) of theorem if v is consistent then
-~ ~ and, consequently, ¥~ . Suppose I' is not satisfiable, in which case there exists
v € I such that, for any v,v(y) < 1. By induction on the length of 7, v (v) = 0 for
any v, i.e. v(~ ) = 1, for any v. Thus E~ 7, a contradiction. O

Theorem 2.6. If ' + ¢ then I' E ¢.

Proof. If + ¢ then = ¢, whence I' £ ¢. If I' + ¢ (and # ¢), then there exists I'y
={m,v, ..., W} € T such that Ty + ¢. Then H(y1 A2 A= A7,) = ¢ and E
(MiAy2A Ay, ) > ¢ ThusTogE ¢ and I E ¢. O]

Theorem 2.7. If " & ¢, then I' + ¢.

Proof. (a) If T is finite, the reciprocal to theorem clearly holds. Indeed, if T" =
{71, 72, .-+, Y} then vy, 72, ..., 7 E ¢ entails £ (1 Ay2 A+ Ay,) = ¢ hence
H A A AT ) > dle v, 72, s T E O
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(b) If ' is infinite, there exists I'g € I', T'y finite, such that

N v(7) <v(9),

velo

i.e. I'g E ¢. Applying (a) leads to I'g + ¢. Thus I' + ¢. O

3 Categorical substratum

The aim of this section is to provide localistic logic (and locology) with a categorical
substratum which would play to some extent the role played by topoi theory and
set theory for intuitionistic and classical logic respectively. As a A-algebra is a non
distributive lattice the disjunction of which is weaker than the intuitionistic and the
classical ones, it is a priori quite clear that the required categorical framework must
exhibit a weakened form of exponentiation.

3.1 Preloci
A category C is said to have semi-exponentiation if

(1) any pair (A, B) of objects of C has product A x B,

(2) for any pair (A, B) of objects, there is an object B4 and an arrow e: B4 x
A — B such that, for any g : C x A — B, there exists at most one arrow

§:C — B such that the diagram

BAx A

QX]_A (&

CxA

commutes. If, for a given g, § exists, we will write

g:CxA—B
§g:C — BA

where g and § may be omitted.
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(3) The following rules hold
(a) A—B
1 — BA’

b CBxBAxA—C
() C’BXBA—>C'A ?

BAXxCAxA— BxC
(c) BAx(CA— (BxC)A~

The arrow e is called the evaluation arrow. The arrow g, if it exists, is called the
exponential adjoint of g.

Theorem 3.1. The correspondence g — § is bijective. O

Although the correspondence g —> § is bijective, Hom(C'x A, B) and Hom(C, B4)
are not isomorphic. As § may not exist, the correspondence is not necessarily a total
function.

A category A which has

(1) a terminal object 1,

(2) a pullback and a pushout for each pair of arrows,
(3) semi-exponentiation

will be called a prelocus (plural: preloci). Clearly, a prelocus has initial object 0,
for any pair (A, B) of objects, a product defined by an object A x B together with
projections m4 p: Ax B — A and 7r1'47B : Ax B — B and a coproduct given by an
object A+ B and injection arrows jy p: A— A+ B and j)y,3: B— A+ B.

Theorem 3.2. In a prelocus A, the following properties hold
(1) 020x A, for any object A.
(2) If there exists an arrow A — 0, then A =20 and the arrow is a mono. O]

3.2 The algebra of subobjects in a prelocus

Let A be a prelocus and let X be an object of A. First recall that a subobject
of X is defined as follows. Given two monos f: A > X and g : B » X, one sets
f € g iff there exists h: A > B such that f = g o h. Then, the relation ~ defined by
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f~giff fcgandgc fisan equivalence on the set of monos with codomain X.
Furthermore, if f ~ g, there exists an iso k: B — X with inverse h: A — X such
that f = goh and g = f o k. The equivalence class of f modulo ~ is denoted [ f] and
is said to be a subobject of X. The set Sub(X) of subobjects of X is thus

Sub(X) ={[f]:f:A>» X,some A}.

We will usually write “the subobject f” when we mean “the subobject [ f]”.

3.2.1 Conjunction

Let f: A> X and g: B » X be two subobjects of X. The conjunction of f and g
is defined to be the pullback of f and g, i.e. the subobject fng: Axx B> X such
that

AXxB

B
9

is a pullback square. The subobject f n g is thus defined up to isomorphism.

3.2.2 Disjunction

The disjunction of two subobjects f: A X and ¢g: B » X of X is the subobject
fug of X such that the diagram

A+ B [f)g] X

[f,9]* fug

AuB
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is an epi-mono factorization. In other words, f u g is the image of the coproduct
arrow [f,g] (the least subobject of X through which [f,g] factors) and Au B =
[f.9]"(A+ B),[f,g]" being an epi.

Theorem 3.3. (Sub(X),<,n,v) is a lattice with a least element Ox and a greatest
element 1x. L]

However, Sub(X) is not, in general, distributive. Indeed, let f : A » X and
g: B > X be subobjects of X such that

fng ~ fnh ~ Oy,

fug ~ fuh.
We then have the following commutative diagrams
[f.9] [f. 7]
A+B X A+C X
[f.9]* fug [f,h]* fuh
AuB AuC

ie. fug =~ |[f,g]land f U h ~ [f,h]. But, g # h since B £ C. Thus, in general,
Sub(X) is not distributive.

3.2.3 Semi-implication

Let f: A» X and ¢g: B » X be two subobjects of X. We define f = ¢g: B4 » X
as a subobject of X such that the diagram

AXXBA

A
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where h = fn(f = g), commutes. From the definition of fng, we have the following
commutative diagram

AXxBA

NF—

AX_)(B

A

Hence (fng)ok~ fn(f=g). Thus
folf=g9cfng.

The existence of such a subobject is guaranteed by the fact that, in any lattice L,
for any z,y such that y < z, there exists z € L such that x A z < y. Clearly there are
several possible choices.

Theorem 3.4. The following holds

(a) If hc f =g then hn f c g,
(b) If f = g~ 1x then f cg. O

The converse to (a) does not hold. Thus f = g is not an implication. That is
why it is called a semi-implication.

Theorem 3.5. For any subobjects f : A X,g: B> X and h: C » X of X, the
following holds:

(@) (f=g)n(g="h)c f=h,
(b) (f=g)n(f=h)cf=(g9nh),
(¢c) If fcgthen f=g~1x. O

Let f: A> X be a subobject of X in a prelocus A and let x: 1 — X. If there
exists k: 1 — A such that the diagram
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A 7 X

commutes, we say that z is an element of f, denoted x € f.

Theorem 3.6. In any prelocus, for any object X, we have in Sub(X), z € fng iff
xefand xeg.

Proof. (a) If x € f ng, then there exists k such that z = (f ng) o k. Since fngc f,
there exists j such that fng=foj. Thusx=fojok,ie. xe f. Similarly, x €g.
(b) Suppose that x € f and x € g and consider the diagram

1
N
AXXB B
k
f
A X
g

By definition of fng, the inner square is a pullback, so the arrow m does exist making
the whole diagram commute. Hence (fng)om = fok=x. Thusxz e fng. O
3.2.4 Complementation

In a prelocus, one can associate to any f: A > X in Sub(X) the subobject -=f : A »
X, defined by —f ~ f = 0x and called the complement of f.

Theorem 3.7. For any X and any f: A> X and g: B> X in Sub(X), we have
(a) fm_‘fEOXa
(b) If f c g then ~g € - f.
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Proof. (a) follows from the definition of the semi-implication. (b) Given f C g, then,
forany h: C'> X, g= h c f = h. In particular g = 0x ¢ f = 0x i.e. =g ~f. O

3.3 Loci

A prelocus is called a locus if the commutativity of one of the two diagrams

f

implies that of the other and then of the square

kl

ATy

for any object X. In other words, a prelocus A is a locus iff, for any object X of A,
and any z: 1> X, the following equivalence holds true: (x € f) iff (z € == f).

Theorem 3.8. For any object X in a locus A and any f: A>»> X and g: B> X in
Sub(X), we have

(a) f=--f.

(b) If —f € =g then g C f.

(¢) fu-f=~1x.

(d) =(fug)=-fn-g.

(e) ~(fng)=-fu-g O
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Theorem 3.9. For any object X in a locus A, (Sub(X),c,n,u, =, =) is a A—algebra.

O
Remark. In a locus, the following do not hold true:
(a) If fng=~0x then gc-f,
(b) If z € ~f then not z € f,
(c)Ifxefugthenzeforaxeg,
although the converse implications hold true.

The relationships between loci and A-algebras may be made more precise. In a
lattice L, when considered as a poset category, there exists an arrow a — b between
two elements of L iff @ < b. Since, furthermore, in a A-algebra, z < a = b entails
xzAa < b (the converse being generally false), the existence of an arrow z — (a = b)
implies that of an arrow x A a — b. This is reminiscent of the situation in a locus
where there is a bijection between a subset of Hom(z, %) and Hom(zxa,b). Now, in
a A-algebra aAnx = xAa is the product xxa and a = b provides us with the exponential
b*. The evaluation arrow b x a — b is the unique arrow (a = b) A a —> b which
appears in the definition of the semi-implication. Conversely, semi-exponentiation
provides semi-implication. Thus, categorically, a A-algebra is nothing but a category
with a terminal object, with pullbacks and pushouts for any pair of arrows, with
products and coproducts for any pair of objects and with a semi-exponentiation.
Thus any A-algebra is a locus.

3.4 Locus-validity

The above remark on the links between loci and A-algebras leads us to consider the
concept of locus-validity and its relation with localistic provability. Given a set ®
of formulas, defined via the formation rules given in section 2.1, and a locus A, a
formula ¢ € ® is said to be A-valid, denoted A E ¢, iff, for any object X of A and
for any valuation v: ¢ — Sub(X),v(¢) = 1x.

Theorem 3.10. 1, ¢ iff ¢ is A-valid for any locus A.

Proof. (a) If 1 ¢ then ¢ is L-valid for any A-algebra L. Then, in particular, ¢ is
Sub(X)-valid, for any X in A and any A, i.e. A = ¢ for any A.

(b) If A E ¢ for any locus A, then ¢ is Sub(X)-valid for any X in A and for any A.
Suppose that 57 ¢. Then ¥r ¢ i.e. there exists a A-algebra L such that ¢ is not
L-valid. But any A-algebra being a locus, this leads to a contradiction. O

Clearly, in a locus with exponentiation we have f = (¢ = f)~1x and fcg=h
iff fngc h, for any object X andany f: A > X, g: B> X and h: C » X
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in Sub(X). This, in turn, leads us to compare the locus-theoretic and the topos-
theoretic frameworks, in particular from a logico-algebraic viewpoint. The question
of whether the algebraic operators N, U, = and = in the algebra Sub(X) of subobjects
of some X in a locus (or, equivalently, in view of theorem the logical connectors
in localistic logic) may be - or should be - internalized is of prime interest. Indeed,
a remarkable feature of the above analysis and results is that loci theory makes
no use of the concept of subobject classifier and that the logical connectors or the
corresponding algebraic operators have no internal counterpart.

Far from being a drawback, the impossibility to internalize the logical connectors
and then to consider localistic logic as an internal logic of some (hence any) locus,
is a highly desirable result. First, it means that LL must be seen as emerging
from a locus-theoretic structure and it asserts the pre-eminence of the (categorical)
structure over the logic which emerges from it. The links between topoi theory
and intuitionistic logic (IL) convey the opposite - and highly controversial - view.
Second, the definition of a subobject classifier in Set, which allows to recapture the
definition of the Boolean topos Set as a special case of the general definition of a
topos, is rather artificial. Finally, the equivalence between IL-provability and topos
validity hides a situation which seems somehow anomalous. On the one hand, topos
validity and IL-provability only depend on the algebraic - hence external to the topos
- structure of the algebra Sub(1) of subobjects of the terminal object 1, Sub(1) being
not an actual object in a topos. On the other hand, from an internal viewpoint -
which should prevail since IL is defined, via truth-arrows, as an internal logic -, what
actually matters is Q¥ for any X, i.e. the internal version of the notion of power set,
of which Sub(X) is the external version. But Q% plays no role in the definition of
the validity /provability. The divorce between the internal and the external versions
culminates in a rather counter-intuitive result: there are non-Boolean topoi, i.e.
topoi where Sub(€2) is not a Boolean algebra, which do validate classical logic. The
usual claim that topoi theory is to IL what set theory is to classical logic (CL) and,
therefore, that topoi theory is the right generalization of set theory in some sense, is,
to say the least, questionable. Such a situation is just impossible in a locus-theoretic
framework. Indeed, if we define a Boolean locus as a locus such that, for any object
X, Sub(X) is a Boolean algebra (i.e. such that, for any f: A > X,g: B » X and
h:C»X,f=(9=f)~1x and fngchiff fcg= h), aformula ¢ is CL-valid
iff ¢ is valid in any Boolean locus.
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is that, in contrast with other proposals, we conceal intermediate results of a
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final result is known to the parties; partial sums are not known to anybody.
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Finally, we describe a secret sharing scheme where an advantage over
Shamir’s and other known secret sharing schemes is that nobody, including
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1 Introduction

As a society, we have become dependent on information technology for many aspects
of our daily life, and as a consequence, dependent upon cryptography. The need for
developing various cryptographic tools to address new challenges in storing and
processing information is therefore clear. One of these challenges, namely how to
securely and efficiently process information owned by several different parties, is
addressed in this paper.

The problem of secure multi-party computation was originally suggested by Yao
[19] in 1982. The concept usually refers to computational systems in which several
parties wish to jointly compute some value based on individually held secret bits of
information, but do not wish to reveal their secrets to anybody in the process. For
example, two individuals, each possessing some secret numbers, x and y, respectively,
may wish to jointly compute some function f(z,y) without revealing any information
about x or y other than what can be reasonably deduced by knowing the actual value
of f(z,y).

Secure computation was formally introduced by Yao as secure two-party compu-
tation. His “two millionaires problem” (cf. our Section [3)) and its solution gave way
to a generalization to multi-party protocols, see e.g. [4], [7]. Secure multi-party com-
putation provides solutions to various real-life problems such as distributed voting,
private bidding and auctions, sharing of signature or decryption functions, private
information retrieval, etc.

In this paper, we showcase several protocols, originally offered in [13], for secure
computation of various functions (including the sum and product) of three or more
elements of an arbitrary constructible ring, without using encryption or any one-way
functions whatsoever. We require in our scheme that there are k secure channels for
communication between the k > 3 parties, arranged in a cycle. We also show that
less than k secure channels is not enough.

Unconditionally secure multiparty computation was previously considered in [4]
and elsewhere. A new input that we offer here is that, in contrast with [4] and other
proposals, we conceal “intermediate results” of a computation. For example, when
we compute a sum of £ numbers n;, only the final result Zle n; is known to the
parties; partial sums are not known to anybody. This is not the case in [4] where
each partial sum 7 ; n; is known to at least some of the parties. This difference
is important because, by the “pigeonhole principle”; at least one of the parties may
accumulate sufficiently many expressions in n; to be able to recover at least some of
the n; other than his own.

Here we show how our method works for computing the sum (Section [2)) and
the product (Section of private numbers. We ask what other functions can be
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securely computed without revealing intermediate results.

Other applications of our method include voting/rating over insecure channels
(Section and a rather elegant solution of the “two millionaires problem” (Section
3).

In Section [5, we consider a cryptographic primitive known as “mental poker”,
i.e., fair card dealing (and playing) over distance. Several protocols for doing this,
most of them using encryption, have been suggested, the first by Shamir, Rivest, and
Adleman [18], and subsequent proposals include [5] and [9]. As with bit commitment,
fair card dealing between just two players over distance is impossible without a one-
way function since commitment is part of any meaningful card dealing scenario.
However, this turns out to be possible if the number of players is k > 3. What
we require though is that there are k secure channels for communication between
players, arranged in a cycle. We also show that our protocol can, in fact, be adapted
to deal cards to just 2 players. Namely, if we have 2 players, they can use a “dummy”
player (e.g. a computer), deal cards to 3 players, and then just ignore the “dummy”’s
cards, i.e., “put his cards back in the deck”. An assumption on the “dummy” player
is that he cannot generate any randomness, so randomness has to be supplied to him
by the two “real” players. Another assumption is that there are secure channels for
communication between either “real” player and the “dummy”. We believe that this
model is adequate for 2 players who want to play online but do not trust the server.
“Not trusting” the server exactly means not trusting with generating randomness.
Other, deterministic, operations can be verified at the end of the game; we give more
details in Section [5.21

We note that the only known (to us) proposal for dealing cards to & > 3 players
over distance without using one-way functions was published in [1], but their protocol
lacks the simplicity, efficiency, and some of the functionalities of our proposal; this is
discussed in more detail in our Section [0} Here we just mention that computational
cost of our protocols is negligible to the point that they can be easily executed
without a computer.

Finally, in Section[7] we propose a secret sharing scheme where an advantage over
Shamir’s [17] and other known secret sharing schemes is that nobody, including the
dealer, ends up knowing the shares (of the secret) owned by any particular players.
The disadvantage though is that our scheme is a (k, k)-threshold scheme only.

2 Secure computation of a sum

In this section, our scenario is as follows. There are k parties Py, ..., Py; each P;
has a private element n; of a fixed constructible ring R. The goal is to compute the
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sum of all n; without revealing any of the n; to any party P, j # 1.

One obvious way to achieve this is well studied in the literature (see e.g. [8,9,
12]): encrypt each n; as E(n;), send all F(n;) to some designated P; (who does
not have a decryption key), have P; compute S = >, F(n;) and send the result
to the participants for decryption. Assuming that the encryption function E is
homomorphic, i.e., that >, E(n;) = E(>_; n;), each party P; can recover »_, n; upon
decrypting S.

This scheme requires not just a one-way function, but a one-way function with
a trapdoor since both encryption and decryption are necessary to obtain the result.

What we suggest in this section is a protocol that does not require any one-
way function, but involves secure communication between some of the P;. So, our
assumption here is that there are k secure channels of communication between the &
parties F;, arranged in a cycle. Our result is computing the sum of private elements
n; without revealing any individual n; to any P;,j # ¢. Clearly, this is only possible
if the number of participants P; is greater than 2. As for the number of secure
channels between P;, we will show that it cannot be less than k, by the number of
parties.

2.1 The protocol (computing the sum)

1. P initiates the process by sending n; + ng1 to P», where ng; is a random
element (“noise”).

2. Each P;, 2 <1i < k—1, does the following. Upon receiving an element m from
P;_1, he adds his n; + ng; to m (where ny; is a random element) and sends the
result to Pj41.

3. P adds nj + ngi to whatever he has received from Pj,_; and sends the result
to P;.

4. P; subtracts ng; from what he got from Pj; the result now is the sum S =
di<i<k™i t Da<i<k noi- Then Py publishes S.

5. Now all participants F;, except P;, broadcast their ng;, possibly over insecure
channels, and compute > o<;< n0;- Then they subtract the result from S to

Thus, in this protocol we have used k (by the number of the parties P;) secure
channels of communication between the parties. If we visualize the arrangement as
a graph with k vertices corresponding to the parties P; and k edges corresponding to
secure channels, then this graph will be a k-cycle. Other arrangements are possible,
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too; in particular, a union of disjoint cycles of length > 3 would do. (In that case,
the graph will still have k edges.) Two natural questions that one might now ask
are: (1) is any arrangement with less than k secure channels possible? (2) with &
secure channels, would this scheme work with any arrangement other than a union
of disjoint cycles of length > 37 The answer to both questions is “no”. Indeed, if
there is a vertex (corresponding to Pj, say) of degree 0, then any information sent
out by P, will be available to everybody, so other participants will know n; unless
Py uses a one-way function to conceal it. If there is a vertex (again, corresponding
to Pp) of degree 1, this would mean that P; has a secure channel of communication
with just one other participant, say P». Then any information sent out by P; will
be available at least to P», so P> will know n; unless P; uses a one-way function
to conceal it. Thus, every vertex in the graph should have degree at least 2, which
implies that every vertex is included in a cycle. This immediately implies that the
total number of edges is at least k. If now a graph I' has k vertices and k edges, and
every vertex of I' is included in a cycle, then every vertex has degree exactly 2 since
by the “handshaking lemma” the sum of the degrees of all vertices in any graph
equals twice the number of edges. It follows that our graph is a union of disjoint
cycles.

2.2 Secure computation of a product

Now we show how to use the general ideas of the protocol for computing the sum (see
Section to securely compute a product. Again, there are k parties P, ..., Pk;
each P; has a private (nonzero) element n; of a fixed constructible ring R. The goal
is to compute the product of all n; without revealing any of the n; to any party
Pj, j # i. Requirements on the ring R are going to be somewhat more stringent here
than they were in Section 2. Namely, we require that R does not have zero divisors
and, if an element r of R is a product a -z with a known a and an unknown z, then
x can be efficiently recovered from a and r. Examples of rings with these properties
include the ring of integers and any constructible field.

The protocol (computing the product)

1. P initiates the process by sending ni-ng1 to Pa, where ng; is a random nonzero
element (“noise”).

2. Each P;, 2 <i < k—1, does the following. Upon receiving an element m from

P;_1, he multiplies m by n; - ng; (where ng; is a random element) and sends
the result to P;y;.
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3. P, multiplies by ny - ngr whatever he has received from P,_; and sends the
result to P;. This result is the product P = II1<j<i n; - Ia<i<k no;-

4. P, divides what he got from Py by his ngi; the result now is the product
P = ngigk n; - H2§i§k no; - Then Pl publishes P.

5. Now all participants F;, except P;, broadcast their ng;, possibly over insecure
channels, and compute Ily<;<; no;. Then they divide P by the result to finally
get ngigk n;.

2.3 Effect of coalitions

Suppose now we have k > 3 parties with k secure channels of communication ar-
ranged in a cycle, and suppose 2 of the parties secretly form a coalition. Our
assumption here is that, because of the circular arrangement of secure channels, a
secret coalition is only possible between parties P; and P;41 for some i, where the in-
dices are considered modulo k; otherwise, attempts to form a coalition (over insecure
channels) will be detected. If two parties P; and P, exchanged information, they
would, of course, know each other’s elements n;, but other than that, they would not
get any advantage if k > 4. Indeed, we can just “glue these two parties together”,
i.e., consider them as one party, and then the protocol is essentially reduced to that
with £ — 1 > 3 parties. On the other hand, if k¥ = 3, then, of course, two parties
together have all the information about the third party’s element.

For an arbitrary k > 4, if n < k parties want to form a (secret) coalition to
get information about some other party’s element, all these n parties have to be
connected by secure channels, which means there is a j such that these n parties
are Pj, Pji1,..., Pj1n,—1, where indices are considered modulo k. It is not hard to
see then that only a coalition of k — 1 parties Py,..., P;_1, Piy1, ..., P; can suffice
to get information about the P;’s element.

2.4 Ramification: voting/rating over insecure channels

In this section, our scenario is as follows. There are k parties Py, ..., P;; each P,
has a private integer n;. There is also a computing entity B (for Boss) who shall
compute the sum of all n;. The goal is to let B compute the sum of all n; without
revealing any of the n; to him or to any party P;,j # .

The following example from real life is a motivation for this scenario.

Example 1. Suppose members of the board in a company have to vote for a project
by submitting their numeric scores (say, from 1 to 10) to the president of the com-
pany. The project gets a green light if the total score is above some threshold
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value T'. Members of the board can discuss the project between themselves and
exchange information privately, but none of them wants his/her score to be known
to either the president or any other member of the board.

In the protocol below, we are again assuming that there are k channels of com-
munication between the parties, arranged in a cycle: P, - P, — ... = P, — P.
On the other hand, communication channels between B and any of the parties are
not assumed to be secure.

2.5 The protocol (rating over insecure channels)

1. P, initiates the process by sending nq + ngy to P, where ng; is a random
number.

2. Each P;, 2 <1i <k —1, does the following. Upon receiving a number m from
P;_1, he adds his n; + ng; to m (where ng; is a random number) and sends the
result to Pj1;.

3. P adds ny + ngi to whatever he has received from Pj,_; and sends the result
to B.

4. P, now starts the process of collecting the “adjustment” in the opposite direc-
tion. To that effect, he sends his ng, to Pr_1.

5. Px—1 adds ng(x_1) and sends the result to Py_o.

6. The process ends when P; gets a number from Ps, adds his ng1, and sends the
result to B. This result is the sum of all ng;.

7. B subtracts what he got from P; from what he got from Pj; the result now is
the sum of all n;, 1 <i <k.

3 Application: the “two millionaires problem”

The protocol from Section 2, with some adjustments, can be used to provide an
elegant and efficient solution to the “two millionaires problem” introduced in [19]:
there are two numbers, n; and ng, and the goal is to solve the inequality n; >7no
without revealing the actual values of nj or ns.

To that effect, we use a “dummy” as the third party. Our concept of a “dummy”
is quite different from a well-known concept of a “trusted third party”; importantly,
our “dummy” is not supposed to generate any randomness; it just does what it is
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told to. Basically, the only difference between our “dummy” and a usual calculator
is that there are secure channels of communication between the “dummy” and either
“real” party. One possible real-life interpretation of such a “dummy” would be an
online calculator that can combine inputs from different users. Also note that in our
scheme below the “dummy” is unaware of the committed values of ni or no, which
is useful in case the two “real” parties do not want their private numbers to ever be
revealed. This suggests yet another real-life interpretation of a “dummy”, where he
is a mediator between two parties negotiating a settlement.

Thus, let A (Alice) and B (Bob) be two “real” parties, and D (Dummy) the
“dummy”. Suppose A’s number is ni, and B’s number is ns.

3.1 The protocol (comparing two numbers)

1. A splits her number n; as a difference ny = nf” —ny . She then sends n; to B.
2. B splits his number ny as a difference ny = ny —n, . He then sends n, to A.
3. A sends nf +n5 to D.
4. B sends ng +nj to D.

5. D subtracts (ng +n) from (n] +n5) to get ny — na, and announces whether
this result is positive or negative.

Remark 1. Perhaps a point of some dissatisfaction in this protocol could be the fact
that the “dummy” ends up knowing the actual difference n; — no, so if there is a
leak of this information to either party, this party would recover the other’s private
number n;. This can be avoided if ny and ng are represented in the binary form
and compared one bit at a time, going left to right, until the difference between bits
becomes nonzero. However, this method, too, has a disadvantage: the very moment
the “dummy” pronounces the difference between bits nonzero would give an estimate
of the difference n1 — na to the real parties, not just to the “dummy”.

We note that the original solution of the “two millionaires problem” given in [19],
although lacks the elegance of our scheme, does not involve a third party, whereas
our solution does. On the other hand, the solution in [19] uses encryption, whereas
our solution does not, which makes it by far more efficient. Finally, we mention that
since our paper [13] was published, we have come up with several other solutions of
the “two millionaires problem” without using either one-way functions or a dummy
[14], |11]. Some of those solutions use simple laws of (classical) physics instead.
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4 Secure computation of symmetric functions

In this section, we show how our method can be easily generalized to allow secure
computation of any expression of the form Zle n;, where n; are parties’ private
numbers, k is the number of parties, and r > 1 an arbitrary integer. We simplify
our method here by removing the “noise”, to make the exposition more transparent.
Otherwise, the protocol is the same as the protocol for secure computation of a sum
in Section 2.

4.1 The protocol (computing the sum of powers)

1. P initiates the process by sending a random element ng to Ps.

2. Each P;, 2 <i < k—1, does the following. Upon receiving an element m from
P;_1, he adds his n} to m and sends the result to P;i.

3. P, adds his nj to whatever he has received from P;_; and sends the result to
P

4. P; subtracts (ng — nf) from what he got from Pj; the result now is the sum
ofalln}, 1 <i<k.

Now that the parties can securely compute the sum of any powers of their n;,
they can also compute any symmetric function of n;. However, in the course of
computing a symmetric function from sums of different powers of n;, at least some
of the parties will possess several different polynomials in n;, so chances are that
at least some of the parties will be able to recover at least some of the n;. On the
other hand, because of the symmetry of all expressions involved, there is no way to
tell which n; belongs to which party.

4.2 Open problem

Now it is natural to ask:

Problem 1. What other functions (other than the sum and the product) can be
securely computed without revealing intermediate results to any party?

To be more precise, we note that one intermediate result is inevitably revealed
to the party who finishes computation, but this cannot be avoided in any scenario.
For example, after the parties have computed the sum of their private numbers, each
party also knows the sum of all numbers except his own. What we want is that no
other intermediate results are ever revealed.
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To give some insight into this problem, we consider a couple of examples of
computing simple functions different from the sum and the product of the parties’
private numbers.

Example 2. We show how to compute the function f(ni,na,n3) = ning + nans in
the spirit of the present paper, without revealing (or even computing) any interme-
diate results, i.e., without computing ning or nans.

1. P, initiates the process by sending a random element ng to Ps.
2. P3 adds his n3 to ng and sends ns + ng to Pj.
3. P; adds his n; to ng + ng and sends the result to Ps.

4. Py subtracts ng from ng +ng + nq, and multiplies the result by no. This is now
ning + nNang.

Example 3. The point of this example is to show that functions that can be com-
puted by our method do not have to be homogeneous (in case the reader got this
impression based on the previous examples).

The function that we compute here is f(ny,ng,n3) = ning + g(ns), where g is
any computable function.

1. P initiates the process by sending a random element ag to Ps.
2. P, multiplies ag by his ny and sends the result to Ps.
3. P; multiplies agns by a random element ¢y and sends the result to P;.

4. P; multiplies agnacy by his nq, divides by ag, and sends the result, which is
ninscg, back to Ps.

5. Ps divides ninacy by ¢o and adds g(ns), to end up with nins + g(ns).

Note that in this example, the parties used more than just one loop of trans-
missions in the course of computation. Also, information here was sent “in both
directions” in the circuit.

Remark 2. Another collection of examples of multiparty computation without re-
vealing intermediate results can be obtained as follows. Suppose, without loss of
generality, that some function f(ni,...,n,) can be computed by our method in
such a way that the last step in the computation is performed by the party P,
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i.e., P is the one who ends up with f(ni,...,n,) while no party knows any inter-
mediate result g(nq,...,ng) of this computation. Then, obviously, P; can produce
any function of the form F(ny, f(ni,...,nx)) (for a computable function F') as well.
Examples include nj + ning - - - ng for any r > 0; n} + (ning + n3)® for any r,s > 0,
etc.

5 Mental poker

“Mental poker” is the common name for a set of cryptographic problems that con-
cerns playing a fair game over distance without the need for a trusted third party.
One of the ways to describe the problem is: how can 2 players deal cards fairly over
the phone? Several protocols for doing this have been suggested, including [5,9, 18]
and [1]. As with bit commitment, it is rather obvious that fair card dealing to two
players over distance is impossible without a one-way function, or even a one-way
function with trapdoor. However, it turns out to be possible if the number of players
is at least 3, assuming, of course, that there are secure channels for communication
between at least some of the players. In our proposal, we will be using k secure
channels for k£ > 3 players Pi,..., P, and these k channels will be arranged in a
cycle: Pp - P, — ... — P, — P.

To begin with, suppose there are 3 players: P;, P>, and P3 and 3 secure channels:
P1—>P2—>P3—>P1.

The first protocol, Protocol 1 below, is for distributing all integers from 1 to
m to the players in such a way that each player gets about the same number of
integers. (For example, if the deck that we want to deal has 52 cards, then two
players should get 17 integers each, and one player should get 18 integers.) In other
words, Protocol 1 allows one to randomly split a set of m integers into 3 disjoint
sets.

The second protocol, Protocol 2, is for collectively generating random integers
modulo a given integer M. This very simple but useful primitive can be used:
(i) for collectively generating, uniformly at random, a permutation from the group
Sm. This will allow us to assign cards from a deck of m cards to the m integers
distributed by Protocol 1; (ii) introducing “dummy” players as well as for “playing”
after dealing cards.

5.1 Protocol 1

For notational convenience, we are assuming below that we have to distribute inte-
gers from 1 to r = 3s to 3 players.
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To begin with, all players agree on a parameter /N, which is a positive integer of
a reasonable magnitude, say, 10.

1. each player P; picks, uniformly at random, an integer (a “counter”) ¢; between
1 and N, and keeps it private.

2. P; starts with the “extra” integer 0 and sends it to P».

3. P sends to Ps either the integer m he got from P;, or m+ 1. More specifically,
if Py gets from P; the same integer m less than or equal to ¢y times, then he
sends m to P3; otherwise, he sends m+1 and keeps m (i.e., in the latter case m
becomes one of “his” integers). Having sent out m + 1, he “resets his counter”,
i.e., selects, uniformly at random between 1 and N, a new co. He also resets
his counter if he gets the number m for the first time, even if he does not keep
it.

4. Pj sends to Pj either the integer m he got from P», or m+ 1. More specifically,
if Py gets from P» the same integer m less than or equal to c3 times, then he
sends m to P;; otherwise, he sends m+ 1 and keeps m. Having sent out m+1,
he selects a new counter c3. He also resets his counter if he gets the number
m for the first time, even if he does not keep it.

5. P sends to P; either the integer m he got from P5, or m+ 1. More specifically,
if Py gets from Pj the same integer m less than or equal to ¢; times, then he
sends m to P,; otherwise, he sends m+ 1 and keeps m. Having sent out m+1,
he selects a new counter ¢;. He also resets his counter if he gets the number
m for the first time, even if he does not keep it.

6. This procedure continues until one of the players gets s integers (not count-
ing the “extra” integer 0). After that, a player who already has s integers
just “passes along” any integer that comes his way, while other players keep
following the above procedure until they, too, get s integers.

7. The protocol ends as follows. When all 3s integers, between 1 and 3s, are
distributed, the player who got the last integer, 3s, keeps this fact to himself
and passes this integer along as if he did not “take” it.

8. The process ends when the integer 3s makes N 4 1 “full circles”.

We note that the role of the “extra” integer 0 is to prevent Ps from knowing that
P, has got the integer 1 if it happens that co = 1 in the beginning.
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We also note that this protocol can be generalized to arbitrarily many players in
the obvious way, if there are k secure channels for communication between k players,
arranged in a cycle.

5.2 Protocol 2

Now we describe a protocol for generating random integers modulo some integer M
collectively by 3 players. As in Protocol 1, we are assuming that there are secure
channels for communication between the players, arranged in a cycle.

1. P, and P3 uniformly at random and independently select private integers no
and ng (respectively) modulo M.

2. P, sends no to P;, and P3 sends n3 to P;.

3. P; computes the sum m = ng + ng modulo M.

Note that neither P, nor P3 can cheat by trying to make a “clever” selection
of their n; because the sum, modulo M, of any integer with an integer uniformly
distributed between 0 and M — 1, is an integer uniformly distributed between 0 and
M —1.

Finally, P, cannot cheat simply because he does not really get a chance: if he
miscalculates ng + ng modulo M, this will be revealed at the end of the game. (All
players keep contemporaneous records of all transactions, so that at the end of the
game, correctness could be verified.)

To generalize Protocol 2 to arbitrarily many players Pi,..., P, k > 3, we can
just engage 3 players at a time in running the above protocol. If, at the same
time, we want to keep the same circular arrangement of secure channels between
the players that we had in Protocol 1, i.e., P, — P> — ... P, — P, then 3 players
would have to be P,11, P;, Piy2, where i would run from 1 to k, and the indices are
considered modulo k.

Protocol 2 can now be used to collectively generate, uniformly at random, a
permutation from the group S,,. This will allow us to assign cards from a deck of m
cards to the m integers distributed by Protocol 1. Generating a random permutation
from S, can be done by taking a random integer between 1 and m (using Protocol
2) sequentially, ensuring that there is no repetition. This “brute-force” method will
require occasional retries whenever the random integer picked is a repeat of an integer
already selected. A simple algorithm to generate a permutation from S, uniformly
randomly without retries, known as the Knuth shuffie, is to start with the identity
permutation or any other permutation, and then go through the positions 1 through

1005



D. GRIGORIEV AND V. SHPILRAIN

(m—1), and for each position i swap the element currently there with an arbitrarily
chosen element from positions i through m, inclusive (again, Protocol 2 can be
used here to produce a random integer between i and m). It is easy to verify that
any permutation of m elements will be produced by this algorithm with probability

exactly %, thus yielding a uniform distribution over all such permutations.

After this is done, we have m cards distributed uniformly randomly to the play-
ers, i.e., we have:

Proposition 1. If m cards are distributed to k players using Protocols 1 and 2, then
the probability for any particular card to be distributed to any particular player is %

5.3 Using “dummy” players while dealing cards

We now show how a combination of Protocol 1 and Protocol 2 can be used to deal
cards to just 2 players. If we have 2 players, they can use a “dummy” player (e.g.
a computer), deal cards to 3 players as in Protocol 1, and then just ignore the
“dummy”’s cards, i.e., “put his cards back in the deck”. We note that the “dummy”
in this scenario would not generate randomness; it will be generated for him by the
other two players using Protocol 2. Namely, if we call the “dummy” Pj, then the
player P; would randomly generate c3; between 1 and N and send it to P53, and P
would randomly generate c3s between 1 and N and send it to P3. Then P3; would
compute his random number as c3 = c31 + c32 modulo N.

Similarly, “dummy” players can help k “real” players each get a fixed number s of
cards, because Protocol 1 alone is only good for distributing all cards in the deck to
the players, dealing each player about the same number of cards. We can introduce
m “dummy” players so that (m + k) - s is approximately equal to the number of
cards in the deck, and position all the “dummy” players one after another as part
of a circuit P - P» — ... Py — P1. Then we use Protocol 1 to distribute all
cards in the deck to (m + k) players taking care that each “real” player gets exactly
s cards. As in the previous paragraph, “dummy” players have “real” ones generate
randomness for them using Protocol 2.

After all cards in the deck are distributed to (m + k) players, “dummy” players
send all their cards to one of them; this “dummy” player now becomes a “dummy
dealer”, i.e., he will give out random cards from the deck to “real” players as needed
in the course of a subsequent game, while randomness itself will be supplied to him
by “real” players using Protocol 2.
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6 Summary of the properties of our card dealing (Pro-
tocols 1 and 2)

Here we summarize the properties of our Protocols 1 and 2 and compare, where
appropriate, our protocols to the card dealing protocol of [1].

1. Uniqueness of cards. Yes, by the very design of Protocol 1.

2. Uniform random distribution of cards. Yes, because of Protocol 2; see our
Proposition 1 in Section 5.2.

3. Complete confidentiality of cards. Yes, by the design of Protocol 1.

4. Number of secure channels for communication between k£ > 3 players:
k, arranged in a cycle.
By comparison, the card dealing protocol of [1] requires 3k secure channels.

5. Average number of transmissions between k > 3 players: O(%mk), where
m is the number of cards in the deck, and N ~ 10. This is because in Protocol 1,
the number of circles (complete or incomplete) each integer makes is either 1 or the
minimum of all the counters ¢; at the moment when this integer completes the first
circle. Since the average of ¢; is at most %, we get the result because within one
circle (complete or incomplete) there are at most k transmissions. We note that in
fact, there is a precise formula for the average of the minimum of ¢; in this situation:

S
]Afkl , which is less than % if k> 2.

By comparison, in the protocol of [1] there are O(mk?) transmissions.

6. Total length of transmissions between k£ > 3 players: %mk - logy, m
bits. This is just the average number of transmissions times the length of a single
transmission, which is a positive integer between 1 and m.

By comparison, total length of transmissions in [1] is O(mk?logk).

7. Computational cost of Protocol 1: negligible (because computation amounts
to selecting random integers from a small interval).

By comparison, the protocol of [1] requires computing products of up to k per-
mutations from the group Si to deal just one card; the total computational cost
therefore is O(mk?logk).

7 Secret sharing

Secret sharing refers to method for distributing a secret amongst a group of partic-
ipants, each of whom is allocated a share of the secret. The secret can be recon-
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structed only when a sufficient number of shares are combined together; individual
shares are of no use on their own.

More formally, in a secret sharing scheme there is one dealer and k players. The
dealer gives a secret to the players, but only when specific conditions are fulfilled.
The dealer accomplishes this by giving each player a share in such a way that any
group of ¢ (for threshold) or more players can together reconstruct the secret but no
group of fewer than ¢ players can. Such a system is called a (¢, k)-threshold scheme
(sometimes written as a (k,t)-threshold scheme).

Secret sharing was invented by Shamir [17] and Blakley [2], independent of each
other, in 1979. Both proposals assumed secure channels for communication between
the dealer and each player. In our proposal here, the number of secure channels
is equal to 2k, where k is the number of players, because in addition to the secure
channels between the dealer and each player, we have k secure channels for commu-
nication between the players, arranged in a cycle: P, — Po» — ... — P, — Pj.

The advantage of our scheme over Shamir’s and other known secret sharing
schemes is that nobody, including the dealer, ends up knowing the shares (of the
secret) owned by any particular players. The disadvantage is that our scheme is a
(k, k)-threshold scheme only.

We start by describing a subroutine for distributing shares by the players among
themselves. More precisely, k players want to split a given number in a sum of k
numbers, so that each summand is known to one player only, and each player knows
one summand only.

7.1 The subroutine (distributing shares by the players among
themselves)

Suppose a player P; receives a number M that has to be split in a sum of k private
numbers. In what follows, all indices are considered modulo k.

1. P; initiates the process by sending M — m; to P;+1, where m; is a random
number (could be positive or negative).

2. Each subsequent P; does the following. Upon receiving a number m from
Pj_1, he subtracts a random number m; from m and sends the result to P;1.
The number m; is now P;’s secret summand.

3. When this process gets back to P;, he adds m; to whatever he got from P;_1;
the result is his secret summand.

Now we get to the actual secret sharing protocol.

1008



SECURE MULTIPARTY COMPUTATION

7.2 The protocol (secret sharing (k, k)-threshold scheme)

The dealer D wants to distribute shares of a secret number N to k players P; so
that, if P, gets a number s;, then Zle si = N.

1. D arbitrarily splits N in a sum of k integers: N = Zle n;.
2. The loop: at Step ¢ of the loop, D sends n; to P;, and P; initiates the above
Subroutine to distribute shares n;; of n; among the players, so that E?ﬂ nij =
n;.
3. After all k steps of the loop are completed, each player P; ends up with k
numbers n;j; that sum up to s; = 2?21 nj;. It is obvious that Zle si=N.
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Abstract

Originally, modern symbolic logic was supposed to be a disambiguated and
streamlined version of the logic of natural language. It has nevertheless failed
to provide a full account of several telltale semantical phenomena of ordinary
language, including Peirce’s paradox, “donkey sentences” and more generally
conditionals and different kinds of anaphora. It is shown here by reference
to examples how these phenomena can be treated by means of IF logic and
its semantical basis, game-theoretical semantics. Furthermore, methodological
questions like compositionality and logical form will be discussed.

1 Frege-gate

The relations between symbolic logic and linguistic theorizing have been (and still
are) complicated, close and confused. Symbolic logic was first thought, typically if
not universally, as a minor regimentation and smoothlining of ordinary language. In
another direction, mathematicians were formulating much of their reasoning in terms
of ordinary prose, not in terms of manipulation of equations or other complexes
of symbols. In fact mathematicians like Cauchy or Weierstrass were using — as
they had to do — an explicit but unformalized logic of quantifiers in the guise of
the so-called epsilon-delta technique, expressed in such ordinary language terms as
“given such-and-such a number”, “one can find” etc. (See here and in the following
Hintikka [3L/5]).

But then a huge scientific scandal, a veritable Frege-gate, took place without any-
one’s noticing. Frege undertook to formalize our entire logic, to present a notation (a
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Schrift) for all our concepts. Yet he failed to understand his fellow mathematicians’
quantifier logic, and instead gave his followers a flawed logic that is only a part of the
full story. Subsequent logicians unfortunately followed Frege and used this defective
logic as their basic working logic. This alone would not been serious, for Frege’s logic
of quantifiers (by which I mean what is nowadays called first-order logic) is correct
as far as its expressive powers go. The catastrophic mistake the logicians made was
to think in effect that it is the full logic of quantifiers. The first specific disaster this
caused was the bunch of paradoxes of set theory, which prompted the entire crisis
of the foundations of set theory. This in turn led to further catastrophes, such as
Zermelo-Fraenkel first-order set theory and the wishful belief that such results as
Godel’s, Tarski’s or Paul Cohen’s tell us something about the limitations of logic
and axiomatization or about the continuum hypothesis (Hintikka [4]).

This “Frege-gate” scandal came to light only recently when it was pointed out
that the logic that mathematicians were using already hundred years ago was not the
received first-order logic, but the richer logic that had been meanwhile rediscovered
and systematized under the title “independence-friendly logic” (IF logic). (see e.g.
Mann et al. [7]). However, the Frege-gate scandal has not hit headlines yet even in
logic journals.

2 1IF logic and linguistics

In this paper, I will discuss one aspect of the new problem situation, viz., its impact
on linguistic theorizing. That there must be such an impact is obvious. To mention
only one indication, at one time Chomsky thought that his syntactical counterparts
to logical forms, the LF’s, were essentially like formulas of (the received) first-order
logic (see e.g. Chomsky, [1, p. 197]; |2, p. 67]). If they are not adequate representa-
tions of logical and, a fortiori, semantical forms of ordinary language sentences, we
do not only need a better logic, but also a better syntactical theory.

Now IF logic, at least in its simplest version, has been around for a while and
has even become an established research area in logic. Hence there has in fact been
some discussion of its role in natural language. Much ingenuity has been expended
on the first examples of purportedly IF sentences in ordinary language. They have
been mostly so-called branching quantifier sentences like

(V) (Fy)
(2.1) F(x,y,z,u).
(Vz)(Fu)
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Its meaning can be expressed by the IF sentence
(22)  (¥a)(¥2)(3y /¥2)(3u [¥a) F (2, y, 2 ).

This meaning cannot be expressed by a first-order quantifier sentence without
the independence indication slash.
Examples from ordinary language were presented and discussed. An example was

(2.3) Every villager has a friend and every townsman has a relative who know
each other.

Here choice of a friend is independent of the choice of a relative and wvice versa.

Such examples are sufficiently complicated for confusing some philosophers.
However, it has turned out that the examples are only the tip of an iceberg. Other
examples look syntactically simple but still turn out to be semantically rather
complex, e.g.

(2.4) Everybody has a different friend.

Its logical form can be seen to be

(2.5)  (Va1)(Va2)(Jy1 /Vo2)(By2 /Y1) (21 = 22) <
(y1 = 1y2)) & F(y1,71) & F(y2, 12)).

What was explained in these early linguistic applications of IF logic are particular
examples, rather than general semantical or syntactical phenomena. In this paper,
we concentrate on one particular relatively unexplored semantical phenomenon, viz.,
informational independence involving propositional connectives instead of (or in ad-
dition to) quantifiers.

3 Peirce’s paradox
Ironically, the shortcomings of the usual (“Fregean”) first-order logic were known
already at the time of its formulation to Frege’s co-inventor Charles S. Peirce (see

Peirce [8, 4.546 and 4.580]). He pointed out a problem about the following pair of
English sentences:
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(3.1) Someone is such that, if he fails in business, he commits suicide.
(3.2) Someone is such that if everybody fails in business, he commits suicide.

Their respective logical forms seem to be
(3.3) (Fz)(F(x) D S(x)),

(34)  (Bx)((vy)F(y) > 5(x)).

Here (3.4) is equivalent to

(3:5)  (32)(By) ~ F(y) v S(x)).

But something is paradoxical here. Formulas (3.1) and (3.2) obviously mean
something different whereas, as Peirce pointed out, in the usual first-order logic
(3.3) and (3.4) are logically equivalent.

Various ad hoc explications have been proposed, but they remain just that:
adhockey. Yet game-theoretical semantics yields a diagnosis of the problem without
any further assumptions or considerations. The problem is how the conditional (3.4)
can be as strong as (3.3).

An answer is found by examining the meaning of (3.1) or (3.2) in game-
theoretical terms. What (3.5) says is that it is true. That truth means in the
existence of a winning strategy for the verifier (“myself”) in the semantical game
associated with (3.2). The first part of this strategy is a specification of the value
¢ of z in (3x). In order for it to be part of a winning strategy, there has to be a
similar winning strategy in the game with

(3.6) (3y) ~ F(y) Vv 5(c).

The next step in a play of the game is the verifier’s choice of one of the disjuncts.
Whether or not this makes (3.6) true does depend on what the world is like.

If the world is such that everybody fails in business, the right choice of ¢ is one
of the people who commit suicide. But the world might be such that there are no
such persons, so that the choice of x = ¢ must make the other disjunct true, in
other words must satisfy ~ F'(x). This is guaranteed only if x satisfies ~ F(z), in
other words if it is a case that
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(3.7) ~S(z) D ~ F(x).
In other words only
(3.8) F(x) D S(x).

In that case, (3.2) can be true only if its antecedent is false, in other words
only if not everybody fails in business. Hence the choice of x must provide a
counter-example to everybody’s failing in business. And the choice x = ¢ provides
such an counter-example only if

(3.9) ~S(c) D ~ Flc).

The existence of such a counter-example means the truth of (3.3). Hence (the
truth of) (3.5) implies the (the truth of) (3.3), which is Peirce’s paradox.

In still other words, (3.3) is true only if there is an = such that if he fails in
business, he commits suicide. Depending on what the world is like in (3.1) the
verifier might have to choose ~ F'(c) or S(c). In other words, ¢ depends on the world.
This means that the = in (3.5) or (3.4) is not the same individual independently of
what the world is like. It is not really a choice of an “individual” as is required in
(3.1) and (3.2).

4 Peirce’s paradox and independence

This is clear interpretationally. But what does it mean in terms of the semantical
games that convey our sentences their meaning? What is the right logic translation
of (3.2)7

The analysis carried out above shows that the choice of a disjunct (“of a world”)
must be neutral with respect to the choice of objects. Hence the solution is to make
V independent of (3x). Instead of (3.4) one should have

(4.1)  Ga)((vy)F(y)(V/Fz) S(x)).

Thus the true representation of (3.2) is not (3.4) but (4.1). It cannot be for-
mulated in IF logic in the usual narrow sense, but it can be formulated if this logic
is amplified by allowing extra independencies between quantifiers and connectives.
This opens up a new dimension of the entire hierarchy of different logics, besides
further illustrating the inadequacy of Frege’s logic.
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5 Hierarchies of IF logics

In TF logic in the narrowest sense — which is the one in which it currently being used
in the literature — the only extra kind of independence allowed is an independence
of existential-force quantifiers of universal-force quantifiers within the formal scope
of which they occur. (Quantifiers, whose scopes are not nested are automatically
independent.) Only strong negations, ~, are admitted. If we admit sentence-initial
contradictory negations, —, we obtain richer and more satisfactory logic which is
usually called extended independence-friendly logic (EIF) logic. It should perhaps
be considered as the “real” basic IF logic. If we allow arbitrary extra independen-
cies (existential quantifiers on existentials, universal quantifiers on universals, and
universal quantifiers on existentials) we obtain a still much stronger logic that might
be called generalized IF logic.

Here we are dealing with yet another way of enriching the basic or extended IF
logic. This way is to allow extra independencies between quantifiers and proposi-
tional connectives. From the Peircean example and from others it is seen that this
dimension of expressive enrichment is independent of quantifier independencies.

6 Simple donkey sentences

This new dimension also facilitates analysis of many interesting linguistic phenom-
ena. One instructive example is constituted by the so-called donkey sentences. The
interpretation of these sentences is a routine question discussed in the linguistic
literature on definite and indefinite pronouns. The simplest example has the same
form as the following sentence:

(6.1) 1If Peter owns a donkey, he beats it.

This is prima facie of the following form

(6.2) (3z)(D(z) & O(p,x)) O B(p, z).

This would have to be equivalent with

(6.3) (Vz)(~ D(x)V ~ O(p,x)) V B(p, z).

But (6.2) is ill-formed in that the last x is not bound to (is outside the scope of)
(3z). But the alternative
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(6.4)  (32)((D(x) & O(p,x)) > B(p,x))

says only that there is at least one animal such that if it is a donkey and is owned
by Peter, he beats it. The true semantical form of (6.1) seems to be intuitively

(6.5)  (Va)((D(x) & O(p, x)) D B(p, z)).

But why? How come (6.1) should be translated as (6.5)? An indefinite article has
the force of an existential quantifier. So why does it seem to have here the force of
an universal one?

The answer can be obtained by analyzing the meaning of (6.1) the same way as
the meaning of Peirce’s paradoxical sentence (3.1) was analyzed earlier. The crucial
point is that the choice of x must be independent of the choice between different
relevant semantics codified in the second V in (6.3). The solution is now to make
the quantifier and the connective V independent of each other. Here the covert
logic translation of (6.1) will be

(6.6) (3z)(D(z) & O(p,x))(> /Fz)B(p, )

which is equivalent with

(6.7)  (Vz)(~ D(z)V ~ O(p,x))(V /Vz)B(p, z).

When is there a winning strategy for the verifier in the game with (6.7), as (6.7)

says? In that strategy, since V is independent of (Vz), the falsifier chooses a value
d for x. The resulting sentence

(68) (~ D)V ~ O(p,d)) V B(p,d)
must be true, i.e. the verifier must be able to choose a true disjunct. Such a choice
is possible for any d if it is the case that for any donkey d owned by Peter it is true
that he beats it i.e. that B(p,d) is true. But this is obviously just what (6.1) says.
7 Complex donkey sentences

This shows that the extensive literature designed to account for donkey sentences

is, if not wrong, then at least redundant. Many purported explanations do not
work for more complex donkey sentences like
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(7.1) 1If you give each child a gift for Christmas, some child will open it to-day.

Here even a merely linguistic account of the role of the anaphoric phenomenon “it”
is very tricky. No usual IF logic expression captures the meaning of (7.1) either. Yet
its logic translation in terms of connective independence is possible.

The right translation is perhaps best seen if we first eliminate the existential
quantifier in terms of its Skolem function and express (7.1) as

(7.2)  (39)(Va)(G(x,9(x)) > (32)0(z, 9(2)))-

This is a second-order sigma one-one sentence. It is possible to translate such
sentences to the corresponding IF first-order language, but not without independent
connectives. Here is a translation:

(7.3) (Vo) (Va2) Fyr /Va2) Fyz /Y1) (1 = 22) D (11 = 12)) &
Gla1,51) & G w2, y2)( D /Y1, Va2)(32)((2 = 21) V (2 = 22) D (O(2,51) & O(2,12))).

This explains the meaning of (7.1).

8 Conditional reasoning

This is in explicit terms what the idea of “remembering” a strategy used in earlier
subgame amounts to.

In general we have found an important distinction. It may be called a distinction
between deductive reasoning and conditional reasoning. A deductive conclusion B
from a premise A is a proposition that is true as soon as A is true. In the language
of possible world semantics, B is true in each world in which A is true.

But the premise A does more than put forward a truth condition. It presents a
situation, a fragment of one particular possible world, maybe a world in which Peter
owns a donkey. We can then ask what else must be true in that particular world.
This is a different question from asking what is true of all the worlds in which the
premise A is true, for instance all worlds in which Peter owns some donkey or other.
We are asking about the fate of that particular donkey postulated by the premise.
Does Peter beat it?

What has been shown in this paper is how this question can be spelled out in
sample cases by means of quantifiers independent of propositional connectives. These
independencies are the gist of conditionality. It cannot be captured by ordinary
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“conditional” sentences of the form (A D B) or by ordinary logical consequence
relations. It is also the gist of the linguistic phenomenon of conditionality.

What is especially striking in all these examples is that the extra-connective-
independence is not just one formally possible explanation of certain semantical
phenomena, but the overwhelmingly natural one. This naturalness is easily con-
verted into generality. When (in game-theoretical terms) a quantifier invites a player
to choose an individual, the choice must not depend on what there may turn up later
in the game. Thus the normal logic translation of disjunctive “or” appears to be,
not V, but (V /Q1z1, Qaxa, . ..), where (Q;z;) are the quantifiers within whose scope
V occurs in the translation.

9 Conditionality explained

These case studies illustrate ipso facto some of the explanatory possibilities in lin-
guistic theorizing that are opened here. Consider, for example, the equivalence of
(7.1) and (7.2). I have much earlier presented a semi-formal analysis of condition-
als in a game-theoretical framework (Hintikka & Kulas [6]). It worked, but it was
not purely logical. I had to resort to pre-formal ideas, e.g. the idea that a player
in a semantical game could “remember” a strategy from another subgame. Such
semiformal ideas can now be replaced by purely logical ones. For instance, look at
(7.2). The Skolem function g there codifies (a part of a) strategy. This is used in a
subgame with the antecedent of (7.1). From (7.2) one can see how it figures also as
a strategy function (partial) in a game with the consequent.

In (7.2), this transfer of a strategy becomes the possibility of making use of the
connection between z and y (subscripts do not matter) that was introduced in the
antecedent also in the consequent. This is precisely what is made possible by the
independence of V of the quantifiers (Vzy), (Vza).

This shows how by means of independences involving connectives we can cap-
ture the very conditionality of conditionals. This means that by means of such
independences we can develop a viable general theory of conditionals.

10 Explaining anaphora

Even more generally much of any first-order logic can be thought as framework for
a semantical representation of such phenomena as co-reference and anaphora. Not
all such logics can be applied directly to the analysis of these phenomena in natural
languages, mainly owing to the syntactical differences between them and natural
language.
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Certain general advantages of the kind of treatment of anaphora based on IF
logic over some typical linguistic theories can presently be pointed out. Linguistic
approaches to anaphora and co-reference often rely on the head-anaphora relation
as one of their explanatory concepts. Of course linguists are aware that there are
examples where there is no head to be found for a given anaphora or where the head
and the anaphora cannot be said to be literally co-referential, that is, refer to one
and the same entity. But such cases are typically considered somehow exceptional,
not automatically explainable by the normal operation of anaphora.

