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Correction Note to “Proof Theory for
Non-normal Modal Logics:

The Neighbourhood Formalism
and Basic Results”

Sara Negri
University of Helsinki, Finland

sara.negri@helsinki.fi

The sequent calculus G3n for system E presented in my paper Proof theory
for non-normal modal logics: The neighbourhood formalism and basic results (this
Journal, vol. 4(4), pp. 1241–1286, 2017) is not cut free. This can be seen by showing
that the valid sequent x : 2(A&B)⇒ 2(B&A) is not derivable without a cut. The
reason for this problem is the form of the left rule for C, with the formula y : A in
the antecedent of the conclusion

y ∈ a, y : A,A C a,Γ⇒ ∆
y : A,A C a,Γ⇒ ∆ L C

A similar form, used for example for L2 allows to reduce the number of premisses
(from two to one): so instead of the rule

x : 2A,Γ⇒ ∆, xRy y : A, x : 2A,Γ⇒ ∆
x : 2A,Γ⇒ ∆ L2

one can use the equivalent rule

y : A, xRy, x : 2A,Γ⇒ ∆
xRy, x : 2A,Γ⇒ ∆ L2

In this way, an application of rule L2 is licenced just when we have an accessibility
atom of the form xRy in the antecedent of the conclusion. The reason why a similar
reduction doesn’t work in the case under discussion is that the formula y : A doesn’t
behave like a relational atom: it can be principal in a right rule and therefore a cut

We thank Nicola Olivetti and Tiziano Dalmonte for pointing out the problem discussed in this note.
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with left premiss derived by a right rule with y : A principal and left premiss derived
by L C with y : A,A C a in the conclusion cannot be permuted.

We can obtain a cut-free sequent calculus for system of E by just avoiding the
simplification step used for L2 and using the rule with two premisses

A C a,Γ⇒ ∆, y : A y ∈ a,A C a,Γ⇒ ∆
A C a,Γ⇒ ∆ L C

Here y is an arbitrary label, but it is enough—by the usual argument that shows
analyticity as an application of height-preserving substitution of labels—to restrict
the rule to labels in the conclusion.

All the results stated in the paper hold with the two-premiss version of the rule;
obvious modifications to account for the new form of the rule are needed in Lemma
3.3, Lemma 4.2, Lemma 4.5, Theorem 4.9, Theorem 5.3, Definition 5.4, and Lemma
5.5. For completeness, these modifications are detailed below.
Lemma 3.3. Rule RE is admissible in G3E.

Proof. By the following derivation:

x : A⇒ x : B
a 
∀ A⇒ a 
∀ B

3.2

a ∈ I(x), a 
∀ A,A C a⇒ x : 2B, a 
∀ B

y : B . . .⇒ . . . y : A y ∈ a . . .⇒ . . . y ∈ a
y : B, a ∈ I(x), a 
∀ A,A C a⇒ x : 2B, y ∈ a

L C

a ∈ I(x), a 
∀ A,A C a⇒ x : 2B,B C a
R C

a ∈ I(x), a 
∀ A,A C a⇒ x : 2B
R2

x : 2A⇒ x : 2B L2

QED

Lemma 4.2(2). Sequents of the following form are derivable in G3n∗ for arbitrary
formulas A and B in the propositional modal language of G3n∗:

2. A C a,Γ⇒ ∆, A C a

Proof. 2. By the following derivation

x : A,A C a,Γ⇒ ∆, x ∈ a, x : A x ∈ a, x : A,A C a,Γ⇒ ∆, x ∈ a
x : A,A C a,Γ⇒ ∆, x ∈ a L C

A C a,Γ⇒ ∆, A C a R C

where one topsequent is derivable by inductive hypothesis and the other is initial.
QED
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Lemma 4.5(13).

13. If `n A C a,Γ⇒ ∆ then `n A C a,Γ⇒ ∆, y : A and `n y ∈ a,A C a,Γ⇒ ∆.

Theorem 4.9. Cut is admissible in G3n∗.

Proof. 4. The cut formula is A C a, principal in both premisses of cut. We have:

D
x : A,Γ⇒ ∆, x ∈ a

Γ⇒ ∆, A C a R C
A C a,Γ′ ⇒ ∆′, y : A y ∈ a,A C a,Γ′ ⇒ ∆′

A C a,Γ′ ⇒ ∆′ L C

Γ,Γ′ ⇒ ∆,∆′ Cut

The cut is converted as follows:

Γ ⇒ ∆, A C a A C a, Γ′ ⇒ ∆′, y : A

Γ, Γ′ ⇒ ∆, ∆′, y : A
Cut

D(y/x)
y : A, Γ ⇒ ∆, y ∈ a

Γ ⇒ ∆, A C a y ∈ a, A C a, Γ′ ⇒ ∆′

y ∈ a, Γ, Γ′ ⇒ ∆, ∆′
Cut

y : A, Γ2, Γ′ ⇒ ∆2, ∆′
Cut

Γ3, Γ′2 ⇒ ∆3, ∆′2
Cut

Γ, Γ′ ⇒ ∆, ∆′
Ctr∗

where the two upper cuts are of reduced cut height and the lower ones of reduced
weight of cut formula because w(y ∈ a) < w(A C a), w(y : A) < w(A C a). QED

Theorem 5.3. If Γ ⇒ ∆ is derivable in G3n∗ (respectively G3nM∗, G3nC∗,
G3nN∗), then it is valid in the class of neighbourhood frames (respectively neigh-
bourhood frames which are supplemented, closed under intersection, containing the
unit) with the ∗ properties.

Proof. If the last rule is L C, assume that the premisses A C a,Γ ⇒ ∆, x : A,
y ∈ a,A C a,Γ ⇒ ∆ are valid, and let (ρ, σ) be an arbitrary SN -realisation with
(1) M |=ρ,σ A C a,Γ ⇒ ∆, x : A and (2) M |=ρ,σ y ∈ a,A C a,Γ ⇒ ∆ and
assume M |=ρ,σ A C a,Γ. If (1) gives that there is B in ∆ such that M |=ρ,σ B
we are done. Else we have ρ(x) ∈ [A]; since by assumption [A] ⊆ σ(a), we have
ρ(x) ∈ σ(a), thusM |=ρ,σ x ∈ a. From (2) and it follows that there is B in ∆ such
thatM |=ρ,σ B. QED

Definition 5.4(L C). We say that a branch in a proof search from the endsequent
up to a sequent Γ ⇒ ∆ is saturated with respect to a rule L C if the following
condition holds

(L C) If A C a and y are in ↓Γ, then y ∈ a is in Γ or y : A is in ∆.

xiii
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Lemma 5.5(d). Let B ≡ {Γi ⇒ ∆i} be a saturated branch in a proof-search tree
for Γ ⇒ ∆. Then there exists a countermodel M to Γ ⇒ ∆, which makes all the
formulas in Γ true, and all the formulas in ∆ false.

Proof. (d) If A C a is in Γ, let y be an arbitrary world in the model, that is, by
definition ofM, a label in ↓Γ. Then by by saturation y ∈ a is in Γ or y : A is in ∆,
so by inductive hypothesisM |=/ρ,σy : A orM |=ρ,σ y ∈ a. Overall, this means that
M |=ρ,σ A C a. QED

xiv Received October 2017



In Memoriam: Grigori E. Mints, 1939–2014

Solomon Feferman
Stanford University, Stanford CA 94305–2125, USA

s.feferman@gmail.com

Vladimir Lifschitz
Department of Computer Science, University of Texas at Austin

2317 Speedway, Stop D9500, Austin TX 78712–0233, USA
vl@cs.utexas.edu

On May 29, 2014, ten days before his 75th birthday, Grigori (“Grisha”) Mints
died at Stanford, California of cardiac arrest; he had suffered a serious stroke a month
before from which he never recovered. At the time of his death Mints held the posi-
tion of Professor of Philosophy at Stanford University with courtesy appointments
in Mathematics and Computer Science. His death unexpectedly cut short a distin-
guished and highly active career marked by a prodigious output of great breadth in
logic and its applications. This included three books [4, 5, 9], another ten more of
which he was an editor or translator, over 200 articles and over 3000 (!) reviews.
His main contributions were to proof theory, constructive mathematics, intuitionistic
logic, modal logic, and automated deduction.

Mints was born on June 7, 1939 in Leningrad, USSR (currently St. Petersburg,
Russia). He obtained the B.S. and M.S. in Mathematics from Leningrad State
University (currently St. Petersburg State University) in 1961, with a thesis on
proof search in the classical predicate calculus. Working under the direction of
Nikolai A. Shanin, Mints obtained the Ph.D. in Mathematics at the Leningrad S. U.
in 1965, with a thesis on predicate and operator variants for theories of constructive
mathematics (cf. the translation in [1]). Finally, in 1990 he was awarded the D. Sc.
in Mathematics at the Leningrad S. U. for a work on proof transformations and
synthesis of programs. Mints was elected to the Estonian Academy of Sciences in
2008 and to the American Academy of Arts and Sciences in 2010.

From 1961 to 1979 Mints held the position of Research Associate at the Leningrad
Branch of the Steklov Mathematics Institute. After submitting his request to emi-
grate from the Soviet Union in 1979, he resigned his position at the Steklov Institute

This article originally appeared in the Bull. of Symbolic Logic 21 (2015) 31–33. Copyright is held
by the Association for Symbolic Logic and it is being reprinted here with their permission.
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so as not to endanger the situation of his colleagues there by his possible associa-
tion with them. In the difficult period that followed, among other things Mints
supported himself by doing programming jobs and translating books and articles
on logic from English into Russian. Meanwhile he was able to establish connections
with the Institute of Cybernetics in Tallinn, Estonia, where he obtained a part time
position as Research Associate from 1980 to 1984. This turned into a full time po-
sition as Senior Research Associate from 1985 to 1991. Mints was finally permitted
to emigrate to the United States in that year, when he was appointed Professor of
Philosophy at Stanford University.

The direction of Mints’ early work was determined to a large extent by the
main interests of Nikolai A. Shanin, who, along with Andrei A. Markov, Jr., led
a research group at the Steklov Institute devoted to “Russian-style” constructive
mathematics.1 Shanin’s group also worked on automated reasoning, with emphasis
on generating “natural” proofs, to which Mints made a number of contributions. His
work in this period was also distinguished among other things by several publications
on analogues of Herbrand’s theorem for intuitionistic logic. Another highlight is
the famous article, “What can be done in PRA?” [2] (original Russian in 1976),
whose main result was obtained independently by Charles Parsons and by Gaisi
Takeuti. Mints’ book [4] contains the English translations from the Russian of a
selection of thirteen of his articles on proof theory from the period up to 1979.2
These concentrate on normalization theorems for classical, intuitionistic and modal
systems as well as their applications to coherence theorems in category theory.

While in Tallinn, Mints studied the mathematical principles behind the program
synthesizer PRIZ, designed by a group at the Institute of Cybernetics led by Enn
Tyugu. Estonian computer scientists thought that their algorithm was complete,
but Mints came up with an example that PRIZ could not handle. The algorithm
was then improved, and Mints established the completeness of the new version in
joint work with Tyugu in 1982.

At Stanford, Mints became one of the mainstays of the interdepartmental pro-
gram in logic, teaching the subject at all levels, advising students, and directing
doctoral dissertations. Together with Solomon Feferman, he led the seminar in logic
and the foundations of mathematics. His research work continued unabated along
all the general lines given above. In addition, among other things, his work [10]

1In his article [3], Mints surveyed work in the USSR on proof theory and constructive mathe-
matics from 1925 to 1969. See also the article [12] with Sergey I. Nikolenko.

2Most regrettably, the volume [4] provides no information regarding the original publication
data for these articles, not even their dates. These can be reconstructed from a C.V. that Mints
prepared for the Stanford Philosophy Department in 2007 that is referred to but not repeated in
later expansions of it.
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with Philip Kremer on dynamic topological logic initiated an interesting new di-
rection, and he contributed to linear logic for intuitionistic and natural deduction
systems [7, 8]. But, most importantly, in proof theory he was noted for almost
single-handedly extending Hilbert’s “epsilon substitution method” to various first-
order and second-order subsystems of analysis, as in [6,11,13,14], with work still in
progress at the time of his death.

At the professional level Mints was a member of a number of editorial boards,
and of program and organizing committees for various meetings, both national and
international, in which he was also an active participant. Of special concern to him
was the continued fostering of ties with colleagues in the former Soviet Union. The
last conference that he helped organize and at which he spoke, entitled “Philosophy,
Mathematics, Linguistics: Aspects of Interaction 2014”, was held at the Steklov
Institute in St. Petersburg in the month of April, 2014; cf. http://www.pdmi.ras.
ru/EIMI/2014/PhML/. Sadly, it was from that meeting that he returned with an
illness that led in the end to his death.

Besides his extensive and enduring contributions to our subject, Grisha Mints
is remembered by his colleagues, friends and students with great affection as a very
warm human being — always accessible, patient, and ready to help — and for his
general intellectual enthusiasm married with a keen sense of humor illuminated by
a surprising font of historical knowledge.

Acknowledgements. We are grateful to Marianna Rozenfeld, Yuri Gurevich,
Vladik Kreinovich, and William Tait for their helpful comments on a draft of this
piece.
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Grigori Mints, a Proof Theorist in the
USSR: Some Personal Recollections in a

Scientific Context

Sergei Soloviev∗

IRIT, Université de Toulouse, Toulouse, France
soloviev@irit.fr

Abstract

The paper is based on my recollections of Grigori Mints (1939–2014) com-
pleted by a survey of his research work in a scientific context. I speak mostly
about the Soviet period of his life and work (until 1991), and sometimes go
beyond the purely scientific aspects to show the atmosphere of these times.

Keywords: Grigori Mints, Biography, Logic in the USSR, History of Logic.

1
I first met Grigori when I was a second-year undergraduate at the Faculty1 of Math-
ematics and Mechanics of Leningrad State University at the end of 1975 or in the
beginning of 19762. In the middle of our third year, we had to choose our specializa-
tion, and I had been considering mathematical logic as an option; simultaneously, I
had been working on a project on uniform contact schemas under the supervision of
N. K. Kossovsky, but I was attracted to the more theoretical aspects of logic. I had
an acquaintance, Michael Gelfond, who was one of my teachers at the school No30
(a high school specialized in mathematics). He also was an associate of the Group
of Mathematical Logic at the Leningrad Department of Mathematical Institute of
the Academy of Sciences (usually called LOMI), where he defended his PhD thesis

∗Partially supported by the Government of the Russian Federation Grant 074-U01 awarded to
the ITMO University, St. Petersburg, Russia (associated researcher).

1More or less corresponds to School, as in Oxford School of English.
2He was often called “Grisha”, a more familiar form, but for me Grigori sounds more appropriate

because during several years he was my adviser.
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in 19743. Gelfond advised me to go to the seminar of the Group of Mathematical
Logic that was held at LOMI on Mondays, and to approach Mints.

I do not remember, whether I had to call Mints before and get an appointment.
To enter LOMI I had to say that I go to the seminar because it was open to the
colleagues of other institutes. To Mints I had to mention Gelfond’s recommendation.
In any case, when I approached Mints he suggested me to take the Russian transla-
tion of S. C. Kleene’s “Mathematical Logic” [13], the so called “Red Kleene”4, and
solve all the exercises. In fact, I never solved all of them because after some time,
when I solved approximately one third (taken from all chapters), we had a much
more lengthy and substantial discussion, and Mints proposed me to think about
some original problems that were not merely exercises.

At this time he was much interested by some applications of proof theory to
the theory of categories. It was Jim Lambek who first noticed the link between
categories with additional structure and deductive systems. He published a series
of three papers called “Deductive systems and categories” [20–22]. Let me mention
that two of these papers appeared in Springer Lecture Notes in Mathematics and
were accessible in the LOMI’s scientific library. Mints knew also about S. Mac
Lane’s works on coherence, but as far as I remember, most of all his attention
was attracted by the recent paper by Mann [24] on the connection between the
equivalence of proofs and the equality of morphisms in Cartesian Closed Categories
probably because (in difference from Lambek) it considered natural deductions that
were well known to Mints. This connection opened an interesting perspective in
that certain problems of category theory, first of all the so called coherence problems
(problems of commutativity of diagrams) may have nice proof-theoretical solutions.

In this essay I will try to render my impression of the style of Grigori Mints
as a researcher. He was always very open, receptive towards the newest tendencies
in all domains of world science related to proof theory and logic. Of course my
impressions are subjective, and alone they cannot give a true idea of the whole
extent and significance of his works, but I will try to complete this subjective part
by a more academic survey based on publications, documents, and testimonies of
G. E. Mints colleagues and friends.

Among the events that impressed me at this early period of my acquaintance with
Mints was the visit (and talk) of an outstanding logician, G. Kreisel (1923–2015) to
LOMI in June 1976 that Mints organized.

3The head of the Group of Mathematical Logic (and Gelfond’s PhD adviser) was N. Shanin.
Gelfond emigrated to the United States in 1978. He is now a professor of computer science at Texas
Tech University.

4The translation (in red cover) was published in 1973. The book was translated by Yu. A.
Gastev. Mints was the editor of the translation.
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The weather was unusually cold, but the central heating was already switched
off because it was June.

At this time the building that LOMI occupied today5 was under renovation and
the institute was temporarily “exiled” to a former school far from the city center. It
stood in an inner courtyard surrounded by gray buildings heavily styled since they
were built in Stalin’s times. Understandably, the conditions were more crowded.
The group of mathematical logicians used a former classroom, and the seminars
were held in the same room. I remember several tables, chairs, and a large worn
leather divan, an object of amused pride in the group. Kreisel had to use an ordinary
school blackboard for his talk. I also recall his coat, that seemed to me to be too
light for such cold weather. Later I learned that these light coats protected against
cold and rain much better than those “Made in USSR”’.

At that time I hardly asked myself what role Kresiel had played in the develop-
ment of Mints as a scientist. I had no idea of the intense correspondence that Mints
had with western scientists, often in spite of the obstacles and complexities typical
of life in the USSR. Later I have heard from Mints that he considered Kreisel as
one of his teachers6. He corresponded with many other Western scientists as well,
for example, with A. S. Troelstra (b. 1939), S. Feferman (b. 1928), S. Mac Lane
(1909–2005). In the archive of A. S. Troelstra first mention of the correspondence
with G. E. Mints may be found in 19707.

To give a better impression of “l’air du temps”, it is worth to mention that the
fact of correspondence with the West did not seem strange to me at all - the idea
that science is indivisible, and the borders should not be an obstacle for scientific
exchanges, was common among academic researchers and the university people at
this time. The academic community in the USSR remembered very well that before
the Revolution of 1917 and even in 1920s scientists easily published papers and
exchanged letters in all main European languages (cf. [85]), and did not want the
return of Stalin’s times.

Not long after my acquaintance with Mints I was invited to visit him at home – of
course in connection with the problems he wanted to propose. A modest flat in one
of the many areas of recent housing development, rather far (about 30 min. by tram
or bus) from underground stations. Grigori lived there with his wife and daughter.
I remember an impressive mathematical library – yellow spines of Springer Lecture

527, Fontanka river embankment in the historic center.
6One of the fruits of this early collaboration between Mints and Kreisel was a lengthy paper

published in Springer Lecture Notes [16]. At the end of this paper there is an appendix, and the
authors notice that it is based on correspondence between two of them - obviously Mints and Kreisel.

7See Index of the Troelstra Archive, https://www.illc.uva.nl/Research/Publications/
Reports/X-2003-01.text.pdf.
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Notes in Mathematics, foreign journals...
The third year at the University (in my case 1976/77) was the year of specializa-

tion, the scientific domain for the future graduation had to be chosen. I was included
in the group of geometry and mathematical logics. The University administration
agreed that Mints, who did not work at the University, would become my scientific
adviser, and later supervisor of my graduate work. About these years, from 1977 to
1980, it is worth to speak in more detail.

The main problem that Mints proposed me to consider was the so called coher-
ence problem for Cartesian Closed Categories. In proof-theoretical formulation, I
had to prove that all logical derivations of certain classes are equivalent.

There were also lesser problems, that later turned out to be of independent
interest, for example, the problem of transformations of derivations that preserved
their equivalence. Mints suggested to read an old paper (1953) by G. F. Rose [87]
where an interesting transformation of formulas (the decreasing of implicative depth)
was considered, and to generalize it to the derivations. It required to go to the library
of LOMI and make a considerable effort with English that I did not yet know well,
but the paper was there and the effort within the limits of possible.

Georg Kreisel clearly distinguished what he called the “General Proof Theory”
and the “Theory of Proofs” [17]:

A working definition of Proof Theory is essentially interested in what is tradi-
tionally called the essence or, equivalently, ‘defining property’ of proofs, namely
their being valid arguments... general proof theory develops such refinements
as the distinction between different kinds of validity, for example, logical or
constructive validity (and other) familiar from the foundational literature... In
contrast, the Theory of Proofs questions the utility of these distinctions com-
pared to taking for granted the validity at least of currently used principles.
Instead, this theory studies such structural features as the length of proofs and
especially relations between proofs and other things, so to speak, ‘the role of
proofs’...

As far as I know, Mints shared his views, and his own works mostly belong
to the theory of proofs in Kreisel’s sense. His interest in Categorical Logic, where
logical derivations are seen as morphisms in appropriate categories, and equivalence
relations on derivations generated by categorical semantics are studied, is in line
with this approach.

In this period Mints wrote two long papers [52, 56], that considered the corre-
spondence between certain systems of propositional logic and categories with addi-
tional structure. Main results included a solution of the “word problem” (equality of
morphisms) in free categories with additional structure of several types: closed, sym-
metric closed, monoidal closed, symmetric monoidal closed, and cartesian closed, in
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all cases based on verification of the equivalence of derivations. As the main tool, the
normalization of lambda-terms associated with derivations was used. Normalization
at this time was relatively well explored by proof theorists, but its use for accu-
rate and extensive study of categorical properties of proofs was new. Mints knew
about a work of Mann [24] who used normalization for partial characterization of
morphisms in Cartesian Closed Categories, and wanted to complete and extend his
approach. Mints knew also about works of Lambek [20–22] and Kelly-Mac Lane [12],
who with some success used cut-elimination8. Some of the systems considered by
Mints correspond to what is called nowadays, after Girard’s work [8], multiplicative
linear logic. In his paper [44], 10 years before Girard, Mints cited several papers
by Anderson and Belnap (e.g., [1]), Kreisel [15], and Prawitz [86]. Some indirect
influence of Lambek [19] may be possible.

One of two papers, published in Kiev [56], was hard to find, and Mints gave me
the manuscript to read.

At this period, when I wrote under Mints’ direction my diploma work, he had
also one PhD student, Ali Babayev. His story had some flavour of mathematical
romantics. I mention it, because it shows Mints as an attentive and caring supervisor.
Ali was first sent from Azerbaïdjan to Moscow for an internship under supervision
of a prominent algebraist and logician Sergei Adian, but it did not go very well,
and Ali felt himself somewhat lost. Mints met him during a visit to Moscow and
invited to LOMI, to try to do a PhD thesis there under his own supervision. One of
the problems that Mints suggested to Ali was identical to my own – he had to look
for a proof of the so called coherence theorem for canonical morphisms in Cartesian
Closed Categories, but we had to use different methods (Ali – lambda-calculus and
natural deduction, and myself – Gentzen sequent calculus). Of course, Ali, as a
PhD student had to work on several other problems. He had to explore other kinds
of Closed Categories, for example, the so called Biclosed Categories, and related
coherence problems. In the end we proved the coherence theorem for Cartesian
Closed Categories more or less simultaneously.

Main results of this period of my work under direction of G. E. Mints were
published in three papers in the volume 88 of “Zapiski” (1979). A long paper
on coherence theorem contained two independent proofs, one obtained by Ali and
another by myself [89]. Another paper [90] considered the preservation of equivalence
of derivations under reduction of formula’s depth by Rose’s method. The third [91],
a note of 3 pages, presented an example of exponential growth of length of natural
deductions that correspond in a standard way to the sequential ones.

8Cut-elimination alone does not permit to define normal forms, and so is not enough to solve
the problem of equivalence.
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Mints published in the same volume two papers about various normalization
problems concerning the arithmetical deductions and deductions in predicate calcu-
lus [57, 58]. To me and Ali – the younger generation – it was difficult to figure out
that for him a long and a very fruitful period of relatively peaceful creative work
will soon come to an end.

2
All personal recollections have only limited meaning if they are not presented in a
larger context, based on documents and information gathered from other people.
This section is mostly devoted to an outline of such a more objective context.

Grigori Efroimovich Mints was born in Leningrad on June 7, 1939. The names
of his parents were Efroim Borukhovich Mints and Lea Mendelevna Novik.

A few more biographical details. During the war, the family was evacuated
and afterwards returned to Leningrad. In 1946 Grigori entered the school No241
at Oktyabrski district of the city of Leningrad. As an overwhelming majority in
his generation, at the age of 14 he was enrolled to “Komsomol” (the union of com-
munist youth). Of course, at this period of Soviet history for most of its members
“Komsomol” was no more a bridge to the career in communist party, but mere
formality. He finished school in 1956 and in the same year passed the exams and
entered the Faculty of Mathematics and Mechanics of Leningrad State University,
together with other future members of the Group of Mathematical Logic, S. Yu.
Maslov (1939–1982) and G. V. Davydov. At the same time their future wives were
enrolled.

Mints was taken to the section of computational mathematics9, that had at this
time a “mixed” reputation in comparison with pure mathematics. On the one hand,
the students of this section were considered as an elite of a sort, one had to have the
very good marks at the entrance exams, at the other there was a risk because the
graduates often were send to the institutes that worked on secret military projects,
the so called “postboxes”, since their street addresses were not publicly known.
Remember that Soviet nuclear and space programs had at this time their “golden
era”, and they needed enormous amount of computations. By the way, it was also a
refuge for cybernetics, that was not approved by Marxist philosophers, but they had
no access to projects that had military significance. For a former student go to a
“postbox” meant that it will be difficult to communicate with colleagues outside, and
impossible to have contacts abroad. Happily for Mints and his friends, about 1956
the situation started to relax, and this permitted Mints, Maslov, and Davydov to be

9In 1957 another future logician, V. P. Orevkov, also entered mathematical faculty.
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recruited immediately after graduation by LOMI, and become first junior members
of the Group of Mathematical Logic just organized there under the leadership of one
of the creators of constructive approach in mathematics, N. A. Shanin (cf. [26]).

In the end of 1960/61 academic year Mints defended his dimploma’s work under
the title “An Algorithm for Proof-Search in the Classical Predicate Calculus”, and
was awarded the diploma “with excellence” in the specialty “mathematics”. He was
immediately recruited by LOMI, and had to begin his work there on August 1st.
His initial position was that of a research assistant, and he remained at this post a
bit more than one year.

In 1962 the first two scientific papers by Mints were published in “Doklady” of
the Academy of Sciences of the USSR (DAN) [30,31].

In 1963 he was elected by the Academic Council of LOMI to the position of
Junior Researcher.

It followed afterwards almost two decades of uninterrupted and very impressive
progress. In 1979 the official report signed by the administration of LOMI when
the candidature of G. E. Mints for the position of senior researcher was proposed to
Academic Council mentions that he has 60 published research papers and 13 articles
for Mathematical Encyclopedia, Encyclopedia of Cybernetics, and other editions of
similar kind. Mints was a member of the Group of Mathematical Logic, and this
group itself was a remarkable association of the very talented and highly motivated
researchers. In particular, it was developed and programmed by this group one of the
first algorithms for automated proof-search in propositional and predicate calculus.
All members of the group participated in this project.

As we shall see, one may discern more or less clearly the stages when the new
interests became manifest in Mints’ published works. A “cumulative effect” is obvi-
ous, i.e., the intensive research work helps to master new subjects faster, and on a
deeper level.

During first 3–4 years at LOMI, proof theory, which is to become later the center
of G. E. Mints interests, seems not yet to take a central position. In 1963 the joint
paper (with V. P. Orevkov) “A generalization of the theorems of V. I. Glivenko and
G. Kreisel to a class of formulae of the predicate calculus” is published in DAN [32].
The name of G. Kreisel, who played later a very important role in Mints’ scientific
development, first appears in this early publication. In 1964 a long (54 p.) paper
“On predicate and operator variants of the formation of theories of constructive
mathematics” was published in “Trudy” of the Steklov Institute of Mathematics [33].
It contained main results of Mints’ PhD (“candidate of sciences”) thesis, defended
in 1965.

Until the end of his work at LOMI Mints remained a junior research fellow. With
other members of the Group of Mathematical Logic he often got “bonuses” (i.e.,
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complements to salary) for successful research. Generally speaking, the position of
a junior researcher for a “candidate of sciences” at this time was not something
unusual, though if we take into account the high research activity, typical for Mints,
it seems rather questionable. His promotion to the position of a senior research
fellow was considered only in the last months before he resigned. I discuss this
below.

In 1965 the “Nauka” editions published the joint work that partly reflected the
collective efforts of Logic Group in the development of an algorithm for automated
proof search [5]. According to Mints annual reports, he participated in the de-
velopment of the program modules that concerned classical propositional calculus,
classical predicate calculus with functional symbols, and in programming of the
module “extraction” of this algorithm. The program ran on one of the first Soviet
computers “Ural”.

After the defense of his “candidate nauk” (PhD) thesis the scope of G. E. Mints
work quickly expanded. He got into problems related to the central themes of
mathematical logic in the XXth century. At the same time it became clear that its
core was certainly the theory of proofs.

A personal feature of his style was an intense work on translations and surveys,
and detailed comments to these translations and papers written by other researchers,
that often contained the original results.

For example, in 1967 the collection of translations that included classical works in
proof theory (papers by Gentzen, Gödel, Kleene and others), called “Mathematical
theory of logical inference” was published [28]. Mints translated there four papers
and wrote the 39 pages appendix “Herbrand Theorem” [42]. It contains, in partic-
ular, his own results about admissibility of substitution of terms for terms, used to
correct an error in Herbrand’s proof.

The survey [27] (a joint paper with S. Yu. Maslov and V. P. Orevkov) was first
work by Mints to be published abroad.

He wrote several appendices to the Russian translation of Kleene’s “Mathemat-
ical Logic” [13].

In 1974 he published a long paper on the modal logics “The Lewis System and
the System T” as an appendix to the Russian translation of R. Feys’ book on modal
logic [45].

An important survey [48] was published in 1975.
The same year a long “educational” paper [16] (the already mentioned joint work

with Kreisel and Simpson) was published in the Springer Lecture Notes.
He wrote several appendices on proof theory to the Russian translation of Bar-
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wise’s “Handbook of Mathematical Logic”10.
Back to the 60es, among other works that illustrate the rapid thematic expan-

sion of Mints’ work, let me mention his papers on modal logic [34], on Skolem’s
method of quantifier elimination [36], on embedding operations [35], and on admis-
sible rules [38]. His work on Skolem’s method for constructive predicate calculus was
presented at the ICM in Moscow in 1966. (The collective work on machine proof
search was also presented there.)

Until the end of 60s the most important works of Mints were published in the
Proceedings of Steklov Mathematical Institute (MIAN), and the short announce-
ments of important results in “Doklady” of the Academy of Sciences (DAN). In the
end of 60s the requirements for the papers to be published in the LOMI’s own se-
ries, “Zapiski” were changed. The longer papers that contained the full proofs and
a detailed analysis of the problems under consideration could be published.

The simplification of publishing process, according to my experience, in many
cases may be stimulating for research. Since 1967, when the first volume of “Zapiski”
devoted to logic (vol. 4) appeared, until the end of his work at LOMI, almost all
major works written by Mints were published there.

The “Zapiski” in the 60s–80s represented, to my opinion, an interesting example
of a balance between creative research work and the selection process for publication.
The papers were accepted for publication only after a talk at the Logic Seminar. To
be presented, the talk had to be approved, usually on the basis of the short abstract,
by the senior members of the Logic Group11. When the volume was prepared, the
text was read by some colleagues who played the role of referees. It is clear, that
with this method of selection the results strongly depend on the ethical and scientific
level of a research collective, but if it is scientifically and ethically adequate then the
efficiency may be much higher than with “blind” selection methods that are common
nowadays and assume certain level of mutual distrust.

I shall not give below a detailed account of all Mints works of the years that
follow, because they are too numerous to be considered in this paper, but outline
the main directions of his research and speak about some of the most significant
papers.

The main topics that attracted the attention of G. E. Mints when he worked at
LOMI are roughly the following:

First of all, his interest to general problems of proof theory, such as cut elimina-
tion, normalization, behavior of quantifier rules (including Herbrand theorem), never

10Russian translation of “Handbook” was published in 4 volumes, v. 4, “Proof Theory” with
these appendices was published in 1982.

11Here only science mattered, and in this sense Mints of course was one of senior members.
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disappeared. It may be said, that this interest was always present as a background
or at a technical side even when the main theme was different.

Other topics were:

• Modal logic

• Derived and admissible rules

• Infinite derivations and arithmetic

• Substructural and categorical logics

• Theory of Hilbert’s ε-symbol

Modal logic. All Mints’ works on modal logic concern certain proof-theoretical
aspects of modal systems. For example, embedding operations considered in [34]
are the operations that transform the derivations of one system in the derivations
of another. Some other Mints’ papers of this period on modal logic: [37, 39, 45,
55]. A connection with provability logics is to be noticed, e.g., in the beginning
of the paper [39] Mints says: “necessity ... is interpreted as provability in classical
propositional calculus”12.

Derived and admissible rules. [38,43]. These papers may be seen as important
steps towards the works of V. Rybakov and others, who obtained the criteria of
admissibility of inference rules in large classes of logics (see, e.g., [88]).

Infinite derivations and arithmetic. [41,47,49,50,57,58]. Probably the most
cited is [50]. The approach proposed by Mints (to consider transfinite derivations
but study them using finitistic means) turned out to be very fruitful for extraction
of constructive content of classical proofs (see, e.g., the recent book [14]).

Substructural and categorical logics. [44,52,56]. As Mints himself explained
in the end of [52], his cut-elimination theorem for relevant logic [44] provided the
substantial part of the normalization proof for the system that he developed for
symmetric monoidal closed categories in [52]. His use of proof theory in these papers
is quite elegant. The reader may see three kinds of logical systems in interaction:
Hilbert-style systems, Gentzen calculi, and natural deduction. They are used to

12The connection between modal logic and provability logic is known since Gödel [9], but Mints’
work may be seen as one of the inspirations for future fundamental works on provability logic, for
example, by Artemov [2].
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represent and explore various aspects of categorical structures. It becomes clear
that not just some isolated methods, but the approach of the theory of proofs “as
a whole” has a deep affinity with the theory of categories with structure (closed,
symmetric closed, monoidal closed, symmetric monoidal closed, cartesian closed
categories etc.). No doubt, these works contributed greatly to the development of
categorical logic in its proof-theoretical aspect. These works and their ideas are still
“in circulation”. Let us cite, for example, [14] and [95] (especially Ch. 8).

Theory of Hilbert’s ε-symbol. Mints (with Smirnov [92] and Dragalin [6]) ini-
tiated the research on ε-symbol in the USSR, though before 1979 he published only
one work on this subject [46]. Mints continued to work actively on the theory of the
ε-operator after 1979. His last papers on the ε-operator were [82–84]. It is inter-
esting to notice that [46] keeps its actuality, even now. Bruno Woltzenlogel Paleo
who works actually on ε-operator (in collaboration with Giselle Reis) stressed its
relevance in e-mail that he sent to me recently 13.

As an attentive reader would notice, Mints edited some of the volumes of “Za-
piski” cited above. He was an editor of several books translated from English
(e.g. [13]) and himself translated from English and German. He wrote many ar-
ticles on mathematical logic for the Mathematical Encyclopedia, the Encyclopedia
of Cybernetics, and even for the Great Soviet Encyclopedia (third edition).

I mention this to give a better idea of his “multidirectional” activity.
He was among regular participants of Sergey Maslov’s seminar, also known as

the seminar on the general theory of systems. According to the recollections of Inna
Davydova14 the seminar started at 1967, and initially the meetings were organized
at the Faculty of Mathematics and Mechanics of the university. Later the seminar
moved to S. Maslov’s home because of the administrative pressure (I had myself an
opportunity to attend it in the end of the 70s – beginning of the 80s).

Mints himself wrote in the foreword to the English edition of [80]:

The intellectual influence of the Maslov family was not restricted, however, to
their scientific achievements. Their home in Leningrad (now St. Petersburg)
was a meeting place of a seminar where talks on social and scientific problems
were presented. One has to feel the gravity of the ideological pressure of a total-
itarian state to appreciate the importance of such a free forum. The emergence
of such seminars seems to be characteristic of intellectual life under oppressive
regimes: recall Zilsel’s seminar in Vienna where Gödel presented in January

136 of October 2015.
14See http://www.mathsoc.spb.ru/pers/maslov. Gennady Davydov and his wife Inna were

friends and colleagues of Mints and Maslov.
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1938 his overview of possibilities for continuing Hilbert’s program. Another
forum for dissident thought in the USSR was provided by a samizdat (unoffi-
cially published) journal “Summa” edited by S. Maslov which was designed as
a review journal for samizdat publications.

Among the speakers were, for example, the philologist Vyacheslav Ivanov, a
Foreign Fellow of British Academy since 1977 and Academician of Russian Academy
of Sciences since 2000, the geneticist Raissa Berg, cf. the Columbia University
Archive15, the literary critic and memoirist Lidiya Ginzburg (cf. [7]).

In 1982 Maslov died tragically in a car accident.
In May 1979 the administration of LOMI finally considered Mints as a candidate

for promotion to the position of senior researcher. On May 3 Mints signed an official
request to submit his application, and the director of LOMI, L. D. Faddeev, endorsed
the request. The meeting of the Academic Council of LOMI that had to consider the
candidature was prepared as usual. On May 10 a recommendation was signed by
the chef of Logic Group, N. A. Shanin. On May 25 an official appreciation of Mints
research activity was signed by “troika” (direction, party secretary, and trade-union
secretary). On June 28 the Academic Council of LOMI voted in favor of Mints
candidature: 0 “against”, 17 “for” (all of the present) of 21 members.

I do not know exactly what happened afterwards, but on August 31 Mints sub-
mitted another request, to be discharged from his position from 8 October.

The reasons of this abrupt change are not completely clear. The vote of the
Council of LOMI was not the last step, after all it was only the Leningrad De-
partment of the Mathematical Institute in Moscow (MIAN). The decision had to
be confirmed there, and only after that the director of LOMI might sign the ap-
pointment order. Usually the confirmation came more or less automatically, but not
always.

According to V. P. Orevkov, the direction of MIAN suggested Mints to make a
presentation before the Academic Counsil there, and this was unusual. The general
situation in the Academy of Sciences did not look well, for example, there were
some known cases of antisemitism, and in some of these cases the director of MIAN
I. M. Vinogradov was involved (see, e.g., the following letter of the Academician
S. P. Novikov to one of his colleagues: http://www.mi.ras.ru/~snovikov/pont.
pdf). Mints might learn that his appointment will be blocked at MIAN. He also
might be informed about some external pressure that would make the promotion
virtually impossible (for example, due to his “too extensive” international contacts
not approved by authorities).

15http://www.columbia.edu/cu/lweb/archival/collections/ldpd_6761446/
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He would not like to continue as a Junior Researcher in such a circumstance.
At the same time he might be reasonably convinced that, due to the same interna-
tional contacts, he will be able to find a good employment at one of the Western
universities16.

All colleagues who knew Mints and with whom I had an opportunity to discuss
the events of 1979 (in particular, at Mints’ memorial conference in August 2015)
agree, that Mints asked to be discharged on his own request from LOMI because
he decided to emigrate and wanted to save from blame Shanin, who, as the chef of
Logic Group, would be otherwise held “administratively responsible”. It seems that
the decision to emigrate was taken somewhere between June and August.

It was not possible to emigrate freely from the USSR at this time, and Mints
could not know that his emigration request will be refused by the authorities.

3
If Mints remained at LOMI, he would certainly become my PhD adviser after I
graduated in 1979. In reality it was no more possible. He discussed this question
with Shanin, and Shanin agreed to take me as his PhD student. It turned out,
though, that finally the theme of my PhD thesis (defended in 1984) was essentially
inspired by my graduate work under Mints supervision.

Shanin helped me a lot as far as the presentation of my results was concerned,
advised on formulations that must be satisfactory from constructive point of view,
but did not intervene much in the content.

I had some opportunities to discuss mathematics with Mints. I remember him
to discuss the “Algebra of Proofs” by Szabo [93] and the problem that was called
(I do not remember, already at this time or later) the Mac Lane’s conjecture17. He
advised me to write S. Mac Lane about my work. I did, and our correspondence
continued until the mid-90es.

Among other situations, I remember a very unpleasant moment in autumn of
1981 when I was contacted by the KGB who wanted to “ask some questions”. I had
no courage to refuse and was met in a park by a KGB officer in civilian clothes who
did just that: asked questions about correspondence with abroad, about Maslov’s
seminar ... I tried to tell nothing of importance, and in spite of his explicit request to

16I already mentioned M. Gelfond who emigrated in 1978. Another colleague of Mints, V. Lifs-
chitz, who defended his thesis under Shanin’s supervision in 1969, emigrated to the USA in 1976.
Both very quickly found an employment. However I am not sure that I am able to list all possible
reasons.

17The conjecture says that the category of vector spaces is a complete model w.r.t. the axiomatic
theory of Symmetric Monoidal Closed Categories.
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tell nobody, I informed Mints, Maslov and Shanin about this situation, but otherwise
I remember nothing in my behavior to be especially proud of. Luckily for me their
interest dissolved after a couple more meetings, probably they did not have anything
serious in store.

The first half of the 80s, were for Mints a “time of troubles”. He submitted an
emigration request to the authorities an got a refusal. He had problems to find a
job.

Of course his scientific research never completely stopped. Maybe it is a right
place to say that one of his most impressive traits was calm, but almost religious
devotion to science, and he had to find possibilities to do what he considered as his
duty in a new and much less friendly environment.

At the same time there was nothing fanatical in this devotion, there certainly
remained place for social life and human relations. For example after the tragic
death of Sergei Maslov in 1982, Maslov’s daughter Elena and his widow Nina for
many years could count on his unwavering friendship18.

He had some contracts for translation with “Mir” and “Nauka” editions and tried
to keep a usual level of scientific activity due to intense work on translations in spite
of all difficulties and without an appropriate institutional affiliation. In 1981 “Mir”
published the translation of G. Kreisel’s selected papers [18] where Mints translated
about 90 percent of the book. In a short autobiographical note published in [84], for
the period 1979-1985 the collaboration with “Mir” and “Nauka” publishing houses is
mentioned. In 1983 the translations (with Mints as one of translators) of Barwise’s
“Handbook of mathematical logic” [3] and Chang and Lee’s “Symbolic Logic and
Mechanical Theorem Proving” [4] were published. The A. P. Ershov’s archive19 con-
tains the correspondence between Ershov and Mints about the project to translate
H. Barendregt’s “λ-calculus”. This project finally was accepted, not without diffi-
culties and delays, and the translation was published by “Mir” in 1985. Still, this
sort of contracts could not give any stability, and would disappear if no adequate
research position would be found.

Some hope of improvement came from his new contacts with Enn Tyugu and
other Estonian scientists. Due to these contacts Mints had temporary invitations
to Tallinn Institute of Cybernetics. The papers [59–62] were published. In 1983 he
was an editor, with Enn Tyugu, of [63]. Joint papers [64, 65] are written for this
collection. He wrote also a contribution (with Enn Tyugu) [66] to the proceedings
of the IIIth Conference “Application of methods of mathematical logic” in Tallinn.

However, how far from natural his situation was, is illustrated by the fact that
18It is not only part of my personal recollections, see, e.g., the A. P. Ershov’s archive, http:

//ershov-arc.iis.nsk.su/archive/eaindex.asp, Mints to Ershov, letter of 17 Sept. 1982.
19See http://ershov-arc.iis.nsk.su/archive/eaindex.asp
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from September 1983 to April 1985 he worked as a Senior Researcher at a comput-
ing center in the institute called Lengipromyasomolprom, that belonged to a large
“holding” of Leningrad meat-processing plants (one of economic experiments of the
late Soviet period)20.

In 1984 Mints helped to invite Saunders Mac Lane, though he of course could
not be his “host” officially. Mac Lane came with his wife Dorothy, who had to use
a wheelchair. As Mac Lane wrote:

In September 1984 we made another successful trip with the wheelchair, this
time to Moscow, Leningrad and Helsinki. The occasion was an international
conference and analysis to celebrate the anniversary of the Steklov Institute,
the mathematical institute of the Soviet Academy of Sciences. [23, p. 303]

In Leningrad Mints himself was a principal “guide” to Saunders and Dorothy.
By grace of him, I had an opportunity to meet Mac Lane and discuss mathematics.
I remember also how all of us visited the Alexander Nevsky Monastery and its
historical necropolis, where Leonard Euler was buried.

After the death of Brezhnev in November 1982 the USSR entered the period of
rapid political changes, though it was difficult to see at the beginning how far the
changes will go.

In a quick succession Andropov, and after his death Chernenko, took office of the
Communist Party’s General Secretary. Chernenko in his turn died in March 1985.

I remember the dinner after the defence of the PhD (“candidate nauk”) thesis by
Valentine Shehtman. Shehtman was from Moscow, but to organize his defence there
was more difficult, the reasons being far from scientific. He had his viva at LOMI,
and booked in advance for the evening a private room at Metropole restaurant,
one of the oldest and most traditional in Leningrad. It happened that at the same
time the period of mourning because of Chernenko’s death was declared, and the
restaurant was unusually quiet.

I remember this as a kind of photograph: Mints, Shanin, Slissenko, Shehtman,
Orevkov, Matiyasevich, Sochylina (the only woman), Ruvim Gurevich21, all in rather
somber costumes (pure coincidence, not related to official mourning), all without
ties (not a coincidence - somebody joked then that Shanin took as his students only
those who do not wear a tie). I remember also a general feeling that the times are
changing. They truly did.

20This is confirmed by a document preserved at Tallinn Institute of Cybernetics.
21Not to be confused with Youri Gurevich. I knew Ruvim since my student years at the faculty

of mathematics and mechanics. He was a gifted mathematician, his best known result concerns the
so called Tarski High School Algebra Problem [10]. He emigrated in 1987 and died prematurely in
1989.
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Let me quote again Mac Lane who visited the USSR again in 1987 (this time
Mac Lane went first to Moscow, then to Tbilisi in Georgia, to Leningrad and finally
to Estonia, where Mints now worked):

We then made a special trip to Tbilisi, Georgia, which was then still part of
Soviet Union. But discontent over the political system was in the air ... From
Leningrad we continued to Estonia, where I gave a talk at the Institute of
Cybernetics in Tallinn and we were again greeted warmly by colleagues, both
in Tallinn and at the University of Tartu. In Estonia too, we were much aware
of the limits of freedom of speech. However, only a few weeks later glasnost
and big changes took place in the Soviet system. Amazing! Within a few days,
Georgians, Russians, Estonians, all were now allowed to communicate without
fear.( [23], p. 331.)

Since April 1985 Mints was fully employed as a Senior Researcher at the Institute
of Cybernetics of the Estonian Academy of Sciences in Tallinn. I have outlined in
the previous section the main directions of his research in the 60s and the 70s. In
the 80s his main contributions were certainly in the domain of computer science
logic. He participated actively in a pioneering research on structural synthesis of
programs (SSP), the proof-theoretical aspects of structural synthesis being mostly
his responsibility22.

If we look today what came out of these studies then we shall see that some
research still continues (see [94], and the bibliography there) but we may have an
impression that the topic remains rather limited. In fact, it would be fair to take
into account the historical context and the role of SSP in this context, because for
proof theoretical methods in computer science the 80s were an early “heroic” period.

The attempts to use computers for proof search and verification started in the
60s, but the 70s and the 80s had seen the first steps to implement the idea that
proofs themselves may have something to do with structuration and execution of
programs. For example, the Prolog language, created in 1972 by A. Colmerauer and
Ph. Roussel, was then a “hot topic” among proof theorists interested in applications.
Another “hot topic” was the Curry-Howard correspondence [11].

In the 1970s R. Milner with his group created at Edinburgh university the ML
programming language, based essentially on the principles of typed λ-calculus. In
his paper on LCF (logic for computable functions) Milner wrote:“The connection
between programs and logic is now recognized as a leading topic of research in the
theory of computing.” [29], p.146.

P. Martin-Löf was developing his Type Theory, that plays a central role in many

22Essentially, it is a form of automated synthesis of programs, based on intuitionistic proposi-
tional calculus.
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modern “proof-assistants”. The importance of proof theory in programming was
rapidly increasing.

In a narrow, strictly technical sense, the SSP may seem today a relatively limited
topic but the research and development of the SSP in the 80s and the 90s contributed
a lot to the much greater domain called now formal methods in programming.

The research position in Tallinn that Mints finally got did not diminish the
intensity of his work, but he certainly should feel a relief finding himself again a
member of a highly motivated research group, and in a more adequate status than
before. One may be not particularly interested in career-making, promotions and
honors, but still feel sharply that your work is not properly appreciated.

At Mints’ Memorial Conference in St. Petersburg, V. Lifshitz23 mentioned that
Mints was sometimes nicknamed a “minister of information”24. Estonia in Soviet
times was in many ways closer to the West than the rest of the Soviet Union,
including better possibilities of scientific exchange, and this also should look for him
as an improvement.

In 1986 Estonia was the venue of the IVth All-Union conference “Application of
methods of mathematical logic”. Mints was one of its organizers, and edited (with
P. Lorents) the proceedings [70].

The trip to Tallinn by train from Leningrad took only 6 hours. Many Leningrad
residents enjoyed the visits to Estonian capital, especially to its historical center, an
almost intact medieval city. The previous, IIIrd conference “Applications of methods
of mathematical logic” in 1983, happened on the mainland, we were staying at the
Olympic village in the Tallinn neighbourhood called Pirita, and often visited the
city center.

This time the organizers had a more exotic plan. Its mere possibility seems to
be a sign of changing times. A modest cruise ship that belonged to the Estonian
Maritime Rescue was somewhat contracted, and the participants went from Tallinn
to the Saaremaa island (part of the Estonian SSR). We stayed on the ship, but
the conference meetings were organized at the Kuressaare Castle, a former bishop’s
stronghold.

Since 1986, after a long pause, Mints’ papers were again published in interna-
tional journals, for example rapidly appeared [71,74–77].

In 1988 he was one of the organizers of COLOG-88, an international conference
on computer science logic in Tallinn. With Per Martin-Löf he edited the proceedings

23Like Mints, he defended his PhD thesis at LOMI (with Shanin as adviser). He emigrated in
1976 and is now professor at the University of Texas at Austin.

24By the way, Mints wrote reviews for “Zentralblatt”, “Mathematical Reviews” etc. since 1973.
The total number of his reviews in “Zentralblatt” database is now 474. About 150 were written
when he worked in Estonia (and about 15 before).
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of this conference [72]. He also published a long paper there [73].
The early 80s were difficult years, and had some profound personal consequences

for Mints. They marked the end of his first marriage, because his first family fi-
nally decided not to emigrate. Later, when he moved to Estonia, they remained in
Leningrad, that since 1991 is again called St. Petersburg.

I remember my meeting with Grigori and his second wife, Marianna, in Tallinn.
It was probably during COLOG-88 or in 1989. Before the fall of the USSR, I visited
the Institute of Cybernetics a few more times. One evening Mints invited me to his
home, a kind of studio in some academic residence, the type doctoral students or
post-docs might have. As far as I remember, it was stuff with scientific literature.
We had some tea there surrounded by the bookshelves.

Mints probably still had plans to emigrate, but they could not be definite. In
1989 he defended his Dr. Sci. thesis25 titled “Transformations of Proofs and Program
Synthesis”. The defense took place at the Leningrad State University on April 26,
1989. In November 1989, he was promoted to the position of leading (or principal)
researcher at the Tallinn Institute of Cybernetics.

In 1987 the borders started to open, and we could now easily go to the places
that would seem impossible a few years ago. In fact, in the summer 1989, I was able
to attend the ASL Logic Colloquium in West Berlin, just three months before the
fall of the Berlin Wall. In 1990 I visited Mac Lane at the University of Chicago, and
attended the Logic Colloquium ’90 in Helsinki.

Mints was one of the invited speakers at both the Logic Colloquium ’89 and the
Logic Colloquium ’90. In Helsinki it was probably the last time we met each other
as Soviet citizens.

He was now in his element, at ease as a member of the top-level international
scientific community that does not think much about borders. Of course, nothing
was definitely settled yet in the ordinary, more mundane aspects of a scientist’s life.

Enn Tyugu remembers:

We visited Stanford for three months in spring of 1990. He was proposed to be a
lecturer of logic instead of Barwise who took his sabbatical, I guess, in the same
autumn. He impressed the Stanford people so much that he got the permanent
professorship there, moved to Stanford and left our institute in August 1991.26

It seems symbolic that one of the Mints’ last papers that Mints had published
when the Soviet Union still existed was a survey on proof theory in the USSR [78].

25The degree that still exists in Russia, and is considered to be higher than PhD It may be com-
pared to state doctorate that existed in many European countries until recently, and to habilitation
that exists now.

26E-mail to the author, March 24, 2016.
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I was never able to visit Mints when he worked at Stanford there (1991–2014),
though I did see him many times on other occasions. Let this period be the subject
of another paper.
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Abstract

The author remembers his meetings and discussions with a remarkable
mathematician and logician Grigori (Grisha) Mints.

I remember Grisha Mints when he was still a student. He entered the Faculty of
Mathematics and Mechanics (“math-mech”) of Leningrad State University when
I graduated (1956), and while I was a doctoral student (since 1958) I met him
sometimes. In fact, his closest friend – Sergey Maslov – a future renowned logician,
attended, when he was in his terminal class at school, a mathematical seminar
organized at math-mech for the school children, where I was a tutor during a whole
year. So when I met him at the faculty, he usually was with Grisha, they were
inseparable. And they both, rather early, have selected mathematical logic as their
specialty. They both were among the best students of their promotion. By this
reason, and also because the Spring of 1956 was the high time of the Khrushchev
liberal “thaw”, their scientific adviser N. A. Shanin, himself one of the principal
followers of A. A. Markov (Jr.), could persuade the administration of the Academy
of Sciences that both have to be taken to the post-graduate school at the Leningrad
Department of the Steklov mathematical institute (LOMI). Note, that in Soviet
times, when the director of the Mathematical institute (MIAN in Moscow) was
I. M. Vinogradov, a notorious antisemite, for a Jew (as Mints) or half-Jew (as
Maslov) to be taken as a post-graduate was a rare exception, even more so to be
taken as a staff member.1 Their successive research, activity, openness for human

The author would like to thank Sergei Soloviev for the English translation.
1There were only a few Jews – members of the MIAN – Mathematical Institute of Russian

Academy of Sciences (Moscow and Lenigrad Department as well) during the long directorship of
Vinogradov. The exceptions were, of course, admitted by Vinogradov himself for some reason.
On rare occasions he yielded to the lengthy appeal of some well-known mathematicians such as
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contact, helped their adviser N. A. Shanin to take them first as post-graduates and
later as staff members.

Together with other young colleagues, they organized the research group that
they called with a provocative irony “TREPLO”. In Russian, it was an abbreviation
for “Teoretichestkaya Razrabotka Evristicheskogo Poiska Logicheskih Obosnovanii”
(“Theoretical Development of Heuristic Search of Logical Justifications”). This ab-
breviation sounded almost like “windbag” in Russian.

The plans were magnificent: to develop a mathematical theory of the machine
proof of mathematical statements. To my knowledge, this aim is not yet reached,
but there were surely some achievements; the role of Mints in this group was very
significant. In the end of the 60s, N. A. Shanin delivered at the meetings of the
Leningrad mathematical society a series of talks that presented the work of the
group. Later, in the 70s, I invited the logicians (S. Maslov, and Yu. Matiyasevich)
to my seminar in order to give talks about their work. I remember particularly the
talk by G. Mints: he spoke about the recent result of L. Harrington [2] concerning
the possible abnormal growth of the lower bound in the classical Ramsey problem.
Afterwards we often discussed with him this and other themes.

To describe him as a mathematician, I have to say that he had a very broad
interest in mathematics, including group theory, theory of dynamic systems, and
functional analysis. He strived to apply logical methods to these domains and often
obtained new proofs of known results by his methods. This helped to understand
better the mainsprings of the proofs, etc. But new results require more penetration
in a given domain. It was of interest to discuss with him general mathematical
concepts. Grisha was always interested in philosophical aspects of mathematical
theories, and we found there a common ground for many discussions. I remember
our discussions concerning the Burnside type problems, ergodic theorems, concepts
of universality, etc.. For our last meeting he prepared several extracts from Hardy’s
book [1] as comments to my presentation [4] about the connections of mathematics
and its possible applications. I know that he had discussions also with D. K. Faddeev,
Yu. I. Manin, and other well known mathematicians, who were attentive to his
opinions.

In the end of the 60s and the beginning of the 70s, S. Maslov organized at his
home a social and political seminar that had a very large scope, and Grisha was one

A. A. Markov, Yu. V. Linnik, among others, who asked him to accept their successful students. This
happened very rarely and in fact I know that the Director regretted later his giving in to pressure
and tried to “correct” what he considered as “defect”. For example, S. Maslov was discharged
from LOMI in 1970s, as well as Mints who was discharged following his decision to emigrate from
the country. Remember, the outstanding mathematician V. A. Rokhlin was also dismissed from
Moscow MIAN. This situation changed only after the end of Vinogradov’s ditrectorship of MIAN.
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of its participants. When Mints decided to emigrate, he naturally had, as always at
that time, the unpleasant consequences at the institute, and had to quit, because,
moreover, he became a “refuznik”. Soon he moved to Tallinn, where quickly, and
apparently, successfully got a new position, learned Estonian, found his place and
even doctoral students.

Later he moved to the USA and obtained a chair at Stanford. His predecessor
there was J. Barwise, with whom he had common interests, and who moved to
Indiana University. I met him more than once, and visited his home when I was in
the States, that is, Berkeley and Stanford (after 1990). With him I sent to the USA
in 1990 the copies of all the issues of our illegal (in Soviet times) journal of social
and political surveys “Summa” that was edited by Maslov, and where I actively
participated (in the end of the 70s and the beginning of the 80s). When I visited
Berkeley I donated these typed copies of “Summa” to the Slavic department in
Bankroft library at UC Berkeley, where they may be consulted now. All the issues
where collected in one volume called “‘Summa’ for free thought” and published in
2002 by the “Zvezda” publishing house at St. Petersburg [3].

According to my observations, G. Mints in the States worked fruitfully and
became an active participant of mathematical events. He came many times to
his native St. Petersburg where he had many colleagues and friends and where
he participated in organization and the work of various conferences.

In my memory, he remained as a thoughtful, modest and witty man, far from
indifferent not only to science, in particular mathematics and logic, but to all aspects
of the complex modern life.

His premature and sudden demise is very saddening.
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Abstract
Kant considers his Critique of Pure Reason to be founded on the act of

judging and the different forms of judgement, hence, take pride of place in his
argumentation. The consensus view is that this aspect of the Critique of Pure
Reason is a failure because Kant’s logic is far too weak to bear such a weight.
Here we show that the consensus view is mistaken and that Kant’s logic should
be identified with geometric logic, a fragment of intuitionistic logic of great
foundational significance.

1 Preview
Below the reader will find a condensed revisionist account of Kant’s so-called ‘general
logic’, usually thought to be substandard, even when compared with the traditional
logic of his day [4].1 Ultimately our interest is in the formalisation of Kant’s ‘tran-
scendental logic’ (for which see [1]), but since transcendental logic takes its starting

The paper was originally presented at the conference “Philosophy, Mathematics, Linguistics: As-
pects of Interaction 2012” (PhML-2012), held on May 22–25, 2012 at the Euler International
Mathematical Institute, St. Petersburg. We are grateful to the referees for insightful comments.

1Not to mention the scathing verdicts from the standpoint of modern logic which we take to
have started with Frege and Strawson.

Vol. 4 No. 4 2017
IfCoLog Journal of Logics and their Applications



T. Achourioti and M. van Lambalgen

point in the judgement forms listed in the Table of Judgement (most of which have
their origin in general logic) we must take a close look at the actual logical forms
of these judgements. The result of this investigation is that Kant’s general logic is
not monadic, not finitary, not classical, and perhaps linear rather than intuitionis-
tic. We will here not elaborate on the last point2 but we will restrict ourselves to
stating a completeness theorem identifying Kant’s general logic with a fragment of
intuitionistic logic.

2 Validity in general logic
The key to any insightful formalisation of Kant’s logic is the observation that judge-
ments in Kant’s sense participate in two kinds of logics: general logic and transcen-
dental logic. Here is how Kant introduces ‘general logic’ in the first Critique [7]:

[G]eneral logic abstracts from all the contents of the cognition of the understand-
ing and of the difference of its objects, and has to do with nothing (A55-6/B80)
but the mere form of thinking. (A54/B78)

And later, with a slightly different emphasis:

General logic abstracts [ . . . ] from all content of cognition, i.e. from any rela-
tion of it to the object, and considers only the logical form in the relation of
cognitions to one another, i.e. the form of thinking in general. (A55/B79)

So what is the ‘mere form of thinking’?
The first two paragraphs of the Jäsche Logik [5] marvel at the fact that all of

nature, including ourselves, is bound by rules. It continues:

Like all our powers, the understanding is bound in its actions to rules [ . . . ]
Indeed, the understanding is to be regarded in general as the source and the
faculty for thinking rules in general [ . . . ] [T]he understanding is the faculty for
thinking, i.e. for bringing the representations of the senses under rules.

From this it derives a characterisation of logic:

Since the understanding is the source of rules, the question is thus, according
to what rules does it itself operate? [ . . . ] If we now put aside all cognition
that we have to borrow from objects and merely reflect on the use just of
the understanding, we discover those of its rules which are necessary without
qualification, for any purpose and without regard to any particular objects,
because without them we would not think at all. [ . . . ] [T]his science of the

2Grigori Mints was planning on studying the connection between Kant’s disjunctive judgement
and multiplicative linear logic.
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necessary laws of the understanding and of reason in general, or what is one
and the same, of the mere form of thought as such, we call logic. [5, pp. 527-8]
(cf. also A52/B76)

To appreciate the real import of this passage, one must resist the temptation to
consider logic as consisting of a motley set of inference rules, such as modus ponens
and syllogistic inferences, even though the Jäsche Logik will later list these too. Two
definitions are pertinent here:

§58 A rule is an assertion under a universal condition. [5, p. 615]

Here it is important to bear in mind Kant’s notion of universal representation as
‘a representation of what is common in several objects’ [5, §1, p. 589]. A rule is,
therefore, applicable to a domain of indefinite extension.

The second definition is that of an inference of reason:
§56 An inference of reason is the cognition of the necessity of a proposition
through the subsumption of its condition under a given universal rule. [5,
p. 614]

At this point we will not yet provide an elaborate explanation of the notion of
‘condition’, but the reader is invited to take modus ponens as a concrete example. We
then have the following sequence of ideas: (i) the understanding operates according
to rules, (ii) the understanding’s operations are necessary insofar as they pertain
to the formal features of rules, and (iii) the most general formal principle is rule-
application (or rule composition – as we shall see the distinction was not always
made in those days). Thus Kant’s logic has a general and constructive definition of
validity, a consequence of the meaning of ‘rule’. The Jäsche Logik will give concrete
instances of this most general principle, such as modus ponens, but the full force of
the principle will only become apparent when we come to discuss the true logical
form of Kant’s ‘judgements’. We must note here that the general inference principle
limits logic to judgements that can be seen as rules. We view Kant’s emphasis on
rules and their structural properties as marking the ‘formal’ character of his general
logic. The definition of validity just given should be contrasted with the Bolzano-
Tarski definition of validity: ‘an argument is valid if its conclusion is true whenever
its premises are’ – for in this part of Kant’s logic (what he calls ‘general logic’) there
is no truth yet, there are only rules. A different kind of logic, ‘transcendental logic’
will introduce truth.

3 Three definitions of judgement and a Table ...
Any modern logic textbook makes a strict separation between syntax, semantics and
consequence relation, and makes no reference at all to psychological processes that
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may be involved in a concrete case of asserting a syntactically well-formed sentence.
These processes are studied in psycholinguistics, and start from the assumption that
there are specific syntactic and semantic binding processes at work in the brain. For
logical theorising such psycholinguistic approaches are deemed to be irrelevant. For
Kant they are in fact of the essence, and his definitions of judgement also contain a
cognitive component.

But the reader trying to piece together Kant’s views on logic may be forgiven
a sense of bewilderment when she finds not one but three seemingly very different
definitions of ‘judgement’, none of which specifies a syntactic form, together with a
‘Table of Judgement’ which specifies some syntactic forms (for example, categorical,
hypothetical, disjunctive, with various other subdivisions), without an indication of
how these forms relate to the three definitions. Lastly, there are the examples of
judgements that Kant uses in various works, whose logical forms do not fit easily in
the Table of Judgement. This looks unpromising material, but we shall show that
Kant’s logic is nevertheless coherent and surprisingly relevant to modern concerns.

Let us begin with the three definitions of judgement:

A judgement is the representation of the unity of the consciousness of various
representations, or the representation of their relation insofar as they constitute
a concept. [5, p. 597]

A judgement is nothing but the manner in which given cognitions are brought
to the objective unity of apperception. That is the aim of the copula is in them:
to distinguish the objective unity of given representations from the subjective
[ . . . ] Only in this way does there arise from this relation a judgement, i.e. a
relation that is objectively valid [ . . . ]3 (B141-2)

Judgements, when considered merely as the condition of the unification of rep-
resentations in a consciousness, are rules. (Prol. § 23; see [8])

Even for those unfamiliar with Kant’s technical vocabulary it will be obvious that
‘unity’ plays a central role in all three definitions. These are different ways of saying
that the expressions occurring in a judgement must be bound together so that they
can be simultaneously present to consciousness. The first definition posits unity
simply as a requirement. The second says that unity in a judgement is achieved
if the judgement has ‘relation to an object’. The third definition links unity to the
meaning of a judgement. Just as an example: if for a hypothetical judgement ϕ→ ψ

there exists a rule transforming a proof of ϕ into a proof of ψ, then that judgement

3Where ‘objectively valid’ means ‘having relation to an object’, which is not the same as ‘true
of the object’.
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is unified. If the hypothetical is a truth functional material implication, then an-
tecedent and consequent are independent, hence this is not a unified representation.
The presence of a notion of unity of representation raises three questions: (i) what
has this got to do with formal logic?, (ii) is there a relation between the unity and
the reference to objects occurring in the second definition? and (iii) what is the
relation between unity and the concrete forms of judgement given in the Table of
Judgement?

3.1 Objects, concepts and general logic

Categorical judgements are composed of concepts, and objects ‘fall under’ concepts,4
in a sense hinted at in the following note:

Refl. 3042 Judgement is a cognition of the unity of given concepts: namely,
that B belongs with various other things x, y, z under the same concept A, or
also: that the manifold which is under B also belongs under A, likewise that
the concepts A and B can be represented through a concept B. [9, p. 58]

It appears that both concepts and objects may fall under a given concept C. The
given concept is therefore transitive in the sense that if (concept) M belongs to C
(by being a subconcept) and (object) a belongs under M, then a belongs under C.
Kant uses this semantics for concepts in his ‘principle for categorical inferences of
reason’:

What belongs to the mark of a thing also belongs to the thing itself. [5, p. 617]

The next note supplies more information about these objects ‘in the logical sense’ (so
called because they make a cameo appearance in the section ‘The logical employment
of the understanding’ (A68-9/B93)).

Refl. 4634We know any object only through predicates that we can say or think
of it. Prior to that, whatever representations are found in us are to be counted
only as materials for cognition but not as cognition. Hence an object is only a
something in general that we think through certain predicates that constitute
its concept. In every judgment, accordingly, there are two predicates that we
compare with one another, of which one, which comprises the given cognition
of the object, is the logical subject, and the other, which is to be compared
with the first, is called the logical predicate. If I say: a body is divisible, this
means the same as: Something x, which I cognize under the predicates that
together comprise the concept of a body, I also think through the predicate of
divisibility. [9, p. 149]

4Kant also uses the phrases ‘object a belongs under concept C’ and ‘C belongs to a’.
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What this Reflexion tells us is that an object is generic (or most general) for the
‘predicates that constitute its concept’, and that the quantifier ‘something x’ ranges
over such generic objects only.

The same idea is prominent in the section of CPR entitled ‘On the logical use of
the understanding in general’:

[T]he understanding can make no other use of concepts than that of judging by
means of them. Since no representation pertains the object immediately except
intuition alone, a concept is thus never immediately related to an object, but is
always related to some other representation of it (whether that be an intuition
or itself already a concept). Judgement is therefore the mediate cognition of an
object, hence the representation of a representation of it. (A68/B93)

An object is therefore rather like what logicians call a type: i.e. a set5 p(x) of
formulas containing at least the free variable x;6 free variables not identical to x can
be replaced by formal parameters representing objects, hence specified by a type. As
an example, consider the predicate ‘body’ and the type ’x is a massive body which
orbits star y’ – which can be used to defined the predicate ‘planet’, by existential
quantification over y or by replacing y by a formal parameter (representing the Sun,
say). Let T be the theory of the relevant concepts. If M is a concept, we say that
M(x) belongs to p(x) if T, p(x) ` M(x). For example, if T contains

∀x(A(x)∧ ∃yB(x, y) →M(x)),

then p(x) = {A(x), ∃yB(x, y)} belongs to M(x). It is technically convenient to in-
troduce suitable constants witnessing a type: if p(x) is a (consistent) type, let ap
be a new constant satisfying p(ap).7 These constants correspond to the ‘objects in
general’ that we encountered in Reflexion 4634. One may then view p(x) and ap
as determining the same object; and in this formal sense we have thatM belongs to
ap.

The next question to consider is whether Kant’s theory of concepts puts a bound
on the complexity of concepts, i.e. the complexity of the types belonging under the
concept. The p(x) given in the previous paragraph can be viewed as a single positive
primitive formula:

Definition 1. A formula is positive primitive if it is constructed from atomic for-
mulas using only ∨, (infinite)

∨
,∧, ∃,⊥.

5In our context a finite set.
6Relations enter Kant’s logic especially in connection with the hypothetical judgement (see sec-

tion 3.3.2); furthermore, as Hodges observed in [4], traditional logic allowed relations in syllogisms.
7The constant ap implicitly depends on the parameters and free variables (x excluded) occurring

in p(x).
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SupposeM, P are concepts all of whose subconcepts can be defined using positive
primitive types (equivalently, formulas). The judgement ‘all M are P’ – or in the
language of Reflexion 4634: ‘To everything x, to which M belongs, also P belongs
– may then be expressed as ∧

p∈M

∨
q∈P

∀x(p(x) → q(x)),

which is equivalent to
∀x(

∨
p∈M

p(x) → ∨
q∈P

q(x)),

and this formula satisfies the definition of a geometric implication:

Definition 2. A formula is geometric or a geometric implication if it is of the form
∀x̄(θ(x̄) → ψ(x̄)), where θ and ψ positive primitive.

As it turns out, Kant’s theories of concepts and of judgements contain the re-
sources to restrict the complexity of p(x) to positive primitive. The reason for this
is that the complexity of the relation ‘M(x) belongs to p(x)’ is at most that of geo-
metric implications. For the proof we must refer the reader to [1]; but a sketch will
be given in section 4.

Geometric logic – the inferential relationships between geometric formulas – is
therefore naturally suggested by Kant’s theory of concepts. We will see that the
logical form of Kant’s own examples of judgements (in so far as they are ‘objectively
valid’ (see section 3.2)) is that of geometric implications. As a consequence, we can
show by means of ‘dynamical proofs’ of geometric implications that judgements can
be viewed as rules:

Judgements, when considered merely as the condition of the unification of rep-
resentations in a consciousness, are rules. (Prol. §23; see [8])

3.2 Unity, objects and transcendental logic

The second characterisation of judgement maintains that if a judgement has a certain
kind of unity (the ‘objective unity of apperception’) then it relates to an object –
has ‘objective validity’ – and can express a truth or falsehood of that object; it
is ‘truth-apt’, in modern terminology. This is the domain of transcendental logic,
which Kant defines as follows:

[ . . . ] a science of pure understanding and of the pure cognition of reason, by
means of which we think objects completely a priori. Such a science, which
would determine the origin, the domain, and the objective validity of such
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cognitions, would have to be called transcendental logic since it has to do merely
with the laws of the understanding and reason, but solely insofar as they are
related to objects a priori and not, as in the case of general logic, to empirical
as well as pure cognitions of reason without distinction. (A57/B81-2)

For Kant, perceiving objects about which judgements can be made is an instance
of what would now be called the binding problem: objects are always given as
a ‘manifold’ of parts and features, which have to be bound together through a
process of synthesis. What is very distinctive about Kant’s treatment here is that
the binding that binds expressions in judgement together at the same time binds
parts and features together with a view toward constructing an object out of sensory
material that relates to the judgement. Therefore the binding process, necessary to
bring separately perceived parts and features together, is in the end a complex logical
operation, described by transcendental logic:

Transcendental logic is the expansion of the elements of the pure cognition of
the understanding and the principles without which no object can be thought at
all (which is at the same time a logic of truth). For no cognition can contradict
it without at the same time losing all content, i.e. all relation to any object,
hence all truth. (A62-3/B87)

In the Critique, transcendental logic is not recognisably presented as a logic, and it
is commonly thought that it cannot be so presented. The article [1] shows otherwise,
mainly by focussing on the semantics of transcendental logic. There is a vast differ-
ence between the notion of object as it occurs in first order models, and in Kant’s
logic. In the former, objects are mathematical entities supplied by the metatheory,
usually some version of set theory. These objects have no internal structure, at least
not for the purposes of the model theory. Kant’s notions of object, as they occur
in the semantics furnished by transcendental logic, are very different. For instance,
there are ‘objects of experience’, somehow constructed out of sensory material; tran-
scendental logic deals with a priori and completely general principles which govern
the construction of such objects, and relate judgements to objects so that we may
come to speak of true judgements.

3.3 The Table of Judgement (A70/B95)

The three definitions describe judgement either in terms of certain cognitive oper-
ations (‘unity of representations’) or in terms of a function that a judgement has
to perform (establishing ‘relation to an object’). There is no hint of a specific form
of judgement here. We find such hints in the Table of Judgement, but there we do
not find a comparison with definitions of judgement; e.g. the Critique’s definition
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occurs only at (B141-2), way after the Table of Judgement is introduced. This raises
the problem of how we know that the forms proposed in the Table satisfy the three
definitions, and conversely, how for instance the functional characterisation given at
(B141-2) leads to specific forms of judgement.

We now turn to the forms of judgement listed in the Table of Judgement, and
we discuss (some of) the inferences in which these judgements participate, in part
to emphasise the many differences between Kant’s logic and modern logic8 We will
also comment on the relation between the Table of Judgement and the Table of
Categories (A80/B106), although a full treatment is beyond the scope of this paper.

We will begin our discussion with the title ‘Relation’ (A70/B95), where we find
Relation
Categorical
Hypothetical
Disjunctive

3.3.1 Categorical judgements

These are judgements in subject-predicate form, combined with quantifiers and op-
tional negation, which can occur on the copula and on the concepts occurring in the
judgement. The Table of Judgement further specifies categorical judgements with
regard to Quantity and Quality:

Quantity
Universal
Particular
Singular

In the Table of Categories we find a corresponding list of ‘pure concepts of the
understanding’:

Of Quantity
Unity
Plurality
Totality

The precise correspondence between judgement forms and Categories is a matter of
controversy. Here we argue on logical grounds that Kant intended a correspondence
between the universal judgement and Unity, between the particular judgement and
Plurality, and between the singular judgement and Totality.9

8See note 1.
9See Frede and Krüger [3] for a different correspondence linking the singular judgement and

Unity.
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As explained in section 3.1, the universal judgement ‘all M are P’, or as Kant
would have it ‘To everything x to which M belongs, also P belongs’, should not be
interpreted as the classical ∀x(M(x) → P(x)), but as

∀x(
∨
p∈M

p(x) → ∨
q∈P

q(x));

and because the subject is maintained ‘assertorically’, not ‘problematically’, we re-
quire that the types in M do not contain ⊥. These types are therefore satisfiable –
meaning that the (nonempty) collection ofM’s is given as that which the judgement
is about, and the quantifier ‘To everything x’ is restricted toM, not to some universe
of discourse.

The association ‘universality – unity’ is motivated by the fact that in the univer-
sal judgement ‘allM are P’ the predicate P makes no distinctions among the things
falling under the subject M. Relative to P, M can hence be taken as a unit.

The things falling under M form a plurality that is not a unity (with respect to
the predicate P) if there are true particular judgements ‘some M are P’ and ‘some
M are not P’.

In an unpublished note about the relation between universal and singular judge-
ment, Kant writes:

Refl. 3068 In the universal concept the sphere [=extension] of a concept is
entirely enclosed in the sphere of another concept; [ . . . ] in the singular judge-
ment, a concept that has no sphere at all is consequently merely enclosed as a
part under the sphere of another concept. Thus singular judgements are to be
valued equally with the universal ones, and conversely, a universal judgement
is to be considered a singular judgement with regard to the sphere, much as if
it were only one by itself. [9, p. 62]

Now consider (B111), where we read ‘Thus allness (totality) is nothing other
than plurality considered as a unity [ . . . ]’

Taking a plurality M to be a totality involves considering M as a unity, which
means that a pair of judgements ‘someM are P’ and ‘someM are not P’ is replaced
by one of ‘all M are P’ and ‘all M are not P’. M is thus totally determined with
respect to the available predicates. SinceM cannot be divided using a predicate, this
means that the concept M is used singularly, and hence a universal judgement ‘all
M are P’ can equivalently be regarded as the singular judgement ‘M is P’, whence
the correspondence between the singular judgement and totality.

Quality
Affirmative
Negative
Infinite
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There is no need for our present purposes to dwell extensively on this Category, ex-
cept to say that Kant makes a distinction between sentence negation as in the neg-
ative particular judgement ‘some A are not B’ and predicate negation, represented
by the infinite judgement ‘some A are non-B’, which is affirmative but requires in-
finitary logic for its formalisation:

∨
B∩C=∅ (some A are C). Hence Kant’s logic is not

finitary. The difference with classical first order logic will only increase as we go on.

3.3.2 Hypothetical judgements

It would be a mistake to identify Kant’s hypothetical judgements with a proposi-
tional conditional p→ q, let alone material implication as defined by its truth table:
a material implication need not have any rule-like connection between antecedent
and consequent. Here is the definition in the Jäsche Logik:

The matter of hypothetical judgements consists of two judgements that are
connected to each other as ground and consequence. One of these judgements,
which contains the ground, is the antecedent, the other, which is related to it as
consequence, is the consequent, and the representation of this kind of connection
of two judgements to one another for the unity of consciousness is called the
consequentia which constitutes the form of hypothetical judgements. [5, p. 601,
par. 59]10

This definition seems to say that the hypothetical is a propositional connective, and
some of Kant’s examples fall into this category:

If there is perfect justice, then obstinate evil will be punished. (A73/B98)

However, other examples exhibit a more complex structure, involving relations,
variables and binding. In the context of a discussion of the possible temporal rela-
tions between cause and effect Kant writes in CPR:

If I consider a ball that lies on a stuffed pillow and makes a dent in it as a cause,
it is simultaneous with its effect. (A203/B246)

The hypothetical that can be distilled from this passage is:

If a ball lies on a stuffed pillow, it makes a dent in that pillow.

From this we see that (i) the antecedent and consequent need not be closed judge-
ments but may contain variables, and (ii) antecedent and consequent may contain
relations and existential quantifiers.

10Here it is of interest to observe that in the same paragraph consequentia is also used to refer
to an inference.
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We now give an extended quote from the Prolegomena §29 [8] which provides an-
other example of a hypothetical judgement whose logical structure likewise exhibits
the features listed in (i) and (ii) above:

It is, however, possible that in perception a rule of relation will be found, which
says this: that a certain appearance is constantly followed by another (though
not the reverse); and this is a case for me to use a hypothetical judgement and,
e.g., to say: If a body is illuminated by the sun for long enough, it becomes
warm. Here there is of course not yet the necessity of connection, hence not
yet the concept of cause. But I continue on, and say: if the above proposition,
which is merely a subjective connection of perceptions, is to be a proposition of
experience, then it must be regarded as necessarily and universally valid. But
a proposition of this sort would be: The sun through its light is the cause of
the warmth. The foregoing empirical rule is now regarded as a law, and indeed
as valid not merely of appearances, but of them on behalf of a possible experi-
ence, which requires universally and therefore necessarily valid rules [ . . . ] the
concept of a cause indicates a condition that in no way attaches to things, but
only to experience, namely that experience can be an objectively valid cogni-
tion of appearances and their sequence in time only insofar as the antecedent
appearance can be connected with the subsequent one according to the rule of
hypothetical judgements. [8, p. 105]

The logical form of the first hypothetical (a ‘judgement of perception’) is something
like:

If x is illuminated by y between time t and time s and s − t > d and the
temperature of x at t is v, then there exists a w > 0 such that the temperature
of x at s is v+w and v+w > c,

where d is the criterion value for ‘long enough’ and c a criterion value for ‘warm’. We
find all the ingredients of polyadic logic here: relations and quantifier alterations.
The causal connection which transforms the judgement into a ‘judgement of expe-
rience’ arises when the existential quantifiers are replaced by explicitly definable
functions.

We now move on to the logical properties of the hypothetical judgement. Here it
is of some importance to note that the term consequentia, characterising the logical
form of the hypothetical, is also used to describe the inferences from the hypothetical:

The consequentia from the ground to the grounded, and from the negation of
the grounded to the negation of the ground, is valid. [5, p. 623]

Furthermore, the negation of a hypothetical is not defined.11 This strongly suggests
that the hypothetical judgement is really a license for inferences. Indeed, in the

11Note that the negation of a categorical judgement is defined, although its properties do seem
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Jäsche Logik Kant characterises inferences such as modus ponens and modus tollens
as immediate inferences and as such needing only one premise, not two premises [5,
p. 623]. Modern proof systems conceive of modus ponens as a two-premise inference,
p implies q and p, therefore q. But Kant does not think of it in this way. He thinks
of it as an inference with premise p, conclusion q, which is governed by a license
for inference. This strongly suggests that Kant does not have a single entailment
relation, as in modern logic,12 but only local entailment relations defined by specific
inferences. We end this discussion of the hypothetical judgement with a further
twist: its logical properties change when it is considered in a causal context, i.e. in
transcendental logic:

When the cause has been posited, the effect is posited ‹posita causa ponitur
effectus› already flows from the above. But when the cause has been cancelled,
the effect is cancelled ‹sublata causa tollitur effectus› is just as certain; when the
effect has been cancelled, the cause is cancelled ‹sublato effectu tollitur causa› is
not certain, but rather the causality of the cause is cancelled ‹tollitur causalitas
causae›. [6, p.336-7]

3.3.3 Disjunctive judgements

These are again not what one would think, judgements of the form p ∨ q. The
Jäsche Logik provides the following definition:

A judgement is disjunctive if the parts of the sphere of a given concept deter-
mine one another in the whole or toward a whole as complements [ . . . ] [A]ll
disjunctive judgements represent various judgements as in the community of a
sphere [ . . . ] [O]ne member determines every other here only insofar as they
stand together in community as parts of a whole sphere of cognition, outside of
which, in a certain relation, nothing may be thought.(Jäsche Logik, §27, 28) [5,
pp. 602-3]

As examples Kant provides:

Every triangle is either right-angled or not right-angled.
A learned man is learned either historically, or in matters of reason.