We have already analyzed such an apparently anomalous case. In the com-
plex donkey sentence (7.1), the obviously anaphoric pronoun “it” is not literally
co-referential with any other phrase in the sentence. (It is not a “pronoun of lazi-
ness” either.) Yet (7.1) has an explicit logical form (7.2).

An explanation is implicit in what has been said earlier. We can interpret “it”
because it is co-referential with an object that is functionally determined by other re-
ferring phrases in the same sentence or the same discourse. The functions that effect
this determination are sometimes expressed in the sentence in question by a separate
phrase. But they need not be. As we saw in our analysis of complex donkey sen-
tences, existential quantifiers can introduce such dependencies through their Skolem
functions. Sometimes the dependence is mediated by background information that
the actual or hypothetical speaker if assumed to possess.

Hence a purely syntactical approach to the phenomena of anaphora and co-
reference, such as Chomsky’s government and binding theory, is bound to be incom-
plete account these phenomena.

11 Limits of compositionality

There is another general methodological moral in the story of this paper. The mode
of operation of independent connectives illustrates a phenomenon that is as prevalent
as it is important both in natural and formal languages. It is non-compositionality.
(For a collection of articles on different aspects of compositionality, see Werning et
al. )]

Compositionality is rightly understood tantamount to semantical context-inde-
pendence. Now we have seen in this paper how the logical force of a connective
is different according to what quantifiers in its context it depends on. Of course

' take this opportunity to correct a group of mistakes. On page 10 the authors say that Hodges
has refuted “Hintikka’s claim that Independence-Friendly logic is non-compositional”. I have never
made such a claim simpliciter, and on the contrary suggested a way in which any logic can in
principle be given a compositional “semantics”. What is the case (also according to Hodges) is that
IF first-order logic cannot have a compositional semantics on the first order level.
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a similar non-compositionality is obvious (though it was not to Frege) already in
the dependence of quantifiers on other quantifiers. The main reason why this con-
text dependence has not been emphasized more is that in the received first-order
logic quantificational dependencies are expressed by the syntactical device of nest-
ing scopes. But the only thing the necessity of so doing shows is the inadequacy of
traditional first-order logic in semantic theorizing.
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In the paper Hintikka gives various arguments for the need of an extension
of Independence-Friendly logic (IF-logic) with informationally independent disjunc-
tions, i.e. connectives of the form

(V/V)

that I will render more simply as (V/z). Actually such an extension has been studied
in Sandu and Véaénanen [4], Hella and Sandu [2] and Mann, Sandu and Sevenster [3]
but no application to natural language has been given. Thus I welcome Hintikka’s
endeavour. He introduces the case for informationally independent connectives by
first offering a solution to what he calls Peirce’s paradox which consists in the equiv-
alence of

Hintikka compares

(3.1)  Someone is such that if he fails in business, he commits suicide.
with
(3.2)  Someone is such that if everybody fails in business, he commits suicide.
when they are represented in ordinary first-order logic as
Jz(F(z) — S(x))

and
Jx(VyF(y) — S(z))

respectively. (I will use ‘=’ instead of Hintikka’s ‘D). Hintikka analyzes the equiv-
alence between these two sentences in game-theoretical semantics. This is a good
idea, although I prefer a more straightforward game-theoretical argument than the
one he offers. We establish the logical equivalence between

Jx(—=F(x) vV S(x))
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and
Jz(Jy—F(y) Vv S(z))

by showing that the Verifier has a winning strategy in one game if and only if she has
a winning strategy in the other game (on any underlying model). As usual, these
claims are established by a copy cat strategy argument. (Again a notational point:
Hintikka makes a distinction between game-theoretical negation that he symbolizes
by ‘~’ and contradictory negation that he symbolizes by ‘=’ I will simply use the
latter given that for ordinary first-order formulas the two are equivalent.)

Suppose there is a winning strategy for the Verifier in the first game. It consists
of the choice of an individual, z = a and the choice of a disjunct, left or right. Given
that the strategy is winning, then, if left is chosen, a must satisfy —F(z) and if right
is chosen, then x must satisfy S(z). Here is a winning strategy for Verifier in the
second game. If in the first game Verifier chooses left, then in the second game she
chooses « = a, then left, and then y = a. Given that a satisfies —=F'(x) then this is a
winning strategy. If in the first game Verifier chooses right, then in the second game
Verifier chooses x = a then right. Given that a satisfies S(z), then this is a winning
strategy in the second game.

For the converse, suppose the Verifier has a winning strategy in the second game.
It is: choose z = a; then choose left or right. If left, choose y = b; if right, do nothing.
Given that this is a winning strategy, then if right is chosen, x must satisfy S(x).
If left is chosen, then b must satisfy —F(y). Here is a winning strategy for Verifier
in the first game. If Verifier chooses right in the second game, then choose z = a
and then right in the first game. Then a satisfies S(x) and thus this is a winning
strategy. If Verifier chooses left and then y = b in the second game, then in the first
game she chooses © = b and then left. Clearly given that b must satisfy —F(y) this
is a winning strategy.

Actually 3z (Jy—F(y) vV S(z)) is logically equivalent with

(By)~F(y) v 3zS(x)
and thus “Peirce’s paradox” is seen to be an instance of the more general law
dz(A(z) V B(z)) = 3z A(z) V JyB(y) = 3zA(x) V FzB(z).
Hintikka’s suggestion in the paper is to block the paradox by blocking the above

equivalence in this particular case, that is, by taking the logical form of (3.2) to be
(there is a misprint in the text):

Fx(=VyF(y) (V/z) S(2))
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that is

Jz(3y—~F(y) (V/z) S(x))
where (V/x) means that when Verifier chooses a disjunct, she does not know the
value chosen earlier for z. Now apart from creating interpretational problems of its
own, the proposal will not help him. Informally the proposal says that the choice of
a disjunct should take place before the choice of a value of x takes place. But this
renders the last sentence logically equivalent with

Jy—F(y) vV 3zS(x)

which is, as pointed out above, logically equivalent with Jz(—=F(z) V S(x)). We
are back to square one! I guess Hintikka has in mind another way to analyze
the informational independence of Verifier of its own move than the one I pro-
posed (games of imperfect information), that is, a proposal that does not render
Jx(Jy—F(y) (V/z) S(x)) equivalent with Jx(—F(x) vV S(x)). I remember he once in
conversation objected to the equivalence between Jz(Jy/x)r = y with Jzyzr =y
which holds in IF-logic. Fausto Barbero [I], forthcoming] has a notion of indepen-
dence which does not render the two equivalent. It might be that Hintikka is relying
in his proposal on a notion of independence on the basis of which Jz(A (V/z) B is
not equivalent with dxA vV dx B but this is something for future work.

Based on his attempted solution to Peirce’s paradox, Hintikka suggests also a
new way to analyze simple donkey sentences like

(6.1)  If Peter owns a donkey, he beats it.
He takes the force of this sentence to be that of
(65) Va(D(@) AO(p,2)) — B(p,a)).

He asks: How do we get from (6.1) to (6.5)7 One way to proceed is to take literally
the surface structure of (6.1) where the indefinite is in the “scope” of the implication,
and translate the indefinite “a donkey” by an existential quantifier, as standardly
done. The result is, as Hintikka correctly points out:

(6.2)  Jz(D(z) AO(p,x)) = B(p,z)
which is equivalent, as he points out with
(6.3) Vz(=D(x)V-O(p,x))V B(p, ).

But Hintikka is right to point out that (6.2) (and consequently (6.3)) is ill formed
given that the last occurrence of the variable x is not bound. On the other side, if
we try to bind the variable x by the existential quantifier, we get
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(6.4)  Fx(D(z) AO(p,x)) = B(p,))

which, as Hintikka correctly points out, says only that “there is at least one animal
such that if it is a donkey and is owned by Peter, he beats it.” So it seems we cannot
obtained the true logical form of (6.1) which is (6.5).

Hintikka proposes an answer which is to go back to (6.2) and to take the impli-
cation to be independent of the existential quantifier

(6.6) FJz(D(x) ANO(p,z)) (— /3z) B(p,x)

or, if we operate instead on (6.3) which he takes to be equivalent to (6.2), he takes
disjunction to be independent of the universal quantifier:

(6.7)  Vz(=D(x)V -O(p,x)) (V/Vx) B(p, ).

We are then told that the existence of a winning strategy for the Verifier in (6.7)
means that for any choice d by the Falsifier, the sentence

(6.8)  (=D(d) VvV —=O(p,d)) vV B(p,d)

must be true. And this yields (6.5).

Hintikka’s analysis is ingenious but it does not get through, as it stands. I claim
that the independence (— /3x) of implication from the existential quantifier in (6.6),
or, equivalently the independence (V/Vz) of disjunction from the universal quantifier
(6.7), does not make sense. The reason for this, focusing on the latter, is simply
that in IF-logic as it currently stands, for a move to be informationally independent
from another, the first must be in the syntactical scope of the second. Or this is not
the case in (6.7).

Finally Hitnikka motivates the use of informationally independent disjunctions
by its role in the logical representation of complex donkey sentences like

(7.1)  If you give each child a gift for Christmas, some child will open it to-day.
that Hintikka represents in second-order logic by
(7.2)  Fgva (G(x,g(x)) = F20(z,9(2))) -

He then tells us that (7.2) can be represented on the first-order level by the IF
sentence (7.3) which involves informationally independent disjunctions.

Hintikka’s claim is not true. (7.3) is a second-order existential formula and as
such known to be equivalent, by standard results of Walkoe [5], to an ordinary
IF-formula which does not involve informationally independent disjunctions. Let
me reproduce the procedure by which the IF-formula is obtained (I am grateful to
Fausto Barbero here).

1026



COMMENTARY ON “IF Logic AND LINGUISTIC THEORY”

1. First in (7.2) we push the existential quantifier in front of the conditional and
then Skolemize it:

3f gV (G(z, g(x)) = O(f(x), 9(f(2))))-
2. Next we eliminate the nesting of functions to obtain
AfIgvavy(y = f(z) = (G(x, g(x)) = Oy, 9(y))))-

3. Third we want each function to have a unique set of arguments (so we replace
the second g with a new h):

h(y)

If3gInVaVy(x =y — g(z) = A
g9(@)) = O(y, h(y))))])-

My = fla) = (G,

4. Finally we replace each function by its appropriate pair of quantifiers and
obtain the IF-formula which is the logical form of (7.1):

VaVy(Ju/y)(Fv/y,u) CGw/z,u,v)(z =y — v = wA
Ay =u = (G, v) = Oy, w)))]).
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In respectful memory of Grisha Mints

The two authors of this paper independently found themselves applying methods of
modern logic to medieval modal systems—Johnston to the divided modal syllogisms of
the 14th century French Scholastic Jean Buridan, and Hodges to the modal work of the
11th century scholar Ibn Sina, known in the West as Avicenna, who worked in Persia and
wrote mostly in Arabic. Quite late in the day we realised that there was a mathematical
equivalence between things in our work, and we put our heads together on this. There is
a curious twist: what Johnston did is mathematically equivalent to work of Avicenna, not
of Hodges. That adds a piquant question to the issue: What on earth are Kripke structures
doing in an 11th century text? The question naturally leads on to another one: What are
Kripke structures doing in any modal enquiry? It’s unlikely we could answer the question
about Avicenna in any depth without having some view on the role of Kripke structures in
general.

We would dearly have liked to discuss all this with Grisha Mints. Not least, this is
because Johnston’s work included a detailed comparison of Buridan’s proof theory with
natural deduction methods. Avicenna had a proof theory too—it went in a completely dif-
ferent direction both from Buridan’s and from anything we know of in today’s proof theory.

We thank Stephen Read, both for his work on Buridan which we use below, and for supervising the PhD of the
second author; and Saloua Chatti for useful consultations. We also thank the members of a Workshop of the
Medieval Philosophy Network, organised by Anna Marmodoro and John Marenbon at the Warburg Institute in
April 2016, who contributed to a helpful discussion of some of the issues in this paper. Finally we thank the
two journal referees. One of them urged us to clarify and expand our account of Avicenna’s sentence forms;
we are particularly grateful to this referee for a close analysis of what was unclear. We added an Appendix in
response to this referee’s request for supporting texts.
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That creates a further issue where Grisha’s advice would have been invaluable. Avicenna
raised a range of new questions which seem to need a proof-theoretic answer, but as far as
we know, neither his own proof theory nor anything in the modern literature will provide
the required answers. So Hodges [9] concocted a proof theory that does the job, though
inelegantly. Grisha would surely have seen how to improve it. But the present paper is not
about these proof-theoretic questions.

The collection of facts that we bring together here is complex in several ways. First
there is the difference between Avicenna in Persia and Buridan three hundred years later in
Western Europe. Second there is the difference between medieval methods of logic and the
modern ones that we apply to the medieval authors. And third there are three kinds of fact in
play: (1) textual facts about what each of the medieval authors wrote and what their words
meant; (2) mathematical facts about the formalisms involved; and (3) interpretative facts
about the reasons why the medievals did certain things, or about what our reasons are for
doing certain things. In §1 below we survey the pieces of the jigsaw; we also examine one
of the mathematical equivalences involved, using Grisha’s textbook [[17]]. In §2 we examine
the textual facts about Buridan and the modern formalism that the second author brought
to bear on Buridan’s discussions. In §3 we do the same for Avicenna and the first author.
Then in §4 we ask the interpretative questions and suggest some answers. Finally §5 is an
Appendix with supporting texts.

1 Overview

Here is a picture of this paper:

same (nearly)
Avicenna’s Modal Logic  ~  Buridan’s Modal Logic

(D Avicenna Johnston

2D logic Statements about
Kripke structures

In the top row of the picture, Avicenna’s Modal Logic and Buridan’s Modal Logic are
both of the kind called divided alethic modal logic. This means that they are about logical
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inferences between sentences of the following forms:

necessarily
Every A | . . aB.
2) { Some A } 15 po.s51bly { not a B. }
contingently

where A and B are distinct. Both Avicenna and Buridan inherited these sentence forms from
Aristotle’s Prior Analytics [2]. Some shorter names for these sentences will be helpful.
Traditionally

>

‘a’ stands for ‘Every ... is...’,
‘e’ stands for ‘Every ... isnot...’,
b

‘7’ stands for ‘Some ... is...’,
‘o’ stands for ‘Some ... isnot...’ .

3

If we use ‘nec’, ‘pos’ and ‘con’ for necessary, possible and contingent, then we can write
for example

(a-nec)(A, B) for ‘Every A is necessarily a B’,

@ (0-pos)(C, D) for ‘Some C is possibly not a D’

and so on. In practice we will often ignore the ‘contingently’ sentences, since their theory
is largely parasitic on that of the ‘possibly’ sentences.

Buridan adds a further kind of form by allowing ‘now’ as an alternative to ‘necessarily/-
possibly/contingently’; he calls the resulting sentences de inesse ut nunc sentences. Strictly
these further forms are not modal at all, but since Buridan integrates them with the modal
forms we will count them in as part of ‘Buridan’s (divided, alethic) modal logic’. The ‘same
(nearly)’ at the top of picture (1)) represents two facts: Buridan considered a larger collection
of sentences than Avicenna did, and within the class of sentences common to Avicenna and
Buridan there is evidence that they had different views on the proper logical representation
of necessity (on which see (23) and (24) below).

The expressions A, B in the sentences above are called ‘terms’; A is the ‘subject” and B
the ‘predicate’ of the sentence. Both Avicenna and Buridan concentrate on logical relation-
ships of the form ‘¢ and ¢, entail ¢3” with three sentences; these are known as ‘syllogistic
moods’. In fact Buridan considers no logical relationships more complicated than this.
Avicenna spreads his net wider, but we ignore his extensions in the present paper.

Avicenna is on the left of picture (1) because he was earlier than Buridan. But no
line of influence from him to Buridan is known, and we won’t assume that there was any
such influence. In §8§2 and 3 we will take Buridan before Avicenna because the facts to be
reported there for Buridan are less controversial than those for Avicenna.

On the righthand side of picture (1), the vertical arrow represents an action of John-
ston and a set of facts. Johnston’s action was to describe a family of Kripke structures
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and a translation from sentences of Buridan’s modal logic to set-theoretic statements about
Kripke structures. The set of facts are to the effect that this family of Kripke structures
and translations validates all Buridan’s claims for the validity or invalidity of the syllogistic
moods of his modal logic. Details are in §2 below.

On lefthand side of picture (1), the 2D logic, short for ‘Avicenna’s two-dimensional
logic’, is a logic invented and studied by Avicenna. We formalise it as a fragment of a
two-sorted first-order logic with two sorts object and time, where every relation symbol is
binary and has first argument of sort ob ject and second argument of sort time. There is no
consensus of scholars about how Avicenna intended this logic to relate to his alethic modal
logic. The arrow in the picture represents a set of facts relating the two logics, together with
our conjecture that Avicenna knew this set of facts and intended it to be used to relate the
two logics in a certain way. The facts we will set out in §3, but we leave the question of
his intentions to §4, where we will argue that the comparison with Buridan strengthens our
interpretation.

The picture is tied together by the horizontal arrow at the bottom. This arrow represents
a mathematical fact about Kripke structures and modal sentences. The fact can be derived
as a generalisation of a result in Grisha’s introductory textbook of modal logic [17], and the
rest of this section will be devoted to deriving it.

In Chapter Two of [17] Grisha introduces ‘classical monadic predicate logic’—a logic
which contains Aristotle’s categorical syllogisms, as Hilbert and Ackermann [7]] ii.3 point
out. On page 25 he identifies within monadic predicate logic a subclass of formulas which
he calls ‘modal-like’; we can suppose that they contain at most one free variable. His first
example is

&) (P(y) vV O) AVx(=P(x) A ~Q(x) A VxIx(P(x) v O(x))).

He describes how to translate modal-like formulas into modal propositional logic so that
‘all information ... is completely preserved’ (p. 26). The modal translation of the formula
above is

(6) (pV@ADEpA=gADO(pV Q).

The modal sentences that contain or are within the scope of a modal operator in () are
exactly those that come from a subformula of (5 containing no variable that is free in (5).
On page 40 he shows that the modal sentences derived in this way from modal-like predicate
formulas are exactly the sentences of modal propositional logic. On page 42 he shows that
for every first-order structure M in the language of a modal-like formula such as (5) there is
a corresponding S5 Kripke structure M with the property that (5) is satisfied by an element
of M if and only if (6) is true at some world in M. In fact M can be taken to have a universal
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accessibility relation in the sense that every world is accessible from every world. As he
says (p. 41), there is ‘a very close semantic connection’ between the logic of modal-like
predicate sentences and the S5 logic. Essentially, the quantifiers of the modal-like predicate
sentences are taken to range over ‘worlds’.

The horizontal arrow in our picture above is Grisha’s ‘very close semantic connection’,
but lifted to monadic modal predicate logic, i.e. modal predicate logic where the relation
symbols are all monadic. An example of a sentence of this form is

7 Yz(Pz — O0Q7).

If we run Grisha’s translation backwards, starting with monadic modal predicate logic in-
stead of modal propositional logic, then we will reach a form of first-order logic where,
besides the variables ranging over worlds, there will be variables doing the job of z in the
sentence (7). It will be convenient to use different sorts of variables to do the different
jobs, so from now on we will use Greek variables to range over worlds. Thus the predicate
sentence corresponding to (7) will be

¢)) Yz(Pza — YBQOzP).

In short, the equivalence is now between monadic modal predicate sentences and a certain
class of two-sorted predicate sentences where each relation symbol is binary, with one vari-
able of the first sort and one of the second. We will call the two sorts 0b ject and world.
The variable z in (@), which is inherited from the quantified variable in (7), has sort ob ject,
and the world variables @ and 8 have sort world. Just as before, every sortal structure M for
the language of (8) translates into an S5 Kripke structure M for the modal language of (7)
(again with universal accessibility), and a modal sentence is true at some world in M if and
only if its sortal predicate translation is satisfied by some element of the sort world in M.

Since the sortal structure M will have just one domain D of objects, the universe of each
world in M will be the same; we can take it to be D again. But we can loosen things up
by allowing that in each world, some objects may be actual and other objects may be non-
actual. Formally we do this by allowing the predicate formulas to include a distinguished
predicate symbol O read as ‘actual’; so Oxa means that x is actual in world @. In the modal
language this binary predicate symbol goes over to a monadic predicate symbol, which we
can write again as O, so that ‘Ox’ is read as ‘x is actual’.

We will call this equivalence between modal-like binary two-sorted predicate logic and
monadic modal predicate logic the ‘basic modal equivalence’. Of course we claim no orig-
inality for the observation that this equivalence exists; presumably it’s common knowledge
among modal logicians.
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2 Buridan

This section is closely based on part of the second author’s PhD thesis [16], though we have
changed some notation to make the comparison with the Avicennan material easier.

Buridan’s divided modal logic is a fragment of his treatment of the alethic modals neces-
sity, possibility, contingency, and non-contingency, treating only those propositions where
the modal occurs as either an adverb or a verb that has modal force (e.g. verbs like ‘can’),
together with assertoric propositions ([4] pp. 95-96). The core idea that underpins Buri-
dan’s treatment of divided modal propositions is that the subject in these propositions is
ampliated (i.e. the class of objects that the subject term is taken for is expanded) to include
those things which either do or could fall under the subject. For example, according to Buri-
dan, ‘the proposition “B can be A” is equivalent to “That which is or can be B can be A.” ’
([4] p. 97) In the presence of the assumption that whatever is the case can be the case, this
can be simplified to ‘Something can be B and can be A’. When Buridan says that something
‘can be B’, what exactly does he have in mind? The following passage from George Hughes
explains the intuition behind the use of the actual and the possible:

A short digression seems in order here. For a long time I was puz-
zled about what Buridan could mean by talking about possible but non-
actual things of a certain kind. Did he mean by a ‘possibly A’, I won-
dered, an actual object which is not in fact A, but might have been or
might become, A?...But this interpretation will not do; for Buridan
wants to talk, e.g., about possible horses; and it seems quite clear that
he does not believe that there are, or even could be, things which are not
in fact horses but which might become horses. What I want to suggest
here, very briefly, is that we might understand what he says in terms of
modern ‘possible world semantics’. Possible world theorists are quite
accustomed to talking about possible worlds in which there are more
horses than there are in the actual world. And then, if Buridan assures
us that by ‘Every horse can sleep” he means ‘Everything that is or can be
a horse can sleep’ we could understand this to mean that for everything
that is a horse in any possible world, there is a (perhaps other) possible
world in which it is asleep. It seems to me, in fact, that in his modal
logic he is implicitly working with a kind of possible worlds semantics
throughout. ([[15] p. 9)

©)

We relativise Buridan’s statements to worlds @. In line with the quotation above, we con-
sider that an object x in the world @ can in some sense be a man even if x is not actual in
a; to avoid confusion with anything that Buridan might understand to be implied by ‘is a
man’, we express our notion in symbols as v(a, man, x). We write O(a, x) for ‘x is actual in
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world @’, and D(x) for ‘x is an object’. We translate:

(10) xisa Pin world a —  O(a, x) Av(a, P, x)
xisanon-Pinworlda +— D(x) A =(O(a, x) A v(a, P, x)).

Then ‘x can be a man’ translates to ‘There is a world @ such that x is a man in «’, and

likewise ‘x is necessarily a man’ translates to ‘For every world a, x is a man in @’. These

translations justify the following definitions of V, M and L, with M and L representing

possibility and necessity:

Vi, P,x) = O(a,x)Av(a,P,x);
(11) M(a,P,x) = dBV(B,P, x);
L(a,P,x) = VYBV(B,P x).

It will be convenient to write

Vie,P) = {x:V(a,P, x)},
(12) M(a,P) = {x:M(a,P x)},
L(a,P) = {x:L(a,Px)}

These formulas can be interpreted in a suitable kind of Kripke structure, which we call
a ‘Buridan modal model’, as follows. A Buridan modal model is a tuple M = (D, W, R, O, v)
such that:

D and W are non-empty sets. D is the domain of objects and W is a set of worlds.
R=W>

O: W - PD).

v: WX PRED — P(D)

where PRED is the set of monadic predicate symbols P. Here R is the accessibility relation.
Since R is universal, by the standard Kripke semantics the interpretations of M(«, P) and
L(a, P) in 9t don’t depend on «, and we can simplify these terms to M(P), L(P). We write
V(a, P)™ for the interpretation of V(a, P) in the Buridan modal model 9t; and likewise
M(P)™ and L(P)™. Informally, we can think of V(a, P, M(P)™, and L(P)™ as respec-
tively giving the class of objects that are P at @ in 9, can be P in M, and are necessarily P
in 9.

With these definitions in place, we can translate Buridan’s sentences into conditions on
a Buridan modal model 9t as follows. For the non-modal sentences the conditions are on a
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Buridan modal model 9t at a world a:

(a-nec)(A, B)
(e-nec)(A, B)
(i-nec)(A, B)
(0-nec)(A, B)
(a-pos)(A, B)
(e-pos)(A, B)
(i-pos)(A, B)
(0-pos)(A, B)
(a-now)(A, B)
(e-now)(A, B)
(i-now)(A, B)
(0-now)(A, B)

MA)™ c L(B)™ and M(A)™ # 0;
MA™ N MB™ = 0;

MA" N LB™ + 0,

MA™ ¢ M(B)™ or M(A™ = 0;
MA™ c M(B™ and M(AY™ # 0;
MA™ N LB™ = 0;

MA™ N MB™ £ 0;

MA™ ¢ L(B™ or M(A™ = 0;

Ve, AY™ C V(a, B™ and V(e, A)™ # 0;
V(a,A™ N V(a, B™ = 0;

Ve, A N V(e, BY™ # 0;

V(a, AY™ ¢ V(a, B or V(a, AY™ = 0;

(13)

1171171717111

If ¢ is a sentence on the left, we write ¢™ (or ¢™>® for the last four sentences) for the
condition on the right that translates ¢.
Formally, we define a syllogism, S, to be a triple (@, ¢, i) such thatﬂ

1. @, ¢, and ¢ are sentences of modal logic;

2. there are exactly three terms that occur in at least one of @, ¢, and
s

3. The predicate of ¥ occurs in ®@;

4. The subject of ¢ occurs in ¢;

5. @ and ¢ share a common term that does not occur in .

We say that a syllogism (D, ¢, ) is ‘semantically valid’ if for every Buridan modal model
It and every world « of IN,

(14) If @™ and ¢ hold, then ™ holds.

Now Buridan himself makes detailed claims about which syllogisms are ‘valid’ (ualent
in his Latin). The following tables, due to Stephen Read ([4] pp. 41-44), summarise the
syllogisms that Buridan lists as valid. Read uses L for ‘necessary’, M for ‘possible’, Q

IThis definition is standard; see for example [26]. The sentences @, ¢, y are known respectively as the
major premise, the minor premise and the conclusion of the syllogism.
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| L M X Ke
L |L LM Darii, Ferio L, LM
Celarent X | Barbara, Celarent X | Celarent X
M| M M Darii, Ferio M M
X | M 0 Darii, Ferio M, 0
Celarent X
QI MQ M, Q Darii, Ferio Q Q
Table 1: Valid First Figure Syllogisms (by Buridan)
| L M X | Q
L | L LM Festino L LM
Cesare X Camestres X | Cesare X
Camestres X | Baroco X Camestres X
M || LM, 0 0 0
Cesare X
Camestres X
X || M, 0 Festino M 0
Cesare X
Camestres X
Q[ M, 0 0 0
Cesare X
Camestres X

Table 2: Valid Second Figure Syllogisms (by Buridan)
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for ‘contingent’, and he lists under X the de inesse ut nunc sentences with ‘now’. The
lefthand column lists the major premise and the top row lists the minor premise. We assume
known the classification of syllogisms by mood and figure, together with their Latin names
(Celarent etc.).

Besides the validity claims in these tables, Buridan also says explicitly that a number of
other syllogisms are not valid.

Fact 2.1. All the syllogisms that Buridan claims to be valid are semantically valid, and
none of the syllogisms that Buridan claims to be invalid are semantically valid.
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| L M X | Q
L | LX LM Darapti, Felapton X | LM
Datisi, Ferison X
Darapti, Felapton L
Datisi, Ferison L

M| M M Darapti, Felapton M | M
Datisi, Ferison M
X || Darapti X | Darapti M | Datisi M Darapti M
Disamis X | Disamis M Disamis M
Q | MAQ Q Disamis, BocardoM | Q

Datisi, Ferison Q

Note: The entry for major premise L and minor premise X corrects the
table in [4]; see the errata at
http://www.st-andrews.ac.uk/~slr/Buridan_errata.html.

Table 3: Valid Third Figure Syllogisms (by Buridan)

This fact is proved in [16]. The valid cases are proved by direct argument or reduction
to other valid cases, and the invalid cases are proved by building explicit countermodels.

Given the complexity of the tables above, we can see that this agreement between Buri-
dan’s claims and the facts of semantic validity is highly significant in the statistical sense.
But we leave for the moment the question what it signifies, and turn our attention to Avi-
cenna.

3 Avicenna

The four main surviving logical works of Avicenna’s mature period (say 1024 to 1034)
are Qiyas, Masrigiyyin, Danesnameh and Pointers. Danesnameh doesn’t deal with modal
logic, so we ignore it here. As for Pointers, Avicenna warns his readers that the book will
give no benefit to ‘those not endowed with blazing sagacity, training and practice’ ([6] p.
48). He deliberately makes it difficult for people to use it as an introduction to his views,
though people still attempt this.

There remain Qiyas and Masrigiyyiin, the latter written some four or five years later than
the former. Qiyas is much longer, but this is partly because the manuscript of Masrigiyyiin
was stolen and destroyed soon after it was written. It may be that what we have is an
author’s draft of the first eighty-odd pages. Ibn Sina himself advises that Qiyas contains
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more details but was also written with some ulterior motives; Masrigiyyiin tells it like it is
(cf. Text M in the Appendix and [6] pp. 44f). Both Qiyas and Masrigiyyiin contain what
Avicenna considers to be the first steps in his logic. They set up a new logic of his own
invention, consisting of sentence-forms that are like those of Aristotle but with added tem-
poral operators. Qiyds i.3 states the forms by giving examples in Arabic, and Masrigiyyiin
goes over the same ground but with abstract descriptions of the sentence forms. (See §5.2
below for the relevant texts.) The resulting logic is what we called two-dimensional or 2D
logic in §I]above. (The name comes from Oscar Mitchell, a student of C. S. Peirce who
proposed a similar extension of Aristotle’s logic in the 1880s; see [13]].)

2D logic is not defined as precisely as we would require of a logic today. There is some
ambiguity about exactly what sentences should be included; also some of the distinctions
that Avicenna makes seem to be linguistic rather than logical. We will concentrate on some
central forms, where there is little doubt about the truth-conditions that Avicenna has in
mind, and hence little doubt about the appropriate formalisations. Chatti [S)] is a good
recent survey of some of the same material.

Three groups of sentences of 2D logic will interest us. These are the groups that Avi-
cenna himself calls respectively ‘necessary’ (dariiri), ‘general absolute’ (mutlaqg “amm) and
‘at a time’ (zamant); we abbreviate these to d, ¢ and z respectively. In each group there are
an a sentence, an e sentence, an i sentence and an o sentence. So for example we have a
sentence (a-d)(A, B); its subject and predicate are A and B, its ‘assertoric form’ is (a) and
its ‘avicennan form’ is (d), and its ‘form’ is (a-d). The logic of the sentence forms (d) and
(#) forms the ‘dtf fragment’.

The forms are as follows, written in a two-sorted first-order language with object vari-
able x, time variable 7 and time constant d, and a distinguished relation symbol E; Ex7 is
read as ‘x exists at time 7’.

name sentence

(a-d)(A,B) (Vx(AtAxt — V1(Ext — Bx1)) A Ax3dtAXT)
(e-d)(A,B) VYVx(IAtAxt — VT(Ext — —=BxT))

(i-d)(A, B) Ax(AtAxt AVT(ExT — BxT))
(o-d)(A,B) (Ax(AtAxt AVT(Ext — —Bx7)) V YXVT-AXT)
(a-1)(A,B) (Vx(AtAxt — Jr(Ext A BxT)) A dAxdrAxT)
(e-1)(A, B) Vx(drAxt — dr(Ext A —=BxT))

(i-H)(A, B) dAx(AtAxt A At(Ext A BxT))

(o-H)(A,B) (Ax(dtAxt A AT(Ext A =BxT1)) V YXVT-AXT)
(a-7)(A,B) (Yx(Ax6 — Bxd) A AxAx9)

(e-2)(A,B) Yx(Ax6 — —Bx0)

(i-2)(A, B)  Ax(Axd A Bx9)

(0-2)(A, B) (Ax(Ax6 A =Bx6) V Y x—Ax0)
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:

Table 4: Valid First Figure Syllogisms (by Avicenna)

Examples that Avicenna himself offers in Text D below include:

(a-d): Every human is an animal. (Literally: Everything that
is sometimes a human is an animal for as long as it exists.)
(a-1):  Everything that breathes in breathes out. (Literally:
Everything that sometimes breathes in breathes out sometime
during its existence.)

Avicenna has a tendency to treat the sentences with avicennan form (z) as if they had a
wide-scope time quantifier; for example he regards (a-z)(A, B) as close to

dr(Vx(Axt — Bxt) A AxAxT)

with examples like “There is a time when all humans are Muslims’. He says in Text G that
‘many precautions’ need to be taken when we handle sentences like these, and he promises
a full treatment of them in his Appendices—which as far as we know were never written.

There is certainly more to be said about the passages in which Avicenna does discuss
(z) sentences. The resemblance between (z) sentences and Buridan’s de inesse ut nunc
sentences is clear to see.

We can repeat the definition of syllogism from the previous section, but we should add
some riders to it. Avicenna doesn’t talk of validity. He asks first whether a given pair ®, ¢
of 2D sentences entails some 2D sentence with the right terms as in the previous section;
if it does, he says that the pair is ‘productive’. For each productive pair, the ‘conclusion’
is the strongest 2D sentence, again with the right terms, that can be deduced. This is an
unambiguous notion; in the dt fragment of 2D logic there always is a strongest such sen-
tence. Counting conclusions this way, we can draw up tables like Read’s tables for Buridan.
Again the lefthand column is for the major premise, although when he writes out syllogisms,
Avicenna follows the Arabic custom of putting the minor premise first.

More precisely there are two ways of drawing up these tables. The first way is as with
Buridan in §2, letting the tables show the moods that Avicenna himself declares valid. Street
lists these at the end of [23], with L for d and X for r. We checked and confirmed Street’s list,
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U
~

Table 5: Valid Second Figure Syllogisms (by Avicenna)

d|t
d|d|d
t|t |t

Table 6: Valid Third Figure Syllogisms (by Avicenna)

widening the scope to include Al-muktasar al-awsat, a relatively early work from around
1014. Apart from the telegraphic Pointers, Avicenna always gives the same list. The second
way is to calculate what syllogisms Avicenna ought to have declared valid, given his own
explanations of the forms of the sentences involved. The situation is different from that with
Buridan, because Buridan explained his sentences using modal notions and nothing like a
Kripke structure, so that the Johnston semantics involves a new set of concepts introduced
by Johnston. With Avicenna the sortal first-order formulas merely report what Avicenna
himself said the sentences mean, or more strictly the truth-conditions that he intended. So
we could draw up the tables to show which syllogisms are valid in first-order logic.

In parallel with §2] above, we have drawn up the tables in the first way, i.e. to report
what moods Avicenna himself describes as valid.

Fact 3.1. In the dt fragment, the 2D syllogisms that Avicenna lists as productive are exactly
those that are productive, and in every case he gives correctly the strongest conclusion.

This is proved in [9] as a corollary of a characterisation of all the minimal inconsistent
sets of 2D sentences; see §10.3 ‘Productive two-premise moods’ in [9].

The tables for Avicenna are very much simpler than those for Buridan. The main sim-
plification is that the conditions for validity in each figure are independent of the mood
(provided the mood is valid in assertoric logic) and depend only on the choices of d and
t. (This fact about the tables is a consequence of the more general Orthogonality Principle
for (d) and (#) sentences, [9] §10.2.) After seeing Johnston’s results, Hodges checked what
would happen to the tables if we added the (z) sentences. The result is that everything be-
comes much more complicated and requires ‘many precautions’, as Avicenna foresaw. We
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can be thankful that at least Buridan wasn’t discouraged from diving in. But maybe life’s
problems weighed less heavily on Buridan than they did on Avicenna.

Another reason why Buridan’s tables are more complicated than Avicenna’s is that Buri-
dan doesn’t limit himself to strongest conclusions. For example in first figure with neces-
sary major premise and possible minor premise he can deduce a necessary conclusion; but
he lists also a possible conclusion, though this follows from the necessary one. However,
there are a few cases where Buridan lists two conclusions, and we can show that in the
Johnston semantics there are two distinct strongest conclusions. One example is

Some B is now an A.

(as) Every B is necessarily a C.

In the Johnston semantics the second sentence quantifies over possible objects that are Bs,
whereas the first quantifies only over things that are Bs actual in the present world. So we
can deduce that some actual A is necessarily a C. But none of Buridan’s sentence forms
express this; he can say only that some possible A is necessarily a C, or that some actual A
is actually a C. These two conclusions account for the L and the X in third figure Datisi.

Our result for Avicenna is in one way stronger than our result for Buridan: we show
not only that Avicenna’s claims about productivity and conclusions are correct, but also that
these claims are complete. Avicenna detected all the cases that arise. This is actually not
true for Buridan. For example in first figure Darii and Ferio he omits that we can get an X
conclusion from an L major premise and an X minor premise; the case is like (I3]), where
we can deduce that some actual A is necessarily a C, but this time Buridan catches the L
and misses the X. But overall he makes very few omissions.

So far we have been talking only about Avicenna’s 2D logic, not his alethic modal logic
with ‘necessarily’, ‘possibly’ and ‘contingently’. The facts about his alethic modal logic
are rather remarkable. As above, we are leaving aside the contingent propositions.

Fact 3.2. (a) Avicenna’s claims for validity of alethic modal syllogisms are exactly the
same as his claims of validity for 2D syllogisms, except that they replace d by ‘neces-
sarily’ and t by ‘possibly’.

(b) Avicenna’s Arabic name for (d) sentences is the same word as his name for the ‘nec-
essarily’ sentences, namely darQri (which just means ‘necessary’).

What on earth is going on here? Is Avicenna really using the same word ‘necessary’ both
for alethic modal necessary sentences and for 2D (d) sentences expressing that something
is true of x ‘so long as x exists’? We know that Avicenna was well aware of the difference
between ‘necessary’ and ‘permanent’. See for example Text I, where he says:

Being permanent is not the same as being necessary. ... But it is not

(16) for the logician as logician to know the truth about this.
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What can he mean?

We can say straight away that the problem is how to make sense of the alethic modal
logic, not how to make sense of the 2D logic. In Qiyas Avicenna presents us with a textbook
of his new 2D logic: he defines the sentence forms, and he shows how to prove the valid
syllogisms. His proofs, though sometimes missing some details, are accurate up to the most
rigorous modern standards, and in several cases they are completely new. Where possible he
copies Aristotle’s proofs from Prior Analytics 1.3,4, but where these methods won’t deliver
the results he finds other methods that will. One example is a case of second figure Baroco,
where he introduces a method that involves defining a new term (an ecthesis). The received
wisdom of his time was that no such proof is possible for Baroco—his predecessor al-Farabt
thought he had found such a proof, but his explanation suggests he had missed the point.
Avicenna gave an ecthetic proof of Baroco that avoided al-Farabi1’s infelicities, and showed
how to use it to plug the gap in the Aristotelian methods. For one case of second figure
Camestres he could find no proof along these lines, so he invented a new method that he
called ‘incorporating in the predicate’. Not only did this method work, but it could be made
the basis of an entirely new approach to proving syllogisms in logics more complicated
than Aristotle’s categorical syllogisms. In the century after Avicenna, the Persian genius
Suhrawardi made it the main method of his logic. After trying other methods, the present
first author came to the conclusion that it was the best method to use in [9] for proving
metatheorems about the dr fragment. This is not even a full list of the accomplishments of
Avicenna’s 2D logic. But it’s enough to make the point that Avicenna’s results on validity
of 2D syllogisms need no support from modal arguments.

By contrast the arguments that Avicenna deploys to justify the alethic modal first figure
syllogisms are frankly appalling, if we are to take them at face value as logical inferences.
Some are just word-play. Others use methods that he rightly condemns elsewhere in Qiyas.
They betray no overall vision or plan. (See §5.5 and Texts J, K, L for documentation. In
§4 and §5.5 below we indicate how these arguments might be justified, but not as logical
inferences.)

The agreement stated in Fact@] (a) between the 2D results and the alethic modal results
is far too non-trivial to be an accident, and it can hardly be the result of the nonsensical
proofs that Avicenna offers in the modal case. The only reasonable explanation is that
Avicenna uses the translation

necessary > (d),

an possible > (¥)

to read off from the 2D logic what syllogisms he should count as valid in the modal case.
One thing that he certainly does do in several places is to take a modal syllogism and claim
to justify it by translating it to a valid 2D syllogism by the translation (T7). Text J below is
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a clear example of this, and Text L is at least a prima facie example.

The translation (17) is the vertical arrow on the lefthand side of picture (1). Its existence
and properties are mathematical facts. Avicenna’s reasons for using it are one of the main
interpretative questions to be discussed in §4]below.

4 Bringing the pieces together

We have explained the lefthand and righthand sides of picture (1), so we are now in a
position to explain what the Basic Modal Equivalence of §1 tells us about them.

Johnston found for each of Buridan’s sentences ¢ a translation $™® which is a state-
ment about any given Buridan modal model 9t and world @ of 9. We didn’t say it earlier,
but each of these statements ™% can be written as a modal sentence ¢""°“, so that for any
M and @, ¢"°? is true in M at « if and only if p™¥) is true. For example if ¢ is (a-nec)(A, B)
then ¢ is

(18) (Vx(O(Ox A Ax) — O(Ox A Bx)) A AxO(0x A Ax)),

and if ¢ is (i-now)(A, B) then ¢ is

(19) dx(Ox A Ax A Bx)

The other sentences are equally straightforward to find. So the Basic Modal Equivalence
converts each of these into a two-sorted first-order sentence. In fact Johnston’s formulations
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already go halfway to this two-sorted sentence, so let’s now go the whole way. We get

(a-nec)(A,B) +— (Vx(I1(Oxt A Axt) > VY1(OXT A BXT))
AdxFr(Oxt A AxT))

(e-nec)(A,B) +— VYx(IT(Oxt A Axt) - VY1-(OxT A BxT))

(i-nec)(A,B) +— Ax(3t(Oxt A Axt) AVT(OXT A BXT))

(o-nec)(A,B) +— (Ax(IT(Oxt A Axt) AVT=(OxXT A BxT))
VYXVT-(0xT A AXT))

(a-pos)(A,B) +— (Vx(A1(Oxt A Axt) — I7(OxT A BXT))
Adx3IAT(Oxt A AxT))

(20) (e-pos)(A, B)

(i-pos)(A, B)
(0-pos)(A, B)

Yx(3r(Oxt A Axt) = dt=(0OxT A BXT))
Ax(A1(Oxt A AxT) A AT(OxT A BXT))
(Ax(At(Oxt A Axt) A AT=(0OXT A BXT))

VY xVT-(OxT A AxT))

(Vx(0Ox6 A AxS) — Bx6) A Ax(Oxd A Ax9))
Vx(Ox6 AN Axd) — —Bx0d)

Ax(Ox6 A AxS) A Bxo)

(Ax(0Ox6 A AxS) A =Bxd) V Yx=(0Ox6 A Ax9))

111

(a-now)(A, B)
(e-now)(A, B)
(i-now)(A, B)
(o-now)(A, B)

11117

Apart from using O instead of E, the sentences on the right here are remarkably like the
corresponding sentences of Avicenna’s 2D logic, where the correspondence isE]

(nec) ~ (d)
21) (pos) ~ (1)
(now) ~ (2).

Of course the differences are interesting too; we will see that in most but not all cases these
differences can be ironed out. We will refer to this translation from Buridan’s sentences
to two-sorted sentences, and the slight variants of it that we will consider below, as the
‘Avicenna-Johnston semantics for Buridan’s modal logic’. The sentences on the right in
(20), and their variants below, are the ‘Avicenna-Johnston sentences’.

Fact 4.1. The logical relationships between the Avicenna-Johnston sentences are not af-
fected if we remove all parts of the form ‘OxtA\’ or ‘OxoN’.

Sketch proof: Suppose first that 7 is a set of Avicenna-Johnston sentences as above,
and 9t is a model of 7. Let T’ be the result of removing all the O’s from T as described.

2Thom in [23]] uses X to stand for (now) in the case of Buridan but for (¢) in the case of Avicenna. Some-
times, as at the bottom of his page 174, he uses this correlation as a basis for comparing Avicenna and Buridan.
But comparing de inesse ut nunc sentences with (¢) sentences is rather meaningless.
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Then we get a model N’ of T by taking 9t and re-interpreting each relation symbol A so that
W | AaB if and only if 9t E (OaB A AaB) (for any object a and time/world 3).

Suppose next that 7 and 7’ are as above, and & is a model of 7’. Then we get a model
K’ of T by adding a relation O so that Oaf holds everywhere. O

So without affecting what moods come out as valid, we can replace the first version of
Avicenna-Johnston semantics by the following simpler form:

(a-nec)(A, B)
(e-nec)(A, B)

(i-nec)(A, B)

(0-nec)(A, B)
(a-pos)(A, B)
(e-pos)(A, B)
(i-pos)(A, B)

(0-pos)(A, B)
(a-now)(A, B)
(e-now)(A, B)
(i-now)(A, B)
(o-now)(A, B)

(Vx(dtAxt — V1Bx1) A dxdTAXT)
Vx(dtAxt — V1-BxT1)

Ax(AtAxt A VYTBXT)

(Ax(AtAxt AVT-BxXT) V VXVT-AXT)
(Vx(AtAxt — JvBxt) A AxIATAXT)
Vx(dtAxt — A7-Bx7)

Ax(ArAxt A ATBxT)

(Ax(AtAxt A AT=BxT) V VXVT-AXT)
(Vx(Ax6 — Bxd) A AxAx9)

Yx(Axé — —Bx6)

Ax(Axd A Bxo)

(Ax(Ax6 A =Bxd) V Yx—Ax0)

(22)

1171171171171 11

Can we perform a similar reduction on Avicenna’s 2D sentences? It turns out that we can,
with an important restriction.

Fact4.2. The logical relationships between 2D sentences in the dt fragment are not affected
if in all the sentences we remove all parts of the form ‘ExtA\’ or ‘Ext —’.

Supersketch proof: This is harder than the previous result. It rests on the fact that the
sentences never correlate what holds at one object at a time 7 with what holds at another
object at that same time 7; so we can manipulate the time frames of the elements separately
to ensure that everything always exists; in which case the statement of existence becomes
redundant. The proof is in §12.2 of [9]. This argument doesn’t work for the (z) sentences
since the time ¢ is fixed across all objects. O

It follows that the criterion for the semantic validity of a Buridan syllogism involving
only ‘necessarily’ and ‘possibly’ is equivalent to the criterion for the validity of the corre-
sponding 2D syllogism with ‘necessarily’ replaced by (d) and ‘possibly’ replaced by (¢).
Given that Avicenna and Buridan did calculations that agree with these criteria for their
respective logics, we should be able to check that the L and M parts of Read’s tables above
agree exactly with the corresponding tables for Avicenna, with (d) for L and (¢) for M,
except where Buridan includes non-optimal conclusions. And indeed this is the case.
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We can show that Fact can’t be extended to include the sentences with avicennan
form (z). If it could, then the Buridan ‘now’ sentences would go over into (z) sentences. But
there are examples to show that this fails, for example the following from §12.2 of [9]. The
Buridan syllogism

Some B is necessarily an A.
(23) Every B is necessarily a C.
Therefore some A is now a C.

is valid, and Read’s table for Third Figure witnesses this by showing X in the top left square
corresponding to L in both premises. But the corresponding 2D syllogism

Some B is an A throughout its existence.
(24) Every B is a C throughout its existence.
Therefore at time 6 some A isa C.

is invalid, since it could happen that none of the things that are sometimes a B exist at time
0.

Now we come back to the second author’s discussion of Buridan’s modal logic. What
does his semantics for Buridan’s logic show? We have to tread carefully. Suppose someone
claims:

Claim One. Buridan is a reliable logician, because he gets correct an-

(25 swers about which syllogisms are valid.

As it stands this is a non-sequitur, because it assumes that we know what answers are cor-
rect. We could claim to know it if we already knew that our semantics for Buridan’s logic
correctly reflects his intentions. Suppose someone claims:

Claim Two. Our semantics correctly reflects Buridan’s intentions, be-
(26) cause it gives the same answers as he does about which syllogisms are
valid.

As it stands this is a non-sequitur too, for more than one reason. First, it assumes that
Buridan calculated correctly which syllogisms are valid. So we have a circular argument.
But second—and our calculations above bring this to the fore—there can be two different
semantics that express different intentions but happen to give the same verdicts on which
syllogisms are valid.

To expand this second point: Fact 4.1 above implies that the Johnston semantics for
Buridan’s modal logic would give exactly the same verdicts on which syllogisms are valid
if we added the restriction that all objects are actual in all worlds. (Any countermodel using
the notion of actuality can be replaced by a countermodel where the same work is done by
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the other relation symbols.) Does it follow, as the argument of Claim Two would imply, that
our evidence shows that Buridan assumes every object is necessarily actual? Clearly not.
We can’t even say we have shown that Buridan assumes something like this; other things
that we know about modal logic make it clear that the assumption is quite mad. (The point
is not always appreciated; see the last paragraph of §5.4 for an example in the literature.)

Another example that emerges from the comparison of Avicenna and Buridan is the fact
that Avicenna speaks of times where the corresponding items in Johnston’s semantics for
Buridan are possible worlds. Switching between times and worlds makes no difference to
the formalism at all. So could we argue, noting that Johnston’s semantics works equally well
with times instead of worlds, that Buridan really had in mind a temporal logic rather than an
alethic modal one? Or vice versa, could we argue that Ibn Sina really meant worlds when he
said times? Any answer to these questions must consult what the authors themselves said.
In the case of Buridan there is almost nothing in his text to suggest that he means a temporal
logic. (Granted, he does say ut nunc ‘as now’.) In the case of Avicenna the question has
some bite, because in his propositional logic where he uses the notion that something is
the case ‘always’ or ‘sometimes’, he says explicitly that ‘always’ is not meant to cover just
times; see Movahed [18]] pp. 7-23 on this.

A further point is that two different semantics may give the same verdict over most syl-
logisms, but differ on some small group. It may not be obvious where to look for this group.
We saw this with Fact 4.2; if we took the 2D sentences as giving the semantics of the corre-
sponding Buridan sentences, we would get a different verdict from the Avicenna-Johnston
semantics on certain syllogisms involving ‘now’ sentences, but no difference would show
up using the ‘necessary’ and ‘possible’ sentences alone.

We have no snap answers to these problems. Claim Two is definitely dangerous and one
should be aware of that. But in many cases where we give a semantics to an author’s logic,
we can read the author’s statement of intentions, and any other evidence from the author,
as a guide to the appropriate semantics. We used the quotation (9) from George Hughes in
this spirit. And of course then we can argue as in Claim One to show that our author is a
reliable logician, if the author’s statements of validity agree with what we calculate to be
valid using the semantics that we derived from the author’s indications.

There are two things about set-theoretic semantics that make this a feasible enterprise.
The first thing is that a set-theoretic semantics is normally objective, in the sense that its
definitions are based on elementary set theory, and in consequence there is no room for
dispute about the properties of the semantics. One of the earliest logicians to recognise this
objectivity of elementary set theory was George Bentham, who recommended converting
arguments into set theoretic form as a way of detecting fallacies. He may have taken this
from his uncle Jeremy Bentham, whose unpublished notes on logic he used. In any case
the fact is now well recognised. The second thing is that we have ways of calculating in set
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theory, which are not simply paraphrases of informal arguments. In consequence the causes
of error are likely to be different; so if our author informally calculates that a syllogism is
valid, and we show it by a formal calculation, there is less chance that we and the author
have made the same mistake. All this is common sense.

We can add that a semantics for Buridan’s modal logic is also a prima facie semantics
for other people’s accounts of Buridan’s modal logic. So it can be used to correct misun-
derstandings. For example it has been claimed that Buridan forgot to include among the
valid syllogisms Barbara with both premises X and conclusion M. But we can show that
this mood is not semantically valid on the Johnston semantics, which makes it much less
likely that Buridan omitted it by mistake.

Turning back to Avicenna, does our experience with Buridan throw any light on what
Avicenna might be doing with his modal and 2D logics?

Yes, it does. By starting his logic in Qiyas and Masrigiyyin with the 2D sentences,
he has adopted a set of notions that can be represented in elementary set theory. So the
logic is objective, and it allows exact calculations. Here we are using modern language,
but there are things in Avicenna’s text that point in the same direction. One is his repeated
insistence that he quantifies only over ‘actuals’ (bil-fi°l), for example in Text A. Another is
the interest that he expresses, in Qiyas 1.2, 16.8-10, in those sciences that are ‘integrated
and orderly’, so that they are ‘unlikely to lead to error’ and the experts have few differences
of opinion about them. There is an obvious contrast with modal logic, where we expect
many philosophical disagreements.

Note one significant difference between what Johnston does to Buridan and what Avi-
cenna does with his 2D logic and his alethic modal logic. Buridan has a body of claims
about modal validity, and Johnston can use the semantics to check them. But Avicenna has
no body of modal theorems to start with. Rather the opposite: he proceeds as if he is casting
around for some way of finding theorems. Not having any direct access to alethic modal
theorems, he proves some theorems in 2D logic and then borrows them into modal logic.

Does it make sense for him to do this? Yes, we can defend this procedure in either of
two distinct ways, as follows.

First, suppose we are trying to find the laws of necessity. There are various kinds of
necessity, and maybe they obey different laws. But if the bare notion of necessity—Ilet us
call it abstract necessity—obeys some laws, then all the more specific kinds of necessity
should obey these laws too. One particular kind of necessity is permanence, and happily we
can handle permanence in 2D logic where its laws can be found in an objective way. These
laws contain all the laws of abstract necessity. Do they contain anything more?

If we wanted to show that every law of permanence is also a law of necessity, then thanks
to the axiomatic form of Avicenna’s 2D logic, we have a procedure that we can follow. It
will suffice to show that abstract necessity obeys the axioms of permanence. These axioms
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consist mainly of conversions and first figure syllogisms, and it so happens that these are
exactly where Avicenna concentrates his arguments for validity of modal syllogisms. But
these axioms are precisely that, axioms, so Avicenna is not in a position to derive them
logically. In practice he is forced to fall back on a kind of conceptual analysis, which
consists of inviting the reader to play with the notions until the axioms feel natural. This
fact could go a long way towards accounting for the less than cogent treatment of the first
figure alethic syllogisms; it may be not so much bad logic as a device for creating intuitions.

He never says that this is what he is doing. But if we look at what he says about the
procedures of discovery in science in general, and in logic in particular, then much of it
makes good sense. (This point is expanded in [8].) So this first defence of Ibn Sina’s
procedure fits well with Ibn Sina’s known general view of logic.

The second defence is a frank anachronism. The various formal equivalences given in
this paper show that 2D logic is formally correct as a description of a Kripke semantics for
Ibn Sina’s alethic modal logic. (Ibn STna’s own interpretation of 2D logic in terms of time is
irrelevant to this fact.) So when Ibn Sina claims to justify a modal syllogism by translating
it by (17) into a 2D syllogism, what he is doing is formally the same as giving a semantic
proof of the modal syllogism in terms of a Kripke semantics. His attempted proofs of the
modal axioms would, if they worked, show that the alethic modal logic is sound for the
Kripke semantics. Again this is not what Ibn Sina says he is doing—but then in the 11th
century, how could he?

So in both the Buridan case and the Avicenna case, a set-theoretic semantics is being
used to support a non-set-theoretic logic, and the properties of the set-theoretic semantics
that make this possible are similar in the two cases. But the further details of the two cases
are quite different.
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A Appendix

One of the referees asked for textual evidence to support our attribution of various views
to Avicenna. The main purpose of this Appendix is to give texts and put them in context.
Except where stated, the translations are by the first author, from the texts of Qiyas [22],
Masrigiyyin [20] and Najat [21]. Normally he wouldn’t publish such a substantial amount
of translation without checking it in detail with a logically informed native Arabic speaker,
but under the present publication schedule there was no time for this. He will try to get
better-authenticated translations onto his website as soon as possible.

Since the paper was first submitted, an excellent scholarly treatment of Avicenna’s def-
initions of his sentence forms has appeared, namely Chatti [5]; see also Chatti’s article
Avicenna (Ibn Sina): Logic in the Internet Encyclopedia of Philosophy.

By giving so many texts, we are in danger of bringing up issues that will distract the
reader from the main business of the present paper. Unfortunately this is life with Avicenna.
There is material for many more papers.

A.1 Avicenna’s assertoric logic

Aristotle’s formal logic falls into two parts, which today one describes as ‘assertoric’ (or
‘categorical’) and ‘modal’. The modal sentences and inference rules are distinguished by
the fact that they use ‘alethic’ modalities necessary, possible and contingent, while the
assertoric logic has no modalities. Among Avicenna’s various logics, he has one which
corresponds to Aristotle’s assertoric logic and one which corresponds to Aristotle’s modal
logic; we carry over the names ‘assertoric’ and ‘modal’ to these two logics. (The name
‘assertoric’ is not Avicenna’s; when he needs a name for assertoric logic he tends to call
it ‘standard’, mashiir. Some of the recent literature on Avicenna uses ‘assertoric’ without
defining it, but apparently as a synonym for Avicenna’s term ‘absolute’, mutlag; we avoid
this usage.)