Thus the logical form is something like ∀x(C(x) → A(x)∨B(x)), where C represents
the whole, A,B its parts; here it is not immediately clear whether the parts can be
taken to exist outside the context of the whole. But actually the situation is much

to be weaker than classical negation: ‘some A are not B’ is the negation of ‘All A are B’, but it
is a moot point whether the negative particular judgement has existential import. Its infinitive
counterpart does have existential import.

12See Hodges [4] for relevant discussion.
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more complicated. The Jäsche Logik equivocates between concepts and judgements
making up the whole, and this is intentional, as we read in the Vienna Logic:

The disjunctive judgment contains the relation of different judgment insofar as
they are equal, as membra dividentia, to the sphaera of a cognitio divisa. E.g.,
All triangles, as to their angles, are either right-angled or acute or obtuse. I
represent the different members as they are opposed to one another and as,
taken together, they constitute the whole sphaera of the cognitio divisa. This
is in fact nothing other than a logical division, only in the division there does
not need to be a conceptus divisus; instead, it can be a cognitio divisa. E.g., If
this is not the best world, then God was not able or did not want to create a
better one. This is the division of the sphaera of the cognition that is given to
me. [5, p. 374-5]

So it is not just concepts that can be divided in the familiar way, also cognitions
(Erkenntnisse), including judgements, can be so divided. What this means for the
complexity of Kant’s logic can be seen if we look at the expanded example in the
Dohna-Wundlacken Logic:

If this world is not the best, then God either was unfamiliar with a better
[one] or did not wish to create it or could not create [it], etc. Together these
constitute the whole sphaera. [5, p. 498]

It will be instructive to formalise this example. Let w0 be the actual world, G a
constant denoting God, let B(w0, w) represent ‘w is a better world than w0, and let
Uf(G,w), Uw(G,w), Uc(G,w) represent: ‘God was unfamiliar with w’, ‘God was
unwilling to create w’ and ‘God was unable to create w’, respectively. We then get
the combined hypothetical-disjunctive judgement:

∃wB(w0, w) → ∀w(B(w0, w) → (Uf(G,w)∨Uw(G,w)∨Uc(G,w))).

It is to be noted that this hypothetical-disjunctive judgement consists entirely of
relations, and that the division is formulated in terms of singular judgements con-
taining a parameter (‘God’) and a variable. As in the case of the hypothetical
judgement, the negation for a disjunctive judgement is not defined, which suggests
that it is actually a license for inferences, using quantified forms of the disjunctive
syllogism, for example:

1. Starting from the premise ‘God is familiar with a better world’ (which is taken
to imply ∃w(B(w0, w) ∧ ¬Uf(G,w))) now introduces the positive primitive
formula ∃w(B(w0, w)∨ (Uw(G,w)∨Ua(G,w))).

2. Similarly the premise ‘God is familiar with all better worlds’ yields the formula
∀w(B(w0, w) → (Uw(G,w)∨Ua(G,w))).
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Kant evidently believes these inferences are perfectly proper cases of the disjunctive
syllogism, but the present-day reader may well ask whether his general logic has the
resources to break down these inferences in smaller steps. But if the hypothetical
and the disjunctive judgement are licenses for inferences, this means that they can
be taken as given as far as general logic is concerned (much like a Prolog program
is taken as given and is used only to derive atomic facts). This somewhat eases the
burden on general logic, in the sense that it need not have the resources to prove
hypothetical and disjunctive judgements.

As we did for the hypothetical judgement, we will also look at the intended
transcendental use of the disjunctive judgement:

The same procedure of the understanding when it represents to itself the sphere
of a divided concept, it also observes in thinking of a thing as divisible; and
just as in the first case the members of the division exclude each other, and yet
are connected in one sphere, so in the latter case the understanding represents
to itself the parts of the latter as being such that existence pertains to each of
them (as substances) exclusively of the others, even while they are combined
together in one whole. (B113)

The disjunctive judgement is said to involve the cognitive act of dividing a thing,
while keeping the resulting parts simultaneously active in one representation. Here
we are concerned with the logical principles that Kant’s disjunction satisfies. Kant
gives as inferences valid for a disjunctive judgement C → A ∨ B, the two halves of
the so-called disjunctive syllogism:

C and ¬A implies B
C and A implies ¬B.

These inference rules are considerably weaker than those that are valid for the clas-
sical or intuitionistic disjunction, and remind one of the multiplicative disjunction
of linear logic. Can one impose stronger inference rules on the disjunction? That is
doubtful. For example, the standard right disjunction rule in sequent calculus:

Γ ⇒ A,∆
Γ ⇒ A∨ B,∆

is invalid for Kant, because it allows the addition of an arbitrary B to A, without
the guarantee that A,B constitute a whole.

An additional consideration is the connection with divisibility; here the parts
must be present simultaneously, which is what the rule just given expresses. This
formulation lends some credibility to Kant’s association of the disjunctive judgement
with the category of simultaneity in the third Analogy of Experience. However, the
new formulation raises the issue of what one should say ifA and B are identical. Kant
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makes an important distinction between two kinds of identity in ‘On the amphiboly
of concepts of reflection’:

If an object is presented to us several times, but always with the same inner
determinations, then it is always exactly the same if it counts as an object of
pure understanding, not many but only one thing; but if it is appearance, then
[ . . . ] however identical everything may be in regard to [concepts], the difference
of the places of these appearances at the same time is still an adequate ground
for the numerical difference of the object (of the senses) itself. Thus, in the
case of two drops of water one can completely abstract from all inner difference
(of quality and quantity), and it is enough that they be intuited in different
places at the same time for them to be held to be numerically different. (A263-
4/B319-20)

Suppose one has a ‘whole’ that is divided into spatially distinct parts that have ‘the
same inner determinations’. This hypothetical situation suggests that a logic for
Kant’s disjunction does not include a rule for (right) contraction:

Γ ⇒ A,A,∆
Γ ⇒ A,∆

But in that case also the standard rule for left disjunction introduction:

Γ,A⇒ ∆ Γ, B⇒ ∆
Γ,A∨ B⇒ ∆

must be dropped because otherwise right contraction becomes derivable. Instead,
one would have a rule like:

Γ,A⇒ ∆ Γ, B⇒ ∆′

Γ,A∨ B⇒ ∆,∆′

3.4 Logical form of judgements

Looking back at our examples we see that, with one exception (the negative particu-
lar judgement, which, as discussed in [1] was meant by Kant to be purely negative),
they are all geometric judgements. Geometric logic, i.e. the logic of geometric formu-
las, plays an important role in several branches of mathematics, Euclidean geometry
being one but not the only example. More germane to our purposes is a result in
[1], which shows that all objectively valid judgements in the sense of (B141-2) must
be finite conjunctions of geometric implications.
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3.5 ‘Functions of unity in judgements’: dynamical proofs

In a dynamical proof one takes a geometric theory13 as defining a consequence
relation holding between two sets of facts. An example, taken from Coquand [2],
illustrates the idea. The theory is:14

1. P(x) ∧ U(x) → Q(x) ∨ ∃yR(x, y)

2. P(x) ∧ Q(x) → ⊥

3. P(x) ∧ R(x, y) → S(x)

4. P(x) ∧ T(x) → U(x)

5. U(x) ∧ S(x) → V(x)∨ Q(x)

And here is an example of a derivation of V(a0) from P(a0), T(a0):

P(a0), T(a0)
(4) U(a0)

(1)

Q(a0)

(2) ⊥
R(a0, a1)

(3) S(a0)
(5)

V(a0) Q(a0)

(2) ⊥

We give some comments on the derivation. The dynamical proof just given can
also be taken to prove ∀x(P(x)∧ T(x) → V(x)), where the proof is the link between
antecedent and consequent, hence a ‘function of unity’. Furthermore, the geometric
theory defines the consequence relation, hence the geometric implications occurring
in it can be seen as inference rules. Disjunctions lead to branching of the tree, as we
see in (1) and (5). The existential quantifier in formula (1) introduces a new term
in the proof, here a1, which appears in the right branch of (1). This constant is
the ‘object in general’ of Reflexion 4634. Lastly, a fact is derivable if it appears on

13We assume the geometric implications in the theory have antecedents consisting of conjunctions
of atomic formulas only.

14We omit the universal quantifiers.
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every branch not marked by ⊥, which leaves V(a0). If X is a collection of facts whose
terms are collected in I, F a fact with terms in I, and T a geometric theory, then
there exists a dynamical proof of F from X if and only if T, X ` F in intuitionistic
logic.

It is clear how a dynamical proof of a geometric implication from a geometric
theory proceeds: if T is the geometric theory and ∀x̄(τ(x̄) → θ(x̄)) the geometric
implication (τ is a conjunction of atomic formulas, and for simplicity take θ an ex-
istentially quantified conjunction θ ′ of atomic formulas; we interpret θ ′ as a set),
choose new terms not occurring in either T or ∀x̄(τ(x̄) → θ(x̄)), plug these terms
into τ and construct a dynamical proof tree with the sets θ ′ at the leaves. There
may occur terms in θ ′ not in τ; these have to be quantified existentially. Introduce
any other existential quantifiers on θ ′ as required by θ. The result is an intuition-
istic derivation of ∀x̄(τ(x̄) → θ(x̄)) from T . Conversely, if there is an intuitionistic
derivation of ∀x̄(τ(x̄) → θ(x̄)) from T , then there exists a dynamical proof in the
sense just sketched.

Dynamical proofs as a semantics for geometric implications can explain Kant’s
characterisation of judgements as rules, as well as ‘a unity of the consciousness of
various representations’; after all, the diagram represents ‘unity’ as a single spatial
representation. What remains to be done is to situate a judgement’s ‘objective
validity’ relative to its other properties.

4 Completeness of the Table of Judgement
In [1] it is argued that (i) Kant’s implied semantics for logic is radically different from
that of classical first order logic, (ii) the implied semantics, centered around Kant’s
three different notions of object, can be given a precise mathematical expression,
thus leading to a formalised transcendental logic, and (iii) on the proposed semantics,
Kant’s formal logic turns out to be geometric logic.

It is not appropriate to repeat the technical exposition here, so we will follow a
different strategy starting from Kant’s most fundamental characterisation of judge-
ment:

A judgement is nothing but the manner in which given cognitions are brought
to the objective unity of apperception. (B141)

A judgement is the act of binding together mental representations; this is what the
term ‘unity’ refers to. The aim of judgement is indicated by means of the word
‘objective’, which is Kant’s terminology for ‘having relation to an object’. But for
Kant, objects are not found in experience, but they are constructed (‘synthesised’)
from sensory matter under the guidance of the Categories, which are defined as
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‘concepts of an object in general, by means of which the intuition of an object
is regarded as determined in respect of one of the logical functions of judgement’
(B128). It is here that judgement plays an all-important role, since Kant’s idea is
that objects are synthesised through the act of making judgements about them.

Technically, these acts of synthesis are modelled as a kind of possible worlds
structure (an ‘inverse system’), where the possible worlds are finite first order models
whose elements are partially synthesised objects, except for the unique top-world
(the ‘inverse limit’) which represents (the idea of) fully synthesised objects. Bringing
a (formal) judgement ϕ to the ‘objective unity of apperception’ is now characterised
by the property: for any such possible worlds structure, if ϕ is true on all worlds,
then ϕ is also true on the top-world. That is to say, if ϕ is true for all stages of
synthesis of an object, then ϕ is true of some fully synthesised object. Kant calls
judgements ϕ satisfying this conditional property ‘objectively valid.’ It turns out
that the objectively valid formulas are exactly the geometric formulas. It follows
that no judgement whose logical form is more complex than that allowed by the
Table of Judgement can be objectively valid, i.e. this Table is complete.

It is of some interest that the key idea in the proof sheds light on Kant’s logical
reinterpretation of the Categories of Quantity as constraints on concepts (B113-6):

In every cognition of an object there is, namely, unity of the concept, which
one can call qualitative unity insofar as by that only the unity of the compre-
hension of the manifold of cognition is thought, as, say, the unity of the theme
in a play, a speech, or a fable. Second, truth in respect of the consequences.
The more true consequences from a given concept, the more indication of its
objective reality. One could call this the qualitative plurality of the marks
that belong to a concept as a common ground . . . Third, finally, perfection,
which consists in plurality conversely being traced back to the unity of the con-
cept, and agreeing completely with this one and no other one, which one can
call qualitative completeness (totality).

The phrase ‘unity of the theme in a play’ is probably a reference to Aristotle’s ‘unity
of action’ in tragedy, where

the structural union of the parts [must be] such that, if any one of them is
displaced or removed, the whole will be disjointed and disturbed. For a thing
whose presence or absence makes no visible difference, is not an organic part of
the whole (Poetics, VIII).

Hence we read ‘qualitative unity’ as the requirement that the concept under consid-
eration is integrated with other concepts by means of a theory, and is invariant under
structure-preserving mappings (homomorphisms). The latter requirement forces all
subconcepts of the given concept to have the same logical complexity. We are now
in a position to spell out the logical meaning of B113-6 in formal terms.
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Let C be a concept which satisfies ‘qualitative unity’ and let T be the first order
theory witnessing ‘qualitative unity’. Define a ‘qualitative plurality’ Σ by

Σ(x) = {θ(x) | T |= ∀x(C(x) → θ(x)), θ pos. prim.}.

Because we may have, for each θ, ‘some θ aren’t C’, for all we know Σ could be a
proper plurality. But ‘qualitative completeness’ now becomes provable:

Σ(x), T |= C(x),

hence by compactness there is positive primitive τ(x) such that

T |= ∀x(τ(x) ↔ C(x)).

It follows that, as announced in section 3.1, universal judgements ‘allM are P’ can be
expressed as geometric implications, provided the conceptsM, P satisfy ‘qualitative
unity’.

In summary, we have shown that after formalisation, Kant’s general logic turns
out to be at least as rich as geometric logic, while it coincides with it when taking into
account the semantics of judgements dictated by ‘transcendental logic’.15 This latter
result is but one example of interesting metalogical theorems that may be proved
about Kant’s logic; B113-6, formally reinterpreted as a theorem about definability
of concepts, is another.
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Abstract
This paper presents a result based on the joint project with Grisha Mints.

An ordinal-free proof of the complete cut-elimination theorem for Π1
1-CA+BI

with the ω-rule for (not only arithmetical) but arbitrary sequents is presented
by iterating an extension of Buchholz’ Ω-rule by the author and Mints.

1 Introduction
Takeuti showed the consistency of Π1

1-CA0 by proving a partial cut-elimination the-
orem for it in 1958 [19]1. In 1970, Tait gave a constructive proof of the consistency of
Σ1

2-DC (dependent choice) [18]. After these works, logicians of Feferman-Schütte’s
school including Buchholz, Pohlers, Jäger,... have developed proof-theoretic methods
for impredicative systems in perspicuous ways. In particular, they have developed
infinitary proof theory while Takeuti had worked only on finitary proof figures as
Gentzen.

Here, one should mention Grisha Mints’ pioneering contribution to connect these
different ways of proof-theory [10]. In particular, he proposed a way of enriching
infinitary derivations by finite ones. This line of investigation has been developed
further by Buchholz [5–7] by showing that there is a precise correspondence between
finitary proof theory and infinitary one. Also, Mints proposed a general schema of
proving the normalization theorem for a finitary system using one of the correspond-
ing infinitary system [12].
∗This work was partially supported by KAKENHI 16K16690.
1 Although he also proved the consistency of Π1

1-CA + BI in 1967 [20], the highlight among
Takeuti’s consistency results would be this earlier paper [19].
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Going back to the history of proof theory, Rathjen and Arai independently ob-
tained ordinal analysis for Π1

2-CA [2–4, 15–17] in 1990’s, which is much stronger
than any iterations of Π1

1-CA. In these results, complicated proof-theoretic ordinal
notation systems have played a crucial role. When a strong impredicative theory
is considered, proof-theoretic ordinals are needed even for defining the derivability
relation of a suitable infinitary system.

In 2000’s, Bill Tait posed a problem whether we can provide an ordinal-free proof
of the complete cut-elimination theorem for Π1

1-CA with the ω-rule2. Grisha Mints
had had a similar direction to prove the cut-elimination theorem or the termination
of ε-substitution method for impredicative theories3. At that time, I had some
communication with Tait by e-mail. When I asked some questions about his work
on type theory, Tait kindly introduced me to Grisha Mints. We also discussed about
Tait’s problem about an ordinal-free proof of the cut-elimination theorem, and then
Grisha suggested me to work on the joint project to give an affirmative answer to it4.
Since Buchholz already gave an ordinal-free proof of a partial cut-elimination for his
Ω-rule, we hoped to use this method in some suitable way. Indeed, the joint paper
with Grisha [1] is the first important step for this project; we extended Buchholz’
Ω-rule for the lightface case to obtain the complete cut-elimination theorem for (not
only arithmetical but) arbitrary sequents. In this paper, an ordinal-free proof of the
complete cut-elimination theorem for arbitrary derivations of the full Π1

1−CA+BI
with the ω-rule is presented by extending the result of the joint paper 5. This result
provides another proof of Yasugi’s cut-elimination theorem for the full Π1

1−CA+BI
with the ω-rule using an extension of Takeuti’s ordinal diagrams based on arbitrary
countable ordinals [22].

Finally, the author of the present paper would like to express his deepest grati-
tude to Grisha’s kindness, advice, and support.

2We remark that Girard’s proof published in 1971 of the strong normalization for second-order
polymorphic calculus (System F) is not considered as a solution here. This is because, according to
Tait, such a proof of the cut-elimination must involve only reasoning about well-founded trees like
inductive definitions. For a modern presentation of Girard’s proof, we refer to [9].

3Indeed, Mints gave two different ordinal-free proofs of the termination of ε-substitution method
for the theory of non-iterated inductive definition called ID1 [13, 14].

4Our joint works had been done mainly by e-mail. I met Grisha in person four times; I met
him for the first time in Munich (2008). After this meeting, I visited to Stanford University twice
(2008, 2010) and invited him to Keio University in Tokyo (2010).

5When I obtained some results concerning this paper, I asked Grisha to become the co-author
of the paper. He declined my offer since much works are done by me according to him, thus I should
become the sole author.
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1.1 Structure of this Paper

The present paper consists of 6 sections. After introducing the basic definitions in
Section 2, we define the infintary systems BIΩ0 , BIΩn+1 and BIΩ in Section 3.

In Section 4, we define the operatorsR (one-step reduction), E (reducing the cut-
rank by 1), Eω (reducing the cut-rank until 0), and Dn (eliminating the impredicative
cuts) on derivations in BIΩ. Finally, we define the substitution operator SXT .

In Section 5, we introduce BIω, which is Π1
1-CA + BI with the ω-rule. To take

care of Takeuti’s explicit/implicit distinction, we introduce another system BIeω.
In Section 6, we define an embedding map g∗ from derivations in BIeω into the

derivations in BIΩ. By the theorems obtained so far, our main result is proved.

2 Preliminaries

First, we define a language L for second-order arithmetic and the set PV (A) of
free predicate variables in A which are in the scope of a second-order quantifier.
We adopt Buchholz and Schütte’s definition in our setting [8] and remark that the
notion of PV (A) is essentially introduced by Takeuti [19,20].

0 is a term. If t is a term, then S(t) is a term. If R is an n-ary predicate symbol
for an n-ary primitive recursive relation and t1,...,tn are terms, then R(t1,...,tn) is a
formula. If X is unary predicate variable and t is a term, then X(t) is a formula.
These are atomic formulas. If A is an atomic formula, then ¬A is a formula. A and
¬A where A is atomic are literals. If A is a literal, then PV (A) := ∅. If A and B
are formulas, then A ∧ B and A ∨ B are formulas. PV (A ∧ B) = PV (A ∨ B) :=
PV (A) ∪ PV (B). If A(0) is a formula, then ∀xA(x) and ∃xA(x) are formulas.
PV (∀xA(x)) = PV (∃xA(x)) := PV (A(0)). If A is a formula, then ∀XA and ∃XA
are formulas. PV (∀XA) = PV (∃XA) := {Y |Y ∈ FV (A) and Y 6≡ X}.

As usual, sequents are finite sets of formulas. Moreover, if A is a formula, then
FV (A) is the set of free predicate variables occurring in A. Similarly, if Γ is a
sequent, we define FV (Γ) := ∪A∈ΓFV (A). We use the following syntactic variables:
A,B,C, F for formulas, Γ,∆ for sequents, and i, j, k, l,m, n for natural numbers.
Next we define the notions of weak and strong formulas as follows. Every literal is
a weak formula. If A and B are weak, then A ∧ B, and A ∨ B are weak. If A(0)
is weak, then ∀xA(x) and ∃xA(x) are weak. If A(X) is weak and X 6∈ PV (A(X)),
then ∀XA(X) and ∃XA(X) are weak formulas. If A is not weak, then A is strong.
We define PV (Γ) := ∪A∈Γ(PV (A)).

Example 1. ∃X(X(t) ∧ ∀Y Y (t′)) is weak, but ∃X(X(t) ∧ ∀Y (X(t) ∧ Y (t′))) is
strong.
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A quantifier in A∧B,A∨B, ∀xA(x),∃xA(x) is weak (strong) if the corresponding
quantifier in A,B,A(0) is weak (strong). The indicated quantifier ∀X or ∃X is called
weak (strong) if ∃XA or ∀XA is weak (strong). Any other quantifier in ∃XA, ∀XA
is weak (strong) if the corresponding quantifier in A is weak (strong).

If A is a formula which is not atomic, then its negation ¬A is defined using
de Morgan’s laws. The set of true literals is denoted by TRUE. T denotes an
expression of the form λx.A(x) called abstraction where A(0) is a formula. If T is
an abstraction of the form λx.A(x), then A[X/T ] denotes an expression obtained
by replacing every X(t) occurring in it by A(t) (after renaming of bound variables
if necessary). An abstraction λx.A(x) is called arithmetical, weak, or strong if the
corresponding formula A(0) is arithmetical, weak, or strong respectively. Note that
if ∀XA(X) is a weak formula and T is a weak abstraction, then A[X/T ] is also a
weak formula.

Now, the notion of rk(A) is defined as follows.
rk(A) := 0 if A is a weak formula.
rk(A ∧B) = rk(A ∨B) := max(rk(A), rk(B)) + 1 if A ∧B is strong.
rk(∀xA(x)) = rk(∃xA(x)) := rk(A(0)) + 1 if ∀xA(x) or ∃xA(x) is strong.
rk(∀XA(X)) = rk(∃XA(X)) := rk(A(X)) + 1 if ∀XA(X) or ∃XA(X) is strong.

Next we define a formal language on which our infinitary systems are defined,
but before introducing this language, we need an intermediate language called Le.

Definition 1. The language Le is obtained from L in the following way: (1) Terms
and formulas of L are also terms and formulas of Le. (2) If A is a formula of L, then
Ae obtained by adding the superscript e is also a formula of Le.

Remark 1. Informally, Ae is a formula in a derivation which is not traced into any
cut-rule in the derivation. Such a formula is called “explicit” by Takeuti [21].

We adopt Buchholz and Schütte’s ramified language [8] into the present setting
by considering Takeuti’s explicit / implicit distinction.

Definition 2. Language L∗

1. The terms of L∗ are the same as terms of Le.

2. The formulas of L∗ are obtained by the following replacements from ones of
Le:

(a) Any formula Ae is unchanged,
(b) A formula A without e is replaced in the following way:

i. Every free predicate variable X is replaced by Xn for some n ∈ ω.
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ii. Every strong predicate quantifier ∀X,∃X is replaced by ∀Xω, ∃Xω,
respectively.

Let A be a formula in L∗ and let A− denote the result of deleting all superscripts
e and n in A. We define the rank of A by rk(A) := rk(A−). We define PV (A) :=
PV (A−). A is called a literal, an arithmetical formula, a weak formula, or a strong
formula if A− is such a formula. T denotes an abstraction as in L. An abstraction
λx.A(x) is called arithmetical, weak, or strong if A(0) is arithmetical, weak, or strong
respectively. If A is a formula without e which is not atomic, then its negation ¬A∗
is defined by de Morgan’s laws as before.

Definition 3. Level for L∗

1. lev(Ae) := 0.

2. lev(A) := 0 if A is a literal, and A 6≡ Xn(t),¬Xn(t) for some n ∈ ω.

3. lev(Xn(t)) = lev(¬Xn(t)) := n.

4. lev(A ∧B) = lev(A ∨B) := max(lev(A), lev(B)).

5. lev(∀xA(x)) = lev(∃xA(x)) := lev(A(0)).

6. lev(∀XA(X)) := lev(A(X0)) if ∀XA(X) is weak.

7. lev(∃XA(X)) := lev(A(X0)) + 1 if ∃XA(X) is weak.

8. lev(∀XωA(X)) := lev(∃XωA(X)) = ω if ∀XA(X) or ∃XA(X) is strong.

Example 2. lev(∃X(X(t) ∧ Y 0(t′))) = 1, lev(∃Xω(X(t) ∧ ∀Y (X(t) ∧ Y (t′)))) = ω.

3 The Systems BIΩ
0 , BIΩ

n+1, and BIΩ

In this section, we introduce the infinitary systems with the Ωn+1-rules based on L∗.
Following Buchholz’ notation from [7], only the minor formulas, and the principal
formulas are shown explicitly in inference symbols. Any rule below is supposed to
be closed under weakening and contains contraction.

If I be an inference symbol, then we write ∆(I) and |I| to indicate the set of
principal formulas of I and the index set of I, respectively. Moreover,

⋃
i∈|I|(∆i(I))

is the set of the minor formulas of I. If d = I(di)i∈|I|, then di is the subderivation
of d indexed by i. Γ(d) denotes the end-sequent of d. If Γ is a sequent, then
lev(Γ) := max(lev(A)|A ∈ Γ). Eigenvariables of

∧
∀XA(X) and Ω̃n+1 may occur
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free only in the premises, but not in the conclusion. To denote that Y n is the
eigenvariable of an inference symbol I, we use the notation !Y n! and write

I
. . .∆i(I) . . .

∆(I) !Y n!

where i ∈ |I|. We use the same notation for the eigenvariable Y (without superscript
n) of an inference symbol I.

Since we are taking care of the explicit/implicit distinction, there are two rules
deriving A or Ae in the cases of arithmetical rules. For a compact notation, we write
A[e] for a formula A with a possible occurrence of e, that is, for both cases that A
has e and not so. When we write A[e], B[e], there are four possibilities; A,B, Ae, B,
A,Be, or Ae, Be. For the inference symbols, we use the following notation; if we
write

I
. . . A

[e]
i . . .

A[e]

where i ∈ |I|, then we mean that A[e]
i ≡ Aei if and only if A[e] ≡ Ae.

Definition 4. The systems BIΩ0 ,BIΩn+1(0 ≤ n), and BIΩ

1. BIΩ0 consists of the following inference rules.

(Ax∆) ∆

where either ∆ = {A[e]} ⊆ TRUE or ∆− = {C,¬C} with the condition that

(a) C is an atomic formula in L, and
(b) ∆− is the result of deleting all superscripts e and n of D ∈ ∆.

(
∧

(A0∧A1)[e])
A

[e]
0 A

[e]
1

(A0 ∧A1)[e] (
∨k

(A0∨A1)[e])
A

[e]
k

(A0 ∨A1)[e] where k ∈ {0, 1}

(
∧

(∀xA(x))[e])
. . . A(n)[e] . . .

∀xA(x)[e] for all n ∈ ω (
∨k
∃xA(x)[e])

A(k)[e]

∃xA(x)[e] where k ∈ ω
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(
∧Y n

∀XA(X))
A(Y n)
∀XA(X) !Y n! where lev(∀XA(X)) = n.

(
∧
∀XωA(X))

. . . A(Y n) . . . (n ∈ ω)
∀XωA(X) !(Y n)n∈ω!

(
∧Y
∀XA(X)e)

A(Y )e

∀XA(X)e !Y !

(
∨Y n

¬∀XωA(X))
¬A(Y n)
¬∀XωA(X) (

∨T
¬∀XA(X)e)

¬A(T )e

¬∀XA(X)e with arbitrary T

(CutA)
A ¬A
∅ (A ∈ Li)

where Li := set of all L∗-formulas without e.

2. BIΩn+1 is obtained by adding the following rules to BIΩn .

(Ω¬∀XA)
. . .∆q . . . (q ∈ |∀XA(X)|)

¬∀XA(X) where lev(∀XA(X)) = n.

(Ω̃Y n

¬∀XA)
A(Y n) . . .∆q . . . (q ∈ |∀XA(X)|)

∅ !Y n! where lev(∀XA(X)) = n.

with

|∀XA(X)| := {(d, Zn) : d is a cut-free derivation in BIΩn
with lev(Γ(d)) ≤ n, and Z is a predicate variable with Zn 6∈ FV (∆(d,Zn))}
with ∆(d,Zn) := Γ(d)\ {A(Zn)}.

3. BIΩ :=
⋃
n∈ω BIΩn .
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4 Complete cut-elimination theorem for BIΩ

In this section, we prove the complete cut-elimination theorem for the infinitary
system BIΩ introduced in the previous section (Corollary 1). Moreover, we define
the substitution operator SXm

T (Theorem 5) which will be needed in Section 6.

Definition 5. Cut-Degree

Let I be an inference symbol and d a derivation in BIΩ.

1. dg(I) :=
{
rk(C) + 1 if I = CutC ;
0 otherwise.

2. dg(I(dτ )τ∈|I|) := sup({dg(I)} ∪ {dg(dτ )|τ ∈ |I|}).

We write
d `α Γ

if dg(d) ≤ α and Γ(d) ⊆ Γ. In what follows, we may assume that Γ(d) = Γ without
loss of generality unless otherwise noted.

Lemma 1. If d `α Γ, C with literal C ∈ Li, then there exists a derivation d′ `α
Γ, Ce.

Proof. Assume d `α Γ, C. The proof is by induction on d. The crucial case is that
d is Ax∆ and ∆ = {C,¬C [e]}. Then set d′ := Ax∆′ with ∆′ = {Ce,¬C [e]}. Other
cases are treated using the induction hypothesis (IH).

We define an operator RC which transforms an impredicative cut into Ω̃n+1, and
does one-step reduction for other cuts in the standard way.

Theorem 1. For C ∈ Li there is an operator RC on derivations in BIΩ such that
if d0 `α Γ, C, d1 `α Γ,¬C, and rk(C) ≤ α with α ≤ ω, then RC(d0, d1) `α Γ.

Proof. By double induction on d0(:= I0(d0i)i∈|I0|) and d1(:= I1(d1j)j∈|I1|). Note that
the formulas C in Γ(d0) and ¬C in Γ(d1) do not have the superscript e. If C 6∈ ∆(I0)
or ¬C 6∈ ∆(I1), then the claim follows from IH. We consider only important cases
which are different from [1,7].

1. d0 is an axiom C,¬C [e].
It follows that ¬C [e] ∈ Γ, and Γ,¬C [e] = Γ. We define RC(d0, d1) := d′1, which
is obtained from d1 by Lemma 1 if ¬C [e] ≡ ¬Ce.
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2. C ∈ ∆(I0), and ¬C ∈ ∆(I1).
It is impossible that both C and ¬C are true literals.

(a) C ≡ ∀XC0(X). If lev(C) = n, then lev(¬C) = n+ 1.
Now d0 =

∧Y n

C (d00) and d1 = Ω¬C(d1q)q∈|C|. Using IH and Ω̃Y n

¬C , we
define

RC(d0, d1) := Ω̃Y n

¬C(RC(d00, d1),RC(d0, d1q))q∈|C|.

(b) C ≡ ∀XωC0(X). d0 =
∧
C(d0i)i∈ω and d1 =

∨
¬C(d10). In this case,

we have d10 `m Γ,¬C0(Y k),¬C for some k ∈ ω. By IH, we have
RC(d0k, d1) `m Γ, C0(Y k) and RC(d0, d10) `m Γ,¬C0(Y k). We see that
rk(C) > rk(C0(Y k)). Therefore we define

RC(d0, d1) := CutC0(Y k)(RC(d00, d1),RC(d0, d10)).

This complete the proof.

Iterating RC , we define an operator E which reduces cut-degree by 1.

Theorem 2. There is an operator E on derivations in BIΩ such that if d `m+1 Γ,
then E(d) `m Γ.

Proof. By induction on d. We consider only the crucial case d = CutC(d0, d1) with
C ∈ Li. Other cases are treated using IH.

By IH, we have E(d0) `m Γ, C, and E(d1) `m Γ,¬C. Define

E(d) := RC(E(d0), E(d1)).

This complete the proof.

Using E , we can define an operator Eω which reduces cut-degree to 0.

Theorem 3. There is an operator Eω on derivations in BIΩ such that if d `ω Γ,
then Eω(d) `0 Γ.

Proof. By induction on d. We consider only the crucial case d = CutC(d0, d1) with
C ∈ Li. In this case, d0 `ω Γ, C, and d1 `ω Γ,¬C.

By IH, Eω(d0) `0 Γ, C, and Eω(d1) `0 Γ,¬C. Let rk(C) := m, then we see
CutC(Eω(d0), Eω(d1)) `m+1 Γ. Let Em+1 be m + 1 applications of the operator E .
We define

Eω(d) := Em+1(CutC(Eω(d0), Eω(d1))) `0 Γ.

This complete the proof.
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Now we define the collapsing operator Dn eliminating Ω̃Y m

¬∀XA(X) with m =
lev(∀XA(X)) if dg(d) = 0, lev(Γ(d)) ≤ n, and n ≤ m.

Theorem 4. There is an operator Dn such that if d `0 Γ and lev(Γ) ≤ n, then
BIΩ

n 3 Dn(d) `0 Γ.

Proof. By induction on d. We consider only the important cases. Other cases are
treated using IH. Let I be the last inference symbol of d.

1. I = Ω̃Y m

¬∀XA(X) with lev(∀XA(X)) = m and n ≤ m.

In this case d = Ω̃Y m

¬∀XA(X)(dτ )τ∈{0}∪|∀XA(X)|. Then Y m /∈ FV (Γ), d0 `0
Γ, A(Y m) and dq `0 Γ,∆q for all q ∈ |∀XA(X)| with lev(∆q) ≤ m. By IH,
BIΩm 3 Dm(d0) ` Γ, A(Y m), and Y m /∈ FV (Γ(Dm(d0))\{A(Y m)}). We define
q0 := (Dm(d0), Y m) ∈ |∀XA(X)|. Hence, using IH again, we can define

Dn(Ω̃Y m

¬∀XA(X)(dτ )τ∈{0}∪|∀XA(X)|) := Dn(dq0) ∈ BIΩn .

2. I = Ω̃Y m

¬∀XA(X) with lev(∀XA(X)) = m and m < n.

Using IH, we define the required derivation Ω̃Y m

¬∀XA(X)(Dn(dτ ))τ∈{0}∪|∀XA(X)|,
which is in BIΩn since m < n.

3. Otherwise.
By IH, Dn(di) 3 BIΩn for i ∈ |I|. Then, we define Dn(d) := I(Dn(di))i∈|I| ∈
BIΩn . An important case is that I =

∨T
¬∀XA(X)e . In this case, Γ(d) contains

¬∀XA(X)e, but lev(¬∀XA(X)e) = 0 by Definition 3.

Remark 2. Note that Dn(d) is a cut-free derivation in BIΩn .

Corollary 1. If d ∈ BIΩ and lev(Γ(d)) ≤ n, then there exists d′ ∈ BIΩ
n such that

d′ ` Γ(d).

Proof. By Theorems 3 and 4, we have Dn(Eω(d)) ∈ BIΩn ` Γ.

An interpretation from Le into L∗ is a function which assigns a number ∗(X) ∈ ω
to each predicate variable X. Given an interpretation ∗, for any Le-formula A we
define the L∗-formula A∗ as follows: If A ≡ Be, then A∗ :≡ A; otherwise A∗ results
from A by replacing every free predicate variable X by Xn with n := ∗(X), and
every strong predicate quantifier ∀X,∃X by ∀Xω,∃Xω, respectively.
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Lemma 2. For any formula F of L and an interpretation ∗, the following sequents
are cut-free provable in BIΩ: {F ∗,¬F ∗}, {F ∗,¬F e}, {F e,¬F e}.

Proof. The proof is by induction on F . The interesting case would be F ≡ ∀XF0.
We have to consider three subcases. Now, we treat only the most interesting case,
that is, aim to prove {F e, (¬F )∗}. Let n + 1 := lev(¬∀XF ∗0 ) with ¬∀XF ∗0 ≡
(¬∀XF0)∗. Moreover, we write F ∗0 (Xn) to denote a formula obtained from F0(X)
by replacing X with Xn and each other free predicate variable Z with Zm where
m := ∗(Z).

By IH, we have BIΩ `0 F
e
0 ,¬F ∗0 (Xn). If we consider any q ∈ |∀XF0|, we obtain

the following derivation:

q : ∆q, F
∗
0 (Xn) F e0 ,¬F ∗0 (Xn)
. . .∆q, F

e
0 . . .

CutF0

¬∀XF ∗0 , F e0
Ωn+1

¬∀XF ∗0 , ∀XF e0
∧
∀XF0

Then we obtain the required cut-free derivation by applying Theorem 3.

If T ∗ is an abstraction in L∗, then we define the substitution operator SXm

T ∗ under
some suitable conditions. Let T ∗− be the result by eliminating all superscripts e and
n occurring in T ∗. Then, (Γ,Λe)[Xm/T ∗] := Γ[Xm/T ∗],Λ[X/T ∗−]e where Λe is a
set of explicit formulas.

Theorem 5. There is an operator SXm

T ∗ such that if

1. BIΩ
k 3 d `0 Γ,

2. Xm 6∈ PV (Γ), and

3. k ≤ m,

then BIΩ 3 SXm

T ∗ (d) `0 Γ[Xm/T ∗].

Proof. By induction on d. Let d be I(di)i∈|I|.

1. k = 0.
If d is Ax∆ with ∆− = {X(t),¬X(t)}, then we apply Lemma 2. Oth-
erwise, we define SXm

T (d) := IA[Xm/T ](SXT (di))i∈|I|. For example, assume
that d =

∧
∀Y A(Y )(d0). Then, Xm does not occur free in ∀Y A(Y ) since

Xm 6∈ PV (∀Y A(Y )). Hence we can apply IH to d0 and use
∧
∀Y A(Y ) to obtain

the required derivation.
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2. k = n+ 1. By induction on d.

(a) I = Ω¬∀Y A(Y ), Ω̃¬∀Y A(Y ) with l = lev(∀Y A(Y )).
We consider only d = Ω¬∀Y A(Y )(dq)q∈|¬∀Y A(Y )| with l ≤ n. We have
Xm 6∈ FV (¬∀Y A(Y )) because Xm 6∈ PV (Γ). If Xm ∈ FV (∆q), then
l ≤ n < n+ 1 = k ≤ m ≤ lev(∆q). This contradicts lev(∆q) ≤ l. Hence,
Xm 6∈ FV (¬∀Y A(Y ),∆q). Now we can apply IH to dq and Ω¬∀Y A(Y ) to
get the required derivation.

(b) Otherwise.
Use IH and apply the same inference rule.

5 The systems BIω and BIeω
In this section, we introduce a system BIω which corresponds to Π1

1-CA+BI with the
ω-rule. To take care of the explicit/implicit distinction, we introduce an additional
system BIeω based on the language Le.

Definition 6. The systems BIω and BIeω

1. BIω consists of the following inference rules.

(Ax∆) ∆
where ∆ = {A} ⊆ TRUE or ∆ = {C,¬C} with atomic C

(
∧
A0∧A1)

A0 A1
A0 ∧A1

(
∨k
A0∨A1)

Ak
A0 ∨A1

where k ∈ {0, 1}

(
∧
∀xA(x))

. . . A(n) . . .
∀xA(x) for all n ∈ ω (

∨k
∃xA(x))

A(k)
∃xA where k ∈ ω

(
∧Y
∀XA(X))

A(Y )
∀XA(X) !Y ! (RA)

A ¬A
∅

(
∨T
¬∀XA(X))

¬A(T )
¬∀XA(X)

with
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(a) ¬∀XA(X) is a weak formula or
(b) T = λy.(Y y).

2. BIeω is based on the language Le and consists of the following inference rules:

(Ax∆) ∆
where ∆ = {A[e]} ⊆ TRUE or ∆ = {C [e],¬C [e]} with atomic C

(
∧

(A0∧A1)[e])
A

[e]
0 A

[e]
1

(A0 ∧A1)[e] (
∨k

(A0∨A1)[e])
A

[e]
k

(A0 ∨A1)[e] where k ∈ {0, 1}

(
∧
∀xA(x)[e])

. . . A(n)[e] . . . for all n ∈ ω
∀xA(x)[e] (

∨k
∃xA(x)[e])

A(k)[e]

∃xA(x)[e] where k ∈ ω

(
∧Y
∀XA(X)[e])

A(Y )[e]

∀XA(X)[e] !Y ! (RA)
A ¬A
∅ (A ∈ L)

(
∨T
¬∀XA(X)[e])

¬A(T )[e]

¬∀XA(X)[e]

with

(a) ¬∀XA(X) is a weak formula or
(b) T = λy.(Y y).

6 The complete cut-elimination theorem for BIω
Let ∗ denote an interpretation from Le into L∗ assigning a number ∗(X) ∈ ω to each
X. We define the embedding function g∗ from derivations in BIeω into derivations
BIΩ depending on ∗ below (Theorem 6).

Recall that an “explicit” formula in Le is obtained assigning the superscript e to
the corresponding one in L, and A[e] means a “possible occurrence” of e. Similarly,
set Γ[e] := {A[e] : A ∈ Γ}. For example, there are four cases if Γ = {B,C}, that is,
{B,C}, {Be, C}, {B,Ce}, and {Be, Ce}.

The next lemma is easy to see:
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Lemma 3. If BIω ` Γ, then BIeω ` Γ[e] for all cases of Γ[e].

Proof. The proof is by induction on d in BIω.

We define deg(d) where d is a derivation in BIeω in such a way that dg(g∗(d)) ≤
deg(d).

Definition 7. deg(d)

Let d be a derivation in BIeω.

1. deg(d) := max(rk(A(T )), deg(d0)) if I =
∨T
¬∀XA(X) and 0 < lev(¬∀XA) < ω.

2. deg(d) := max(rk(C), deg(d0), deg(d1)) If I = RC .

3. deg(I(dτ )τ∈|I|) := sup{deg(dτ )|τ ∈ |I|} otherwise.

To define the embedding function g∗, we need the following definition:

Definition 8. ∗(X/n)

Let be ∗ be an interpretation from Le to L∗. A variant interpretation of ∗(X/n)
of ∗ is defined by

∗(X/n)(Y ) :=
{
n if X ≡ Y,
∗(Y ) otherwise.

If Γ is a set of formulas in Le, then Γ∗ := {A∗|A ∈ Γ}.

Theorem 6. Let ∗ be an interpretation. Then there is an embedding function g∗

such that if BIeω 3 d ` Γ, then BIΩ 3 g∗(d) `deg(d) Γ∗.

Proof. By induction on d. We consider only important cases.

1. d = Ax∆.
This case is obvious since Ax∆∗ is again an axiom in BIΩ.

2. d =
∧

(A0∧A1)[e](d0, d1).

Let A ≡ (A0 ∧ A1)[e]. By IH, we have g∗(di) `deg(di) Γ∗, (A[e]
i )∗. Hence, we

define
g∗(d) :=

∧
A∗(g∗(d0), g∗(d1)) `deg(d) Γ∗, A∗.

3. d =
∧Y
∀XA(X)e(d0).

Note that Y is the eigenvariable of the last inference rule. Using IH, we define
g∗(d) :=

∧Y
∀XA(X)e(g∗(d0)) `deg(d) Γ∗, ∀XA(X)e.

880



An Ordinal-Free Proof of the Complete Cut-Elimination Theorem

4. d =
∧Y
∀XA(X)(d0).

In this case, d0 ` Γ, A(Y ),∀XA(X) where Y is an eigenvariable. We consider
two subcases.

(a) ∀XA(X) is a weak formula.
In what follows, we write (∀XA(X))∗ as ∀XA(X)∗. Moreover, A∗ denotes
the formula obtained from A by replacing every free predicate variable Z
except for X by Zm with m := ∗(Z).
Let n = lev(∀XA(X)∗).
By IH, we have

g∗(Y/n)(d0) `deg(d0) Γ, ∀XA(X)∗, A∗(Y n).

Therefore, we define
g∗(d) :=

∧Y n

∀XA(X)∗(g∗(Y/n)(d0)) `deg(d) Γ∗,∀XA(X)∗.
(b) Otherwise.

Using IH, we define
g∗(d) :=

∧
∀XωA∗(X)(g∗(Y/n)(d0))n∈ω `deg(d) Γ∗, ∀XωA∗(X).

5. d =
∨T
¬∀XA(X)(d0).

d0 ` Γ,¬∀XA(X),¬A(T ).

(a) ¬∀XA(X) is a weak formula.
Let lev(¬∀XA(X)∗) = n+ 1. We write A∗[X/T ] as A∗(T ).
Using IH, we define

g∗(d) := Ω¬∀XA(X)∗(RA∗(T ∗)(SX
n

T ∗ (dq)), g∗(d0))q∈|∀XA(X)∗|.

Then we see
g∗(d) `deg(d) Γ∗,¬∀XA(X).

(b) Otherwise.
Now T = λy.(Y y). By IH, g∗(d0) `deg(d0) Γ∗,¬A∗(Y n),¬∀XωA∗(X)
where ∗ assigns Y n to Y . We define g∗(d) :=

∨
¬∀XωA(X)∗(g∗(d0)) `deg(d)

Γ∗,¬∀XωA∗(X).

6. d =
∨T
¬∀XA(X)e(d0).

Use IH and the same inference symbol. Note that
∨T
¬∀XA(X)e is an inference

symbol in BIΩ.
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7. d = RA(d0, d1).

Using IH and Theorem 1, we define g∗(d) := RA∗(g∗(d0), g∗(d1)) `deg(d) Γ∗.

Now, 0 is the interpretation which assigns X0 to each predicate variable X.
Then, the embedding function based on 0 is denoted by g0 (cf. Theorem 6).

Now we are in position to prove the main theorem of this paper.

Theorem 7. If BIω 3 d ` Γ, then there exists d′ such that BIω 3 d′ `0 Γ.

Proof. Let d be a derivation in BIω. We define Γe := {Ae|A ∈ Γ}. Then, by Lemma
3, we obtain the derivation de such that BIeω 3 de ` Γe. By Theorem 6, we have
BIΩ 3 g0(de) `deg(d) (Γe)0. Note that (Γe)0 = Γe and lev((Γe)0) = 0. Using
Theorems 3 and 4, we get BIΩ0 3 D0(Eω(g0(de))) `0 Γe. By deleting the superscript
e, we obtain the required derivation d′ such that BIω 3 d′ `0 Γ.
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Abstract
Our understanding of the first-order theory of the class of all local rings

Z/pnZ as p and n vary comes from the Ax-Kochen-Ershov analysis of the rings
of p-adic integers. This analysis does not directly produce axioms. In this paper
we give fairly explicit axioms for the class.

Keywords: Model Theory, Henselian Fields.

1 Introduction

1.1 Dedication

We dedicate this paper to Grisha’s memory, with a feeling he might have found it
congenial. Beneath its model-theoretic surface are some unresolved issues about ex-
tracting axioms for reducts from axioms for richer structures (in this case axioms for
quotients from axioms for Henselian valuation rings) and we regret not having had
a chance to discuss this with Grisha. We did not meet that often, but were inspired
by his intellect and his charm. A. Macintyre is grateful for the chances he had to
discuss with Grisha issues about proving hard number theory in Peano Arithmetic.
Our work on Zilber’s Problem [8] can be construed as showing that the natural quo-
tient structures of models of Peano Arithmetic are completely axiomatized without
any induction axioms, because of the work of Ax-Kochen and Ershov and Feferman-
Vaught. Both of us fondly (but very sadly) remember our last meetings with him,
at AIMS in Palo Alto, during a workshop on analogues of Hilbert’s 10th Problem.
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1.2 p-adics and the Z/pnZ

In the mid 1960’s Ax-Kochen [2, 3, 4] and Ershov [14, 15, 16] proved fundamental
theorems about the logic of Henselian valued fields. These theorems seem assured of
a permanent place among the most important in “applied model theory”. Combined
with Ax’s work on the elementary theory of finite fields [1], they constitute an
indispensable repertoire for those who try to connect logic to algebra and number
theory.

The work of the above authors on p-adic fields and then on the theory of finite
fields gives a rather indirect proof of the decidability of the class of all finite local
rings of the form Z/pnZ, as p and n vary. We discuss this below, but simply note
for now that we have no recollection of ever having seen any other proof of the
decidability. If there is no other proof, this is rather intriguing. In any case there
cannot be a trivial proof, since one can interpret the theory of finite fields in the
theory of the local rings mentioned above. We note in passing that one can show, by
adding the Feferman-Vaught method [17] to the mix (or by a much later argument
using model theory of adeles [13], which also depends on Feferman-Vaught) that the
theory of all rings Z/nZ is decidable. We note too that Rabin [25] showed that the
theory of finite commutative rings is undecidable, from which it follows by Feferman-
Vaught that the theory of finite local rings is undecidable. We believe that merely
finding explicit axioms for the theory of the class of rings Z/pnZ is a problem with
proof-theoretic resonance. We achieve a non-optimal solution to this in the present
paper.

1.3 Formalism

The logic of valued fields has rather more formalism than one meets in most areas
of applied logic. The basic structures involve a field K (the valued field), a field k
(the residue field), an ordered abelian group Γ (the value group), the valuation ring
V , the multiplicative group K∗, the valuation v from K∗ to Γ, and the residue map
res from V to k. All of these notions are interpretable in the one-sorted structure
consisting of the field with the valuation ring V distinguished. In fact, in all the
cases discussed below, V is definable [7]. However, V is not always definable, and
there is sometimes a need to use the one-sorted Lrings,V with a predicate, for the
valuation ring, adjoined to the ring language. The basic language for the analysis
below is Lrings, the usual first-order language for unital rings, with +, ·, −, 0 and 1.
When we pass to sorted formalisms, Lrings is appropriate for both K and k. For Γ
we have the standard language LOAG (ordered abelian groups), with +, −, 0 and <.
However, if Γ is discretely ordered, as it always will be in this paper, it is better to
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augment the preceding by a symbol “1” for the least positive element, giving LDOAG
(discretely ordered abelian groups).

Experience has shown that we get the clearest picture if we look at valued fields
in a 3-sorted formalism, with (roughly) sorts corresponding to K, k and Γ, each
with their natural formalism, and certain intra-sortal functions like v and res. The
literature is a little casual on all this, because the natural maps are not total on the
sorts. While there is little danger of error in current practice, we choose to make our
intra-sortal maps total, at the cost of modifying slightly the K and Γ sorts and/or
their formalisms. As is traditional we augment either of our languages for ordered
abelian groups by adding a symbol ∞ for an element larger than all the others.
There is no problem in defining an extension of +, preserving the universal axioms
for +. But there is a problem for −, exactly as regards the interpretation of∞−∞.
We choose to interpret this as having value 0, thereby losing some laws connecting
+ and · . This is however inconsequential, as the set Γ is definable, as is its ordered
group structure. We call the resulting sort the enlarged Γ- sort. Now v is a regular
intrasortal map from the K-sort to the enlarged Γ-sort, if we put v(0) =∞ as usual.

What to do about the res map, since it is not totally defined on K? We could
do something similar to the preceding by modifying the k-sort by adding another∞
and using a place. But it is better to use an angular component map ac modulo k.
There is no such map in general, but any valued field has an elementary extension
with such a map, and for our analysis of definability this is enough. ac is total on
K to k, and what is required of it is that it respects ·, maps 1 to 1, and 0 to 0, and
agrees with res on the units of V , i.e the elements of value 0. We are going to be
dealing only with cases where K has characteristic 0 and v is unramified, and then
we take ac(p) = 1 if k has finite characteristic p.

The formalism just presented is called LDenef−Pas in honour of Denef and Pas
who devised it [24]. It provides refined analysis of definitions, and has been used to
great effect in work on motivic integration and uniformity of p-adic integrals. We
already used this formalism in [11] on Henselizations of p-adic valuations (where
p can be non-standard) on non-standard models of Peano Arithmetic. Another
language with similar virtues was discovered earlier by Basarab [5], but we will not
need it here. In this paper we use the above formalism to provide an analysis of
definitions in certain uniserial local rings, making essential use both of Ax-Kochen-
Ershov and Denef-Pas. It is curious that no such analysis has been undertaken
long ago. Our interest in the topic came from a question of Boris Zilber about
interpretability in quotient rings of nonstandard models of arithmetic. Prior to
working on Zilber’s Problem and writing the paper dedicated to A. Woods [11], we
have looked at residue fields of models of Peano Arithmetic and considered p-adic
issues in this setting for many years, see [23], [9], [10].
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2 From Ax-Kochen, Ershov and Ax to the analysis of
quotient rings

The most comprehensive result from the 1960’s (holding in any of the formalisms
mentioned above) is

Theorem 1. Suppose K1 and K2 are Henselian and k1 and k2 are of characteristic 0.
Then K1 ≡ K2 ⇐⇒ k1 ≡ k2 and Γ1 ≡ Γ2.

There is an important extension of this to give a result about elementary exten-
sions [2, 3, 4, 16].

Of much more importance for number theory is the situation when k has char-
acteristic p 6= 0. When also K has characteristic p, there is an important result due
to Robinson when K is algebraically closed [26], beyond that there is only a series of
elaborations of an idea going back to Kaplansky [20], (see [12], [21]). When K has
characteristic 0, one understands very well some cases, those of finite ramification
[16], but the general case remains mysterious. We have no need here for the general
finitely ramified case, and so restrict ourselves to the basic case of Qp.

As valued field, Qp is completely axiomatized by

1. Henselian.

2. Residue field of cardinality p.

3. Γ is a model of Presburger arithmetic with least positive element 1.

4. v(p) = 1.

See [4].
Moreover, the valuation ring V is existentially, and universally, definable in Lrings

[7]. Qp is model-complete in Lrings, and indeed has a useful quantifier-elimination
in terms of power predicates [22].

Each Qp is decidable [4]. When k has characteristic 0, K is decidable (in Lrings,V )
if and only if k and Γ are decidable [2, 3, 4, 14, 15, 16].

Finally, we present the most important ingredient for our work, namely the work
of Denef and Pas. The following (see [24]) is a variant of their main result, tailored
to our needs.

Theorem 2. There is a computable function DP from the set of LDenef−Pas for-
mulas to itself, and a computable function β from the set of LDenef−Pas formulas to
N, such that for any LDenef−Pas formula Ψ, DP (Ψ) has the same free variables as
Ψ but has no bound variables of sort K, so that if K is a Henselian valued field in
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LDenef−Pas, and k has characteristic not a prime less than β(Ψ) then Ψ and DP (Ψ)
are equivalent in K.

In this paper we consider logical questions about the quotient rings V/{y : v(y) ≥
γ} (written henceforward as Vγ , where γ is a non-negative element of Γ).

Consider first the case K = Qp, so V = Zp and Γ = Z. A typical γ is a positive
integer n and then Vγ is naturally the quotient ring by pn, a finite, innocuous local
ring. The interesting questions are about the class of such rings, for fixed p and
varying n. Decidability and a uniform analysis of definitions are the key issues.
That the class is decidable is certainly not obvious. It is not known to us who first
proved decidability. The interesting thing is that decidability is an easy consequence
of decidability of the valued field Qp, but seems not easy to prove directly. As far as
the structure of definable sets is concerned, this is not at all obvious even given the
Macintyre quantifier-elimination for the p-adics [22]. Equally, the axiomatization of
the p-adics casts no immediate light on axiomatization of the quotient rings as n
varies, and p is fixed.

Next one asks for a corresponding analysis as p and n vary. The Z/pnZ are finite
local rings, the quotient rings of Zp as p varies. Note that now one can interpret Fp
uniformly, as residue fields, so any analysis of decidability and definability should
be as difficult as Ax’s great paper [1]. Note the curious fact that Ax asks at the end
of his paper about the decidability of the class of all Z/mZ as m varies, evidently
unaware of the fact that decidability follows from his work and that of Feferman-
Vaught.

For our purposes the key results of Ax are those on ultraproducts of finite fields
and of p-adic fields [1]. The infinite fields which satisfy the theory of all finite fields
are exactly the perfect fields F with absolute Galois group Ẑ and such that every
absolutely irreducible curve over F has a point in F (the restriction to curves is a
refinement by Geyer [18] of Ax’s basic Lang-Weil analysis in [1]). Such fields are
called pseudofinite. A startling result of Ax [1] is that characteristic 0 pseudofi-
nite fields are exactly those elementarily equivalent to nonprincipal ultraproducts of
prime fields. From this and Ax-Kochen-Ershov one readily proves that the class of
all Qp is decidable, thus giving, via interpretability, the decidability of the class of
all rings Z/pnZ, a result which could hardly have been known prior to [1].

There is a natural uniform quantifier-elimination for pseudofinite fields (origi-
nally by Kiefe, see [18]), and this can readily be made into a natural quantifier-
elimination for the class of all Qp [12]. But this alone does not give a nice quantifier-
elimination for the class of all Z/pnZ. The goal of this paper is to axiomatize the
class of all Z/pnZ in Lrings.

Note at the outset that if K is Henselian and γ is a positive element of V then
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Vγ is local, and the quotient map V → Vγ is local, so Vγ is Henselian. We have
a more general project to study the model theory of finite local rings (which are
automatically Henselian), and we have an ongoing project to consider nonstandard
primes p and nonstandard integers n and analyze definitions in the corresponding
quotient rings which turn out to be Henselian local [8].

3 Towards the Axioms

3.1 The basic rings

Henceforward K is an Henselian field, as in first section, with valuation ring V ,
maximal ideal µ of V , residue field k, value group Γ, valuation v and an angular
component still to be specified. Let γ be a positive element of Γ and R the Henselian
local ring Vγ . Clearly, the maximal ideal of R is µ+ {y : v(y) ≥ γ}, and the residue
field is naturally k.

3.2 Truncated valuations

The ring R carries a truncated valuation, in a sense which we now explain. For
possible future reference we pass to a more general setting. Let Γ≥0 be the non-
negative part of Γ. We say ∆ is an initial segment of Γ≥0 if ∆ is a nonempty subset
of Γ≥0 and is closed downwards under the order on Γ. Let I be the set of elements
of V whose value is either∞ or bigger than every element of ∆. It is clearly an ideal
in V , and V → V/I is a morphism of local rings. Moreover, since V is Henselian
V/I is Henselian.

There are two cases. Firstly, suppose ∆ is the set of all δ less than γ for some
fixed γ. Then this is just the case mentioned in the previous subsection. This is
the only case considered in this paper, but one should note that for Γ not discretely
ordered the case where ∆ consists of the δ ≤ γ occurs too, and is rather different.

Suppose ∆ 6= Γ, and consider vI from V/I to ∆ ∪ {∞} given by

1. vI(x+ I) =∞ if x ∈ I,

2. vI(x+ I) = v(x) if x /∈ I.

The function vI is clearly well-defined. We refer to this map as the truncation of v
to ∆.

Such maps occur naturally, for example in [19], where the author studies various
important truncated discrete valuation rings. For Hiranouchi, however, these are
Artinian local rings with principal maximal ideal, the former restriction being quite
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unnatural from a model-theoretic point of view (the second is, however, first-order).
Certainly the rings Z/pnZ are examples of Hiranouchi’s notion.

The most obvious laws satisfied by the above truncation (written now simply as
“v”, for convenience of notation) are:

1. v is a map from R onto Λ ∪ {∞} where R is a local ring, and Λ is a set with
an ordering < with a least element 0, and ∞ > l for each l ∈ Λ;

2. v(0) =∞ iff x = 0;

3. v(x+ y) ≥ min(v(x), v(y));

4. x|y ⇐⇒ v(x) ≤ v(y);

5. v(x) = v(y) ⇐⇒ x = yu for some unit u in R;

6. the maximal ideal µ is principal.

Property (5) is equivalent to saying that the ideal generated by x and the ideal
generated by y coincide iff x and y have the same valuation. We now identify Γ
inside R as, firstly, the set of principal nonzero ideals. (0) is identified with ∞,
the maximal ideal µ corresponds to 1 in the Presburger model and if Λ has a top
element τ then it corresponds to the (unique) principal ideal above (0). Since R
comes from a valuation domain where divisibility is a linear order, the same is true
for principal ideals and the linear order is given by reverse inclusion. The operation
+ on Γ comes from (x) + (y) = (xy), and v(x) = (x) the ideal generated by x.

From (1)-(6) it follows that there is an operation + on Λ ∪ {∞} making it into
the nonnegative part of a truncated ordered abelian group, by showing that v(xy)
depends only on v(x) and v(y), and then defining v(x) + v(y) as v(xy). One gets
the following laws:

1. + is commutative and associative, with neutral element 0;

2. x + ∞ = ∞;

3. If x+ y = x+ z then either y = z or x+ y = x+ z =∞;

4. If x < y then y = x+ z for some z.

One goes routinely to the notion of truncated ordered abelian group. The following
is proved in [8], and was first done by Derakhshan and Macintyre in unpublished
work on the adeles:
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Theorem 3. The nonnegative part of a truncated ordered abelian group is always
given by taking an ordered abelian group Γ with ∞ adjoined, and an initial segment
Λ of Γ, and taking + to be defined by

1. If x and y and x+ y are in Λ, where + is the group operation, then this is the
+ in the sense of Γ with ∞ adjoined.

2. Otherwise x+ y is ∞.

In this paper we are mainly interested in truncations of models of Presburger
Arithmetic, and we refer to them as Presburger truncations. These can be of two
kinds, depending on whether the initial segment has or does not have a last element
(of course the truncation always has a last element {∞}, but we are distinguishing
the two cases where {∞} has or does not have an immediate predecessor). Our main
theorems will be about the case when the initial segment has a last element, but we
consider the other case as well.

We note that if a truncated ordered abelian group Λ ∪ {∞} comes from a dis-
cretely ordered abelian group, and contains the least positive element, and R is a
commutative ring with a truncated valuation onto Λ ∪ {∞}, then R is a local ring
with principal maximal ideal (but R need not be Artinian). This is a simple exercise.

3.3 Presburger type of the penultimate element

In this subsection we assume that R has a truncated valuation onto a Presburger
truncation Λ∪{∞} and Λ has a last element τ . τ is the penultimate element of the
Presburger truncation. In the case of R = Znp , τ = n− 1. If we construe τ as living
in a model of Presburger extending Λ then τ has model-theoretic type (relative to
Presburger) given by the atomic formulas x = n (n ∈ N) and x ≡ r modulo m
(m ∈ N, m ≥ 2 and 0 ≤ r < m) satisfied by τ (this set is independent of the
ambient Presburger model, and indeed depends only on the segment determined by
τ , and thus depends only on Λ). Note that any formula of the form x ≥ n or n ≥ x
is Boolean definable from the formulas we listed.

The essential point here is that for any non-negative elements γ and δ in a model
of Presburger they satisfy the same formula iff they have the same Presburger type
as given by the above simple conditions.

Now suppose that R is a local ring with truncated valuation to a Presburger
truncation Λ∪{∞} with penultimate element τ . In terms of principal ideals τ is the
minimal ideal above (0), and this can easily be expressed in R. If δ is an element of
Λ we define Rδ as the quotient ring of R by the ideal of elements of value at least δ
(thereby generalizing a notion given earlier for a valuation ring V ).
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Lemma 1. Uniformly in R one can express in R in Lrings the Presburger type of τ .

Proof. If τ satisfies the formula x = n one expresses in R that τ = n by saying that
there is a chain of nonzero principal ideals of length n, and none of length n+ 1.

If τ satisfies the formula x ≡ r(mod m) one expresses in R that τ ≡ r(mod m)
by saying that there is x with v(x) = τ and (x) is a minimal prime ideal and there
is a descending chain of length r of principal ideals where the first one is µ, there is
no ideal between two consecutive ones, and the last ideal is (w) with v(w) = r and
x = wbm, for some b.

3.4 Natural R and their ultraproducts

For us the natural local rings are Z/pnZ as p and n ≥ 1 vary. AnyK which is a model
of the theory T of the class of all Z/pnZ is elementarily equivalent to an ultraproduct∏
D Z/pnZ for some ultrafilter D on set of pairs (p, n) (hence it is a pseudofinite

ring), and it is also elementarily equivalent to the ultraproduct
∏
D Zp/pnZp since

Z/pnZ ∼= Zp/pnZp. By Ax’s result the residue fields of these are models of either
prime finite fields or pseudofinite fields of characteristic 0. Let FinPrim be the
class of finite prime fields. Then Ax’s result shows that Th(FinPrim) is exactly
the theory of the class of pseudofinite fields of characteristic 0, and also the theory
of all characteristic zero ultraproducts of finite fields. So the residue fields of the
preceding ultraproducts of finite local rings are models of Th(FinPrim), and any
model of Th(FinPrim) is elementarily equivalent to the residue ring of one of the
preceding ultraproducts.

We first want axioms for residue fields of models of T , and later axioms for the
theory T along the line of Ax, Kochen, Ershov. We will use the result of Denef and
Pas to get explicit axioms in our case with Presburger truncations as value sets,
and not groups. The truncated value structure for Z/pnZ is [0, n − 1] ∪ {∞}, and
for

∏
D Z/pnZ is

∏
D[0, n − 1] ∪ {∞}. The theory of the Presburger truncation is

uniquely determined by the Presburger type of the last element different from ∞,
and the same holds for the theory of Presburger truncation of

∏
D Z/pnZ.

We consider R arising as follows. Let K be an Henselian valued field, of char-
acteristic 0, with residue field k, valuation ring V , and value group Γ a model of
Presburger Arithmetic. We require that k is a model of the theory of finite prime
fields. We require too that if k = Fp then v(p) = 1. Then we select γ > 0 in V
and we consider R = Vγ . This is of course a special case of the construction in 3.2,
with ∆ = {τ : τ < γ}. Now R is local and has a truncated valuation to ∆ ∪ {∞},
a Presburger truncation. Our main objective is to find axioms for all such R. We
already have some, but to get all we need the Denef-Pas Theorem for the field K.
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So we pass to the many-sorted formalism, with sorts for K, k and Γ with ∞,
adjoined as usual, and connecting maps v and ac. The latter is available in an
elementary extension of K and we can just assume K has an ac. We do have to
make some basic decisions about the choice of ac, as terms like ac(1) have to get a
definite meaning. Note that if one has a partial angular component on a subring it
is possible to extend it to an angular component on an elementary extension.

If k has characteristic 0 we take ac(n) = n, for all n ∈ Z. If k has characteristic
p, and so is elementarily equivalent to Qp by our choice of conditions on K, and
n = pkn1, with n1 prime to p, we can take ac(n) = n1. Recall that the Denef-Pas
analysis is uniform in choices of ac.

Now let Ψ be a sentence in the language of rings. Consider the subset of Γ
consisting of the positive γ such that Vγ |= Ψ. This is definable in the Denef-
Pas language by a formula Θ with a single free Γ-variable, and thus, by the Main
Theorem, by theDP (Θ) formula with the same free variable, and no bound variables
of sortK, except possibly when k is some Fp and p < β(Θ). For each of the remaining
finitely many p < β(Θ) we can appeal to the nice theorem that in Qp the value group
is stably embedded to replace DP (Θ) by a Presburger formula (see Corollary 5.25
in [27]). The outcome is that we can replace, uniformly, DP (Θ) by a DP ∗(Θ) with
a single free Γ-variable, which defines, uniformly in all the K we have chosen, the
subset of Γ consisting of the positive γ such that Vγ |= Ψ. Only finitely many ac(n)
occur, and these can be replaced by n except when k has characteristic p and p
divides n. There are only finitely many such p, and thus we may computably avoid
the use of ac by a slight modification of DP ∗(Θ) with the same properties.

Let us now unpack the structure of the many-sorted DP ∗(Θ). There are no
bound K-variables, and no free ones, so no terms ac(t) or v(t) for nonclosed K-
terms t. There are no intersortal functions between the k and Γ sorts, so we may
readily show that DP ∗(Θ) is (logically) equivalent to a Boolean combination of
quantifier-free K-sentences, k-sentences and Γ formulas in a single variable γ. Since
K is of characteristic 0, the truth value of open K-sentences is independent of K and
so such sentences can be erased. We already erased the ac(n), so the k-sentences
are equivalent, for p computably sufficiently large (via the Lang-Weil estimates)
to Boolean combinations of solvability statement saying that certain f ∈ Z[x] are
solvable. For the remaining finitely many p we isolate each case by the clause p = 0
(remember k is a model of the theory of finite prime fields!), and have a disjunction
of such equations over the finitely many p, outside our computable cofinite set, such
that the given k sentence holds in Fp.

As regards the Presburger formulas in the variable γ, these are Boolean com-
binations of various γ = n and congruence conditions modulo various m, where
m,n ∈ N.
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Now we have a serious result about the class of all R as above. We recall that
we showed that the Presburger conditions on the penultimate element of Λ ∪ {∞}
are expressible in the ring R. Also, it is obvious that residue field conditions are
expressible in R since the maximal ideal is definable. Thus we have:

Theorem 4.
1. The elementary theory of a ring R as above is determined by the elementary

theory of the residue field and the Presburger type of γ, and these can be given
independently.

2. There are computable maps D1, D2, and D3 defined on ring sentences Ψ so
that D1(Ψ) is a finite set of polynomials in one variable over Z, D2(Ψ) is a
finite set of integers and D3(Ψ) is an integer ≥ 2, so that the truth value of
Ψ in R is determined by which elements of D1(Ψ) are solvable in the residue
field, which element of D2(Ψ), if any, is equal to γ, and what is the congruence
class of γ modulo D3(Ψ).

Proof. Both parts (except for the remark about independence in (1)) are immediate
from the preceding discussion. For the independence, just take an allowed k ( a
model of the theory of finite prime fields), and a model Γ of Presburger with an
element γ realizing a Presburger type s. We can assume Γ is an ultrapower of Z,
using an ultrafilter D on an index set I. If k is Fp let K be the ultra power of Qp

with respect to I and D. Then Vγ is the required local ring.

We note that theDj ’s (j = 1, 2, 3) are, in our present knowledge, rapidly growing.
For particular cases of known bounds for such problems, in connection with Artin’s
Conjecture, see [6].

4 Refining the Axioms

4.1 Which R come from a K?

The limitation in what we have done above is that the R we considered were assumed
to be quotients of valuations rings of K subject to various conditions. Now we want
to find axioms for general local rings R that will guarantee that they are at least
elementarily equivalent to a local ring coming from aK. We have some quite explicit
conditions on the R that interest us, namely:

1. R is a local ring, with a truncated valuation onto some Presburger truncation,
with a last element below ∞.
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2. R is Henselian.

3. The residue field is a model of the theory of finite prime fields.

We have stressed that these axioms are all first-order. It is fairly clear that the
analysis above in terms of D1, D2, D3 can be reformulated in terms of first-order
axioms for the R coming from K, and we can then add these to the preceding (1),
(2), (3). The problem is that we do not have a very explicit version of the D,
and we believe that such an explicit version would require very explicit quantitative
information about quantifier elimination in the theory of finite prime fields and in
the theory of p-adic fields. Despite the obvious interest of having such information,
none has been obtained.

Despite the lack of explicitness, it is useful to draw some consequences from what
we done so far. Once more, start with an R, a local ring which is of the form Vγ ,
with V the valuation ring of a Henselian K as above. Let us interpret what we have
got out of Denef-Pas. Let us look at R1, a local ring got from R by dividing out a
principal ideal generated by a single element x of value γ1, with x in the maximal
ideal of R. Now R and R1 have the same residue field, namely k. The ring R1
is of course a quotient of V , namely Vγ1 and the preceding analysis applies to it
(and of course we use the uniformity of the preceding analysis). Thus if γ and γ1
have the same Presburger type then R and R1 are elementarily equivalent. Thus
in any R as above, and for any ring sentence Ψ, the set of γ1 such that Ψ holds in
R/{y : v(y) ≥ γ1} differs finitely (at certain standard elements) from a finite union
of arithmetical progressions with modulus m. This “periodicity” seems not to have
been observed before. It gives the following

Theorem 5. Let Ψ be a ring sentence, as above. Then by the D1, D2, D3 analysis
there exist m and n in N, a set E of residues modulo m and a subset B of [1, n], each
computable from Ψ, together with a finite set Pol of elements of Z[x] and a set Sol
of subsets of Pol, also given computably from Ψ, so that (uniformly in the quotient
rings R of Henselian K, as above) Ψ holds in R iff

1. For some Y ∈ Sol and all f ∈ Pol f is solvable in k iff f ∈ Y , and

2. If τ is the penultimate element of the Presburger truncation of R then either
τ ∈ B or τ is congruent modulo m to an element of E.

Suppose that we add, for each Ψ, an axiom giving the equivalence with the given
(1) and (2) (note that this can be done computably). Let Σ be the resulting set of
axioms, with no assumption being made that the models R of Σ come from Henselian
fields.
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Theorem 6. Let R be a model of Σ. Then R is elementarily equivalent to a quotient
of a Henselian field valued in a Presburger group and with residue field a model of
Th(FinPrim).

Proof. If R is a model of Σ then it has the same residue field and value group as
an unramified Henselian field K with the required properties and with an element
having the same Presburger type as the penultimate element of the Presburger
truncation of R. Now pick a sentence Ψ. The criterion for Ψ to hold in Vγ is exactly
the same as that for Ψ to hold in R, and depends only on the residue field and the
type of the penultimate element of the Presburger truncation of R.

Of course we would like to replace elementary equivalence by isomorphism in the
above Theorem. We have a construction that seems close to giving this refinement,
but it is complicated, and we prefer to prepare a sequel in which this matter is
resolved. For most purposes it is enough to know the quotients up to elementary
equivalence.

5 Induction

Since we have shown that any R under consideration above is elementarily equivalent
to one with value group Z, it follows that the nonnegative part of the value group of
R satisfies “definable induction” where we allow sets definable in the ring language
using constants. This is known for Henselian fields with value group a Z-group
and residue field a model of the theory of prime fields, which are unramified (i.e.,
v(p) = 1) if the residue field has characteristic p (see [2, 3, 4]). This in turn relates
to the stable embedding of the value group in such cases [27], and we easily see that
this stable embedding is true in the truncated cases we have considered here.

The main point to emphasize is that though induction is not mentioned in the
axiom, nor any pigeonhole principle, the induction scheme and an obvious pigeonhole
scheme are derivable from the axioms Σ.

Acknowledgements. We are deeply grateful to the anonymous referee for point-
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the referee’s suggestions.
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We investigate various translations from classical to intuitionistic proofs in
Gentzen calculus and analyze their computational complexity. In particular we
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on the complexity of translating cut-free classical proofs with only weak quan-
tifiers into cut-free intuitionistic proofs via the Glivenko translation. We even
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1 Introduction
The most fundamental relation between classical and intuitionistic logic is given by
the following facts:

• intuitionistic logic is contained in classical logic, in the sense that the set of
provable intuitionistic sentences is a subset of the set of classical sentences,

• provable sentences A of classical logic can be translated into provable sentences
B of intuitionistic logic such that A and B are classically equivalent.

The most important consequence of these facts is the equiconsistency of intuitionistic
and classical theories; the classical theories have just to be replaced by their equiva-
lent translations. This refutes the original claim that the consistency of intuitionistic
(constructive) systems might be self-evident. Gödel even interpreted the existence
of a translation of classical logic and Peano arithmetic into intuitionistic logic and
Heyting arithmetic as a proof that intuitionistic logic and Heyting arithmetic are
in fact richer than classical logic and Peano arithmetic, because in the intuitionistic
framework one can distinguish formulas which are classically equivalent, while both
frameworks have the same consistency strength [12].

Most historical embeddings are defined via stepwise translations: first the axioms
are translated and the results shown to be provable in intuitionistic logic; second it is
proven inductively that the intuitionistic provability of the translation is propagated
through the rules [7, 11, 13, 15, 16, 18]. The original aim of these embeddings is to
establish a relation between classical and intuitionistic provability but not between
the proofs themselves. For a general framework to compare the provability of various
translations see [10].

In this paper we investigate the impact of such embdeddings on the complexity
of first-order proofs where we choose the sequent calculi LK and LJ. In particular
we compare the computational complexity of transformations from classical cut-free
proofs of sentences A to intuitionistic cut-free proofs of the translations B of A
for various types of translations. We also define a new extension of the Glivenko
translation to first-order logic resulting in an improvement of the Kuroda translation
(for first-order logic). The complexity of the extended Glivenko translation of cut-
free LK-proofs into cut-free LJ-proofs is shown to be elementary by using CERES
(cut-elimination by resolution) [4].

The paper is organized as follows: In Section 2 we define the basic concepts for
our analysis. In Section 3 we define various translations and investigate their compu-
tational complexity. While the Kolmogorov translation and the extended Glivenko
translation can be computed in polynomial time, we show that an optimized form of
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the Kolmogorov translation is of nonelementary complexity. While the Kolmogorov
translation maps cut-free proofs into cut-free proofs this does not hold for the ex-
tended Glivenko translation. So the complexity of translations into cut-free proofs
would have to be established by the complexity of cut-elimination. Instead of step-
wise cut-elimination a la Gentzen we use CERES (cut-elimination by resolution), a
global proof analysis method, to establish an elementary bound on the complex-
ity of translating cut-free classical proofs with only weak quantifiers into cut-free
intuitionistic proofs. We prove, in fact, a more general result for classical cut-free
proofs of sequents of the form A1, . . . , An ` with only weak quantifiers, yielding the
complexity of the extended Glivenko translation for the weak quantifier fragment as
a corollary.

2 Preliminaries

Definition 1 (strong and weak quantifiers). If (∀x) occurs positively (negatively) in
B then (∀x) is called a strong (weak) quantifier. If (∃x) occurs positively (negatively)
in B then (∃x) is called a weak (strong) quantifier. If S is a sequent A1, . . . , An `
B1, . . . , Bm then quantifiers occurring in S are strong (weak) according to their
status in (A1 ∧ · · · ∧An)→ (B1 ∨ · · · ∨Bm).

Definition 2 (complexity). If F is a formula in predicate logic then its complexity
‖F‖ is the number of symbols occurring in F . Similarly the complexity of a proof
ϕ, denoted by ‖ϕ‖, is the number of symbol occurrences in ϕ.

Our complexity analysis aims at the distinction between proof transformations
of elementary and those of nonelementary complexity. A specific role play the bound
functions e and s:

Definition 3. Let e : N×N→ N and s : N→ N be defined as:

e(0, n) = n for n ∈ N, e(m+ 1, n) = 2e(m,n) for m,n ∈ N,

s(n) = e(n, 1) for n ∈ N.

A function g : N→ N is called elementary if there exists a nondeterministic Turing
machine M computing g and a number k ∈ N with timeM (n) ≤ e(k, n) for all
n ∈ N, where timeM (n) is the computing time of M on input n.

Remark 1. It is not hard to show that the function s in Definition 3 is not elementary.
The nonelementary complexity of cut-elimination is typically proven by using s as
lower bound (see [21] and [19]).
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The following definition applies to all proof transformations, though we will
investigate mainly transformations from LK to LJ in this paper. The calculi LK
and LJ are defined as in [9] with the only difference that we use multisets and do
not need the exchange rules.
Definition 4. Let T be a mapping from proofs to proofs. T is called elementary if
there exists a nondeterministic Turing machine M computing T (ϕ) on input ϕ and
an elementary function h s.t. for all proofs ϕ timeM (ϕ) ≤ h(‖ϕ‖).

If the computing time is bounded by an elementary function so is the size of
the output: if T is an elementary proof transformation then there exists also an
elementary function g such that for all proofs ϕ:

(?) ‖T (ϕ)‖ ≤ g(‖ϕ‖).

If (?) holds for T we speak about an elementary output complexity. However, for
establishing upper bounds, output complexity (comparing just the lengths of ϕ and
its transformation T (ϕ)) is not sufficiently informative. Consider, e.g., the following
transformation to be defined below. Given a traditional embedding T from classical
to intuitionistic logic (let us say the Kolmogorov translation) we define a new embed-
ding T ′ in the following way: T ′(A) = A→ A if A is provable in intuitionistic logic
and T ′(A) = T (A) otherwise. Note that, clearly, T ′(A) is logically equivalent to A
in classical logic. The mapping can be extended to proofs by translating classical
proofs of intuitionistically provable formulas A into (trivial intuitionistic) proofs of
A → A; if A is not intuitionistically provable we choose the original translation T .
Then, obviously, there exists an elementary function g (the bound on the original
transformation T ) such that (?) holds also for T ′ and T ′ has elementary output com-
plexity. On the other hand, T ′ is not even computable as it is undecidable whether
a formula is provable in intuitionistic logic. Therefore there is no recursive bound on
the computing time of T ′. To exclude pathological transformations like this one, or
at least to dismantle their complexities, we choose nondeterministic time complex-
ity as the main complexity measure for our transformations. Note, however, that
for establishing lower bounds, output complexity gives more information that just
estimating the computing time of T (ϕ). To make our results sharper we use time
complexity for upper bounds and output complexity for lower bounds.

3 On elementary translations of classical to intuitionis-
tic proofs

In this paper we basically investigate two translations from classical to intuitionistic
logic: the Kolmogorov translation (double negation is used for any occurrence of a
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logical connective) and the Glivenko translation (the formula as a whole is doubly
negated) and its extendion to first-order logic. We also investigate a new extended
form of the Glivenko translation; this translation is largely defined as the Kuroda
translation with the difference that only strong occurrences of ∀x.A(x) is translated
to ∀x.¬¬A(x). Finally we introduce a so-called optimized translation where the
translated formulas can be simplified via propositional tautologies. For a good survey
of different negative translation see [8].

3.1 The Kolmogorov translation

We first define the translation of formulas and afterwards the translation of proofs.
We denote that translation (on formulas and proofs) by ΨK .

Definition 5 (Kolmogorov translation for formulas [15]).