Assertoric logic has four sentence forms, which Avicenna expresses with Arabic or
Persian sentences that translate as

Every Bis an A. (We write (a)(B,A).)
@7 No Bis an A. (We write (e)(B,A).)
Some Bis an A. (We write (i)(B,A).)

Notevery Bisan A. (We write (0)(B,A).)

The notations (a)(B,A) etc., which can be shortened to (a), (e), (i), (0), are derived from
a Latin convention and are not found in Avicenna. He himself describes (a) as ‘universal
affirmative’, (e) as ‘universal negative’, (i) as ‘existential affirmative’ and (o) as ‘existential
negative’. The letters B, A can be replaced by any other letters, normally subject to the
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convention that the two letters in an assertoric sentence form are distinct. (A rare coun-
terexample is implied near the end of Text G below.) The first letter (B above) is called the
‘subject’ and the second letter (A above) is called the ‘predicate’.

An assertoric sentence (or assertoric proposition) is got by replacing the letters in an
assertoric sentence form by appropriate natural language text. The text put for B above, or
more accurately the meaning of this text, is called the ‘subject’ of the sentence; likewise
‘predicate’ with A. In practice Avicenna uses the letters B, A to mark holes where text
can be put. But from various passages, including his descriptions of logic as a theoretical
science, it seems that his theoretical account is different: apparently he regards the letters in
a logical inference rule as universally quantified by quantifiers (perhaps implicit) that range
over ‘well-defined meanings’ (ma“ani ma‘giila). So for example the inference rule that the
Latins knew as Barbara, and Avicenna knew as the first mood of the first figure, should be
read as

For all well-defined meanings C, B and A, if it is assumed that ‘Every
28) C is a B’ and that ‘Every B is an A’, then these assumptions yield the
conclusion that ‘Every C is an A’.

The two assumptions are called ‘premises’ of the inference rule. ‘Conclusion’ here means
the strongest sentence with subject C and predicate A that can be inferred from the two
premises. (So for example Avicenna says that these premises have no conclusion with
subject A and predicate C—he rejects the ‘indirect moods’.)

Avicenna discusses the truth conditions of the assertoric sentence forms. One important
point is that when B is empty (i.e. there are no Bs), he takes the affirmative forms (a)(B, A)
and (i)(B,A) to be false and the negative forms (e¢)(B, A) and (0)(B, A) to be true (cf. [11]).
This allows the following first-order translations of his sentence forms.

(a)(B,A): (Vx(Bx — Ax) A dxBx).
(e)(B,A) : Yx(Bx — —Ax).

()(B,A): Ax(Bx A Ax).

(0)(B,A) : (Ax(Bx A =Ax) V Yx—Bx).

(29)

It seems beyond reasonable doubt that these first-order formulations have the same truth
conditions as Avicenna’s assertoric forms in above. But they differ from Avicenna’s
forms in two other ways. First, they use modern symbolism. Second, the formulas for (a)
and (e) invove an analysis in terms of the truth-table or Philonic conditional —, and we
don’t know that Avicenna was aware of this conditional.

Following Aristotle, Avicenna describes a sentence i as a ‘contradictory negation’
(naqid) of a sentence ¢ if ¥ is logically equivalent to —~¢. So (a)(B,A) and (0)(B, A) are
contradictory negations of each other, and (e)(B,A) and (i)(B, A) are contradictory nega-
tions of each other.
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Aristotle in Prior Analytics 1.4—6 listed all the valid moods (i.e. two-premise inference
rules) of assertoric logic, classified them into three ‘figures’, and derived the second- and
third-figure moods from the first-figure moods and some further elementary logical pro-
cedures. This forms Aristotle’s proof theory of assertoric logic. Avicenna accepts all of
Aristotle’s assertoric proof theory, and repeats it in detail in all his major surviving accounts
of logic (except the late and telegraphic Pointers). He also makes some advances in this
logic. One is that in place of Aristotle’s one-by-one refutations of invalid moods, Avicenna
adopts syntactic rules for recognising valid moods; this continues a trend begun by the Ro-
man Empire logicians and continued further by the later Latin logicians who introduced the
laws of distribution. Another is that he develops the theory of compound assertoric syl-
logisms, i.e. inferences that involve a series of applications two-premise rules. His major
achievement here is a recursive proof search algorithm for these syllogisms, which he sets
out in Qiyas ix; cf. [10].

Besides expounding and developing assertoric logic in its own right, Avicenna also uses
it as a template for developing other logics, notably his two-dimensional logic.

A.2 The two-dimensional sentences

At the beginnings of his treatments of deductive logic in the encyclopedic Qiyas (‘Syllo-
gism’) and the slightly later Masrigiyyiin (‘Easterners’), Avicenna sets out methodically a
collection of sentence forms that broadly resemble the assertoric forms—for example each
has a subject and a predicate—but allowing time arguments to occur in the terms. The ac-
count in Qiyas 1.3 mainly consists of a list of sample sentences with some comments on
them. The account in Masrigiyyin consists of formal descriptions of the sentence forms.
The two accounts correlate neatly. Avicenna discusses separately what happens to the time
argument in the subject and what happens to it in the predicate.
For the subject, Avicenna’s clearest account is in the following text.

Text A: Qiyas 1.3, 20.14-21.12.

Also we must understand that when we say ‘every white thing’, it doesn’t
mean ‘everything that fits the description “white” permanently’. In fact the
phrase ‘everything white’ is broader than the phrase ‘everything that is perma-
nently white’. “White” includes both “white at a certain time” and “perma-
nently white”. The phrase ‘every white thing’ means ‘each single thing /21/
that fits the description “white” permanently or not permanently, and regard-
less of whether it is a subject for “white” and it fits the description “white”, or
itis “white” itself’.

This description is not the same as describing [the subject] as ‘possibly such-
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and-such’, or ‘what could legitimately be such-and-such’. When we say ‘Every
white-coloured thing’, its sense is definitely not ‘everything that could legiti-
mately be coloured white’. Rather it means ‘everything that in actuality fits
the description “white”, where besides being actual, it can be so for some time
which is indeterminate or determinate or permanent’.

This actuality is not just the kind of actual existence that material things have.
In some cases the reference to the subject doesn’t place it as something satis-
fied in material things. An example is ‘Every spherical object whose surface
consists of twenty triangular faces’. This description is not one that a thing sat-
isfies on the basis of existing [in the material world]. Rather, [a thing satisfies
it] by being thought of as actually fitting the description, on the basis that the
intellect describes it as actually satisfying [the defining condition], regardless
of whether the thing exists [in the material world] or not. And the phrase “Ev-
ery white thing” means every single thing that is described in the intellect as
actually satisfying the condition that it is white, either permanently or at some
time, regardless of which time that is. This takes care of the subject side [of the
proposition].

In short, for the sentence forms under discussion here, Avicenna treats the subject term B as
standing for ‘thing which is an actual B at some time’. In symbols the Bx of the formulations
in (29) becomes J¢Bxt, where ¢ is understood to range over times. We note also that with
his emphasis on actuality, Avicenna excludes merely possible Bs; he doesn’t ampliate to
the possible, at least in the sentence forms under discussion. But he makes the point that
mental constructs can count as actual if the intellect has actually made the construction,
even though these constructs are never objects in the world.

For the predicate side it will be best to switch to Masrigiyyiin. The translations below
should be treated with caution, because the text of Masrigiyyiin is not in a reliable state.

Text B: Masrigiyyin 65.1-11.

As a matter of usage, languages pretty much determine that the sentence ‘B is
a C’ expresses that a thing is a C sometime while it fits the description B. What
the unqualified meaning determines is called an ‘absolute’ (mutlaq) proposi-
tion. If a condition is made in it mentally which excludes the strict necessity
that we are about to mention, but does include those cases where the content
holds, not so long as the essence continues to be satisfied, but rather at some
time or under some condition and some case, [it is called] ‘temporary’ (wujidr).
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Today people don’t distinguish between the absolute proposition and the tem-
porary. When the sentence is understood to mean that [every] B is a C while
its essence continues to be satisfied, [the proposition is said to be] ‘necessary’
(darirt). When the meaning is [that it is a C] so long as it fits the descrip-
tion B, [the proposition is said to be] ‘adherent’ (/azim). ... The two [kinds of
proposition] are different. Thus there is a difference between the sentence

A thing that moves changes so long as its essence continues to
be satisfied.

(which means that the thing that fits the description ‘moving’ is changing so
long as its essence is satisfied), and the sentence

A thing which fits the description ‘moving’ changes as long as
it continues to move.

Of course there is a difference—the first [sentence] is false and the second is
true.

The word lazim has a range of meanings, among them ‘necessary’. In Text B we probably
have to treat it as a technical term. We note that the definitions that Avicenna gives for
dariri and lazim sentences make no explicit mention of anything being ‘necessary’, so
presumably Avicenna is here regarding permanence (in either of these forms) as a kind of
necessity. The world wujiidr is also a technical term, and our translation ‘temporary’ fits its
application rather than its etymology.

Before discussing further details of this passage, we move to Masrigiyyin 68.3—13.
Here Avicenna discusses the same predicate forms as above, with one new form added, but
in each case specifically for universal affirmative sentences.

Text C: Masrigiyyiin 68.3-13.
We consider the most general (a“amm) universal affirmative absolute (mutlaq)
proposition, for example when we say
Every BisaC.

This proposition means that for everything that is taken to fit the description B
in actuality, without there being any condition about the ‘fit in actuality’ being
permanent or not permanent, each such thing fits the description C in actuality,
without any further elaboration.
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Next we consider the universally quantified necessary (dariiri) proposition.
This is like when you say

Necessarily every BisaC.

meaning that for everything that fits the description B in actuality, regardless
of whether it fits the description B permanently or not permanently, each such
thing fits the description that for as long as its essence is satisfied, itisa C. An
example is when you say

Necessarily everything that moves is a body.

Next we consider the adherent (/azim) proposition. This is like when you say
Every Bisa C.

—whether or not you say ‘necessarily’—meaning that for everything that either
permanently or not permanently fits the description B, each such thing also fits
the description of being a C for as long as it continues to fit the description B.
It is not [implied] that it also fits the description of being a C for as long as its
essence continues to be satisfied.

Next we consider the congruent (muwdfiq) proposition. This is like when you
say

(30) Every BisaC.

meaning that it is a C sometime when it is a B, but without adding thatitis a C
permanently for as long as it is a B, or that it is so but not permanently [for as
long as itis a B].

The four universal affirmative forms that Avicenna here describes as dariirt, lazim, muwdfig
and mutlaq a“amm (or elsewhere mutlaq “amm) are the forms that in [9] are labelled (a-d),
(a-t), (a-m) and (a-t) respectively. Note also that Avicenna makes clear that a sentence can
have the form dariri without using the word ‘necessary’ or the curious piece of terminology
about ‘while its essence is satisfied’. The logician has to look at the sentence in context to
see what the user intended, and then find the appropriate logical form.

In fact ‘while its essence is satisfied’ is not a phrase used in any normal medieval Arabic
discourse, and clearly Avicenna intends it as a term of art. The sense is not controversial:
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if E is your individual essence, then to say that E is satisfied at time ¢ is just to say that you
exist at time ¢. This is clear from many examples that Avicenna gives. (Avicenna may have
used this circumlocution to give emphasis to a notion that he wanted to introduce into logic.
Also he may have wanted to underline the point that logic is about propositions that we can
believe or assume, and you as a physical person are not part of anything that can be believed
or assumed; if a proposition involves you, it can do so only by including an object in the
mental world that corresponds to you, and this is your individual essence. This explanation
is speculative—Avicenna doesn’t explain himself.)

A few pages later in Masrigiyyiin, Avicenna adjusts these sentence forms to the cases
(e), (i) and (0). Rather than follow these details (which are relatively routine), we move
back now to the examples of sentence forms given in Qiyas i.

Text D: Qiyas i.3, 21.14-23.7.

So we should say something about the affirmative universally quantified ab-
solute proposition, and pin down the difference between the absolute and the
necessary. We say: There are sentences that are all affirmative but behave in
different ways. We say:

God is alive.

and mean that he is permanently [alive]; he never stopped being alive and he
never will. But we say:

Every whiteness is a colour.
and
Every human is an animal.

meaning not that every single thing which is white is a colour which always
was and will be [a colour], or that every human is an animal and always was
and always will be [an animal]. Rather, we are just saying /22/ that everything
that fits the description “whiteness”, and that is [properly] said to be a white-
ness, is a colour so long as its essence continues to be satisfied. And likewise
everything [properly] said to be human [is not an animal in the sense] that it
always was and always will be an animal; but rather so long as its essence and
substance continue to be satisfied. And when we say:

Everything that moves is a body.
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we don’t mean that everything that moves is a body just so long as it continues
to move, but rather we just mean that even if it hadn’t been moving, it would be
a body for so long as its essence continued to be satisfied. There is a difference
between this and the previous case: in the previous case the phrase ‘so long as
its essence is satisfied’ and the phrase ‘so long as it remains white’ don’t de-
scribe different situations, whereas in the present case the situations described
by the phrase ‘everything that fits the description “moves” so long as its essence
continues to be satisfied’ and by the phrase ‘[everything etc.] so long as it is
moving’ are different. And when we say

Every white thing has a colour which opens out to the eye.

and we don’t mean that everything [properly] called white has a colour that
opens out to the eye as long as its essence is satisfied, but rather, as long as it
fits the description ‘white’. When a thing fits the description ‘white’ and then
ceases to be white, its essence doesn’t lapse, even though this description no
longer fits it.

When we say:

Everyone who travels from Rayy to Baghdad reaches Kerman-
shah.

(for example), we don’t mean that [he reaches Kermanshah] while [his essence]
continues to be satisfied or throughout the time while he is moving to Baghdad.
Rather [we mean] that there is some specific time at which he is described as
reaching Kermanshah. ... Also we say

Everything that watches sleeps.

with the meaning that everything that fits the description of watching is asleep
at some specific time. [When we say]

Everything that breathes in breathes out.

we mean that everything that fits the description ‘breathing in’ breathes out, not
so long as its essence continues to be satisfied, or so long as it is breathing out;
rather [we mean that] there is a time at which it fits the description ‘breathing
out’.

Two terminological remarks are in order here. First, the word ‘watches’ is to ‘is awake’ as
‘sleeps’ is to ‘is asleep’. In English this usage is now obsolete, but it is needed to represent
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the Arabic. Second, the mention of ‘substance ’ (jawhar)—the only place where Avicenna
uses this word in this context—is an acknowledgment of al-Farabi’s usage of jawhar to
mean essence. It is not a departure from Avicenna’s consistent position that logic doesn’t
make category distinctions, for example between substances and accidents. In fact animals
are substances, but whitenesses are qualities and hence accidents.

The examples in Text D correlate well with the sentence forms in Texts B and C. Every
human is a living being all the time he or she exists. Every white thing has physical prop-
erties of whiteness all the time that it’s white. Every traveller from Rayy to Baghdad is in
Kermanshah at some time while he or she is a traveller from Rayy to Baghdad. Everything
that breathes in does sometimes breathe out. Also Avicenna says here that he is explaining
‘necessary’ (dariirt), and by this he certainly means the form (a-d). But In Qiyas we have
to wait another twelve pages for him to state this as a definition of dariiri, as follows.

Text E: Qiyas i.4, 33.8-10.

Among the propositions in this group, the purely necessary (dariiri) proposi-
tions are those in which the predicate is asserted or denied for so long as the
essence of whatever fits the subject description continues to be satisfied.

There are reminders of this definition at Qiyas ii.3, 99.14; iii.1, 126,15f; iii.3, 156.12; iv.3,
202.11f, 203.6-8.

The two-dimensional sentences are certainly more complicated than the assertoric ones,
and using them to validate natural language arguments is correspondingly more hazardous.
But there seems to be no ambiguity at all in their truth conditions, except perhaps about what
happens when the subject term is empty. Chatti’s paper [5] is largely about this last question.
Here we note briefly that there are three prima facie sources of relevant evidence. One is
Avicenna’s own explicit statements about existential assumptions, if he makes any. The
second is his argument for these assumptions in the assertoric case; we can consider whether
it should carry over to the two-dimensional case. The third is his proof theory for two-
dimensional logic; does it contain moves that depend on the existential assumptions? (This
third form of evidence depends on our correctly identifying the two-dimensional sentences
within Avicenna’s proof theory.)

Taking all these sources into account, we feel confident that Avicenna meant his state-
ments about assertoric sentences with empty subject terms to carry over to two-dimensional
logic too. But there is room for further discussion. Chatti [5] rightly argues that the second
kind of evidence can be used to make a case that Avicenna should have required the subject
to be nonempty also in (e-f) and (i-f); but it seems that the rest of the evidence overrules this
reading.
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The texts above, and others along similar lines, provide the basis for the symbolisations
given for the (d) and (7) sentences in §3 above. We can add corresponding symbolisations
for the lazim and muwafiq sentences:

name sentence

(a-€)(A,B) (Vx(ArAxt —» V1(Axt — Bx7)) A AxItAxXT)
(e-0)(A,B) VYx(AtAxt —» Y1(AxT — —BxXT))

(i-0)(A, B) dx(dtAxt AVT(AxT — BXT))

(0-€)(A,B) (Ax(AtAxt AVT(AxT = =Bx7)) V VXY1T-AXT)
(a-m)(A,B) (Yx(AtAxt — dr(Axt A Bx1)) A AxdTAXT)
(e-m)(A, B) Vx(AtAxt — dr(Axt A = Bx1))

(i-m)(A, B) dx(@rAxt A At(Axt A BxT))
(o-m)(A, B) (Ax(AtAxt A AT(AxTt A =BxT)) V VXVT-AXT)

The reader may notice that some of these formulas, for example (a-£), can be simplified so
as to remove a repetition of A.

The authors claim no originality for these formalisations. Almost equivalent formalisa-
tions, for the sentence forms of types (d), (€), (m) and (¢), were given by Rescher and van
der Nat [19]] in 1974. They used a notation of their own devising, and didn’t include the
condition on empty subject terms.

A.3 (z) sentences and wide time scope

Avicenna defines several other temporal sentence forms. One that we discuss in the paper
above is where the time is taken to be a certain fixed time, for example the present. Avicenna
describes it in Masrigiyyin as follows.

Text F: Masrigiyyin 68.16—19.

Next we consider the ‘as-of-now’ (hadir) proposition. This is like when
you say

Every human is a Muslim.

at a time when it happens to be the case that there is no human unbe-
liever. It’s plausible to say that such sentences, for example

Every animal is human.

would be true if they were [uttered] at such a time. The [existence] con-
dition for this affirmative proposition is that the subject term is satisfied
[at the relevant time].

1061



W. HoDGES AND S. JOHNSTON

Avicenna has two other names for these sentences: wagqtt (Masrigiyyin 65.14) and zamant
(Masrigiyyin 72.7), both of which carry the meaning ‘at a given time’. In [9] the sentences
are called (z) after zamand.

Avicenna tends to conflate three kinds of sentence: (1) sentences ¢(now) which express
that something is the case now, (2) sentences ¢(d) which express that something is the case
at a given time 6, and (3) sentences 6¢(0) which express that for some time ¢, something is
the case at 8. For him the main difference between (2) and (3) is how determinate the time ¢
is in the speaker’s mind; this is not the only place where he allows linguistic considerations
to mix with logical ones. As noted in the paper, he does discuss the logical roles of sentences
of these three kinds, but this part of his work has yet to be analysed with modern tools. Text
G below is a sample.

Text G: Qiyas 134.11-136.6.

An example is that when we say, at some time when there is no white colour
and no red colour or colour intermediate [between white and black] (assuming
this is possible):

Every colour is black.

[In this meaning] this proposition would be true at that time, but not a necessary
(darir?) truth. Neither would it be meant that every individual that fits the
description ‘colour’ has ‘black colour’ true but not necessarily true of it, so that
that individual can continue to have its essence satisfied, and be a colour, but
cease to be [the colour] black. That would be as if we had judged that

Each thing fitting the description ‘colour’ at that time is not
black permanently and for as long as its essence continues to
be satisfied—far from it!

So in fact the non-necessary truth of this sentence of ours just has to do with
truth [on] the quantifier, and not with whether the non-necessary predication
applies to a single individual or to all of them.

Likewise in the negative proposition the assertion is not about whether the sub-
ject term is satisfied; rather it is about the satisfaction of the truth of the univer-
sally quantified denial. Even if the subject term in an affirmative proposition
has to be satisfied if the quantifier is to be true, the position with the negative
proposition has to be as we said. In fact if at some particular time no colour is
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white or intermediate [between black and white], and all colours are black and
there is no [non-black] colour at all, it is true that

No [non-black] colour is the colour white, at a certain time.

namely at that time. This is because an unsatisfied [subject] doesn’t satisfy the
description ‘white colour’ or have any affirmative property. When the affirma-
tion is not true the [corresponding] denial must be true. If we take care about
what we say, and pay regard to the satisfaction of truth on the quantifier, we
can apply [the rule of] conversion to this proposition.

If [the Peripatetic logicians] were to follow the path I have presented, they
would discover for themselves the great number of different kinds of proposi-
tion ... Thus when we have

Every eclipse of the moon is a black colour.
and
No eclipse of the moon at time ¢ is a black colour.
because there isn’t an eclipse of the moon [at time 7], then
No eclipse of the moon at time ¢ is an eclipse [of the moon].

One gets in the same way that no person is a person, and likewise with all sorts
of things. ... One doesn’t consider whether the subject term of the negative
proposition is satisfied. In future we will take this view for granted.

We have been lengthy and repetitious about this topic, so as to give the student
a feeling for what the topic is about, and for the many precautions that need to
be taken into account when this approach is adopted . ..

References to ‘the quantifier’ in this and related passages are to the quantifier over objects,
not the quantification over times. Avicenna’s notion is that when the time quantification is
taken with wide scope, it is semantically attached to the object quantifier; see for example
[12]]. Movahed [18] Ch. 3 on wide scope modalities in Avicenna is also relevant.

Although Avicenna consistently takes the position that his object quantifiers should be
read as quantifying over actuals (as for example in Text A above), Text G seems to show
him quantifying over possible times. This fits with Movahed’s observation ([18] p. 14) that
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at least some of Avicenna’s quantifications over ‘times’ should be read as quantifications
over situations or circumstances.

The next text illustrates Avicenna’s view that the temporal qualifications in the two-
dimensional sentence forms should be seen as kinds of modality, regardless of how they
may be expressed in natural Arabic.

Text H: Masrigiyyin 71.3f.

Being dariiri, being lazim and being wagqti are each a modality, but /123/ some-
times in some such sentences there is no [explicit] modal [expression] to signify
the modality.

A.4 The alethic modal sentences

Avicenna’s chief alethic modal sentences are, on his own account in “Ibdra, the same as
the assertoric sentences but with an alethic modality attached either to the copula or to the
quantifier. There is evidence that the sentences where he counts the modality as attached
to the copula are those where the scope of the modality includes just the predicate, and the
negation if there is one; attachment to the quantifier means that the modality has wide scope
taking in the whole sentence. (See Movahed [18] Chapter 2.) This distinction matches the
distinction between (d) and (¢) on the one hand, and wide-scope time quantification as in
the previous subsection on the other hand.

In Qiyas Avicenna tends to give modal sentences with the modality expressed by a
phrase ‘with necessity’ or ‘with possibility’ or ‘with contingency’, and this phrase can ap-
pear at the beginning or the end or in the middle of the sentence. There seems to be no
correlation between the place of the phrase and the distinction between modality on the
copula and modality on the quantifier.

The first author’s present impression is that for any modal proposition there are three
forms to be considered in Avicenna’s view:

o The vernacular form is how an Arabic speaker would naturally express the proposi-
tion.

e The semantic form is a structure describing how the meanings of the parts of the
proposition relate to each other.

e The logical form is the form that Avicenna uses to represent the proposition in dis-
cussions of formal logic.
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Probably the copula/quantifier distinction refers to the semantic form, and the phrases ‘with
necessity’ etc. are part of the logical form. Avicenna seems happy to accept a wide variety
of vernacular forms.

In any event the alethic modal logic operates with sentence forms that come from asser-
toric forms (a), (e) and (i) and (o) by adding necessity, possibility or contingency, and we
can label the resulting forms

31D (a-nec), (e-nec), (a-pos) etc., etc.

Avicenna defines ‘possibly ¢’ as ‘not necessarily not ¢’; he is emphatic that ‘possibly’
should be defined in terms of ‘necessarily’ and not the other way round (cf. Qiyas 170.7
and the surrounding discussion). This definition allows us to calculate that the contradic-
tory negation of (a-nec)(A, B) is (0-pos)(A, B), and so on. In this paper we will ignore
contingency, which is the modal counterpart of the 2D wujiidr.

But none of this tells us what Avicenna takes ‘necessary’ and ‘possible’ to mean, let
alone what the modal sentence forms containing them mean. For these meanings we have
to look at his various comments on the notions of necessity and possibility. (Bick [3]] is
an introduction.) Be aware that not everything that Avicenna says about these notions is
relevant to his alethic modal logic. For example in several places he discusses a notion of
possibility that refers to the future; he takes this notion from the Peripatetic tradition, but
the notion doesn’t appear in any of his formal logic.

There is no simple array of texts that will show what Avicenna intended by his alethic
modalities. But one text worth noting is the following, in which Avicenna distinguishes
between permanence and necessity.

Text I: Qivas 48.9-18.

We come to the existentially quantified affirmative case, as in the sentence
(32) Some Bis an A.

taken as general absolute. In this case the facts are obscure. Are

(33) [No Bis an A,] necessarily.

and

(34) [No Bis an A,] contingently.
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both opposed to (32))? It’s plausible that it is not correct to say that

Something which is contingent for each individual could fail to

(35) be true of any of them ever.

If (39) is not correct, then a thing that is contingent will become true of some
individuals and not of others; and then the truth of (34) is a special case of
the truth of (32), so the two are not contradictory negations of each other. It
remains the case that (33)) is opposed to (32). And even if (35) is correct, it is
still the case that

(36) [No Bis an A,] permanently.

is [contradictory] opposite of (32).

But being permanent is not the same as being necessary. [A thing is] necessarily
what it is by its nature, and this requires that if it is false of an individual then
it is permanently false of that individual; while [a thing is] permanent either by
its nature or because it just happens to be. It is not for the logician as logician
to know the truth about this.

Then let us take it that the [contradictory] opposite of the negative [general
absolute, i.e.

(37) Some B is not an A.
taken as general absolute], is the permanent, [i.e.
(38) Every B is permanently an A.]

This has the effect that if the only things that are permanent are those that are
necessary, then that’s how it is; but if there are things that are permanent but
not necessary, then the [permanent which is] contingent would come with the
contradictory negation [of the general absolute].

No doubt readers will want to make up their own minds about this passage; but let us throw
in comments on two points.

The first point is Avicenna’s statement about what logicians need to know. Avicenna
says that being permanent is not the same as being (alethic) necessary, but he adds that
it is not for logicians to know the truth about this. We can straight away point out two
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situations in which it certainly would be for logicians to know about the difference between
permanence and alethic necessity; and so prima facie Avicenna is ruling out these two
situations.

The first situation is that the logical laws of permanence are different from those of
alethic necessity. In this case certainly the logician would need to know the difference.
Also because of the relations between general absolute and permanent on the one hand, and
those between possible and necessary on the other, the logician would need to know any
place where the laws of the dt fragment of two-dimensional logic fail to correspond to the
laws of the (nec)-(pos) part of alethic modal logic. It should follow that Avicenna is telling
us there is no such failure of correspondence: the laws map across to each other exactly.

This is too much to extract safely from just a pair of lines of Avicenna’s text. But
it leads immediately to the question whether Avicenna does ever point to any failure of
correspondence between these two sets of laws. And the answer seems to be that he never
does. This is a strong fact. We can say more: sometimes he justifies an alethic syllogism
simply by showing that the corresponding 2D syllogism under translation (17) holds.

Text J: Najat 73.9-12.

As for mixing contingency and Necessity [premises] in the first figure ... Letus
explain this in another way that is easier to understand. We say that if every B is
A perpetually by Necessity, then that thing of which B is said is perpetually A.
Soif Bis said of J, it will always be A, not [just] for as long as it is described as
B. For the Necessity that we intend in these figures is other than of this [type];
and we have already explained this. Rather, [the qualifying condition is] ‘as
long as the essence of J, described as B, is satisfied’. So if a certain J comes to
be B, it was already A, even before its coming to be B. And so [it will continue
to be] after its coming to be [B] and after [the latter’s] passing away from it.
(Trans. Ahmed [1]] p. 57f, with slight adjustments.)

Here Avicenna justifies the inference

Every C is contingently a B; every B is necessarily an A; therefore every

(39) C is necessarily an A.

by inferring from ‘contingently’ to ‘possibly’, and then translating across into 2D logic by
(17). This move makes sense only if we know, or postulate, that laws of 2D logic carry over
to laws of alethic modal logic under this translation.

The second situation is that the logician needs to handle an argument which involves
both an alethic proposition and a 2D proposition, and the validity of the argument rests
on some non-obvious relationship between the two kinds of proposition. To see whether
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Avicenna does avoid situations of this kind, we first need to be able to allocate his dariirt
sentences between (d) and (nec). This leads directly to the problem of his kabt, which we
address in the next section below.

The second point for comment is Avicenna’s statement that the necessary properties of a
thing are those which it has ‘by its nature’—which in Avicenna’s terminology is equivalent
to ‘by its essence’. Does this mean that Avicenna’s alethic modal logic should be taken to
be essentialist in the sense that its laws are intended to express properties of essences?

There are plenty of places where Avicenna claims that some statement is a necessary
truth because of some feature of the essence of the subject term. But he distinguishes
between the properties that a thing has ‘by its nature’ and those properties that are parts of
its nature. For example fire burns by its nature or essence, but burning is not part of the
essence of fire; it is deducible from the essence by a logical deduction using suitable middle
terms (Burhan 83.5-8). Likewise ‘having its internal angles add up to two right angles’ is
not a part of the essence of triangle, but it is deducible from the essence of triangle and
hence is an ‘essential accident’ of triangle.

So it may very well be the case that for the reading of ‘necessary’ that he has in mind
in Text I, Avicenna believes that every necessary property of a thing is ‘by its nature’ in
the sense that it is logically deducible from the essence of the thing. But this belief puts no
constraints on the laws of logic. In fact we know of no place, in all his treatments of modal
logic, where Avicenna justifies a rule of inference by reference to properties of essences.
(This puts him in a totally different logical world from the viewpoint of al-Farabi’s Burhan.)

In [24] Street offers a different kind of reason for thinking that Avicenna’s modal logic
is essentialist. He argues that since Avicenna’s divided modal logic can be translated into
sentences of monadic predicate S5 in such a way that the inferences claimed valid by Avi-
cenna are those valid in S5, it follows that the divided modal logic is essentialist. This is an
incomprehensible argument, since there are plenty of interpretations of O and < that exactly
validate monadic predicate S5 but have nothing to do with properties of essences. In fact
permanence for O, and its dual for ¢, are one such interpretation. We mention this as an
example of the second difficulty that we raise with Claim Two of §4 of our paper, namely
that ‘there can be two different semantics that express different intentions but happen to give
the same verdicts on which syllogisms are valid’.

A.5 The kabt

A reader who starts at the beginning of Qiyas and proceeds section by section will first
meet the two-dimensional sentences, then a discussion of their contradictory negations,
then a discussion of their conversions, and finally a discussion of the syllogistic moods that
consist of them. This is the ‘two-dimensional textbook’ referred to in §3 above. But already
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in the discussion of contradictory negations the reader will face a disturbing fact: there are
two quite different kinds of sentence form that Avicenna describes as dariiri. The first is the
(d) two-dimensional sentences, and the second is the alethic modal sentences of the form
(nec).

A century or so after Avicenna, Abl al-Barakat in his treatment of logic summed up
the situation neatly with two short phrases: there is necessity in the sense of permanence
(dawam) and there is necessity in the sense of inevitability (@ budda). Thus (d) is per-
manence and (nec) is inevitability. Fakr al-Din Razi picked up Barakat’s distinction and
coined a slogan. Logicians in the past, he said (and he clearly had Avicenna in mind),
stumbled around in the dark because of their failure to distinguish between permanence and
inevitability. Following Razi, we can speak of Avicenna’s ‘stumbling’ (kabt).

Razi’s comments contain a strong suggestion that Avicenna himself didn’t always know
whether he was talking about permanence or inevitability. Is this fair?

Go back to our imagined reader of Qiyas. She will learn in Qiyas i that dariiri means
(d). Then (nec) will come briefly into the picture, but only in connection with possibiiity.
For almost all of Qiyas i—ii she will have no reason not to take Ibn Sina at his word and read
darirt as (d).

In Qiyas, and in fact in all his major treatments of modal logic except that in the late
Pointers, Avicenna follows Aristotle’s arrangement of the material, but with absolute in
place of assertoric. This produces the following pattern:

1. Conversion of absolutes.

2. Conversion of modals.

3. Moods with both premises absolute.

4. Moods with both premises necessary.

5. First figure moods, one premise absolute and one necessary.

6. Second figure moods, one premise absolute and one necessary.

7. Third figure moods, one premise absolute and one necessary.

8.  First figure moods, both premises possible.

9. First figure moods with one premise possible and one absolute.
10. First figure moods with one premise possible and one necessary.
11. Second figure moods with both premises possible.

12.  Second figure moods with one premise possible and one absolute.
13.  Second figure moods with one premise possible and one necessary.
14. Third figure moods with both premises possible.

15. Third figure moods with one premise possible and one absolute.
16. Third figure moods with one premise possible and one necessary.

Apart from a bumpy patch at 2, our reader will take all of 1-7 to be about 2D logic. This is
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the two-dimensional textbook. In Qiyas it consists of books 1, ii and the first three sections
of iii, a clean initial segment of the whole book.

The problems of kabt are concentrated in the first sections of Qiyas iv. As we note in the
paper, Avicenna presents the two-dimensional logic as an axiomatic system. For those infer-
ences that are derived from the axioms, similar derivations are available for the correspond-
ing alethic inferences; Avicenna moves through most of these quickly. The problems arise
when Avicenna has to justify the alethic inferences that correspond to the two-dimensional
axioms—in particular the conversions and the first-figure syllogisms. And these are exactly
the places where something seems to go badly wrong, as if someone had switched off the
light.

The referee encouraged us to quote texts to illustrate this darkness. Two features of the
darkness are hard to illustrate with single texts. One is the general sense of aimlessness.
In his calculations in the two-dimensional textbook, Avicenna was usually precise, efficient
and methodical. But as far as we know, nobody has detected a cogent overall logical strategy
in Qiyas iv. The second feature is that in Qiyas iv Avicenna seems to have given no genuine
solutions of genuine logical problems, and made no original suggestions that he or anybody
else could pursue. Seven and a half for effort but zero for results. If anybody can prove us
wrong about this, we would be hugely pleased to hear it.

Turning to more specific faults that we can illustrate, we begin with an example of a
piece of reasoning that is hardly more than word-play. Avicenna considers the mood

Every C is possibly a B.
(40) Every B is possibly an A.
Therefore every C is possibly an A.

His claim about this mood is not that it is valid, but that it is ‘perfect’, i.e. so obviously and
immediately valid that no proof is needed for it. He argues for this claim as follows.

Text K: Qiyas iv.1, 183.1-4.

One should learn that it often happens that something is clear for people to
see, but people want to force the explanation in a particular direction and this
compels them to deviate from what is clear. Just as it is clear that things that
are true of what is true of something are true of that thing, so likewise it is
clear that a thing that is possibly possible is possible. There is no clear way of
making this obvious fact more obvious than it already is.

The analogy with ‘true’ doesn’t work—‘truly ¢’ implies ¢ but ‘possibly ¢’ doesn’t imply ¢.
One might guess that there is some kind of S5 argument here involving the inference
OO + O¢p. Movahed [18] p. 49 follows up this lead and shows that the most obvious way
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of applying the S5 rule needs a further rule, namely

(= ¥) F (09 = OY),

and even with this rule his proof runs to nine lines. This is no help at all for showing that
the mood is perfect.

Next we give an example of an argument that Avicenna himself has rightly condemned
elsewhere. In Prior Analytics 1.15 Aristotle gives an argument by reductio ad absurdum,
where he can be read as claiming that the contradiction is caused by just one of the premises.
Avicenna in his treatment of reductio ad absurdum in Qiyas mentions an argument that
looks very much like Philoponus’s version of this argument, and he expresses the view
that looking for one premise that causes the contradiction ‘gives us no new information’
(cf. [14]). It’s a little surprising to find Avicenna reporting this same argument at Qiyas
192.9-11 without any comment on this deficiency; but at least he does make it clear that
he is reporting Aristotle’s argument, not giving one of his own. There is less excuse for the
following text, where he claims to be offering his own argument.

Text L: Qiyas 202.3-8.

I say: Both the affirmative and the negative moods whose major premises are
necessity propositions entail a necessity conclusion. An example of the affir-
mative case is:

Every C is a B with possibility;
and (%) every B is an A with necessity;
so every C is an A with necessity.

Otherwise it is possible for some C not to be an A. And so let us posit that
(*%) Some C is not an A.

is true. Then this [and the major premise ()] form a productive syllogism in

the second figure, yielding the conclusion that possibly some C is not a B; or

rather,

It is not possible that every C is a [B].

This is an absurdity. It follows not from the premise [(%)] that was counted as
true, but from the one [(%x%)] that was considered dubious.
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The red herring about a single premise causing the absurdity is in the final sentence.

It is of course very bad practice in the history of ideas to dismiss a text as erroneous
when there is any chance that we might have misunderstood it. But part of our claim in
this paper is that there are better explanations of what Avicenna is doing in Qiyas iv, that
absolve him from the charge of accepting fallacious or irrelevant logical arguments. We can
point to three other things that he is doing instead.

The first is that he justifies alethic arguments by translating them through (17) into sound
arguments of 2D logic. Text J was an instance of this in Najat. It seems very likely that
Text L contains another instance, at the point where Avicenna cites Baroco (his ‘productive
syllogism in the second figure’) with necessary major premise. If ‘necessary’ is read here as
(nec), then this is a mood that he hasn’t yet justified; moreover he would need to check that
the justification of it doesn’t involve the very mood that he is proving, or another first-figure
mood proved by the same means. So probably he intends ‘necessary’ as (d) here, and he is
relying on the fact that he has already proved Baroco with () minor premise and (d) major
premise.

It transpires that Street in [23] noticed this translation strategy but misinterpreted what
he saw. On his page 141 he remarks that some of Avicenna‘s proofs ‘contain a move in
which a possible proposition is supposed to be an absolute proposition’. In other words,
a (pos) proposition is translated into the corresponding (¢) proposition. But first, Street
manoeuvres from ‘absolute’ to ‘assertoric’ and hence to ‘actual’; this is an irrelevance,
based on a conjectured analogy with a move made by Alexander of Aphrodisias. And
second, Street fails to notice that when the (pos) premise is translated to a () premise, a
(nec) premise is simultaneously translated to a (d) premise. As a result, where he should be
noticing a translation from an argument in alethic modal logic to an argument in 2D logic,
he finds instead a dubious logical move which he describes as ‘supposing a possible actual’.

The translation is not a move in a logical argument. We discussed at the end of §4 two
ways in which it can be justified, noting that the first of these justifications fits Avicenna’s
own general scheme, and the second is one that is an accepted practice of metalogic today.

The second thing that Avicenna is doing in Qiyas iv is to discuss axioms in a way that
he hopes will generate an intuition of the truth of the axioms. This is different from deriving
the axioms by logical procedures. It will be discussed more fully in [8].

There is a residue of unhelpful quotations of arguments from Aristotle. This is the third
thing that Avicenna does in Qiyds iv, and in this case we can quote his own justification for
doing it. Text M is taken from the Prologue of Masrigiyyin; Avicenna is describing some
defects of his writings before Masrigiyyiin, and these writings include Qiyas.
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Text M: Masrigiyyin 3.14—4.1.

We perfected what [the Peripatetics] meant to say but fell short of doing, never
reaching their aim in it; and we pretended not to see what they were mistaken
about, devising reasons for it and pretexts, while we were conscious of its real
nature and aware of its defect. If ever we spoke out openly our disagreement
with them, then it concerned matters which it was impossible to tolerate; the
greater part [of these matters], however, we concealed with the veils of feigned
neglect: ... in many matters with whose difficulty we were fully acquainted,
we followed a course of accommodation [with the Peripatetics] rather than one
of disputation ... (trans. Gutas [6] p. 38f)

This goes a long way towards accounting for features of Text L and similar passages.
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Abstract

It is shown that no intermediate predicate logic that is sound and complete
with respect to a class of frames, admits a strict alternative Skolemization
method. In particular, this holds for intuitionistic predicate logic and several
other well-known intermediate predicate logics. The result is proved by
showing that the class of formulas without strong quantifiers as well as the
class of formulas without weak quantifiers is sound and complete with respect
to the class of constant domain Kripke models.

Keywords: Skolemization, Herbrand’s Theorem, Intermediate Logics, Kripke Models.
MSC: 03B10, 03B55, 03F03.

1 Introduction

The insight that certain quantifier combinations can be reduced in complexity by
introducing fresh function symbols, goes back to Thoralf Skolem’s work at the be-
ginning of the twentieth century [I8]. This insight has been used in the meta-
mathematical study of logics, but it also has practical applications, since it provides,
in combination with Herbrand’s Theorem, a connection between propositional and
predicate logic that is one of the key ingredients in automated theorem proving and
logic programming. Because of the elegance and usefulness of the Skolemization
method, one might hope to be able to use it also in nonclassical settings, such as in-
termediate predicate logics. Grigori Mints was one of the first to study Skolemization
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and Herbrand’s Theorem in nonclassical logic, and from the references it can be seen
that it remained a point of interest for him throughout his life [13| 14} 15} 16, [17].

As it turns out, to many nonclassical logics, including intuitionistic predicate
logic, the Skolemization method does not apply. This gave rise to the search for
alternative methods, that, in combination with Herbrand’s Theorem, result in a
connection between propositional and predicate intermediate logics, similar to the
one for classical logic. In the case of intuitionistic logic, a partial solution that only
applies to the fragment without universal quantifiers has been obtained, by extending
the logic with an existence predicate [2, 4], and in [I2] it has been shown that
for intermediate logics with the finite model property this existence Skolemization
method applies to the full logic. In [3] an alternative method for full intuitionistic
predicate logic IQC has been developed, but at the cost of extending the language
considerably. There have appeared various results on the Skolemization method
and Herbrand’s Theorem in substructural logics, and in some cases, when the latter
does not hold, an alternative approzimate Herbrand Theorem has been obtained [8],
11,16, [7, 91 10]. For intermediate logics with the finite model property, an alternative
Skolemization method called parallel Skolemization has been developed [5], and in
[9] a similar method has been developed for substructural logics.

In this paper we take the opposite approach and try to establish, given an in-
termediate logic, what alternative Skolemization methods cannot exist for it. For
this, we first need to define what an alternative Skolemization method is, as will be
done in Section [b| where the notion of a strict method will be defined as well. In
Section [6] it will be shown that no intermediate logic that is sound and complete
with respect to a class of frames, admits a strict alternative Skolemization method.
In particular, this holds for 1QC, QD,, QKC, QLC, and all tabular logics.

As the reader will see, none of the theorems in this short paper are complex.
In fact, the proof of the main result is surprisingly simple. Nevertheless, what is
obtained improves our understanding of Skolemization in nonclassical logics to such
an extend that I think it worthwhile to publish it separately in this note.

2 Preliminaries

We consider intermediate predicate logics, which are predicate logics between in-
tuitionistic predicate logic IQC and classical predicate logic CQC. The language
L consists of infinitely many variables, which are denoted by x,y, z, x;, y;, ..., in-
finitely many predicate symbols, function symbols (of every arity infinitely many),
and the connectives A, V,—, the truth constants T, L, the quantifiers V, 3, and —¢p
is defined as ¢ — L. Constants are included in the language and treated as nullary
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function symbols. Terms and formulas are defined as usual. We use Z as an abbrevi-
ation of x1, ..., x,, where the n will always be clear from the context. For example,
Va13y1VeoJyap(Z, y) is short for Vi Iy VaoIyap(z1, 22, y1,y2). Given a logic L,
denotes valitidy in L.

Important in this paper is the distinction between strong and weak quantifiers,
where the former are exactly those quantifier occurrences that become universal un-
der classical prenexification: A quantifier occurrence in ¢ is strong if it is a positive
occurrence of a universal quantifier or a negative occurrence of an existential quan-
tifier, and it is called weak otherwise. Let F,s and Fy,, denote the set of formulas
without strong and weak quantifiers, respectively. Identifying a logic with its set of
theorems, the strong quantifier free fragment of a logic consists of those theorems of
the logic that do not contain strong quantifiers, and likewise for weak quantifiers.

3 Kripke models

Kripke models are defined as in Section 5.11 of [19], although we use slightly differ-
ent notation. First, we define, given a set D, the notion of an interpretation I in
D, which is such that for every n-ary relation symbol R and every n-ary function
symbol f in the language, I(R) C D™ and I(f) is a function from D" to D. Inter-
pretation I in D is extended to all terms by letting it be the identity on variables,
and by inductively defining for an n-ary function symbol f and terms t1,...,¢,:
I(f(t1,...,tn) = I(f)(I(t1),...,(tn)). Given a term t(x1,...,zy) and a sequence
dy,...,dy, of elements in D, we denote by I(t)(di,...,dy) the result of replacing
z; in I(t) by d;. Note that I(t)(di,...,dn) € D. Given a set D, let £(D) be the
language to which the elements of D are added as constants.
A Kripke model is defined to be a tuple (K, <,D,Z,I), where

o K is a set and < a partial order on it with a least element, the root;

o

D ={Dy | k € K} is a collection of sets;

o

Z ={I; | k € K}, where I} is an interpretation in Dy;
o I is a relation between elements of K and atomic formulas in £(Dy).

Moreover, such a Kripke model must satisfy the following persistency requirements
for any relation symbol R and any function symbol f in the language, where the
graph of an n-ary function f : D™ — D is defined as {(¢,d) € D"*! | f(€) = d} and
denoted by graph(f):

o k <[ implies Dy C Dy;
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o k <l implies Ix(R) C I;(R);
o k < [ implies graph(Ix(f)) C graph(Z;(f));

o for any n-ary predicate o, any d = dy,...,d,, in D, and terms t1(z),...,tn ()
which free variables are among = = x1, ..., zm: if kI p(I(t1)(d), ..., I(t,)(d))
and k 5 [, then [ IF o(I(t1)(d), ..., I(ty)(d)).

The forcing relation IF is extended to all formulas in the usual way.

If no confusion is possible, the model (K, <, D, Z, IF) is denoted by K. The model
has constant domains if all elements of D are equal. Note that the Kripke models are
in general not required to have constant domains. Given a class of Kripke models
K, let g denote the set of those models in K that have constant domains.

4 Skolemization

The most popular consequence of the Skolemization method is the statement that
in classical predicate logic CQC, a prenex formula

V13 ... Ve, Iyne(Z, y1, ..., Un)

is satisfiable if and only if its Skolemization

Vo ... xne(Z, fi(z1), fa(zr, 22), .. o, folz1, ... )

is satisfiable, where f; is a function symbol of arity ¢ that does not occur in ¢. This
is equivalent to the statement that for such function symbols f;:

Feqe 3T1Vyr - . 3T Vyne(Z, v, - - - Yn)
=

Feqe 31 .. xpp(Z, fi(z1), fo(zr, @2), ..o fu(Z1, ..o, @0)).

This formulation in terms of derivability rather than satisfiability is the one used in
this paper.

Less well-known is the fact that Skolemization also applies to infix formulas,
formulas that are not necessarily in prenex normal form. To state this result one
needs to distinguish strong from weak quantifiers, defined in Section [2]

The Skolemization, @°, of a formula ¢ is the result of replacing every strong quan-
tifier occurrence Qx(x,y) by ¥(f(y),y), where f is a fresh function symbol and the
variables y are the variables of the weak quantifiers in the scope of which Qzv(z, )
occurs. In formal terms: The Skolemization, ©®, of a formula ¢ is such that ¢* does
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not contain strong quantifiers and there exist formulas ¢ = ¢1,...,p, = ¢° such
that every ¢;y1 is the result of replacing the leftmost strong quantifier occurrence
QxY(x,y) in ¢; by ¥(fi(y),y), where the fi,..., fn—1 are distinct fresh function
symbols that do not occur in ¢ and g are the variables of the weak quantifiers in
the scope of which Qzv(z,y) occurs.

The following is an example of Skolemization.

(VuTvp(u, v) — YaIyVzy(z,y))” = Yue(u, fi1(w) = Iy (f2, ¥, f3(y))-

Note that f; is a constant, as the corresponding quantifier Vz is not in the scope of
any weak quantifiers.
Classical logic admits Skolemization:

'_(_‘QC Y = l_CQC QDS.

Note that the result for prenex formulas given above is a special case of this theorem.

Interestingly, many of the standard nonclassical logics do not admit Skolemiza-
tion. For example, in IQC and the predicate versions of LC and KCE| there are various
counterexamples, such as the following formulas, in which ¢ ranges over predicates,
arjléli which are not derivable in the logics, though their Skolemization (at the right)
is

DNS Vz——p(x) — -—Vap(z) Ve——p(z) = =—(c)
SMP  ——3zp(z) — Jz——¢(x) —=p(c) = Fz——p(r)

CD  Va(p(z) V) = Vap(r) VY Va(e(z) Vi) — o(c) VY
As mentioned above, in this paper we are not concerned with developing alternative
methods but rather with proving that certain alternatives cannot obtain for certain
logics. The question then is what one requires of such an alternative method, and the
answer to that question clearly depends on the application one has in mind. Starting
point in this paper is the idea that an alternative method (-)® should produce a
formula without strong quantifiers and that a logic L admits this method if

FLe < B (1)

In this way, the alternative method provides a connection between the propositional
fragment of L and L itself, at least in case the logic admits some form of a Herbrand

!By this we mean the predicate logics QLC and QAJ from [IT], axiomatized by V:E(((,o(:v) —

(@) V (Y(T) — go(i))) and Vz (ﬂ@(a_c) Y —|—|<p(a_c)), respectively.
2These principles can be found in [11]: DNS is shown to be equivalent, over IQC, to the principle
KF, which is =—=Vz(¢(x) V —p(z)); the strong Markov principle SMP appears under the name Ma.
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Theorem, by which we mean a translation (-)” such that ¢" € Fp,, and for all
@ € Fust
FL Y = Fo (ph.

Therefore, requirement seems a reasonable one. However, if no further require-
ments are made, then the notion trivializes in the sense that every logic with T and
1 admits at least one alternative Skolemization method:

a_ T if
L BT

This is the reason that alternative methods are required to be computable as well.

We show in this paper that under the mild condition of strictness, to be defined
in Section 5, there is no intermediate logic except CQC that is sound and complete
with respect to a class of frames and that admits a strict, alternative Skolemization
method. Thus implying that the logic IQC, the predicate versions of the Gabbay-
deJongh logics, the predicate version of DeMorgan logic and Gédel-Dummett logic,
as given in [11], and all tabular logics, which are the logics of a single frame, do not
admit any strict, alternative Skolemization method.

5 Alternative Skolemization methods

An alternative Skolemization method is a computable total translation (-)* from for-
mulas to formulas such that for all formulas ¢, ¢® does not contain strong quantifiers.
A logic L admits the alternative Skolemization method if

Fo o Foe® (2)
The method is strict if for every Kripke model K of L and all formulas ¢:

KIf ¢ = KIf o. (3)

Clearly, standard Skolemization is an alternative Skolemization method, and
CQC admits that method since ¢ — ¢*® holds in CQC. An example of a different
alternative Skolemization method is the one where occurrences of strong quantifiers
Qxy(z,y) are replaced by ¥(f(y)) V ¥ (g(y)) for fresh distinct f and g. Note that
this method, a special case of the parallel Skolemization method introduced in [5], is
strict, as is parallel Skolemization. On the other hand, the existence Skolemization
method from [2, 4] is not strict.

Note that the form of Skolemization that we consider here does not take into
account the identity axioms for Skolem functions as is usually done in the setting
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of model theory. This strengthens our results in the sense that if the problematic
direction from right to left in fails to hold, it does so too if we allow the identity
axioms for Skolem functions on the right.

The requirement of computability alone does not suffice to prove that intuition-
istic logic does not admit alternative Skolemization methods, as the following trans-
lation satisfies (2): ¢® = (1 — 12), where 11 consists of a conjunction of defining
axioms for suitable primitive recursive functions that imply 9, which is a coded
statement that ¢ is provable in IQC, exactly whenever ¢ is provable in IQC. Since
11 and 9 can be defined in such a way that the first is a universal and the second
an existential formula, the translation thus defined is an alternative Skolemization
method. It is, however, not strict.

6 The strong and the weak quantifier fragments

Given a Kripke model K (recalling that they are assumed to be rooted), K+ denotes
the Kripke model that is the result of replacing every domain in K by the domain at
the root of K and KT denotes the Kripke model that is the result of replacing every
domain in K by the union of all domains in K. For predicates P(Z) and nodes k,
we put K+, k I- P(d) precisely if d consists of elements in D and K,k I- P(d), and
we put KT,k I- P(d) precisely if d consists of elements in D, and K, k I+ P(d).

Lemma 6.1. Let K be a rooted Kripke model, which root has domain D. Then
the following holds for all k£ in K. Recall that d is short for dy,...,d,, and d € D
means that d; € D for all 7+ < n.

1. For all formulas ¢(Z) € Fpuw, for all d € D: K, kIF o(d) = K% kIF o(d).

2. For all formulas ¢(z) € Fpy, for all d € Dy: K, kI o(d) = K, kI o(d).

(7)

()
3. For all formulas p(Z) € Fys, for all d € Dy: K, k- ¢(d) = KT k- o(d).

(7)

4. For all formulas () € Fys, for all d € D: K, kI o(d) = K* kI o(d).
Proof. The four properties are proved simultaneously, by formula induction. For
atomic formulas ¢(Z) the lemma follows by definition. The case where ¢ is a con-
junction or disjunction follows immediately from the induction hypothesis.

Suppose ¢(7) = ¢1(T) = pa(T). For 1., assume ¢ € Fpyy and K, k IF ©(d) for
some d € D, and consider [ = k such that K+ 1 IF ¢1(d). Because ¢; does not
contain strong quantifiers, it follows from 4. that K,1 I ¢(d). Hence K, IF po(d),
and thus K+, 11 @o(d) by 1. and the fact that @ does not contain weak quantifiers.

1081



R. IEMHOFF

For 2., assume ¢ € F,,, and K, k Iff gp(ci) for some d € Dy, and consider [ = k such
that K, - ¢1(d) and K, I}t o(d). Because ¢; does not contain strong quantifiers,
it follows from 3. that KT, 1IF ¢1(d). Because @y does not contain weak quantifiers,
KT, 1} po(d) follows from 2. Thus KT,k Iff ¢1(d) — @2(d). The proofs of 3. and 4.
are analogous.

Suppose p(y) = Vap(x,y). For 1., assume ¢ € Fpyy and K,k IF Vay(z, €) for
some € € D and consider [ »= k and d € D. By the induction hypothesis and the
fact that ¢ does not contain weak quantifiers and D is the domain at the root of K,
it follows that K*,1 IF ¢(d,&). Hence K¥ k IF Va(x,€). For 2., assume ¢ € Fry
and K,k If Yxi(z,e) for some e € Dy and consider [ = k and d € D; such that
K,l If ¢¥(d,e). By the induction hypothesis and the fact that 1) does not contain
weak quantifiers, it follows that KT,1 1) ¢(d,€). Hence KT, k | Vzi)(x,€). Cases 3.
and 4. do not apply, as ¢ contains a strong quantifier.

Suppose ¢ = Jxy(x). Cases 1. and 2. do not apply, as ¢ contains a weak
quantifier. For 3., assume ¢ € F,s and K,k | Jzip(x,€) for some e € Dy and
consider d € Dy, such that K,k IF 1(d). By the induction hypothesis and the fact
that 1 does not contain strong quantifiers, it follows that KT,k IF ¢(d). Hence
KT, k|- 3zip(x,€). For 4., assume o € Fps and K,k Iff Jx1p(x,€) for some & € D.
Thus for all d € D, K,k Iff ¢(d,€). Since 1 does not contain strong quantifiers the
induction hypothesis gives K+, k Iff ¢(d,€) for all d € D. Hence K+, k Iff Iwip(x,e).

O

Theorem 6.2. Let L be a logic that is sound and complete with respect to a class
of Kripke models X which is closed under | and 1, then the strong quantifier free
fragment of L is sound and complete with respect to K.q. And so is the weak
quantifier free fragment of L.

Proof. For the first case, suppose that ¢ is a formula without strong quantifiers that
is not derivable. Thus there is a model K in C that refutes ¢. Let Subpes(¢p) and
Subpes () denote the formulas that occur in ¢ negatively and positively, respectively.
It suffices to show that

1. For all 1(&) € Subpoes(¢), for all d in D: K, kIt (d) = K, kIt 1(d).

2. For all ¥(Z) € Subyeg(p), for all d in D: K,k I-9(d) = K+, k |- (d).
This follows from the previous lemma, using the fact that Subpes(¢) C Fps and

Subpeg () € Fruw-
The second case is similar, using KT instead of K*. O
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1 ko) Wele) Fv  Di={de)

0 Feld) Ko Dy = {d}

Figure 1: Model that refutes CD

Corollary 6.3. Except for CQC, there is no intermediate logic that is sound and
complete with respect to a class of frames and that admits a strict, alternative
Skolemization method.