ψK(A) = ¬¬A for atoms A, ψK(¬B) = ¬¬¬ψK(B),
ψK(B ◦ C) = ¬¬(ψK(B) ◦ ψK(C)) for ◦ ∈ {∧,∨,→},
ψK(Qx.B) = ¬¬Qx.ψK(B) for Q ∈ {∀, ∃}.

Next we define a translation of sequents:

Definition 6 (Kolmogorov translation of sequents). By Definition 5, for every A
there exists a B s.t. ψK(A) = ¬¬B. So if ψK(A) = ¬¬B we define ψ∗K(A) = ¬B
(i.e. for all A we get ¬ψ∗K(A) = ψK(A)).

Let S be the sequent A1, . . . , An ` B1, . . . , Bm and ψK for formulas as in Defi-
nition 5. Then we define

ψK(S) = ψK(A1), . . . , ψK(An), ψ∗K(B1), . . . , ψ∗K(Bm) `,

For A = A1, . . . , An we write ψK(A) for ψK(A1), . . . , ψK(An) (the same for
ψ∗K(A)).

The translation of proofs via ψK , which we denote by ΨK , is defined stepwise
via the last inference in the proof to be translated. A particular feature of this
translation is the absence of the cut rule (except for the simulation of cut itself),
hence cut-free proofs are directly translated to cut-free proofs.

Definition 7 (Kolmogorov translation of proofs). We first translate the (atomic)
axioms:

K-ax: ΨK(A ` A) = ϕ(A) where ϕ(A) is an intuitionistic proof of the sequent
¬¬A,¬A `. Note that, as A is an atom, ¬¬A,¬A `= ΨK(A),Ψ∗K(A) `.
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Now we assume inductively that we have already translated the proofs ϕ1, ϕ2 of
S1, S2 to proofs ΨK(ϕ1) of ΨK(S1) and to ΨK(ϕ2) of ΨK(S2). Consider a binary
rule joining ϕ1, ϕ2 to a proof ϕ of a sequent S. Then we construct a proof ΨK(ϕ) of
ΨK(S). The case of unary rules is analogous. We illustrate the transformation on
the rules ∧r,∧l − 1, ∀r, cut which are the last inferences of ϕ. The other cases are
analogous. Remember that ¬ψ∗K(A) = ψK(A) for all formulas A.

K-∧r: Let ϕ be the proof
(ϕ1)

A ` B, C
(ϕ2)

A ` B, D
A ` B, C ∧D ∧r

Then we define ΨK(ϕ) as

(ΨK(ϕ1))
ψK(A), ψ∗K(B), ψ∗K(C) `
ψK(A), ψ∗K(B) ` ¬ψ∗K(C)

¬r

(ΨK(ϕ2))
ψK(A), ψ∗K(B), ψ∗K(D) `
ψK(A), ψ∗K(B) ` ¬ψ∗K(D)

¬r

ψK(A), ψ∗K(B) ` ¬ψ∗K(C) ∧ ¬ψ∗K(D)
∧r

ψK(A), ψ∗K(B),¬(ψK(C) ∧ ψK(D)) `
¬l

Note that ¬ψ∗K(C)∧¬ψ∗K(D) = ψK(C)∧ψK(D) and the end sequent of ΨK(ϕ)
is ψK(A), ψ∗K(B), ψ∗K(C ∧D) ` what is exactly what we need.

K-∧l − 1: Let ϕ =
(ϕ1)

C,A ` B
C ∧D,A ` B ∧l1

Then ΨK(ϕ) =

(ΨK(ϕ1)
ψK(C), ψK(A), ψ∗K(B) `

ψK(C) ∧ ψK(D), ψK(A), ψ∗K(B) `
∧l1

ψK(A), ψ∗K(B) ` ¬(ψK(C) ∧ ψK(D))
¬r

¬¬(ψK(C) ∧ ψK(D)), ψK(A), ψ∗K(B) `
¬l

By definition of ψK , the end-sequent of ΨK(ϕ) is ψK(C∧D), ψK(A), ψ∗K(B) `.

K-∀r Let ϕ =
(ϕ1)

A ` B, A(u)
A ` B, ∀x.A(x) ∀r
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Then ΨK(ϕ) =
(ΨK(ϕ1))

ψK(A), ψ∗K(B), ψ∗K(A(u)) `
ψK(A), ψ∗K(B) ` ψK(A(u))

¬r

ψK(A), ψ∗K(B) ` ∀x.ψK(A(x)) ∀r

ψK(A), ψ∗K(B),¬∀x.ψK(A(x)) `
¬l

Note that the end-sequent of ΨK(ϕ) is ψK(A), ψ∗K(B), ψ∗K(∀x.A(x)) `.

K-cut: Let ϕ =
(ϕ1)

Γ ` ∆, A
(ϕ2)

A,Π ` Λ
Γ,Π ` ∆,Λ cut

Then we define ΨK(ϕ) as

(ΨK(ϕ1))
ψK(Γ), ψ∗K(∆), ψ∗K(A) `
ψK(Γ), ψ∗K(∆) ` ¬ψ∗K(A)

¬r (ΨK(ϕ2))
ψK(A), ψK(Π), ψ∗K(Λ) `

ψK(Γ), ψK(Π), ψ∗K(∆), ψ∗K(Λ) ` cut

Note that ¬ψ∗K(A) = ψK(A).

Proposition 1. The transformation ΨK , the Kolmogorov transformation of LK-
proofs into LJ-proofs is

(a) computable in polynomial time,

(b) transforms cut-free proofs into cut-free proofs.

Proof. (a) Consider an LK-proof ϕ and its translation ΨK(ϕ). Let K be a con-
stant greater or equal to the maximal number of sequents added in a transfor-
mation step of ΨK and

σ = max{‖S‖ S is a sequent in ϕ}, nodes(ϕ) = number of nodes in ϕ.

For every sequent we have ‖ψK(S)‖ ≤ 4 ∗ ‖S‖. We assume K > 4. Then it is
easy to show by induction on the structure of ϕ that there exists a nondeter-
ministic Turing machime M computing ΨK such that

timeM (ϕ) ≤ K ∗ σ ∗ nodes(ϕ) ≤ K ∗ ‖ϕ‖2.

(b) Obvious as ΨK(ϕ) contains cut only if there is a cut in ϕ; the transformation
of all rules, except the cut rule, does not use cut.
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3.2 The extended Glivenko translation

The Glivenko translation [11, 18] is originally defined for propositional logic and is
much simpler than the Kolmogorov translation: indeed if A is propositional and
classically valid (provable in LK) then ¬¬A is intuitionistically valid (provable in
LJ). The Glivenko translation cannot be simply applied to first-order formulas as
the universal quantifier needs a special treatment (two additional “¬”s have to be
introduced). In this paper we improve the treatment of the universal quantifier
by introducing the additional ¬¬ only for positive polarity. However, for proof
transformations, we have to distinguish whether a formula is an ancestor of a cut
formula or not (in the cut rule one and the same formula occurs in two polarities).

Definition 8 (the extended Glivenko formula transformation). We define a mapping
ψG from first-order formulas to first order formulas in the following way:

ψG(A) = ¬¬ψ+
G(A) for all formulas A,

ψ+
G(A ∧B) = ψ+

G(A) ∧ ψ+
G(B), ψ−G(A ∧B) = ψ−G(A) ∧ ψ−G(B),

ψ+
G(A ∨B) = ψ+

G(A) ∨ ψ+
G(B), ψ−G(A ∨B) = ψ−G(A) ∨ ψ−G(B),

ψ+
G(A→ B) = ψ−G(A) ∨ ψ+

G(B), ψ−G(A→ B) = ψ+
G(A)→ ψ−G(B),

ψ+
G(¬A) = ¬ψ−G(A), ψ−G(¬A) = ¬ψ+

G(A),
ψ+
G(∃x.A(x)) = ∃x.ψ+

G(A(x)), ψ−G(∃x.A(x)) = ∃x.ψ−G(A(x)),
ψ+
G(∀x.A(x)) = ∀x.¬¬ψ+

G(A(x)), ψ−G(∀x.A(x)) = ∀x.ψ−G(A(x)),
ψ+
G(A) = ψ−G(A) = A for atoms A.

Remark 2. Note that our extension of the Glivenko translation [11] differs from the
Kuroda translation [16] in the handling of the universal quantifier. While, in the
Kuroda translation, ψ+

G(∀x.A) = ψ−G(∀x.A) = ∀x.¬¬A independent of the polarity,
we have two different translations ψ−G, ψ

+
G of ∀x.A dependent on the polarity. For

instance our translation of ∀x.A→ ∀x.B (for A and B atoms) is

¬¬(∀x.A(x)→ ∀x.¬¬A(x), instead of ¬¬(∀x.¬¬A(x)→ ∀x.¬¬A(x).

In order to extend the Glivenko transformation above to proofs we have to define
translations for sequents first: if S : Γ ` ∆ is a sequent we define

ΨG(S) =` ψG(
∧

Γ→
∨

∆)

where
∧

Γ denotes the conjunction of formulas in Γ,
∨

∆ the disjunction of formulas
in ∆. Note that

` ψG(
∧

Γ→
∨

∆) = ` ¬¬(
∧
ψ−G(Γ)→

∨
ψ+
G(∆)), where
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ψ−G(A1, . . . , An) = ψ−G(A1), . . . , ψ−G(An), ψ+
G(A1, . . . , An) = ψ+

G(A1), . . . , ψ+
G(An).

We first define the proof transformation ΨG for cut-free proofs.
The Glivenko translation for cut-free proofs:
We define the proof transformation inductively via the last rule applied in a proof.
We carry out the construction in detail for the LK-rules

∨r1, ∧r, →r, ∀r, ∃l, ∀l, ∃r.

• the case ∨r11:

Let ϕ be the proof
(ϕ1)

Γ ` ∆, A
Γ ` ∆, A ∨B

∨r1

We assume that we already have an LJ-proof

ΨG(ϕ1) of ` ¬¬(
∧
ψ−G(Γ)→ (

∨
ψ+
G(∆) ∨ ψ+

G(A))).

We have to define an LJ-proof

ΨG(ϕ) of ` ¬¬(
∧
ψ−G(Γ)→ (

∨
ψ+
G(∆) ∨ ((ψ+

G(A)) ∨ ψ+
G(B)))).

To make things simpler we introduce the following abbreviations:∧
ψ−G(Γ) = G,

∨
ψ+
G(∆) = D,ψ+

G(A) = F,ψ+
G(B) = H.

Then the task is to use the LJ-proof ΨG(ϕ1) of ` ¬¬(G→ (D∨F )) for constructing
an LJ-proof of

` ¬¬(G→ (D ∨ (F ∨H)).

We define ΨG(ϕ) =

(ΨG(ϕ1))
` ¬¬(G→ (D ∨ F ))

(χ∨r1)
¬¬(G→ (D ∨ F )) ` ¬¬(G→ (D ∨ (F ∨H))
` ¬¬(G→ (D ∨ (F ∨H)) cut

where χ∨r1 is an obvious LJ-proof.

• The case ∧r:
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Let ϕ =
(ϕ1)

Γ ` ∆, A
(ϕ2)

Γ ` ∆, B
Γ ` ∆, A ∧B

∧r

We assume inductively that we already have proofs

ΨG(ϕ1) of ` ¬¬(
∧
ψ−G(Γ)→ (

∨
ψ+
G(∆) ∨ ψ+

G(A))) and
ΨG(ϕ2) of ` ¬¬(

∧
ψ−G(Γ)→ (

∨
ψ+
G(∆) ∨ ψ+

G(B))).

We have to construct a proof ΨG(ϕ) of

` ¬¬(
∧
ψ−G(Γ)→ (

∨
ψ+
G(∆) ∨ (ψ+

G(A) ∧ ψ+
G(B))).

We define G =
∧
ψ−G(Γ), D =

∨
ψ+
G(∆), F = ψ+

G(A), H = ψ+
G(B). Now

ΨG(ϕ1) proves ` ¬¬(G→ (D ∨ F )), ΨG(ϕ2) proves ` ¬¬(G→ (D ∨H)).

To define ΨG(ϕ) we construct a proof χ∧r of

¬¬(G→ (D ∨ F )),¬¬(G→ (D ∨H)) ` ¬¬(G→ (D ∨ (F ∧H)))

and use two cuts, one with ΨG(ϕ1), the other with ΨG(ϕ2).
It remains to define χ∧r ; χ∧r =

(χ′)
G,G,G→ (D ∨ F ), G→ (D ∨H) ` D ∨ (F ∧H)
G,G→ (D ∨ F ), G→ (D ∨H) ` D ∨ (F ∧H)

cl

G→ (D ∨ F ), G→ (D ∨H) ` G→ (D ∨ (F ∧H))
→r

G→ (D ∨ F ), G→ (D ∨H),¬(G→ (D ∨ (F ∧H))) `
¬l

¬¬(G→ (D ∨ F )),¬¬(G→ (D ∨H)),¬(G→ (D ∨ (F ∧H))) `
(¬l + ¬r)∗

¬¬(G→ (D ∨ F ),¬¬(G→ (D ∨H) ` ¬¬(G→ (D ∨ (F ∧H)))
¬l

where χ′ =

G ` G
G ` G

D ` D
D ` D ∨ (F ∧H)

∨r1

D ` D
D ` D ∨ (F ∧H)

∨r1

H,D ` D ∨ (F ∧H)
wl

(obvious)
H,F ` F ∧H

H,F ` D ∨ (F ∧H)
∨r2

H,D ∨ F ` D ∨ (F ∧H)
∨l

D ∨H,D ∨ F ` D ∨ (F ∧H)
∨l

G,G→ (D ∨H), D ∨ F ` D ∨ (F ∧H)
→l

G,G,G→ (D ∨ F ), G→ (D ∨H) ` D ∨ (F ∧H)
→l

• The case →r:
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Let ϕ be the LK-proof
(ϕ1)

A,Γ ` ∆, B
Γ ` ∆, A→ B

→r

By induction hypothesis we may assume that there exists an LJ-proof

ΨG(ϕ1) of ` ¬¬((ψ−G(A) ∧
∧
ψ−G(Γ))→ (

∨
ψ+
G(∆) ∨ ψ+

G(B))).

We have to construct an LJ-proof

ΨG(ϕ) of ` ¬¬(
∧
ψ−G(Γ))→ (

∨
ψ+
G(∆) ∨ (ψ−G(A)→ ψ+

G(B))).

We abbreviate:

G =
∧
ψ−G(Γ), D =

∨
ψ+
G(∆), F = ψ−G(A), H = ψ+

G(B).

Thus ΨG(ϕ1) is an LJ-proof of ` ¬¬((F ∧G)→ (D∨H)), and we need an LJ-proof
of

` ¬¬(G→ (D ∨ (F → H)).
We first prove the lemma

(S1) : ¬¬((F ∧G)→ (D ∨H)) ` ¬¬(¬¬(F ∧G)→ ¬¬(D ∨H))

which is an instance of the (easily) LJ-provable sequent

¬¬(X → Y ) ` ¬¬(¬¬X → ¬¬Y ).

So let χ be the LJ-proof of S1. A cut with ΨG(ϕ1) then gives the proof χ′ of

` ¬¬(¬¬(F ∧G)→ ¬¬(D ∨H)).

Let χ′′ be an LJ-proof of

¬¬(¬¬(F ∧G)→ ¬¬(D ∨H)) ` ¬¬(G→ (D ∨ (F → H)).

Then a cut of χ′ and χ′′ eventually gives ΨG(ϕ) with the end-sequent

` ¬¬(G→ (D ∨ (F → H)).

It remains to define χ′′. χ′′ =
(χ2)

¬(G→ (D ∨ (F → H)) ` ¬¬(F ∧G)
(χ3)

¬¬(D ∨H),¬(G→ (D ∨ (F → H)) `
¬(G→ (D ∨ (F → H)),¬(G→ (D ∨ (F → H)),¬¬(F ∧G)→ ¬¬(D ∨H) `

→l

¬(G→ (D ∨ (F → H)),¬¬(F ∧G)→ ¬¬(D ∨H) `
cl

¬¬(¬¬(F ∧G)→ ¬¬(D ∨H)) ` ¬¬(G→ (D ∨ (F → H))
(¬l + ¬r)∗
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Where χ2 =
(χ4)

¬(F ∧G), G, F ` H
¬(F ∧G), G ` F → H

→r

¬(F ∧G), G ` D ∨ (F → H)
∨r2

¬(F ∧G) ` G→ (D ∨ (F → H))
→r

¬(F ∧G),¬(G→ (D ∨ (F → H))) `
¬l

¬(G→ (D ∨ (F → H))) ` ¬¬(F ∧G)
¬r

and χ4 is a short and obvious LJ-proof. We define χ3 =

(χ5)
D,G ` D ∨ (F → H)

D ` G→ (D ∨ (F → H)
→r

D,¬(G→ (D ∨ (F → H)) `
¬l

(χ6)
H,G ` F → H

H,G ` D ∨ (F → H)
∨r2

H ` G→ (D ∨ (F → H)
→r

H,¬(G→ (D ∨ (F → H)) `
¬l

D ∨H,¬(G→ (D ∨ (F → H)) `
∨l

¬¬(D ∨H),¬(G→ (D ∨ (F → H)) `
¬r + ¬l

where χ5, χ6 are trivial LJ-proofs.

• The case ∀r:

Let ϕ =
(ϕ1)

Γ ` ∆, C(u)
Γ ` ∆,∀x.C(x) ∀r

By induction hypothesis we assume that we have an LJ-proof

ΨG(ϕ1) of ` ¬¬(ψ−G(Γ)→ (ψ+
G(∆) ∨ ψ+

G(C(u)))).

we define C = ψ−G(Γ), D = ψ+
G(∆), Ĉ = ψ+

G(C(u)).
We first construct an LJ-proof

χ1 of ¬¬(C → (D ∨ Ĉ(u))) ` ¬¬((C ∧ ¬D)→ Ĉ(u)).

by combining ΨG(ϕ1) and χ1 by cut we obtain a proof

χ2 of ` ¬¬((C ∧ ¬D)→ Ĉ(u)).

We use an LJ-proof χ3 of ¬¬((C ∧¬D)→ Ĉ(u)) ` ¬¬(C ∧¬D)→ ¬¬Ĉ(u) and cut
χ2 with χ3. The result is a proof

χ4 of ` ¬¬(C ∧ ¬D)→ ¬¬Ĉ(u).
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We cut χ4 with an obvious LJ-proof χ5 of

¬¬(C ∧ ¬D)→ ¬¬Ĉ(u),¬¬(C ∧ ¬D) ` ¬¬Ĉ(u)

and obtain a proof χ6 of ¬¬(C ∧ ¬D) ` ¬¬Ĉ(u).

Note that u is not free in ¬¬(C ∧¬D) (as u is not free in ψ−G(Γ), ψ+
G(∆)). We define

χ7 =
(χ6)

¬¬(C ∧ ¬D) ` ¬¬Ĉ(u)
¬¬(C ∧ ¬D) ` ∀x.¬¬Ĉ(x)

∀r

` ¬¬(C ∧ ¬D)→ ∀x.¬¬Ĉ(x)
→r

Let χ8 be an LJ-proof of

¬¬(X ∧ Y )→ Z ` ¬¬((X ∧ Y )→ Z).

Tne using cut between χ7 and χ8(C,¬D,∀x.¬¬Ĉ(x)) gives a proof

χ9 of ` ¬¬((C ∧ ¬D)→ ∀x.¬¬Ĉ(x)).

Let χ10(X,Y, Z) be an LJ-proof of

¬¬((X ∧ ¬Y )→ Z) ` ¬¬(X → (Y ∨ Z)).

Then a cut of χ9 with χ10(C,D, ∀x.¬¬Ĉ(x)) gives a proof

χ11 of ` ¬¬(C → (D ∨ ∀x.¬¬Ĉ(x))).

By definition the last sequent is

¬¬(ψ−G(Γ)→ (ψ+
G(∆) ∨ ∀x.¬¬ψ+

G(C(x))))

which is ψG(Γ ` ∆,∀x.A(x)) (note that ψ+
G(∀x.C(x)) = ∀x.¬¬ψ+

G(C(x)) by defini-
tion of ψG). Therefore χ11 is the desired proof ΨG(ϕ).

• The case ∃l:

Let ϕ =
(ϕ1)

C(u),Γ ` ∆
∃x.C(x),Γ ` ∆ ∃l
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where u is not free in Γ,∆. By induction hypothesis we assume that we have a proof
ΨG(ϕ1) of

¬¬((ψ−G(C(u)) ∧ ψ−G(Γ))→ ψ+
G(∆)).

we define Ĉ(u) = ψ−G(C(u)), C = ψ−G(Γ), D = ψ+
G(∆).

Let χ1(X,Y ) be an LJ-proof of ¬¬(X → Y ) ` (¬¬X → ¬¬Y ). We use χ1(Ĉ(u) ∧
C,D) and cut it with the proof ΨG(ϕ1). The result is a proof

χ2 of ` ¬¬(Ĉ(u) ∧ C)→ ¬¬D.

Then we cut χ2 with an LJ-proof χ3(¬¬(Ĉ(u) ∧ C),¬¬D) for

χ3(X,Y ) being an LJ-proof of X,X → Y ` Y and obtain a proof

χ4 of ¬¬(Ĉ(u) ∧ C) ` ¬¬D.

Let χ5(X,Y ) be an LJ-proof of X,Y ` ¬¬(X ∧ Y ). Then cutting χ5(Ĉ(u), C) with
χ4 gives a proof

χ6 of Ĉ(u), C ` ¬¬D.

Let χ7 be an LJ-proof of ¬D ` ¬¬¬D. Then we define χ8 =

(χ7)
¬D ` ¬¬¬D

(χ6)
Ĉ(u), C ` ¬¬D
¬¬¬D, Ĉ(u), C `

¬l

Ĉ(u), C,¬D `
cut

and χ9 =
(χ8)

Ĉ(u), C,¬D `
∃x.Ĉ(x), C,¬D `

∃l

∃x.Ĉ(x) ∧ C,¬D `
∧l1 + ∧l2 + cl

¬¬(∃x.Ĉ(x) ∧ C),¬D `
¬r + ¬l

¬¬((∃x.Ĉ(x) ∧ C) ` ¬¬D
¬r

` ¬¬((∃x.Ĉ(x) ∧ C)→ ¬¬D
→r

Note that u does not occur free in C,D (which is ψ−G(Γ), ψ+
G(∆)). Finally, let

χ10(X,Y ) be an LJ-proof of ` (¬¬X → ¬¬Y )→ ¬¬(X → Y ). Then by cutting χ9
and χ10(∃x.Ĉ(x) ∧ C,D) we obtain a proof

χ11 of ¬¬((∃x.Ĉ(x) ∧ C)→ D)
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which (by ψ−G(∃x.C(x)) = ∃x.ψ−G(C(x))) is an LJ-proof of ψG(∃x.C(x),Γ ` ∆) and
we define ΨG(ϕ) = χ11.

• The case ∀l: analogous to ∃l.

• The case ∃r:

Let ϕ =
(ϕ1)

Γ ` ∆, C(t)
Γ ` ∆,∃x.C(x) ∃r

we assume that we already have a proof ΨG(ϕ1) of ` ¬¬(ψ−G(Γ) → (ψ+
G(∆) ∨

ψ+
G(C(t)))). Like in the case ∀r (proof χ7) we obtain an LJ-proof

σ1 of ¬¬(ψ−G(Γ) ∧ ¬ψ+
G(∆)) ` ∃x.¬¬ψ+

G(C(x))

Then we cut with of a proof χ∃ (to be defined below) of
∃x.¬¬ψ+

G(C(x)) ` ¬¬∃.ψ+
G(C(x)) and obtain a proof

σ2 of ¬¬(ψ−G(Γ) ∧ ¬ψ+
G(∆)) ` ¬¬∃x.ψ+

G(C(x)).

The remaining part of the derivation is the same as in case ∀r and we obtain a proof

ΨG(ϕ) of ¬¬(ψ−G(Γ)→ (ψ+
G(∆) ∨ ψ+

G(∃x.C(x))).

We set Ĉ(x) = ψ+
G(C(x)) and define χ∃:

Ĉ(u) ` Ĉ(u)
Ĉ(u) ` ∃x.Ĉ(x)

∃r

Ĉ(u),¬∃x.Ĉ(x) `
¬l

¬¬Ĉ(u),¬∃x.Ĉ(x) `
¬r + ¬l

¬¬Ĉ(u),` ¬¬∃x.Ĉ(x)
¬r

∃x.¬¬Ĉ(x) ` ¬¬∃x.Ĉ(x)
∃l

Note that a similar derivation for the universal quantifier is impossible: ∀x.¬¬Ĉ(x) `
¬¬∀x.Ĉ(x) is not derivable in LJ! This concludes the translations of cut-free proofs.
The extended Glivenko translation for proofs with cuts:
As the cut-formula appears in both polarities the translation of ∀x.A(x) via ψG does
not work:

we have ψ−G(∀x.A(x)) = ∀x.ψ−G(A(x)) but ψ+
G(∀x.A(x)) = ∀x.¬¬ψ+

G(A(x)).
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So we define a translation ψ′G (a variant of ψG) for formulas which are ancestors of
a cut in a proof: ψ′G(A) = ¬¬ψ′′G(A), where ψ′′G is not sensitive to polarity and, in
particular, ψ′′G(∀x.A(x)) = ∀x.¬¬ψ′′G(A(x)). We define the proof transformation Ψc

G

corresponding to the extended Glivenko translation with cut.
Definition 9. Let Γ ` ∆ be a sequent occurring in an LK-proof ϕ. Then Γ can
be partitioned into formulas Γc which are ancestors of a cut-formula and formulas
Γe which are ancestors of a formula in the end-sequent; in the same way we can
partition ∆ into ∆c and ∆e. Therefore any sequent Γ ` ∆ occurring in ϕ can be
translated as follows:

ψG(Γc,Γe ` ∆c,∆e) =
¬¬((

∧
ψ′G(Γc) ∧

∧
ψ−G(Γe))→ (

∨
ψ′G(∆c) ∨

∨
ψ+
G(∆e))).

It remains to simulate the cut rule. Let χ be a subproof of ϕ of the form
(χ1)

Γc,Γe ` ∆c,∆e, A
(χ2)

A,Πc,Πe ` Λc,Λe
Γc,Πc,Γe,Πe ` ∆c,∆e,Λc,Λe

cut

and assume we have already constructed the proofs Ψc
G(χ1) and Ψc

G(χ2). Then
Ψc
G(χ1) is a proof of

¬¬((
∧
ψ′G(Γc) ∧

∧
ψ−G(Γe))→ (

∨
ψ′G(∆c) ∨

∨
ψ+
G(∆e) ∨ ψ′G(A)))

and Ψc
G(χ2) is a proof of

¬¬((ψ′G(A) ∧
∧
ψ′G(Πc) ∧

∧
ψ−G(Πe))→ (

∨
ψ′G(Λc) ∨

∨
ψ+
G(Λe))).

Let us define

B ≡
∧
ψ′G(Γc) ∧

∧
ψ−G(Γe)),

C ≡
∨
ψ′G(∆c) ∨

∨
ψ+
G(∆e),

D ≡
∧
ψ′G(Πc) ∧

∧
ψ−G(Πe)),

E ≡
∨
ψ′G(Λc) ∨

∨
ψ+
G(Λe),

A∗ ≡ ψ′G(A).

Then Ψc
G(χ1) proves ` ¬¬(B → (C ∨A∗)) and Ψc

G(χ2) proves ` ¬¬((A∗∧D)→ E).
We define Ψc

G(χ) as
(Ψc

G(χ1)
` ¬¬(B → (C ∨A∗))

(Ψc
G(χ2)

` ¬¬((A∗ ∧D)→ E)
` ¬¬(B → (C ∨A∗)) ∧ ¬¬((A∗ ∧D)→ E)

∧r
%

` ¬¬((B ∧D)→ (C ∨ E)) cut
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where % is a LJ-proof of the sequent

¬¬(B → (C ∨A∗)) ∧ ¬¬((A∗ ∧D)→ E) ` ¬¬((B ∧D)→ (C ∨ E)).

Note that ¬¬((B ∧D)→ (C ∨ E)) is just ψ′G(Γc,Πc,Γe,Πe ` ∆c,∆e,Λc,Λe).

Remark 3. If we had used the extended Glivenko translation without taking care of
the cut status of the formula the end-sequent of % could be of the form

¬¬(B → (C ∨ ¬¬A∗)) ∧ ¬¬((A∗ ∧D)→ E) ` ¬¬((B ∧D)→ (C ∨ E)).

But this sequent is not provable in LJ.

Example 1. Let A,B,C be formulas and ϕ be a proof of the form
(ϕ1)

∀x.A ` ∀x.B
(ϕ2)

∀x.B ` ∀x.C
∀x.A ` ∀x.C cut

Then Ψc
G(ϕ) =

(Ψc
G(ϕ1)

` ¬¬(∀x.ψ−G(A)→ ∀x.¬¬ψ′G(B))
(ψ′G(ϕ2)

` ¬¬(∀x.¬¬ψ′G(B)→ ∀x.¬¬ψ+
G(C))

` ¬¬(∀x.ψ−G(A)→ ∀x.¬¬ψ′G(B)) ∧ ¬¬(∀x.¬¬ψ′G(B)→ ∀x.¬¬ψ+
G(C))

∧r
%

` ¬¬(∀x.ψ−G(A)→ ∀x.¬¬ψ+
G(C))

cut

where % is an LJ-proof of

¬¬(∀x.ψ−G(A)→ ∀x.¬¬ψ′G(B)) ∧ ¬¬(∀x.¬¬ψ′G(B)→ ∀x.¬¬ψ+
G(C)) `

¬¬(∀x.ψ−G(A)→ ∀x.¬¬ψ+
G(C)).

Theorem 1. The transformation ΨG from proofs ϕ of S in LK to proofs ΨG(ϕ) of
ψG(S) is computable in nondeterministic polynomial time.

Proof. Let ϕ be a proof of S. The situation is similar to that of the Kolmogorov
translation. Again we define a constant K which is bigger than the number of
sequents added in a rule simulation and σ as the maximal complexity of a sequent
in ϕ. Every simulation step of a rule in LK requires LJ-proofs with ≤ K rule
applications. Moreover there exists a constant c s.t. ‖ΨG(S)‖ ≤ c ∗ ‖S‖. Here we
have to observe that the LJ-simulations have auxiliary proofs with axioms of the
form A ` A, where A is nonatomic. But A ` A has a proof from atomic axioms of
a complexity linear in ‖A‖ (see [3]). Therefore, like for ΨK , there exists a constant
L and a nondeterministic Turing machine M computing ΨG such that

timeM (ϕ) ≤ L ∗ σ ∗ nodes(ϕ) ≤ L ∗ ‖ϕ‖2.
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Remark 4. In contrast to the Kolmogorov translation, cut-free proofs are trans-
lated to proofs with cut. We will deal with the complexity of translating cut-free
LK-proofs of ` A into cut-free LJ-proofs of ψG(A) using another form of proof
transformation in Section 5.

3.3 Optimized translations

Translations of formulas A (provable in LK) to formulas A∗ (provable in LJ) can
be simplified by first simplifying the formulas A under logical equivalence based on
propositional tautologies; i.e. we first replace A by a tautologically equivalent A1
and then define A∗1. We consider the Kolmogorov translation ψK under such a form
of optimization. We define a formula transformation sf simplifying formulas:

• If A is an atom then sf (A) = A.

• If A is a tautology we define sf (A) = >.

• If ¬A is a tautology we set sf (A) = ⊥.

• If neither A nor ¬A is a tautology and A = B ◦C for ◦ ∈ {∧,∨,→} we define
sf (A) = σ(sf (B) ◦ sf (C)) where σ is the following simplification operator:

– σ(F ∧ ⊥) = σ(⊥ ∧ F ) = ⊥, σ(F ∧ >) = σ(> ∧ F ) = F ,
– σ(F ∨ ⊥) = σ(⊥ ∨ F ) = F , σ(F ∨ >) = σ(> ∨ F ) = >,
– σ(⊥ → F ) = >, σ(F → ⊥) = ¬F , σ(> → F ) = F, σ(F → >) = >.

• If neither A nor ¬A is a tautology and A = ¬B then sf (A) = σ(¬sf (B)) for
σ(¬>) = ⊥, σ(¬⊥) = >.

Definition 10 (optimized Kolmogorov translation). For all formulas A we define
ψKo(A) = ψK(sf (A)).

Remark 5. Note that ψKo fulfils all the required properties: A↔ ψK(sf (A)) is prov-
able in LK and ψK(sf (A)) is provable in LJ. Moreover, the formula transformation
is computable in exponential time (which is the cost for computing sf ).
For a sequent of the form S : ` A we define ΨKo(S) = ` ΨKo(A). We have seen
that ΨK is a polynomial nondeterminstic proof transformation mapping cut-free
proofs in LK to cut-free proofs in LJ. While the formula transformation ψKo is ele-
mentary (computable in exponential time) there exists no corresponding elementary
transformation for cut-free proofs:

Lemma 1. There exists a sequence of formulas Fn s.t.
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(1) There are cut-free LK-proofs of ϕn of ` Hn which are computable in nonde-
terministic elementary time.

(2) For all cut-free LK-proofs ψ of ` ψKo(Hn) we have ‖ψ‖ > 1/2 ∗ s(n) (see
Definition 3).

Proof. In [21] Statman proved the nonelementary complexity of cut-elimination. In
particular, he defined a sequence of formulas Gn s.t. ‖Gn‖ ≤ kn (for a constant k
independent of n) and there are proofs ϕn of Gn (with cut formulas A1, . . . , A2n+1)
with ‖ϕn‖ ≤ h(‖Gn‖) for all n (where h is an elementary function independent
of n), but ‖ψ‖ > 1/2 ∗ s(n) on cut-free proofs ψ of Gn. In [2] Statman’s proof
sequence is formalized in LK. As the cut formulas are closed, the proofs ϕn with
cuts A1, . . . , A2n+1 can be transformed into cut-free proofs of A1 → A1, . . . , An →
An ` Gn and, finally, into cut-free proofs

ϕ∗n of ` Hn for Hn = ((A1 → A1) ∧ · · · ∧ (An → An))→ Gn

The construction of ϕ∗n can be done in nondeterministic polynomial time in terms
of ‖ϕn‖. Therefore there exists an elementary function g and a nondeterministic
Turing machine M computing ϕ∗n s.t.

timeM (` Hn) ≤ g(‖Hn‖).

Thus the sequents ` Hn have “short” cut-free LK-proofs. Now let us consider
` ψKo(Hn). As ψKo eliminates all tautologies we get

` ψKo(Hn) = ` Gn.

But, by definition of the Gn, there is no elementary bound on cut-free proofs of
` Gn in terms of ‖Gn‖. In particular there is no sequence of cut-free proofs ψn of
` ψKo(Hn) which can be computed in elementary time.

The following theorem states that the proof complexities of the translations ψK
and ψKo strongly differ.

Theorem 2. There are sequences of formulas ` Hn s.t. there exists cut-free LJ-
proofs χn of ` ψK(Hn) which can be computed in elementary time, but there exists
no elementary bound on the lengths of cut-free LJ-proofs of ` ψKo(Hn).

Proof. By (1) in Lemma 1 we obtain a sequence of cut-free LK-proofs of ` Hn which
can be computed in elementary time. By Proposition 1 we also obtain a sequence
of cut-free LJ-proofs of ` ψK(Hn) which can be computed in elementary time. By
(2) in Lemma 1 there is no elementary bound on cut-free LK-proofs of ` ψKo(Hn),
thus there is no such bound on the LJ-proofs of these sequents.
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Remark 6. Theorem 2 does not only hold for the Kolmogorov translation but also for
the extended Glivenko translation and, more generally, for any proof transformation
obtained from a negative translation. If negative translations induce additional cuts
(like in the extended Glivenko translation) we do not have a direct transformation
of cut-free proofs into cut-free proofs; but in all cases where the complexity of
the elimination of these additional cuts is elementary (and thus below the worst
case complexity of cut-elimination) a similar result as this of Theorem 2 can be
obtained. Negative translations are widely used in proof mining (see e.g. [14]).
Theorem 2 indicates a potential impact of propositional optimizations (by increasing
the complexity of proof normalization) on the results in the analysis of mathematical
proofs.

4 The method CERES

In Section 3 we defined several proof transformations from LK to LJ based on
stepwise translation of inferences. In this section we introduce a method of proof
transformation (from LK to LK with only atomic cuts) which is radically different
as it is global and takes into account the structure of the whole proof. This method,
called CERES [4, 5], is a cut-elimination method that is based on resolution. We will
apply CERES to investigate the complexity of translating cut-free proofs of ` A (for A
without strong quantifiers) into cut-free proofs of ` ψG(A) (the Glivenko translation
of A).

CERES roughly works as follows: The structure of a proof ϕ containing cuts is
encoded in an unsatisfiable set of clauses CL(ϕ) (the characteristic clause set of ϕ).
A resolution refutation of CL(ϕ) then serves as a skeleton for an atomic cut normal
form, a new proof which contains at most atomic cuts. The corresponding proof
theoretic transformation uses so-called proof projections ϕ[C] for C ∈ CL(ϕ), which
are simple cut-free proofs extracted from ϕ (proving end-sequent S extended by the
atomic sequent C). In [5] it was shown that CERES outperforms reductive methods
of cut-elimination (a la Gentzen or Tait) in computational complexity: there are
infinite sequences of proofs where the computing time of CERES is nonelementarily
faster than that of the reductive methods; on the other hand a nonelementary speed-
up of CERES via reductive methods is shown impossible.

4.1 CERES in classical logic

In this section we describe the original CERES method which was designed for classical
logic. Given an LK-proof ϕ of a skolemized sequent Γ ` ∆, the main steps of
(classical) CERES are:
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1. Extraction of the characteristic clause set CL(ϕ).

2. Construction of a resolution refutation of CL(ϕ).

3. Extraction of a set of projections π(C) for every C ∈ CL(ϕ).

4. Merging of refutation and projections into a proof ϕ∗ (a CERES-normal form)
with only atomic cuts.

For extracting CL(ϕ) we need the concept of formula ancestors, which is defined
below.

Definition 11 (Formula ancestor). Let ν be a formula occurrence in a sequent
calculus proof ϕ. If ν is a principal formula occurrence of an inference then the
occurrences of the auxiliary formula (formulas) in the premises are ancestors of ν. If
ν is principal formula of a weakening or occurs in an axiom then ν has no ancestor.
If ν is not a principal occurrence then the corresponding occurrences in contexts of
the (premise) premises are ancestors of ν. The ancestor relation is then defined as
the reflexive transitive closure.

We will use the following proof as our running example to clarify the definitions
below.
Example 2. Below we give a proof with two cuts where the cut ancestors are
marked with ?.

P (a)? ` P (a)
¬P (a), P (a)? `

¬l

¬P (a) ` (¬P (a))?
¬r

¬P (a), (¬¬P (a))? `
¬l

¬P (a), (∀x.¬¬P (x))? `
∀l

P (y) ` P (y)?

P (y), (¬P (y))? `
¬l

P (y) ` (¬¬P (y))?
¬r

∀x.P (x) ` (¬¬P (y))?
∀l

∀x.P (x) ` (∀x.¬¬P (x))? ∀r

∀x.P (x) ` Q(b), (∀x.¬¬P (x))?
wr

¬P (a),∀x.P (x) ` Q(b)
cut

¬P (a) ` ∀x.P (x)→ Q(b)
→r

P (c) ` P (c)? P (c)? ` P (c)
P (c) ` P (c)

cut

¬P (a), P (c) ` (∀x.P (x)→ Q(b)) ∧ P (c)
∧r

Intuitively, the clause set extraction consists in collecting all atomic ancestors of
the cuts which occur in the axioms of the proof. The clauses are formed depending
on how these atoms are related via binary inferences in the proof.

Definition 12 (Clause). A sequent Γ ` ∆ is called a clause if Γ and ∆ are multisets
of atoms.

Definition 13 (Characteristic clause-set). Let ϕ be a proof of a skolemized sequent.
The characteristic clause set is built recursively from the leaves of the proof until
the end sequent. Let ν be a sequent in this proof. Then:
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• If ν is an axiom, then CL(ν) contains the sub-sequent of ν composed only of
cut ancestors.

• If ν is the result of the application of a unary rule on a sequent µ, then
CL(ν) = CL(µ)

• If ν is the result of the application of a binary rule on sequents µ1 and µ2,
then we distinguish two cases:

– If the rule is applied to ancestors of the cut formula, then CL(ν) =
CL(µ1) ∪ CL(µ2)

– If the rule is applied to ancestors of the end sequent, then CL(ν) =
CL(µ1)× CL(µ2)

Where1:
CL(µ1)× CL(µ2) = {C ◦D | C ∈ CL(µ1), D ∈ CL(µ2)}.

If ν0 is the root node CL(ν0) is called the characteristic clause set of ϕ.

The clause set of our proof ϕ from Example 2 is

CL(ϕ) = {P (a) ` P (c); P (a), P (c) `; ` P (y), P (c); P (c) ` P (y)}

The next step is to obtain a resolution refutation of CL(ϕ). It is thus important
to show that this set is always refutable.

Theorem 3. Let ϕ be a proof of a skolemized end-sequent. Then the characteristic
clause set CL(ϕ) is refutable.

Proof. In [1,4]; basically the proof consists in the construction of an LK-derivation
of the empty sequent from CL(ϕ), thus obtaining a refutation of CL(ϕ).

Definition 14 (Resolution calculus). The resolution calculus consists of the follow-
ing rules:

Γ ` ∆, A Γ′, A′ ` ∆′

Γσ,Γ′σ ` ∆σ,∆′σ R
Γ, A,A′ ` ∆
Γσ,Aσ ` ∆σ Cl

Γ ` ∆, A,A′
Γσ ` ∆σ,Aσ Cr

Where σ is the most general unifier of A and A′. It is also required that Γ ` ∆, A
and Γ′, A′ ` ∆′ are variable disjoint. A resolution derivation from a set of clauses C
is tree derivation based on the rules above where all clauses in the leaves are variants
of clauses in C. A resolution derivation of ` from C is called a resolution refutation
of C.

1The operation ◦ represents the merging of sequents, i.e., (Γ ` ∆) ◦ (Γ′ ` ∆′) = Γ, Γ′ ` ∆, ∆′.
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Example 3. We give a resolution refutation of CL(ϕ) for ϕ in Example 2:

P (c) ` P (y) P (a), P (c) `
P (c), P (c) ` R

P (c) `
cl ` P (z), P (c)
` P (z) R

P (a) ` P (c) P (a), P (c) `
P (a), P (a) ` R

P (a) `
cl

` R

Each clause in the clause set will have a projection associated with it. A pro-
jection of a clause C is a derivation built from ϕ by taking the axioms in which the
atoms of C occur and all the inferences that operate on end-sequent ancestors. As
a result, the end-sequent of a projection will be the end-sequent of ϕ extended by
the atoms of C.

Definition 15 (Projections). Let ϕ be a proof and ξ the last (lower most) inference
with conclusion ν. We define S(ν) as the sequent occurring at node ν and p(ν) as
the set of projections {π(C)|C ∈ CL(ν)}. Each projection π(C) is a cut-free proof
of the sequent S(ν0) ◦ C where ν0 is the root node and S(ν0) the end-sequent.

• If ξ is an axiom, then p(ν) = {ϕ}.

• If ξ is a unary rule with premise µ:

– If ξ operates on a cut ancestor, then p(ν) = p(µ).
– If ξ operates on an end-sequent ancestor, then p(ν) is the set of:

π(Ci)
ζ

ξ

such that π(Ci) ∈ p(µ).

• If ξ is a binary rule with premises µ1 and µ2:

– If ξ operates on a cut ancestor, then p(ν) = p(µ1) ∪ p(µ2).
– If ξ operates on an end-sequent ancestor, then p(ν) is the set of:

π(C1
i ) π(C2

j )
ζ

ξ

such that π(C1
i ) ∈ p(µ1) and π(C2

j ) ∈ p(µ2).
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In each step, it might be necessary to weaken the auxiliary formulas of an inference.
Moreover, if not all formulas of the end-sequent are present after constructing the
projection, they are weakened as well.

Note that no rule operates on cut ancestors, therefore they occur as atoms in
the end-sequent of the projections.

Example 4. The projection of ϕ (as defined in Example 2) to the clause
` P (y), P (c) (where these atoms are marked with ?) is:

P (y) ` P (y)?

∀x.P (x) ` P (y)? ∀l

∀x.P (x) ` Q(b), P (y)?
wr

` ∀x.P (x)→ Q(b), P (y)?
→r

P (c) ` P (c)?

P (c) ` P (c)?, P (c)
wr

P (c) ` P (y)?, P (c)?, (∀x.P (x)→ Q(b)) ∧ P (c)
∧r

¬P (a), P (c) ` P (y)?, P (c)?, (∀x.P (x)→ Q(b)) ∧ P (c)
wl

Given the projections and a grounded resolution refutation, it is possible to build
a proof ϕ̂ of Γ ` ∆ with only atomic cuts.

Definition 16 (Context product). Let C be a sequent and ϕ be an LK derivation
with end-sequent S such that no free variable in C occurs as eigenvariable in ϕ. We
define the context product C ? ϕ (which gives a derivation of C ◦ S) inductively:

• If ϕ consists only of an axiom, then C ? ϕ is composed by one sequent: C ◦ S.

• If ϕ ends with a unary rule ξ:
ϕ′

S′

S
ξ

then we assume that C ? ϕ′ is already defined and thus C ? ϕ is:

C ? ϕ′

C ◦ S′
C ◦ S ξ

Since C does not contain free variables which are eigenvariables of ϕ, the
context product is well defined also for ξ = ∀r,∃l.

• If ϕ ends with a binary rule ξ:
ϕ1
S1

ϕ2
S2

S
ξ
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then assume that C ? ϕ1 and C ? ϕ2 are already defined. We define C ? ϕ:

C ? ϕ1
C ◦ S1

C ? ϕ2
C ◦ S2

C ◦ C ◦ S ξ

C ◦ S c∗

if ξ is a multiplicative rule; in case ξ is additive no additional contractions are needed.

If we apply all most general unifiers in the resolution proof γ we obtain a proof
in LK (in fact only contractions and cut remain). If γσ is such a proof and we
apply a substitution replacing all variables by a constant symbol we obtain a ground
resolution refutation. Note that after applying the most general unifiers to γ we
obtain a derivation in LK where the resolution rule becomes a cut rule. For a
formal definition see [1].

Example 5. Consider the resolution refutation γ in example 3 and apply the sub-
stitution σ : {x← a, z ← a}; then we receive the ground resolution refutation γ′ : γσ
where γ′ =

P (c) ` P (a) P (a), P (c) `
P (c), P (c) ` cut

P (c) `
cl ` P (a), P (c)
` P (a) cut

P (a) ` P (c) P (a), P (c) `
P (a), P (a) ` cut

P (a) `
cl

` cut

Note that γ′ is an LK-refutation of ground instances of clauses in CL(ϕ).

Definition 17 (CERES normal form). Let ϕ be an LK proof of a skolemized sequent
S, CL(ϕ) its clause set and % a grounded resolution refutation of CL(ϕ). We first
construct %′ = S ? %. Note that this is a derivation of S from a set of axioms C ◦ S,
with C ∈ CL(ϕ), which are exactly the end-sequents of the projections π(C) of ϕ.
Now we define ϕ(%) by replacing all axioms of %′ by the respective projections. By
definition, ϕ(%) is an LK proof of S with only atomic cuts. We call it the CERES
normal form of ϕ with respect to %.

Example 6. Consider the characteristic clause set

CL(ϕ) = {C1 : P (a) ` P (c);C2 : P (a), P (c) `;C3 : ` P (y), P (c); C4 : P (c) ` P (y)}

and the grounded resolution refutation γ′ from Example 5. Then ϕ(γ′), the CERES
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normal form of ϕ, is defined as

π(C4)σ π(C2)σ
(P (c), P (c) `) ◦ Γ,Γ cut

(P (c) `) ◦ Γ,Γ
cl

π(C3)σ
(` P (a)) ◦ Γ3 cut

π(C1)σ π(C2)σ
(P (a), P (a) `) ◦ Γ,Γ cut

(P (a) `) ◦ Γ,Γ
cl

Γ5 cut

Γ c∗

where Γ = ¬P (a), P (c) ` (∀x.P (x)→ Q(b)) ∧ P (c) is the end-sequent of ϕ.

4.2 CERES in intuitionistic logic

For CERES in classical logic any resolution refutation of the characteristic clause set
CL(ϕ) of a proof ϕ can serve as a skeleton for a CERES-normal form. In intuitionistic
logic, however, this is impossible as the resulting CERES normal form may be classi-
cal. The example below [20] demonstrates that the result may be even essentially
classical, in the sense that even by eliminating the cuts in the classical CERES-normal
form we do not obtain an intuitionistic proof.

Example 7. Let ϕ be the following (propositional) LJ-proof:

P ` P ?

P ` P ? ∨ ¬P
∨r2

P ? ` P
P ?,¬P `

¬l

¬P ` (¬P )?
¬r

¬P ` P ? ∨ ¬P
∨r2

P ∨ ¬P ` P ? ∨ ¬P
∨l

P ` P ?

(¬P )?, P `
¬l

(¬P )? ` ¬P
¬r

(¬P )?,¬¬P `
¬l

(¬P )?,¬¬P ` P
wr

(¬P )? ` ¬¬P → P
→r

P ? ` P
P ?,¬¬P ` P

wl

P ? ` ¬¬P → P
→r

P ? ∨ ¬P ` ¬¬P → P
∨l

P ∨ ¬P ` ¬¬P → P
cut

For ϕ in Example 7 we obtain

CL(ϕ) = {P ` P ; ` P ; P `}.

In most resolution refinements tautologies can be eliminated without loss of com-
pleteness. So we “ignore” the clause P ` P and construct the following obvious
resolution refutation γ =

` P P `
` R

The next step is to construct the projections ϕ[` P ] and ϕ[P `]. We will use
so-called o-projections to facilitate the analysis. The only difference to the regular
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projections is the lack of a weakening of the left-side formula P ∨ ¬P in the end.

P ` P ?

` P ?,¬P ¬
†
r

¬¬P ` P ?
¬l

¬¬P ` P ?, P
wr

` P ?,¬¬P → P
→†r

P ? ` P
P ?,¬¬P ` P

wl

P ? ` ¬¬P → P
→r

The inferences marked by † violate the restrictions of LJ. This makes it a classical
non-intuitionistic derivation.

Putting the projections and the refutation γ together we obtain the following
CERES-normal form:

P ` P ?

` P ?,¬P ¬
†
r

¬¬P ` P ?
¬l

¬¬P ` P ?, P
wr

` P ?,¬¬P → P
→†r

P ? ` P
P ?,¬¬P ` P

wl

P ? ` ¬¬P → P
→r

` ¬¬P → P,¬¬P → P
cut

` ¬¬P → P
cr

P ∨ ¬P ` ¬¬P → P
wl

The proof is essentially classical as it contains a derivation of ¬¬P → P which
is not intuitionistically provable. If the full projections are used the situation is the
same. The left formula P ∨ ¬P would be weakened in the projections and not used
in the proof of ¬¬P ` P at all. We see that, after applying CERES based on the
refutation γ, we got a proof with atomic cuts, but of a classical formula.

We have seen above that CERES, when applied to intuitionistic proofs, may yield
CERES-normal forms which are classical. There are, however, subclasses of intuition-
istic proofs where the usual CERES method works, provided we restrict the resolution
calculus (i.e. we use resolution refinements) and apply a postprocessing procedure
to the CERES-normal form. Indeed, if ϕ is a skolemized proof of a sequent Γ `
(the succedent of the end-sequent is empty) and the resolution refutation belongs
to the negative refinement of resolution then the CERES normal form (defined as in
Definition 17 can be transformed into an intuitionistic proof.

Definition 18. An LJ-proof ϕ of S belongs to the class LJ− if S is skolemized and
is of the form Γ `.

Definition 19 (Negative resolution refinement). A resolution derivation is called
negative if, in every application of the rule R, one of the clauses in the premise is
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negative and the only factoring rule is Cl applied to negative clauses, i.e. all rules
are of the form:

Γ ` ∆, A B,Γ′ `
Γσ,Γ′σ ` ∆σ R

Γ, A,B `
Γσ,Aσ ` Cl

where Γ ` ∆, A and B,Γ′ ` are variable disjoint and σ is a most general unifier of
A and B. Negative resolution deductions are defined like in Definition 14.

Theorem 4. The negative resolution refinement is complete.

Proof. By Theorem 3.6.1. in [17] and by sign renaming.

Example 8. The resolution refutation defined in Example 3 is a negative resolution
refutation.

From Theorems 3 and 4 we conclude that there is always a negative resolution
refutation of the clause set.

We have seen in Example 4 that, even for intuitionistic input proofs, the pro-
jections obtained from it might be classical. But, for proofs in LJ−, projections of
negative clauses are always valid intuitionistic derivations.

Theorem 5 ( [20]). Let ϕ be an LJ-proof. Then the projections of negative clauses
are valid LJ derivations.

Proof. The projections are obtained by applying inferences from ϕ that operate on
end-sequent ancestors. Since this is an LJ-proof, these are initially valid intuition-
istic inferences. The only thing that changes on the projections’ sequents (to which
the inferences are applied) is the occurrence of extra atoms from the clause. Given
the single conclusion restriction of LJ, the only time this is violated is when atoms
occur on the right side of the sequent. As this is not the case for negative clauses,
the rules in the projections of such clauses will be single conclusion and therefore
the projection itself will be a valid LJ derivation.

This procedure of obtaining a negative CERES normal form from an LJ proof
ϕ is called negative CERES and we will denote the proof with atomic cuts obtained
by ϕ̂. The only modification of negative CERES over the CERES method is the
enforcement of negative resolution.

Since we are using negative resolution and the end-sequent of ϕ is negative, every
atomic cut in ϕ̂ will have the shape:

Γ ` ∆, A A,Γ′ `
Γ,Γ′ ` ∆ cut
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Note that, since projections might be classical derivations, ϕ̂ may also be a
classical proof. Nevertheless it can be transformed again into an intuitionistic proof
by removing the atomic cuts.

Since the original proof was in a single conclusion calculus, we know that every
sequent with more than one formula on the right side must contain at most one end-
sequent ancestor, the other formulas being atomic cut-ancestors. Therefore, if we
can eliminate the atomic cuts maintaining always at most one end-sequent ancestor
on the right side of every sequent, we will obtain an LJ proof. Now we show how
to achieve this by insisting on a specific discipline for reductive cut-elimination.

Definition 20 (Left-shift cut-elimination [20]). Let ϕ̂ be an LJ-proof with only
atomic cuts. We call left-shift cut-elimination the process of removing the atomic
cuts that, starting from the top most cuts down, (1) permutes the cut over all the
rules of its left branch until reaching an axiom and (2) eliminates the cut by using
the proof on its right branch. The permutation rules (1) are

(ϕ1)
Γ∗ ` ∆∗, A
Γ ` ∆, A

ρ (ϕ2)
Γ′, A `

Γ,Γ′ ` ∆ cut ⇒

(ϕ1)
Γ∗ ` ∆∗, A

(ϕ2)
Γ′, A `

Γ∗,Γ′ ` ∆∗ cut

Γ,Γ′ ` ∆
ρ

(ϕ1)
Γ∗ ` ∆∗, A

(ϕ2)
Γ′∗ ` ∆′∗

Γ,Γ′ ` ∆,∆′A
ρ (ϕ3)

A,Γ′′ `
Γ,Γ′,Γ′′ ` ∆,∆′ cut ⇒

(ϕ1)
Γ∗ ` ∆∗, A

(ϕ3)
A,Γ′′ `

Γ∗,Γ′′ ` ∆∗ cut
(ϕ2)

Γ′∗ ` ∆′∗

Γ,Γ′,Γ′′ ` ∆,∆′
ρ

(ϕ1)
Γ∗ ` ∆∗

(ϕ2)
Γ′∗ ` ∆′∗, A

Γ,Γ′ ` ∆,∆′A
ρ (ϕ3)

A,Γ′′ `
Γ,Γ′,Γ′′ ` ∆,∆′ cut ⇒

(ϕ1)
Γ∗ ` ∆∗

(ϕ2)
Γ′∗ ` ∆′∗, A

(ϕ3)
A,Γ′′ `

Γ′∗,Γ′′ ` ∆′∗ cut

Γ,Γ′,Γ′′ ` ∆,∆′
ρ

The elimination rule (2) is

A ` A
(ϕ)

Γ′, A `
Γ′, A ` cut (ϕ)

Γ′, A `

Theorem 6 ( [20]). Let ϕ be a proof in LJ− and ϕ̂ the negative CERES normal
form obtained with negative CERES. Then eliminating the cuts from ϕ̂ using left-
shift cut-elimination yields an LJ-proof.

Proof. Although ϕ is an LJ proof, each inference ρ in ϕ̂ might be applied to a multi-
ple conclusion sequent because of atomic cut-ancestors. By reductively eliminating
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the cuts, we make sure that the resulting sequents in the proof contain no atomic
cut-ancestors on the right, but there is no guarantee that they will all be single con-
clusion. This can be ensured by two things: (1) ϕ is a proof of a negative sequent
and (2) left-shift cut-elimination is used to eliminate the atomic cuts from ϕ̂.

Let ρ be an inference in ϕ̂ that was an instance of an inference in ϕ (which
was originally applied to a single conclusion sequent). All the other inferences in ϕ̂
will be eliminated after reductive cut-elimination. We have thus to show that after
left-shift cut-elimination, every ρ will be applied to a single conclusion sequent.

First note that every inference ρ is applied to a sequent such that its right
context contain at most one end-sequent ancestor, the other formulas being atomic
cut ancestors. Now observe that, in the reduction rules of Definition 20, the ρ in
the resulting derivation is always applied to a sequent whose right context contains
strictly less formulas then in the original derivation. Moreover, these are all the rules
necessary for eliminating the atomic cuts, as there is no right contraction of the cut-
formulas because there is no right contraction in the negative resolution fragment.
After eliminating all the cuts, every ρ will be applied to a sequent whose right
context contains at most one end-sequent ancestor and no cut ancestors, exactly as
it was in ϕ.

Second, upon actually eliminating the cut (see Definition 20), the derivation used
is a negative projection which, by Theorem 5, is an LJ derivation.

The final proof is therefore a valid LJ proof.

5 Transforming cut-free proofs into cut-free proofs
We have shown in Section 3 how to translate proofs in classical logic to proofs
in intuitionistic logic. All these transformations were elementary. But if we have
a classical cut-free proof ϕ of S its extended Glivenko translation ΨG(ϕ) contains
cuts. Clearly we can transform ΨG(ϕ) into a cut-free intuitionistic proof ψ of ΨG(S)
using reductive cut-elimination. But the worst-case complexity of cut-elimination is
nonelementary. A way to solve the problem could be to investigate the complexity of
reductive cut-elimination in proofs of type ΨG(ϕ). We choose a different approach
by solving a more general proof transformation problem from LK to LJ by using
the CERES-method and results from Section 4.2. The results in this section are
based on [6], but the complexity analysis and the connection of the results with the
Glivenko transformation are improved.

Below we show some complexity results about CERES.

Theorem 7. There exists a nondeterministic Turing machineM and an elementary
function h s.t., given a proof ϕ, a resolution refutation % of CL(ϕ), M computes a
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CERES normal form ϕ̂ of ϕ, s.t. timeM (ϕ, %) ≤ h(‖ϕ‖, ‖%‖)

Proof. We investigate the complexity of computing a CERES-normal form given the
input proof ϕ and a resolution refutation % of CL(ϕ). Now let M be a nonde-
terministic Turing machine performing the following computation, given (ϕ, %) as
input:

(1) construct a resolution refutation % of CL(ϕ),

(2) compute a ground resolution refutation %′ of % via substitution σ,

(3) instantiate the proof projections via σ,

(4) insert the instantiated proof projections into %′.

Step (2) is computable in exponential time in ‖%‖ (computation of a global unifier).
(3) can be performed in time ≤ ‖ϕ‖r(%′) for any projection where r(%′) is the size
of a maximal term occurring in %′; note that r(%′) ≤ ‖%′‖. (4) can be computed in
time ≤ %′ ∗ p(ϕ, %′) where p is the maximal complexity of an instantiated projection.
But p(ϕ, %′) ≤ ‖ϕ‖r(%′). Putting things together we obtain an elementary function
H s.t.

timeM (ϕ, %) ≤ H(‖ϕ‖, ‖%‖).

Theorem 8. Let ϕ̂ be a negative CERES normal form of an LJ- proof ϕ and let ϕ0
be the cut-free LJ-proof obtained after applying left-shift cut-elimination to ϕ̂. Then
ϕ0 can be computed in linear time.

Proof. Given the transformations in Definition 20 (which are all the rules necessary
for eliminating the atomic cuts), observe that the right-hand side uses only those
derivations that were already present on the left, without duplicates. Thus left-shift
cut-elimination does not increase the number of inference nodes in the proof. As the
transformation rules (2) in Definition 20 even eliminates an inference, ϕ0 contains
less inferences than ϕ̂, provided there is at least one cut in ϕ̂. Still the rules in
Definition 20 may mildly increase the symbolic size of a proof. Note that e.g. in the
first rule we may have ‖Γ∗‖ > ‖Γ‖ (ρ may be ∀l and a large term is eliminated (top-
down) by the rule which now occurs twice in the result). But this increase happens
for every rule ρ (coming from a left-hand-side of a cut) only once, and the material
causing the increase is already present in the original proof. Therefore, there exists
a constant c such that: ‖ϕ0‖ ≤ c ∗ ‖ϕ̂‖ and ϕ0 can be computed in linear time in
‖ϕ‖.
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Remark 7. The worst-case complexity for the elimination of atomic cuts is expo-
nential in general. In fact, given a CERES normal form based on an arbitrary
resolution refutation, cut-elimination may lead to an exponential increase in size.
That cut-elimination is linear for negative CERES normal forms is due to the fact
that there are no right contractions on the atoms of the cuts and proof duplication
can be avoided. The price to pay is that negative CERES normal forms may be
exponential in the minimal size of CERES normal forms.

Proposition 2. Let ϕ be a proof of a skolemized sequent S. Then CL(ϕ) can be
computed in exponential time.

Proof. Consider the clause term Θ(ϕ) (for a definition see [5] and [1]). Θ(ϕ) is
computable in linear time from ϕ. The evaluation of Θ(ϕ) to CL(ϕ) (which, basically
is the computation of a conjunctive normal form from a negation normal form) can
be done in exponential time.

In [5] a comparison of reductive cut-elimination and CERES was given. It turned
out that reductive cut-elimination is, in some sense, redundant w.r.t. CERES. The
measure of redundancy is the well known subsumption principle from automated
deduction.

Let Γ be a multiset of formulas; by set(Γ) we describe the set defined by the
elements in Γ.

Definition 21 (subsumption). Let C : Γ ` ∆ and D : Π ` Λ be clauses. We define
C ⊆ D if set(Γ) ⊆ set(Π) and set(∆) ⊆ set(Λ). We define C ≤ss D if there exists a
substitution ϑ s.t. Cϑ ⊆ D. Let C,D be sets of clauses; then C ≤ss D if for every
clause D ∈ D there exists a C ∈ C s.t. C ≤ss D.

Proposition 3. Let ϕ be a proof of a skolemized sequent S and ψ be a proof ob-
tained from ϕ via (one or more) cut-elimination steps of Gentzen’s reductive method
(without eliminating atomic cuts). Then CL(ϕ) ≤ss CL(ψ).

Proof. In [1, 5].

The subsumption principle can be extended from sets of clauses to resolution
deductions: let us assume that C and D are sets of clauses s.t. C ≤ss D, D is
unsatisfiable and δ a resolution refutation of D. Then there exists a resolution
refutation γ of C which “subsumes” δ. γ is in fact smaller than δ, i.e. ‖γ‖ ≤ ‖δ‖.
For a formal definition of subsumption among resolution derivations see Definition
6.6.4 in [1]. The subsumption property of resolution refutations will be used in the
proof of Theorem 9.

We define the classical analogue to the class LJ−:
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Definition 22. An LK-proof ϕ of S belongs to the class LK− if S is skolemized
and is of the form Γ `.

Our aim is to construct an elementary translation from LK− to LJ− in preserv-
ing the end-sequent.

Definition 23. A proof transformation Φ is called end-sequent preserving if for all
proofs ϕ of a sequent S Φ(ϕ) is a proof of S.

Theorem 9. There exists an elementary end-sequent preserving proof transforma-
tion Φ from cut-free proofs in LK− to cut-free proofs in LJ−. That means there
exists an elementary function g and a nondeterministic Turing machine M comput-
ing Φ s.t. for all cut-free proofs ϕ in LK− we have timeM (ϕ) ≤ g(‖ϕ‖).

Proof. Let us consider a cut-free (classical) proof ϕ of the skolemized sequent
S : A1, . . . , An ` (i.e. there are no strong quantifiers in the Ai).

Now consider our proof transformation T for T (ϕ) =

(ϕ)
A1, . . . , An `

A ` ∧ : l∗

` ¬A ¬ : r (ψ)
¬A,A1, . . . , An `

A1, . . . , An `
cut

where A = A1∧ · · ·∧An and ψ is a cut-free intuitionistic proof of length polynomial
in ‖A‖. T (ϕ) proves the same end-sequent as ϕ and can be constructed in time
polynomial in ‖ϕ‖. Now observe that the cut-formula ¬A on the left branch of
the cut has only weak quantifiers, and only strong quantifiers on the right branch.
Now we apply reductive cut-elimination to T (ϕ), eliminate the quantifiers in the
cuts (i.e. we break down the proof to propositional cuts) and obtain a proof χ;
this transformation can be done in double exponential time - here we are doing cut-
elimination in classical logic! Putting things together χ can be computed from ϕ in
time t(‖ϕ‖) for an elementary function t.

Now negative CERES comes into play: consider the characteristic clause set
CL(T (ϕ)) and let C′ be the characteristic clause set of χ. Note that C′ is a set of
ground clauses (indeed we may assume that in a proof containing no strong quan-
tifiers only ground terms are introduced by the quantifier rules). As ‖χ‖ ≤ t(‖ϕ‖)
C′ can be computed within t′(‖ϕ‖) : ct(‖ϕ‖) steps for a constant c by Proposition 2.
As C′ is ground, the computation of a shortest negative resolution refutation %′ can
be done in nondeterministic exponential time in ‖C′‖ i.e. within t′′(‖ϕ‖) : dt′(‖ϕ‖)
for some constant d (note that the number of different negative clauses definable
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over the ground atoms is at most exponential). By Proposition 3 there exists a
resolution refutation % of CL(ψ) s.t. % ≤ss %′ and, by definition of subsumption,
‖%‖ ≤ ‖%′‖. Moreover, % is also a negative resolution refutation as negative clauses
can only be subsumed by negative clauses or by the empty clause. Clearly also %
can be computed within nondeterministic exponential time t′′(‖ϕ‖).

So we refute CL(T (ϕ)) with % and get a CERES-normal form ϕ∗. By Theorem 7
we can compute ϕ∗ in time ≤ h(‖T (ϕ)‖, ‖%‖) for an elementary function h and, as
‖%‖ ≤ t′′(‖ϕ‖) and T (ϕ) is polynomial in ‖ϕ‖ there exists an elementary function g′
s.t. ϕ∗ can be computed in time ≤ g′(‖ϕ‖).

As %′ is the shortest negative resolution refutation of C′ there are no tautological
clauses occurring in %′ (note that a shortest negative resolution refutation never
contains tautologies!). As a consequence also % does not contain tautological clauses.
Now consider the proof T (ϕ). As all inferences in ϕ (within T (ϕ)) go into the cut
formula ¬A, the clauses of the characteristic clause sets coming from ϕ are all
tautologies. But these tautologies are not used in %! It follows that all projections
used in the CERES normal form ϕ∗ come from the intuitionistic part of the proof.
But note that, in this case, ϕ∗ can be transformed into an intuitionistic cut-free
proof ψ via the method described in Theorem 6 in linear time. This is the last step
of the transformation which gives a proof in LJ− and, putting things together, the
whole transformation can be done in elementary time g.

We illustrate the transformation of Theorem 9 with an example. Let ϕ be the
LK proof:

Pfa ` Pfa
Pa, Pfa ` Pfa, Pffa w

Pa ` Pfa, Pfa→ Pffa
→r

` Pa→ Pfa, Pfa→ Pffa
→r

` ∃x.(Px→ Pfx),∃x.(Px→ Pfx) ∃r

` ∃x.(Px→ Pfx)
cr

¬∃x.(Px→ Pfx) `
¬l

Then we can construct Ξ = T (ϕ), which proves the same end-sequent but has a
full intuitionistic proof on the right branch of the cut:
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ϕ
¬∃x.(Px→ Pfx) `
` ¬¬∃x.(Px→ Pfx)

¬r

Pα ` Pα Pfα ` Pfα
Pα→ Pfα, Pα ` Pfα

→l

Pα→ Pfα ` Pα→ Pfα
→r

Pα→ Pfα ` ∃x.(Px→ Pfx)
∃r

∃x.(Px→ Pfx) ` ∃x.(Px→ Pfx)
∃l

¬∃x.(Px→ Pfx), ∃x.(Px→ Pfx) `
¬l

¬∃x.(Px→ Pfx) ` ¬∃x.(Px→ Pfx)
¬r

¬∃x.(Px→ Pfx),¬¬∃x.(Px→ Pfx) `
¬l

¬∃x.(Px→ Pfx) `
cut

We apply the negative CERES method to this proof. The clause set extracted
is the following:

CL(Ξ) = {Pfa ` Pfa ; ` Pα ; Pfα `}
Note that the tautological clause Pfa ` Pfa, which came from the classical part

of Ξ can be eliminated. The only possible (negative) refutation is %:

` Pα
` Pfa α← fa

Pfα `
Pfa ` α← a

` R

Since % uses clauses that come from the intuitionistic side of Ξ, these are the
only projections we need:

π(` Pα) :
Pα ` Pα

Pα ` Pα, Pfα
wr

` Pα, Pα→ Pfα
→r

` Pα,∃x.(Px→ Pfx) ∃r

¬∃x.(Px→ Pfx) ` Pα
¬l

π(Pfα `) :
Pfα ` Pfα

Pfα, Pα ` Pfα
wl

Pfα ` Pα→ Pfα
→r

Pfα ` ∃x.(Px→ Pfx) ∃r

Pfα,¬∃x.(Px→ Pfx) `
¬l
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Note that the projection of the negative clause is intuitionistic, but the other
one is classical. Then we can compute the CERES normal form ϕ̂:

Pfa ` Pfa
Pfa ` Pfa, Pffa

wr

` Pfa, Pfa→ Pffa
→r

` Pfa,∃x.(Px→ Pfx) ∃r

¬∃x.(Px→ Pfx) ` Pfa
¬l

Pfa ` Pfa
Pfa, Pa ` Pfa

wl

Pfa ` Pa→ Pfa
→r

Pfa ` ∃x.(Px→ Pfx) ∃r

Pfa,¬∃x.(Px→ Pfx) `
¬l

¬∃x.(Px→ Pfx),¬∃x.(Px→ Pfx) ` cut

¬∃x.(Px→ Pfx) `
cl

By performing left-shift cut-elimination, we obtain the LJ proof ψ:

Pfa ` Pfa
Pfa, Pa ` Pfa

wl

Pfa ` Pa→ Pfa
→r

Pfa ` ∃x.(Px→ Pfx) ∃r

¬∃x.(Px→ Pfx), Pfa `
¬l

¬∃x.(Px→ Pfx), Pfa ` Pffa
wr

¬∃x.(Px→ Pfx) ` Pfa→ Pffa
→r

¬∃x.(Px→ Pfx) ` ∃x.(Px→ Pfx) ∃r

¬∃x.(Px→ Pfx),¬∃x.(Px→ Pfx) `
¬l

¬∃x.(Px→ Pfx) `
cl

Now we can apply Theorem 9 to the extended Glivenko translation.

Corollary 1. There exists a proof transformation T with the following properties:

(1) For any cut-free LK-proof ϕ of a sequent ` A (where A is a formula without
strong quantifiers) T (ϕ) is a cut-free LJ- proof of ` ψG(A),

(2) T can be computed in elementary time.

Proof. We extend ϕ by a ¬ : l rule and obtain a cut-free proof ϕ′ of ¬A `. By
Theorem 9 there exists a intuitionistic cut-free proof ψ′ of ¬A ` which can be
computed in elementary time (in ‖ϕ′‖). We obtain an intuitionistic cut-free proof χ
of ¬¬A just by appending ¬ : r to ψ′. As A does not contain strong quantifiers we
have ψG(A) = ¬¬A and so χ is a proof of ` ψG(A). Obviously χ can be constructed
in elementary time (in ‖ϕ‖).
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6 Conclusion

We have analyzed the complexity of proof tranlations defined via the formula trans-
formations of Kolmogorov and Glivenko. We proved using CERES that, for the
Glivenko translation, cut-free LK-proofs of S without strong quantifiers can be
translated into cut-free LJ-proofs of ΨG(S) in elementary time. It remains an open
question whether the same result could be obtained by reductive cut-elimination of
the translations ΨG(ϕ) within LJ and, even, whether reductive cut-elimination in
this class is elementary at all. We did not investigate proof translations based on
the Gödel-Gentzen translation and the question whether elementary translations of
cut-free proofs into cut-free proofs via this translations exist. Also a methodological
comparison of CERES and reductive cut-elimination methods on proof classes defined
by negative translations is left to future research.

References

[1] M. Baaz and A. Leitsch. Methods of Cut-Elimination. Trends in Logic. Springer, 2011.
[2] M. Baaz and A. Leitsch. On skolemization and proof complexity. Fundamenta Infor-

maticae, 20(4):353–379, December 1994.
[3] M. Baaz and A. Leitsch. Cut normal forms and proof complexity. Annals of Pure and

Applied Logic, 97(1-3):127–177, 1999.
[4] M. Baaz and A. Leitsch. Cut-elimination and redundancy-elimination by resolution.

Journal of Symbolic Computation, 29(2):149–176, 2000.
[5] M. Baaz and A. Leitsch. Towards a clausal analysis of cut-elimination. J. Symb.

Comput., 41(3-4):381–410, 2006.
[6] M. Baaz, A. Leitsch, and G. Reis. A note on the complexity of classical and intuitionistic

proofs. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS,
pages 657–666, 2015.

[7] M. Boudard and O. Hermant. Polarizing double-negation translations. In LPAR-19,
volume 8312 of LNCS, pages 182–197, 2013.

[8] G. Ferreira and P. Oliva. On various negative translations. In Proceedings Third In-
ternational Workshop on Classical Logic and Computation, CL&C 2010, Brno, Czech
Republic, 21-22 August 2010., pages 21–33, 2010.

[9] G. Gentzen. Untersuchungen über das logische Schließen I. Mathematische Zeitschrift,
39(1):176–210, dec 1935.

[10] F. Gilbert. A lightweight double-negation translation. In LPAR-20, volume XXX of
EPiC Series in Computer Science, pages 1–13, 2015.

[11] V. Glivenko. Sur quelques points de la logique de M. Brouwer. Bull. Acad. Royale de
Belgique, 15:183–188, 1929.

937



M. Baaz and A. Leitsch

[12] K. Gödel. Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse eines Math-
ematischen Kolloquiums, 4:34–38, 1933.

[13] H. Ishihara. A note on the Gödel-Gentzen translation. Mathematical Logic Quaterly,
46(1):135–137, 2000.

[14] U. Kohlenbach. Applied Proof Theory - Proof Interpretations and their Use in Mathe-
matics. Springer Monographs in Mathematics. Springer, 2008.

[15] A. N. Kolmogorov. On the principle of TERTIUM NON DATUR. Mathematicheskii
Shornik, 32:646–667, 1924/1925.

[16] S. Kuroda. Intuitionistische Untersuchungen der formalistischen Logik. Nagoya Math-
ematical Journal, 3:35–47, 1951.

[17] A. Leitsch. The Resolution Calculus. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 1997.

[18] G. Mints. A short introduction to intuitionistic logic. Kluwer Academic Publishers, 2nd
edition, 2002.

[19] V. P. Orevkov. Lower bounds for increasing complexity of derivations after cut elim-
ination. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo
Instituta, 88:137–161, 1979.

[20] G. Reis. Cut-elimination by Resolution in Intuitionistic Logic. PhD thesis, Vienna
University of Technology, 2014.

[21] R. Statman. Lower bounds on Herbrand’s theorem. Proceedings of the American Math-
ematical Society, 75(1):104–107, 1979.

938 Received 22 June 2016



Unification for Multi-Agent Temporal
Logics with Universal Modality

Stepan I. Bashmakov
Institute of mathematics and computer science, Siberian Federal University

79, pr. Svobodny, Krasnoyarsk 660041, Russia
krauder@mail.ru

Anna V. Kosheleva
Institute of space and informatics technologies, Siberian Federal University

26, ul. Kirenskogo, ULK building, Krasnoyarsk 660074, Russia
koshelevaa@mail.ru

Vladimir V. Rybakov
Department of Computing and Mathematics, Manchester Metropolitan University

John Dalton Building, Chester Street, Manchester M1 5GD, UK
vladimir_rybakov@mail.ru

Abstract
We investigate the unification problem for all logics with expressible uni-

versal modality. The main results are syntactic conditions for formulas to be
not unifiable and theorems describing bases for inference rules passive in such
logics. Then we apply these results to various logics, in particular to linear
temporal logics with time states with agents logical operations, and even to
some branching time logics with multi-agents logical operations.

Keywords: Unification, Multi-Agent Logics, Modal Logic, Temporal Logic, Passive
Inference Rules.

We dedicate our paper to Grigori Mints, for his profound contributions to proof the-
ory in general and also to the theory of non-classical logics, in particular. V. Rybakov
knew Grigori from the beginning of 80s, when he met Grigori on several occasions,
such as conferences in the Soviet Union (USSR), when they were both still working
there. During the 1995/1996 academic year V. Rybakov visited Grigori as Fulbright
Senior Scholar, (funded by Fulbright Foundation, from Washington DC. USA) at
Stanford University and they worked together on dynamic logical systems. He re-
members his collaboration with Grigori with the greatest pleasure.

Vol. 4 No. 4 2017
IfCoLog Journal of Logics and their Applications



S. I. Bashmakov, A. V. Kosheleva and V. V. Rybakov

1 Introduction

Logical systems modeling reasoning and multi-agent environments, computation
truth values and vote taking decisions are popular areas nowadays in Information
Sciences and Knowledge Representation (cf. e.g. M. Kracht [28], Francesco Belar-
dinelli, Alessio Lomuscio [9], W. van der Hoek and M. Wooldridge [44]). In this
paper we would like to contribute to these areas with our recent results concerning
the syntactic description of unification.

Unification is one of the important tools in automated deduction; as a concept
it was originated in Computer Science (cf. F. Baader and W. Snyder [5]). Later the
concept of unifiability was applied and studied for various non-classical logics. For
example, the problem of unification in intuitionistic logic and in propositional modal
logics over K4 was investigated by S. Ghilardi using the technique of projective
formulas, – [17, 19, 16, 18, 20] (this is an application of ideas from the field of
projective algebras). In these papers the problem of constructing finite complete
sets of unifiers was solved for the logics considered and efficient algorithms were
found. Unification in the field of Computer Science appeared initially in the form
of the possibility of transforming two different terms into syntactically equivalent
ones (by the replacing its variables, cf. [31, 27]), that eventually changed course
to the study of semantic equivalence (cf. Baader et al. [5, 1]). For the majority
of non-classical logics (modal, intuitionistic, temporal, etc.) there are special dual
equational theories of algebraic systems, so their unification problems are interpreted
into the corresponding logic-unificational counterparts ([3, 4, 2]). The unification
problem can be generalized to a more difficult question: whether the formula can
be converted into a theorem after replacing only some of the variables (keeping the
rest, as a set of parameters, intact). This problem has been studied and solved for
some modal and intuitionistic logics (cf. e.g. V. Rybakov [32, 33, 34] for the case of
intuitionistic logic itself and modal logics S4 and Grz).

The approach based on the ideas of projective formulas proved to be useful
and effective in dealing with admissibility and the basis of admissible rules (cf.
Jerabek [24, 25, 26], Iemhoff, Metcalfe [22, 23]). If algorithms for the construction
of computable finite sets of unifiers are found, it directly gives a solution of the
admissibility problem.

Temporal logic is also a very dynamic area of mathematical logic and computer
science (cf. Gabbay and Hodkinson [15, 13, 14]). In particular, LTL (linear temporal
logic) has significant applications in the field of Computer Science (cf. Manna, Pnueli
[29, 30], Vardi [46, 45]). The solution to the problem of admissibility for rules in
LTL was found by Rybakov [36] (cf. also [35]), the basis of admissible rules in LTL
was constructed by Babenyshev and Rybakov in [6] (and for the case without the
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operator Until – in [35]).
The solution of the unification problem for formulas with coefficients in LTL

has been found by Rybakov [37, 40] and its analogs were also re-settled for basic
modal and intuitionistic logic in [38, 39]. In particular, in [37], it was proved that
not all formulas unifiable in LTL are projective, and [40] proved the projectivity of
any unified formulas in LTLu (to recall, LTLu is a fragment of LTL, with only the
operator Until, no NEXT). In the paper of Dzik and Wojtylak [11] the same result
was obtained for the modal linear logic S4.3.

In [41], V. Rybakov found a description of all non-unifiable formulas in a broad
class of modal logics: in the extensions of S4 and [K4 + 2⊥ ≡ ⊥ ∈ L] and also
constructed finite bases for rules which are passive in these logics. Using results
from [7], following closely this technique, in our paper [8] we find a criterion for non-
unifiability of formulas in the linear temporal logic of knowledge with multi-agent
relations – LFPK, and construct a basis for inference rules which are passive in this
logic.

So, we obtained theorems syntactically describing non-unifiable formulas and
basis for passive inference rules in linear temporal logic with multi-agent logical op-
erations in time-point states (cf. [8]). Verifying and analyzing our proofs we recently
observed that the results might be transferred to a wide class of logics - all logics
where the universal modality might be modeled by any possible terms composed
from native logical operations (recall that the universal modality, first investigated
in Goranko and Passy [21], is regarded nowadays as a standard constructor in modal
logic; see, e.g., Blackburn et al. [10]). As a result, actually, all schemes of proofs
from [8] may be transferred to this more general case.

The main results of this our paper are Theorems 2 and 3 describing syntactic
conditions for formulas to be not unifiable and bases for passive inference rules for
all logics with an expressible universal modality. In the final sections we apply these
theorems to various logics, in particular to linear temporal logics with time states
with agents logical operations, and even to some branching time logics.