Proof. Consider an intermediate logic L that is sound and complete with respect
to a class of frames, that is not equal to CQC, and that admits an alternative
Skolemization method (-)* that is strict. We show how this leads to a contradiction.
Let I be the class of Kripke models based on the frames in the given class.

First, we show that L is sound and complete with respect to the class K.4 of
models in IC that have constant domains:

FLe © VK € Ka(K IF o).

The direction from left to right is trivial. The other direction is easy too: If I/ ¢,
then I/ ¢?, and so K | ¢® for some K € K. Therefore K* If ¢ by Lemma
Thus Kt ¥ ¢ by strictness, and since K+ € K4, this completes the argument.
Having proven that L is sound and complete with respect to K4, it follows that
the constant domain formula CD (Section [4)) holds in L, as it holds in all models
with constant domains. However, if L # CQC, then its class of frames contains at
least one frame in which at least one node has a successor. Since on such a frame
there exists a model that refutes CD, as in Figure [I, CD does not hold in L. The
desired contradiction has been obtained. O

Let QD, be the intermediate predicate logic of the frames of branching at most
n, let QKC be the logic of the frames with one maximal node, and QLC be the logic
of linear frames.

Corollary 6.4. The logics 1QC, QD,, QKC, QLC, and all tabular logics, do not
admit any strict, alternative Skolemization method.

Note that the constant domain logics, such as the Goédel logics, are not covered
by Corollary as they are not complete with respect to a class of frames, but
with respect to the constant domain models on a certain class of frames.
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We close with a short observation about logics that do not admit any strict alter-

native Skolemization method. Suppose that for such a logic there is an alternative
method (-)® that it admits, and that the proof of this fact is semantical, showing
that for every countermodel K to ¢ there is a countermodel K’ to ¢® and vice versa.
Then from the fact that the method cannot be strict, and thus cannot satisfy ,
it follows that not in all cases one can take K for K’, as one could do in CQC.

References

[1]

[12]
[13]

[14]

M. Baaz, A. Ciabattoni, and C. G. Fermiiller. Herbrand’s Theorem for Prenexr Godel
Logic and its Consequences for Theorem Proving, pages 201-216. Springer, Berlin,
Heidelberg, 2001.

M. Baaz and R. Iemhoff. The Skolemization of existential quantifiers in intuitionistic
logic. Annals of Pure and Applied Logic, 142(1):269-295, 2006.

M. Baaz and R. Iemhoff. On Skolemization in constructive theories. Journal of Symbolic
Logic, 73(3):969-998, 2008.

M. Baaz and R. Iemhoff. Eskolemization in Intuitionistic Logic. Journal of Logic and
Computation, 21(4):625-638, 2011.

M. Baaz and R. Iemhoff. Skolemization in intermediate logics with the finite model
property. Logic Journal of the IGPL, 24(3):224-237, 2016.

M. Baaz and G. Metcalfe. Herbrand Theorems and Skolemization for Prenex Fuzzy
Logics, pages 22-31. LNCS 5028. Springer, Berlin, Heidelberg, 2008.

M. Baaz and G. Metcalfe. Herbrand’s Theorem, Skolemization and Proof Systems for
First-Order tukasiewicz Logic. Journal of Logic and Computation, 20(1):35-54, 2010.
M. Baaz and R. Zach. Hypersequents and the Proof Theory of Intuitionistic Fuzzy
Logic, pages 187-201. LNCS 1862. Springer, Berlin, 2000.

P. Cintula, D. Diaconescu, and G. Metcalfe. Skolemization for Substructural Logics,
pages 1-15. LNCS 9450. Springer, Berlin, Heidelberg, 2015.

P. Cintula and G. Metcalfe. Herbrand Theorems for Substructural Logics, pages 584—
600. LNCS 8312. Springer, Berlin, Heidelberg, 2013.

D. M. Gabbay, V. Shehtman, and D. Skvortsov. Quantification in Nonclassical Logic,
volume 153 of Studies in Logic and the Foundations of Mathematics. Elsevier Science,
UK, 20009.

R. Iemhoff. The eskolemization of universal quantifiers. Annals of Pure and Applied
Logic, 162(3):201-212, 2010.

G. E. Mints. An analogue of Hebrand’s theorem for the constructive predicate calculus.
Sov. Math. Dokl., 3:1712-1715, 1962.

G. E. Mints. Skolem’s method of elimination of positive quantifiers in sequential calculi.
Sov. Math. Dokl., 7(4):861-864, 1966.

1084



ALTERNATIVE SKOLEMIZATION METHODS

[15]

[16]

[17]

[18]

[19]

G. E. Mints. The Skolem method in intuitionistic calculi. Proc. Steklov Inst. Math.,
121:73-109, 1972.

G. E. Mints. Resolution strategies for the intuitionistic predicate logic. In Constraint
Programming. Proceedings of the NATO Advanced Study Institute, Comput. Syst. Sci.
131, pages 289-311. Springer, 1994.

G. E. Mints. Aziomatization of a Skolem function in intuitionistic logic, pages 105-114.
CSLI Lect. Notes 91. 2000.

T. Skolem. Logisch-kombinatorische Untersuchungen iiber die Erfiillbarkeit oder Be-
weisbarkeit mathematischer Sétze nebst einem Theoreme iiber dichte Mengen. In
Skrifter utgit av Videnskapsselskapet i Kristiania. I, Matematisk-naturvidenskabelig
klasse, volume 1920 bd.1, pages 1-36. Kristiania : I Kommission hos J. Dybwad, 1920.
http://www.biodiversitylibrary.org/item/52015#page/111/mode/1upl

A. S. Troelstra and D. van Dalen. Constructivism in mathematics. An introduction,
volume 1 of Studies in Logic and the Foundations of Mathematics 121. Elsevier Science,
1988.

1085 Received 22 August 2016


http://www.biodiversitylibrary.org/item/52015#page/111/mode/1up




THE LocicAL CONE

REINHARD KAHLE
CMA and DM, FCT, Universidade Nova de Lisboa
P-2829-516 Caparica, Portugal
kahle@mat.uc.pt

In Memory of Grisha Mintéﬂ

Abstract

This paper presents an outline of a new account of counterfactuals. It is
based on a proof-theoretic perspective that allows a controlled replacement of
axioms questioned in the antecedence of a counterfactual.

Keywords: Counterfactuals, Soccer.

1 Introduction

The dominant formal treatment of counterfactuals, due to Stalnaker [11] and Lewis
[6], is given in the setting of possible world semantics. As appealing as it might be,
possible world semantics not only raises ontological worries, it also makes use of an
entirely intuitive neighborhood relation that—in our judgment—makes it impossible
to evaluate specific counterfactual Statementsﬂ Here we propose an alternative
account for counterfactuals, which could be dubbed pmof—theoreticalﬂ The idea is
to take a rather limited set of examples of counterfactuals placed in a “real world”

"When this paper was presented at the conference Philosophy, Mathematics, Linguistics: As-
pects of Interaction 2014 (PhML-2014) in St. Petersburg in April 2014, Grisha Mints showed great
interest in the approach; of course, I do not claim that he agreed, but he acknowledged that the
current state of the logical analysis of counterfactuals is unsatisfactory and that new approaches
are desirable. Here we would like to show such a possible new approach.

2See [I0] to see how messy an analysis of counterfactuals in terms of a neighborhood relation
can become, This paper give also a neat overview of a classical example (Fine’s bomb) discussed
by Fine, Lewis, and others.

3This work can be considered as a contribution to the programme of proof-theoretic semantics
[5], understood in a rather broad sense. An account related to necessity was proposed in [3]; see
also [4].
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environment, i.e., that may easily be encountered in “everyday” conversations. This
limitation will allow us to evaluate the counterfactuals in a context of rather precisely
given rules; the “real world” environment will give us some feedback about the
common sense understanding of these counterfactuals. As a matter of fact, our
analysis aims more for a descriptive or empirical analysis of counterfactuals, rather
than a normative one.

As examples we choose counterfactual statements about the results of soccer
matcheSE] There are two reasons for this choice. Firstly, results of soccer matches
(and their consequences) follow quite well-defined rules, which can be formalized
easily and allow, therefore, for an uncontroversial formal treatment. Secondly, results
of soccer matches (and their consequences) are subject to quite profound discussions
involving counterfactual conditionals—as you can easily experience if you have a
discussion with a soccer fan.

In the next section we give a list of examples, taken from the European Cham-
pionship in 2012, together with an informal evaluation; in section [3| we prepare the
formal environment in which to analyze the examples and argue, in the following
section, for a special treatment of axioms in this context. Sections [5] and [6] serve to
introduce a narrow and a wide notion of the logical cone. In the following section we
propose a specific understanding of the communicative function of counterfactuals
in view of our previous analysis. In the final section we give a short conclusion with
directions for further research.

2 “If the team had won this match, ...”

Spain won the European Championship in 2012 with a 4-0 win over Italy in the
ﬁnalE] Now, consider the following statement:

(1) If Ttaly had won the final, it would have been European Champion.

There should be no discussion that it is simply true. In view of the following exam-
ples, also its variation

) If Ttaly had won the final, it would have become European Champion.

has to be considered true.
We see the difference in (1) and (1’) that, in the former case, the hypothetical
fact in the consequent is an immediate consequence of the hypothetical fact in the

4The examples can, of course, be replaced by some from other sports, in particular for our North
American fellows.

5 All results of the tournament can be found on Wikipedia (http://en.wikipedia.org/wiki/
UEFA_Euro_2012) or on the official UEFA pages (http://www.uefa.com/).

1088



THE LocicaL CONE

antecedentﬁ while the latter case “leaves space” for further hypothetical facts taking
place “between” the antecedent and the consequent (see the next example).

Based on the fact that Germany lost its semifinal against Italy, we may consider
the statement:

(2) If Germany had won the semifinal, it would have become European Champion.
Let us first note that its variation corresponding to (1):
) If Germany had won the semifinal, it would have been European Champion.

is clearly false. Germany would not have been immediately Furopean Champion
after winning the semifinal, as the final in which Germany would now be one of the
teams would still have to be played.

But also (2) would—taken literally—widely be considered as false, simply
because there is no reason why Germany should have (also) won the final. But,
of course, to consider it as false would not mean that one would consider its “conse-
quent-negation” as true

(2*) If Germany had won the semifinal, it would not have become European Cham-
pion.

In fact, a natural reply to (2) is neither “that’s true” nor “that’s false” but the
affirmation “that we don’t know”; one could even remove the apparent epistemic
aspect by replying “that would not be decided”. The fact that (2) leaves the outcome
of the consequent open can be made explicit by stating:

(3) If Germany had won the semifinal, it could have become European Champion.

In contrast to (2), this counterfactual should be considered as true[]
Now let us consider the following statements (bearing in mind that Ireland was
already eliminated at the group stage of the European Championship):

(4) If Germany had won the semifinal, Ireland could have become European Cham-
pion.

The statement is surely to be considered as false, simply because of the fact
that Ireland, at the time Germany played its semifinal, was already eliminated and
therefore could not become European Champion, regardless of what had happen in
a semifinal match.

Interesting are the following two examples (taking into account that Portugal
lost its semifinal with Spain a day before Germany played Italy):

5Tn the following we will use “antecedent” and “consequent” directly for the hypothetical facts
expressed in the antecedent and in the consequent of a counterfactual, respectively.
"But we will come back to (2) in the last section.
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(5) If Germany had won the semifinal, Portugal could have become European
Champion.

(6) If Portugal had won the semifinal, Germany could have become European
Champion.

could be considered as false, in the way we rejected (4), as Portugal was
already eliminated a day before the match of Germany took place. However, in the
case of @, it is arguable that the Germany—Italy match might have taken another
course, and therefore (6) could be true.

3 Formal treatment

For a formal treatment of counterfactuals as given in the previous section we assume
that one can formalize the usual rules for soccer results and the European Cham-
pionship, together with the results of the particular matches in a sufficiently rich
logical framework.

Among the rules we should find formulas expressing, for instance:

(L1) If team A scores more goals than team B in the match of A against B, team
A wins this match.

(L2) The team that wins the final of the European Championship is the European
Champion.

(L3) The teams that play in the final are the winners of the two semifinals.

The results should be expressed by formulas corresponding to the outcome of
the matches, for instance:

(C1) Spain won the final against Italy.
(C2) Italy won the semifinal against Germany.
(C3) Spain won the semifinal against Portugal.

Both the rules and results can be considered as azioms which allow us to reason
about the European Championship. With them, it should be more or less straight-
forward to prove facts like:

e Spain became European Champion.

e Ireland was eliminated at the group stage.
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For our analysis it will be important that we split the rules and results into two
different groups of axioms. This separation recalls some features of the separation of
general laws and specific conditions in the well-known Hempel-Oppenheim scheme
of scientific explanations |2} [I5], and we will borrow from it the designations L and C
for the axioms of rules and axioms of results, respectively. As a matter of fact, what is
usually considered in a soccer discussion in the antecedent of a counterfactual is only
the result of a particular match, but not a rule. The rules should provide a frame
for the discussion, which is generally not put into question by the counterfactual
situation proposed in the antecedent (see the end of the next section).

If we consider again example (1), it is easy to observe that we only need L-
axioms, in fact just rule (L2), together with the hypothetical fact that Italy won the
final, to prove that Italy would be European Champion. In this sense it would be
an “immediate” consequence, and we can obtain a proof of the consequent if we just
replace the C-axiom ( by one which expresses that Italy won the final.

But in the other examples, (2)—(6), the result of a semifinal is put into question
and this raises the question, of which other results are also put into question. It
should be clear that axiom (C1) does not make any sense any longer, as the teams in
the final are now different. Thus, questioning (C2) or (C3) implies that (C1) cannot
be an axiom any longerﬁ Replacing, in (2)—(5), the axiom (C2) by an axiom (C2’)
stating that Germany won the semifinal, does not give us any hint how to replace
(C1). We would have to retract this axiom without replacing it. As a consequence,
the resulting axiom system would be incomplete with respect to the winner of the
final. This explains why we should consider neither (2) nor (2*) as true, but should
consider (2’) as false, and our analysis is in line with the reply that the “European
Champion would not be decided”.

In (3) we weakened the consequent to be (only) possible. Possibility is here
simply understood as underivability of the negationﬂ With this understanding of
possibility, (3) turns out to be true: the antecedent of (3), together with (L3) allows
one to derive that Germany would play in the final. This implies the removal of (C1)
without any replacement. The usual soccer rules will also not allow one to derive
the result of the final (that is, a proof, in one way or another, of the result of the
final), thus also not the negation of the consequent.

The statemente (4), however, is false, as changing the result of the semifinal does

8This implication can be made explicit by deriving formally the teams which play the final from
the results of the semifinals by invoking the rule (L3).

9This is in line with (the first part of) Frege’s observation: “If a proposition is advanced as
possible, either the speaker is suspending judgment by suggestion that he knows no laws from which
the negation of the proposition would follow or he says that the generalization of this negation is
false” [1I p. 13].
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not imply any change of the results at the group stage. A proof of the elimination
of Ireland is not affected by a change of (C2), as this axiom does not imply any
change of the matches played on the group stage. The change of (C2) to (C2’) will
not affect the proof of the fact that Ireland was already eliminated.

As in the informal analysis, we could consider (5) to be false on the same basis
as (4): the semifinal between Portugal and Spain was played the day before the
semifinal between Germany and Italy; thus changing the result of the latter match
could not change the result of the former one.

But what about (6)? If (C3) is replaced by an axiom expressing that Portugal
won against Spain, we already know that (C1) has to be retracted as axiom. (C2),
however, is not related by any axiom to the result of other semifinal and there is no
need to retract (C2) as axiom. But as the Germany—Italy match was played after
the Portugal-Spain match, we already noted, that it is arguable that the former
match had taken another course. Soccer fans might invoke (strange) arguments
like: knowing they would face Portugal, the German players would have been so
excited that their performance would been sufficient to beat Italy, or conversely,
Italy would have feared facing Cristiano Ronaldo so much that they would have lost
their semifinal. Although such arguments are far-fetched, it is reasonable to consider
at least the possibility that when questioning facts at time ¢g, one may also question
facts at time ¢ for ¢ > to (or t > tg). We will see below how this possibility can be
included in our analysis, even reopening the question whether (5) should, indeed, be
considered as false.

4 On L- and C-axioms

We start with an affirmative counterfactual of the form:
(%) If ¢ were the case, then 1 would be the case.

Its analysis should take place in a formal system describing the actual situation.
The non-logical axioms of the formal system are collected in a set 7, and its deduc-
tive closure will be designated by 7. To be a counterfactual, (x) presupposes that
the negatiorm of ¢, here designated by ¢, is actually the case, i.e., ¢~ € T.

To argue in the counterfactual situation—to be given by a set of axioms 7’
with its deductive closure 7'—we need to have ¢~ ¢ 7', but ¢ € T'. A consistent
replacement of ¢~ by ¢ would be rather complicated, if ¢~ could be an arbitrary
formula in 7. It would require tracing all axioms of 7 which are involved in all

10We do not want to be too formal here, but the negation of ¢ should something like ~¢ modulo
double negation elimination.
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possible derivations of ¢, and to replace some of them (which?) by some other
axioms (which?) to obtain an axiom system 7' with ¢ € T’. However, if we assume
that ¢ is an aziom in T, its replacement by ¢ is a quite reasonable operation.

Although it seems to be a technical condition here, we think that it is natural to
demand that the antecedent (and its negation) has to be considered as an axiom in
some representation of the hypothetical (actual, respectively) situation. It would be
going too far here to give a full justification of this claim, but one may note that—
with the formulation of a counterfactual like (x)—¢ is definitely not questionable
in (a description of) the hypothetical situation; it is, of course, the role of the
antecedent to fix ¢ as starting point of any further argument. In this perspective
¢~ just “inherits” this status—or, to put it the other way around: to evaluate a
counterfactual, the actual situation has to be described in a way that the fact put
into question, i.e., ¢, is considered as starting point of any further discussion, i.e.,
as an axiom

As counterfactuals suggest the existence of arguments—or, on the formal side,
proofs—of the consequent from the antecedent, we take a closer look to the setting
in which such arguments or proofs can be performed. The first aspect, that ¢~
should be settled on the level of axioms, was just discussed. If we replace ¢~ by
¢ in the hypothetical situation, we would like to have, of course, that ¢~ does not
enter again in the discourse, making it inconsistent. Thus, the representation of the
actual situation should be “sufficiently independent”. As a matter of fact, this is
more complicated as it sounds: if we consider the antecedent of (2), for instance,
we would like to replace (C2) by its negation. However (L3), together with (C1)—
expressing that Italy was playing the final—implies that Italy won its semifinal.

To overcome this problem we introduce the separation of L- and C-axioms, as
indicated above: L-axioms should collect general rules, or “laws”, which construct
the frame in which a counterfactual should be evaluated; this frame is fixed and
is not up for debate. C-axioms, however, are the “facts” that might be subject to
changes—not only the one explicitly questioned in the antecedent.

In general, there are no apriori criteria that say what is an L-axiom and what is
a C-axiom. In the soccer example, it seems to be quite clear that L-axioms should
be the rules, while the C-axioms are the results. In other contexts, however, this
separation is probably simply stipulated.

The specific feature of the L-axioms is that they should not be questioned in the
discussion of the counterfactual. Soccer fans do not like replies to (1)

“If Ttaly had won the final, it would have been European Champion.”

of the form:

1A similar argument is put forward in our analysis of necessity in [3].
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“No, in this case—if Italy had won the final—UEFA would have changed the
rules so that the loser of the final would be European Champion.”

In contrast, the C-axioms are those which are subject to revisions. And we will
discuss in the next section how those that should be retracted in a hypothetical
situation are chosen.

5 The logical cone

As a specification we may say that the logical cone of ¢~ should consist of exactly
those formulae that should be removed from 7 in the hypothetical situation proposed
by the antecedent of the counterfactual (x).

Intuitively, it should be sufficient to retract those (C-)axioms which “depend” on
¢~. In our examples, for instance, an axiom about the result of the final depends on
the axioms about the results of the semifinals (as they determine the teams playing
in the final). Note, however, that the results of the two semifinals do not depend on
each other (we will come back to this issue in the next section).

For the time being, we will dispense with a formal definition of the dependency
of one C-axiom on anotherm but use it as an undefined, intuitive notion (and note
that an axiom depends on itself). Given XB we say that the set of C-axioms that
depend on Y, designated by D,, are in the logical cone of x. More generally, the
(narrow) logical cone of a C-axiom x in T consists of those formulae of 7 which
need for their proofs axioms from D, ; in formal terms, the (narrow) logical cone of
xistheset {# |0 €T and 0 & T \ Dx} It should be clear, that x should be in its
own logical cone, i.e., that x € T \ D, (otherwise, x would have been redundant in
T). T \ Dy (and in abuse of language also T \ D) may well be called a background
theory, as it consists of those formulas (axioms) which should not be influenced by
a change of y.

Our (narrow) reading of the counterfactual:

(%) If ¢ were the case, then ¢ would be the case.
is now that

(%) is true, if and only if, ¢ follows from (7 \ Dg-) U {¢}.

12This is, admittedly, in part because we encounter some technical problems in making it precise;
it can, however, also be justified by the fact that the determination of a logical cone is subject to
stipulation; this will be discussed in connection with the umbra in the next section.

131n the following, the role of ¢ and ¢~ would have to be reversed; therefore, we use y here.

The same idea of dependence of 6 on x to formalize “x is necessary for 6” is discussed in [3].
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The intuitive idea is that the removal of the logical cone “gives space” to prove
1, even if it contradicts a fact in 7. As ¢~ will not be in its own logical cone, we
get that (7 \ Dy-) U {¢} is consistent whenever T is consistent.

With this analysis,

(1) If Italy had won the final, it would have been European Champion.

turns out to be true: if ¢ expresses Italy wins the final, then Dy- is essentially (C1)
(i.e., Spain won the final against Italy) and (L2) allows one to derive in (7 \Dy-)U{p}
that Italy is European Champion.

But as noted above, for the other examples (2)—(6), we cannot expect to have
an affirmative counterfactual of the type (%) turn out to be true. In all these cases,
¢ is the result of a semifinal; following the intuitive description, the (actual) result
of the final (C1) will be in the logical cone of ¢, i.e., Dy~ contains (C1). In this
case, however, (7 \ Dg-) U {¢} will no longer contain any axiom that could give us
the result of the final, necessary to verify the consequent. In this view, (2), (2’), and
(2*) are indeed false in our reading.

Thus, we were considering instead what we like to call a possibility counterfactual
where the consequent is qualified as (only) possiblem If the possibility of x in a
theory 7 is formally rendered as T does not prove —y, we propose as analysis of

(xx) If ¢ were the case, then 1 could be the case.
the following:
(x*) is true, if and only if, =1) does not follow from (7 \ Dg-) U {¢}.
With this analysis,
(3) If Germany had won the semifinal, it could have become European Champion.

turns out to be true: If ¢ expresses Germany wins its semifinal, then Dy~ should
contain (C2) and (C1), and (7 \ Dg-) U {¢} should clearly not prove that Ger-
many became not European Champion—it should be incomplete with respect to
this question.

(4), however, is false, as (7 \ Dg-) U {¢}—in fact, already the background theory
(T \ Dy-) alone—proves that Ireland will not be European Champion, using only

15Possibility counterfactuals are discussed by Lewis under the name of ‘might’ counterfactual,
[6, §1.5]. But as he defines them in terms of his ‘would’ counterfactuals (the counterpart of our
affirmative counterfactuals), we prefer another name here. The choice between ‘might’ and ‘could’
is, of course, rather a question of taste than of significance.
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the results of the group stage, which are not affected by the change of a semifinal
result.

Also (5) and (6) turn out to be false in this reading, as—according to our informal
account of dependency—the result of one semifinal does not depend on the result of
the other, and, thus, the teams in the consequents of (5) and (6), respectively, would
not be in the final. But, as noted, (6) is, at least, arguable, and we will discuss in
the next section how this can be incorporated in an enlargement of our analysis.

6 The umbra and the wide logical cone

Our intuitive characterization of D, presupposes some kind of dependency between
x and the elements of D, in the way that these elements should be incompatible
with the negation of y. As argued in the discussion of (6), it is, however, reasonable
to permit also changes of facts which are not directly incompatible with y, but for
which one can “construct a scenario” that would change them after a change of
X—just as described in the far-fetched arguments given above for (6).

C-axioms of such facts are not elements of the (narrow) logical cone of x. We
can say, however, that they are in the umbra of x.

But how to determine the element of the umbra of a formula? From the analysis
(6) we could consider the temporal aspect, i.e., any fact taking place later than—or,
not earlier than—y could be considered as an element of the umbra. But we are not
inclined to give a fixed characterization of the umbra. Instead, we suggest that it is
actually stipulated by the context (or the utterer) of the counterfactual.

Such a stipulation can be checked explicitly by questioning the umbra of a given
counterfactual. The utterer of (6) might be asked a question like: “If you change
the result of Portugal’s semifinal, you also allow changing the result of Germany’s
semifinal, don’t you?” Or even better, one can demand that elements of the umbra
are explicitly mentioned. For instance, one could ask the utterer of (6), whether
(s)he means that{'"

(6”) If Portugal had won the semifinal and the result of Germany’s semifinal could
have been different, Germany could have become European Champion.

If the umbra is, indeed, stipulated, it is also conceivable, that, when one questions
the result of one semifinal, the result of the other semifinal is added to the umbra,

161f you consider this counterfactual as odd—as it seems to depend just on the change in the
umbra—ryou can consider also the following one:

If Portugal had won the semifinal and the result of Germany’s semifinal could therefore have
been different, Germany could have become European Champion.

1096



THE LocicaL CONE

independently of the historical timing, but just because the matches are played on
the “same level”. In this sense, it would not be surprising that soccer fans would
come to the conclusion that (5) could be considered as true, if the change of the
result of Germany’s semifinal also allows changing the result of Portugal’s semifinal,
despite the fact that the match was played before. Again, this could be made explicit
by questioning whether Portugal’s semifinal should be considered to be in the umbra
of Germany’s semifinal.

Letting U, be D, augmented by the elements of the umbra of x, the wide log-
ical cone of a C-axiom Yy in 7 consists of those formulae of 7 that need for their
proofs axioms from f,. With this notion, we can propose a wide reading of the
counterfactual:

(x) If ¢ were the case, then 1) would be the case.
as
The counterfactual (%) is true, if and only if, ¢ follows from (7 \ Uy-) U {}.

and analogously for ().

On the basis of example (5) and (6) we prefer the wide reading of counterfactuals
over the narrow one. As this includes the stipulation of the umbra, we can overcome
the problem of the definition of D, by simply treating it in a similar way. Instead
of demanding a formal definition, we let the elements of D, be subjects to confir-
mations, i.e., one may ask whether a certain formula is considered to be dependent
on the antecedent of a counterfactual.

7 “..., the team would have become European Cham-
pion” revisited

We will finish this paper by reconsidering affirmative counterfactuals, as given in
(2). On the base of our analysis, given so far, only rather trivial, somehow non-
informative affirmative counterfactuals will turn out to be true; probably no soccer
fan would find the example (1) of particular interest. In contrast, statements like
(2) may occur naturally in a soccer discussion, despite being controversial.

We believe that affirmative counterfactuals—which are not trivially true because
the consequent follows immediately from the antecedent by L-axioms—have actu-
ally a specific status in a discussion. They are not meant as propositions with a
fixed truth value, but rather as assertions which commit oneself implicitly to hidden
assertions which would make the affirmative counterfactual true. This requires, in
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fact, that the corresponding possibility counterfactual needs to be true (in the sense
of our analysis).
Let illustrate this using the example

(2) If Germany had won the semifinal, it would have become European Champion.

The corresponding possibility counterfactual is true according to our analysis: if we
replace (C2) by (C2’), expressing that Germany won the semifinal, we have to retract
(C1), and the negation of the consequent is not provable. In this theory, however,
it is also not provable that Germany is European Champion. But it is possible
to augment the theory by a new axiom (C1’), expressing that Germany wins the
final. In fact, such an axiom would be necessary to obtain the consequentm Thus,
our claim is that the utterer of (2) implicitly commits h(im/er)self to this additional
axiom (C1’), which, if added, makes the counterfactual true in terms of our analysis.

This analysis can be cross-checked: it is easy to question the utterer of (2): “Oh,
you mean, if Germany had won its semifinal, it would also have won the final, don’t
you?” and one would probably get an affirmative answer@

Thus, our analysis leads to the consequence that, in general, affirmative coun-
terfactuals are not bivalent propositions, but rather assertions which hide implicit
presuppositions in a subjective line of argument. This explains, at least, why coun-
terfactuals are often so controversial.

8 Conclusion

We propose a new account of counterfactuals which is based on the notion of a
logical cone.

First, we have to separate the description 7 of the “actual world” into two classes
of axioms, L-axioms for fixed rules and facts and C-axioms for those which might
be altered.

Secondly, we define the logical cone of a (C-)axiom ¢, which consists intuitively
of all formulas in the deductive closure 7 of 7 which depend on ¢.

Now we may add the negation of ¢ to the background theory obtained by re-
moving the logical cone of ¢ from 7 and investigate whether the consequence of an

17 Again, the notion of necessity expressed in this condition can be made formal along the proposal
given in [3]. There, we invoke a stipulated variety of alternatives, and it will be essential, for instance,
that this variety consists of potential C-axioms, but does not involve L-axioms.

18Soccer discussions continue, in fact, along these lines, and may continue with a discussion like:
“Thus, you mean Germany would have been better than Spain, don’t you?” etc., and sooner or
later people start to disagree. ..
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affirmative counterfactual follows—or, for possibility counterfactuals, whether it is
consistent with the background theory.

Further, we notice that, in many instances, affirmative counterfactuals are only
defensible under hidden assumptions which are left out. These assumptions corre-
spond to traces in the logical cone of the antecedence leading to the consequence
Such hidden assumptions, however, can be uncovered by asking for them.

In the present paper we provide a qualitative outline of our approach. A further
elaboration has to specify better the status and dependency of the C-axioms. Also,
we have to address how certain properties of combinations of counterfactuals behave
in the proof-theoretic setting@ But one may already observe that the background
theory 7 \ D, gives rise to a variety of possible worlds which may allow one to
compare our approach with the usual semantic ones. Here, we see several advantages
for the proof-theoretic account. First of all, it comes without any ontological burden.
Secondly, the logical cone allows one to identify the sentences which are, indeed,
affected by the antecedent, leaving “unreachable” sentences out of consideration[%ﬂ
In this way, there is also no need for “avoidance of big miracles” (see [10]), as they
should be ruled out by the L-axioms. Furthermore, along the lines of §[7] arguments
for counterfactuals are easily “checkable” by inquiry; they correspond to traces in the
logical cone, which allows us to dispense with any kind of “neighborhood relation”,
needed in possible worlds semantics. Finally, the axiomatic setting gives us “full
control” over the background theory and the way it is modified by the alternatives
of an antecedent of a counterfactual. In general, we see it as one of the defects of
approaches using possible worlds semantics that they usually do not provide criteria
for determining the possible worlds, but just argue on the base of a given variety of
them 21

Let us finish by recalling Wehmeier [12, 13} [14], who pointed out the fact that
the grammatical mood plays an essential role in counterfactuals; it is important, for
instance, to distinguish the evaluation of definite descriptions in the actual world
versus the (or any) counterfactual world(s). In our account such a distinction can
be mirrored by evaluating such descriptions in the theory 7 of the actual situation
or in the one for the counterfactual situation, (7 \ Dy-) U {¢} (if not already in the
background theory 7 \ Dg-). Also Wehmeier’s subjunctive-indicative conditionals

190ne may consult [9] for a discussion of such combinations in the semantic approaches growing
out from Lewis’s account.

20The term “logical cone” was, of course, chosen in analogy to Minkowski’s light cone in relativity
theory, [7, §II1].

21Tt is worth mentioning here that, in particular, modal logic (see, for instance, [8]) as syntactic
counterpart of possible worlds is just investigating the relation between given possible worlds, but
not contributing to the question how to determine a variety of possible worlds, see also [4].
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[14, § 2] fit in our context. The given example is: “If everybody who voted for Christa
had voted for Barbara, Anna wouldn’t have been elected chair.” In our context, a
corresponding example would be: “If every team that lost its semifinal had won it,
Spain wouldn’t have become Champion.” The indicative part (“every team that lost
its semifinal”) just specifies the (teams and matches for which the) axioms of the
actual situation that would have to be retracted ((C2) and (C3) in our example);
the subjunctive part (“[each of these teams] had won [its semifinal]”) tells us how to
replace them. In this analysis, the antecedent is used as some kind of “instruction”
how to modify an existing axiom system, rather than a formula on the object level
which has to be integrated in one or the other way in the existing theory. But it
is the proof-theoretic setting that allows to perform such an “instruction” in a fully
controlled way.

In general, we see good potential in our proof-theoretic approach for all kind
of intensional phenomena, as axiomatic frameworks allow for a more fine-grained
analysis of logical relationships than approaches based on “structureless” worlds.
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PARSING AND GENERATION AS DATALOG QUERY
EVALUATION

MAKOTO KANAZAWA
National Institute of Informatics, 2—-1-2 Hitotsubashi, Chiyoda-ku, Tokyo,
101-8430, Japan

Abstract

Parsing and generation (or surface realization) are two of the most impor-
tant tasks in the processing of natural language by humans and by computers.
This paper studies both tasks in the style of formal language theory, using
typed A-terms to represent meanings. It is shown that the problems of
parsing and surface realization for grammar formalisms with “context-free”
derivations, coupled with a kind of Montague semantics (satisfying a certain
restriction) can be reduced in a uniform way to Datalog query evaluation. This
makes it possible to apply to parsing and surface realization known efficient
evaluation methods for Datalog. Moreover, the reduction has the following
complexity-theoretic consequences for all such formalisms: (i) the decision
problem of recognizing grammaticality (surface realizability) of an input string
(logical form) is in LOGCFL; and (ii) the search problem of computing all
derivation trees (in the form of shared forest) from an input string or input
logical form is in functional LOGCFL. These bounds are tight. The reduction
is carried out by way of “context-free” grammars on typed A-terms, a relaxation
of the second-order fragment of de Groote’s abstract categorial grammar. The
method works whenever a grammar uses only “almost linear” A-terms.

Keywords: Generation, Surface Realization, Parsing, Datalog, LOGCFL,

Montague Semantics, Abstract Categorial Grammar, Typed Lambda Calculus,
Almost Linear Lambda Term.

1 Introduction

The representation of context-free grammars (augmented with features) in terms
of definite clause programs is well-known. In the case of a bare-bone CFG, the

This paper originally evolved from an inspiration I got from a discussion with Sylvain Salvati on
his work [63]. I was supported by the Japan Society for the Promotion of Science under the Grant-
in-Aid for Scientific Research (KAKENHI), Grant Numbers 19500019 and 21500025.
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corresponding program is in the function-free subset of logic programming, known
as Datalog. For example, determining whether a string John found a unicorn belongs
to the language of the CFG in (] is equivalent to deciding whether the Datalog
program in (2)) together with the database in ([B) can derive the goal or query (@)

S — NP VP NP — John Det — a (1)
VP — V NP V — found N — man

V -V and V V — caught N — unicorn

NP — Det N V — is

S(i,7) :— NP(4, k), VP(k, 7). V(i,7) :— caught(i, j). (2)
VP(i,j) := V(i k),NP(k, j). V(i, j) i is(i, J)-

V(i,j) := V(i,k),and(k, 1), V(l,j).  Det(i,j) :— a(i, j)-

NP (i, j) :— Det(q, k:), (k,j). N(z,7) :— man(i, j).

NP(i,7) :— John(i, 7). N(Z,7) :— unicorn(i, 7).
V(i,7) :— found(i, 7).
John(0,1). found(1,2). a(2,3). unicorn(3,4). (3)
?7—5(0,4). (4)

In the Datalog representation, terminals and nonterminals of the CFG are in-
terpreted as binary predicates on positions within the input string. The database
representing a string can be viewed as a certain type of directed graph (called a
string graph). We depict a string graph by a diagram like (B]), where circles rep-
resent nodes (string positions) and boxes are labels of directed edges, which, by
convention, point from left to right.

(©Ton} (D [found - @DTa}-@)funicom (D (5)

By naive (or seminaive) bottom-up evaluation (see, e.g., [76] or [I]), the answer
to a query like (4) can be computed in polynomial time in the size of the database, for
any fixed Datalog program. This method of evaluation generates all facts derivable
from the program together with the input database in the order of the height of
the Datalog derivation tree, until no new fact is derivable. By recording ground
instances of rules used to derive facts, a packed representation of the complete set
of Datalog derivation trees for a given query can also be obtained in polynomial
time using this technique. Since a Datalog derivation tree uniquely determines a
grammar derivation tree and vice versa (Figure[Il), the translation gives a reduction

'The term query means different things in logic programming/Prolog and relational database
theory/finite model theory. The use of the term in this paper follows the logic programming/Prolog
tradition.
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S S(0,4)
/\ /\
NP VP NP(0,1) VP(1,4)
| — |
John V NP John(0,1) V(1,2) NP(2,4)
| s !
found Det N found(1,2) Det(2,3) N(3,4)
| [ ! |
a unicorn a(2,3) unicorn(3,4)

Figure 1: A CFG derivation tree (left) and a Datalog derivation tree (right).

S Ana

| T
A a A d
| T
€ b Ay, ¢

Figure 2: A TAG with one initial tree (left) and one auxiliary tree (right)

of context-free recognition and parsing to query evaluation in Datalog. This is of
course all well known and well understood, even though the Datalog parlance is not
universally adopted.

In this paper, I extend this reduction in two directions. First, I show that
a similar reduction to Datalog is possible for more powerful grammar formalisms
that have “context-free” derivations, such as (multi-component) tree-adjoining gram-
mars [37, 80], 10 macro grammars [24], and (parallel) multiple context-free gram-
mars [66]. For instance, the tree-adjoining grammar in Figure [2] is represented by
the Datalog program in ().

S(i1,i3) :— A(ir, 13,92, 12). (6)
A(i1, 18,14, 15) :— a(i1,42), b(i3,14), c(i5, i6), d(i7, i8), A(i2, i7, 13, i6).
A(iy, i, 41, 12).

Second, I extend the technique to the problem of tactical generation (surface real-
ization) for such “context-free” grammar formalisms supplemented with a kind of
Montague semantics [57], under a certain restriction to be made precise below. The
method of reduction is uniform in both cases, and essentially relies on the encoding
of different formalisms in terms of abstract categorial grammars [17].

The reduction to Datalog makes it possible to apply to parsing and generation
sophisticated evaluation techniques for Datalog queries; in particular, an application
of generalized supplementary magic-sets rewriting [8] automatically yields Earley-
style algorithms for both parsing and generation. The reduction can also be used
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to obtain a tight upper bound, namely LOGCFL, on the computational complexity
of the problem of recognition of input strings as well as of the problem of checking
surface realizability of input logical forms!q This means that, in rough complexity-
theoretic terms, these problems are no more difficult than the recognition problem
for context-free languages.

With regard to parsing and recognition of input strings, polynomial-time algo-
rithms and the LOGCFL upper bound on the computational complexity are already
known for the grammar formalisms covered by our results [22]. Also, efficient tab-
ular algorithms have already been obtained for many of these formalisms, and a
general perspective on tabular parsing, in the names of deductive parsing [69] and
parsing schemata [70], which can be equivalently expressed in terms of Datalog, is
already available. Nevertheless, I believe that my method of reduction to Datalog
is of independent interest, as it shows that efficient tabular parsing (recognition)
algorithms are automatically obtained from various types of grammars in a uniform
way. Concerning generation, where the input is a structured expression involving
binding, the present results seem to be entirely new.

Since the precise statement of my method of reduction and the proof of its
correctness are quite technical, I first give an informal exposition of the method in
Section 2l I develop the theory formally, complete in all details, in Section Bl I then
discuss some consequences and extensions of the main results in Section E] before
giving a brief conclusion in Section Bl

The main results of the present paper were first announced in [42]; Sections [II
and 2], part of Section [22] and Section are based on that paper.

2LOGCFL is the class of decision problems that can be reduced to some context-free language
by a deterministic Turing machine operating in logarithmic space, and lies between the complexity
classes NL and AC' (see [35]). Since LOGCFL is a subclass of NC, problems in LOGCFL are
efficiently parallelizable. There are context-free languages that are complete for LOGCFL under
log-space reduction (see [27]).

3As T explain below, the present method primarily applies to ezact generation only, where the
input logical form is supposed to exactly match the logical form produced by the grammar.
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2 An informal exposition

2.1 Context-free grammars on \-terms

Let us consider an augmentation of the CFG (1) with Montague semantics, which
uses A-terms as representations of meanings

S(X1X2) — NP(X1) VP(X3) (7)
VP(Az.Xa(\y. X1yz)) — V(X1) NP(Xs)

V(yz A (X yx) (Xayz)) — V(X7) and V(X3)
NP(XlXQ) — Det(Xl) N(Xg)

NP(Au.u John®) — John

V(find“7¢7") — found

V(catch®7¢~") — caught

V(:e%eﬁt) — is

Det(Auv. 3D\ AT (uy) (vy))) — a
N(man®~!) — man

N(unicorn®”*) — unicorn

Here, the left-hand side of each rule is annotated with a A-term that tells how the
meaning of the left-hand side is composed from the meanings of the right-hand side
nonterminals, represented by upper-case variables X1, Xo,.... Note that A-terms
may contain any number of constants, whose types are indicated by superscriptsﬁ
In such a grammar, the meaning of a sentence is computed from its derivation
tree. For example, given the derivation tree of John found a unicorn (the left tree
in Figure 1), we can decorate each nonterminal node with a A-term in accordance
with the grammar rule being applied at that node, obtaining the decorated tree in
Figure Bl The A-term decorating the root node,

(Au.w John)(Az.(Auv.3(A\y.A(uy)(vy))) unicorn (A\y.find y z)),
[B-reduces to the A-term
3(Ay.A(unicorn y)(find y John)) (8)

encoding the first-order logic formula representing the meaning of the sentence (i.e.,
its logical form):
Jy(unicorn(y) A find(John, y)).

4Grammars like this one are basically generalized phrase structure grammars [25] without fea-
tures or metarules.

®We follow standard notational conventions in typed A-calculus, rather than Montague’s [57].
Thus, an application My M;Ms (written without parentheses) associates to the left, Az.\y.M is
abbreviated to Azy.M, and o« — 8 — v stands for a — (8 — 7).
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S((Awu John) Az (uv.3(Ay.A(uy)(vy))) unicorn (Ay.find y 7))

NP(/\u.zIL John) VP (Az.(Auv.3(\y.A(uy)(vy))) unicorn (\y.find y 7))
John V(ﬁlnd) NP(()\uv.EI()\y./\(uy)(vy))) unicorn)

found Det ()\qul()\y./\(uy)(vy))) N(unicorn)
I I
a unicorn

Figure 3: A decorated derivation tree of a CFG with Montague semantics.

Thus, computing the logical form(s) of a sentence—the task of semantic interpre-
tationd—involves parsing and A-term normalization. Conversely, to find a sentence
expressing a given logical form—the task of surface realization—it suffices to find
a derivation tree whose root node is decorated with a A-term that g-reduces to the
given logical form; the desired sentence can simply be read off from the derivation
tree. At the heart of both tasks is the computation of the derivation tree(s) that
yield the input. In the case of surface realization, this may be viewed as parsing
the input A-term with a “context-free” grammar that generates a set of A-terms (in
B-normal form), which is obtained from the given CFG with Montague semantics
by stripping off terminal symbols:

S(X1X2) :— NP(Xy), VP(X2). 9)
VP(Az. Xa(Ay. X1yx)) :— V(X71), NP(X2).

V( yz AN X yz) (Xoyz)) i— V(X7), V(X2).

NP(XlXQ) = Det(Xl), N(XQ)

NP(Au.u John®).

V(ﬁndeﬁe%t).

V(catch®7¢™t).

V(:e—>e—>t)‘

Det(Auv. IV Ny AL (ug)) (vy)).

N(man®~?).

N(unicorn®™").

Determining whether a given logical form is surface realizable with the original gram-
mar (7)) is equivalent to recognition with the resulting context-free A-term grammar
(CFLG) [@). As with CFG recognition/parsing, solving the problem of recognition
for CFLGs almost amounts to solving the problem of parsing; so algorithms and

5This is sometimes called “semantic parsing” or “parsing to logical form”.
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complexity results for the former translate into algorithms and complexity results
for the problem of surface realization.
In a CFLG such as (9), there is a mapping f from nonterminals to their semantic

types:
St

NP — (e = t) = t,

VP — e —t,
Vi—e—se—t,

Det — (e > t) — (e = t) — t,
N—e—t

A rule that has B on the left-hand side and By,..., B, as right-hand side nonter-

minals has its left-hand side annotated with a well-formed A-term M that has type
f(B) under the type environment X; : f(B1),..., X, : f(By), or in symbols:

F X1 f(B1),.. s Xp: f(Bn) = M : f(B).
For example, in the case of the third rule of (9), we have
FXite—e—t,Xote—e—t= Ay AT Xyr)(Xoyz) e —e—t. (10)

What we are calling a context-free A-term grammar is nothing but an alterna-
tive notation for an abstract categorial grammar [17] whose abstract vocabulary is
second-order, with the restriction to linear A-terms removed/] In the linear case,
Salvati [62] showed the recognition/parsing complexity to be in P, and exhibited an
algorithm similar to Earley parsing for TAGs. Second-order linear ACGs are known
to be expressive enough to encode well-known mildly context-sensitive grammar
formalisms in a straightforward way, including TAGs and (non-deleting) multiple
context-free grammars (also known as linear context-free rewriting systems) [18, [19].

For example, the following linear CFLG is an encoding of the TAG in Figure 2,
where f(S) = o—oand f(A) = (0—0)—0— o0 (see [18] for details of this encoding):

S(A\y.X1(Az.2)y) :— A(X1). (11)
A(Azy.a® (X1 (Az.0°7%(2(c%7%2)))(a° %)) :— A(X1).
A(Azy.zy).

In encoding a string-generating grammar, a CFLG uses o as the type of string
position and o — o as the type of string. Each terminal symbol is represented by a

A M-term is a M -term if each occurrence of A binds at least one occurrence of a variable. A
M -term is linear if no subterm contains more than one free occurrence of the same variable.
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constant of type o — o0, and a string a; ...a, is encoded by the A-term

Jai...an/ = Xz.a77°(... (a97°%2)...),

which has type o — oﬁ

A string-generating grammar coupled with Montague semantics may be repre-
sented by a synchronous CFLG, a pair of CFLGs with matching rule sets, as in
Figure IZIE The transduction between strings and logical forms in either direction
consists of parsing the input A-term with the source-side grammar and normaliz-
ing the A-term(s) constructed in accordance with the target-side grammar from the
derivation tree(s) output by parsing.

2.2 Reduction to Datalog

We can show that under a weaker condition than linearity, a CFLG can be rep-
resented by a Datalog program. The presentation in this section is informal and
not fully precise; formal definitions and rigorous proof of correctness are deferred to
Section 3.

We use the grammar (9) as an example, which is repeated below:

S(X1X2) :— NP(X1), VP(X2). (9)
VP(Az. Xa(Ay. X1yz)) i— V(X1), NP(X2).

VAyz A7 X yx) (Xayz)) = — V(X1), V(Xa).

NP(XlXQ) = Det(Xl), N(Xg)

NP(Au.u John®).

V(ﬁnde—>e—>t).

V(catch®¢™t),

V(:eﬁeﬁt)'

Det(Auv. 37D Ay AL (1) (vy)).

N(man®~?).

N(unicorn®?).

Note that all A-terms in this grammar are almost linear in the sense of satisfying
the following conditions:

e every occurrence of A binds at least one occurrence of a variable (i.e., they are
Al terms), and

81t is known that the class of string languages generated by linear CFLGs under this encoding
coincides with the class of multiple context-free languages [63]. The class of tree languages generated
by linear CFLGs has been characterized by Kanazawa [45].

9The use of a pair of ACGs with a common abstract vocabulary as a synchronous grammar has
already been advocated by de Groote [17].
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S()\ZYl(YQZ), Xng) = NP(Yi,Xl),VP()/Q,XQ)

VP(/\ZYl(YQZ)7 )\l'.XQ()\y.leLL')) = V(Y17 le)7 NP(YQ7 XQ).
V(Az.Yi(/and/(Y22)), Ayx A7 (X yx) (Xayx)) :— V(Y1, X1), V(Ya, X2).
NP()\ZH(YQZ) X1X2) = Det(le,)(l)7 N(YQ,XQ).

NP(/John/, Au.u John®).

V(/found/, find®~¢?).

V(/caught/, catch®¢~t),

V(/iS/, =e~>e~>t)'

Det(/a/, Auv. 370 Ay AL (uy) (vy))).

N(/man/, man®~?).
N(/unicorn/, unicorn

/ \

e—»t).

S(A2.Y1(Ya2)) i NP(Y1), VP(Y2). S(X1X2) :— NP(X1), VP(Xa).
VP(Az.Y1(Y2z)) :— V(Y1), NP(Y3). VP(Az. X2(Ay.Xjyx)) :— V(X1), NP(X2).
V(Az.Yi(/and/(Y22))) :— V(Y1), V(Y2). V(QAyz AT (X yx) (Xayz)) i— V(X1), V(Xa).
NP(A2.Y: (Yzz)) :— Det(Y;), N(Ya). NP(X1X5) :— Det(X1), N(X»).
NP(/John/). NP(Au.u John®).

V(/found/). V(find“ e,

V(/caught/). V(catch®?e™).

V(/is/). V(=re),

Det(/a/). Det(Auv. 3D Ay AT (ugy) (vy))).
N(/man/). N(man®~?).

N(/unicorn/). N(unicorn®=").

Figure 4: The grammar in (7) expressed as a synchronous CFLG (top), with its
two components separated out. The first component is a linear CFLG encoding the
CFG (1), and the second component is the CFLG (9).

e for every subterm N, if a variable x occurs free more than once in N, z has
an atomic type,

where the type of an occurrence of a variable is determined by the typing assigned
to the A-term by the grammar. The reduction to Datalog is guaranteed to be correct
only when the grammar is almost linear in this sense.

The key to our construction is the principal typing of an almost linear A-term.
In this informal exposition, we represent principal typings graphically by means
of hypergraphs of a certain kind. A hypergraph is a generalization of a directed
graph where an edge (called a hyperedge) may be incident on any number of nodes,
depending on its label

10The connection between CFLGs and hypergraphs goes beyond the present informal exposition.
See [45] for the relation between linear CFLGs and hyperedge replacement grammars, a context-free
grammar formalism generating sets of hypergraphs.
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For example, take the A\-term
Ayz AT X ya) (Xoy ) (12)

annotating the left-hand side of the third rule of the grammar (9). Recall that
the function f mapping nonterminals to their types gives a typing of the A-term
annotating the left-hand side of each rule. The typing assigned to the A-term (I2))
is expressed by the typing judgment (I0):

FXjte—e—t,Xoie—e—t= Ay AT Xqyx)(Xoyx) te —e—t. (10)

(Note that the bound variables  and y both have type e in this typing.) Given the
typing judgment (10), we can build the hypergraph for the A-term (12):

(13)

In a diagram like this, circles represent nodes, and circles with numbers attached to
them are external nodes of the hypergraph. Each hyperedge is represented by a box
with a label inside and tentacles connecting it to the nodes that it is incident on.
The tentacles of a hyperedge are ordered; in this paper, we adopt the convention
that they are ordered clockwise starting from the 12 o’clock position. Thus, the
hyperedge with label Xo in (I3]) has three tentacles, with the first tentacle leading
to the node right above it, the second to the node right below it, and the third to
the node right below the hyperedge with label X;. We call the first node in the
sequence of nodes that a hyperedge is incident on the result node of the hyperedge.

In general, the hypergraph graph(M) for a typed almost linear A-term M is
constructed by induction on the structure of M, as follows. If « is a type, let |a| be
the number of occurrences of atomic types in a

"1n this paper, we greatly overload the notation |- |. In addition to the use just defined, we use
it to mean the number of nodes of a tree, the length of a string, and the number of components of
a tuple. It should be clear from the context which meaning is intended.
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For a variable or a constant a of type «, graph(a) consists of || nodes v1, ..., vq/,
all of which are external nodes, and a single hyperedge labeled by a, which is incident
On V1, ...,V|4, in this order. Given the typing in (10), we have:

If M is an application M1 My, where M; and Ms are of type o — 8 and «,
respectively, graph(M) is constructed from the union of graph(M;) and graph(Ms)
by identifying the last |«| external nodes of graph(M;) with the external nodes of
graph(Mys); the remaining external nodes of graph(M;) become the external nodes
of M. If M; and Mj share a free variable x (which must be of atomic type since
M is almost linear), then the z-labeled hyperedge in graph(M;) and the z-labeled

hyperedge in graph(Ma), as well as the nodes that they are incident on, are also
identified.

graph(Xay) =
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graph(A(X1yx)(Xayz)) =

Finally, if M is a A-abstraction Az.Mj, then graph(M) is obtained from
graph(M;) by appending the sequence of nodes that the z-labeled hyperedge is
incident on to the sequence of external nodes.

graph(Az. A (X yx)(Xoyx)) =

graph(A\yz. A (X yz)(Xoyz)) =

There are several important points to note about this construction:
e If M has type a, graph(M) has |a| external nodes.

e For each free variable x in M, there is exactly one hyperedge labeled by x in
graph(M).
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e When M is in n-long B-normal form, graph(M) is what is called a term graph
(see [59]) with external nodes; in particular, for each node v in graph(M),
there is exactly one hyperedge whose result node is v.

To convert an almost linear CFLG rule
B(M) :— B1(X1),...,Bn(Xp)

into a Datalog rule, we take graph(M) and name its nodes with Datalog variables
(for which we use i1, 2,143,...). In the case of the third rule of the grammar (9),

V( Ayz A7 X yz) (Xoyz)) — V(X7), V(Xs), (14)

we get:
(15)

Then we do three things to the CFLG rule:

(i) replace the left-hand side A-term M by the sequence of external nodes of
graph(M),

(ii) replace each right-hand side variable X; by the sequence of nodes that the
X;-labeled hyperedge is incident on in graph(M), and

(iii) for each hyperedge in graph(M) labeled by a constant b, add to the right-
hand side of the rule an atom b(7), where ¥/ is the sequence of nodes that the
hyperedge is incident on.

Applying this procedure to (I4]) produces the following result:
V(i1,da,13) 1= A(i1, 45, 12), V(iz, 4, 13), V(i5, 4, i3).
For another example, consider the ninth rule of the CFLG in Figure 9:

Det(Auv. 307 Ay AP (uy) (vy))).
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The hypergraph for this A-term is

and the corresponding Datalog rule is
Det(z’l, 15, 4,13, i4) = H(il, 12, i4), /\(iz, 15, ig).

Applying the same procedure to all the rules in (9), we get the following Datalog
program:
S(’Ll) = NP(il,’iQ,ig),VP(iQ,ig). (16)
VP(i1,i4) :— V(i2,i4,13), NP (i1, 12, i3).
V(il, i4, ig) i /\(’il, i5, ig), V(ig, ’i4, ig), V(’L'g,, i4, ’ig).
NP(il, 4, i5) = Det(z’l, 14,15, 19, ’i3), N(ig, ig).
NP(il, il, ig) = JOhn(iz).
V(il, i3, ig) = ﬁnd(il, ’i3, ig).
V(il, ig, ig) = catch(il, ig, ig).
Det(il, 15, 14,13, i4) — El(il, 12, i4), A(ig, 15, ig).
N(’il, ig) — man(il, ig).
N(i1,i2) :— unicorn(iy, i2).

The construction of the database representing the input A-term is similar, but
slightly more complex. A simple case is the A-term (§]), where each constant occurs
just once:

3(Ay.A(unicorn y)(find y John)) (8)

This is an almost linear A-term in 7-long S-normal form, from which we obtain the

1116



PARSING AND GENERATION AS DATALOG QUERY EVALUATION

S((Au.w John)(Az.(Auv.3(Ay.A(uy)(vy))) unicorn (Ay.find y x)))
NP John) VPO (i 3y A(ug) (09))) unicorn (Ay.find y 7))
V(find)  NP((uv.3(\gA(ay)(vy))) unicorn)
Det(Auv.H(Amcorn)

Figure 5: The CFLG derivation tree for (8)

following hypergraph:

The hyperedges of this hypergraph that are labeled by constants in the A-term
constitute the facts in the database representing the A-term:

3(1,2,4). A(2,5,3). unicorn(3,4). find(5,6,4). John(6). (17)

(Note that here, we are using database constants 1,2,3,..., rather than Datalog
variables, to name nodes.) The external nodes of the hypergraph (of which there is
only one in this example) determine the query:

?7-S(1). (18)

The A-term (8) is in the language of the CFLG (9). Correspondingly, the answer
to the query (I8) against the program in (I6) and the database in ([IT) is “yes”.
Figures B and [0l show the associated CFLG and Datalog derivation trees.

The situation becomes more complex when the input A-term contains more than
one occurrence of the same constant. Such is the case with the A-term (9] (this is
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5(1)
NP(1, 1, 6) VP(1,6)
John(6) V(5,64  NP(L54)
find(5,6,4) Det(1, 5M 4)

/—\
3(1,2,4) A(2,5,3) unicorn(3,4)

Figure 6: The Datalog derivation tree for the query (18) against the database in

(17) and the program in (16).

the A-term associated with John found and caught a unicorn by the grammar (7)):
J(Ay.A(unicorn y)(A(find y John)(catch y John))). (19)

Let us apply the same procedure to (19) as we did to (8). The hypergraph for (19)

is the following:
(20)

From this hypergraph, we would get the database (2I]) and the query (22)):

3(1,2,4). A(2,5,3). unicorn(3,4). A(5,8,6). find(6,7,4). John(7). (21)
catch(8,9,4). John(9).
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S((w.u John)(Az.(Auv.3(Ay.A(uy) (vy))) unicorn (Ay.(\yz.A(find y z)(catch y 7)) y o))
//\
NP(Au.u John) VP ()\m.()\uv.fl()\y./\(uy) (vy))) unicorn (\y.(\yz.A(find y z)(catchy z)) y T))
/\
V(Ayz’./\(ﬁnd y z)(catchy r)) NP ((/\uv.El()\y./\(uy)(vy))) unicorn)

/,,/\
V(find) V(catch) Det(\uv.3(\y.A(uy)(vy))) N(unicorn)

Figure 7: The CFLG derivation tree for (19).