2 Definitions, notation, logics with universal modality

We first recall relational semantics for modal and temporal logics. A relational
frame (n-frame) F is a tuple 〈W,R1, . . . , Rn〉, where W is a non-empty set (the
base), and for all i, Ri ⊆ W × W . We use the notation |F | for the set W ; and
a ∈ F will abbreviate a ∈ |F |. A frame F is said to be rooted if there exists
a ∈ |F | such that, for any b 6= a in |F |, there are a1, . . . , am−1, am ∈ |F | such that
aRi1a1Ri2a2 . . . Rim−1am−1Rimam = b, where Rij are some accessibility relations
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from F . A valuation V of a set P of proposition letters in F is a mapping V : P →
2|F |, i.e. V (q) ⊆ |F | for any q ∈ P . An n-frame F together with a valuation V of
some set of letters P is called a (Kripke – Hintikka) relational model (based on F ).
The notation (F, a) 
V q means a ∈ V (q); if (F, a) 
V q we say that the letter q is
true at a with respect to V .

The language of multi-modal propositional logics consists of a countable set of
proposition letters (denoted by Latin letters, possibly with subscripts), Boolean
logical operations, and a finite set of unary modal operations 2i, 1 ≤ i ≤ n. The
formation rules for formulas are standard. The formula 3iα is the abbreviation for
the formula ¬2i¬α. A multi-modal logic (or, to be more precise, an n-modal logic)
is a set L of formulas containing all classical tautologies, the axioms 2i(p → q) →
(2ip→ 2iq) for all i, and closed under substitutions, Modus Ponens, and the rules
of necessitation: for all formulas A if A ∈ L then 2iA ∈ L as well (for every i). In
the sequel multi-modal logics are called just “logics”.

For any model with a valuation V , the truth relation with respect to V is ex-
tended to all Boolean formulas built from the set of letters P in a standard way.
Computation of the truth values for modal operations are as follows:

(F, a) 
V 2jA↔ ∀b ∈ |F |(aRjb⇒ (F, b) 
V A)).

For a frame F and a formula A we write F 
 A if for any valuation V on F and
any a ∈ |F | (F, a) 
V A holds.

For any class of frames K, L(K) := {A | ∀F ∈ K,F 
 V } is the multi-modal
logic generated by the class K. The majority of popular modal logics coincide with
L(K) for some K. Such logics are said to be Kripke complete; there are some
modal logics which are not Kripke complete, though they are sophisticate examples
constructed in order to disprove the conjecture of Kripke completeness for all logics
(cf. K. Fine, S. K. Thomason, J. van Benthem [12, 42, 43].

Temporal logics are similar to modal logics, but with the assumption that one
of the accessibility relations from the frames F generating these logics, e.g. R1, is
responsible for modeling the passing of time. In this case two modalities for R1 are
reserved, one – is the 21 itself, and another one 2−1

1 where the second one is based
on the relation R−1

1 , the converse to R1. The first relation is referred as always in
the future, and the second one - as always in the past (and they are usually denoted
as 2F and 2P ).

We may extend multi-modal logics and temporal (single modal or multi-modal)
ones to logics possessing a universal modality as follows. Assume that the language of
a logic is extended by a new modal operation 2U , and that the rule for computation
for truth values of formulas with applications of 2U is as follows:
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∀a, (F, a) 
V 2UA↔ [∀b ∈ |F |(F, b) 
U A] .

In other words, 2UA says that the formula A is true always and everywhere, so
it acts as a universal quantifier and is therefore called the universal modality.

Definition 1. A logic L is said to be one with universal modality if its language
contains the modality 2U , and there is a class of frames K, such that L = L(K).

Now we recall some definitions and already known results related to the notion
of unification and to “passive inference rules”, as they first appeared in [41] and then
in [7].

Definition 2. A formula A(p1, . . . , pn) is unifiable in a logic L iff there is a tuple
of formulas B1, . . . , Bn such that A(B1, . . . , Bn) ∈ L, (B1, . . . , Bn) is said to be its
unifier).

Definition 3. Some formulas A(p1, . . . , pn) and B(p1, . . . , pn) are said to be unifiable
in a logic L iff the formula

[A(p1, . . . , pn)→ B(p1, . . . , pn)] ∧ [(B(p1, . . . , pn)→ A(p1, . . . , pn))]

(the latter formula is usually abbreviated by A(p1, . . . , pn) ≡ B(p1, . . . , pn)) is unifi-
able in L and the corresponding unifier B1, . . . , Bn is said to be the unifier for
formulas A and B.

We consider below only Kripke complete logics L (that is L = L(K) for some
class of frames K) with the property that ¬2j⊥ ∈ L, for all j (⊥ = p ∧ ¬p, that is,
any of its frames do not have maximal Rj irreflexive worlds (and minimal irreflexive
worlds, – for temporal logics)). The restriction to only Kripke-complete logics follows
from the proof technique below, where it is indeed necessary. The proof technique
only works for such logics. The property ¬2j⊥ ∈ L is necessary for our proofs as
well (for the inductive steps in the proofs would work).

In this case, if a logic is decidable, generally speaking, it is an easy task to verify
whether a formula or two formulas are unifiable in this logic. It is immediate to see
that it is sufficient to look for unifiers among formulas > and ⊥, cf. e.g.

Corollary 1 (Corollary 2.7 from [41]). For all superintuitionistic logics and modal
logics extending logics S4 or K4 + 2⊥ ≡ ⊥, unifiers for unifiable formulas can be
effectively computed; if they (unifiers) exist then some substitution replacing letters
by formulas > or ⊥ will be a unifier.
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The presence of the equivalence 2⊥ ≡ ⊥ above is essential too, since otherwise
a possibly increasing sequence of operations 2 applied to ⊥ will not have a clear
visible computable bound.

This corollary is rather evident, however if we wish to characterize all formulas
which are not unifiable, to obtain a general mathematical theorem describing all
such formulas, it is not so immediate. The following result was known:

Theorem 1 (2.10 from [41]). For any modal logic L extending S4 and any modal
formula α, α is not unifiable in L iff the formula

2α→

 ∨
p∈V ar(α)

3p ∧3¬p


is provable in L (that is this formula belongs to L, as to the set of its theorems).

Though such logics do not have universal modality. Recall that an inference rule
is an expression r := A1, . . . , An/B where B and all Ai are some formulas in the
language of a certain logic. The letters of these formulas are called its variables.

We aim to characterize the inference rules which are passive, those whose
premises are not unifiable. Recall that:

Definition 4. Let r := A1, . . . , An/B be an inference rule, r is said to be passive
for a logic L if for any substitution g of formulas instead of variables in r, we never
have g(A1) ∈ L& . . .& g(An) ∈ L. In other words, r is a passive rule if the formulas
from its premise do not have common unifiers.

We would like to characterize such rules in a syntactic way, to find some bases
for them. That is we actually wish to describe formulas which are not unifiable pure
syntactically, in a sense – to axiomatize them.

Definition 5. For any given rule r := A1, . . . , An/B, r is a consequence of a sequence
of rules r1 := A1/B1, . . . , rn := An/Bn in a logic L if there is a derivation in L
of the conclusion B from the premises of the rule r, as a hypothesis, by means of
rules from r1, . . . , rn, theorems of L and postulated rules of L (e.g. modus ponens
(for classical propositional logic or the intuitionistic logics) and Goedel necessitation
rule A/2iA for modal logics).

Definition 6. A set of rules Br is a basis for a set of rules Sr in a logic L if any
rule r ∈ Sr is a consequence of some rules from Br in L.
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3 A criterion of non-unifiability

Let L be a Kripke complete logic (that is L = L(K) for some class of frames K) with
the property ¬2j⊥ ∈ L, for all j (that is all frames F ∈ K do not have maximal
irreflexive w.r.t. any Rj worlds (and minimal irreflexive – for the case of temporal
logics)). Let L has the universal modality 2U .

Theorem 2. A formula A is non-unifiable in L iff the formula

2UA→

 ∨
p∈V ar(A)

3Up ∧3U¬p


is a theorem in L.

Proof. The proof will go by reduction to absurdum. Assume that

2UA→

 ∨
p∈V ar(A)

3Up ∧3U¬p

 ∈ L
but, at the same time, the formula A is unifiable in L.

Then by definition of the unifier, there is a substitution g such that g(A) ∈ L.
Because L is closed under substitutions, we obtain

g(2UA→

 ∨
p∈V ar(A)

3Up ∧3U¬p

) ∈ L.

We know that L = L(K) for some class of frames K. Take an arbitrary frame
F ∈ K for L. Consider the valuation V for all letters q of formulas g(p), where
p ∈ V ar(A), on the F , where V (q) = ∅. It is easy to show by induction on the
length of formulas B constructed out of letters q that:

∀b ∈ F, ∀c ∈ F : b 
V B ⇔ c 
V B.

The inductive step for operations 2j follows from our assumption that ¬2j⊥ ∈ L.
Consequently,

∀b ∈ F : b 6
V
∨

p∈V ar(A)
3Ug(p) ∧3g(¬p).

At the same time,
∀b ∈ F : b 
 g(2UA)
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since g(A) ∈ L. Thereby,

∀b ∈ F : b 6 
V g(2UA→

 ∨
p∈V ar(A)

3Up ∧3U¬p

)

which contradicts the hypothesis:

g(2UA→

 ∨
p∈V ar(A)

3Up ∧3U¬p

) ∈ L.

In the opposite direction, assume that the formula A is non-unifiable in L, but
at the same time

2UA→

 ∨
p∈V ar(A)

3Up ∧3U¬p

 /∈ L

Then there is a certain L-frame F ∈ K, that disproves this formula:

∃a ∈ F : 〈F, a〉 6 
V2UA→

 ∨
p∈V ar(A)

3Up ∧3U¬p

 .
That is 〈F, a〉 
V 2UA and 〈F, a〉 6
V

[∨
p∈V ar(A) 3Up ∧3U¬p

]
. Because we

have that 〈F, a〉 6
V
[∨

p∈V ar(A) 3Up ∧3U¬p
]
and 2U is the universal modality, it

immediately follows that for all p ∈ V ar(A) either (1) ∀b ∈ F (b 
V p) or (2) ∀b ∈
F (b 
V ¬p).

Choose the substitution g for all of variables p from the formula A as follows:
∀p ∈ V ar(A) : g(p) = > if (1) holds and g(p) = ⊥ in the case if (2) is the case.
Using that 〈F, a〉 
V 2UA we immediately obtain that g is a unifier for the formula
A (using again that L = L(K) and ¬2j⊥ ∈ L, for all j). Therefore, the formula A
is unifiable in L.

4 Passive inference rules

Below we always assume that L is a logic with the properties which were required
in the previous section (that is: L is a Kripke complete logic: L = L(K) for some
class of frames K and ¬2j⊥ ∈ L, for all j) and let L to have the universal modality.
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Theorem 3. The rules

rn :=
∨

1≤i≤n3Upi ∧3U¬pi
⊥

form a basis for all passive inference rules in any such logic L.

Proof. Evidently we have

2U

 ∨
p∈V ar(A)

3Up ∧3U¬p

→
 ∨
p∈V ar(A)

3Up ∧3U¬p


is a theorem of L. Hence by Theorem 2 the formula

A :=

 ∨
p∈V ar(A)

3Up ∧3U¬p


is not unifiable in L, thus, any rule rn is passive.

Let us assume that a rule R1 := A1, . . . , An/B is passive for L. Then the rule
R2 := A1 ∧ · · · ∧An/B is also passive and the formula A1 ∧ · · · ∧An is not unifiable
in L. Applying Theorem 2, we conclude:

(a) 2U (A1 ∧ · · · ∧An)→

 ∨
p∈V ar(A1∧···∧An)

3Up ∧3U¬p

 ∈ L.
Applying Gödel’s rule w.r.t. 2U to the premise of R2 we may derive the formula

2U (A1∧ · · ·∧An). Using this, (a) and the modus ponens rule we derive the formula
[
∨
p∈V ar(A1∧···∧An) 3Up ∧3U¬p].
From this formula, applying the rule rn, where n is the number of variables in the

conjunction of A1 ∧ · · · ∧ An, we can derive the formula ⊥. Using that ⊥ → B ∈ L
and modus ponens, we derive B. Thus, all rules rn form a basis for all rules passive
in L.

5 Applications: Temporal logics of agents knowledge
with universal modality

Now we approach the central part of the paper – the application to Multi-Agent
Temporal logics as well as other ones where the universal modality is not present in
the language, but can be modeled by compound formulas in the native language of
the given logics.
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Consider first the standard linear temporal logic LTL, with operations Until and
Since. The language of LTL extends the language of Boolean logic by operations
N (next), U (until) and S (since). The formulas of LTL are built up from a set
Prop of atomic propositions (synonymously – propositional letters). The set of all
formulas is closed w.r.t. applications of Boolean operations, the unary operation N
(next) and the binary operations U (until) and S (since).

The semantics for LTL uses infinite transition systems (runs, computations),
which we describe in terms of linear Kripke structures based on natural numbers.
These structures can be represented as quadruples

M := 〈N,≤,Next, V 〉,

where N is the set of all natural numbers, ≤ is the standard order on N , Next
is the binary relation, where a Next b means b is the number next to a. We can
also consider here the operation Previous which is the opposite to Next. All the
following results will be valid for this case as well). A valuation V of any set of
letters S assigns truth values to elements of S. So, for any p ∈ S, V (p) ⊆ N , V (p)
is the set of all n from N where p is true (w.r.t. V ).

The triple 〈N,≤,Next〉 is a Kripke frame which we will denote by F. For any
Kripke frame the truth values can be extended from propositions of S to arbitrary
formulas constructed from these propositions as follows:

∀p ∈ Prop (F, a) 
V p ⇔[a ∈ N ∧ a ∈ V (p)];

(F, a) 
V A ∧B ⇔[[(F, a) 
V A] ∧ [(F, a) 
V B]];

(F, a) 
V ¬A ⇔not[(F, a) 
V A];

(F, a) 
V NA ⇔∀b[(a Next b)⇒ (F, b) 
V A];

(F, a) 
V A UB ⇔∃b[(a ≤ b) ∧ ((F, b) 
V B)∧

∀c[(a ≤ c < b)⇒ (F, c) 
V A]];

(F, a) 
V A S B ⇔∃b[(b ≤ a) ∧ ((F, b) 
V B)∧
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∀c[(b ≤ c < a)⇒ (F, c) 
V A]].
Using operations U, S and N we can define all standard temporal and modal

operations. For instance, FA (A holds eventually, which, in terms of modal logic,
means A is possible (denotation 3+A)), can be described as trueUA. Therefore,
in this language, we can also define the modal operation 2 (as 2+A := ¬3+¬A).
Modal operation 3− directed to past may be defined as 3−A := trueSA, respec-
tively 2−A := ¬3−¬A.

The logic LTL is the set of all formulas which are true at all such models. It is
clear that the universal modality may be expressed in this logic as 2Up := 2+p∧2−p.
Therefore we may directly transfer the results from the previous section to this logic.

Theorem 4. Theorems 2 and 3 hold for LTL.

Now we wish to obtain our earlier results from [8] using the theorems of the
previous section; that is, we want to describe non-unifiability and passive rules for
the linear temporal logic with Multi-Agents modalities for Multi-Agent Knowledge.

First we recall the definitions and notation from that earlier paper. The alpha-
bet of the language for the logic LLFPK includes a countable set of propositional
variables P := {p1, . . . , pn, . . . }, brackets (, ) default Boolean logical operations and
a variety of unary modal operators {2F ,2P ,21, . . . ,2n}. The name LFPK is
supposed to abbreviate the sequence of words logic, future, past, knowledge.

The formation rules for formulas are: every propositional variable p ∈ P is a
well-formed formulae (wff), and if A is a wff, then so are 2FA,2PA, 2iA, for i ∈ I.
Logical operations 3F , 3P , 3i are defined using the logical operations 2F , 2P , 2i
as usual 3F = ¬2F¬, 3P = ¬2P¬, 3i = ¬2i¬.

The meanings of the modal operations described are as follows. For 2PA: A is
true at all previous and at the current point in time; for 2FA: A is true at the given
time point and will be true at all future points. The formula 2iA means that A is
true at all informational states which are available for the agent i in a current time
state.

Semantics for the language of LLFPK models linear and discrete streams of the
computational process, at which each point in time is associated with an integer
number n ∈ Z.

Definition 7. Temporal k-modal Kripke-frame is a tuple

T = 〈WT , R1, R2, . . . , Rk〉,
where WT is a non-empty set of worlds, R1, . . . , Rk are some binary relations on
WT , where R2 = R−1

1 := {(a, b)| (b, a) ∈ R1} is the converse relation to R1.
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Definition 8. Let F = 〈WF , R1, . . . , Rk〉 is a Kripke-frame, then ∀Ri Ri-cluster (if
exists) is the subset CRi ∈WF such that ∀v, z ∈ CRi : (vRiz)&(zRiv) and ∀z ∈WF ,
∀v ∈ CRi : ((vRiz&zRiv)⇒ z ∈ CRi). For any relation Ri, CRi(v) is the Ri-cluster
s.t. v ∈ CRi or the cluster, generated by the element v.

Definition 9. LFPK-frame is a temporal (n+ 2)-modal Kripke-frame

T = 〈ZT , RF , RP , R1, . . . , Rn〉,

where RP = R−1
F and:

a. ZT is the disjoint union of clusters of states
Ct, t ∈ Z (Z is the set of all integer numbers), and Ct1

⋂
Ct2 = ∅ if t1 6= t2;

b. ∀t1, t2 ∈ Z, if t1 ≤ t2 then ∀a ∈ Ct1 ,∀b ∈ Ct2(aRF b) and (bRPa).
None other relations via RP and RF are allowed.

c. R1, . . . , Rn are some equivalence relations in each separate cluster Ct.

Definition 10. A model MT on a LFPK-frame T is a tuple MT = 〈T, V 〉, where
V is a valuation of a set of propositional letters p ∈ P on T , i.e ∀p ∈ P [V (p) ⊆ ZT ].

Given a model MT = 〈T, V 〉, where T is a LFPK-frame ZT we compute truth
values of formulas at states w ∈ ZT as follows:

a. 〈T,w〉 
V p⇔ w ∈ V (p);
b. 〈T,w〉 
V 2FA⇔ ∀z ∈ ZT (wRF z ⇒ 〈T, z〉 
V A);
c. 〈T,w〉 
V 2PA⇔ ∀z ∈ ZT (wRP z ⇒ 〈T, z〉 
V A);
d. ∀i ∈ I, 〈T,w〉 
V 2iA⇔ ∀z ∈ ZT (wRiz ⇒ 〈T, z〉 
V A).
e. 〈T,w〉 
V A ∨B ⇔ [(〈T,w〉 
V A) or (〈T,w〉 
V B)];
f. 〈T,w〉 
V A ∧B ⇔ [(〈T,w〉 
V A) and (〈T,w〉 
V B)];
l. 〈T,w〉 
V A→ B ⇔ [(〈T,w〉 
V B) or not(〈T,w〉 
V A)];
i. 〈T,w〉 
V ¬A ⇔ [not(〈T,w〉 
V A)];

If a formula A is true at any element of a frame T w.r.t. any valuation V , we
say A is true at the frame T and write T 
 A.

Definition 11. The temporal Linear Future/Past logic LFPK (of agents knowl-
edge) is the set of all LFPK-formulas valid (true) on all frames: LFPK := {A |
A ∈ Fml(LLFPK), ∀T (T 
 A)}. If a formula A is a member of LFPK, then we say
that A is a theorem of LFPK.

It is immediate to see that the formula 2F p∧2P p models the universal modality
in LFPK. Therefore again we may directly transfer the results from the previous
section to this logic.
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Theorem 5 ([8]). Theorems 2 and 3 hold for LFPK.

And now we would like to obtain an yet more general result. We will consider
some semantic models for not just linear but branching time. Such models look as
follows. Let n be a given fixed natural number. Any such model M is compound
from some arbitrary set S of models Mi based on some LFPK frames which are
glued in the following way.

The model M is based on all models from S, all these models are sub-models of
M , and M has no states which do not belong to any model from S. For any two
different models Mi1 and Mi2 from S, there are some two clusters Ca and Cb from
Mi1 and Mi2 respectively, such that there is a zig-zag passageway of length at most
n in the model M by time to future and to past from Ca into Cb.

Note that such models might be very complicated and differently compound,
even with possible common whole intervals of states. The truth values of formulas
with 2F and 2P may be calculated in such models M as usual in temporal/modal
models. the only distinction with our previous case is that the time sometimes
may be branching, though not compulsory branching in each cluster. Since we have
bounded by n time-zigzag, the formula

(2F2P )n+1p ∧ (2P2F )n+1p

represents the universal modality in all such models (for fixed n).
Let L(n) be the logic generated by a (any given) class of arbitrary models con-

structed as described above. We call this logic branching time multi-agent logic with
bounded time zigzag. Then L(n) has expressible universal modality, and therefore

Theorem 6. Theorems 2 and 3 hold for L(n).

6 Conclusion
Our paper describes (algorithmically and syntactically) formulas which are not unifi-
able in a wide class modal, temporal and multi-agent logics from areas close to In-
formation Sciences and general Computer Science. The important case for future
investigation is the case of similar logics but without the request for logics to be
Kripke complete. We may see that our Theorem 1 does not requires Kripke com-
pleteness, but later the methods which we use here need logics to be Kripke complete.
Second open problem is to extend such results to the branching time temporal log-
ics without restriction to bounded time-zig-zag. The next interesting question is
to attempt to model in our framework the agents’ accessibility relations, which are
not equivalence relations but some other, as linear, some branching structure with
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hierarchy, etc, that is to consider the case when agents accessibility relations are
more complicated, and to extend our results to such logics.
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Abstract

We discuss a feature of the natural language of mathematics – the implicit
dynamic introduction of functions – that has, to our knowledge, not been
captured in any formal system so far. If this feature is used without limitations,
it yields a paradox analogous to Russell’s paradox. Hence any formalism
capturing it has to impose some limitations on it. We sketch two formalisms,
both extensions of Dynamic Predicate Logic, that innovatively do capture
this feature, and that differ only in the limitations they impose onto it.
One of these systems is based on Ackermann-like Function Theory, a novel
foundational theory of functions that is inspired by Ackermann Set Theory
and that interprets ZFC.

Keywords: Dynamic Predicate Logic, Function Introduction, Ackermann Set
Theory, Function Theory.

1 Dynamic predicate logic
Dynamic predicate logic (DPL) [7] is a formalism whose syntax is identical to that
of standard first-order predicate logic (PL), but whose semantics is defined in such
a way that the dynamic nature of natural language quantification is captured in the
formalism:

1. If a farmer owns a donkey, he beats it.

2. PL: ∀x ∀y (farmer(x) ∧ donkey(y) ∧ owns(x, y)→ beats(x, y)).
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3. DPL: ∃x (farmer(x) ∧ ∃y (donkey(y) ∧ owns(x, y)))→ beats(x, y).

In PL, 3 is not a sentence, since the rightmost occurrences of x and y are free. In
DPL, a variable may be bound by a quantifier even if it is outside its scope. The
semantics is defined in such a way that 3 is equivalent to 2. So in DPL, 3 captures
the meaning of 1 while being more faithful to its syntax than 2.

1.1 DPL semantics

We present DPL semantics in a way slightly different but logically equivalent to
its definition by Groenendijk and Stokhof in [7]. Structures and assignments are
defined as for PL: A structure S specifies a domain |S| and an interpretation aS for
every constant, function or relation symbol a in the language. An S-assignment is a
function from variables to |S|. Let GS denote the set of S-assignments. Given two
assignments g, h, we define g[x]h to mean that g differs from h at most in what it
assigns to the variable x. Given a DPL term t, we recursively define

[t]gS =


g(t) if t is a variable,
tS if t is a constant symbol,
fS([t1]gS , . . . , [tn]gS) if t is of the form f(t1, . . . , tn).

Groenendijk and Stokhof [7] define an interpretation function J·KS from DPL for-
mulae to subsets of GS × GS . We instead recursively define for every g ∈ GS an
interpretation function J·Kg

S from DPL formulae to subsets of GS :1

1. J>Kg
S := {g}.

2. Jt1 = t2K
g
S := {h|h = g and [t1]gS = [t2]gS}.2

3. JR(t1, . . . , t2)Kg
S := {h|h = g and ([t1]gS , . . . , [t2]gS) ∈ RS}.

4. J¬ϕKg
S := {h|h = g and there is no k ∈ JϕKh

S}.

5. Jϕ ∧ ψKg
S := {h|there is a k s.t. k ∈ JϕKg

S and h ∈ JψKk
S}.

6. Jϕ→ ψKg
S := {h|h = g and for all k s.t. k ∈ JϕKh

S , there is a j s.t. j ∈ JψKk
S}.

7. J∃x ϕKg
S := {h|there is a k s.t. k[x]g and h ∈ JϕKk

S}.

ϕ ∨ ψ and ∀x ϕ are defined to be a shorthand for ¬(¬ϕ ∧ ¬ψ) and ∃x > → ϕ
respectively.

1This can be viewed as a different currying of the uncurried version of Groenendijk and Stokhof’s
interpretation function.

2The condition h = g in cases 2, 3, 4 and 6 implies that the defined set is either ∅ or {g}.
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2 Implicit dynamic introduction of function symbols
Functions are often dynamically introduced in an implicit way in mathematical texts.
For example, [10] introduces the additive inverse function on the reals as follows:

(a) For each a there is a real number −a such that a+ (−a) = 0. [10, p. 1]

Here the natural language quantification “there is a real number −a” locally (i.e.
inside the scope of “For each a”) introduces a new real number to the discourse. But
since the choice of this real number depends on a and we are universally quantifying
over a, it globally (i.e. outside the scope of “For each a”) introduces a function “−”
to the discourse.

The most common form of implicitly introduced functions are functions whose
argument is written as a subscript, as in the following example:

(b) Since f is continuous at t, there is an open interval It containing t such that
|f(x)− f(t)| < 1 if x ∈ It ∩ [a, b]. [10, p. 62]

If one wants to later explicitly call the implicitly introduced function a function, the
standard notation with a bracketed argument is preferred:

(c) Suppose that, for each vertex v of K, there is a vertex g(v) of L such that
f(stK(v)) ⊂ stL(g(v)). Then g is a simplicial map V (K)→ V (L), and |g| w f .
[8, p. 19]

When no uniqueness claims are made about the object locally introduced to
the discourse, implicit function introduction presupposes the existence of a choice
function, i.e. presupposes the Axiom of Choice. We hypothesise that the naturalness
of such implicit function introduction in mathematical texts contributes to the wide-
spread feeling that the Axiom of Choice must be true.

Implicitly introduced functions generally have a restricted domain and are not
defined on the whole universe of the discourse. In the example (c), g is only defined
on vertices of K and not on vertices of L. Implicit function introduction can also
be used to introduce multi-argument functions, but for the sake of simplicity and
brevity, we restrict ourselves to unary functions in this paper.

If the implicit introduction of functions is allowed without limitations, one can
derive a contradiction:

(d) For every function f , there is a natural number g(f) such that

g(f) =
{

0 if f ∈ dom(f) and f(f) 6= 0,
1 if f 6∈ dom(f) or f(f) = 0.
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Then g is defined on every function, i.e. g(g) is defined. But from the definition
of g, g(g) = 0 iff g(g) 6= 0.

This contradiction is due to the unrestricted function comprehension that is implic-
itly assumed when allowing implicit introductions of functions without limitations.
Unrestricted function comprehension could be formalised as an axiom schema as
follows:

Axiom Schema 1 (Unrestricted function comprehension). For every formula
ϕ(x, y), the following is an axiom: ∀x ∃y ϕ(x, y)→ ∃f ∀x ϕ(x, f(x)).

The inconsistency of unrestricted function comprehension is analogous to the
inconsistency of unrestricted set comprehension, i.e. Russell’s paradox.

Russell’s paradox led to the abandonment of unrestricted comprehension in set
theory. Two radically different approaches have been undertaken for restricting set
comprehension: Russell himself restricted it through his Ramified Theory of Types,
which was later simplified to Simple Type Theory (STT), mainly known via Church’s
formalisation in his simply typed lambda calculus [2]. On the other hand, the risk
of paradoxes like Russell’s paradox also contributed to the development of ZFC
(Zermelo-Fraenkel set theory with the Axiom of Choice), which allows for a much
richer set theoretic universe than the universe of simply typed sets. Since all the
axioms of ZFC apart from the Axiom of Extensionality, the Axiom of Foundation
and the Axiom of Choice are special cases of comprehension, one can view ZFC as
an alternative way to restrict set comprehension.

Similarly, the above paradox must lead to the abandonment of unrestricted func-
tion comprehension. The type-theoretic approach is easily adapted to functions, so
we will first sketch the system that formalises this approach, Typed Higher-Order
Dynamic Predicate Logic. For an untyped approach, there is no clear way to trans-
fer the limitations that ZFC puts onto set comprehension to the case of function
comprehension. However, there is an axiomatization of set theory (with classes)
called Ackermann set theory that is a conservative extension of ZFC. It turns out
that the limitations that Ackermann set theory poses on set comprehension can be
transferred to the case of function comprehension, and hence to the case of implicit
dynamic function introduction.

The need to deal with implicit function introduction arose for us in the context
of the Naproche project, a project aiming at automatic formalisation of natural
language mathematics [3, 5, 6]. It has been implemented in the Naproche system
using type restrictions as in Typed Higher-Order Dynamic Predicate Logic, and we
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plan to implement it using the less strict restrictions of the untyped Higher-Order
Dynamic Predicate Logic in a future version of the system.

3 Typed higher-order dynamic predicate logic
In this section, we extend DPL to a system called Typed Higher-Order Dynamic
Predicate Logic (THODPL), which formalises implicit dynamic function introduc-
tion, and also allows for explicit quantification over functions. THODPL has vari-
ables typed by the types of STT. In the below examples we use x and y as variables
of the basic type i, and f as a variable of the function type i→ i. A complex term is
built by well-typed application of a function-type variable to an already built term,
e.g. f(x) or f(f(x)).

The distinctive feature of THODPL syntax is that it allows not only variables
but any well-formed terms to come after quantifiers. So (1) is a well-formed formula:

∀x ∃f(x) R(x, f(x)), (1)
∀x ∃y R(x, y), (2)

∃f (∀x R(x, f(x))). (3)

The semantics of THODPL is to be defined in such a way that (1) has the same
truth conditions as (2). But unlike (2), (1) dynamically introduces the function
symbol f to the context, and hence turns out to be equivalent to (3).

We now sketch how these desired properties of the semantics can be achieved.
In THODPL semantics, an assignment assigns elements of |S| to variables of type
i, functions from |S| to |S| to variables of type i → i etc. Additionally, an assign-
ment can also assign an object (or function) to a complex term. For example, any
assignment in the interpretation of ∃f(x) R(x, f(x)) has to assign some object to
f(x). The definition of g[x]h can now naturally be extended to a definition of g[t]h
for terms t. The definition of [t]gS has to be adapted in the natural way to account
for function variables.

Just as in the case of DPL semantics, we recursively define an interpretation J·Kg
S

from DPL formulae to subsets of GS (the cases 1-5 of the recursive definition are as
in Section 1.1):

6. Jϕ→ ψKg
S := {h|h differs from g in at most some function variables f1, . . . , fn

(where this choice of function variables is maximal), and there is a variable
x such that for all k ∈ JϕKg

S , there is an assignment j ∈ JψKk
S such that

j(fi(x)) = h(fi)(k(x)) for 1 ≤ i ≤ n, and if n > 0 then k[x]g}.

7. J∃t ϕKg
S := {h|there is a k s.t. k[t]g and h ∈ JϕKk

S}.
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In order to make case 6 of the definition more comprehensible, let us consider
its role in determining the semantics of (1), i.e. of ∃x > → ∃f(x) R(x, f(x)): First
note that J∃f(x) R(x, f(x))Kk

S is the set of assignments j satisfying R(x, f(x)) (i.e.
for which JR(x, f(x))Kj

S is non-empty) such that j[f(x)]k. Furthermore note that
J∃x >Kg

S is the set of assignments k such that k[x]g. So by case 6 with n = 1,

J∃x > → ∃f(x) R(x, f(x))Kg
S = {h|h[f ]g and there is a variable x such that for all

k such that k[x]g, there is an assignment j satis-
fying R(x, f(x)) such that j[f(x)]k and j(f(x)) =
h(f)(k(x)), and k[x]g}

= {h|h[f ]g and for all k such that k[x]g, there is an
assignment j satisfying R(x, f(x)) such that j[f(x)]k
and j(f(x)) = h(f)(k(x))}

= {h|h[f ]g and for all k such that k[x]h, k satisfies
R(x, f(x))}

= J∃f (∀x R(x, f(x)))Kg
S .

The type restrictions THODPL imposes may be too strict for some applications:
Mathematicians sometimes do make use of functions that do not fit into the corset
of strict typing, e.g. a function defined on both real numbers and real functions. To
overcome this restriction, we will introduce an untyped variant HODPL in Section
6. But for this, we require some foundational preliminaries.

4 Ackermann set theory
Ackermann set theory [1] postulates not only sets, but also proper classes which are
not sets.3 The sets are distinguished from the proper classes by a unary predicate
M (from the German word “Menge” for “set”).

Ackermann presented a pure version of his theory without urelements, and a
separate version with urelements, which we will present here. The language of
Ackermann set theory contains three predicates: A binary predicate ∈, a unary
predicate M and a unary predicate U for urelements. We introduce L(x) (“x is
limited”) as an abbreviation for M(x) ∨U(x). The idea is that sets and urelements
are objects of limited size, and are distinguished from the more problematic classes
of unlimited size.

The axioms of Ackermann set theory with urelements are as follows:

3Note, however, that unlike the more well-known class theory NBG, Ackermann set theory also
allows for proper classes that contain proper classes.
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• Extensionality axiom: ∀x ∀y (∀z (z ∈ x↔ z ∈ y)→ x = y).

• Class comprehension axiom schema: Given a formula F (y) (possibly with
parameters4) that does not have x among its free variables, the following is an
axiom:
∀y (F (y)→ L(y))→ ∃x ∀y (y ∈ x↔ F (y)).

• Set comprehension axiom schema: Given a formula F (y) (possibly with pa-
rameters that are limited5) that does not have x among its free variables and
does not contain the symbol M, the following is an axiom:
∀y (F (y)→ L(y))→ ∃x (M(x) ∧ ∀y (y ∈ x↔ F (y))).

• Elements and subsets of sets are limited:
∀x ∀y (M(y) ∧ (x ∈ y ∨ ∀z (z ∈ x→ z ∈ y))→ L(y)).

So unlimited set comprehension is replaced by two separate comprehension sche-
mata, one for class comprehension and one for set comprehension. In both cases,
the comprehension is restricted by the constraint that only limited objects satisfy
the property that we are applying comprehension to. But for set comprehension,
we have the additional constraint that the property may not be defined using the
setness predicate or using a proper class as parameter. Ackermann justified this
approach by appeal to a definition of “set” from Cantor’s work [1].

If an Axiom of Foundation for sets is added, Ackermann set theory turns out to
be – in what it says about sets – precisely equivalent to ZF [9]. But this equivalence
is not a triviality: It is especially hard to establish Replacement for the sets of
Ackermann set theory.

5 Ackermann-like function theory
Now we transfer the ideas of a comprehension limited in this way from set compre-
hension to function comprehension. For this a dichotomy similar to that between
sets and classes has to be imposed on functions. We propose the terms function and
map respectively for this dichotomy, and call the theory resulting from these limi-
tations on function comprehension Ackermann-like Function Theory (AFT). AFT

4This means that F may actually be of the form F (z̄, y), and that these parameters are univer-
sally quantified in the axiom:
∀z̄ (∀y (F (z̄, y)→ M(y))→ ∃x ∀y (y ∈ x↔ F (z̄, y))).

5Formally, with the parameters made explicit, the set comprehension axiom schema reads as
follows:
∀z1, . . . , zn (L(z1) ∧ · · · ∧ L(zn) → (∀y (F (z1, . . . , zn, y) → L(y)) → ∃x (M(x) ∧ ∀y (y ∈ x ↔
F (z1, . . . , zn, y))))).
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can be shown to be equiconsistent with Ackermann set theory and hence with ZFC
(see Theorem 4 below).

The language of Ackermann-like function theory (LAFT) contains

• a unary predicate F for functions,

• a unary predicate U for urelements,

• a constant symbol u for undefinedness, and

• a binary function symbol a for function application.

Instead of a(f, t) we usually simply write f(t). We write L(x) instead of U(x)∨F(x).
The undefinedness constant u is needed for formalising the idea that a function
is only defined for certain values and undefined for others. In this language, the
unrestricted function comprehension schema would be as follows:

Axiom Schema 2 (Unrestricted function comprehension in LAFT). Given a vari-
able z and formulae P (z) and R(z, x) (possibly with parameters), the following is an
axiom: ∀z (P (z)→ ∃x R(z, x))→ ∃f (¬U(f)∧∀z ((P (z)→ R(z, f(z)))∧(¬P (z)→
f(z) = u))).

Analogously to the case of Ackermann set theory, AFT has separate compre-
hension schemata for maps and functions. The restriction that is imposed on both
schemata now is ∀z ∀x (R(z, x) → L(z) ∧ L(x)). In the function comprehension
schema, in which F(f) appears among the conclusions we may draw about f , the
additional restriction is that the formula R(z, x) may not contain the symbol F and
may not have unlimited objects as parameters.

Additionally to these comprehension schemata, AFT has

• a function extensionality axiom,

• an axiom stating that any value a function takes and any value a function is
defined at is limited, and

• an axiom stating that submaps of functions are functions.

In AFT one can interpret Ackermann set theory with Foundation, and hence
ZFC (see Theorems 1 and 3 below). Since the map and function comprehension
schemata presuppose the existence of choice maps and choice functions, the Axiom
of Choice naturally comes out true in these interpretations.

We now state the main theorems about AFT. Their proofs can be found in the
author’s PhD thesis [5, pp. 58–62].
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Theorem 1 (Theorem 4.2.7 in [5, p. 58]). AFT interprets Ackerman set theory with
urelements and the Axiom of Choice.

Theorem 2 (Theorem 4.2.20 in [5, p. 61]). Ackermann set theory with the Axiom
of Foundation and the Axiom of Global Choice interprets AFT.

Theorem 3 (Theorem 4.2.8 in [5, p. 59]). AFT interprets ZFC.

Theorem 4 (Corollary in [5, p. 62]). AFT is equiconsistent with ZFC.

6 Higher-order dynamic predicate logic
Now we are ready to sketch the untyped Higher-Order Dynamic Predicate Logic
(HODPL). The restriction we impose on implicit function introduction are those
imposed by AFT. AFT gives us untyped maps, which always have a restricted
domain. So instead of using types to syntactically restrict the possible arguments for
a given function term, we implement a semantic restriction on function application
by integrating a formal account of presuppositions into the HODPL.6 HODPL
syntax thus allows for any term to be applied to any number of arguments to form
a new term.

Besides the binary “=”, HODPL has two unary logical relation symbols, U for
urelements and F for functions. HODPL syntax does not depend on a signature,
as we do not allow for constant, function and relation symbols other than “=”, U
and F. These can be mimicked by variables that respectively denote a non-function,
denote a normal function or denote a function that only takes two predesignated
urelements (“booleans”) as values.

The domain of a structure always has to be a model of AFT. The possibility
of presupposition failure is implemented in HODPL semantics by making the inter-
pretation function partial rather than total. For conveniently talking about partial
functions, we use the notation def(f(x)) to abbreviate that f is defined on x.

We define the partial interpretation function J·Kg
S ⊆ GS × GS by specifying its

domain and its values trough a simultaneous recursion (the cases 3-8 of the second
part are as in THODPL):

• Domain of J·Kg
S :

1. def(JU(t)Kg
S) iff [t]gS 6= uS .

2. def(JF(t)Kg
S) iff [t]gS 6= uS .

6See [4] for an introduction to presuppositions in mathematical texts.
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3. def(J>Kg
S).

4. def(Jt1 = t2K
g
S) iff [t1]gS 6= uS and [t2]gS 6= uS .

5. def(J¬ϕKg
S) iff def(JϕKg

S).
6. def(Jϕ ∧ ψKg

S) iff def(JϕKg
S) and for all h ∈ JϕKg

S , def(JψKh
S).

7. def(Jϕ→ ψKg
S) iff def(JϕKg

S) and for all h ∈ JϕKg
S , def(JψKh

S).
8. def(J∃t ϕKg

S) iff for all h s.t. h[t]g, def(JϕKh
S).

• Values of J·Kg
S :

1. JU(t)Kg
S := {h|g = h and [t]gS ∈ US}.

2. JF(t)Kg
S := {h|g = h and [t]gS ∈ FS}.

One can define a sound proof system for HODPL that can prove everything
provable in AFT: In the author’s PhD thesis, a proof system for an extension of
HODPL is defined [5, pp. 108–113] and proven to be sound [5, pp. 147, 148] and
complete [5, pp. 156–176]. The details of this proof system are beyond the scope of
this paper.

7 Conclusion
We have studied a feature of the natural language of mathematics that has previ-
ously not been studied by other logicians or linguists, the implicit dynamic function
introduction, exemplified by constructs of the form “for every x there is an f(x) such
that . . . ”. If this feature is used without limitations, it yields a paradox analogous to
Russell’s paradox. Hence any formalism capturing it has to impose some limitations
on it. We have sketched two higher-order extensions of Dynamic Predicate Logic,
Typed Higher-Order Dynamic Predicate Logic (THODPL) and Higher-Order Dy-
namic Predicate Logic (HODPL), which capture this feature, and which differ only
in the limitations they impose onto it. HODPL is based on Ackermann-like Function
Theory, a novel foundational theory of functions that is inspired by Ackermann Set
Theory and that interprets ZFC.
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Abstract

The object of this paper is to present and thoroughly study a new logic,
called localistic logic, the essential features of which are as follows. First, it
relies upon a rejection of the positive paradox axiom and a weakening of the
deduction theorem. Second, the localistic logic provides locology with a logical
framework. Third, the concepts of prelocus and locus provide logic (and loco-
logy) with a categorical substratum.