It turns out, however, that (21) is not the correct database corresponding to the
input A-term (19). Even though (19) is generated by the CFLG in (9) with the
derivation tree in Figure [, the answer to the query (22) against the database (21)
and the program (16) is “no”, as the reader can easily verify.

To obtain the desired database, we need to modify (20) by identifying the two
hyperedges labeled by John and the nodes they are incident on, as follows:

! (23)

9@@
@

This gives the database (24]).

3(1,2,4). A(2,5,3). A(5,8,6). unicron(3,4). find(6,7,4). John(7). (24)
catch(8,7,4).

Against this database and the program in Figure 16, the query (22) is correctly
answered “yes”. Figure[8shows the associated Datalog derivation tree for this query.
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s(1)
NP(1,1,7) VP(1,7)
John(7) V(5,7.4) NP(1, 5, 4)
AGES) VT4 VELY D534 NG

| —_—

find(6,7,4) catch(8,7,4) 3(1,2,4) A(2,5,3) wunicorn(3,4)

Figure 8: The Datalog derivation tree for the query (22) against the database (24)
and the program in (16).

Note that the database (24) can also be obtained from the following non-3-normal
A-term, which S-reduces to (19):

J(Ay.A(unicorn y)((Az.A(find y x)(catch y x)) John)). (25)

The hypergraph for (25]) is identical to (23)), except for the presence of an additional
hyperedge labeled by x (incident on the node named “77).

The general rule is that the input A-term should first be S-expanded to an
almost linear A-term that is the most “compact” in the sense of containing the
fewest occurrences of constants, before the hypergraph and the associated database
and query are extracted out of it. This explains why the two hyperedges labeled by
A in (23) cannot be identified, because there is no almost linear A-term with just one
occurrence of A that S-reduces to (19). On the level of hypergraphs, the necessary
operation is similar to the conversion of term graphs to their fully collapsed form
(see [59]). This is by no means an accurate formulation, however, because the “fully
collapsed form” does not always correspond to an almost linear A-term, and there is
some subtlety involved in the treatment of hyperedges labeled by bound Variables
A precise method of converting the input A-term N to the desired almost linear
A-term N° will be given by Algorithm [Ilin Section

Note that the way we obtain a database from an input A-term generalizes
the standard database representation of a string: from the A-term encoding

2For example, the algorithm S-expands d(b(Au.a(uc)))(b(Mv.a(ve))) to (Az.dzz)(b(Au.a(uc))),
but does not B-expand d(Au.a(uc))(Au.a(uc)) to (Az.dzz)(Au.a(uc)), which would correspond to
the fully collapsed form.

3The input A-terms we have used as examples are both almost linear. Since the class of almost
linear A-terms is not closed under S-reduction, a B-normal A-term generated by an almost linear
CFLG is not necessarily almost linear. Thus, in general, the input A-term has to be [-expanded
to an almost linear A-term before any hypergraph can be obtained by the method outlined above,
even when no constant occurs more than once in the input A-term.
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ai...ap/ = Az.a7°(...(a27°z)...) of a string a; ...a,, we obtain the database
1 n
{a1(0,1),...,an(n — 1,n)} and the query ?—S(0,n), as the reader may verify.

2.3 An outline of the proof of correctness

Let us give a rough idea of the proof of correctness of our reduction, presented
informally in Section 2.2.

For the reader familiar with the notion of a principal typing, it should be clear how
the hypergraph graph(M) for an almost linear A-term M corresponds to a principal
(i.e., most general) typing of M, where occurrences of constants are treated like
mutually distinct free variables. For instance, corresponding to the hypergraph (20)
for the almost linear A-term (19), we have the principal typing

3:(4—2)—=1,A1:3—5—2 unicorn:4 —3, Ny :6—>8 — 5,
find:4—7— 6, John; : 7, catch:4 — 9 — 8, Johny:9 = 1. (26)

Note that distinct occurrences of A and of John in (19) are regarded as distinct free
variables. In the case of the A-term (25), which has just one occurrence of John,
we have

3:(4—2)—=1,A1:3—=5—2, unicorn:4 — 3, N\2:6 =8 =5,
find:4—7—6,John:7 catch:4—-7—8 = 1 (27)

as its principal typing, corresponding to (23)

What is special about almost linear A-terms is that when an almost linear A-
term with constants (in n-long form) is “maximally compact” in the sense that it
has no fB-equal almost linear A-term with fewer occurrences of constants, its principal
typing exactly characterizes the set of almost linear A-terms (in n-long form) that
are f-equal to it. More precisely, let M be such a maximally compact almost linear
A-term in n-long form and let I' = « be its principal typing. Then we have the
following equivalence for every almost linear A-term M’ in n-long form:

M’ has a typing I" = « for some subset I of T’
if and only if M’ is 3-equal to M. (28)

MThe exact correspondence between graph(M) and a principal typing of M requires M to be in
n-long form. Note that this notion of typing of a A-term with constants is different from the notion
of typing expressed by judgments like (10), where constants have fixed, pre-assigned types. In the
rigorous presentation of Section 3, typings like (26) and [27) will be replaced by typings of pure
A-terms that result by replacing distinct occurrences of constants by distinct free variables.
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The main ingredients of the proof of this property of almost linear A-terms are
the following:

e A principal typing of an almost linear A-term is negatively non-duplicated in
the sense that each atomic type has at most one negative occurrence in it

(ct. [2)).

e All A\-terms that share a negatively non-duplicated typing are Sn-equal [3].
This is a generalization of the Coherence Theorem (see [50]).

e The leftmost S-reduction from an almost linear A-term is non-erasing and
almost non-duplicating in the sense that for each f-redex (Ax.P)(Q that is
contracted, z can occur free more than once in P only when the type of z is
atomic.

e If there is a non-erasing, almost non-duplicating S-reduction from a pure (i.e.,
constant-free) A\-term M to N, every typing of N is a typing of M. This is a
generalization of the Subject Exapnsion Theorem (see [31]).

Now let P be the Datalog program constructed from the given almost linear
CFLG ¢, and let N be the input A-term (in 7-long S-normal form). Suppose that
our algorithm first S-expands N to an almost linear Ad-term N°. Let I' = « be a
principal typing of N°, and let D and ?— S(@) be the database and query constructed
from this typing.

Suppose that there is a Datalog derivation tree T" for the query 7— S(@) against
the program P and the database D. Given the one-one correspondence between the
rules of ¢ and the rules of P, the Datalog derivation tree T determines a CFLG
derivation tree T'. (See Figures 5, 6, 7, 8 for examples.) The former, however,
contains more information than the latter. Fach ground instance p of a Datalog rule
used in T corresponds to a typing of the A-term in the corresponding CFLG rule.
For instance, the ground instance

V(5,7,4) :— A(5,8,6),V(6,7,4),V(8,7,4)

of the third rule of (16) that is used in the Datalog derivation tree in Figure 8 gives
the following typing judgment:

FA:6—=8—=5 X1:4—-7—6, Xo:4—7—8= \yz.AN(X1yx)(Xoyz): 4 — 7 —5.

Piecing together all these typing judgments corresponding to ground instances of
rules used in 7T gives a typing judgment

FT'= P:d,
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where P is the (non-#-normal) almost linear A-term at the root node of 7”. Since o/
and I correspond to the root node and the leaf nodes of T, respectively, we must
have o/ = « and I" C I'. By the special property (28)) of almost linear A-terms,
it follows that P is Bn-equal to N° and hence to N, which implies that 7" is a
derivation tree for N.

Let us now consider the converse direction and suppose that a derivation tree
T’ of 4 has its root node labeled by S(P) and P f-reduces to N. By the one-one
correspondence between the rules of 4 and the rules of P, T" determines a “skele-
tal” Datalog derivation tree made up of non-ground instances of rules of P, where
predicates have Datalog variables as arguments, instead of database constants. The
question is whether one can replace these Datalog variables with database constants
from D in such a way that leaf nodes will correspond to facts in D, so that the
derivation tree will become a derivation tree for S(@) against P and D. This is
possible precisely when P has a typing IV = « with IV C I'. By the special property
(28) again, this must be so since P is almost linear and is fn-equal to N and hence
to N°.

2.4 The scope of the present method

The present method of reduction to Datalog is directly applicable only to formalisms
expressible in almost linear CFLGs. Almost linear A-terms suffice to represent for-
mulas in a logical language with quantification over individual variables only, so
when the meaning representation language used in a surface realization problem is
such a language, the input to the corresponding CFLG recognition problem will
always be an almost linear A-term. For instance, in the extensional subfragment
of Montague’s [57] fragment of English, the translations of English sentences will
fall within such a language. Consequently, it is possible to extend the grammar
(7) to one that covers a large portion of Montague’s [57] fragment while keeping
the semantic half of the grammar almost linear. However, even when almost linear
A-terms suffice to encode the target logical forms, we sometimes need grammar rules
that are not almost linear[19

For example, suppose we add to the synchronous grammar in Figure 4 the fol-
lowing rules:

NP(Az.Yi(/and/(Y22)), Au. A7 X (Arux)) (Xo(Azux))) :— NP(Y7, X1), NP(Ya, Xo).
VP(/sang/, sing®™?).
NP(/Bill/, Au.u Bill°).

'5This is already evidenced in the grammar of Montague [57], which has a rule similar to the
first of the three rules below.
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With these rules, the grammar can now generate John and Bill sang, with the logical
form

A(sing John)(sing Bill). (29)

Let us see how we might convert to Datalog the “semantic half” of the three
synchronous rules above:

NP (Au. AT X (Aruz)) (Xa(Az.ux))) :— NP(X7), NP(Xs). (30)
VP (sing®™?).
NP (Au.u Bill®).

Recall that f(NP) = (e — t) — t, so the type of the variables X; and X5 in the
first rule of (B0) are (e — t) — t and the type of u is e — ¢. This means that the
A-term M on the left-hand side of this rule is not almost linear. The method we
described was not meant to apply to a case like this, but suppose we extend it to
cover this case. We would get the following hypergraph

Thus, from the three CFLG rules in (30), we get the following Datalog rules:

NP(i1,i3,44) :— A(i1,15,12), NP (i, i3,14), NP(i5, i3, 14). (31)
VP(il,ig) = sing(il,ig).
NP(il,il,’ig) = Blll(ZQ)

16This graph corresponds to the principal typing of the A-term M.
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As for the A-term (29]), there are two conceivable hypergraphs that can be asso-
ciated with it:

The first graph is what we obtain with the method described above. The second
graph is the result of identifying the two edges labeled by sing and the nodes they
are incident on. The corresponding databases are:

A(1,4,2). sing(2,3). sing(4,5). John(3). Bill(5). (32)
A(1,2,2). sing(2,3). John(3). Bill(3). (33)

Against the database ([32)) and the program consisting of the rules in (16) and

3T), the query
7—S(1).

is answered “no”. Against the database (33]) and the same program, the same query
is answered “yes”, but there are too many Datalog derivation trees for this query.
In addition to the correct one corresponding to the CFLG derivation tree for (29),
there are three others, corresponding to the CFLG derivation trees for the following
A-terms:

A(sing John)(sing John)
A(sing Bill)(sing John)
A(sing Bill)(sing Bill)

This means that if (33) is used to solve the task of finding sentences expressing
meaning (29), the output obtained contains not just John and Bill sang, but also
John and John sang, Bill and John sang, and Bill and Bill sang. Thus, neither (32) nor
(33) gives a correct reduction of surface realization to Datalog query evaluation.
As for applications to parsing and recognition, the present method directly ap-
plies to string-generating grammars with no copying operation, like multiple context-
free grammars, but not to formalisms like macro grammars [24] and parallel multiple
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context-free grammars [66], where derivations involve copying of strings. To repre-
sent grammar rules that duplicate strings, a CFLG must use multiple occurrences
of the same variable of type o — o0, and so cannot be almost linear. An almost lin-
ear CFLG can represent tree grammars with copying operations, however, because
trees are represented by A-terms of atomic type o. It turns out that this provides
an indirect way of applying the present method to grammars with string copying,
using as input a representation of a finite set of trees that yield a given input string.
This point will be elaborated in Section

2.5 The present approach to generation

In this section, I clarify some basic assumptions I make in this work about the mean-
ing representation language and the task of surface realization. These assumptions
do not concern the formal result about the reduction of almost linear CFLGs to
Datalog, but rather the kind of application of the formal result to grammars for
natural language I have in mind.

In Montague’s [57] work, the meaning representation language, which incorpo-
rates a form of A-calculus, is just a convenient tool used to give a model-theoretic
semantics to the object language, and can in principle be dispensed with. In con-
trast, this work assumes that the level of semantic representation is crucial and that
grammar rules specifically refer to A-terms as structured, “syntactic” objects. Any
computation on meanings must be performed on some form of representation or
other; using A-terms as semantic representations seems to be a convenient choice.

The formalism of A-calculus can be used in different ways for different purposes.
The example grammar I have given uses A-terms to more or less directly represent
formulas of the language of some logic (subsuming at least first-order logic), using
appropriately typed constants for logical and non-logical symbols of the language.
Binding of a variable by a quantifier is represented by an application of the constant
representing the quantifier to a )\-abstract A pleasant consequence of this is
that two formulas that are related by renaming of bound variables translate into
a-equivalent A-terms and are treated as the same. However, since constants are just
uninterpreted symbols, all other cases of logically equivalent pairs of formulas come
out as distinct A-terms.

This use of A-calculus, as an alternative syntax for the language of some logic, is
of course not the only way to use A-calculus as a meaning representation language.
For example, logical connectives and quantifiers may be defined in terms of equality
(at different types), & la Henkin [29] 19 It is also common to represent truth values,

"Following Church [I4], Barwise and Cooper [7], and Lloyd [53], among many others.

8For example, the universal quantifier (over individuals) may be defined as ylemt—=t —
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Boolean functions, etc., with pure (i.e., constant-free) A-terms, using 7 — 7 — 7 as
the type of truth values[™ One can even represent finite models as A-terms and cast
sentence meanings as functions from finite models to truth values [30]. These more
sophisticated uses of A-calculus, however, almost always take us outside of the realm
of almost linear A-terms, so the main result of this paper will not be applicable

The main result of this paper applies to surface realization as understood to be
the problem of finding a sentence such that the logical form associated with it by
the grammar exactly matches the input logical form. This means that the question
of whether or not the input logical form is surface realizable depends on the exact
shape of the input. If we take our example grammar (7), the answer is different for
each of the following pairs:

(34) a. 3(Ay.A(unicorn y)(find y John))
b. 3(A\y.A(find y John)(unicorn y))
(35) a. 3(Ay.A(unicorn y)(A(find y John)(catch y John)))
b. I(Ay.A(A(unicorn y)(find y John))(catch y John))
(36) a. I(Az.A(man z)(3(A\y.A(unicorn y)(find y z))))
b. 3(Ay.A(unicorn y)(I(A\z.A(man z)(find y z))))
(37) a. I(A\y.A(many)(= y John))
b. man John

It is generally agreed in computational linguistics that the input to surface realiza-
tion should not be informed by the particularities of the grammar and that ideally,
both members of these pairs should lead to the same result, since they are obviously
logically equivalent [68]. While accounting for the full range of logical equivalence
is clearly intractable, capturing commutativity and associativity of conjunction is
considered particularly important in machine translation applications, and partly
for this reason it is popular in computational linguistics to use a “flat” and

ordered” meaning representation language where equivalences like (34]) and (B3] are
built in (see, e.g., [I5] or [51]). Another motivation for flat semantics is the need
for compact “underspecified” representation of a range of different scope readings
of sentences with multiple scope-taking operators. Generation from flat semantics

Aue—)t. —(e=t)—=(emt)—t u ()\1’8 —e—e—rt P CI?)

9The truth values “true” and “false” are encoded by the A-terms Azy.x and Azy.y, respectively.
These are known as Church Booleans.

20Gurface realization in such a setting is still decidable since Salvati [65] proves that recognition
is decidable for general CFLGs. It is an open question how far the class of almost linear A-terms
can be extended without making the resulting CFLG recognition problem intractable.
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has been shown to be NP-hard [50], however, so adopting a flat representation lan-
guage is (for all we know) incompatible with polynomial-time algorithms for surface
realization.

Typed A-terms, with “hierarchical” and “ordered” structures, do not seem to be
particularly well suited to encoding of flat semantics, but it is possible to adapt to
A-calculus the idea of Koller et al. [49], who have proposed to use regular tree gram-
mars that generate finite sets of trees as a formalism for underspecification. Trees
cannot properly represent variable binding, so a reasonably compact description of
a “regular” set of A\-terms will improve upon Koller et al’s [49] proposal It turns
out that in certain cases, a database serves as such a compact representation. In
Section 4.2, I present a result extending the main result to handle certain regular
sets of A-terms as input to the recognition problem for almost linear context-free
A-term grammars. Notwithstanding this possibility of accommodating underspec-
ification, I believe that thorough understanding of the simpler problem of “exact”
surface realization should take precedence.

The underlying theme of this work is that the problem of surface realization can
and should be studied in the style of formal language theory, just like parsing. For
this purpose, the problem of surface realization should be formulated in abstract,
general terms. The primary goals of any such study would be to identify the compu-
tational complexity class for which the problem is complete, and to provide natural,
efficient algorithms (insofar as is allowed by the complexity lower bound) to solve the
problem. The formalism in which the input to surface realization is encoded should
be sufficiently rich to support constructs (e.g., variable binding) that are necessary
to express natural language meaning, but should not be tied to one particular logical
language. Typed A-calculus seems to fit this role very well; it has a wide variety of
uses, its formal properties have been extensively studied, and its use is also fairly
common in computational linguistics. All other things being equal, a general, math-
ematically elegant, and well-understood formalism should be preferred over ad hoc,
application-specific, ill-understood alternatives.

3 Formal development

3.1 Preliminaries
3.1.1 Datalog

A database schema is a pair D = (R,U), where R is a finite set of predicates, each
of fixed arity, and U is a (possibly infinite) set of database constants. A ground fact

21See [64] for a definition of a regular or recognizable set of typed A-terms.
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over D is
p(3),

where p is a predicate in R of arity k, and s is a k-tuple of constants in U, for some
k. A database over D is a finite set of ground facts over D. If D is a database, the
universe of D, written Up, is the finite set of constants appearing in D.

We assume that we are given a countably infinite supply of variables. A Datalog
program over R is a finite set of rules, which are function-free definite clauses of the
form

pU(fO) i pl(fl)a ... 7pn(fn)a

where n > 0, p; are predicates, each of fixed arity, and Z; are tuples of variables
(not necessarily distinct) of appropriate length, matching the predicate’s arity. A
predicate together with its arguments constitutes an atom. The left-hand side of a
rule (the part to the left of :—) is called the head, and the right-hand side the body.
The atoms that constitute the body are the subgoals of the rule The predicates in a
program P are divided into the intensional predicates and the extensional predicates.
A predicate is an intensional predicate if it appears in the head of some rule, and
an extensional predicate otherwise. An extensional database for P is a database D
for a schema D = (R, U) for some U, where R consists of the extensional predicates
of P. We call ground facts in an extensional database extensional facts. We follow
the logic programming parlance and call a negative Horn clause a query In this
paper, we are mainly interested in simple (i.e., non-conjunctive) ground queries of
the form

where §'is a tuple of constants from Up (of appropriate length).

Given a Datalog program P and an extensional database D, a ground fact p(5)
is derivable from P and D, written

PUDt p(s),

if and only if either p(5) € D or there is a ground instance

p(8) := p1(81), -+ Pn(5n)

22In Datalog, it is often required that the variables in the head of a rule all appear in the body,
but we do not assume this restriction. In particular, we allow rules with empty body (i.e., facts) in
Datalog programs.

2In relational database theory and finite model theory, the term query sometimes means a
function that maps a finite relational structure to a finite relational structure. A query in this
sense may be expressed by a pair (P, R’) consisting of a Datalog program P and a subset R’ of
its intensional predicates [16]. See [1] for a similar use of the term “datalog query”. The logic
programming parlance was used by Ullman [77] in the context of Datalog query evaluation.
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of a rule in P such that
PUDF pz(gz)

for each i = 1,...,n. A derivation tree is a tree whose nodes are labeled by ground
facts in accordance with the above inductive definition. That is to say, a derivation
tree for p(§) from P and D is either a tree with a single node labeled by an extensional
fact p(8) € D, or a tree of the form

/\
T - T,
where there exists some ground instance p(§) :— pi(81),...,pn(8y) of a rule in P
and T; is a derivation tree for p;(s;) fori=1,...,n.

It is easy to see that for a fixed Datalog program P, the problem of determining,
given a database D and a fact ¢, whether PUD I ¢ holds can be solved in polynomial
time in the size of (D, ¢q). For some Datalog program, this problem is known to be
P-complete (see [48] for an overview of complexity issues). Among the most basic
polynomial-time algorithms for this problem are naive and seminaive bottom-up
evaluation (see [1] or [76]). In these methods, derived facts that share the same
predicate are grouped together into a relation, and relational algebra operations
are used to expedite the iterative, bottom-up computation of the relations. In the
application of Datalog to recognition and parsing, however, the number of derivable
facts is usually not large, so it is not so unreasonable to process one fact at a time.
Under this simplification, seminaive bottom-up evaluation can be expressed by the
following pseudocode. If 7 is a rule, we write ground(m,U) to denote the set of
ground instances of 7 using only constants from U.

1: procedure SEMINAIVE(P, D)

2 D+ o

3: D' <+~ DU {p(5) | p(5) € ground(m,Up) for some 7 € P }
4: Al « D!

5 141

6:  while A’ # & do

m=p(Z) :— p1(Z1),...,pn(Zn) € P,

. i+1 pl(gl)w'"pj—l(gj—l) eDivpj(gj) eAia Y
T AT p(3) Pi+1(5j41), -, Pn(8n) € D71 for some j € [1,n], D
and p(8) :— p1(51), .., Pn(8n) € ground(w, Up)
8: Dt DP U A
9: 1+ 1+1
10: end while
11: return D’
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12: end procedure

In this algorithm, D’ is the set of ground facts whose derivation trees have minimal
height ¢ — 1.

Derivation trees are assembled from ground instances of rules. If, in addition to
derived ground facts, we record ground instances of rules used to derive facts, we
can obtain a packed representation of all derivation trees for ground facts derivable
from the given program and the input database

1: procedure SEMINAIVE-PARSE(P, D)

2 D« o

3: D' <+~ DU {p(3) | p(3) € ground(m,Up) for some 7 € P }
4: G' « D!

5

6 141

7 while A’ # & do

) @) B P
i P1 §1,...,p'_1 §-_1 EDl,p'g' € Z, i
8 AT 0 p(3) Di+1(5j+1), J . 7pnj(é'n) € Di_ljfof" some j € [I,n], [ b
and p(5) :— p1(51),- -, pn(3n) € ground(w, Up)
m™=p(Z) (= p1(T1), ..., pn(Tn) €P,
9: Gitl ) p1(81), .- pj-1(8-1) € DZ; pi(5;) € sz_ UGl
pj+1(§j+1)a o Pn(8n) € D'~ for some J€[l,n],
and 7 = p(8) :— p1(51), ..., pn(8n) € ground(m, Up)
10: Dt D'y A
11: 1+—1+1

12: end while
13: return G*
14: end procedure

In the implementation of SEMINAIVE-PARSE, the operations in lines [8 and 9 should
be performed simultaneously. In this algorithm, the final value of G? records all rule
instances whose subgoals are derivable facts, and constitutes a propositional Horn
clause progmm

There is a natural way to associate an alternating Turing machine operating
in logarithmic space with each Datalog program [67), 48], and this is useful for the
complexity analysis of Datalog programs. Alternating Turing machines (ATMs) [13]
are a generalization of non-deterministic Turing machines. The set of states of

24The algorithms SEMINAIVE and SEMINAIVE-PARSE can also be written in the style of chart
parsing [69, [71]. The set A will correspond to the agenda. See Section 4.3 below.

25 At the end of the execution of SEMINAIVE-PARSE, we have D' = D" but not necessarily
G' = G, it would require one more iteration for G¢ to stabilize.
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an ATM is partitioned into existential and universal sates. If a configuration is
in an existential state, at least one of the successor configurations must lead to
acceptance, whereas if a configuration is in a universal sate, all of its successor
configurations must lead to acceptance. A computation tree of an ATM .# is a finite
rooted directed tree whose nodes are configurations of .# such that the root node
is an initial configuration, each existential configuration has just one of its successor
configurations as its child, and each universal configuration has all of its successor
configurations as its children. An accepting computation tree is a computation tree
whose leaves are all accepting configurations. An ATM .# operates (simultaneously)
in space S(n) and tree size Z(n) if on each input z of length n accepted by .#, there
is an accepting computation tree of size at most Z(n) in which each configuration
uses at most space S(n). Ruzzo [61] characterizes the complexity class LOGCFL as
the class of problems for which there is an ATM operating in logarithmic space and
in polynomial tree size.

A log-space-bounded ATM .#p simulating a Datalog program P may behave as
follows. The input to .#p is a pair (D, q) of an extensional database D for P and
a ground fact q; #p accepts (D,q) if and only if P U D F ¢q. This ATM uses k + 1
work tapes, where k is at least as large as the maximal arity of the predicates in P
and the maximal number of variables in rules of P. Each of the first k£ work tapes
serves as a pointer to a position on the input tape where an occurrence of a constant
starts. The last work tape is used to check identity of two occurrences of constants
(which we assume to be coded as binary strings). Part of .Zp’s finite control is used
to store a predicate or a rule in P. We call the combination of this part of the finite
control and the first k£ work tapes the “storage area”. The storage area of .#p either
stores a ground fact p(§), using the work tapes to store the sequence § of constants,
or a ground instance of a rule 7 = p(Z) :— p1(Z1), ..., pn(Zn), using the work tapes
to store a ground substitution for the variables in m. The machine starts by copying
the ground fact ¢ on the input tape onto its storage area. Whenever .Zp has a
ground fact ¢’ in the storage area, it tries to verify PUD F ¢'. If ¢’ is an extensional
fact, it verifies that ¢’ appears in the database on the input tape and accepts. If ¢/
is an intensional fact, the machine uses existential branching and guesses a ground
instance 76 of a rule 7 = p(Z) :— p1(Z1),...,pn(Zy) in P whose head matches ¢/,
and places w0 in the storage area. The machine then uses universal branching and
for all i =1,...,n, places p;(Z;)0 in the storage area, and repeats the procedure. It
should be clear that if there is a derivation tree T' for PUD ¢, then the ATM .#p
on input (D, ¢) has an accepting computation tree of size |T'|- O(f(n)), where |T| is
the size of T', f is a polynomial, and n is the size of the input (D, q).

Lemma 3.1. Let P be a Datalog program and g(n) be a polynomial. The following
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problem is in LOGCFL:
{(D,q,1™) | there is a derivation tree for P U D F q of size < g(m) }

Proof. The idea is from [26]. We modify .#p by including bounds on the size
of Datalog derivation trees in each configuration. The modified ATM starts by
computing g(m). This computation and the storage of the resulting value (in binary)
can both be done within logarithmic space. When the machine is in a configuration
storing an extensional fact ¢ and a bound b (a natural number in binary), it checks
that ¢’ appears in D and b > 1, and accepts. When the machine is in a configuration
storing an intensional fact p(3) and a bound b, it checks that b > 1 and guesses
a ground instance p(38) :— pi(81),...,pn(8y) of some rule, together with bounds
b1,...,b, on the size of the derivations trees for pi(3),...,pn(8,), such that by +
-+++b, = b—1. It then uses universal branching to write p;(3;) and b; in the storage
area and try to find a derivation tree for p;(s;) of size < b;. It is clear that the size
of any accepting computation tree of this ATM on input of size n is bounded by
some polynomial in n. O

We call a node in a derivation tree an extensional node if it is labeled by an
extensional fact (i.e., facts from the database), and an intensional node otherwise.
A derivation tree is called tight [79] if no fact occurs more than once on any of its
paths. Note that whenever T is a derivation tree for P U D F p(3) that is not tight,
one can turn 7" into a tight derivation tree for P U D F p(S) by deleting some nodes
from T

The following elementary lemma will be useful later.

Lemma 3.2. Let P be a Datalog program. Then there is a polynomial g(n) such
that whenever there is a derivation tree for P U D  p(8) with | extensional nodes,
there is a derivation tree P U D F p(5) with n <[ extensional nodes whose size does
not exceed g(n).

Proof. Let k be the number of intensional predicates in P, r be the maximal arity
of intensional predicates in P, and m be the maximal number of subgoals of rules
in P.

If p is an extensional predicate, p(§) must be in D and there is a one-node
derivation tree for PUD I p(3). In the following, we assume that p is an intensional
predicate.

We first show that there is a constant ¢ (depending on P) such that if P - p(3),
then there is a derivation tree for p(§) with at most ¢ nodes. (Note that P F p(3)
means that p(3) is derivable without using any extensional facts.) Let 7" be a smallest
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derivation tree for P + p(3). Without loss of generality, we can assume that all
constants that appear in T appear in p(5), so that there are at most r of them. This
is because if T' contains other constants, they can be safely replaced by constants in
5. Since T must be a tight derivation tree, the height of T" is bounded by kr" — 1.
Therefore, the size of T is bounded by m*™" (if m > 2) or kr" (if m < 1).

Now suppose PUD F p(5) and let T be a smallest derivation tree for PUD F p(3)
with n < [ extensional nodes. As before, we can assume without loss of generality
that all constants in T' occur in p(3) or in facts labeling extensional nodes, so that
there are at most (n + 1)r of them. The intensional nodes of 7' may be divided into
the following three types:

Type 0 Intensional nodes that are not ancestors of any extensional nodes.

Type 1 Intensional nodes that have just one child that is an ancestor of some
extensional node.

Type 2 Intensional nodes that have two or more children that are ancestors of
extensional nodes.

Since the case of n = 0 has already been taken care of, assume n > 1. It is easy to
see that the number of intensional nodes of type 2 is at most n — 1.

To find a bound on the number of type 1 nodes, note first that all children of
type 1 nodes are type 0 nodes, except one, which is either an extensional node, a
type 1 node, or a type 2 node. We call two type 1 nodes equivalent if they are
related by the smallest equivalence relation extending the child-of relation restricted
to type 1 nodes. Each equivalence class of type 1 nodes is linearly ordered by the
child-of relation, and its minimal element is the parent of an extensional node or
of a type 2 node. Since T" must be tight by the minimality of T', the size of each
equivalence class of type 1 nodes cannot exceed k((n+1)r)". Since there are at most
2n — 1 equivalence classes of type 1 nodes, the number of type 1 nodes is bounded
by (2n — 1)k((n+ 1)r)".

We finally turn to type 0 nodes. Note that all children of type 0 nodes are type 0
nodes. We call a type 0 node maximal if it is not a child of a type 0 node. Since we
are assuming n > 1, any maximal type 0 node has a parent, which is either a type
1 node or a type 2 node. This implies that either there is no type 0 node or m > 2.
Note that there may be up to m — 1 or m — 2 maximal type 0 nodes that share the
same parent (m — 1 if the parent is type 1, m — 2 if the parent is type 2). Type
0 nodes that are not maximal are in a unique subtree rooted at a maximal type 0
node. Since we have seen that such a subtree has at most m*" nodes, there are at
most ((n —1)(m —2) + (2n — Dk((n + 1)r)"(m — 1))m*" type 0 nodes in total.
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Therefore, the number of nodes of T" is bounded by
2n— 14 2n— Dk((n+1)r)" + ((n—1)(m —2) + (2n — Dk((n + 1)r)"(m — 1))m*""

when n > 1, which is O(n"*1). O

3.1.2 Untyped A-calculus with constants

In this and the next two sections, we review some basic concepts in A-calculus
we will need in what follows, introducing some nonstandard notions and notations
along the way. For a more thorough introduction to the subject, see [6], [31], [73],
r [32]. Like Sorensen and Urzyczyn [73], we make an explicit distinction between
A-terms and notations that represent them. It is important for our purposes to be
completely precise about basic notions such as “subterm occurrence”, “substitution”,
“B-reduction”, “descendant”, etc.
Following Statman [74], we consider a A-term as an abstract object—namely,
a binary tree equipped with some additional structure. We use a fixed scheme of
naming nodes in a tree with strings of 0s and 1s. A binary tree domain is a finite,
prefix-closed subset 7 of {0,1}* such that wl € T implies w0 € 7. A node of
the form wi with ¢ € {0,1} is a child of the node w. A node is a leaf, a unary
node, or a binary node according to whether it has 0, 1, or 2 children. We write
TO 7MW 7@ for the sets of leaves, unary nodes, and binary nodes, respectively,
of 7. We write v < w to mean v is a prefix of w, and v < w to mean v < w and
v # w. The lezicographic order on {0,1}* is the strict total order < extending <
such that u0t < ult’ for every u,t,t' € {0,1}*. We say that v is to the left of w if
v < w. We let |w| denote the length of the string w. If w € T, then the height of w
in 7 is max{ |v| | wv € T }. Note that v < w implies that the height of v is greater
than the height of w.
We assume that we are given a fixed countably infinite set V = {wvp,v1,v2,...}
of variables. Let C' be a finite set of constants. A A-term over C is a structure

(T, f,b), where
e 7 is a binary tree domain,
e [ is a function from a subset of 7 to C UV,

e b is a function from 7 — dom(f) to 7 such that for all w € dom(b),
b(w) < w.

Let M = (T, f,b) be a A\-term over C. If ¢ € C and f(w) = ¢, we say that ¢ occurs
at w in M, and call the node w an occurrence of ¢ in M. If x € V and f(w) = =z,
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then we say that x occurs free at w in M, and call w a free occurrence of x in M.
For w € dom(b), we call b(w) the binder of w. The set of variables that occur free in
M is written FV(M); its elements are the free variables of M. When FV(M) = @,
M is a closed M-term (over C'). When no constant occurs in M, M is called a pure
A-term.

Let M = (Tu, far,bar) and N = (Tn, fn,bn) be A-terms (over C). Then the
application of M to N is the A-term M N = (T, f,b) defined as follows:

T ={e;U0Ty U1Tn,

f=A{ (0w, f;(w)) | w e dom(far) } U{ (1w, fy(w)) | w € dom(fn) },
b= {(0w,0by(w)) | w € dom(bps) } U{ (1w, 1by(w) | w € dom(by) }.

It is easy to see that the map (M, N) — MN is one-to-one and every A-term whose
root is a binary node is an application.
Let M be as above. For each variable x € V, we define the A-term Ax.M =

(T, f,0) by:
T =07wum,
f={ 0w, fu(w)) [ w € dom(fr) and far(w) # z },
b= {(0w,0bp(w)) | w e dom(bps) } U{ (0w, e€) | w € dom(fps) and fas(w) =z }.

A A-term of the form Ax.M is called a A-abstract. Clearly, any A-term P whose root
is a unary node is a A-abstract; indeed, given any variable x ¢ FV(P), P can be
written uniquely as Az.M.

A X-expression over C' is an expression built up from variables, constants, paren-
theses, the dot “.”, and the symbol A by the following rules 9

o [f c € C, then c is a A-expression over C.
o If x € V, then z is a A-expression over C.
o If M, N are A-expressions over C, then (M N) is a A-expression over C.

e If M is a A-expression over C' and = € V, then (Ax.M) is a A-expression over

C.

Then each A-expression represents a A-term, under the convention that a constant
or variable a € C UV represents the A-term

({e},{(e;a)}, 2).

26 A A-expression is called a pre-term by Sorensen and Urzyczyn [73].

1136



PARSING AND GENERATION AS DATALOG QUERY EVALUATION

It is clear that a A-expression has the same tree structure as the A-term it represents.
If M = (T,f,b) is a A\term, a writing of M [74] is a function £: T() — Y
satisfying the following conditions:

o Ifu,veTW weTO u<v<w,and b(w) = u, then £(u) # £(v).
e IfucTW veTO® u<w, and v € dom(f), then £(u) # f(v).

It is clear that every A-term has a writing; in particular, there is always a writing ¢
of M such that ¢ is one-to-one and ran(¢) NFV (M) = o P

Given a A\-term M = (T, f,b) together with a writing ¢, we can define a function
subyre from 7 to A-expressions as follows:

f(w) if w € dom(f),
by o(w) = 2(b(w)) if w € dom(b),
SPMAT = s subpyz¢(w0) if we 7W and (w) = z,

(subas.e(w0) subyye(wl)) if w € TA.

Then it is easy to see that subjs(€) is a A-expression representing M. The A-term
represented by subps¢(w) is usually called the subterm of M occurring at w; but
“subterm” is only defined relative to a writing ¢ of M.

We use usual abbreviations in writing A-expressions. We omit the outermost
parentheses from A-expressions and write M N P for (M N)P, \x.M N for Az.(MN),
and A\z122...x,. M for Axi.(Aza. ... ( Az, M) ...).

We define the operation of substitution of a A-term for a free variable in another
A-term. Let M = (Tar, far, bar) and N = (Tn, fn, by ) be A-terms and x be a variable
inV. Let X ={ve TZ&O) | far(v) = x}. The result of substituting N for x in M is
the A\-term Mz := N| = (T, f,b) defined by

T =TuUXTy,

f=A{(w, fu(w)) | w e dom(far) = X} U{ (vw, fy(w)) [ v € X,w € dom(fx) },
b=by U{(vw,vby(w)) |v e X,w € dom(by) }.

It follows from this definition that for all A-terms P,Q, N, all y € V — {z}, and all
z€V— ({z} UFV(N)), we have

]
]

27Such a writing corresponds to what Loader [54] calls a regular A-term.

x[x:

N
ylr:=N

N,
Y,
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(PQ)[x := N] = Pz := N| Q[z := NJ,
(Ax.P)[z:= N] = \z.P,
(Az.P)[x := N] = Az.(P[z := NJ).
The simultaneous substitution of A-terms N1, ..., Ni for pairwise distinct variables
x1,..., Tk ina A-term M is defined similarly, and is written M[z1:=Nq, ..., xp:=Ng].

We write M[x1, ..., x| to indicate that {z1,...,zx} C FV(M]zy,...,x]), and write
MINy, ..., Ng| for (M[z1,...,z5))[z1:= N1, ...,z := Ngl.

Let M = (T,f,b) be a A\-term. Suppose that w € T(? is a binary node of
M such that w0 € 7M. Such a node w is called a B-redex. Note that for every
writing £ of M, the A-term represented by subys¢(w) is of the form (Az.P)N. Let
X ={v|wow e TO b(wdv) =w0}. (The set of leaves of M whose binder is w0 is
w0X.) We write

M S5 M
it M' = (T, f',b'), where

T ={ueT|wLu}U{wv|wldveT}U{wu|ve X wlueT},
f={(u, f(u)|uedom(f),w £ u}U{(wv, f(wdOv)) | wOOv € dom(f) } U
{ (wou, f(wlu)) | v e X,wlu € dom(f) },
b ={(u,b(u)) | u € dom(b),w £ u}U
{ (wv, b(w00v) | wO0v € dom(b),w £ b(wO0v) } U
{ (wv, wv") | wO0v € dom(b), b(w00v) = w00V } U
{ (wvu,b(wlu)) | v € X, wlu € dom(b), w £ b(wlu) } U
{ (wvu,wou’) | v € X, wlu € dom(b), b(wlu) = wiu'}.
See Figure @ If ¢ is a writing of M and (Ax.P)N is the A-term represented by
subyyo(w), then for every writing ¢/ of M’ such that ¢ agrees with £ on {u € T() |
u < w }, subpy ¢ (w) represents Pl := NJ.
From here on, we will let A-expressions denote A-terms, rather than themselves,

unless we explicitly indicate otherwise, keeping in mind that distinct A-expressions
may represent the same A-term. For example, if M = c(Ay.d((Az.yzz)(yzz2))),
then the node 101 of M is a [-redex, and M 12}5 c(My.d(y(yzz)(yzz))) =
c(Ay.d((yzz)le := yzz])).

We write M —g M’ if M 55 M’ for some S-redex w in M. We say that M
p-reduces to M' (or M' B-expands to M) and write M —z M’ if there is a finite
sequence of A-terms Mo, My, ..., M, (n > 0) such that

M:M0—>5M1—>5~-'—>5Mn:MI.
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w w

Figure 9: A one-step f-reduction. The dotted arrows represent the binding map.

If M and M’ are related by the symmetric transitive closure of the relation — g, we
say M is B-equal to M’ and write M =g M’'.

Theorem 3.3 (Church-Rosser Theorem). If M —3 N and M —g P, then there
exists a Q such that N —5 Q and P —3 Q.

See [6] for a proof.

A Mterm is called S-normal if it does not contain a [S-redex. If a A-term (-
reduces to a S-normal A-term, the latter is called the 8-normal form of the former.
By the Church-Rosser Theorem for S-reduction, any A-term M has at most one
p-normal form. If a A-term M has a S-normal form, we denote it by |M|s.

If M —p5 M’, each node of M’ is a descendant of a unique node (its ancestor) of
M. For example, in M = (Az.yzz)(zw) —3 y(zw)(zw) = M’', both occurrences of
z in M’ are descendants of the unique occurrence of z in M. We give the definition
of the ancestor-descendant relation for one-step B-reduction as follows 29

Let M = (T,f,b),M = (T, f,V), and suppose w is a fS-redex in M and
M S5 M'. We write (M,u) > (M’,4') to mean that the node v’ of M’ is a
descendant of the node u of M. I;]et u € T. There are four cases to consider:

Case 1. w £ u. Then (M, u) » (M’ ,«) if and only if v’ = .

Case 2. u = w or u = w0. Then there is no «’ such that (M, u) > (M ).

Case 3. u = w00s. Case 3a. If u € dom(b) and b(u) = w0, then there is no v’
such that (M, u) > (M’ ). Case 3b. Otherwise, (M,u) > (M) if and only if
u = ws. y

Case 4. u = wls. Then (M,u) » (M’,u') if and only if v/ = wvs for some v
such that w00v € dom(b) and b(w00v) = w0.

28See [10] for a formal definition of the ancestor-descendant relation using the technique of
labeling bracket pairs, originally due to Newman [58].
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It is clear that each node of M’ is a descendant of a unique node of M. In Cases
1 and 3b, the node u of M has just one descendant in M’. In Case 4, it has as
many descendants in M’ as there are leaves in M whose binder is w0. We write
(M, u) »j, (M', %) to mean that the node u’ of M’ is the k-th among the descendants
of the node u of M under the lexicographic ordering of the nodes of M’.

Here are some important properties of the ancestor-descendant relation. The
proof is by straightforward inspection.

Lemma 3.4. Let M = (T,f,b) and M' = (T, f,V), and suppose (M,u) >
(M ).

1) uwe TW if and only if ' € 79 for i =0,1,2.
(ii) u € dom(f) if and only if v € dom(f’).
(iii) w € dom(b) if and only if u' € dom(b').

(iv) If u € dom(b), then (M, b(w)) » (M, ().

Wi, Wn

We write (M,v) »  (M’,v') if there are sequences My, Mq,..., M, and
V0, V1, - - -, U, such that (M,v) = (Mg, vg), (M',v") = (Mp,v,), and for 1 < i < n,
(M;—1,vi—1) > (M;,v;). The following theorem says that if M —g M’ and M’ is in
S-normal form, the ancestor-descendant relation between the nodes of M and the
nodes of M’ does not depend on the 3-reduction sequence from M to M’.

W1,...,Wn v1
Theorem 3.5. If (M,u) » (|M|g,v) and (M,u')

u'.

e (|M|s,v), then u =

Proof. The proof is via an equivalent definition of the ancestor-descendant relation
in terms of simply labeled A-calculus Ao [10]. This calculus defines S-reduction
on labeled A-terms, where each node carries a label, and the label of a node is
passed to the node’s descendants. If u is the only node labeled by a in a labeled
A-term M, the set of descendants of u in |M|g consists of those nodes labeled by a,
which is independent of the S-reduction path from M to |M|z because A/, being
an orthogonal combinatory reduction system, enjoys the Church-Rosser Property
(see [10] for details). O

A unary node w of M = (T, f,b) is an n-redex if w0 is a binary node and w01 is
the only node whose binder is w. If £ is a writing of M, then the A-term represented
by subjs¢(w) is of the form Az.Px, where z ¢ FV(P). We write

M 5, M
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w w

Figure 10: A one-step n-reduction. The node w01 is the unique node whose binder
is w.

it M= (T, f',v'), where

T ={ueT|wLu}U{wv|wldveT},
I ={(u, f(u)|uedom(f),w £ u}U{(wv,f(wdOv) | wOOv € dom(f)},
v = {(u,b(u)) | u € dom(b),w £ u}U

{ (wv, b(w00v) | wOOv € dom(b), b(w00v) < w } U

{ (wv, wv’) | wO0v € dom(b), b(w00v) = w00V’ }.

See Figure If ¢ is a writing of M and Azx.Px is the A-term represented by
subps¢(w), then for every writing ¢/ of M’ such that ¢ agrees with £ on {u € T |
u < w }, the A\-term represented by subys ¢(w) is P. The notions of n-reduction, n-
expansion, and n-equality are defined analogously to S-reduction, S-expansion, and
[-equality. We write M —», M’ to mean M n-reduces to M’ and M =, M’ to mean
M is n-equal to M'. The transitive closure of the union of -5 and —, is written
— gy, and similarly for =g,,.

The following are lemmas needed to prove the Church-Rosser Theorem for £n-
reduction (see [6] for a proof):

Lemma 3.6 (n-Postponmenet Theorem). If M —, Q —g T, then there exists a
A-term P such that M —g P —, T'.

Lemma 3.7 (Commuting Lemma). If M —3 P and M —, Q, then there exists a
A-term T such that P —, T and Q) —gT.

The following lemma is straightforward (see [31]):
Lemma 3.8. If M is in -normal form and M —, M’', then M’ is in B-normal

form.
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A Mterm M is a AI-term if every unary node of M binds at least one leaf. A
A-term M is affine if every variable occurs free in M at most once, and every unary
node of M binds at most one leaf. A A-term is linear if it is an affine A\I-term. The
class of AI-terms and the class of affine A-terms are both closed under S-reduction
and n-equality.

We introduce some nonstagi_a)rd notations. T_h_e; sequence of constants in M =
(T, f,b), denoted Con(M), is Con(M,e€), where Con(M, w) is defined as follows:

if w € dom(b),
if w € dom(f) and f(w) € V,

A~~~ I~
= =

Con(M, w) = { (f(w)) if w € dom(f) and f(w) € C,
Con(M, w0) it we 7O,
Con (M, w0)"Con(M,wl) ifwe T®,

~ —
where  denotes juxtaposition. The sequence of free variables of M, denoted FV (M),
— —
is FV(M,¢), where FV(M, w) is defined as follows:

() if w € dom(b),
R (f(w)) if w € dom(f) and f(w) € V,
FV(M,w) =< () if w € dom(t) and f(w) € C,
F—\}(M, w0) if we TW,
FV (M, w0) FV(M,wl) ifweT®,
If @(M) = (c1,...,¢n) and {z1,...,2,} NFV(M) = @ (with z1,...,2, pair-
wise distinct), we let %[x/ll .., Ty] denote the pure ):—\term such that (z1,...,2y,)
is a subsequence of FV(M[z1,...,z,]) and M = M]Jci,...,cn). For example,
it M = My.c(y(c(zd)), t_hfn/\(ﬁl(M) = (¢,¢,d), W(M) = (2), Mlz1, 20, 23] =

Ay.z1(y(xa(zx3))), and FV(M [z, z2, x3]) = (21,22, 2, T3).

3.1.3 Simply typed A-calculus with constants

Given a set A of atomic types, we let 7 (A) denote the set of types built up from
atomic types using — as the sole type constructor. In other words, 7 (A) is the
smallest set extending A such that

a,f € T(A) implies (a— )€ T(A).
We omit the outermost parentheses in writing types, and write @« — 5 — v to mean

a—(B—7).
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For a € 7 (A), we write |a| to denote the number of occurrences of atomic types
in . The notation @ denotes the sequence of atomic types (with repetitions) that
appear in « from right to left, defined as follows:

p=(p) ifpeA,

a— =0 a.

As before, ~ denotes juxtaposition of sequences. For example, p—=p —¢q = (¢, p, D).
Note that the length of @ is |«|.
The set of positions within «, denoted (), is defined as follows:

(p) = {e},
(a— B) = {e} UL{a) UO(B).

Then for every type «, (a) is a binary tree domain that has no unary nodes. The
subtype of o that occurs at position w € (a), subtype(a,w) in symbols, is defined
as follows:

subtype(a, €) = a,
subtype(a — 3, lw) = subtype(a, w),
subtype(a — 8, 0w) = subtype(, w).

The polarity of position w, pol(w), is 1 if the number of occurrences of 1 in w is
even, —1 otherwise. We say that § occurs positively (negatively) at position w in «
if subtype(a, w) = 8 and pol(w) =1 (pol(w) = —1).

A type substitution is a mapping o from J(A) to T (A’), written in postfix
notation, satisfying the condition (aw — )0 = aoc — fo. A type relabeling is a type
substitution that sends atomic types to atomic types. Note that (a) = (3) if and
only if there exist a type v and type relabelings o1 and o9 such that a = vyo; and
B =~og. If o] =nand q1,...,q, € A, then we let (a)(q1, ..., qn) denote the unique
type B in .7 (A) such that 8 = (q1,...,q,) and (o) = (3). For any type 3, we have
(B)(B) =B.

A higher-order signature is a triple (A, C,7), where A is a finite set of atomic
types, C is a finite set of constants, and 7 is a mapping from C to .7 (A). We write
A(X) for the set of A-terms over C.

A type environment is a finite partial function from V to 7 (A). A type environ-
ment I' = {(z1,01), ..., (2n, ay)} is usually written as a list z1 : aq, ..., 2, @ Q.
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Let I" be a type environment and M = (7, f,b) € A(X). A function t: T —
T (A) is a type decoration of M under T if dom(T") = FV(M) and

I'(f(w)) if we dom(f)and f(w) €V,

7(f(w)) if we dom(f) and f(w) € C,

t(w) = Q7 if w € dom(b) and t(b(w)) =~y — 4,

y—0 for some v if w € TW and t(w0) = 4,

v—0 if for some v € T®) | w =0, t(v) = §, and t(vl) = 7.

If t is a type decoration of M (under I'), we call (M, t) a typed A\-term over ¥ (under
).

A typed A-term (M, t) can be visualized in the form of a natural deduction: each
unary and binary node w is labeled with its type ¢(w), each node w € dom(f) is
labeled with a:v, where f(w) = a and t(w) = 7, and each node w € dom(b) is labeled
with [v]”, where b(w) = v and t(w) = 7. For example, the following figure depicts a
typed A-term (M, t) under the type environment z:p, where M = (Ay.y(yz))(A\z.x):

. p—p° z:p
[p — p] p
#0 [p}l 1
(p—p)—p P—D
P

To aid legibility, we have also placed the label v next to the horizontal line right
above each unary node U

Another familiar representation of a typed A-term is by means of a A\-expression
together with a type superscript on each of its subexpression. For instance, one way
of representing the above example of a typed A-term is

(AyP P (PP (yP P 2P )PYP) (PRI =P (N gP 2P \PPYP
We call an expression of the form I' = «, where I' is a type environment and «

is a type, a sequent. A sequent I' = « is a typing of M if there is a type decoration
t of M under T" such that t(¢) = a. In this case, we write

FeIT'= M: .

2The resulting figure is identical to the natural deduction as defined in, e.g., [75], except that
we use strings in {0, 1}*, rather than variables, as markers for closed assumptions, and we label
open assumptions with variables or constants. Hindley [31] also uses node addresses as assumption
markers in natural deductions, albeit in a different way.

1144



PARSING AND GENERATION AS DATALOG QUERY EVALUATION

and say that ¢ is a type decoration for the typing judgment I' = M : a. When I is
empty, we omit the symbol = and write -y M : . Reference to 3 is dropped when
M is pure.

We say that an (untyped) A-term M is typable if it has a typing. It is known
that every typable A-term has a S-normal form. A sequent is said to be inhabited
if there is a pure A-term M (an inhabitant) such that - I' = M : a. A sequent is
inhabited if and only if it is a theorem of intuitionistic logic

Let M = (T, f,b) € A(¥) and t be a type decoration of M. If ¢ is a writing of
M and w € T, then it is clear that

tyw(v) =t(wv) forwv e T
determines a type decoration t,, for subs¢(w), and we have
Fs { (z, t(wv)) | f(wv) =2} U{ ({(b(wv)), t(wv)) | b(wv) < w } = subpse(w) : t(w).

An important property of a typed A-term in S-normal form is the so-called
subformula property:

Theorem 3.9. Let M = (T, f,b) be a pure untyped A-term in B-normal form. If t
is a type decoration for x1:0q,..., %y = M :«q, then for every w € T, t(w) is
a subtype of «; for some i € {0,...,n}.

Proof. The theorem is a consequence of the following statement, which is easy to
see: for every w € T, if w # € and w ¢ dom(f), then there exists a v € T such that
t(v) = t(w) = a or t(v) = a — t(w) for some a. O

In general, the same typing of a A-term may have more than one type decoration.
See [31] for the proof of the following theorem:

Theorem 3.10. If M € A(X) is a M -term, any typing of M has a unique type
decoration.

Thus, a Al-term M together with a typing of M can be treated in the same way as
a typed A-term.

A typing I' = a of M is a principal typing of M if for every typing I = o of
M, there is a type substitution o such that I' = o/ = (I' = a)o. We call a type
decoration ¢t of M (under some type environment) a principal type decoration of M
if for every type decoration t' of M (under some type environment), there is a type
substitution o such that ¢ = o o t. Clearly, the typing determined by a principal
type decoration is a principal typing.

30We use the symbol = in the same way as Mints [56] does. This is the way Hindley [31] uses the
symbol . Although Fx I" = M : « implies dom(I") = FV (M), it is always possible to weaken the
antecedent in the sense that Fx; I' = M : o implies ks ', z: 8 = (A\y.M)z : o, where z,y € FV(M).

1145



M. KANAZAWA

Theorem 3.11 (Principal Type Theorem). If M is typable, then M has a principal
typing and a principal type decoration.

See [31] for a proof.
Let M = (Tar, far,bar) and N = (Tw, fn,bn) be Ad-terms and z be a variable in

FV(M). Let X ={v € ’7']\(40) | fm(v) =x}. Let M[z:=N] = (T, f,b) be the result
of substituting N for x in M. The following lemmas are straightforward:

Lemma 3.12. Suppose that ty; and ty are type decorations for I'y,xz: 8 = M : «
and T'y = N: 3, respectively, and that T'y and Ty agree on (FV(M)—{z})NFV(N).
Then we can define a type decoration t for T'y Uy = M[x:= N]:« by

Hw) = tar(w) if w e T,
 UN@)  if w=v for some v e X and v € Ty.

Lemma 3.13. Suppose that t is a type decoration for I' = M|x:= N]: « such that
for some type B, t(v) = B for every v € X. Pick a v € X. Then we can define type
decorations tyr and ty for I'y,x: 8= M :«a and 'y = N : 3, respectively, by

ty(w) =t(w) for allw € Ty,
ty(w) =t(vw) for allw € Ty,

where Ty and T9 are the restrictions of T' to FV(M) and to FV(N), respectively.

Let M(z1,...,z,] be a pure Ad-term such that FV(M[x1,...,z,]) = {z1,...,zn}.
For any c1,...,c, € C, we have

by Mlc1, ... cp]:a ifand only if  Fxy:7(c1),..., 20 :7(cn) = M[z1,...,2,] : .

Let (M,t) be a typed A-term. If M ﬂm M’, then t, in conjunction with the
ancestor-descendant relation, induces a type decoration ¢’ of M’, defined by

() =tv) if (M,v)w (M ,0).

This is denoted by (M,t) <5 (M’,#). Note that even though we do not have
(M, w) > (M’ w), it is always the case that ¢'(w) = t(w), since t(w) = t(w00) and
(M, w00) > (M, w).

Theorem 3.14 (Subject Reduction Theorem). If b5, I' = M : o and M —3 M,
then bx TV = M’ : a, where T is the restriction of T' to FV(M').
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See, e.g., [31] for a proof.

Let M = (T, f,b) and suppose M ﬂm M'. This S-reduction step is called
erasing if there is no v € T such that b(v) = w0, and duplicating if for some
v, € TO), v # " and b(v) = b(v') = w0. (The right child w1 of the f-redex w has
no descendant in an erasing S-reduction step, and has more than one in a duplicating
S-reduction step.) A S-reduction from M to M’ is non-erasing (non-duplicating) if
it consists entirely of non-erasing (non-duplicating) S-reduction steps.

Theorem 3.15 (Subject Expansion Theorem). If Fx, I' = M’ : o and M —35 M’
by non-erasing, non-duplicating B-reduction, then Fx I' = M : a.

See [31]. As a special case, if M is linear and M —g M’, then by, I' = M’: « implies
F«T'= M:a.

As with S-reduction, the n-reduction relation between untyped A-terms induces
the n-reduction relation between typed A-terms. A typed A-term (M,t), where
M = (T, f,b), is in n-long form if every node w € T satisfies the following condition:

e {(w) = f — ~ for some [, implies that either w € TW or w = v0 for some
veTd.

If (M, t) has a node w that does not satisfy this condition, there is a unique typed A-
term (M’,t') such that (M’,t') =, (M,t). Both nodes w and w00 of (M’, ') satisfy
the condition, and ¢'(w0) = v, ¢/ (w01) = B, both of which are shorter than 5 — ~.
Thus, every typed A-term can be converted to one in n-long form by a sequence of
n-expansion steps applied to nodes that do not satisfy this condition. It is easy to
see that the resulting A-term is unique; we call it the n-long form of the original
A-term.

We say that an untyped A-term M € A(X) is in n-long form relative to I' = « if
there is a type decoration ¢ of M under I' such that ¢(¢) = o and (M, t) is in n-long
form. We say that M is in n-long form if M is n-long relative to some typing (or,
equivalently, relative to its principal typing).

The following lemmas are from [34]:

Lemma 3.16. Let M and N be A-terms and x be a variable in FV(M). Suppose
that tyr and ty are type decorations for I'v,x:6 = M:a and 'y = N: (3, respectively,
and that T'y and Ty agree on (FV(M) —{x})NFV(N). Let t be the type decoration
for Ty UTy = M[x := N]|: « defined according to Lemma [TI2. If (M,ty) and
(N,tn) are in n-long form, then (M[x := N|,t) is in n-long form.

Lemma 3.17. If M is in n-long form relative to I' = o and M —g M’, then M’
is in n-long form relative to T' = «, where T" is the restriction of T to FV(M').
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Thus, the S-normal form of an n-long A-term is n-long.

We refer to an occurrence of a type 8 in a sequent x1: @1,...,&n: an = Qg Or
a typing judgment x1: ag,...,Zn: o = M: ag by a pair (i,v), with 0 < i < n
and v € («;), such that subtype(a;,v) = 5. We say that an occurrence (i,v) is
positive (resp., negative) and write pol(i,v) = +1 (pol(i,v) = —1) if either ¢ = 0
and pol(v) =1 (pol(v) = —1) or ¢ > 1 and pol(v) = —1 (pol(v) = 1). For example,
inx:p,y:p—q= q, the pairs (1,¢) and (2,0) refer to the first occurrences of p
and ¢, respectively, which are both negative, and the pairs (2,1) and (0, €) refer to
the second occurrences of p and ¢, respectively, which are both positive. A sequent
or typing judgment is balanced if every atomic type has at most one positive and at
most one negative occurrence in it.

Theorem 3.18 (Coherence Theorem). All inhabitants of a balanced sequent are
Bn-equal. In particular, if T UT" = « is a balanced sequent and both =T = M : «
and =T = M’ : a hold, then M =g, M'.

See [56] for a proof.
According to Hirokawa [33], the first of the following theorems is due to Bel-
nap [9]. See [33] for the proof of the second.

Theorem 3.19 ([9]). If M is a pure affine A-term, then the principal typing of M
is balanced.

Theorem 3.20 ([33]). If a pure A\-term M in S-normal form has a balanced typing,
then M is affine.

Theorem B9 together with the Coherence Theorem (Theorem B.I8) implies that
a pure affine A-term is uniquely determined by its principal typing up to Sn-equality.

3.1.4 Links in typed A-terms

It will be convenient for our purposes to introduce a strengthening of the notion of
n-long form. We say that a typed A-term (M, t) with M = (T, f,b) is in strict n-long
form if every node w € T satisfies the following condition:

e if t(w) = B — 7, then either (i) w € TM and b(v) = w for some v € T (ii)

w e TW and B is an atomic type, or (iii) w = v0 for some v € T3,

Note that if M is a AI-term and (M, t) is in n-long form, then (M, t) is in strict n-long
form. For every typed A-term (M, t) in n-long form, there is a typed A-term (M’ t')
in strict n-long form such that both (M’ ¢') —3 (M,t) and (M',t") —, (M,1).
Unlike n-long form, strict n-long form is not preserved under g-reduction, but we
have the following:
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Lemma 3.21. Lemma holds with “strict n-long form” in place of “n-long
form”.

As with n-long form, we speak of an untyped A-term being in strict n-long form
relative to a typing.

Clearly, if M € A(X) is a closed A-term and @(M) = (c1,...,¢pn), then M is
in (strict) n-long form relative to « if and only if ]\/Z[xl, ..., Tp] is in (strict) n-long
form relative to 1 : 7(c1), ..., xn : T(cn) = .

Lemma 3.22. Let M be a pure A-term, and suppose that t is a type decoration of
M such that (M,t) is in strict n-long form. Let t be a principal type decoration of
M. Then there is a type relabeling o such that t = o ot.

Proof. Tt is easy to see that if an atomic type p occurs anywhere in (M,t), then
it must be that there is a node of M that is assigned type p by ¢, or else there is
a unary node of M that is assigned a type of the form p — . In both cases, the
relevant node must be assigned a type of the same shape by t. O

Lemma implies the following:

Remark 3.23. Suppose that i{ € A(X) is a A-term in strict n-long form relative
t0 T1 11,5 Xn P Y0 = Y0, COH(M) = (d17'/'\‘7dm)’ and Y1 - Blv'/‘\wym : Bmyajl :
Qaly..., Ty an = aq is a principal typing of M[yi,...,Ym|. Then My, ..., ym] is
in strict n-long form relative to y1 : B1,...,Ym : Bm, X1 : Q1,y. .., Tn & Qp = g, and
moreover, we have

<,31> <T(dz>> fOI‘ 7= 1,...,m,
(aj) = () fori=0,...,n.

Let (M,t) be a pure typed A-term, where M = (T, f,b). We associate with
(M, ) a certain directed graph G s = (Viar, £ M,t)) The set Vipyy) of vertices
of G(ar,) consists of all triples of one of the forms

(w,v,7) and (w,v,]),

where w € T and v € (t(w))©). (Recall that (t(w))(® is the set of leaves of (t(w)),
that is, the set of positions where atomic types occur in t(w).) Triples (w,v,1) and
(w,v,]) correspond to the same position in ¢(w). The existence of an edge from
(w,v,—) to (w',v',—) (where “—” is to be filled by 1 or |) implies that the same

31Qur graph is essentially the natural deduction counterpart of the logical flow graph of Buss [12].
See [41] for an equivalent definition.
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atomic type must occur at v in t(w) and at v’ in ¢t(w’) (i.e., subtype(t(w),v) =
subtype(t(w’),v’)). The last component of the triples indicates the “direction of
travel”, which is explained below. The set E(5ry) of edges of Gy, is defined as
follows:

(w,v, 1), (w0, 1)) € By iff either w € TW, w0 =w', and v = 0/, or
we TP, wo=w', and Ov =,
(w,v,{), (w0, 1)) € E(nryy iff either w e T w=w0, and Ov = v/, or
w e TP, w=w0,and v=00.
(w,v, 1), (W', v, ])) € By iff either w € T W= b(w') and v = 1/, or
w' e TW, b(w) =w' and 1v =o'
((w,v, 1), (W', v',1)) € Eqaryy iff for some u € T,
either w = u0, w’ = ul, and v = 17/, or

/ /
w=ul, w =u0, and lv =v".

Note that the edges in E(js) come in pairs: given an edge in E(74), one can
interchange source and destination, then reverse the direction of the arrows in the
third component of both vertices, and obtain another edge in E/ ).

The meaning of the graph G () becomes easy to grasp when it is superimposed
on the natural deduction representing (M, t). Each pair of edges is represented
by a single curve connecting two occurrences of an atomic type; the two edges in
the pair correspond to the two ways of traversing the curve, with the direction
of traversal at each end point of the curve matching the direction of the arrow
in the third component of the tuple (w,v, —) corresponding to that point. Thus,
((w,v,{), (w',v',])) is an edge of the graph G,y if there is a curve that departs
downward from the atomic type occurrence at position v in the type labeling the
node w of the natural deduction tree for (M,t) and reaches from above the atomic
type occurrence at position v’ in the type labeling the node w’; similarly for other
combinations of T and |. See Figure [IT] for an example.

It is easy to see that for any pure typed A-term (M, t), if there is a directed path
from (w,v,d) to (w',v',d’), where d,d € {1,]}, then pol(v) = pol(v’) if and only if
d=d.

Note that the graph depicted in Figure 11 contains a directed cycle:

(Oa 107¢) - (1’O7T) - (107 €7T) - (17 17¢) - (07 117T) - (0007 17¢) - (0017€7T)_
(0010,0,7) — (0,10, )

1150



PARSING AND GENERATION AS DATALOG QUERY EVALUATION

Figure 11: A natural deduction with links.

It is not hard to see that any cycle must involve the two children w0, w1 of a binary
node w and positions u, v of ¢(wl) such that

e pol(u) = —pol(v),

e there is a directed path from (w0, 1u,?) to (w0, 1v, ) inside the subtree rooted
at w0, and

e there is a directed path from (wl,v,?1) to (wl,u,) inside the subtree rooted
at wl.

This implies that there exists an n > 0 such that w0" is a S-redex.

Lemma 3.24. If (M,t) is a pure typed A-form in -normal form, then Gy
contains no directed cycle.

Let M = (T, f,b) be a pure untyped A-term with FV(M) = {x1,...,z,}, and
let ¢ be a type decoration for z1:aq,..., T, : ap = M : ag. We augment the graph
G (a,1) with the nodes of the form

(i,v,d)
where 0 < i <n, v e (), d e {1,1}, and the edges
((i,v,1), (w,v,})) and  ((w,v,1),(i,v,1))
with 1 <i <n and f(w) = z;, and

((0,0,7),(¢,0, 1)) and  ((€,v,4), (0,0, 1)).
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We refer to the resulting extended graph as é( M,y Note that when é( M, has a

directed path from (i,v,1) to (w, u,d) with w € T, we have pol(i,v) = pol(u) if and

only if d = 1, and likewise when é( M) has a directed path from (w, u,d) to (i,v,]).
In terms of é( M,t), we define two binary relations on the set

{(G,v)]0<i<n,ve (a)?}

of occurrences of atomic types in x1:aq,...,2, : @ = «g. We say that (i,v) is
linked to (¢',v") in (M, t) if é(Mt) contains a directed path from (i,v,7) to (¢/,v',]).
We say that (i,v) is connected to (i',v') in (M,t) if Gpry) contains an undirected
path from (i,v,d) to (i',v',d’) for some d,d" € {1,{}. Note that the relation of
being linked is symmetric, but not necessarily transitive; the relation of being con-
nected is symmetric and transitive. Clearly, if (i,v) is connected to (i',v’), then
subtype(a;, v) = subtype(ay,v').
The following is clear from the definitions of é( ) and of principal typing:

Lemma 3.25. Let M be a pure A-term and t be a principal type decoration of M,
with the associated principal typing x1: 1, ..., Ty qn = ag. Then (i,v) and (i',v")
are connected in (M,t) if and only if subtype(a;,v) = subtype(a;,v’).

It is clear that the graph é( M), Where M = (T, f,b), is completely determined
by M and {(w,(t(w))) | w € T }. This means that if o is a type relabeling,
G(M’t) = é(M,Uot)' Thus, Lemmas 3.22 and give

Lemma 3.26. Let M be a pure A-term and t be a type decoration of M under the
type environment T :71,..., Ty : Yn Such that (M,t) is in strict n-long form. Let
T1:Q0,. .., Ty an = g be a principal typing of M. Then (i,v) and (i',v') are
connected in (M, t) if and only if subtype(a;,v) = subtype(a,v’).

Moreover, we have

Lemma 3.27. Let M be a pure M -term in S-normal form and t be a type decoration
of M wunder the type environment  :71,..., Ty : Yn Such that (M,t) is in n-long
form. Let x1:aq,...,2n: an = g be a principal typing of M. Then (i,v) and
(i',v") are related by the transitive closure of the relation of being linked in (M,t) if
and only if subtype(a;,v) = subtype(a;,v’).

Proof. Since é( M,r) does not contain any directed cycles, the fact that M is a M-
term implies that every directed path can be extended to one that starts in a node
of the form (i,v,1) and ends with one that ends in a node of the form (i/,v',]). O

The usefulness of the notion of being linked will become clear later.
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3.2 Context-free \-term grammars

A context-free A-term grammar (CFLG) is a quintuple & = (A, %, f, &2, S), where
A is a finite alphabet of nonterminals, ¥ = (A, C, 1) is a higher-order signature,
f is a function from .4 to J(A), S is a distinguished member of /", and & is a
finite set of rules of the form:

B(M) :— Bi(X1),...,Bn(Xy),

where X1,..., X, are pairwise distinct variables and M is a A-term in A(X) that is
in n-long form relative to

X1 f(B1),..., Xn: f(Bn) = f(B).

It is not required that M be in S-normal form. The language of a CFLG ¥ =
(AN, 5, f, 2,S) is defined in terms of the predicate . For a nonterminal B € .4
and a closed M\-term P € A(X),

Fg B(P)

holds if and only if there exist a rule
B(M) :— Bi(X1),...,Bn(Xy)
in & and closed A-terms Q; (i =1,...,n) such that

P=M[X;:=Q1,..., X, :=Qy),
Fog Bi(Q).

When this holds, we have a derivation tree for B(P) of the form

B(P)
/\
... T,

where T is a derivation tree for B;(Q;) (i = 1,...,n). Note that k¢ B(P) implies
s P: f(B).
The language of ¢ is
L(¥) = {INl|g [ o S(N) }.

Thus, the language of a CFLG is a set of closed S-normal A-terms that are in n-long
form relative to a certain type (namely f(5)) (cf. Lemmas 3.16 and B.17)).
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In example grammars we have given, we have not always adhered to the condition
that A-terms in rules be in n-long form. Any rule with a non-n-long A-term M should
be understood as an abbreviation for the “official” rule that has the n-long form of
M instead. The reason that we only allow A-terms in n-long form in the language
of a CFLG is that we do not wish to distinguish between A-terms that are n-equal.

Example 3.28. The earlier example CFLG (9) in official notation is ¥ =
(AN, 5, f, 2,S), where

A ={S,NP,VP,V, Det, N},
Y =(4,0C ),
A= {e,t},
C = {A,John, find, catch, =, 3, man, unicorn},
At —t—t,
John — e,
find — e —e—t,
catch— e —e—t,
=—e—>e—1t,
I (e —>t) —t,
man — e — t,

uncorn — e —t
St

NP — (e = t) = t,

VP — e —t,
Vie—e—se—t,

Det — (e = t) = (e = t) = t,

Ni—e—t
and & consists of the following rules:

S(X1(Az.Xax)) :— NP(X1), VP(X2).
VP(A\z. X2 (A\y. X yx)) :— V(X7),NP(X2).
V(Ayz.A(X1yx)(Xoyz)) :— V(X1), V(X2).
NP(Au. X1 (Ax. Xozx)(Az.ux)) :— Det(X7), N(X32).
NP(Au.u John).
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V(Ayz.find y ).
V(Ayz.catchy z).
V(\yz.=y x).
Det(Auv.3(Ay.A(uy)(vy))).
N(Az.man x).

N(Az.unicorn z).

3.3 Datalog programs associated with CFLGs
We associate with a CFLG ¥ = (A,%, f, #,S), where ¥ = (A,C, 1), a Datalog

program program(%), whose set of intensional predicates is .4~ and whose set of
extensional predicates is C. The arity of B € A4 is |f(B)|, and the arity of d € C
is |7(d)|.

In order to facilitate the definition of program(%) and the statement of the next
lemma, we adopt the following conventions:

Convention 1. If
B(M) :— Bi(X1),...,Bn(Xy)

is a rule in &, then M is in strict n-long form relative to

le(Bl)’>an(Bn):>f(B)

Convention 2. If
B(M) B Bl(Xl)v s 7Bn(Xn)

—
is a rule in &, then FV(M) = (X1,...,X,) and all occurrences of constants in M
precede the occurrences of Xi,..., X,.

It is easy to transform a rule that does not obey these conventions into
an equivalent one that does by changing M to the strict n-long form of
(AX71...X,,.M)X;...X,, so adopting this convention does not lead to any loss
of generality. It is also possible to complicate the definition of program(¥) and the
statement and proof of the lemma to make the following results not depend on the
conventions.

We now give the definition of program(¥), assuming Conventions [Iland 2 Con-
sider a rule

m = By(M) :— B1(X1),...,Bn(Xy),

in #. Let N
Con(M) = (di,...,dn),
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and let

3/1351a---aymiﬁm7X13041,~-7Xn304n:>M[y17---,ym}3040

be a principal typing of M [Y1,- -+, Ym]. (Recall that M (Y1, - ,_7>n} is a pure A-term
such that Mldy,...,dy,] = M.) Note that by Convention 2, FV(M[y1,...,ym]) =

(Y1, -+ Ym, X1, .., Xpn). By Convention 1 and Remark B.23]

(Bi) = (1(d;))y fori=1,...,m,
(i) = (f(By;)) fori=0,...,n.

(38)

The Datalog rule p, corresponding to 7 is defined as

Bo(ag) :— di(B1), - -, dm(Bm), B1(@1), - . ., Bn(aw),

where atomic types in @;, 3; are considered Datalog variables. Clearly, p, does not

depend on the choice of variables y1,...,ym. Also, the choice of atomic types in
a;, f; is immaterial. So it does not matter which principal typing of M[yi, ..., Ym]
we use 2

The Datalog program associated with ¢ is defined as
program(¥) = { pr | 7 € P},
Remark 3.29.
By(80) i— di(f1), -, dm(tm), B1(51), - - -, Bn(5n)
is an instance of p; if and only if
F oy (T(d))(E1), -y Yt (T(din)) (), X1 2 (F(B1))(31), -+, X 2 (f(Bn)) (50)
= My, ym] = (£(Bo)) (50).

Example 3.30. For the CFLG ¢ of Example B.28 program (%) consists of the rules
in (16) in Section 2.2. For example, let M3 be the A-term in the third rule 73 of ¥.

We have (E)l(Mg) = (A), and the following is a principal typing of Ms[zy]:

2109 —i5 —> i1, X113 —ig —i9, Xotig—ig4— 15 = \yz.2z1 (Xqyx)(Xoyx) 1iz —ig —> 1.

32This definition of p, is applicable to arbitrary CFLG rules satisfying Conventions 1 and 2.
When M is almost linear, the definition of p, given here is equivalent to the definition given in
Section 2.2 in terms of the hypergraph representation graph(M) of a principal typing of M.
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We thus obtain
prs = V(i1,14,13) :— A(i3, 15, 12), V(i2, 1, 43), V(i5, 1, 13).

Note that the hypergraph representation (IZ)) of M3 encodes the same information
as its principal typing.

The following is a key fact about program(%¥) that holds of any CFLG ¥ satis-
fying Conventions 1 and 2. It basically says that under the correspondence between
7 and p, defined above, a CFLG derivation tree plus a typing (of a certain kind)
for the associated A-term corresponds to a Datalog derivation tree, and vice versa.
Its proof is quite straightforward, if rather tedious. If @ is a tuple (sequence) of
constants, we let |i| denote its length, i.e., the number of its components.

Lemma 3.31. Let 4 = (AN, %, f, 2, 5) with ¥ = (A,C,7) be a CFLG, and let U
be some set of constants. Let e1,...,e; € C, B € AN, and uy,...,u;, S be sequences
of constants from U such that |iu;| = |7(e;)| and |5] = |f(B)|. The following are
equivalent:

(i) There exists P € A(X) such that

aa?l(P) = (e1,...,€1),

oz (r(e) (i), -z (T(e)) (@) = Plar,. .. 2] (f(B))(3).
(ii) There exists a derivation tree T for
program(¥4) U {e;(@;) | 1 <i <1} F B(3)

such that (e1(i1),...,e(u)) lists the labels of the extensional nodes of T in
the order from left to right.

Proof. (i) = (ii). Induction on the derivation of ¢ B(P). Assume that -y B(P)
is inferred from

Fy Bi(P) (i=1,...,n)

using a rule

7= B(M) :— Bi(X1), ..., Bn(Xn)

such that
P=M[X,:=P,..., X, :=P,].
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— —
Let m = |Con(M)| and I; = |Con(P;)| for i =1,...,n. Thenl=m+1 +---+1,
and

~ —

Plz1,...,z1] = M|z1,. .., 2m]
[Xl = P1 [Zh(l,l)? ey Zh(l,ll)]’ Ce ,Xn = Pn[zh(n,l)a ey zh(n,ln)H7
(T)?l(M) =(e1,.--,€m),
—
Con(P;) = (eh(i,l)v ce eh(z’,li))a

where
h(i,j) =m -+l + - +li1+7.

By assumption,

F oz (r(e)) (@), ...z (T(e)) (@) = Plz1, ..., 2] : (f(B))(3). (39)

By Lemma B.I3] any type decoration for (39)) splits into type decorations for

z1 i (T(en))(Ur)y oy zm : (T(em)) (@m), X1 a1, ..., Xy iy

= Mz, ..., 2m] : (f(B))(3)

and

2hi) 2 (T (Unii))s -+ - Zagide) * (T(en@i)) (Uny))

= Pi[2ni1), 5 Zn(igy) t i (40)
(¢ =1,...,n). In order to apply the induction hypothesis to (@0, we need
(o) = (f(By)) foreachi=1,...,n. (41)

If P [21,..., 2] is not AI, type decorations for (39) need not be unique, and indeed
there may be one for which (@1]) fails. We show that a desirable type decoration for
(39) can be obtained from a principal typing of P[z1, ..., z] by type relabeling.
Since Convention 1 ensures that P; is in strict n-long form relative to f(B;)
and M is in strict n-long form relative to X; : f(B1),..., X, : f(Bn) = f(B),
it follows that E[zh(i,l), -y Zp(igy] 18 in strict n-long form relative to zp( 1) :
T(en(i,1))s - -+ 2nidy)  T(€nil)) = f(B;) and ]T/[\[zl, .+ ., Zm) 18 in strict n-long form rel-
ative to z1:7(e1), ..., 2m:7(em), X1: f(B1),..., Xn: f(Bn) = f(B). By LemmaB2T]

there is a type decoration tﬁ[z“m} for

~

z1:7(e1),...,2z1:7(e;) = Plz1,...,z1]: f(B)
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that is obtained by combining the type decoration for
zi:7(e1)y oy zm i T(em), X1: f(B1),..., Xn: f(Bn) = ]\//.7[21, oy zm] t f(B)

and the type decoration for

Zh(i1) S T(€n@a))s - -+ 2hiis)  T(€ngits)) = Pilzn@ays - 2ngigy)) + f(Bi)
for i =1,...,n, such that (ﬁ[zl, R tﬁ[zl Zl}) is in strict n-long form.
Let Zﬁ[zl 2 be a principal type decoration for Plz1, ..., z] with the associated
principal typing
21:01,...,21: 0 = 7.
By Lemma 3.13, 513[21 ] splits into type decorations for
21000,y Zm i 0my, X1 iYL, ooy Xty = Mz1, .0 2m] 1y (42)

and

Zh(i1) S On(i1)s - - -5 Zh(ids) * OhGids) = Pil2n@n)s - 2] 2y (i=1,...,n). (43)
By Lemma 3.22, we must have

(0;) = (1(e;)) fori=1,...,1,
(v) = {f(B)),
(vi) ={(f(By)) fori=1,...,n.

By (39), there is a type substitution o such that

dio = (7(e)) (),

vo = (f(B))(5)
that leaves atomic types that do not appear in d1,...,d;,y unchanged. Then o is a
type relabeling, and there are sequences 57, ..., s, of atomic types such that

vio = (f(B;))(8;) fori=1,... n.

Without loss of generality, we may assume that 51, ..., §, are sequences of constants
from U. (Otherwise we may replace any constants not in U by constants in U.)

Applying o to [@2) and @3], we get
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Fzr s (r(e)) (@), - s Zm o (T(em))(Um), X1t (f(B1))(51), - - Xt (f(Bn))(5n)
= Mlz1,...,2]: (f(B))(3), (44)

and

= 2ngi,1) ¢ (T(en(in) (nin))s - -+ 2niigs) = (T(€ni))) (i)
= Pilznginys - - 2ngi)) (f(Bi)(51)  (45)
fori=1,...,n.
By ({@H]), the induction hypothesis applies to P;, giving a Datalog derivation tree
T; for
program(%) U { ey ) (Un(ig)) | 1 < J <1} F Bi(8i) (46)

such that (ep(;1)(Un(i;1))s - - - 5 €n(ito) (Un(i))) lists the labels of the extensional nodes
of T; from left to right.
By (@) and Remark 3.29]

B(8) i— e1(@1), ..., em(@m), B1(31), ..., Bu(5n) (47)

is an instance of p,. Combining ([@6]) and (A7), we obtain a Datalog derivation tree
T for

program(¥4) U {e;(@;) | 1 <i <1} F B(3),

such that (eq(@1),...,e(d;)) lists the labels of the extensional nodes of T from left
to right.
(ii) = (i). Induction on T'. Assume that T is of the form

p(5)
Y

—

e1(y) -+ em(tm) T - Ty
and the root node of T" is obtained by an application of an instance
B(3) :— e1(t1), ..., em(tUm), B1(51),..., Bn(8y)
of some p,, where m <[ and

7= B(M) = Bi(X1), ..., Bn(Xy), (48)
Con(M) = (e1, ..., em). (49)
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Let I; be the number of extensional nodes of T;. Thenl =m + 11 +---+1,, and for
1=1,...,n, T; is a derivation tree for

program(¥) U {ex(i,1) (Un(i1)), - - - » enity) (i)} Bi(5),

where h(l,]) =m+UL+---+1li—1+J,and (6h(i,1)(ﬁh(i,l))7 RPN eh(i,li)(ﬁh(i,li))) lists
the labels of the extensional nodes of T; from left to right.
By Remark 3.29, we have

F 21 (7(e1)) (1), - s 2m 2 (T(em)) (Um), X1 : (f(BlA)>(§1)7 s X 1 (f(Bn)) (50)
= Mz1,...,zm]: (f(B))(8). (50)
By induction hypothesis, for i — 1, ... ,n, there exists P; € A(X) such that
Fy Bi(F), (51)
Ej—0?1(131) = (en(i,1) -+ Ch(ids))s (52)

and

F 2hi)  (T(en ) (@nin))s - 2hiis) = (T(€ngn))) (Tagi))

—

= Pilzngay, - 2ngian] - (F(Bi)(5:). (53)

Let
P=M[X,:=P,...,X,:=P,)].

Then by @8), (1), [@3), and (52),

—
COH(P) = (61, <o €my CR(1,1)s -+ Ch(1,01)s -+ -3 Ch(n, 1)y - - 7eh(n,ln))
= (61, e ,61).
We have
Plzi,..., 2] =

o~ —~

M[Zl, ey Zm] [Xl = P\l[zh(l,l), v 72h(1,ll)]7 v 7Xn = Pn[zh(ml), oo ,Zh(mln)]].

By Lemma 3.12 applied to (B0) and (B3]), we get
Fozyo(r(er)) (1), ..y 2m: (T(em)) (Um),
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2h,1) - (T(ena, ) (@aa))s - -+ Zrn) * (T(en@)) (@ra ),
Zh(n,1) * (T(€hm1)) (Unm,a))s - - s Zh(nin) * (T(€rm1)) (Uh(nin))
= Pl 2] (F(B) ()
Hence P satisfies the required properties. O

Example 3.32. Let ¢4 be the CFLG of Example 3.28. Let

P = (Au.u John)(Az.
(M.
(Au.
(Auv.3(Ay-A(uy)(vy)))
(A\z.
(Az.unicorn )

(A\y.
(Ayz.find y x)
yx))

Then ¢ S(P). The derivation tree E S(P) (in abbreviated notation) was shown
in Figure 5 in Section 2.2. We have Con(P) = (John, 3, A, unicorn, find) and

~

Plz1, 29, 23, 24, 25) = (Au.uzr)(Ax.
(Azx.
(Au.
(Auv.z9(Ay.z3(uy) (vy)))
(A\z.
(Az.z47)
(Ay.
(A\yz.z5y7)
yz))
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By one direction of Lemma [3.31], whenever we have

F o2 turg, 22t (ug3 — ug2) = ua i,
2Z3:U3,3 > U3,2 > U3 1,24 U4L2 —7> U41, 25 - U53 —> U52 —7 U5,1

= ﬁ[21722723724725] : S, (54)

we must have

program(¥) U {John(u; 1), 3(u2,1, u2,2,u23), A(us 1, us2,u33),
unicorn(uzu, U4,2), ﬁnd(U571, U572, U5,3)} F S(S) (55)

The Datalog derivation tree for (53] will have the same shape as the one in Figure 6
in Section 2.2. Conversely, whenever (55) has a derivation tree of this shape, we
must have (54), by (the proof of) the other direction of Lemma 3.31

Let ¥ = (A,C, 1) be a higher-order signature and U be some set of database
constants. We write Dy, iy for the database schema (C,U), where each d € C has
arity |7(d)|. Let D be a database over Dy, ;y and « € .7 (A). We define a set A(D, «)
of closed A-terms over ¥ as follows:

A(D,a) =
{MEA(Z)’FV(M)_Q@—O?I(M)—(d1,---,dn)a{d1(§1),- dn(3,)} C }
F oz (m(d))(51)s ooy 2n s (T(dn)) (8n) = Mz1, ..., 20) t

Example 3.33. Let X' be the extension of the higher-order signature ¥ in Ex-
ample 3.28 with an additional constant — of type t — ¢. Let U = {a,b,0,1}, and
consider the following database D over Dsy 17

man(l,a), man(0,b), unicorn(0,a), unicorn(l,b),
A(1,1,1), A(0,1,0), A(0,0,1), A(0,0,0), —(0,1), —(1,0),
3(1,1,a), 3(1,1,d).

The set A(D, 1) contains, e.g.,

A(F(Az.man z))(3(Ay.unicorn y)),

J(A\z.A(man z)(—(unicorn z))),

but not, e.g.,
J(Az.A(man z)(unicorn z)).
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Lemma 3.34. Let M, M’ € A(Y).
(i) If M —5 M’, then M € A(D, o) implies M' € A(D, ).
(ii) If M" —g M by non-erasing non-duplicating B-reduction, then M € A(D,«)
implies M' € A(D, «).

Proof. Let M € A(D,«) and @(M) = (d1,...,dy). By the definition of A(D, a),
for some §1,. .., 8§, such that {di(51),...,dn(5,)} C D,

F o2y (T(d))F), - 21 (T(d))(5) = Mz, ..., 20 : .

—
(i). Suppose M —g M'. Let m = |Con(M’)| and g: {1,...,m} — {1,...,n} be

the function such that the ith occurrence of zm_ggnstant in M’ is a descendant of the

g(i)th occurrence of a constant in M. Then Con(M') = (dy(1y, - - -, dg(m)) and

—

Mlzi,... 20 =3 M’[zg(l), ce zg(m)].
By the Subject Reduction Theorem (Theorem [B.14)),

F{ 2g0) 1 (T(dg(i)) (Bgiy) | 1 < i <m} = M [z401),- -, 2g(m)] * @,
and thus

—

F 1 (T (dg1)) (Ba1)s - -+ Ym = (T(dg(om)) Goom)) = M [yt -+, Y] - .

This shows M’ € A(D, ).

(ii). Suppose M’ —g M by non-erasing non-duplicating S-reduction. Then
|Con(M')| = n and there is a permutation g of {1,...,n} such that the ith occur-
rence of a constant in M’ is the ancestor of the g(i)th occurrence of a constant in

M. We have @(M/) = (dg(l), ces ,dg(n)) and ]/\4\/[2’!](1), ey Zg(n)] B M\[zl, ceey Zn}

by non-erasing non-duplicating S-reduction. By the Subject Expansion Theorem

(Theorem [B.T5I),
F21 0 (7(d1))(31), - -5 20 2 (7(dn)) (5n) = M 2401, - - - Zg(n)] : .
Therefore, M' € A(D, ). O
The next lemma is an immediate consequence of Lemma 3.31:

Lemma 3.35. Let 4 = (N, %, f, P,S) be a CFLG. Let U be some set of database
constants, D be a database over Dy, 7, and § be a sequence of constants from U such
that |5] = |f(S)|. The following are equivalent:
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{PeA®) |y S(P)}NAD, (f(S)(5) 8 < program(#)UD - 5(s)
(8
L(#) N A(D, (F(S))(5)) # 2

Figure 12: A general property of program(¥).

(i) There exists some P € A(D, (f(95))(5)) such that Fo S(P).

(ii) program(¥)U D F S(3).
Lemma 3.36. Let 4,U, D, § be as in Lemma[3.33. If program(¥4)UD F S(S), then
L&) N AD, (f(5))(3)) # 2.
Proof. By Lemma [3.34] part (i) and Lemma 3.35. O

See Figure The converse of Lemma does not hold in general, but we
shall see below some special cases where it does hold (Theorems B.40 B.65], and [A.3]).

3.4 Databases determined by A-terms

Egt_)M € A(X) be a closed A-term in strict n-long form relative to v such that
Con(M) = (di,...,dp). Define

database(M) = {d;(B;) | 1 <i<m},
tuple(M) =@

where

yl:517"'7ym:ﬁm:>M[y17"'7ym]:a
is a principal typing of M [yl,...,ym] Here, atomic types that occur in
B1,...,08m,a are regarded as database constants. Note that by Remark 3.23,

(v)(tuple(M)) = « and A(database(M), (y)(tuple(M))) is well-defined. The fol-
lowing is obvious from the above definition:

Lemma 3.37. If M € A(X) is a closed \-term in strict n-long form relative to v,
then M € A(database(M), (v)(tuple(M))).

33When M is almost linear, the definition of (database(M), tuple(M)) here is equivalent to the
definition in terms of graph(M) given in Section 2.2.
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Note that if M is in strict n-long form relative to v, then |M |z is in n-long form
relative to v and belongs to A(database(M), (v)(tuple(M))) (Lemma 3.34). We
shall see below that in some special cases |M |3 is the only n-long S-normal A-term
in A(database(M), (v)(tuple(M))) (Lemmas [B:4T] and B54]).

Example 3.38. Consider the A-term (8) from Sections 2.1-2.2:
M = 3(A\y.A(unicorn y)(find y John)).
Using the principle typing

21:(4—=2)—=1,290:3—55—2,23:4—3,24:4—6—5,25:6 = z1(\y.22(23y) (24y25)) : 1

—

of M|z, 29, 23, 24, 25|, we obtain

database(M) = {3(1,2,4), A(2,5,3),unicorn(3,4), find(5, 6,4), John(6)},
tuple(M) = (1).

Lemma 3.54 below implies that M is the only A-term in A(database(M),1) that is
in n-long B-normal form relative to the type t.

3.5 From CFLGs to Datalog: The case of linear CFLGs

We first treat the special case of linear CFLGs because the reduction to Datalog as
well as the proof of its correctness can be made much simpler in this case than in
the more general case of almost linear CFLGs.

The crucial property is the following:

Lemma 3.39. Let ¥ = (A,C, 1) be a higher-order signature, U be a set of database
constants, D be a database over Dy, and o € T (A). For every linear closed
A-term M € A(X), M € A(D, ) if and only if |M|g € A(D, ).

Proof. The “only if” direction is by Lemma 3.34, part (i). Since the S-reduction
M —» g |M|g must be non-erasing and non-duplicating, the “if” direction follows by
part (ii) of the same lemma. O

Theorem 3.40. Let 4 = (N, %, f, 2, S) be a linear CFLG. Let U be some set of
database constants, D be a database over Dy 17, and § be a sequence of constants
from U such that |5] = |f(S)|. The following are equivalent:

() L(Z)NAD, (f(5))(3)) # .
(ii) program(¥)U D t S(5).
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Proof. In view of Lemmas 3.35 and 3.36, it suffices to show that F¢ S(P) and
|Plg € A(D,(f(S5))(5)) imply P € A(D,(f(S5))(5)). But this is immediate from
Lemma [3.39] since F¢ S(P) implies that P is linear. O

Lemma 3.41. If M is an affine A-term in strict n-long form relative to -, then
|M|s is the only A-term in A(database(M), (y)(tuple(M))) that is in n-long [-
normal form relative to ~y.

Proof. Let (E)l(M) = (d1,...,dn), and let

y11517~‘-7ym5ﬂm:>04 (56)

be a principal typing of M\[yl, ..+ Ym]. Then database(M) = {d;(3;) |1 <i<m}.
Note that My, ..., ym] is a pure affine A\-term. By Theorem 3.19, (&) is a balanced

typing.
We know from Lemmas 3.17, 3.34 and 337 that |M|z is in 7-long form rel-
ative to v and that |M|z € A(database(M),(vy)(tuple(M))). Suppose M’ €

A(database(M), () (tuple(M))) and ‘C—O?l(M,N = n. Then there is a function
g:{1,...,n} = {1,...,m} such that Con(M') = (dgy(1),---,dg(n)) and

F 210 Bg(1)s -+ 20t By(n) :>M\’[21,...,zn] ;.
Substituting y, ;) for z;, we get

FA Y0y Bgy | 1< i<} = M'[yga), - Ygn)] : -

— o~

By the Coherence Theorem (Theorem 3.18), M'[y41),- -, Yg(n)] =pn M Y1, - Ynl,
and so M’ =g, M. It follows that if M’ is in n-long S-normal form relative to ~,
then M’ = |M|s. O

Theorem 3.42. Let 4 = (N, %, f, P, S) be a linear CFLG. Suppose that N €
A(X) is a linear A-term in n-long S-normal form relative to f(S). Then the following
are equivalent:

(i) N e L(9).
(ii) program(¥) U database(N) = S(tuple(NV)).
Proof. Immediate from Lemma 3.41 and Theorem 3.40. O

Let us analyze the computational complexity of this reduction.
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Lemma 3.43. Given a linear A-term N € A(X) in n-long B-normal form relative
to f(S), the pair (database(N), S(tuple(N))) can be computed by a deterministic
log-space-bounded Turing machine.

Proof (sketch). We sketch how a deterministic log-space-bounded Tur-
ing machine .# that has multiple heads on the input tape can compute
(database(NN), S(tuple(/V)), relying on the fact that an extra head can be
simulated by a log-space-bounded work tape. We assume that the input A-term N
is given in the form of a A-expression; the A symbol, parentheses, and constants in
N are represented by individual symbols of the input alphabet of .#Z, and variables
are represented by strings of the form vil, where v is a special symbol and [ is a
natural number written in binary (i.e., a string over {0, 1}).

>
Let Con(N) = (c1,...,¢n). The output of .Z will be of the form

Cl(kl,lv' . 'akl,r‘l)7 oo ,Cn(k’n’l, e 7kn,7‘n)75(k0,13 e 7k0,7“0)7

where r; = |7(¢;)| for i = 1,...,n and rg = |f(S5)|, and each k; ; is a natural number
in binary. Let v;; be the jth leaf (counting from the right) of (7(¢;)) if 1 <i < n
and 1 < j <y, and let vy ; be the jth leaf (from right) of (f(5)) for 1 < j < ro.
If either 1 < ¢ < n and pol(v;;) = 1 or i = 0 and pol(v; ;) = —1, then for some
p < Z;‘lo ri, the pair (,v; ;) represents the pth negative atomic type occurrence in

z1:7(c1)s o zn i T(en) = Nz, 2] 2 £(S). (57)

In this case, k;; will be the binary representation of p (which can be computed in
logarithmic space). If either 1 < i < n and pol(v; ;) = —1 or i = 0 and pol(v; ;) = 1,
then the pair (i,v; ;) represents a positive atomic type occurrence in (7). In this
case, k; j will be ky j, where (¢, j') is the unique pair such that (¢, v; ;) is linked to
(i, vy jv) in (N[zl, ..., 2n),t), where t is the type decoration that is determined by
the typing (57). (Uniqueness is guaranteed by the linearity of N.)

For each pair (i,j) for which (i,v;;) is positive, the machine .# computes
the corresponding pair (7', ;') by starting from (7,v;;,1) and following edges of
é( Rotonlt)” The machine does this without explicitly computing the type dec-
oration t. In order to represent a vertex (w,v,d) of G(ﬁ[zl,u.,zn},t)’ the machine .#
can place one of its heads at the beginning of the subexpression of N occurring at
node w, and store (v,d) in its finite control. This is possible because the fact that
Nlz1,..., 2] is B-normal implies that for all nodes w of N, t(w) is a subtype of
some type in {7(c1),...,7(cn), f(S)} C{7(c) | c € C}U{f(S)} by the subformula
property, and there are only finitely many possible values of v. Traversal of edges

in G( Nleronl t)’ which is deterministic because N|zq,..., z,] is linear, can easily
EARRS e d LA B
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be done using an extra head. For example, suppose .# is in a configuration rep-
resenting (w, 1v, 1), where w is a unary node (A-abstract) and ¢(w) = v — 0. The
machine’s head is at the first symbol of a string of the form (Avi.P). In order to
switch to a configuration representing (w’,v,]), where b(w’) = w, .# can use an
extra head to locate the occurrence of vl bound by the lambda. For another ex-
ample, suppose .Z is in a configuration representing (wl, v, ), where w is a binary
node (application) and ¢(w0) = v — d. The machine’s head is at the first symbol of
Q in a string of the form (PQ). In order to switch to a configuration representing
(w0, 1v,71), the machine can move the head to the first symbol of P by counting in
binary unmatched closing parentheses encountered along the way, which requires no
more than logarithmic space. O

Thus, for every linear CFLG ¥, the set L(¥) is log-space-reducible to { (D, q) |
program (%) U D F ¢ }. Since for every Datalog program P, the language { (D, q) |
PUD I ¢} isin P, it immediately follows that L(¥) is in P for every linear CFLG ¥,
a fact first proved by Salvati [62]. A more careful analysis gives a tight complexity
upper bound:

Theorem 3.44. For every linear CFLG ¢4, L(¥) belongs to LOGCFL.

Proof. Let 4 = (N,%, f,2,5), and let g(n) be the polynomial associated with
program (%) by Lemma 3.2l We show that whenever N € L(¥), there is a derivation

tree for program(¥¢) U database(N) + S(tuple(N)) of size < 9(’071(]\7”) The
proof of this claim is by a more careful use of Lemma 3.31 than in the proof of
Theorem

Let N € A(X) be a linear A-term in 7-long S-normal form relative to f(S5).

Assume N € L(¥). Let Q(N) = (di,...,dy) and let
Y1: P15 Ym  Pm =
be a principal typing of J\Af[lh, .+ Ym]. Then
database(N) = {d;(B;) | 1 <i <m},
tuple(N) = a.

Since ¥ is linear, there exists some linear A-term P € A(X) such that gy S(P)
and P —g N. Since the f-reduction from P to N must be non-erasing and non-

, N N
duplicating, |Con(P)| = m, and Plyyy,- - - Ynm)] =8 N[Y1,---,Ym] for some per-
mutation h on {1,...,m}. This means

R ~

Fyn s (r(d))(Br) - Y (7(dim)) (Bm) = Plynqays - - Ynem)| = (£(5) (@)
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By Lemma 3.31, there is a derivation tree for program(%¥) U database(/N) F S(@)

with m extensional nodes. By Lemma 3.2, it follows that there is a derivation

tree for program(¥) U database(N) F S(@) of size at most g(m). Therefore,
A%

(database(NN), S(tuple(V)), 11€o(M1) belongs to the set

{(D,q,1") | there is a derivation tree for program(¥) U D + q of size < g(n) }.
(58)
Now assume N ¢ L(9). Then by Theorem 3.42, it is not
the case that program(¥) U database(N) F S(tuple(N)),  and
A.%

(database(N), S(tuple(N)), 1/€2(M)) does not belong to (B).
By Lemmas Bl and B.43] we conclude that L(%) is log-space reducible to a
problem in LOGCFL. Since the class of functions computable in logarithmic space
is closed under composition, L(¥) itself is in LOGCFL. O

3.6 Almost affine \-terms

A typed A-term (M, t), where M = (T, f,b) € A(X), is almost affine if for every
w,w’ € T such that w # w', f(w) = f(w') € V or b(w) = b(w') implies that
t(w) = t(w') is an atomic type. An untyped A-term M is almost affine relative to
I' = «a if there is a type decoration ¢ for I' = M : a such that (M, t) is almost affine.
We say that a typable A-term is almost affine if it is almost affine relative to some
typing, or equivalently, relative to its principal typing.

If a typed A-term is almost affine, then so is its n-long form. The class of almost
affine untyped A-terms is closed under 7-reduction, but not under §-reduction. For
example, a pure A-term M = (Az.yzz)(zw) is almost affine relative to y:0,z:0—
o,w:0= o0, but |M|g = y(2w)(zw) is not (relative to any typing).

We say that a Ad-term M € A(X) is almost linear if M is an almost affine AI-term.

A sequent is negatively mon-duplicated if no atomic type has more than one
negative occurrence in it. The following result generalizes the Coherence Theorem
(Theorem 3.18):

Theorem 3.45 (Aoto and Ono [3]). All inhabitants of a negatively non-duplicated
sequent are Bn—equal

The following is a slight generalization of a result by Aoto [2]:

Theorem 3.46. If I' = « is a principal typing of an almost affine pure A-term M,
then T' = « is negatively non-duplicated.

34This theorem can be stated in the same style as the Coherence Theorem: If TUTY = a is a
negatively non-duplicated sequent and both =T = M :a and - IV = M’: « hold, then M =g, M".
See [46].
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Proof. Let I' = z1: aq,...,x, : ap, and let ¢t be a principal type decoration for
M associated with the typing I' = a. Suppose that (i,v), (i',v") are two distinct
negative occurrences of the same atomic type p in I' = a. By Lemma 3.25, (i,v) is
connected to (i',v’) in (M,t). This means that G () contains an undirected path
from (i,v,d) to (i',v',d") for some d,d’" € {t,]}. Since both (i,v) and (¢,v’) are
negative, by the property of é( M,y mentioned above immediately after its definition,
we must have d = d’. We may assume d = d’ = 1. Since there cannot be a directed
path from (i,v,71) to (¢',v',1), this implies that there are three nodes vy, v, v3 of
é( M,y such that

® v # U3,

there is a directed path from (7,v,7) to vy,

(v1,12) and (vs,2) are edges of é(M,t)a and
e there is an undirected path from (i/,v',1) to vs.
The first and third conditions can obtain only in two cases:

e vy = (j,u,]) for some j € {1,...,n} and v, = (w1,u,?),vs = (ws,u, 1), where

flwr) = fws) = z;.
o vy = (wo,1lu,l), 1 = (wi,u,1),v3 = (w3,u, 1), and b(wi) = b(wz) = w.

In both cases, since (M, t) is almost affine, it must be the case that t(w;) = t(w3) = p
and u = e. However, since pol(i,v) = —1 and pol(e) = 1, there cannot be a directed
path from (i,v,7) to v1 = (w1, €,1), a contradiction. O

Theorems and show that a principal typing of an almost affine pure
A-term uniquely characterizes it up to Sn-equality.

Although we do not need it in establishing the results to follow, we note that
the converse of Theorem 3.46 also holds [46]:

Theorem 3.47. Suppose I' = « is a negatively non-duplicated sequent. For every
pure A\-term M such that = T' = M:«, there exists a A-term M’ such that M' =g, M
and M' is almost affine relative to T = «.

Let M € A(X) be a typable A-term, and let ¢ be a principal typing for M. A
B-reduction step M 35 M’ is almost non-duplicating if either it is non-duplicating
or subtype(t(w0),1) = t(wl) is atomic. A f-reduction M —g M’ is almost non-
duplicating if it consists entirely of almost non-duplicating S-reduction steps.

1171



M. KANAZAWA

Example 3.48. Let M = (Ax.(Az.yzz)(xz))(Az.uz). Then

M S5 (M\zyz2)((Az.uz)z)
S5 y(A\z.uz)z)((A\z.uz)2)

is almost non-duplicating, whereas

M %3 (Az.y(zz)(z2))(A\z.uz2)
S5 y((A\zuz)2)((Az.uz)z)

is not, because the second step duplicates the subterm (Az.uz), whose type must be
non-atomic.

A B-reduction M, ﬂﬁ My g@ Uﬁ%g M, is called leftmost if for 1 = 1,...,n,
w; is the leftmost B-redex of M;_1, i.e., w; is the first S-redex of M;_1 under the
lexicographic ordering < of the nodes of M;_;.

Lemma 3.49. If M € A(X) is almost affine, then the leftmost B-reduction from M
to |M|g is almost non-duplicating.

Proof. Let M = M, g@ M, gﬂ - 285 M, = |M|z by leftmost S-reduction, and let
M; = (Ti, fi, bi). We show that each step of this reduction is almost non-duplicating.
Let ¢t be a principal type decoration of M, and for i« = 0,...,n, let ¢; be the type
decoration for M; such that

(M, t) = (Mo, to) g (My,t1) g -+ 35 (My, t).

To prove the lemma, it suffices to show that for every ¢ and every unary node
w e 7;(1), either

(i) w is to the left of any S-redex in M;,
(ii) subtype(t;(w),1) is an atomic type, or
(iii) there is at most one w’ € T; such that b;(w') = w.

The condition holds of (M, tg) by the assumption that M is an almost affine A-term.
Assume that (M;, t;) satisfies the condition, and let v be a unary node of 7;;1. Then
v is a descendant of a unary node w of 7; distinct from w;0.

Suppose that (i) holds of w. Then w is to the left of w;. Clearly, v must be to
the left of any f-redex in M;;1, satisfying (i).

1172



PARSING AND GENERATION AS DATALOG QUERY EVALUATION

Suppose that (ii) holds of w.  Since tiy1(v) = t;(w), it holds that
subtype(t;+1(v), 1) is an atomic type. So v satisfies (ii).

Suppose that (iii) holds of w. Assume that v does not satisfy (iii), i.e., there are
v/, 0" € Tiy1 such that v' # v” and b;41(v") = bi11(v”) = v. Then v’ and v” must be
descendants of the unique node w’ of 7; such that b;(w’) = w. For this to hold, it
must be the case that w < w; and w;1 < w’. Then v = w. Since w; is the leftmost
[B-redex of M;, there is no p-redex in M; to the left of w, and it follows that there
is no f-redex in M;,1 to the left of v. O

We now define a certain equivalence relation between nodes in a A-term. Let
M = (T, f,b), and let w,w’ € T. We say that w and w’ are congruent in M and
write w =, w’, if the following conditions hold:

e {v|jwweT}t={v|wveT}
e for all v such that wv € T, either

— wou,w'v € dom(f) and f(wv) = f(w'v),
— wv,w'v € dom(b) and b(wv) = b(w'v), or

— wv,w'v € dom(b) and b(wv) = wu and b(w'v) = w'u for some u < v.

It is clear that if w =) w’, then for every writing ¢ of M, the A-expressions subyy ¢(w)
and subjy¢(w’) represent the same A-term.

The following is clear from the definition of the ancestor-descendant relation for
one-step [-reduction.

Lemma 3.50. Let M 55 M’ be a duplicating B-reduction step. If (M,w1) >
(M',v1) and (M,wl) > (M’ v9), then vi Zpp va.

Let M = (Ta, far,bar) be a A-term. Suppose that vy,..., v, are nodes in Ty
such that v1 =y ... = v Let w be a node in Ty such that for all i, w < v;, and
bar(viu) < w holds whenever bys(viu) < v;. It is clear that there must be such a w.
Define expand (M, w, {v1,...,vx}) = (T, f,b) as follows:

T={veTy|wZv}U{wd}U{wdlv|wv e Ty, TFi(v; <wv)}U
{wlu | viu € Ty },

f=A{ (v, fu()) [w £v,vedom(fy)}U
{ (w00v, far(wv)) | wv € dom(far), ~Fi(v; < wv) } U
{ (wlu, fpr(viw)) | viw € dom(far) }
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b={(v,by(v)) | w £ v,v € dom(byps) } U
{ (w00v, bps (wv)) | bar(wv) < w, —~Fi(v; < wo) }U
{ (w00v, wO0u) | bps(wv) = wu, =Fi(v; < wv) } U
{ (w00v;,w0) |1 <i<k}U
{ (wlu, bpyr(viw)) | bar(niu) < w} U { (wlu,wls) | bar(viu) = vis }.

It is clear that expand(M,w,{vy,...,vx}) is a A-term, and we have

expand(M, w, {v1,...,vc}) —5 M and (expand(M,w,{vy,...,v;}), wl) > (M, v;)
fori=1,...,k.

Lemma 3.51. Let M € A(X), where ¥ = (A,C,7), and let t be a type decoration
of M. Suppose that w,w’ are two nodes of M such that w = w'. If t(w) is an
atomic type, then t(w) = t(w').

Proof. Let £ be a writing of M and let N = suby¢(w) = suba¢(w’). Let

Ly = {(z,t(wv)) [z = f(wv) € V}U{({(b(wv)),t(wv)) | b(wv) < w}
Ty ={(z,t(w'v)) |z = f(w'v) € V}U{(lbw)), t(w'v)) | bw'v) <w'}.

Then we have

|—2 'y = N : t(w),
by Ty = N s t(w').

Since w =), w', we must have I'y, = I'y. By the Subject Reduction Theorem
(Theorem 3.14),

Fe IV = |N|g: t(w),
Fx IV = |N|g: t(w')

where I =T, [ FV(|N|). By assumption, ¢(w) is some atomic p, so |N |z must be
of the form

for some variable y, or else of the form

CP1 NN Pl
for some constant c¢. In the former case, y:7y, — -+ — 7 — pis in IV, and in the
latter case, 7(¢c) = y1 — -+ — 3 — p for some types v1,...,7;. In either case, we
must have t(w') = p. O
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The following lemma generalizes the Subject Expansion Theorem (Theo-
rem 3.15):

Lemma 3.52. Let M, M' € A(X) be typable A-terms. Suppose M —5 M’ by non-
erasing, almost non-duplicating -reduction. If Fx T' = M': «, thentx T = M : a.

Proof. Clearly, it suffices to consider the case where the S-reduction consists of just
one step and I' = « is a principal typing of M'. Let M = (T, f,b), M' = (T', f', V),
and M ﬂm M'. Let t be a principal type decoration of M, t' be the type decoration
of M’ induced by t (i.e., (M,t) %5 (M’,t')), and f be a principal type decoration
of M’ (with the associated typing I' = «). If the S-reduction step M 5 M’ is
non-erasing and non-duplicating, then Fxs, I' = M : «a by the Subject Expansion
Theorem. So suppose that this S-reduction step is duplicating. Let

{v | b(wO0v) = w0 } = {vy,..., v},

where k& > 2. Since the S-reduction step is almost non-duplicating, we have ¢(wl) =
p for some atomic type p. For each i € {1,...,k}, we have

(M, wl) > (M’ wv;)

and t'(wv;) = p. Since t is a principal type decoration of M’, there is a type
substitution o such that ¢’ = o o t. It follows that for each i = 1, ..., k, there is an
atomic type ¢; such that #(wv;) = ¢;. By Lemma B.50, we have

wv1 ;M/ e g]\4/ wUg,
and by Lemma [3.51] it follows that
==

Define a function #;: 7 — 7 (A) as follows:

(v) if w L v,

(w if v=w,

t1 (U) =591 — f(w) ifv= wO,
t

wu) if v = w00u,

t(woiu)  if v = wlu.

It is clear that #; is a type decoration of M. Although (M,#;) <5 (M’,f) does not
necessarily hold, it is easy to see that #1 is a type decoration for I' = M : a. O
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Lemma 3.53. If M is an almost linear A\-term, M and |M|z have the same prin-
cipal typing.

Proof. Since M is almost affine, by Lemma[3.49], the leftmost S-reduction from M to
|M |3 is almost non-duplicating. Since M is a AI-term, this S-reduction must also be
non-erasing. By the Subject Reduction Theorem (Theorem 3.14) and Lemma B.52]
any typing of M is a typing of |M|g and vice versa. O

3.7 From CFLGs to Datalog: The case of almost linear CFLGs

Given Aoto and Ono’s [3] generalization of the Coherence Theorem (Theorem 3.45),
we easily obtain a generalization of Lemma 3.41 to almost affine A-terms.

Lemma 3.54. Let M be an almost affine A-term in strict n-long form relative to ~y.
Then |M|g is the only A-term in A(database(M), (v)(tuple(M))) that is in n-long
B-normal form relative to ~y.

Proof. The proof parallels that of Lemma 3.41. Let m(M) = (d1,...,dm), and let

yl:ﬂla'--vym:ﬁméa (59)

be a principal typing of M[y1, ..., ym]. Then database(M) = {d;(3;) |1 <i<m}.
Note that M [Y1,...,Ym] is a pure almost affine A-term in strict n-long form. By
Theorem 3.46, (B9) is negatively non-duplicated.

We know from Lemmas 3.17, 3.34, and 3.37 that |[M|s is in 7-long S-normal
form relative to v and that |M|g € A(database(M), (y)(tuple(A))). Suppose N €

A(database(M), (y)(tuple(M))) and_L(Wl(N)] = n. Then there is a function g :
{1,...,n} = {1,...,m} such that Con(N) = (dgy(1), .- -, dg(n)) and

F 210 Bg1)s -+ 20t By(n) :N[zl,...,zn] Q.
Substituting y, ;) for z;, we get

+ {yg(z) 59(2) | 1 S’LS’I’L} :N[yg(l)w"ayg(n)]:a'

—

By Theorem 3.45, ]\Af[yg(l), o3 Ygm)] =y My1,- ., yn], and so N =g, M. It follows
that if N is in n-long S-normal form relative to v, then N = |M|s. O

ACFLG Y = (4,5, f, 2,S) is almost linear if for every m € &, the A-term on
the left-hand side of 7 is almost linear. An example of an almost linear CFLG is the
grammar in Example 3.28. Almost linear CFLGs can encode 10 context-free tree
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grammars [21] in a straightforward way, similarly to de Groote and Pogodalla’s [19]
encoding of linear context-free tree grammars

Lemma 3.39 and Theorem 3.40 do not generalize to the almost linear case, and
there is no simple analogue of Theorem 3.42 for almost linear CFLGs. The reason
is that A(D,«) need not be closed under the converse of non-erasing almost non-
duplicating S-reduction (in contrast to part (ii) of Lemma 3.34), despite the fact
that the Subject Expansion Theorem generalizes to such -reduction (Lemma 3.52).
This is so even when D = database(N) and a = ()(tuple(N)) for an almost linear
A-term N € A(X) in n-long S-normal form relative to ~.

Example 3.55. Consider the A-term (19) from Section 2.2:
N = 3(A\y.A(unicorn y)(A(find y John)(catch y John))),
where the types of the constants 3, A, unicorn, find, John, catch are as follows:

J:(e—t)—t,
N:t—=1—1t,
unicorn:e —t,
find:e —e—t,
John : e,
catch:e —w e —t.

s
We have Con(N) = (3, A, unicorn, A, find, John, catch, John). A principal typ-
ing of
Nlz1, 22, 23, 24, 25, 26, 27, 28] = 21 (Ay.22(23Y) (24 (25Y26) (27Y28)))
is
21:(4—2)—1, 29:3—5—2, 23:4—3, 24:6 -85, 25:4—>7—6, 26:7, 27:4—9—8, 28:9 = 1,

which gives rise to

database(N) = {3(1,2,4), A(2,5,3),unicorn(3,4), A(5,8,6),find(6,7,4), John(7),
catch(8,9,4),John(9)},

35With respect to string languages, it is easy to see that almost linear CFLGs generating A-terms
representing strings are no more powerful than linear CFLGs (see footnote dIl). What this means is
that encodings of “non-linear” grammars like IO macro grammars [24] and parallel multiple context-
free grammars [66] in terms of CFLGs cannot be almost linear. However, our reduction to Datalog
applies to these cases indirectly if we take almost linear CFLGs encoding tree analogues of these
grammars (i.e., IO context-free tree grammars and what one might call “parallel multiple regular
tree grammars”) and use regular sets of trees as input. See Section 4.2 below.
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tuple(N) = (1).
Now consider the A-term (25):
N° = 3(Ay.A(unicorn y)((Az.A(find y z)(catch y x)) John)).

Although N° —5 N by non-erasing almost non-duplicating 3-reduction, it is easy
to see that N° ¢ A(database(/N),1). This does not contradict Lemma 3.52, because

—

Nely1,y2,Y3, Y4, Y5, Y6, Y1) 75 Nz1, 22, 23, 24, 25, 26, 27, 28],
no matter how one picks the variables y1, y2, y3, ¥4, Y5, Y6, Y7-

Let 4 = (A,%, f,Z,5) be an almost linear CFLG, and suppose that N €
A(X) is in n-long B-normal form relative to f(S). In order to find a database D
and a tuple § such that N € L(¥) if and only if program(¥) U D  S(5), what
we do is to S-expand N to a ‘most compact’ almost linear A-term N° such that
N° —3 N in the sense that for any almost linear P € A(X), if P -3 N and
two occurrences of the same constant in N have a common ancestor in P, then
they have a common ancestor in N°. Thus, for every constant ¢ € C, N° contains
the fewest occurrences of ¢ among all almost linear A-terms that S-reduce to N.
We have P € A(database(N°),tuple(N°)) if and only if P —g N for all almost
linear P € A(Y) in n-long form/ and the desired equivalence of N € L(¥) and
program (%) U database(N°) = S(tuple(/N°)) follows. We show that such N° can be
computed efficiently.

Let us call a node v of a A-term M = (T, f,b) a pivot if (i) v € T UT®, and
(ii) v = v'0 implies ' € TW. A pivot v is duplicated if v ¢ dom(b) and there is
another pivot v/ € T such that v =); v'. If some type decoration of M assigns a
node v an atomic type, then v must be a pivot. If M is in n-long form and v is a
pivot of M, then the principal type decoration of M assigns v an atomic type.

Algorithm 1.

1: procedure COLLAPSE(M )

2 M° «+— M

3 while there is a duplicated pivot in M° do

4: Let V' be the set of duplicated pivots of maximal height in M°

5 Let v1 be the leftmost (i.e., lexicographically first) node in V'

6 Let {va,...,vp} ={v | v is a pivot, v # vy, and v] Zppe v }

7 Let w be the pivot of minimal height such that w < wv; fori=1,...,k

36This corresponds to the special property (28) mentioned in Section 3l
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8: M° + expand(M°,w,{vi,...,vx})
9: end while
10: return M°

11: end procedure

It is «clear that the node w picked in line 7 is such that
expand(M°, w,{v1,...,vx}) in line 8 is defined.

Lemma 3.56. Let M be a typable A-term in n-long form, and consider the execution
of Algorithm 1 on input M. If w; is the node w that is picked in line 7 during the ith
iteration of the while loop, then the following conditions hold after the ith iteration
of the while loop.

(i) M° is a typable A-term in n-long form.

(ii) M° —g M by non-erasing, almost non-duplicating (-reduction.

Wiy, W1

(iii) If wy and uy are pivots of M such that uy =p ug and (M°,u}) w» (M, u;)

Wi w1 )
and (M®°,ub) (M, ug), then v} and uy are also pivots and uy =y, ub.

Proof. Let My = M, and let M; be the value of M° after the ith iteration of the
while loop. We show that the conditions (i), (ii), and (iii) hold by induction on i,
on the understanding that v} = u; and uh = ug when i = 0.

The three conditions clearly hold when i = 0. Assume that the three conditions
hold of M; and let vy, vs,...,vr be the nodes that the algorithm picks in lines 56
during the (7 + 1)st iteration of the while loop. Since M; is typable and in n-long
form, the principal type decoration t; of M; assigns v; an atomic type p, and by
Lemma 3.51, t;(v2) = --- = t;(vk) = p. As in the proof of Lemma 3.52, this allows
us to define a type decoration for M, = expand(M;, wit1, {vi,...,v;}) that assigns
p to the node w;11. It follows that the S-reduction step M, wilg M; is almost
non-duplicating. It is also easy to see that My is in n-long form. So (i) and (ii)
hold of M;y;. To see that (iii) holds of M;;1, let s; and sg be pivots of M; such
that s; =), s2, and let s] and s, be the nodes such that (M;4q,s]) waH (M;, s1)

Wit 1
and (M;11,55) » (M, s2). It is easy to see that s and s are also pivots, so it

suffices to show s| =y, sh. If 51 = so, then clearly sy = s5. If 51 # s2, since v
is a duplicated pivot of maximal height in M; and vy, vs, ..., v, are all of the same
height, it cannot be the case that s; < v; or so < v; for any 4. This ensures that
{s]s1sisanodeof M;} ={s]|s|sisanodeof M1}, (Mit1,s)s) S (M;, s15),
and likewise for sy and s,. By Lemma [B4] it is easy to check that the remaining
conditions for s} =), | s5 are satisfied. O
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Lemma 3.57. Algorithm 1 always terminates.

Proof. One can prove by induction that the following condition holds at each stage
of the algorithm: every pivot v in M*° = (Tase, fare, bare) that is not in dom(bpso) is
either an ancestor of a pivot in M or else a S-redex such that v00 and vl are pivots
not in dom(bpse). It follows that every pivot in M° that is not in dom(bpso) contains
an ancestor of a node in M, and the number of nodes in M° that are ancestors of
nodes in M strictly decreases at each iteration of the while loop. O

We now prove two lemmas (Lemmas and B.61]) needed to show that
COLLAPSE(M) is more compact than any almost affine A-term that S-reduces to
M. These lemmas require us to introduce two new binary relations on nodes. The
following lemma is needed to prove the first of these lemmas:

Lemma 3.58. Let M = (T, f,b) € A(X), and v,v" € T be two nodes such that
v =y v, Suppose M = My <35 My SBg -+ %35 M, = |[M|g. Let vy = v,v}) = v/,
and for 1 < i < n, let v; and v} be nodes of M; that satisfy one of the following
conditions:

(i) (M;—1,vi—1) > (M;,v;) and (M;—1,v}_4) > (M;,v}), where k = k' if both
w;l <wvi—y and w;l < v,_, hold.

w;
(i) vi—1 = v; = w; and (M;_q,v,_y) » (M;, ).

w;
(iil) (Mi—1,vi—1) » (M;,v;) and vi_; = v} = w;.
W1,y Wn Wy W
Then vy, =y, vy, Moreover, (M,vu) —w» — (|M|g,vys) implies (M,v'u) »
(IM]g, vr,5).
Proof. Let M; = (T;, fi,b;) for i =0,1,...,n. For i = 1,...,n, define w; by:
vir if w; = v,
Wy = qvir if w; = vlr,
w;  if v; € w; and v, £ w.

Then it is not hard to see that there are A-terms M; = (7}, i (A)z) fori=0,1,...,n
such that

viyvgeﬁa
{u|u€7§,v¢%u,vé%u}:{u|u€’ﬁ,vi§éu,v§§éu},
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{u]viueﬁ}:{u|v£u€7§},
{u|v§u€7§}:{u|viu67§},

and
Moreover, we can check that the following conditions hold for ¢ = 0,1,...,n by
induction:

e v;u € dom(f;) if and only if vju € dom(f;),

e if v;u € dom(f;), then f;(viu) = fi(viu),

e v;u € dom(b;) if and only if viu € dom(b;),

e if v;u € dom(b;), then v; < b;(v;u) if and only if v} < by(viu),

o if v;u € dom(b;) and v; < b;(v;u), then for some s, b;(v;u) = v;s and IA),(v;u) =
vls,

e if v;u € dom(b;) and b;(viu) < v;, then bi(viu) = b;(viw),

e i>1and (M;_1,v;_1u) > (M;, v;s) imply (Mi_l,vl{_lu) > (Mz-,v;s).

W1 ,yeery W
From these conditions, we can see that v, =, vl and that (M, vu) >

(|M|g,vps) implies (M, v'u) S (|M|p,v},s). By Theorem 3.5, we can conclude
W1 yeeey W, W1 yeeey Wy

that (M,vu) » = (|M|g,vps) implies (M,v'u) » = (|M|g,v},s). O

Let M = (T, f,b) € A(X). We call two nodes w,w’ of M homologous and write
w =~ w' if there are v,v’, u satisfying the following conditions:

o w=vu,w =u,
o v =), v, and
, .
e v and v’ are pivots.

The relation =, is symmetric, but not transitive. We call two nodes w,w’ of M
similar if w &%, w’ (i.e., if they stand in the reflexive transitive closure of the relation
of being homologous).
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Example 3.59. Let
M = dyzvw.w(w(Azr.z(yz)(yx))) (v(Ax.2(yz) (yx))).

This is a A-term in n-long B-normal form, and the following is a natural deduction
representation of (M, t), where ¢ is a principal type decoration of M:

[5 N 4]c [5]0000011

[4-543) 1 [5—s 4] [5]0000011 [5-s 4] [5]000011
153 1 Msd3° 4 [pde [5]0001
3 153 T S
[(5-53) 2% 553 0000011 ER—
[2 — 2 — 1]000 2 [(6—3) =2 553

21 2

1
2—-2—>1)—>1 000

(6—=3)—=2)=2—=2=1)—1
4—-4-3)=(5—23)—=2)22—=2—>1)—1
God) (424535 (523) 22 o292 =1 "

00
0

Note that a node v of M is a pivot if and only if ¢(v) is an atomic type. We have

e 000001 =, 00001 (the two occurrences of v(Az.z(yz)(yx)) (with type 2) are
congruent)

e 0000011001 =5, 000001101 (the first and second occurrences of yz (with type
4) are congruent)

e 000011001 =5, 00001101 (the third and fourth occurrences of yx (with type
4) are congruent)

Consequently, we have

e 00000110010 =25, 0000110010 (the first and third occurrences of y are homol-
ogous),

e 0000011010 =25, 000011010 (the second and fourth occurrences of y are homol-
ogous),

e 00000110010 ~;; 0000011010 (the first and second occurrences of y are ho-
mologous),

e 0000110010 =257 000011010 (the third and fourth occurrences of y are homol-
ogous),
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and all four occurrences of y in (the above A-expression for) M are similar. Note
that M [-expands to an almost linear A-term

M' = Myzvw.(Ary.wziry) (v(Az.(Az2.20022) (y2))))),
in which all four occurrences of y in M have a common ancestor.

Lemma 3.60. Let M € A(X) be a typable A-term and suppose M —5 |M|g by
almost non-duplicating -reduction. If two distinct nodes of |M|g share a common
ancestor in M, then they are similar.

Proof. Consider two distinct nodes v,v" of |[M|s that share a common ancestor in
M. Let M = My <5 My S5 --- %35 M, = |M|g be an almost non-duplicating
S-reduction, and let ¢; be a principal type decoration of M;. Let v,, = v, v/, = v’, and
for i =1,...,n, let v;—; and v]_; be the nodes of M;_; such that (M;_1,v;_1) &k’z
(M;,v;) and (M;—1,v}_4) T&kg (M;,v}). By assumption, vg = vj. We first prove the
following;:

Claim. For some distinct nodes u, u’ of |M|g, it holds that v < v, v’ </, u =P o,
and u and u’ are pivots.

Since v and v’ are distinct, there is an ¢ > 1 such that v;_; = v]_; and v; # v,.
We must have w;1 < vy, w;il < v,_, and k; # k. Let m = max{i | 1 < i <

n,wil < vi_1,w;l < vi_y, ki # k}}. There must be nodes upm,u,, of M, such
that (My—1,wm1) W g (M i)y (M1, w0 1) %5 (Mo, ), Uy < 0y, and
ul, < vl,. By Lemma 3.50, we have wu,, =), ul,. Since by assumption the (-
reduction step M., 1 %5 M,, is almost non-duplicating, ,,—1(wy,1) must be an
atomic type. It follows that u,, and u/, are pivots; in particular, neither u,, nor u,,
is a unary node.

For i =m+1,...,n, define u; and u} as follows:

w; if ui—1 = w;,

u; = { the node such that (M;_1,u;—1) z&kl (M;,u;)  if wil <wjiogq,

the node such that (M;_1,u;—1) Iﬁl (M;,u;) otherwise.

w; if u,_ = w;,

u; = { the node such that (M;_q,u}_;) Z&kg (M;, ) if wil <y,
the node such that (M;_1,u_,) > (M;,u}) otherwise.
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It is easy to see by induction that such u; and u) always exist, and it holds that
u; < v; and u; < v). By the assumption about m, we have that for i € {m+1,... ,n},
if wil < w;—; and w;l < w}_4, then k; = k.. By Lemma B.58 it follows that
Un, | 01)5 U

For i =m —1,...,n, define a type decoration t; for M; by

/
tm—l = tm—h

(Mi—1,t§,1) gg (Mi,tg) for 7 = m,...,N.

Then it is easy to see tp—1(wyl) = t(u;) = ti(u}) for all ¢ = m,...,n. Since
tm—1(wpy1) is an atomic type, it follows that u, and w] are pivots. So we have
proved the above claim, with u = u,, and v’ = u/,.

Now we show that v and v are similar by induction on |v| — |u| + [v'| — |/|. Let
s, s’ be such that v = us and v/ = v/s’. If s =/, then v and v are homologous and
hence similar. Suppose s # s’. By Lemma 3.58, the nodes v = us and us’ of | M|z
share a common ancestor in M. By the above claim applied to us,us’ in place of
v,v', we must have s = 5189, 8" = 885, 51 # 8}, us1 =), usy, and us; and us) are

pivots. Since |us| —|usi|+ [us'| = [usi| = [s2] +[s5] < [s|+|s'| = [v] = Ju] + o] — o],
the induction hypothesis applies; hence us and us’ are similar. Since us’ and u's’
are homologous, it follows that us and u’s’ are similar. O

Lemma 3.61. Let M = (T, f,b) € A(X) be a closed typable A-term in n-long form,
and let M° = COLLAPSE(M). Suppose that uy and ug are distinct nodes of M such
that uy %}\k/j ug. Unless uy is a pivot and u; € dom(b), uy and uy share a common
ancestor in M°.

Proof. Clearly, it suffices to consider the case where u; /s us. There must be a pair
of pivots s1, so such that s; = so and for some u, u; = sju and ug = ssu. By the
assumption about ug, us, we have s, so & dom(b). At each stage of the execution of
Algorithm 1, let u),ub, s}, sh be the ancestors of uq,us, s1, $2, respectively, in M°.
By Lemma B56 s) and s are pivots and s] e s5. We must have s) = s} at
the end of the execution of Algorithm 1. Since the nodes wvy,vs, ..., v, picked in
lines 56 of the algorithm are duplicated pivots of maximal height in M°, we cannot
have s} < v; or s5 < v; for some i € {1,2,...,k} until s| = s,. Hence, until s§ = sb,
we have v} = sju and uf = shu. This means that at the first stage where 5] = s}
holds, we have u} = uh. Therefore, u; and uy have the same ancestor. O

Lemma 3.62. Let M € A(X) be a closed A-term in n-long -normal form and
M?° = COLLAPSE(M). Suppose M' —pg M by almost non-duplicating [-reduction.

Let m = ]@(MO)\ and n = |(W1(M’)| The following hold:
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(i) |]T4\°[y1,...,ym]]5 = |M\’[yg(1),...,yg(n)]]@ for some g¢g: {l,...,n} —
{1,...,m}.

(ii) If M' is almost affine, then so is M°.

Proof. (i) Consider two occurrences vy, vy of a free variable z; in |M'[z1,. .., 2]
Since each free variable occurs just once in M'[z1, ..., z,], the unique occurrence u of
ziin M'[z1,. .., zp] is the common ancestor of the nodes v and vy of |[M'[z1, .. ., z,]| g

This means that the node w of M’ is the common ancestor of the nodes v; and vy
of M. By Lemma 3.60, we have vy z}f/[ v9. Since some constant occurs at v;
and vy in M, Lemma 3.61 implies that v; and vy have the same ancestor in M°.
This means that the same free variable occurs at v; and vy in ]]\/I\O[yl, e Ymlls-
Therefore, there is a function g: {7 | 2z € FV(\M\’[zl,...,zn”/g)} — {1,...,m}
such that if v is an occurrence of z; in |M\/[zl, ..., %n]|, then v is an occurrence
of yy) in |]T/I\°[y1,...,ym”5, Some z; may not occur in \M\’[zl,...,znﬂﬂ, but by
extending g to a function from {1,...,n} — {1,...,m} in an arbitrary way, we
have [M[ys, - Yl = M [y -+ Yot

(ii) Let tpso be a principal type decoration of M° = (Tyse, fare,base). Suppose
that M° is not almost affine. Then there are two distinct leaves v, v € T]\(/IOQ such
that byso(v1) = bpge(va) and tpge(v1) = tare(v2) is a non-atomic type. Since M° is
in n-long form, we have vy = u10 and vo = w20 for some uy, us € 7']\(422 Since the (-
reduction from M° to M = (Tas, far, bar) is non-erasing and almost non-duplicating,
it is easy to see that by taking the leftmost (i.e., lexicographically first) descendants
at each step, we can arrive at u}, uf € T]\(j ) such that u}0, u50 are descendants of v;
and vq, respectively, and by (u}0) = bys(u50). Now let v] and v} be the ancestors
of u}0 and u50, respectively, in M’ = (Tyr, farr, barr). By Lemma 3.4, part (iv), we
see that by (v]) = b (vh). Let ty be a principal type decoration of M’. Since M’
is almost affine, either vj = v4 or tpp(v]) = tyr(vh) is an atomic type q. Let tas
be a type decoration of M such that (M’ tyr) —g (M, tar). If tap (V) = tar (v5) =
q, then ¢y (u)0) = tp(u0) = ¢, contradicting uf,ul, € T]\(f). Hence v = v).
By Lemma 3.60, uj0 ~%, u40. By Lemma 3.61, v; = vg, a contradiction. This
contradiction shows that M° is almost affine. O

Lemma 3.63. Let M € A(X) be a closed N\ -term in n-long S-normal form relative
to 7y, and let M° = COLLAPSE(M). The following hold:

(i) M° is a AI-term in n-long form.
(i) If M" - M by non-erasing almost non-duplicating [-reduction, then M’ €
A(database(M°®), () (tuple(M°))).
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Proof. Part (i) is byimma 3.56, parts (i) and (ii).
For part (ii), let Con(M°) = (dy,...,d;) and let

yltﬂl,...,ymlﬁmia

be a principal typing of ]\/ﬁ[yl,...,ym]. Then_)di(E) € database(M°) for i =
1,...,m, and (y)(tuple(M°)) = a. Let n = |Con(M’)|. By Lemma B.:62] there
is a function g: {1,...,n} — {1,...,m} such that

|]\/4\O[y17 s 7ym]|,3 = |M/[yg(1)) s 7yg(n)”ﬁ

Since M’ —3 M by non-erasing almost non-duplicating S-reduction, we also have
M\’[yg(l), s Ygm)] 8 ]M\’[yg(l), -y Yg(m)l|p Dy non-erasing almost non-duplicating
p-reduction. Then by the Subject Reduction Theorem (Theorem 3.14) and
Lemma 3.52, we have

- {yg(z) ﬁg(z) | I<i< n} = M/[yg(l)a s 7yg(n)] et
This means that M’ € A(database(M®), (y)(tuple(M?))). O

Lemma does not say that A(database(M®), (y)(tuple(M®))) is closed under
non-erasing almost non-duplicating [S-expansion, but together with Lemma 3.54
implies the following, which corresponds to the special property (28) highlighted in
the rough proof sketch given in Section 2.3.

Lemma 3.64. Let M € A(X) be a closed \-term in n-long S-normal form relative
to v, and suppose that M° = COLLAPSE(M ) is almost linear. Then for every almost
linear closed A\-term M' € A(X) in n-long form relative to v, M’ —g M if and only
if M’ € A(database(M?®, (v)(tuple(M®))).

Proof. First note that M € A(database(M°), (7)(tuple(M°))) by Lemma 3.37 and
part (i) of Lemma 3.34.

Suppose M’ —5 M. By Lemma 3.49, the leftmost S-reduction from M’ to
M = |M’|p is non-erasing and almost non-duplicating. Lemma 3.63 then implies
M’ € A(database(M°), () (tuple(M®))).

Conversely, suppose M’ € A(database(M®), (v)(tuple(M°))). By part (i) of
Lemma 3.34 again, |M’|z € A(database(M°), () (tuple(M°))). Since by Lemma 3.17
|M'|g must be in n-long form relative to v, Lemma 3.54 implies |M’|z = M. O

The following theorem is the main result of the paper.
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Theorem 3.65. Let 4 = (N, %, f, 2, S) be an almost linear CFLG. Suppose that
N € A(X) is a A-term in n-long B-normal form relative to f(S). Then the following
are equivalent:

(i) N € L(9).

(ii) N° = COLLAPSE(N) is almost linear and program(¥) U database(N°) F
S(tuple(N°)).

Proof. (i) = (ii). Suppose N € L(¥). Then there is a closed A-term P € A(X) in
n-long form such that ¢ S(P) and P —5 N. Since ¢ is almost linear, P is almost
linear. By part (ii) of Lemma 3.62 and part (i) of Lemma 3.63, N° = COLLAPSE(N)
is almost linear. By Lemma B.64, P € A(database(N°),(f(S))(tuple(N°))).
Lemma 3.35 then implies program (%) U database(/N°) F S(tuple(N°)).

(ii) = (i). By Lemma 3.35, there is an almost linear A-term P € A(X) in n-long
form such that k¢ S(P) and P € A(database(N°), (f(S))(tuple(N°))). Since N° is
almost linear, Lemma 3.64 implies that P —g N. Therefore, N € L(¥). O

Notice that when ¢ is a linear CFLG and N is a linear A-term, Theorems 3.42
and 3.65 both hold of ¢4 and N, even though N° # N in general.

Let us turn to the complexity analysis of the reduction. Since it is easy to see
that Algorithm 1 runs in polynomial time, an immediate corollary to Theorem 3.65
is that the language of every almost linear CFLG belongs to the complexity class P.
As in the linear case, we can obtain a tight complexity upper bound. Recall that <
is the lexicographic order on {0,1}*. We write ap; N < for the intersection of the
two relations ~); and <, thought of as sets of ordered pairs.

Lemma 3.66. Let M = (T, f,b) be a A-term, and suppose that uy (=y N <) v and
ug (~pr N <) v. Then there exists a v' such that

(i) either v' (=p N <) uy orv' =wuy, and
(ii) either v' (=p N <) ug or v/ = us.
Proof. There are 11,0z and pivots w1, w, s, so such that

w1 = w, w1 < w, up = w1y, v = wily,

So = S, S9 < S, Uy = Sot9, v = Siy.

Since w and s are prefixes of v, either w < s or s < w. We may assume w < s. We
have
S = w§, le = §ﬂ2
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for some 8.
Case 1. There is an s’ such that w < b(ss’) < s. Since sy =) s, it must be the
case that w < b(ss’) = b(s2s’) < s2. So there is an 83 such that

8o = w8y, §9 < 8.

Since wds = s9 =y s = ws and wy = w, the definition of the congruence relation
=,s implies that w82 and wi§ are pivots and

w1§2 gM w1.§.
Therefore,
uy = wlﬂl = w1§@2 XM ’w1§2ﬂ2 ~M w§2ﬂ2 = 82@2 = Uu9.

Let v' = w182%s. Since 89 < § and wy; < w, we have v/ < u; and v/ < us.
Case 2. There is no s’ such that w < b(ss’) < s. Since wy =) w, we must have

So Zpr s = ws = wi§,
and w18 is a pivot. Therefore,
ug = Saliy A w18ty = w1ty = u,
and the conclusion clearly holds with either v/ = uy or v/ = us. ]
The next lemma easily follows from Lemma
Lemma 3.67. If u ~%, v, then there exists a w such that w (~=y N <)" u and
w (= N <) v,

Lemma 3.68. Let ¥ = (AN, X, f, P, S) be an almost linear CFLG. There is a log-
space-bounded deterministic Turing machine that takes as input a A-term N € A(X)
in n-long B-normal form relative to f(S) and decides whether Algorithm 1 returns
an almost linear N°, and if so, computes (database(IN°), S(tuple(N°))).

Proof (sketch). Let N = (T, f,b). We assume that N is given as a A-expression as
before. We must avoid computing the output N° = COLLAPSE(N) of Algorithm 1
explicitly. By Lemmas 3.60 and 3.61, N° is almost affine if and only if for every pair
of nodes v,v" € T such that b(v) = b(v'), it holds that v ~% v'. By Lemma 367,
this is so if and only if w (=y N <)* v/, where w is the leftmost node such that
w (=y N =<)* 0P Checking whether two nodes are homologous clearly requires no

37In fact, by refining the proof of Lemma 3.60, it is not hard to see that it suffices to take the
leftmost w such that b(w) = b(v) = b(v') and check w (=x N <)* v and w (=y N <)* V',
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more than logarithmic space, so the relation (~y N -<)* can be decided in logarith-
mic space as well. It follows that the similarity of v and v’ can also be checked in
logarithmic space. It is also easy to see that N° is a AI-term if and only if N is, and
clearly this can be checked in logarithmic space.

Now suppose that N is AI and N° is almost linear. Let Con( )= (d1,...,dm),
and let

yl:ﬂla"'aym:ﬁméﬁo
211N+ 20 Yn = 0

be principal typings of N [Y1,.--,Ym] and N\O[zb ...,2pn], respectively.  Let
{wy, ..., wy} = dom(f), where w1 < ... < wy,. (We have f(w;) = d;.) Let

I=1{ie{l,...,m}|thereis no k < i such that wy, ~x w; }.

Let g: {1,...,m} — I be the function such that w; ~x w; for i € {1,...,m}.
By Lemmas 3 60 and 3.61, we must have a bijection h: {1,...,n} — I such that
N° [Yn(1)s - Yn(n)] =8 N[yg( s> Yg(m)l- Let o be a most general unifier of

{(52753) ‘ i €1, w; %}k\f wj}

Then

{yi: Bio |i €I} = Boo (60)
is a principal typing of N [Yg(1)s - - > Yg(m)]- By Lemmal3.53, (60) is a principal typing
of N°[yn(1),- - Yn(n)| as well, and we have

database(N°) = {d;(Bic) |i € I},
tuple(N°) = Foo.

By Theorem 3.46, (60) is negatively non-duplicated. For every i € {0,...,m} and
v e (B) O, let piw = subtype(f;,v). Then if (i1, v1), (i2,v2) are distinct negative
occurrences and 41,93 € {0} U I, then p;, 1,0 # pi,,0. Now consider a positive
occurrence (i,v) of p;, such that ¢ € {0} UI. The fact that Nlyt,...,ym] is a
Al-term implies that in (N [Y1,...,Ym],t), where f is a principal type decoration of
Nyi,...,ym], the occurrence (i,v) is linked to some negative occurrence (i’,v') of
Piv =piry. i€ {1,...,m}, let j = g(¢'); otherwise let j =i’ = 0. Then it must
be that p; ,o = pyrvo = pj 0. Note that although (i, v) may be linked to more than
one (i',v') in (N[ys, . . ., ym],?), the pair (j,v') is uniquely determined independently
of the choice of (i’,v") because (60) is negatively non-duplicated.
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As in the proof of Lemma 3.43, a deterministic log-space-bounded Turing ma-
chine can compute a negative occurrence (i’,v") linked to a positive occurrence (i, v)
by following edges of GG , where t is the type decoration

(Nlytesymlyd) — 7 (Nlys,eesym] )
for yy : 7(d1), ..., ym : T(dm) = Nly1,...,ym] : f(S). Again, the type decoration ¢
is not explicitly computed. There may be more than one maximal directed path
starting from (7,v), but any such path will do, so the machine simply picks the first
relevant edge that it can find at each point. Once the machine reaches a configura-
tion representing (wy,v’,1), it can then find the least j such that w; (=x N <)™ wy
using no more than logarithmic space. O

Theorem 3.69. For every almost linear CFLG ¢, L(¥) belongs to LOGCFL.

Proof. The proof is similar to that of Theorem .44l Note that if P —3 N by

— ——
non-erasing S-reduction, then |Con(P)| < |Con(N)|. This implies that whenever
program (%) U database(NN°) = S(tuple(N°)) holds, there is a derivation tree for it
whose size is bounded by a polynomial in the number of occurrences of constants in
N. O

4 Some consequences and extensions

4.1 Further complexity-theoretic consequences

We have seen that the problem of recognition for a fixed almost linear CFLG is in
LOGCFL. Since there is a context-free language that is LOGCFL-complete [27], it
follows that LOGCFL is a tight upper bound on the computational complexity of
fixed almost linear CFLG recognition.

Let us sketch some further complexity-theoretic consequences of this work. These
concern three different types of problems: (i) the problem of uniform recognition for
subclasses of almost linear CFLGs, (ii) the problem of parsing for a fixed almost
linear CFLG, and (iii) the problem of finding one target A-term from an input A-
term for a fixed almost linear synchronous CFLG.

4.1.1 Uniform recognition

If the grammar is not fixed and is part of the input, the recognition problem (known
as uniform recognition) is known to be P-complete for general context-free grammars,
and PSPACE-complete for non-deleting multiple context-free grammars [38), [39].
Since it is easy to translate non-deleting multiple context-free grammars into linear
CFLGs, the latter gives a lower bound on the complexity of uniform recognition for
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almost linear CFLGs. The EXPTIME-completeness of the program complexity of
general Datalog query evaluation [16] provides an upper bound; currently I do not
know whether either of these bounds is tight, however.

A lower complexity bound for uniform recognition can be obtained for restricted
subclasses of almost linear CFLGs. We call a Datalog program P k-bounded if k is
at least as large as the maximal arity of predicates in P and the number of variables
in any rule of P. For a k-bounded Datalog program P, the number of work tapes
needed in the “storage area” in the log-space-bounded ATM .Zp simulating P does
not exceed k. (The description of .#p was given in Section 3.1.1.) With additional
work tapes to serve as pointers to rules and predicates in the Datalog program, the
program can be moved from the finite control of the ATM to part of the input.
The resulting log-space-bounded ATM can decide, given input (P, D, q) with P k-
bounded, whether P U D + ¢. Now consider the class of k-bounded almost linear
CFLGs, i.e., almost linear CFLGs ¢ such that program(¥) is k-bounded. As in
the proof of Lemma B.G8] it is clear that the translation from ¢ to program(¥) can
be done in logarithmic space. This means that there is a log-space reduction from
the uniform recognition problem for k-bounded almost linear CFLGs to a problem
in ALOGSPACE = P. Since uniform recognition for CFGs whose rules are all of
the form A — BC or A — € is already P-complete [36], it follows that the uniform
recognition problem for k-bounded almost linear CFLGs is P-complete.

It is folklore [55] that the uniform recognition problem for the class of context-
free grammars without e-productions is in LOGCFL. What corresponds to an e-
production in the case of CFLGs is a rule of the form

B(M)

(with an empty right-hand side) where M is a pure A-term. We can eliminate all
such e-rules from an almost linear CFLG by the same method that Kanazawa and
Yoshinaka [47] used for linear CFLGs, so the uniform recognition problem for the
class of almost linear CFLGs without e-rules is of interest. If ¢ is such a CFLG,
then all leaves of Datalog derivation trees for program (%) are extensional nodes. By
the analysis in the proof of Lemma 3.2, we can show that the uniform recognition
problem for the class of e-free k-bounded almost linear CFLGs is in LOGCFL.

4.1.2 Parsing

It is also interesting to ask the computational complexity of parsing, as opposed to
recognition. Functional LOGCFL (written FLFOYCFL) is the class of solution search
problems that can be solved by a deterministic log-space-bounded Turing machine
with a LOGCFL oracle [26]. It is a natural functional analogue of LOGCFL. Gottlob

1191



M. KANAZAWA

et al. [26] show that given an ATM .# with simultaneous log-space and poly-size
bounds, the problem of finding a first accepting computation tree of .# on input w
(within a given polynomial size bound) is in functional LOGCFL. In the course of
proving this result, they also show that the set of all accepting computation trees
(within a given polynomial size bound), in the form of a ‘shared forest’, can be
computed by a log-space-bounded Turing machine with a LOGCFL oracle. We can
use this result to show that the problem of parsing for a fixed almost linear CFLG
is in functional LOGCFL, but here we opt to give the following direct proof, which
is straightforward and more informative.

Let P be a Datalog program, D an extensional database for P, and ¢ a ground
fact. The ‘shared forest’ representation of the set of all derivation trees for PUD F ¢
is just the set F' all ground instances

p(5) == p1(51), ..., mi(5)

of rules p(¥) :— p1(Z1),...,pi(#;) € P that can appear in some derivation tree for
P U D F ¢ which use only constants from D U {q} 3 Suppose that the number of
extensional nodes in any derivation tree for P U D - ¢ is bounded by a number k,
depending only on D. In order to see whether p(5) :— p1(51),...,p(8;) is in F, one
need only check whether there are derivation trees (with no more than k extensional
nodes) for

PUD*Fpi(s) (i=1,...,1)

and one for

PU{p(s)tuDkgq

in which p(§) appears on exactly one of its leaves. Let g(n) be the polynomial that
Lemma 3.2 associates with P. Then derivation trees for PUD F p;(3;) (i =1,...,1)
can be found from among those with at most g(k) nodes, if there are any. It is not
hard to see that the same reasoning as in the proof of Lemma 3.2 shows that the
minimal size of the required kind of derivation tree for P U {p(5)} U D - ¢ can be
bounded by g(k + 1). Thus, answers to these questions can be obtained through
oracle queries to two sets

{(D,q1,1™) | there is a derivation tree for P U D F ¢ of size < g(m) },

{({g2} UD,q,1™) | there is a derivation tree for P U {g2} U D I ¢y of size < g(m)
with g2 on exactly one leaf }.

381t would be more appropriate to call the set F' the “reduced” shared forest, since a shared
parse forest in general may contain useless elements.
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The former is in LOGCFL by Lemma 3.1. A slight modification of its proof shows
that the latter is in LOGCFL, too, and it is easy to combine the two into a single
LOGCFL oracle. Thus, if (D, g, 1) is given as input, the set F can be computed in
logarithmic space with a LOGCFL oracle by cycling through all ground instances
of all rules in P.

Let P = program(¥) for some almost linear CFLG, and suppose (D, q) is ob-
tained from a A-term N as in Theorems 3.65 and Then we can take the
number & to be |Con(N)|, and the set F' can be computed in logarithmic space with
a LOGCFL oracle.

With the one-one correspondence between the rules of the Datalog program
program(¥) and the rules of the CFLG ¥, the set F' can also be taken to be a
shared forest representation of the set of all derivation trees of ¢ for the input A-
term N. Thus, given an almost CFLG ¥, the problem of computing the shared
forest of all derivation trees of ¢ for an input A-term NV is in functional LOGCFL.

4.1.3 Transduction with almost linear synchronous CFLGs

Suppose we are given a synchronous CFLG consisting of a pair of almost linear
CFLGs. Given an input A-term M generated by one of the component CFLGs (call
it the “source-side” grammar), the set of all derivation trees of M can be efficiently
computed in the form of a shared forest, as we have seen above. In order to find a
“target-side” A-term NN that the synchronous grammar pairs with M, we can take
one of the derivation trees T', construct a A-term P that the “target-side” CFLG
associates with T', and then compute the f-normal form N = |P|g of P. It is of
course impossible to explicitly enumerate all such N, because there may be infinitely
many derivation trees of M; nor is there any simple “packed” representation of all
such N (because the set of all such N is in general as complex as the language
of an arbitrary almost linear CFLG). Let us therefore consider the computational
complexity of finding one A-term N that the synchronous grammar pairs with M.
As in [26], a deterministic log-space-bounded Turing machine with a LOGCFL
oracle can compute a single derivation tree T' of M (whenever there is one). It is easy
to see that given a derivation tree 7', the A-term P that the target-side grammar
associates with 7" can be computed in logarithmic space. Although the size of |P|g
is in general exponential in the size of P and so it is not feasible to compute |P|g
explicitly, the pair (database(P),tuple(P)) can be computed in logarithmic space
as in the proof of Lemma 3.68. Since P is almost linear, by Lemma 3.54, |P|g is
the only A-term in n-long S-normal form in A(database(P), (v)(tuple(P))), where
is the type that the target-side grammar assigns to P. So (database(P), tuple(P))
serves as a kind of compact representation of |P|g. (In fact, when |P|g is a tree,

1193



M. KANAZAWA

(database(P), tuple(P)) is a representation of a term graph that unfolds to (the hy-
pergraph representation of) |P|g.) All in all, given a fixed almost linear synchronous
CFLG, the problem of finding one target-side A-term N corresponding to an input
source-side A-term M is in functional LOGCFL, if we allow as output a compact
representation of N in the form of a pair of a database and a tuple of constants.

Note that in the special case where P is linear and | P|g is an encoding of a string
or a tree, (database(P),tuple(P)) is nothing but an explicit hypergraph represen-
tation of the latter. Thus, with respect to a fixed synchronous grammar consisting
of a linear string grammar (e.g., a CFG or MCFG) and an almost linear Montague
semantics, the problem of explicitly computing one surface realization of an input
logical form is in functional LOGCFL.

4.2 Regular sets as input
4.2.1 Parsing as intersection for linear CFLGs

In ordinary parsing/recognition of string languages, it is sometimes useful to allow
as input a regular set of strings (usually represented as a finite automaton), rather
than a single string. The resulting generalization of the problem is a key element
of the view of “parsing as intersection”, where the “shared parse forest” that is the
output of parsing is given in the form of a grammar generating the intersection of
the language of the original grammar and the input regular set. Various dynamic
parsing techniques can then be regarded as variants of Bar-Hillel et al’s [5] original
proof of the closure of the context-free languages under intersection with regular
sets [52].

Many well-known grammar formalisms, including context-free grammars, tree-
adjoining grammars [37], (parallel) multiple context-free grammars [66], and 10
macro grammars [24], have the property that given a regular set R, any grammar G
can be “specialized” into a grammar G’ generating the intersection of the language
of G and R, in such a way that G is the image of G’ under a simple “projection”
that maps nonterminals of G’ to nonterminals of G. Kanazawa [40] has shown that
the same property holds of de Groote’s [17] abstract categorial grammars. Linear
context-free A-term grammars are nothing but abstract categorial grammars whose
abstract vocabulary is second-order. Via encoding in linear CFLGs, Kanazawa’s [40]
result provides a uniform proof of closure under intersection with regular sets for
linear formalisms such as context-free grammars, (multi-component) tree-adjoining
grammars, and multiple context-free grammars.

Theorem 3.40 shows how the recognition problem for linear CFLGs in a gener-
alized form, where an input is a set of A-terms represented by a pair of a database
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and a type, reduces to Datalog query evaluation. It is easy to see that any regular
set of strings or trees can be represented in this way. In the string case, a non-
deterministic finite automaton with an initial state ¢; and just one final state gp
translates into the pair (D, qr — q1), where D is the database consisting of all facts
of the form ¢(q,7) such that the automaton has a transition from state ¢ to state r
labeled by c. In the tree case, a nondeterministic bottom-up finite automaton with
a unique final state gp translates into the pair (D, qr), where D is the database
consisting of all facts f(q, qn,-..,q1) such that the automaton has a transition rule
flaa(z1)y .- yaqn(zn)) — q(f(z1,...,2,). More generally, any set of A-terms that
can be expressed as the set A(D, «) with a database D and a type « can be used as
an input to recognition with a linear CFLG.

With Lemma 3.31, the problem of parsing in this generalized setting reduces to
the problem of computing (a representation of) the set of all derivation trees from a
Datalog program P and a database D. The connection to parsing as intersection is
that the specialized grammar generating the intersection language corresponds to the
propositional Horn clause program consisting of the database D and an appropriate
subset of the set |J,cp ground(m, Up) of ground instances of rules in P.

4.2.2 Almost linear CFLGs and deterministic databases

As we noted, Theorem 3.40 does not hold of almost linear CFLGs, because there
is no analogue of part (ii) of Lemma 3.34 for non-erasing almost non-duplicating
p-reduction: if D is a database over Dy and a € J(A), the set A(D, ) is not
always closed under the converse of non-erasing almost non-duplicating S-reduction.
One sufficient condition for this closure property to hold is given by the following
definition:

e D is said to be deterministic if for all types v1,...,7, and all atomic types
b, q,
AD,yi— =9 —=p)NAD,y1 == Ym—q) #9
implies p = gq.

It is not difficult to show that determinism is a decidable property of databases, but
I leave a detailed analysis of this notion for another occasion

Lemma 4.1. Let ¥ = (A, C, 1) be a higher-order signature, M, M' € A(X) be typable
A-terms, and D be a deterministic database over Ds, . If M' — g M by non-erasing
almost non-duplicating B-reduction, then M € A(D,«) implies M’ € A(D, «).

39In particular, I have been unable to settle the question whether database(NN°) is deterministic
whenever N° is almost linear.
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Proof. Let M = (T, f,b), M' = (T, f',V/) be typable closed A-terms, and let ¢ be
a principal type decoration of M’. Assume M € A(D,«) and M’ E)/g M by a
non-erasing almost non-duplicating one-step S-reduction. Let {v1,...,vx} = {v |
b'(w00v) = w0 }. By assumption, k& > 1. Since the case k = 1 is taken care of by
Lemma 3.34, part (ii), assume k > 2 and ¢'(wl) = p for some atomic type p. Since
M € A(D, ), there is a type decoration £ for

z1:51,...,zm:(5m:>]\/47[zl,...,zm]:a,
H . J—
where Con(M) = (¢1,...,¢p) and for i = 1,...,m, we have ¢;(§;) € D and (7(¢;)) =
(0:).
To show that M’ € A(D, «), it suffices to prove that
t(wvy) = t(wv;) foralli € {1,...,n}. (61)
For, if (61I) holds, then it is easy to see that there are a subset {i1,... iy} of
{1,...,m} and a function g: {1,...,m} — {i1,..., i, } satisfying the following

conditions:

ci = cqyy forallie{l,...,m},

M/[Zi17~- . ’Zim’] gﬁ M[Zg(l)v" . ,Zg(m)],
b 2iy 200y 2i, 200, = M[zg(1), -5 Zgm)] O
b 2iy 10y sz, 10, :>]/\4\’[zil,...,zim,] s a,

—

M,[Ch?"'?cim/] = M/.

The reasoning here is similar to that in the proof of Lemma 3.52.

We prove (61). Let ¢ be a writing of M’. There exists a writing ¢ of M that
agrees with ¢ on {u € 7'M | u < w} such that subpy g (wl) = subyyg(wv;) for
i =1,...,k. Let N = subpp ¢(wl) and let n be the number of occurrences of
constants in N. Clearly, we have a function h: {1,...,k} x{1,...,n} = {1,...,m}
such that

~

subﬁ[%_._’zmw(wvi) = N[zh(i,1)7 ey zh(i,n)]'

Let FV(N) = {y1,...,y-}. Then ¢ and £ determine types 71, ..., 7, such that

F YL VL Y Ve ZR(i0)  OR()s -- - Zh(in)  Oh(in) = N [2h(in)s - - - Zh(im] t E(ws).

Similarly, ¢’ and ¢’ determine types 74, ...,~, such that
FS YL Yt = N,
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There are two cases to consider.

Case 1. |N|g = ijj and 'yg- = 3" — p. Then we must have v = B — t(wwv;) for
alli € {1,...,k}. Hence f(wv1) = t(wwv;) for all i € {1,...,k}.

Case 2. |N|g = cjé and 7(c;) = 3" — p. Then for all i € {1,...,k},
]]\A/[zh(iyl), szl = Zh(i,1)13z' and Oy 1) = B — t(ww;) for some P, and ; such
that E’ and B: are sequences of types of the same length. Since ¢y (; 1) = ¢j, it must
be that (7(c;)) = (0n(,1)), which implies that t(wv;) = ¢; for some atomic g;. Then
we have

~

F Zh(i,1) :6h(i,1)7 “ 5 Zh(in) :5h(i,n) = )\yl R yT'N[zh(i,1)7 RN Zh(i,n)] Y1 =Y — G,

which implies
..oy N € A(D,’yl —)“'—>’7r_>Qi)-

Since D is deterministic, it follows that ¢; = ¢;. O

Lemma 4.2. Let ¥ = (A,C,7) be a higher-order signature, U be a set of database
constants, D be a deterministic database over Dx 7, and o € T (A). For every
almost linear closed A-term M € A(X), M € A(D, &) if and only if |M|z € A(D, ).

Proof. The “only if” direction is by Lemma 3.34, part (i). Since the S-reduction
M —3 |M|g must be non-erasing and almost non-duplicating (Lemma 3.49), the
“if” direction follows from Lemma A7l O

Theorem 4.3. Let G = (N, %, f, 2,5) be an almost linear CFLG and B € A
Let U be some set of constants, D be a deterministic database over Dsx 7, and 5 be
a sequence of constants from U such that |3 = |f(S)|. The following are equivalent:

(i) L&) N AD, (f(5)(5)) # 2.
(ii) program(¥)U D t S(5).

Proof. The implication from (ii) to (i) is by Lemma 3.36.

(i) = (ii). Assume (i). Then there is an almost linear A-term P € A(X) such
that ¢ S(P) and |P|g € A(D,(f(S5))(5)). Since P is almost linear, Lemma
implies P € A(D, (f(S))(5)). Then (ii) follows by Lemma 3.35. O

It is easy to see that if D is a database representing a finite automaton </ (on
strings), then D is deterministic if and only if o/ is. If D is a database representing
a bottom-up tree automaton &7, then, again, D is deterministic if and only if </
is. So Theorem 4.3 applies when a regular set is given as input in the form of a
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deterministic finite (string or tree) automaton 9 The string case of this result is not
useful, however, because every almost linear CFLG generating A-term encodings of
strings is equivalent to some linear CFLG.%!

With respect to tree languages, almost linear CFLGs are more powerful than
linear CFLGs, and can encode grammars that allow copying of subtrees, like 10
context-free tree grammars. For these grammars, Theorem 4.3 implies that parsing
as intersection where input is given in the form of a deterministic bottom-up tree
automaton reduces to Datalog query evaluation.

4.2.3 An application to string grammars with copying

This last point can be exploited to show that there is a way of representing recogni-
tion/parsing (of ordinary single-string input) with respect to some string grammars
with copying operations, such as IO macro grammars and parallel multiple context-
free grammars, in terms of Datalog query evaluation, even though Theorem 3.65
is powerless for that purpose. Such a string grammar can always be turned into
a corresponding tree grammar that generates a tree language whose yield image is
the language of the string grammar. Since tree copying can be represented by al-
most linear A-terms, these tree grammars can be encoded in almost linear CFLGs.
Moreover, we can associate with every string w a regular set of trees that yield w so
that the language of the tree grammar has a non-empty intersection with that set
of trees if and only if w is in the language of the original string grammar.

For example, consider the following parallel multiple context-free grammar [66]

S(r122) :— A(z1, 22).

A(1,0).
A(z1291,220) :— A(z1, 22).

4OWhen the automaton has more than one final state, non-empty intersection is equivalent to a
disjunction of queries of the form “?— S(qz, ¢)” (in the string case) or “?7— S(q)” (in the tree case),
one for each final state q. To reduce this to a single query, one can add the rules of the form
“S":— S(qr,q)” or “S’ :— S(q)” for all final states ¢, and use the query “?— S’”.

“IThis can be seen as follows. Suppose that P € A(X) is an almost linear closed A-term such
that |P|lg = Je1...¢n/ = Az.ci(...(cn2)...). Then by Lemma 3.49, P —3 |P|g by non-erasing,
almost non-duplicating S-reduction. But Lemma 3.60 implies that Con(P) is some permutation
(¢jry---s¢j,) of (c1,...,¢n), and ﬁ[Zjl ey Zin] 8 Az.z1(. .. (2n2) ... ) by non-erasing, almost non-
duplicating B-reduction. However, it is easy to see that the set of non-affine pure A-terms is closed
under non-erasing almost non-duplicating 3-reduction. Since Az.z1(...(2n2)...) is linear, it follows
that Plzj,, ..., 2;,], and hence P, must be linear.

42The notation here follows that of elementary formal systems [72, 4, 28], which are logic pro-
grams on strings.
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This grammar generates the language { w,, | n > 1}, where w,, = 10102 ...10". The
third rule involves copying of the variable x5. The translation of this grammar into
a CFLG looks as follows:

S(Az. X (A\z1x9.71(222))) :— A(X).
A(Aw.w(Nz.12)(A2.02)).
AAw. X Az1zo.w(Az.z1(22(12))) (A2.22(02)))) :— A(X).

Here, f(S) = 0— o0, and f(A) = ((0 = 0) = (0 — 0) = 0) — 0. This grammar is not
almost linear, since the bound variable x2 in the A-term on the left-hand side of the
third rule must have a non-atomic type in the principal typing of the A-term.

Here is a grammar that generates a set of trees whose yield image is the language
of the above PMCFG:

S(e(xy,x2)) :— A(w1, 22).
A(1,0).
A(e(xy,c(z2,1)), c(x2,0)) :— A(z1, 22).

Here, ¢ is a symbol of rank 2, and 1 and 0 are symbols of rank 0. A grammar like
this, where a nonterminal denotes a relation on trees and a rule may duplicate trees,
may be called a parallel multiple reqular tree grammar, in analogy with a multiple
reqular tree grammar [60, 23]. For example, the tree

c(e(1,¢(0,1)),¢(0,0))

is generated by the above tree grammar with the following derivation:

S(e(e(1, c(O,ll)), ¢(0,0)))
A(c(1, ¢(0, I1)), ¢(0,0))
A(1,0)

The yield of this tree is 10100 = ws.
It is straightforward to encode the above tree grammar into an almost linear
CFLG:

S(X (Ax1z2.cx122)) :— A(X).
A(Aw.w10).
A(Aw. X (Az1z2.w(cz(cxal))(cx20))) :— A(X).
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Here, f(S) = o and f(A) = (0 = 0 — 0) = 0. This CFLG ¥ translates into the
following Datalog program Pg:

S(i1) :— c(ia, ia,13), A(i1, 12,14, 13).
A(iy,11,13,12) :— 1(i2),0(i3).
A(ir, 19, 18,143) :— c(i3,15,14), c(i5, 97, 96), 1(i7), c(ig, 19, i5), O(ig), A(i1, 92, i6, 14)-

The above Datalog program P« can be used to parse input strings with respect
to the original PMCFG. For example, if the input string is 10100, we first form a
deterministic bottom-up tree automaton &7 that recognizes the set of trees over the
ranked alphabet {1(0), 000, 0(2)} whose yield is 10100. The states of this automaton
are of the form q,,, where w is one of the non-empty substrings of this string:

0,1,00,01,10,010, 100, 101, 0100, 1010, 10100

For each of these strings w and nonempty strings u,v such that w = wv, the au-
tomaton &7 has the rule

c(qu(1), qu(@2)) = qu(c(z1, 22)).
which gives rise to the extensional fact
(qw, G, qu)-
Moreover, for each symbol a occurring in w, the automaton has the rule
a — qq(a)
which translates into the extensional fact
a(ga)-

The database obtained this way is deterministic. In the present case, we get the
database D consisting of the following facts (we write w instead of qw)

0(0). 1(1).
¢(00,0,0). ¢(01,0,1). ¢(10,1,0).

431f the PMCFG rules contain occurrences of the empty string e, then the corresponding PMRTG
will have a special rank 0 symbol corresponding to €, and one needs to take all substrings of the
input string, not just non-empty ones, in the construction of the automaton <. The automaton
will then represent the syntactic monoid of the singleton set consisting of the input string.
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¢(010,0,10). ¢(010,01,0).
¢(100,1,00). ¢(100,10,0).
¢(101,1,01). ¢(101,10,1).
¢(0100,0,100). ¢(0100,01,00). ¢(0100,010,0).
¢(1010,1,010). ¢(1010,10,10). ¢(1010,101,0).
¢(10100,1,0100). ¢(10100,10,100). ¢(10100,101,00). ¢(10100,1010,0).

By Theorem 4.3,
Py U D + S(10100) (62)

if and only if ¢ generates (the A-term representation of) a tree whose yield is 10100.
This is so if and only if the original PMCFG generates this string. Since the rules of
the PMCFG are in one-one correspondence with the rules of ¢, parsing the string
with this PMCFG reduces to the problem of computing all derivation trees for (62]),
in the form of a shared forest.

This reduction generally applies to the yield images of the tree languages that
can be generated by almost linear CFLGs. It is shown in unpublished work [44] that
the class of tree languages generated by almost linear CFLGs coincides with the class
of output languages of tree-valued attribute grammars or attributed tree transducers
(see [I1]). As a consequence, the class of yield images of these tree languages is
simply the class of output languages of string-valued attribute grammars, studied by
Engelfriet [22].

Clearly, the deterministic bottom-up tree automaton <7 (and the corresponding
database) associated with the input string can be constructed in logarithmic space.
Note that all trees accepted by @7 have the same number of constants, namely 2n—1
for input string of length nf*] This implies that recognition and parsing with these
grammars are in (functional) LOGCFL, matching the result of Engelfriet [22]

4.2.4 An application to generation from underspecified semantics

Koller et al. [49] have proposed to use a regular tree grammar as an underspecified
representation of various readings of sentences with multiple scope-taking operators.
However, when the operators include variable-binders, a tree is not ideally suited to
represent the scope relation because one needs to associate a variable name to each

44This number assumes that </ does not have a special symbol representing the empty string.

45Note that parsing as intersection with these grammars, where the input is a regular set of
strings, can also be represented as Datalog query evaluation. The deterministic bottom-up tree
automaton that determines the database and query can be obtained from the syntactic monoid of
the input regular set.
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S(A2.Y (Ay1y2.y1(y22)), X) :— NP_VP(Y, X).
NP_VP(Aw.Y (Ay1y2.w(Az.y12)(Az.didn't(y22))), =X) :— NP_VP(Y, X).
NP_VP(Aw.w(Az.Y12)(A2.Yaz), Xi(Az.Xaz)) :— NP(Y1, X1), VP(Y2, X2).
NP_VP (Aw.Yi(Ay1y2.w(Az.y12)(Az.y2(Y22))), Xo(Az. X 2)) :— NP_V(Y1, X1), NP(Y2, X>).
NP_V(Aw.Y (Ay1y2.w(Az.y12)(Az.didn't(y22))), Az.—(Xz)) :— NP_V(Y, X).
NP_V(Aw.w(Az.Y12)(A2.Yaz), A\y.X1(Az. Xoyx)) :— NP(Y1, X1), V(Y2, X2).
VP(Az.didn't(Yz2), Az.~(Xz)) :— VP(Y, X).
VP(A2.Y1(Yaz), Ax. Xo(\y. X yz)) :— V(Y1, X1), NP(Y2, Xo).
NP (A2.Y1(Y2z2), Av.X1(Az. Xoz)(Az.vz)) :— Det(Yr, X1), N(Ya, X2).
Det(/a/, Auv.3(Az.A(uz)(vz))).
Det(/every/, Auv.V(Az.—(uz)(vz))).
Det(/no/, Auv.V(Az.— (uz)(—(vx)))).
Det(/not every/, Auv.—=(V(Az.—(uz)(v)))).
N(/book/, Az.book z).
N(/student/, Az.student z).
V(/read/, A\yz.read y ).

Figure 13: A synchronous CFLG.

occurrence of a binder to represent the binding relation. These variable names must
be chosen in such a way as to avoid clashes of variables, and some mechanism is
needed to identify a-equivalent representations (i.e., representations that differ only
in renaming of bound variables).

A compact representation of a set of A-terms, rather than trees, will improve
upon Koller et al’s [49] approach. We can use a deterministic database D over a
database schema Dy, ;7 associated with a higher-order signature X as a representation
of a set of A-terms over Y. If the syntax-semantics is given as a “synchronous” CFLG
whose semantics side is an almost linear CFLG ¢, then Theorem 4.3 tells us that
D can serve as an “underspecified” input to surface realization.

For example, the synchronous CFLG in Figure [[3] generates every student didn't
read a book with six possible readings:

v
v

-

(Ax.—(student z)(—(3(Ay.A(book y)(read y x)))))
(Ax.—(student z)(3(\y.A(book y)(—(read y x)))))
(V(Az.—(student z)(3(A\y.A(book y)(read y z)))))
(3(A\y.A(book y)(V(Az.—(student z)(read y z)))))
J(A\y.A(book y)(V(Az.—(student z)(—( )))))

d

read y x
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I(Ay.A(book y)(—(V(Ax.—(student z)(read y x)))))
The set of these A-terms can be represented by the following database:

student(s,z). book(b,y). read(r,z,y).
=(—,r). (3, 3). (VYY) (VIS V3E).
AA,r,b). A(A—-,7,b). A(AV,V,b). A(AV—, V-, b).
33, A,y). I3, A-y). (VI AY,y). (VIS AT y).
—(—,r,;8). —(——,7,8). —(—3,3;s). — (=3I, 3I,s).
V(V,—,z). VY(Vo,——,2). V(V3,—3,z). V(VI-, =3I 2).

In this database (call it D), we use mnemonic names like V3, instead of integers,
as database constants. For instance, A-terms in A(D,V3) contain V and 3, but not
—. A database like this can be thought of as a hypergraph that can be obtained
from the disjoint union of the hypergraphs corresponding to the above six almost
linear A-terms by identifying certain nodes and hyperedges. It is easy to check
that this database is deterministic; it can then be used together with the Datalog
program associated with the semantic side of the synchronous grammar in Figure 13
to obtain a shared parse forest of all derivation trees of sentences that have at least
one reading in common with the sentence every student didn't read a book—namely,
no student read a book, not every student read a book, and the same sentence itself.
This procedure is more efficient than the brute-force method, where each reading of
the sentence is input to a surface realization routine in turn@

4.3 Magic sets and Earley-style algorithms

The magic-sets rewriting of a Datalog program allows bottom-up evaluation to avoid
deriving useless facts by mimicking top-down evaluation of the original program. The
result of the generalized supplementary magic-sets rewriting of Beeri and Ramakr-
ishnan [8] applied to the Datalog program representing a CFG essentially coincides
with the deduction system [69] or uninstantiated parsing system [70] for Earley pars-
ing [20]. By applying the same rewriting method to Datalog programs representing
almost linear CFLGs, we can obtain efficient parsing and generation algorithms for
various grammar formalisms with context-free derivations.

46There is the question of how a deterministic database representing the range of possible readings
of a sentence can be found, if one exists. In the case at hand, there is a way of constructing the
desired database from the shared parse forest of the sentence by duplicating certain nodes (namely,
the NP nodes and the Det nodes). However, it is easy to see that no such deterministic database
may exist in general. It is an open question when and how a desired database can be constructed
efficiently.
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We illustrate this approach with the program in (6), repeated below, following the
presentation of Ullman [77,[78]. We assume the query to take the form “?— S(0, z).”,
so that the input database can be processed incrementally.

S(i1,13) :— A(ir, i3, 12,12). (6)
A(i17i87i4ai5) = a(i17i2)7b(i37i4)a C(i5aiﬁ)yd(i77i8)7A(i2ai77i37i6)'
A(iy, 42,11, 12).

The program is first made safe by eliminating the rule with empty right-hand side:

S<i17i3) = A(i17i37i2a7;2)-
A(in,18,14,15) :— a(iy, i2),b(i3, 1), c(is, 96), d(i7, i8), A(i2, i7, i3, i¢).
A(ir, 18,14, 15) :— a(i1,i2), b(i2,14), c(is, i6), d(ic, ig)-

The subgoal rectification removes duplicate arguments from subgoals, creating new
predicates as needed:

S(ivyiz) :— Blix, i3, 42).
A(in, is, 4, 15) :—, a(i, 12), b(iz, i), c(is, i6), d(i7, is), A(i2, i7, i3, i6)-
A(Zl, 18, Z4, 25) — a(zl, Zg), (22, 7,4) C(i5, iﬁ), (26, 8)
B(ll, 18, 24) (Zl, 22), (13, 14), (i4, iﬁ), d(7,7, 28), A(ZQ, 17,13, iﬁ).
B(Zl, 18, 24) — a(zl, ’LQ), (ZQ, 14), C(i4, iG), (26, Zg).
We then attach to predicates adornments indicating the free/bound status of argu-
ments in top-down evaluation, reordering subgoals so that as many arguments as
possible are marked as bound:

Sbf(il, ’L'3) = Bbﬂ(il, i3, ig).
Bbﬁ(il, ig, i4> = abf(il, ig), Abﬁf<i2, i7, ’i3, iﬁ), bbf(i3, i4), Cbb(i4, iﬁ),
dbf(i7,i8).
Bbﬁ(il, ig, i4) = abf(il, ig), bbf(iQ, i4), be(i4, iﬁ), dbf(i(j, ’ig).
ATy is,da,i5) i— abl(iy,d9), AM (39, iz, i3, i6), D% (i3, 44), c®(i5, i6),
¥ (iz, ig).
Abﬁf(il, ig,14,15) 1— abf(il, i2), bbf(ig, i), Cﬁ(i5, i6), dbf(iG, ig).

The generalized supplementary magic-sets rewriting finally gives the following rule
set:

ri:m_B(i1) :— m_S(i1).
ro: S(i1,i3) :— m_B(i1), B(i1, 13, 12).

r3: supy i (it,i2) :— m_B(i1), a(i1,i2).
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Tq:
Trs:
Te:
r7
rs:
rg:
10
11
r12:
r13:
T14:
15 -
16 -
ri7:
r18:
r19:
20
o1

99

Supy 9(i1,17,13,16) :— supy 1 (i1,12), A(ia, i7,13,6).
Supy 5(i1,17,16,14) :— Supy o(i1,i7,13,1¢),b(i3, i4).
supg 4(i1,17,14) :— supy 3(i1,17,%6,14), (i, ig).
Bli1,ig,i4) :— supy 4(i1,i7,14),d(i7,ig).
sups 1 (i1,12) :— m_B(i1),a(i1,i2).

sups o(i1,14) :— sups 1(i1,42),b(i2,ia).

sups 5(i1,14,16) :— Sups o(i1,14), c(ig, i6).
Bli1,ig,14) :— sups (i1, 14, 76), d(ig, ig).
m__A(ig) :— supy 1 (i1,12).

m__A(ig) :— supy 1(i1,12).

supy 1 (i1,12) :— m_A(i1), a(i1, i2).

supy o(i1,17,13,1¢) :— supy 1 (i1,12), A(ia, i7,13,16).
supy 5(i1,17,16,14) :— supy o(i1,i7,13,1¢),b(i3, i4).
supy 4(i1,17,14,15) :— supy 3(i1,i7,16,14), c(i5, ig).
A(iy,i8,14,15) :— supy 4(i1,17,14,195), d(i7, ig).
sups 1 (i1,12) :— m_A(i1), a(i1, i2).

sups o(i1,14) :— sups 1(i1,42),b(i2,i4).

sups (11,14, 15, 96) :— Sups.o(i1,14), c(is, ).

Alir, is, 14, 15) :— sups 3(i1, 4, i5,76), d(76, s)-

The following is a version of the seminaive bottom-up evaluation algorithm ex-
pressed in the form of chart parsing:

1. (in1T) Initialize the chart to the empty set, the agenda to the singleton
{m_.S(0)}, and n to 0.

2. Repeat the following steps:

(a) Repeat the following steps until the agenda is exhausted:

i
ii.

iii.

Remove a fact from the agenda, called the trigger.
Add the trigger to the chart.

Generate all facts that are immediate consequences of the trigger
together with all facts in the chart, and add to the agenda those gen-
erated facts that are neither already in the chart nor in the agenda.
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(b) (scaN) Remove the next fact from the input database and add it to the
agenda, incrementing n. If there is no more fact in the input database,
go to step 3.

3. If S(0,n) is in the chart, accept; otherwise reject.

The following is the trace of the algorithm on input string aabbccdd; the derived
facts are recorded in the order they enter the agenda:

1. m_S(0) INIT 14. c(4,5) SCAN
2. m_B(0) ry, 1 15. sups5(1,3,4,5) ro1,12,14
3. a(0,1) SCAN 16. ¢(5,6) SCAN
4. supy(0,1) r3,2,3 17, sups5(1,3,5,6) r91,12,16
5. sups(0,1) 718,2,3 18. 4(6,7) SCAN
6. m A1) 12,4 19. A(1,7,3,5) 1o, 17,18
7. a(l,2) SCAN 20. supy5(0,7,3,5) 74,4,19
8. supyq(1,2) 114,6,7 21. supy3(0,7,5,4) 75,20,13
9. supsq(1,2) 119,6,7 22, supy 4(0,7,4) re, 21,14
10. m_A(2) ri3,8 23. 4(7,8) SCAN
11. b(2,3) SCAN 24. B(0,8,4) 7,22, 23
12, supso(1,3) 72,9,11  25. S(0,8) ro,2,24
13. b(3,4) SCAN

Note that unlike previous Earley-style parsing algorithms for TAGs, the present
algorithm is an instantiation of a general schema that applies to parsing with more
powerful grammar formalisms as well as to generation with Montague semantics

5 Conclusion

This paper has shown that recognition and parsing for a wide range of grammars
with “context-free” derivations, as well as surface realization (tactical generation)
for those grammars coupled with a certain restricted kind of Montague semantics, all
reduce to Datalog query evaluation and hence allow highly efficient algorithms. The
method of reduction is uniform for both recognition/parsing and surface realization,
and the complexity upper bound that has been established, namely, LOGCFL, is

4"The above Earley-style recognition algorithm for tree-adjoining languages does not have the
correct prefix property, a desirable feature for Earley-style algorithms for string grammars. See [43]
for how to supplement magic-sets rewriting with another simple rewriting to achieve the correct
prefix property.
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tight. By regarding the problem of surface realization as the problem of recogni-
tion/parsing of languages of A-terms, this paper has demonstrated that it is possible
to study surface realization abstractly in the style of formal language theory, just like
parsing. I hope that the methods employed here help pave the way for eliminating
much of the ad hoc methodology that is so common in computational linguistics.
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Abstract

This talk presents foundations of mathematics as a historically variable set
of principles appealing to various modes of human intuition and devoid of any
prescriptive/prohibitive power. At each turn of history, foundations crystallize
the accepted norms of interpersonal and intergenerational transfer and justifi-
cation of mathematical knowledge.

Introduction

Foundations vs Metamathematics. In this talk, I will interpret the idea of
Foundations in the wide sense. For me, Foundations at each turn of history embody
currently recognized, but historically variable, principles of organization of math-
ematical knowledge and of the interpersonal/transgenerational transferral of this
knowledge. When these principles are studied using the tools of mathematics itself,
we get a new chapter of mathematics, metamathematics.

Modern philosophy of mathematics is often preoccupied with informal interpre-
tations of theorems, proved in metamathematics of the XX—th century, of which the
most influential was probably Godel’s incompleteness theorem that aroused consid-
erable existential anxiety.

In metamathematics, Godel’s theorem is a discovery that a certain class of finitely
generated structures (statements in a formal language) contains substructures that
are not finitely generated (those statements that are true in a standard interpreta-
tion).

Talk at the conference “Philosophy, Mathematics, Linguistics: Aspects of Interaction 2012”
(PhML-2012), held on May 22-25, 2012 at the Euler International Mathematical Institute.
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It is no big deal for an algebraist, but certainly interesting thanks to a new
context.

Existential anxiety can be alleviated if one strips “Foundations” from their rigid
prescriptive/prohibitive, or normative functions and considers various foundational
matters simply from the viewpoint of their mathematical content and on the back-
ground of whatever historical period.

Then, say, the structures/categories controversy is seen in a much more realistic
light: contemporary studies fuse (Bourbaki type) structures and categories freely,
naturally and unavoidably.

For example, in the definition of abelian categories one starts with structurizing
sets of morphisms: they become abelian groups. In the definition of 2—categories,
the sets of morphisms are even categorified: they become objects of categories, whose
morphisms become then the morphisms of the second level of initial category. Since
in this way one often obtains vast mental images of complex combinatorial structure,
one applies to them principles of homotopy topology (structural study of topological
structures up to homotopy equivalence) in order to squeeze it down to size etc.

I want to add two more remarks to this personal credo.

First, the recognition of quite restrictive and historically changing normative
function of Foundations makes this word somewhat too expressive for its content.
In a figure of speech such as “Crisis of Foundations” it suggests a looming crash of
the whole building (cf. similar concerns expressed by R. Hersh, [§]).

But, second, the first “Crisis of Foundations” occurred in a very interesting his-
torical moment, when the images of formal mathematical reasoning and algorithmic
computation became so precise and detailed that they could be, and were, described
as new mathematical structures: formal languages and their interpretations, par-
tial recursive functions. They could easily fit Bourbaki’s universe, even if Bourbaki
himself was too slow and awkward to really appreciate the new development.

At this juncture, contemporary “foundations” morphed into a superstructure,
high level floor of mathematics building itself. This is the reason why I keep using
the suggestive word “metamathematics” for it.

This event generated a stream of philosophical thought striving to recover the
lost normative function. One of the reasons of my private mutiny against it (see e.g.
[11]) was my incapability to find any of the philosophical arguments more convincing
than even the simplest mathematical reasonings, whatever “forbidden” notions they
might involve.

In particular, whatever doubts one might have about the scale of Cantorial car-
dinal and ordinal infinities, the basic idea of set embodied in Cantor’s famous “defi-
nition”, as a collection of definite, distinct objects of our thought, is as alive as ever.
Thinking about a topological space, a category, a homotopy type, a language or a
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model, we start with imagining such a collection, or several ones, and continue by
adding new types “of distinct objects of our thought”, derivable from the previous
ones or embodying fresh insights.

To summarize: good metamathematics is good mathematics rather than shackles
on good mathematics.

Plan of the article. Whatever one’s attitude to mathematical Platonism might
be, it is indisputable that human minds constitute an important part of habitat of
mathematics. In the first section, I will postulate three basic types of mathematical
intuition and argue that one can recognize them at each scale of study: personal,
interpersonal and historical ones.

The second section is concerned with historical development of the dichotomy
continuous/discrete and evolving interrelations between its terms.

Finally, in the third section I briefly recall the discrete structures of linear lan-
guages studied in classical metamathematics, and then sketch the growing array of
language—like non—discrete structures that gradually become the subject—matter of
contemporary metamathematics.

1 Modes of mathematical intuition

1.1 Three modes. I will adopt here the viewpoint according to which at the
individual level mathematical intuition, both primary and trained one, has three
basic sources, that I will describe as spatial, linguistic, and operational ones.

The neurobiological correlates of the spatial/linguistic dichotomy were elaborated
in the classical studies of lateral asymmetry of brain. When its mathematical content
is objectivized, one often speaks about the opposition continuous/discrete.

The linguistic/operational dichotomy is observed in many experiments studying
proto—mathematical abilities of animals. Animals, when they solve and communi-
cate solutions of elementary problems related to counting, use not words but actions:
cf. some expressive descriptions by Stanislas Dehaene in [6], Chapter 1: “Talented
and gifted animals”. Operational mode, when it is externalized and codified, be-
comes a powerful tool for social expansion of mathematics. Learning by rote of
“multiplication table” became almost a symbol of democratic education.

The sweeping subdivision of mathematics into Geometry and Algebra, to which
at the beginning of modern era was added Analysis (or Calculus) can be considered
as a correlate on the scale of whole (Western) civilization of the trichotomy that we
postulated above on the scale of an individual (cf. [2]).
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It is less widely recognized that even at the civilization scale, at various histor-
ical periods, each of the spatial, linguistic and operational modes of mathematical
intuition can dominate and govern the way that basic mathematical abstractions
are perceived and treated.

I will consider as an example “natural” numbers. Most of us nowadays immedi-
ately associate them with their names: decimal notation 1,2, 3, ..., 1984, ..., perhaps
completed by less systemic signs such as 10% or XIX.

This was decidedly not always so as the following examples stretching over cen-
turies and millennia show.

1.2 Euclid and his “Elements”: spatial and operational vs linguistic.
For Euclid, a number was a “magnitude”; a potential result of measurement. Mea-
surement of a geometric figure A by a “unit”, another geometric figure U, was
conceived as a “physical activity in mental space”: moving a segment of line inside
another segment, step by step; paving a square by smaller squares etc. Inequality
A < B roughly speaking, meant that a figure A could be moved to fit inside B
(eventually, after cutting A into several pieces and rearranging them in the interior
of B).

In this sense, Euclidean geometry might be conceived as “physics of solid bodies
in the dimensions one, two and three” (or more precisely, after Einstein, physics
in gravitational vacuum of respective dimension). This pervasive identification of
Euclidean space with our physical space probably influenced the history of Euclid’s
“fifth postulate”. This history includes repeating attempts to prove it, that is, to
deduce properties of space “at infinity” from observable ones at a finite distance,
and then only reluctant acceptance of the Bélyai and Lobachevsky non—-Euclidean
spaces as “non—physical” ones.

As opposed to addition and subtraction, the multiplication of numbers naturally
required passage into a higher dimension: multiplying two lengths, we get a surface.
This was a great obstacle, but, I think, also opened for trained imagination the
door to higher dimensions. At least, when Euclid has to speak about the product
of an arbitrary large finite set of primes (as in his proof involving p; ...p, + 1), he
is careful to explain his general reasoning by the case of three factors, but without
doubt, he had some mental images overcoming this restriction.

In fact, the strength of spatial and operational imagination required and achieved
by modern mathematics can be glimpsed on a series of examples, starting, say
with Morse theory and reaching Perelman’s proof of Poincaré conjecture. Moreover,
physicists could produce such wonders as Feynman’s path integral and Witten’s
topological invariants, which mathematicians include in their more rigidly organized
world only with considerable efforts.
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At first sight, it might seem strange that the notion of a prime number, theorem
about (potential) infinity of primes, and theorem about unique decomposition could
have been stated and proved by Euclid in his geometric world, when no systematic
notation for integers was accepted as yet, and no computational rules dealing with
such a notation rather than numbers themselves were available.

But trying to rationalize this historical fact, one comes to a somewhat paradoxical
realization that an efficient notation, such as Hindu—Arabic numerals, actually does
not help, and even hinders the understanding of properties related to divisibility,
primality etc. that is, all properties that refer to numbers themselves rather than
their names.

In fact, the whole number theory could come into being only unencumbered by
any efficient notation for numbers.

1.3 “Algorist and Abacist”: linguistic vs operational. The dissemina-
tion of a positional number system in Europe after the appearance of Leonardo
Fibonacci’s Liber Abaci (1202) was, in essence, the beginning of the expansion of a
universal, truly global language. Its final victory took quite some time.

The book by Gregorio Reisch, Margarita Philosophica, was published in Stras-
bourg in 1504. One engraving in this book shows a female figure symbolizing Arith-
metics. She contemplates two men, sitting at two different tables, an abacist and an
algorist.

The abacist is bent over his abacus. This primitive calculating device survived
until the days of my youth: every cashier in any shop in Russia, having accepted a
payment, would start calculating change clicking movable balls of her abacus.

The algorist is computing something, writing Hindu—Arabic numerals on his
desk. The words “algorist” and modern “algorithm” are derived from the name of
the great Al Khwarezmi (born in Khorezm c. 780).

In the context of this subsection, the abacus illustrates the operational mode
whereas computations with numerals do the same for linguistic one (although in
other contexts the operational side of such computations might dominate).

This engraving in the reception of contemporary readers was more politicised.
It symbolized coming of a new epoch of democratic learning.

The Catholic Church supported the Roman tradition, usage of Roman numerals.
They were fairly useless for practical commercial bookkeeping, calender computa-
tions such as dates of Easter and other moveable feasts etc. Here the abacus was of
great help.

The competing tribe of algorists was able to compute things by writing strange
signs on paper or sand, and their art was associated with dangerous, magical, secret
Muslim knowledge. Al Khwarezmi teaching became their (and our) legacy.

Arithmetics blesses both practitioners.
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1.4 John Napier and Alan Turing: operational. The nascent programming
languages for centuries existed only as informal subdialects of a natural language.
They had a very limited (but crucially important) sphere of applicability, and were
addressed to human calculators, not electronic or mechanical ones. Even Alan Turing
in the 20th century, when speaking of his universal formalization of computability,
later called Turing machine, used the word “computer” to refer to a person who
mechanically follows a finite list of instructions lying before him/her.

The ninety—page table of natural logarithms that John Napier published in his
book Mirifici Logarithmorum Canonis Descriptio in 1614 was a paradoxical example
of this type of activity that became a cultural and historical monument on a global
scale. Napier, who computed the logarithms manually, digit by digit, combined
in one person the role of creator of new mathematics and that of computer—clerk
who followed his own instructions. His assistant Henry Briggs later performed this
function.

Napier’s tables were tables of (approximate values of) natural logarithms, with
the base e = 2, 718281828.... However, it seems that he neither referred to e explic-
itly, nor even recognized its existence. Roughly speaking, after having chosen the
precision which he wanted to calculate logarithms, say with error < 1077, he dealt
with integer powers of the number 1 4+ 10~8, whose 10% power was close to e.

This is one more example of the seemingly paradoxical fact, that an efficient and
unified notation for objects of mathematical world can hinder a theoretical under-
standing of this world.

All the more amazing was the philosophical insight of Leibniz, who in his famous
exhortation Calculemus! postulated that not only numerical manipulations, but any
rigorous, logical sequence of thoughts that derives conclusions from initial axioms can
be reduced to computation. It was the highest achievement of the great logicians of
the 20th century (Hilbert, Church, Godel, Tarski, Turing, Markov, Kolmogorov,...)
to draw a precise map of the boundaries of the Leibnizian ideal world, in which

- reasoning is equivalent to computation;
- truth can be formalized, but cannot always be verified formally;

- the “whole truth” even about the smallest infinite mathematical universe, nat-
ural numbers, exceeds potential of any finitely generated language to generate
true theorems.

The central concept of this program, formal languages, inherited the basic fea-

tures of both natural languages (written form fixed by an alphabet) and the posi-
tional number systems of arithmetic. In particular, any classical formal language is
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one—dimensional (linear) and consists of discrete symbols that explicitly express the
basic notions of logic.

Fuclid found the remedy for the deficiencies of this linearity by strictly restricting
role of natural language to the expression of logic of his proofs. The content of his
mathematical imagination was transmitted by pictures.

2 Continuous or discrete? From Euclid to Cantor to
homotopy theory

2.1 From continuous to discrete in “Elements”. As we have seen, integers
(and a restricted amount of other real numbers) for Euclid were results of (mental)
measurement: discrete came from continuous. This was one—way road: continuous
could not be produced from discrete. The idea that a line “consists” of points, so
familiar to us today, does not seem to belong to Euclid’s mental world and, in fact,
to mental worlds of many subsequent generations of mathematicians until Georg
Cantor. For Euclid, a point can be (a part of) the boundary of a (segment) of line,
but such a segment cannot be scattered to a heap of points.

Geometric images are the source and embodiment not only of numbers, but of
logical reasoning as well: in “Elements” at least a comparable part of its logic is
encoded in figures rather than in words.

This was made very clear in the London publication of 1847, entitled

THE FIRST SIX BOOKS OF
THE ELEMENTS OF EUCLID

IN WHICH COLOURED DIAGRAMS AND SYMBOLS
ARE USED INSTEAD OF LETTERS FOR THE

GREATER EASE OF LEARNERS

whose author was Oliver Byrne, “Surveyor of her Majesty’s settlements in the Falk-
lands Islands”, (see a recent republication [5]).

Byrne literally writes algebraic formulas whose main components are triangles,
colored sectors of circle, segments of line etc. connected by more or less conventional
algebraic signs.

2.2 From discrete to continuous: Cantor, Dedekind, Hausdorff, Bour-
baki ... This way is so familiar to my contemporaries that I do not have to spend
much time to its description. The description of a mathematical structure, such as
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a group, or a topological space, according to Bourbaki starts with one or several un-
structured sets, to which one adds elements of a these sets or derived sets satisfying
restrictions formulated in terms of set theory.

Thus the twentieth century idea of “continuous” is based upon two parallel no-
tions: that of topological space X (a set with the system of “open” subsets) and that
of a “continuous map” f: X — Y between topological spaces. Further elaboration
involving sheaves, topoi etc does not part with this basic intuition.

However, the set—theoretic point of departure helped enrich the geometric intu-
ition by images that were totally out of reach earlier. The discovery of difference
between continuous and measurable (from Lebesgue integral to Brownian motion to
Feynman integral) was a radical departure from Euclidean universe.

In a finite-dimensional context, one could now think about Cantor sets, Haus-
dorff dimension and fractals, curves filling a square, Banach—Tarski theorem. In
infinite—dimensional contexts wide new horizons opened, starting with topologies of
Hilbert and Banach linear spaces and widening in an immense universe of topology
and measure theory of non-linear function spaces.

2.3 From continuous to discrete: homotopy theory. One of the most im-
portant development of topology was the discovery of main definitions and results
of homotopy theory. Roughly speaking, a homotopy between two topological spaces
X,Y is a continuous deformation producing Y from X, and similarly a homotopy
between two continuous maps f,g: X — Y is a continuous deformation producing
g from f. A homotopy type is the class of spaces that are homotopically equivalent
pairwise. To see how drastically the homotopy can change a space, one can note
that a ball, or a cube, of any dimension is contractible, that is, can be homotopically
deformed to a point, so that dimension ceases to be invariant.

The basic discrete invariant of the homotopy type of X is the set of its connected
components mp(X ). To see, how this invariant gives rise to one of the basic structures
of mathematics, ring of integers Z, consider a real plane P with a fixed orientation, a
point g on it, different from (0, 0), and the set of homotopy classes of loops (closed
paths) in P, starting and ending at x¢ and avoiding (0,0). This latter set can be
canonically identified with Z: just count the number of times the loop goes around
(0,0). Each loop going in the direction of orientation counts as +1, where as the
“counter—clockwise” loops count as —1.

On a very primitive level, this identification shows how the ideas of homotopy
naturally introduce negative numbers. In the historically earlier periods when inte-
gers were measuring geometric figures (or counting real/mental objects) even idea
of zero was very difficult and slowly gained ground in the symbolic framework of
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positional notation. Introduction of negative numbers required appellation to an
extra—mathematical reality, such as debt in economics.

More generally, Voevodsky in his research project [I4] introduces the following
hierarchy of homotopy types graded by their h-levels. Zero level homotopy type
consists of one point representing contractible spaces. If types of level n are already
defined, types of level n 4+ 1 consist of spaces such that the space of paths between
any two points belongs to type of level n.

He further interprets types of level 1, represented by one point and empty sets,
as truth values, and types of level 2 as sets. All sets in this universe are thus of the
form mo(X).

Higher levels are connected with theory of categories, poly—categories etc, and
we will return to them in the next section. At this point, we mention only that
Voevodsky hierarchy does not replace sets but rather systematically embeds set—
theoretical and categorical constructions and intuitions into a vaster universe where
continuous and discrete are treated on an equal footing.

3 Language-like mathematical structures
and metamathematics

3.1 Metamathematics: mathematical studies of formalized languages of
mathematics. Philosophy of mathematics in the XX—th century had to deal with
lessons of metamathematics, especially of Gédel’s incompleteness theorem.

As I have already said, I will consider metamathematics as a special chapter
of mathematics itself, whose subject is the study of formal languages and their
interpretations. On the foreground here were the first order formal languages, a
formalization of Euclid’s and Aristotle’s legacy. Roughly speaking, to Euclid we owe
the mathematics of spatial imagination (and/or kinematics of solid bodies), whereas
Aristotle founded the mathematics of logical deduction, expressed in “Elements” by
natural language and creative usage of drawings.

An important parallel development of formal languages involved languages for-
malizing programs for and processes of computation, of which chronologically first
in the XX~th century was Church’s lambda calculus [9).

An important feature of lambda calculus is the absence of formal distinctions
between the language of programs and the language of input/output data (unlike
Turing’s machines, where a machine “is” the program, whereas input/output are
represented by binary words). When, due to von Neumann’s insights, this feature
became implemented in hardware, lambda calculus was rediscovered and became in
the 1960’s the basis of development of programming languages.
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These languages are linear, in the following sense: the set of all syntactically cor-
rect expressions in a formal language L could be described as a Bourbaki structure
consisting of a certain words, — finite sequences of letters in a given alphabet, and
finite sequences of such words, expressions. Words and expressions must be syn-
tactically correct (precise description of this is a part of definition of each concrete
language). Letters of alphabet are subdivided into types: variables, connectives and
quantifiers, symbols for operations, relations ... Syntactically correct expressions
can be terms, formulas, ...

Such Bourbaki structures can be sufficiently rich to produce formal versions of
real mathematical texts, existing and potential ones, and make them an object of
study.

I will explain how the advent of category theory (and, to a lesser degree, theory
of computability) required enriched languages, that after formalization become at
first non-linear, and then multidimensional. Such languages require for their study
homotopy theory and suggest a respective enrichment of the universe in which in-
terpretations/models are supposed to live, from Sets to Homotopy Types, as in the
Voevodsky’s project (cf. above).

3.2 One—dimensional languages of diagrams and graphs. With the de-
velopment of homological algebra and category theory in the second half of the
XX-th century, the language of commutative diagrams began to penetrate ever
wider realms of mathematics. It took some time for mathematicians to get used to
“diagram-chasing.” A simply looking algebraic identity kg = hf, when it expresses
a property of four morphisms in a category, means that we are contemplating a
simple commutative diagram, in which, besides morphisms f, g, k, h, also the objects
A, B,C, D invisible in the formula kg = hf play key roles:

A-2,B

s

c—-4pD

Although this square is not a “linear expression”, one may argue that it, and its
various generalizations of growing size (even the whole relevant category), are still
“one—dimensional”. This means that they can be encoded in a graph, whose vertices
are labeled by (names of) objects of our category, whereas edges are labeled by pairs
consisting of an orientation and a morphism between the relevant objects.

Similarly, a program written in a linear programming language can be encoded
in a graph whose vertices are labeled by (names of) elementary operations that can

1222



FOUNDATIONS AS SUPERSTRUCTURE

be performed over the relevant data. To understand labeling of (oriented) edges,
one must imagine that they encode channels, forwarding output data calculated by
the operation at the start (input) of the edge to the its endpoint where they become
input of the next operation (or the final output, if the relevant vertex is labeled
respectively). Labels of edges might then include types of the relevant data.

3.3 From graphs to higher dimensions. Generally, a square of morphisms
as above need not be commutative (i. e. it is possible that kg # hf). In order to
distinguish these two cases graphically, we may decide to associate with a commu-
tative square the two—dimensional picture, by glueing the interior part of the square
to the relevant graph.

A well known generalization of this class of spaces are cell complezxes, or, in more
combinatorial and therefore more language-like version, simplicial compleres. Of
course, we must allow labels of cells as additional structures.

In this way, we can get, for example, a geometric encoding of the category C by a
simplicial complex, in which labeled (n 4 1)—complexes are sequences of morphisms

Xo fo X1 L =

Xn

whereas the face map 0° omits one of the objects X; and, if 1 <14 <n — 1, replaces
the pair of arrows around X; by one arrow labeled by the composition of the relevant
morphisms. The resulting simplicial space encodes the whole category in a simplicial
complex that is called the nerve of the category. Clearly, not only objects and
morphisms, but also all compositions of morphisms and relations between them can
be read off it.

Thus the language of commutative diagrams becomes a chapter of algebraic
topology, and when the study of functors is required, the chapter of homotopical
topology.

3.4 Quillen’s homotopical algebra and univalent foundations project.
In his influential book [13], Quillen developed the idea that the natural language for
homotopy theory should appeal not to the initial intuition of continuous deformation
itself, but rather to a codified list of properties of category of topological spaces
stressing those that are relevant for studying homotopy.

Quillen defined a closed model category as a category endowed with three special
classes of morphisms: fibrations, cofibrations, and weak equivalences. The list of ax-
ioms which these three classes of morphisms must satisfy is not long but structurally
quite sophisticated. They can be easily defined in the category of topological spaces
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using homotopy intuition but remarkably admit translation into many other situa-
tions. An interesting new preprint [7] even suggests the definition of these classes in
appropriate categories of discrete sets, contributing new insights to old Cantorian
problems of the scale of infinities.

Closed model categories become in particular a language of preference for many
contexts in which objects of study are quotients of “large” objects by “large” equiv-
alence relations, such as homotopy.

It is thus only natural that the most recent Foundation/Superstructure, Voevod-
sky’s Univalent Foundations Project (cf. [14] and [3]) is based on direct axiomati-
zation of the world of homotopy types.

As a final touch of modernism, the metalanguage of this project is a version
of typed lambda calculus, because its goal is to develop a tool for the computer
assisted verification of programs and proofs. Thus computers become more and
more involved in the interpersonal habitat of “theoretical” mathematics.

It remains to hope that humans will not be finally excluded from this habitat,
as some aggressive proponents of databases replacing science suggest (cf. [1]).

Post Scriptum: Truth and Proof in Mathematics

As I have written in [I2], the notion of “truth” in most philosophical contexts is a
reification of a certain relationship between humans and texts/utterances/statements,
the relationship that is called “belief”, “conviction” or “faith”.

Professor Blackburn in [4] in his keynote speech to the Balzan Symposium on
“Truth” (where [12] was delivered) extensively discussed other relationships of hu-
mans to texts, such as scepticism, conservatism, relativism, deflationism. However,
in the long range all of them are secondary in the practice of a researcher in math-
ematics.

I will only sketch here what must be said about texts, sources of conviction, and
methods of conviction peculiar to mathematics.

Texts. Alfred North Whitehead said that all of Western philosophy was but a foot-
note to Plato.

The underlying metaphor of such a statement is: “Philosophy is a text”, the sum
total of all philosophic utterances.

Mathematics decidedly is not a text, at least not in the same sense as philosophy.
There are no authoritative books or articles to which subsequent generations turn
again and again for wisdom. Already in the XX—th century, researchers did not
read Euclid, Newton, Leibniz or Hilbert in order to study geometry, calculus or
mathematical logic. The life span of any contemporary mathematical paper or book
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can be years, in the best (and exceptional) case decades. Mathematical wisdom,
if not forgotten, lives as an invariant of all its (re)presentations in a permanently
self-renewing discourse.

Sources and methods of conviction. Mathematical truth is not revealed, and its
acceptance is not imposed by any authority.

Ideally, the truth of a mathematical statement is ensured by a proof, and the ideal
picture of a proof is a sequence of elementary arguments whose rules of formation
are explicitly laid down before the proof even begins, and ideally are common for all
proofs that have been devised and can be devised in future. The admissible starting
points of proofs, “axioms”, and terms in which they are formulated, should also be
discussed and made explicit.

This ideal picture is so rigid that it became the subject of mathematical study
in metamathematics.

But in the creative mathematics, the role of proof is in no way restricted to
its function of carrier of conviction. Otherwise, there would be no need for Carl
Friedrich Gauss to consider eight (!) different proofs the quadratic reciprocity law
(cf. [I0] for an extended bibliography; I am grateful to Prof. Yuri Tschinkel for this
reference).

One metaphor of proof is a route, which might be a desert track boring and
unimpressive until one finally reaches the oasis of one’s destination, or a foot path
in green hills, exciting and energizing, opening great vistas of unexplored lands and
seductive offshoots, leading far away even after the initial destination point has been
reached.
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Abstract

Geometric sequents “A implies C” where all axioms A and conclusion C are
universal closures of implications of positive formulas play distinguished role in
several areas including category theory and (recently) logical analysis of Kant’s
theory of cognition. They are known to form a Glivenko class: existence of a
classical proof implies existence of an intuitionistic proof. FExisting effective
proofs of this fact involve superexponential blow-up, but it is not known
whether such increase in size is necessary. We show that any classical proof of
such a sequent can be polynomially transformed into an intuitionistic geometric
proof of (classically equivalent but intuitionistically) weaker geometric sequent.

Keywords: Geometric Formulas, Glivenko Classes, Intuitionistic Logic.

Introduction

Geometric sequents (see definition below) play distinguished role in several areas
including category theory [3]. This fragment of first order logic attracted new atten-
tion in the light of recent work by Theodora Achourioti and Michiel van Lambalgen
[1] who propose a translation of the philosophical language of Kant’s theory of judge-
ments into the language of elementary logic and provide a convincing justification
of their view.

Geometric sequents are known to form a Glivenko class: existence of a classical
proof of a geometric sequent S implies existence of an intuitionistic proof. Existing
proofs of this fact involve superexponential blow-up, but we do not know whether
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such increase in size is necessary. We show that any classical proof of S can be poly-
nomially transformed into an intuitionistic geometric proof of (classically equivalent
but intuitionistically) slightly weaker geometric sequent.

We consider formulas of first order logic.

Definition 1. Positive formulas are constructed from atomic formulas and the con-
stant 1 by &, Vv, 3.

Geometric implications are positive formulas, implications of positive formulas
and results of prefixing universal quantifiers to such implications.

Geometric sequents are expressions of the form

L. I,=1T

where I1,...1I,,I are geometric implications.
A geometric derivation is a derivation consisting of geometric sequents.

The second proof of Theorem [I| given below is non-effective, but the first one
allows one to derive some complexity bound. The proof begins with construction
of a cut-free derivation, therefore the only obvious bound is the same as for cut-
elimination, that is hyperexponential one. This contrasts with the most prominent
Glivenko class, namely that of negative formulas. When a classical derivation of a
negative formula is given, its intuitionistic derivation is constructed by “negativizing”
all formulas in the derivation plus local changes to reinstate the inferences that were
destroyed by this transformation. These transformations are polynomial.

We show here a weaker result for geometric sequents. Any classical proof (with
cut) of a geometric sequent I"' = I can be polynomially transformed into an intu-
itionistic geometric proof of a geometric sequent D,I" = [ where D is obtained by
introducing abbreviations for some formulas. In fact D,I" = [ is intuitionistically
derivable iff I' = I is intutionistically derivable, but on the surface the definitions
in D are only classical.

In section [I] we give two proofs of the Glivenko property of geometric sequents.

Section 2] describes depth-reducing transformations we need for our proofs. As
far as I know, this use of formulas 19) especially to achieve that the whole proof
is new. It is inspired by similar use of (18) by V. Orevkov [5] in a different situation.

Section [3] contains the proof of the main result.

We use = for literal coincidence of syntactic objects and <+ for a logical equiva-
lence connective.

LK, LJ are Gentzen’s systems for classical and intuitionistic logic, both with cut.

¢, denote derivability in classical or intuitionistic logic, that is in LK, LJ with
cut.
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A formula translation of a sequent S = Ai,...A, = Bi,... By, is a formula
St = (A1& ... &A, — By V...V By). Many notions defined for formulas are
generalized to sequents via the formula translation. For example S <+ T for sequents
S, T means ST < T7.

c-models are ordinary models for the classical predicate logic, i-models are Kripke
models.

1 Geometric sequents have Glivenko property

The next theorem is well-known. The deductive proof given here is due to V. Orevkov
[5] and can be traced back to the work of H. Curry [2].

Theorem 1. A geometric sequent is derivable classically iff it is derivable intuition-
istically.

1. A deductive proof. Consider a cut-free proof of a geometric sequent

I'—1

in LK. Since the succedent rules for —,V are invertible in LK, we can analyze away
initial universal quantifiers and implication in I, then assume that [ is a positive
formula. After that the sequent T' = I contains only connective occurrences that
give rise to rules

=&,=V,=>d&=,V=,d, o=

These rules are common for LK and LJm, hence our LK-derivation is already LJm-
derivation, as required. F

2. A model-theoretic proof. The idea here is rather similar, but I have not seen this
proof in literature. Suppose a geometric sequent I' = I with positive formula I is
underivable in LJm. Consider its proof search tree in LJm (see for example Mints
[4]). This tree is not a derivation, and hence has a non-closed branch generating a
Kripke countermodel for I' = I. The rules for analysis of the connectives V, — in
succedent are not applied in this tree. But these are exactly the rules that add new
worlds to a model. Therefore the resulting model has just one world, and hence it
is a classical model refuting our sequent. [

2 Reducing formula depth

Familiar depth-reducing transformations by introduction of new predicate variables
are modified here to preserve geometric sequents. There are subtle points noted
below. Let’s first recall well-known facts.
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Let’s define a relation between formulas (widely used in literature without a
special name) which is weaker than provable equivalence but in some respects similar
to it.

Write F' >° G where s € {c,i} if

G= F' - Fand V° F'[P|/F,... P,/ F,]

where P;/F; are substitutions (performed in this order) for predicate variables
P, ... P, not occurring in F.

Lemma 1. Assume F >°5G. Then
1. B3 Fiff =5 G,
2. s-models for G are expansions (with respect to Py,...P,) of s-models for F.

Proof. 1. F* F — G is obvious. If -° G then since G = (F' — F) the substitu-
tions P,/F1,...P,/F, and modus ponens yield F* F'.

2. Similarly to

-
Notation x below stands for x1,...x, with distinct variables x1,...x,.
Lemma 2. If x contains all free variables of formulas A(x), B(x) then
LJ FVx(A(x) <> B(x)) —» (F(A) < F(B)).
Proof. Induction on F'. F

Lemma 3. If P is a fresh n-ary predicate symbol, x contains all free variables of
the formula A(x) then for L € {LJ, LK}

Li= F(A) iff  LFVx(A(x) < P(x)) = F(P)

Proof. If L'+ F(A), apply the previous Lemma.
If L FVx(A(x) <» P(x)) = F(P), substitute A for P. The antecedent of the
sequent becomes Vx(A(x) < A(x)). F

For a given formula F' assume that for every non-atomic subformula G of F
a fresh predicate symbol Pg is chosen with the same arity as the number of free
variables of GG. In particular Pr has free variables of F' as arguments. Atomic
subformula P(t1,...t,) is not changed.
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Symbols Pg can be treated as pointers to subformulas of F. This informal
observation can be formalized by assigning equivalences Fg to subformulas G in the
following way:

If G(x) = H(y) ® K(z) for ® € {&,V,—} then

Ec = ¥x(Ps(x) ¢ (Puly) © Px(2))) 1)

where y,z C x.
If G(x) = QuH(x,y) for Q € {V,3} then

E¢ = Vx(Pg(x) < QuPr(x,y)). (2)

Lemma 4. Let G,H ... F be all non-atomic subformulas of F. Then for L €
{LJ,LK}
L+-F<+ L+ FEg Ey,...Ep = Pp.

Proof. Apply previous Lemma successively to subformulas, beginning with the in-
nermost ones. F

Let’s rewrite equivalences , as pairs or triples of implications, transforming
these implications in LJ-equivalent way.

Vx(Peen(x) — Pa(y)), (3)
Vx(Pegen(x) — Pu(z)), (4)
Vx(Pa(y)&Pr(z) — Pogen(x); (5)
vx(Pa(y) — Poviu(x)), (6)

Vx(Py(z) — Pova(x)), (7)
Vx(Peva(x) — (Pa(y)V Pu(z)); (8)
Vx(Paypg(x) — JyPe(x,y)) 9)
VxVy(Pa(x,y) — Paypg(x)) (10)
VxVy(Pyyps(x) — Po(x,y)); (11)

« Vx(VyPa(x,y) — Paypg(x)) (12)

* Vx(=Pe(x) — P.g(x)) (13)
Vx(Pg(x)&P-g(x) — 1) (14)
Vx(Poop (x)&Pa(y) — Pp(z)) (15)
* Vx((Pe(y) = Pu(z)) — Po-n(x)) (16)
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All these universally quantified implications are geometric except the three marked
by a *. Let’s replace them by classically equivalent geometric implications.

Vx3y(Pa(x,y) — Pyypg(x)) (17)
Vy(Pely) VvV P-c(y)) (18)
Vx((Pr(z) = Pe-»u(x)) & (Pe(y)V Pesn(x))) (19)

Denote the resulting set of geometric implications (3}11), (14,15) and (17,18,19) for
subformulas of a set F of formulas by DEFF.

3 Transformation of classical derivations

In this section we mean by intuitionistic predicate calculus a multiple-succedent
formulation LJm (cf. Mints [4]) which differs from LK only in the requirement that
the list A is empty in the succedent rules for —, =, V:

AT = A AT =AB I'= A, A®b)
T=A-A4 T=AA>B T=AVeA(z)

Definition 2. Formulas —-A, A — B,VxA introduced by these rules in an LK-
derivation are called below special formulas when A is non-empty.

Let d be a derivation of a geometric sequent S in LK. Then f(d) denotes the set
of all cut formulas in d and DEF; denotes DEF¢(g).

Theorem 2.

1. Let d be a derivation of a geometric sequent 11 = ® in LK. Then it can be
polynomially transformed into a geometric derivation in LJm of the sequent

DEF,, 11 — &

consisting of geometric sequents.
2. DEF 11 = @ B¢ 11 = .
3. F*DEF,, 1= ® iff F DEFyII= & iff HII= @

Proof. We assume that all axioms A,I' — A, A have atomic A. Using if needed
inversion transformations we assume that ® consists of positive formulas. Then
every special formula F' is traceable to a cut formula. More precisely, F = F'(t)
where F’(x) is a subformula of some cut formula. Formula F’ has a “representative”
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Ppi(x) in DEF; where x are free variables of F’. In this sense any occurrence of a
formula F' traceable to a cut formula has a representative which we write as Pp(t).

Denote by d* the result of replacing every such occurrence of F'(t) as a separate
formula in a sequent in d by Pg(t).

This replacement destroys inferences having such F'(t) as principal formulas.
Consider these inferences in turn to show they can be repaired using DEF .

Axioms are assumed to be atomic, therefore they are preserved. The cut infer-
ences become cuts on atomic formulas.

Antecedent inferences are repaired using geometric implications in Def;. For
example —-antecedent inference

I'= A, G(tl) H(tg),r = A
G(tl) — H(tg),r = A

goes into the figure
F:>A,Pg(t1) PH(tQ),FéA

Pou(t), T = A

which is transformed using the formula Pg_, 5 (t)&Pg(t1) — Pg(t2) denoted below
by I which is an instance of a formula (15) in DEF.

axiom
Poou(t) = Pou(t) T'= A, Pg(t)
PGHH(t)a I'= A,PGHH(t)&Pg(tl) PH(tg), I'=A
I, Po,p(t),l = A
DEF, PG—>H(t)a r=A

V=

Other antecedent rules and succedent rules common to LK and LJm are treated
similarly. Of the remaining rules consider =, — and V in succedent. Given derivations
are transformed as follows. The derivation

G,TI'= A
= A -G

goes to
Ps(t), ' = A P.g(t) = P.g(t)

Po(t) V Pg(t),I' = A, Pg(t)
DEF;, ' = A, Pﬁg(t)

The derivation
GTI'=AH

I'=AG—H
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goes to

P (t1),T' = A, Py(t2) axioms
Py (ts) = Poou(t), Po(t1) V Poou(t), I = A, P u(t)
DEFq,I' = A, Peu(t)

V=, o=

The derivation
I' - A G(b)

' — A, VyG(y)

goes to
T — A, P(t,0)  Poyay)(t) = Payay)(t)

Pa(t,b) = Pryay)(t), I = A, Rya, (t)
Fy(Pe(y,t) = Poyay) (), T = A, Ryygy) (b, t
DEF;, T — A, P‘v’yG(y) (t)

—=

)EI—>

This completes the proof of the first part of the theorem.

The second part follows from classical derivability of the results of substitution
P /G into formulas in DEF.

For the third part, if F* DEF4, IT — ® then substitution Pg /G for G € f(d) yields
¢ I = ®, then (by Theorem 1) ¢ II = ® and hence ¢ DEFy, IT = ® completing
the chain of equivalences. As pointed out in the Introduction, the transformation in
Theorem 1 is not polynomial. (o
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This paper studies a Glivenko sequent class, i.e. a class of sequents where classical
derivability entails intuitionistic derivability; more specifically, the paper is about
“geometric sequents”. The main old result in this topic is a direct consequence [11]
of Barr’s theoremE] As background, Mints sketches an old deductive proof (from
[7]) and an old model-theoretic proof, as in Exercise 2.6.14 of [10]; but, his interest
being in complexity of proof transformations, he gives a third proof, of a result both
more and less general.

A modern reconstruction [6] of Orevkov’s proof [7, Theorem 4.1, part (1)] relies
on what we would now call the “cut-free G3c calculus” [9], in which Cut and other
structural rules are admissible and all the logical rules are invertible (indeed, height-
preserving invertible). His result is that the list (or “o-class”) [=1, -1 V'] is a
“completely Glivenko class”; in other words, he shows that if a sequent with a single
succedent has no positive occurrences of —, = or V then its classical derivability
implies its intuitionistic derivability. In modern terminology, this means just that
if a sequent I' = A (where I" consists of geometric implications and A is a positive
formula) is derivable in cut-free G3c, then it is already derivable in the intuitionistic
calculus m-G3i (also from [9]). The proof method actually shows the stronger result,
that the cut-free G3c derivation is already a m-G3i derivation. The weaker result
extends to the case where A is a geometric implication by using the invertibility in
cut-free G3c of the succedent rules for the three mentioned connectives. Other work,

L«Let £ be a Grothendieck topos. Then there is a complete Boolean algebra B and an exact
cotripleable functor & — FB”, FB being the topos of sheaves over B [I].
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such as [4], related to the deductive proof of this result, is cited in the bibliographies
of [B] and [6]. The usefulness of cut-free G3 calculi in the study of Glivenko classes
has been further demonstrated in [6], with direct proofs of generalisations of results
in [7].

Mints’ interest, however, in this paper is in derivations in G3c with Cut. One
can apply standard cut-elimination transformations, and then those corresponding
to the inversions; but this leads to a “super-exponential blow-up”, as can be seen in
a similar context in [9, Section 5.2]. How can this be avoided? One solution is just to
start with a cut-free derivation. One can go even further, using the cut-free calculi
introduced in [5], where the axioms I' are replaced by inference rules: this avoids
proof transformations entirely (since, in such calculi, classical proofs of a geometric
implication A are already intuitionistic proofs). But, Mints would insist that G3c
with Cut is a traditional (i.e. respectable) starting point.

The question then arises: can the transformation be changed so that there is an
at most polynomial expansion of the derivation? Clearly it should not begin with
cut elimination, so a trick is needed to handle instances of the Cut rule rather than
eliminating them. The trick is attributed to Orevkov [7]; one might also attribute
it to Skolem, who pioneered in [8] the use of what [2] should have called “relational
Skolemisation”, i.e. the replacement, by introduction of new relation symbols, of
complex formulae by atomic formulae. When this is sufficiently thorough to ensure
that every formula is equivalent to an atomic formula, it is called “atomisation” or
“Morleyisation”; this paper doesn’t go so far.

The novel result of this paper is now the result (both weaker and stronger)
that, if d is a classical proof of a geometric sequent, then it can be polynomially
transformed into an intuitionistic proof of the sequent conservatively extended by
extra antecedent formulae that are geometric implications. These extra implications
are generated by relational Skolemisation of the subformulae of the cut formulae in
d. The result is weaker by virtue of having these extra implications; it is stronger
by virtue of the complexity reduction.

There are the following points at which the paper is incorrect:

1. Mints’ (9) should be Vx(P5,¢(x) — JyPe(x,y)) rather than Vx(Ps,p,(x) —
Iy Pa(x,y));

2. His (10) should be VxVy(Pg(x,y) = Psyc(x)) rather than VxVy(Pg(x,y) —
Paypg(x));

3. His (11) should be VxVy(Pyyc(x) = Pa(x,y)) rather than VxVy(PRyyp,(x) —
P (X7 y));
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4. His (12) should be Vx(VyPg(x,y) = Pyya(x)) rather than Vx(VyPg(x,y) —
PVyPG (X))§

5. His (19) (replacing (16)) is not a geometric implication;
6. His (17) (replacing (12)) is not a geometric implication.

The first four of these problems are minor: note that in Mints’ (9) the suffix
JyPg is not a subformula of one of the cut-formulae, and similarly for (10), (11)
and (12). The penultimate problem can be fixed by distributing Vx across the
conjunction, thus obtaining two geometric implications: Vx(Pg(z) — Po—m(x))
and Vx(Pg(y) V Po—m(x)). [It has already been made clear that y and z are
subsets of the set x of variables.]

The final problem is not so easily fixed: the paper wrongly claims that the
formula Vx3y(Pa(x,y) = Ryyp,(x)) is a geometric implication. This is not fixed by
changing (12) (as proposed above) to Vx(VyPg(x,y) = Pyyc(x)) and then obtaining
Vx3y(Pa(x,y) = Pyya(x)); this is still not geometric, because of the implication
within the scope of the existential quantifier.

A partial solution may be had by changing this formula to the geometric impli-
cation

Vx(JyP-a(x,y) V Pyya(x)) (17)

but this introduces a new relation symbol P-g, where =G may not be a subformula
of one of the cut formulae. To fix this problem, the relational Skolemisation needs
to be applied not just to all such subformulae but also to all their negations.

With these changes, the application of the extra formulae (i.e. members of DEF ;)
to deal with the special formulae of the derivation is unchanged for implication. We
show (for example) the effects of improving (9) on the treatment of an antecedent
J-inference and of correcting the treatment of universal quantification.

The improved version of (9) is Vx(P5yc(x) = JyPg(x,y)). The step

GOb), T = A
JG(y), T = A

is transformed to
Pg(y) (t, b), DEF,, T = A

Hypg(y) (t, y)), DEF,;, T = A
DEF,, PEIyG’(y) (t), 'r=A

d=

Using the improved version of (17), the step

I'= A,G(t,b)
I'= A VyG(t,y)
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is transformed (with some implicit weakenings to save space and aid readability) to

DEF,,T = A, Pagy) ()
PﬁG(x,y) (t7 b)7 DEF4,I'= A, PG(x,y) (tv b)

Wkn

P—*G(x,y) (ta b)v DEF4,I'= A, P—‘G(x,y) (t, b) A PG(x,y) (t, b)

= A, axiom

=
PﬁG(x,y) (t7 b)v ﬁ(}:)ﬁCr'(x,y) (t7 b) A PG(x,y) (t7 b))7 DEFy,I'=A

P-Gxy) (t,0), DEF g, T = A
3YP-G(xy) (6:), DEF,, T = A 3= Poycey € D= A, Poyciegy) (t)
TYP-G ) (6:9) V Payciey) (), DEF G, T= A, Py (6)
DEF,, T = A, Pyrycmy) (t)

axriom

Note the importance of having Pyyq(x,y)(t) (rather than, from the succedent of the

old (17), Mints’ Py, p,(t)) in the antecedent of the lowest axiom step. It is not the
case that VyPg(x,y) (i.e. Mints’ VyPg) is a subformula of one of the cut formulae;
the presence of the fresh predicate symbol Pg ) forbids this.

Note also the use of the Weakening rule Wkn; either this rule should be included

in the m-G3i calculus or the admissibility of the rule exploited once the derivation
has been fully transformed.
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1 Introduction

The advent of Kripke semantics marked a decisive turning point for philosophical
logic: earlier axiomatic studies of modal concepts were replaced by a solid semantic
method that displayed the connections between modal axioms and conditions on the
accessibility relation between possible worlds. However, the success of the semantic
method was not followed by equally powerful syntactic theories of modal and con-
ditional concepts and reasoning: Concerning the former, the situation was depicted
by Melvin Fitting in his survey in the Handbook of Modal Logic [7] as: “No proof
procedure suffices for every normal modal logic determined by a class of frames”;
In the chapter on tableau systems for conditional logics, Graham Priest stated that
“there are presently no known tableau systems of the kind used in this book for §”
(Lewis’ logic for counterfactuals) ( [40], p. 93).

The insufficiency of traditional Gentzen systems to meet the challenge of the de-
velopment of a proof theory for modal and non-classical logic has led to alternative
formalisms which, in one way or another, extend the syntax of sequent calculus.

Parts of the results of this paper were presented in workshops and conferences whose respective
organisers are gratefully acknowledged: Proof theory of modal and non-classical logics, Helsinki,
August 2015 (Giovanna Corsi), Workshop Trends in Proof Theory, Hamburg, September 2015
(Stefania Centrone), Estonian-Finnish Logic Meeting, Rakvere, November 2015 (Tarmo Uustalu).
The paper was completed during a stay at the University of Verona, within the “Programma di
Internazionalizzazione di Ateneo, Anno 2015, Azione 3, Cooperint.” Discussions with my host Peter
Schuster have been very useful. Finally, detailed and insightful comments by two referees have
contributed to improving the paper.
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There have been two main lines of development, one that enriches the structure of
sequents (display calculi, hypersequents, nested sequents, tree-hypersequents, deep
inference), another that maintains their simple structure but adds labels, thus in-
ternalizing the possible worlds semantics within the proof system. In particular, for
the proof theory of conditional logics there have been several contributions in the
literature from both approaches[1,10,12,20,30,34736,44]E]

In his work of 1997, Grisha Mints has been among the forerunners?] of the latter
approach to the sequent calculus proof theory of modal logicﬂ In [23], he showed
how one can obtain sequent calculi for normal modal logics with any combination
of reflexivity, transitivity, and symmetry in their Kripke frames. Possible worlds
were represented as prefixes, in fact, finite sequences of natural numbers, with the
properties of the accessibility relations of a Kripke frame implicit in the management
of prefixes in the logical rules. By this approach, it was possible to give a proof
of cut elimination that can be considered as a formalization of Kripke’s original
completeness proof.

By making explicit the accessibility relation and by using variables, rather than
sequences for possible worlds, it is possible to capture a much wider range of modal
logics, in particular those characterised by geometric frame conditions, with prop-
erties such as seriality or directness of the accessibility relation; by using the con-
version of geometric implications into rules that extend sequent calculus in a way
that maintains the admissibility of structural rules |24], it has been po