Keywords: Locology, Localistic Logic, Prelocus, Locus, Constructivism.

Introduction
One may point out, in modern mathematics, many mathematical, logical and philo-
sophical oppositions to Cantor’s transfinite “paradise”. As is well known, Kronecker,
Poincaré, Brouwer, Weyl, Feferman, and some others are particularly reluctant to
accept Cantor’s conception of the continuum (“The actual infinite is not required
for the mathematics of the physical world”, Feferman says).

Surprisingly enough, topology has never really been touched by the criticisms on
set theory and actual infinity, although it incorporates many problematic notions of
set theory. For instance, unless one chooses to consider non-T1 topological spaces
(i.e. spaces of little mathematical significance and of practically no use in applied
domains), boundaries are lines of Lebesgue-measure zero. Next, contrary to what
intuition suggests, the operators of interior and closure are idempotent. Moreover,
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the concept of neighbourhood, which is supposed to model the notion of proximity
or nearness, is somehow transitive. It is not difficult to prove that all these counter-
intuitive and mathematically hard to accept situations are immediate consequences
of the actual infinity, particularly of the atomic nature of the continuum.

The various attempts to generalize point-set topology take place in the course
of “point elimination”. It is on this road that one can meet abstract spaces (first
studied by Hausdorff who took the notion of open set as a primitive in the study of
continuity in such spaces), Heyting algebras (which arose from the epistemological
deliberations of Brouwer), pointless topology (where open-set lattices are taken as
primitive notions, irrespective of whether they are composed of points), point-wise,
or formal, topology (an intuitionistic approach to topology, based upon Martin-Löf’s
type theory, which proves to be slightly more restrictive than pointless topology).
A further step in the process of (pointless) abstraction may be taken by considering
the category of locales (whose objects are complete lattices equipped with the in-
finite distributive law, and whose morphisms are maps preserving finite meets and
arbitrary joins), which, according to many category-theorists is the structure within
which pointless topology must be developed. Whatever one may think of the latter
assertion, an essential feature of the results available is that they all invoke non
constructive principles: the localistic framework allows to give classical theorems of
topology constructive proofs. What one can gain by doing constructive topology is
that there are contexts in which one may like to do “topology” but one does not
wish to assume the law of excluded middle or the axiom of choice. Such contexts
are called topoï. Apart from this alleged constructive aspect, there are nevertheless
several results which say that, from one point of view (i.e., when one works with
spatial locales), working with locales is doing nothing more than a disguised version
of classical point-set topology. One may, of course, consider non spatial locales but
very little work has been done on specific applications of such tools. Furthermore,
large parts of the theory of locales can be internalized in any topos and a topos is
nothing but a category which is sufficiently “like” the category of sets for one to
carry out set-theoretical constructions inside it. Point-wise (or formal) topology is
related to pointless topology by the adjunction (in the category-theoretic sense of
the word) between the category of locales and the category of topological spaces. In
the case of spatial locales, the adjunction reduces to an adjoint equivalence between
the category of spatial locales and the category of sober topological spaces. Thus
the point-wise and the pointless approaches are essentially equivalent as soon as one
wishes to deal with spatiality.

The overall gain possibly provided by pointless or point-wise topology is thus
quite limited. The basic reason is that, despite the generalization provided by the
“elimination” of points and whatever the level of abstraction is, the algebraic struc-
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tures implied by these approaches are essentially the same as those defined in a
point-set topological framework.

Locology [1,2,5–7] has been elaborated by the author as an alternative to topology
in order to provide new mathematically and philosophically acceptable and fruitful
solutions to the above mentioned problems. It allows in particular, from the giving
of a reflexive (and possibly symmetric) relation, which may be seen as a relation
of resemblance or as the measure of a granularity over some carrier set, to redefine
most concepts of topology in a more satisfactory way: the concepts of core and
shadow, which are substituted for that of interior and closure, are not idempotent;
to any subset in a locological space may be associated its frontier and its boundary
(the former being divided into its inner and outer parts), the distinction between
the two entities being of prime importance both from a mathematical and an episte-
mological viewpoint (mathematically speaking, a frontier has a certain “thickness”;
epistemologically speaking, it allows to distinguish between punctuality and indi-
visibility); the relevant algebraic structure is that of a complete and complemented,
but not distributive, lattice with a semi-implication. The distinction, in locology,
between boundaries (which have no analogue in the world of “real” entities) and
frontiers allows, in particular, to revisit some fundamental problems left open by
topology (and mereotopology): that of contiguity and contact [2]. These problems
originate from the set-theoretical and topological definition of the continuum and
the consecutive failure in the treatment of boundaries. It also leads to formalize,
in an essentially new way, the key concepts of categorization [7]. Locological spaces
encompass Poincaré-Zeeman tolerances spaces [9, 10, 13], Choquet’s pretopological
spaces [3, 12], and mathematical morphology. The study of locological concepts
and the structure thus implied allow to understand why these three (independent)
streams of research have not been followed up.

The anti-realism at the root of the rejection of actual infinity and the Cantorian
conception of the continuum is, as is well known, intimately related with the anti-
realism (or anti-platonism) in logic which leads to substructural logics, in particular
intuitionistic logic. However, the topology/locology alternative, sketched above,
suggests, first, that the criticisms addressed to topology translate to intuitionistic
logic, and, second that a new logic of which locology would be the “geometric”
counterpart is needed.

Localistic logic, the definition and the study of which are the object of Section
2, meets this requirement. We first prove that, contrary to the intuitionists’ claim,
the law of excluded middle is in no way a principle of omniscience and is perfectly
compatible with a constructive view of logic and mathematics, and that the excluded
middle and the reductio ad absurdum are not in general mutually dependent. Next,
localistic logic allows to revisit the question of the admissibility, from a constructivist
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viewpoint, of the thinning on the left (also called the positive paradox axiom), i.e.
A→ (B → A) and the thinning on the right, i.e. A→ (∼ A→ B), which are admitted
by both classical and intuitionistic logics. It is worth noticing that this question was
raised by the first intuitionists: Kolmogorov rejected A → (∼ A → B) but accepted
A→ (B → A); Glivenko, whose axiomatization was the one adopted by Gentzen,
raised the same question but eventually followed Heyting in keeping both thinning
on the right and thinning on the left. This question has also been tackled by relevant
logics, the first axiomatization of which was actually proposed by another Russian
intuitionist, Orlov. The rejection of both thinning on the right and thinning on
the left by relevant logics is the main departure from intuitionistic logic. However,
the various versions of relevant logics fall short of an interesting semantics (i.e. a
semantics where the truth-values may be expressed in terms of classes of objects).

Localistic logic leads to rejection of A → (B → A) on the basis that, if A may
be derived from a set Γ of hypotheses (Γ ⊢ A) then there is no reason that, for any
B,B → A may be derived gratis prodeo (Γ ⊢ B → A). However, this may hold for
some Γ’s, in particular for Γ = ∅: if ⊢ A then ⊢ B → A (a theorem may be derived
from anything). What relevantists did not actually realize is that a theorem is more
than a formula deduced from an empty set of hypotheses. As far as thinning on
the right is concerned, the localistic argument is as follows: A → (∼ A → B) being
related to the reductio ad absurdum, its (in)admissibility depends on some further
assumptions. A study of propositional and predicate logics is performed in Section 2.
An essential feature is, as alluded to above, the weakening of the deduction theorem.

Section 3 is devoted to the study of the categorical substratum of localistic logic.
It is shown that the theory of (pre)loci provides localistic logic with a category-
theoretic basis. However, the role played by localistic logic for loci theory is not quite
analogous to that played by topoï theory for intuitionistic logic. Indeed localistic
logic cannot be seen as an internal logic of a locus. On the contrary, it may be
seen as emerging from a (pre)locus. We may prove however the equivalence between
locus-validity and localistic provability.

1 Locology

Let X be a set and let λ be a reflexive relation on X: xλx, for any x in X. The
relation λ is to be thought of as a resemblance or an indistinguishability relation
on X. The set λ[x] = {y ∶ xλy} of λ-relatives of x, the elements of which may be
seen as being close to (or resembling, or being indistinguishable from) x, is called
the halo of x. As λ may be defined as a map X Ð→ ℘(X), xz→ λ[x], we denote by
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λ(A) the set
λ(A) = ⋃

x∈A

λ[x]

so that λ[x] = λ({x}). Next, one defines the following two operators h and s which
associate to any A in ℘(X) its core and its shadow respectively. More precisely, let
h ∶ ℘(X)Ð→ ℘(X) be the operator which associates to any A its core

h(A) = {x ∈X ∶ λ[x] ⊆ A}.

Immediate properties follow:

(1) h(A) ⊆ A,h(X) =X,
(2) If A ⊆ B then h(A) ⊆ h(B),
(3) h ○ h(A) ⊆ h(A),
(4) h(A ∪B) ⊇ h(A) ∪ h(B),
(5) h(⋂iAi) = ⋂i h(Ai).

It is worth emphasizing that, contrary to the properties of an interior operator
in topology, h is not idempotent (unless λ is assumed to be transitive). On the other
hand, property (5) holds for infinite intersections.

The shadow operator is defined in a dual way. It associates to any A ∈ ℘(X) its
shadow s(A) defined by

s(A) = {x ∈X ∶ λ[x] ∩A ≠ ∅}.

The operators h and s are interdefinable since clearly

s(A) = h(Ā),

where A denotes the complement of A. Immediate properties of s then come out:

(1) s(A) ⊇ A, s(∅) = ∅,
(2) If A ⊆ B, then s(A) ⊆ s(B),
(3) s ○ s(A) ⊇ s(A),
(4) s(A ∩B) ⊆ s(A) ∩ s(B),
(5) s(⋃iAi) = ⋃i s(Ai).

Like h, the operator s is not idempotent and, unlike topology, equality (5) holds
for infinite unions.

The idea of using a reflexive (and symmetric) relation to recapture the intuitive
notion of indistinguishability is not new. That of having recourse to non idempotent
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“interior” or “closure” operators is not without predecessors either. The former idea
can be traced back to Poincaré’s works on the physical continuum. As claimed
by Poincaré [9], “the raw result of experience may be expressed by the relation
A = B,B = C,A < C, which may be taken as a formula of the physical continuum”.
Here, A = B is to be understood as “A and B are indistinguishable”, and A = B is
then a reflexive and symmetric relation over the collection of entities under study.
This approach was exploited by Zeeman [13] in his works on tolerance spaces.

The idea of a non idempotent closure operator can be traced back to Choquet’s
paper on pretopology [3]. Such an operator is nowadays referred to as a Čech
closure operator [12]. Depending upon the properties it is equipped with (isotony,
accretivity, sub-linearity, . . .) the resulting spaces are called extended topologies [8],
neighbourhood spaces [4], Smyth spaces [11], or pretopologies.

However these two streams of research have not been followed up. The basic
reasons seems to be the following. The Poincaré-Zeeman approach is essentially
geometric and is then deprived of an algebraic (and a logical) content: there is
nothing, in tolerance spaces, which can play the role of the lattice of open sets in
a topological space. In a symmetric way, the approaches pertaining to the stream
initiated by Choquet have a poor geometric content. Furthermore, they lead to very
poor algebraic structures too: as a generalization of the Kuratowski closure algebra,
the algebra {cl(A) ∶ A ⊂X}, where cl denotes the generalized closure operator, fails,
for instance, to be sup-complete, so that the disjunction of objects of the algebra
cannot be defined. If A and B are “closed” sets, nothing can be said of the entity
“A and B” (apart from the fact that, in general, A ∩ B is not “closed”). These
limitations are insurmountable.

Owing to the property (5) of h and s, the corresponding algebras, as will be seen
below, have much stronger properties. Many results may then be derived, most of
which are not derivable in a generalized closure space or in a tolerance space.

We consider the two families:

L = {h(A) ∶ A ⊆X},

K = {s(A) ∶ A ⊆X}.

It is clear that L = {Ā ∶ A ∈ K} and K = {Ā ∶ A ∈ L}. In view of the properties of
h, (L,∩) is a complete and bounded inf-semi-lattice. However, for A and B in L,
A ∪B may not be an element of L. Indeed, given A and B there may not exist C
∈ ℘ (X) such that h(C) = A ∪B. Hence (L, ∪) is not a sup-semi-lattice. We may
however define, for A and B in L:

A ⊔B =⋂{C ∈ L ∶ C ⊇ A,C ⊇ B},
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the existence of which is guaranteed by the inf-completeness and the boundedness
of L. A ⊔B is thus the least upper bound of the set of objects of L which contain
A∪B. Thus (L, ∩, ⊔) is a complete lattice. But it fails to be distributive. Indeed we
may have A ∩ B = A ∩ C and A ⊔B = A ⊔C and B ≠ C, the equality B = C being
a necessary and sufficient condition for a lattice to be distributive. Furthermore

h ○ λ(A) =⋂{B ∈ L ∶ B ⊆ A},

for any A ⊆X. Hence
λ ○ h(A) ⊆ A ⊆ h ○ λ(A),

where the equality holds on the right-hand side iff A ∈ L, and then

A ⊔B = h ○ λ(A ∪B),

for any A,B ∈ L.
The lattice (L,∩,⊔) is called a locology and X a locological space. Despite the

differences between locology and topology (non-distributivity of L, completeness of
L, non-idempotency of h and s), the consequences of which are of prime importance,
it is quite clear that the objects of L bear some resemblance with open sets in a
topological space. However, L may be defined as

L = {A ⊆X ∶ A = h ○ λ(A)}.

The operator h ○λ is accretive, order-preserving, and idempotent. Hence h ○λ is
an algebraic closure operator, i.e. a closure operator in ℘ (X) viewed as an ordered
set. Of course, it is not a topological closure operator since e.g. h ○ λ(A ∪ B) ≠

h ○ λ(A) ∪ h ○ λ(B). This means that the objects of L have something in common
with closed sets in topology.

A dual analysis may be carried out for the algebra

K = {s(A) ∶ A ⊆X}.

Indeed, if one defines, for A,B ∈ K,

A ⊓B =⋃{C ∈ K ∶ C ⊆ A,C ⊆ B},

then (K,⊓,∪) is a complete, but not distributive lattice, where, furthermore:

h ○ λ(Ā) =⋃{C ∈ K ∶ B ⊆ A},

A ⊓B = h ○ λ(A ∩B),
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and, if λ is symmetric,
h ○ λ(A) = λ ○ h(A)

A ⊓B = λ ○ h(A ∩B)

The fact that K may be rewritten as

K = {A ⊆X ∶ A = h ○ λ(Ā)} = {A ⊆X ∶ Ā = h ○ λ(Ā)}

and, if λ is symmetric, as

K = {A ⊆X ∶ A = λ ○ h(A)}

shows that the objects of K have a superficial similarity with closed sets in a topo-
logical space and a deeper resemblance with open sets in a topological space.

This may seem paradoxical at first glance. It is, however, a key point of locology.
To more accurately specify this, one first has to revisit the concept of a boundary.
The critical analysis of the concept of a boundary in topology leads us to actually
define two different concepts: to any region A, one associates its frontier and its
boundary, the former being divided into its inner and outer parts.

To any A ⊆ X, one associates its inner frontier ∂in(A) = λ(Ā) ∩ A and its
outer frontier ∂out(A) = λ(A) ∩ Ā. The frontier of A is then ∂(A) = ∂in(A) ∪

∂out(A) = λ(A) ∩ λ(Ā). Among many properties, which follow from their definition,
a remarkable property is the idempotency of ∂in and ∂out which follows from

h[∂in(A)] = h[∂out(A)] = ∅.

The epistemological significance of these equalities is that locology allows us to
distinguish between punctuality and indivisibility (these two notions being unduly
identified to each other in topology). Indeed, ∂in(A) and ∂out(A) may be considered,
on the one hand, as indivisible since they have empty cores and, on the other hand,
as having a certain “thickness” (unless λ coincides with the diagonal of the carrier
set X).

One may now define the concept of a boundary. The boundary of A ⊆ X is
defined to be the core of its frontier

β(A) = h(∂(A)).

Since ∂(A) = λ (A) ∩ λ (Ā), one has

β(A) = h ○ λ(A) ∩ h ○ λ(Ā).
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Hence

(1) β(A) = β(Ā) ∈ L,

(2) A ∖ β(A) = λ ○ h(A),

(3) A ∪ β(A) = h ○ λ(A),

(4) A ∈ L iff β(A) ⊆ A,

(5) A ∈ K iff A ∩ β(A) = ∅.

Thus, as already alluded to above, objects of L and K have properties in common
with closed sets and open sets in topology, respectively: any A in L contains its
boundary; any A in K is disjoint from its boundary.

This shows that locology allows us, not only, to define purely locological concepts
(the core h, the shadow s, the frontiers ∂in and ∂out) which have no counterpart in
topology, but also concepts that may be seen as “quasi topological” (the operators
h○λ and λ○h, the boundary β) with common features and essential differences with
their topological pendants. It may also be shown that topology is the limit case of
locology corresponding to an infinitely small granularity.

Given a locological space X, one may define in L the unary operator ¬ by setting
¬A = h(Ā), the core of the complement of A. The operator ¬ clearly satisfies

(1) A ∩ ¬A = ∅,

(2) A ∪ ¬A ≠X,

(3) A ⊔ ¬A =X,

(4) ¬¬A = A iff λ is symmetric.

Hence, ¬ is a complementation in L and an orthocomplementation iff λ is sym-
metric (these properties being not equivalent in a non distributive lattice). Antici-
pating on the next section, this translates into logical terms as follows. First, (1)-(3)
show that, contrary to the intuitionists’ claim, the law of excluded middle is in no
way a principle of omniscience: for any A ∈ L,A and ¬A are disjoint and their
disjunction A⊔¬A covers the universe, but there may exist objects of X that do not
belong to either of A and ¬A. Second, (3) and (4) show that the law of excluded
middle and the reductio ad absurdum may not be interdependent.

Next, for any A and B in L, let ⇒ be the binary operator defined by

A⇒ B = h(Ā ∪B),

the essential properties of which are
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(1) A⇒ B =X iff A ⊆ B,
(2) A⇒ ∅ = ¬A,
(3) A ∩ (A⇒ B) ⊆ B,
(4) (A⇒ B) ∩ (A⇒ C) ⊆ A⇒ (B ∩C),
(5) (A⇒ B) ∩ (B ⇒ C) ⊆ A⇒ C,

(6) C ⊆ A⇒ B

A ∩C ⊆ B
.

However, the reciprocal to (6), i.e.

A ∩C ⊆ B

C ⊆ A⇒ B

holds only if L is distributive (in which case L is a Boolean algebra) i.e. only if λ
is transitive. Therefore, ⇒ is not, strictly speaking, an implication. It implies, in
particular, that

A =X

B ⇒ A =X

holds but
A⇒ (B ⇒ A) ≠X.

Anticipating, once again, on the following section, this inequality translates into the
non-validity of the positive paradox axiom (thinning on the left).

Similarly, although
A⇒ C =X B ⇒ C =X

(A ⊔B)⇒ C =X

holds, one generally has

(A⇒ C) ∩ (B ⇒ C) Ü (A ⊔B)⇒ C.

The properties of⇒ (called, from now on, a semi-implication) and of the disjunction
⊔, as compared to those enjoyed by the corresponding operators in a Boolean or a
Heyting algebra (hence in classical and intuitionistic logics), are essential features
of the locological framework from a logico-algebraic viewpoint.

One may then define, as a natural abstraction of the above algebraic structure,
the concept of Λ-algebra. A Λ-algebra is a 5-tuple (L,∧,∨,¬,⇒) such that

(1) (L,∧,∨) is a lattice with a least element 0 and a greatest element 1.

(2) (L,⇒) satisfies
a⇒ b = 1 iff a ≤ b,
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a ∧ (a⇒ b) ≤ b,
(a⇒ b) ∧ (b⇒ c) ≤ (a⇒ c),
(a⇒ b) ∧ (a⇒ c) ≤ a⇒ (b ∧ c).

(3) (L,¬) satisfies
¬a = a⇒ 0,
¬¬a = a.

where a ≤ b iff a ∧ b = a.

Theorem 1.1. In a Λ-algebra L, the following properties hold:

(a) ¬ is an order-reversing involution.

(b) a ∧ ¬a = 0.

(c) ¬(a ∨ b) = ¬a ∧ ¬b ; ¬(a ∧ b) = ¬a ∨ ¬b.

(d) a⇒ b is increasing wrt a and decreasing wrt b.

(e) a ∨ ¬a = 1.

(f) (a⇒ b) ∧ (a⇒ c) = a⇒ (b ∧ c).

(g) (a ∨ b)⇒ c ≤ (a⇒ c) ∧ (b⇒ c).

(h) if c ≤ a⇒ b then a ∧ c ≤ b.

(i) if a ∧ c ≤ b then 1⇒ c ≤ a⇒ b.

From now on, we will consider locologies whose underlying relation λ is symmet-
ric, i.e., locologies that are orthocomplemented, as lattices.

Theorem 1.2. (a) Any locology is a Λ-algebra. (b) Any Λ-algebra (L,∧,∨,¬,⇒)

may be embedded into a locology on some set.

Proof. (a) is obvious. To prove (b), consider the MacNeille completion L∗ of L, i.e.

L∗ = {A∗ ∶ A ∈ L} ⊂ ℘(L)

where A∗ is defined, for any A ∈ L, by

MA = {m ∶ a ≤m, for any a ∈ A},
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A∗ = {x ∶ x ≤m, for any m ∈ A}.

If A = ∅ then MA = L and A∗ = 0 where 0 is the least element of A. Hence (L∗,⊆,∩)
is a complete inf-semi-lattice with a least element 0. It may then be equipped with
the structure of a complete lattice (L∗,⊆,∩,∨∗) by setting

A∗ ∨∗ B∗ =⋂{C ∈ L∗ ∶ C ⊇ A∗,C ⊇ B∗}.

The image under the transformation A z→ A∗ of a singleton a of L is the subset
{b ∈ L ∶ b ≤ a} which will be denoted (a ↓). Let T be the set {(a ↓) ∶ a ∈ L}. The
mapping az→ (a ↓) ∈ T is obviously one-to-one and onto. Since a ≤ b in L iff (a ↓) ⊆
(b ↓) in T , identifying {a} with a leads to considering a mapping f ∶ LÐ→ T ⊆ L∗ ,
az→ (a ↓). One may then easily prove that f is a monomorphism.

2 Localistic logic
The language of propositional localistic logic (LL for short) has an alphabet con-
sisting of proposition symbols: p0, p1,. . . , connectors: ∧, ∨, →, ↔, ⊥, and auxiliary
symbols: (,). The set Φ of formulas is the smallest set X such that

(1) pi ∈X, i ∈ N, ⊥∈X,
(2) If φ, ψ ∈X, then φ ∧ ψ, φ ∨ ψ, φ→ ψ ∈X.
The axioms and the inference rules for propositional LL are instances of one of the

following forms, where ∼ φ stands for φ→⊥ and φ↔ ψ stands for (φ→ ψ)∧(ψ → φ):

Axioms

A1 ⊥→ φ

A2a φ ∧ ψ → φ

A2b φ ∧ ψ → ψ

A3 ((φ → ψ) ∧ (φ → χ)) → (φ → (ψ ∧ χ))

A4 (φ → ψ) ∧ (ψ → χ) → (φ→ χ)

A5a φ→ φ ∨ ψ

A5b ψ → φ ∨ ψ

A6 (φ ∧ (φ → ψ)) → ψ

A7 ∼∼ φ ↔ φ

978



Locology and Localistic Logic

Inference rules

R1 φ φ→ ψ

ψ

R2 φ

ψ → φ

R3 φ→ χ ψ → χ

(φ ∨ ψ)→ χ

A formula is said to be provable, denoted ⊢LL φ or simply ⊢ φ, iff there exists a
sequence φ1, φ2, . . . , φn of formulas such that φn = φ and, for any i ≤ n, φi is either
an axiom or follows form earlier formulas in the sequence by a rule of inference from
{R1, R2, R3}. A valuation v is a mapping v ∶ φ Ð→ (L,∧,∨,¬,⇒), where L is a
Λ-algebra, such that

v(⊥) = 0,

v(φ ∧ ψ) = v(φ) ∧ v(ψ),

v(φ ∨ ψ) = v(φ) ∨ v(ψ),

v(φ→ ψ) = (φ)⇒ v(ψ),

v(∼ φ) = ¬v(φ).

Let L be a Λ-algebra. A formula φ ∈ Φ is L-valid iff, for any algebra v, v(φ) = 1, the
greatest element of L.

Theorem 2.1. ⊢ φ iff φ is L-valid for any Λ-algebra L.

The above completeness theorem deals only with the equivalence between prov-
ability and validity in a Λ-algebra. One now has to consider deducibility from a set
Γ of formulas (which, as usual, may be thought of as hypotheses). Unlike the classi-
cal and the intuitionistic cases, the extension from provability (⊢ φ) to deducibility
from Γ (Γ ⊢ φ) is far from obvious. It leads, in particular, to the non-validity of the
deduction theorem.

We say that φ is deducible from a set Γ of formulas, denoted Γ ⊢ φ, iff either
φ is provable (⊢ φ) or there exists a sequence φ1, . . . , φn = φ of formulas such that
each φi is either an axiom or a formula of Γ or follows from earlier formulas in the
sequence by the inference rule R1.

We say that φ is Γ-valid, denoted Γ ⊧ φ iff, for any L and any valuation v, there
exists Γ0 ⊆ Γ,Γ0 finite, such that

⋀
γ∈Γ0

v(γ) ≤ v(φ).
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Theorem 2.2. If φ ⊢ ψ, then ⊢ φ → ψ.

Proof. Two cases have to be considered. If ⊢ ψ then ⊢ φ → ψ by R2. If ⊬ ψ then
φ ⊢ ψ means that ψ may be deduced from φ, A1-A7 plus R1. As R1 is the only
inference rule, unless ψ and φ are the same formula (in which case the statement of
the theorem is trivially true), φ ⊢ φ → ψ. But this holds iff ⊢ φ → ψ.

We seem to be well on the way to a proof of the deduction theorem. Indeed,
from theorem 2.2 which asserts

φ ⊢ ψ

⊢ φ→ ψ

and consequently
φ1, φ2, . . . , φn ⊢ ψ

⊢ (φ1 ∧ φ2 ∧ ⋅ ⋅ ⋅ ∧ φn)→ ψ

we might expect that, for any Γ,

Γ ⊢ φ
Γ ⊢ ψ → φ

.

However, we have the

Theorem 2.3. Γ ⊢ φ does not entail Γ ⊢ ψ → φ.

Proof. Suppose that Γ ⊢ φ implies Γ ⊢ ψ → φ for any ψ. Then, applying theorem
2.2 above and theorem 2.7 below, Γ ⊧ φ implies Γ ⊧ ψ → φ for any ψ. A necessary
and sufficient condition is that v(ψ) ⇒ v(φ) ≥ v(φ) for any valuation v. Such an
inequality generally does not hold.

We must emphasize the contrast between the validity of

ψ ⊢ φ

⊢ ψ → φ

and the non-validity of
Γ, ψ ⊢ φ

Γ ⊢ ψ → φ

i.e. of the deduction theorem. The validity of the former means that either ⊢ φ and
then ⊢ ψ → φ (a theorem may be deduced from anything) or ⊬ φ in which case ψ
⊢ φ iff ⊢ ψ → φ, i.e. iff ψ → φ has already been proved. The validity of the latter
would mean that if φ may be deduced from Γ ∪ {ψ} then, irrespective of whether
ψ (or ψ → φ) appears or not in the deduction of φ, ψ → φ may be deduced, gratis
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prodeo, from Γ. Such a scheme is not allowed in a localistic framework. Although
highly non constructive, this derivation is possible in intuitionistic logic.

It must be clear that the weakening of the deduction theorem (or, equivalently,
the non-validity of the positive paradox axiom φ → (ψ → φ) ) is the logical coun-
terpart of the non-distributivity of a Λ-algebra, which itself is the translation in
algebraic terms of the non-idempotency of the shadow and the core operators in a
locological space.

A set Γ of formulas is said to be consistent if Γ ⊬⊥. Otherwise, it is said to be
inconsistent. Γ is said to be complete iff, for any formula φ, Γ ⊢ φ or Γ ⊢∼ φ.

Theorem 2.4. (a) If Γ ∪ {φ} is consistent then Γ ⊬∼ φ. (b) If Γ is complete, then
the reciprocal to (a) holds.

Proof. (a) Let Γ ∪{φ} be consistent and suppose that Γ ⊢∼ φ. Then Γ, φ ⊢∼ φ. But,
since Γ, φ ⊢ φ, then Γ, φ ⊢⊥, a contradiction.

(b) If Γ ⊬∼ φ, since Γ is complete, Γ ⊢ φ. Suppose that Γ, φ ⊢⊥. Then Γ ⊢⊥, and
Γ ⊢∼ φ, a contradiction.

Theorem 2.5. Γ is consistent iff Γ is satisfiable.

Proof. (a) If Γ is satisfiable, then there exists a valuation v such that v (γ) = 1 for
any γ ∈ Γ. Suppose Γ is not consistent. Then Γ ⊢ ⊥ and therefore Γ0 ⊢ ⊥ for some
Γ0 ⊆ Γ, Γ0 finite. Setting Γ0 = {γ1, γ2, . . . , γn} leads to γ1, γ2, . . . , γn ⊢ ⊥, i.e.
⊢∼(γ1 ∧ γ2 ∧ ⋅ ⋅ ⋅ ∧ γn) and ⊧∼ (γ1 ∧ γ2 ∧ ⋅ ⋅ ⋅ ∧ γn). Thus, v(γ1 ∧ γ2 ∧ ⋅ ⋅ ⋅ ∧ γn) = 0, a
contradiction.

(b) Let Γ be consistent. From part (a) of theorem 2.4, if γ is consistent then
⊬∼ γ and, consequently, ⊭∼ γ. Suppose Γ is not satisfiable, in which case there exists
γ ∈ Γ such that, for any v, v(γ) < 1. By induction on the length of γ, v (γ) = 0 for
any v, i.e. v(∼ γ) = 1, for any v. Thus ⊧∼ γ, a contradiction.

Theorem 2.6. If Γ ⊢ φ then Γ ⊧ φ.

Proof. If ⊢ φ then ⊧ φ, whence Γ ⊧ φ. If Γ ⊢ φ (and ⊬ φ), then there exists Γ0
= {γ1 , γ2 , . . . , γn} ⊆ Γ such that Γ0 ⊢ φ. Then ⊢(γ1 ∧ γ2 ∧ ⋅ ⋅ ⋅ ∧ γn) → φ and ⊧
(γ1 ∧ γ2 ∧ ⋅ ⋅ ⋅ ∧ γn ) → φ. Thus Γ0 ⊧ φ and Γ ⊧ φ.

Theorem 2.7. If Γ ⊧ φ, then Γ ⊢ φ.

Proof. (a) If Γ is finite, the reciprocal to theorem 2.6 clearly holds. Indeed, if Γ =
{γ1, γ2, . . . , γn} then γ1, γ2, . . . , γn ⊧ φ entails ⊧ (γ1 ∧ γ2 ∧ ⋅ ⋅ ⋅ ∧ γn) → φ hence
⊢(γ1 ∧ γ2 ∧ ⋅ ⋅ ⋅ ∧ γn ) → φ i.e. γ1, γ2, . . . , γn ⊢ φ.
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(b) If Γ is infinite, there exists Γ0 ⊆ Γ, Γ0 finite, such that

⋀
γ∈Γ0

v(γ) ≤ v(φ),

i.e. Γ0 ⊧ φ. Applying (a) leads to Γ0 ⊢ φ. Thus Γ ⊢ φ.

3 Categorical substratum
The aim of this section is to provide localistic logic (and locology) with a categorical
substratum which would play to some extent the role played by topoï theory and
set theory for intuitionistic and classical logic respectively. As a Λ-algebra is a non
distributive lattice the disjunction of which is weaker than the intuitionistic and the
classical ones, it is a priori quite clear that the required categorical framework must
exhibit a weakened form of exponentiation.

3.1 Preloci

A category C is said to have semi-exponentiation if

(1) any pair ⟨A,B⟩ of objects of C has product A ×B,

(2) for any pair ⟨A,B⟩ of objects, there is an object BA and an arrow e: BA ×

A Ð→ B such that, for any g ∶ C × A Ð→ B, there exists at most one arrow
ĝ ∶ C Ð→ BA such that the diagram

?

S
S
S
S
S
S
SSw
-

eĝ × 1A

BA ×A

C ×A B

commutes. If, for a given g, ĝ exists, we will write

g ∶ C ×AÐ→ B

ĝ ∶ C Ð→ BA

where g and ĝ may be omitted.
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(3) The following rules hold

(a) AÐ→ B

1Ð→ BA
,

(b) CB ×BA ×AÐ→ C

CB ×BA Ð→ CA
,

(c) BA ×CA ×AÐ→ B ×C

BA ×CA Ð→ (B ×C)A
.

The arrow e is called the evaluation arrow. The arrow ĝ, if it exists, is called the
exponential adjoint of g.

Theorem 3.1. The correspondence g z→ ĝ is bijective.

Although the correspondence g z→ ĝ is bijective, Hom(C×A,B) and Hom(C,BA)

are not isomorphic. As ĝ may not exist, the correspondence is not necessarily a total
function.

A category A which has

(1) a terminal object 1,

(2) a pullback and a pushout for each pair of arrows,

(3) semi-exponentiation

will be called a prelocus (plural: preloci). Clearly, a prelocus has initial object 0,
for any pair ⟨A,B⟩ of objects, a product defined by an object A ×B together with
projections πA,B ∶ A ×B Ð→ A and π′A,B ∶ A ×B Ð→ B and a coproduct given by an
object A +B and injection arrows A,B ∶ AÐ→ A +B and ′A+B ∶ B Ð→ A +B.

Theorem 3.2. In a prelocus A, the following properties hold
(1) 0 ≅ 0 ×A, for any object A.
(2) If there exists an arrow AÐ→ 0, then A ≅ 0 and the arrow is a mono.

3.2 The algebra of subobjects in a prelocus

Let A be a prelocus and let X be an object of A. First recall that a subobject
of X is defined as follows. Given two monos f ∶ A ↣ X and g ∶ B ↣ X, one sets
f ⊆ g iff there exists h ∶ A ↣ B such that f = g ○ h. Then, the relation ≃ defined by

983



M. De Glas

f ≃ g iff f ⊆ g and g ⊆ f is an equivalence on the set of monos with codomain X.
Furthermore, if f ≃ g, there exists an iso k ∶ B Ð→ X with inverse h ∶ A Ð→ X such
that f = g ○ h and g = f ○ k. The equivalence class of f modulo ≃ is denoted [f] and
is said to be a subobject of X. The set Sub(X) of subobjects of X is thus

Sub(X) = {[f] ∶ f ∶ A↣X, some A}.

We will usually write “the subobject f” when we mean “the subobject [f]”.

3.2.1 Conjunction

Let f ∶ A ↣ X and g ∶ B ↣ X be two subobjects of X. The conjunction of f and g
is defined to be the pullback of f and g, i.e. the subobject f ∩ g: A ×X B ↣X such
that

?

S
S
S
S
S
S
SSw
-

-

?

f ∩ g

A ×X B

B X

f

A

g

is a pullback square. The subobject f ∩ g is thus defined up to isomorphism.

3.2.2 Disjunction

The disjunction of two subobjects f ∶ A ↣ X and g ∶ B ↣ X of X is the subobject
f ∪ g of X such that the diagram

A
A
A
A
A
A
AAU

-

�
�
�
�
�
�
���

X

f ∪ g

A +B
[f, g]

A ∪B

[f, g]∗
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is an epi-mono factorization. In other words, f ∪ g is the image of the coproduct
arrow [f, g] (the least subobject of X through which [f, g] factors) and A ∪ B ≅

[f, g]∗(A +B), [f, g]∗ being an epi.

Theorem 3.3. (Sub(X),⊆,∩,∪) is a lattice with a least element 0X and a greatest
element 1X .

However, Sub(X) is not, in general, distributive. Indeed, let f ∶ A ↣ X and
g ∶ B ↣X be subobjects of X such that

f ∩ g ≃ f ∩ h ≃ 0X ,

f ∪ g ≃ f ∪ h.

We then have the following commutative diagrams

A
A
A
A
A
A
AAU

-

�
�
�
�
�
�
���A

A
A
A
A
A
AAU

-

�
�
�
�
�
�
���

X

A ∪C

[f, h]∗

A +C
[f, h]

f ∪ hf ∪ g

XA +B

A ∪B

[f, g]∗

[f, g]

i.e. f ∪ g ≃ [f, g] and f ∪ h ≃ [f, h]. But, g ≄ h since B ≇ C. Thus, in general,
Sub(X) is not distributive.

3.2.3 Semi-implication

Let f ∶ A ↣ X and g ∶ B ↣ X be two subobjects of X. We define f ⇒ g ∶ BA ↣ X
as a subobject of X such that the diagram

?

S
S
S
S
S
S
SSw
-

-

?

h

A ×X BA

B X

f

A

g
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where h = f ∩(f ⇒ g), commutes. From the definition of f ∩g, we have the following
commutative diagram

@
@R

-

B
B
B
B
B
B
B
B
B
B
BN

XXXXXXXXXXXz
-

? ?

B

f

A

g

A ×X B

A ×X BA

k

X

Hence (f ∩ g) ○ k ≈ f ∩ (f ⇒ g). Thus

f ∩ (f ⇒ g) ⊆ f ∩ g.

The existence of such a subobject is guaranteed by the fact that, in any lattice L,
for any x, y such that y ≤ x, there exists z ∈ L such that x ∧ z ≤ y. Clearly there are
several possible choices.

Theorem 3.4. The following holds

(a) If h ⊆ f ⇒ g then h ∩ f ⊆ g,
(b) If f ⇒ g ≃ 1X then f ⊆ g.

The converse to (a) does not hold. Thus f ⇒ g is not an implication. That is
why it is called a semi-implication.

Theorem 3.5. For any subobjects f ∶ A ↣ X,g ∶ B ↣ X and h ∶ C ↣ X of X, the
following holds:

(a) (f ⇒ g) ∩ (g⇒ h) ⊆ f ⇒ h,
(b) (f ⇒ g) ∩ (f ⇒ h) ⊆ f ⇒ (g ∩ h),
(c) If f ⊆ g then f ⇒ g ≃ 1X .

Let f ∶ A ↣ X be a subobject of X in a prelocus A and let x ∶ 1 Ð→ X. If there
exists k ∶ 1Ð→ A such that the diagram
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?

S
S
S
S
S
S
SSw
-

1

A f

xk

X

commutes, we say that x is an element of f , denoted x ∈ f.

Theorem 3.6. In any prelocus, for any object X, we have in Sub(X), x ∈ f ∩ g iff
x ∈ f and x ∈ g.

Proof. (a) If x ∈ f ∩ g, then there exists k such that x = (f ∩ g) ○ k. Since f ∩ g ⊆ f,
there exists j such that f ∩ g = f ○ j. Thus x = f ○ j ○ k, i.e. x ∈ f. Similarly, x ∈ g.
(b) Suppose that x ∈ f and x ∈ g and consider the diagram

?

@
@R

-

-

?

C
C
C
C
C
C
C
C
C
C
CW

XXXXXXXXXXXz

A X

f

B

g

A ×X B

m
1

k

By definition of f∩g, the inner square is a pullback, so the arrowm does exist making
the whole diagram commute. Hence (f ∩ g) ○m = f ○ k = x. Thus x ∈ f ∩ g.

3.2.4 Complementation

In a prelocus, one can associate to any f ∶ A↣X in Sub(X) the subobject ¬f ∶ A↣
X, defined by ¬f ≃ f ⇒ 0X and called the complement of f .

Theorem 3.7. For any X and any f ∶ A↣X and g ∶ B ↣X in Sub(X), we have
(a) f ∩ ¬f ≃ 0X ,
(b) If f ⊆ g then ¬g ⊆ ¬f.
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Proof. (a) follows from the definition of the semi-implication. (b) Given f ⊆ g, then,
for any h ∶ C ↣X, g⇒ h ⊆ f ⇒ h. In particular g⇒ 0X ⊆ f ⇒ 0X i.e. ¬g ⊆ ¬f.

3.3 Loci

A prelocus is called a locus if the commutativity of one of the two diagrams

S
S
S
S
S
S
SSw

-

S
S
S
S
S
S
S
Sw ?

?
-

k

1 1

A X

x

f

x

X

− −A

¬¬f

implies that of the other and then of the square

?
-

-

?

1

k

k′

A X

¬¬f

− −A

f

for any object X. In other words, a prelocus A is a locus iff, for any object X of A,
and any x ∶ 1↣X, the following equivalence holds true: (x ∈ f) iff (x ∈ ¬¬f).

Theorem 3.8. For any object X in a locus A and any f ∶ A↣X and g ∶ B ↣X in
Sub(X), we have

(a) f ≃ ¬¬f.
(b) If ¬f ⊆ ¬g then g ⊆ f.
(c) f ∪ ¬f ≃ 1X .
(d) ¬(f ∪ g) ≃ ¬f ∩ ¬g.
(e) ¬(f ∩ g) ≃ ¬f ∪ ¬g.
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Theorem 3.9. For any object X in a locus A, (Sub(X),⊆,∩,∪,¬,⇒) is a Λ−algebra.

Remark. In a locus, the following do not hold true:
(a) If f ∩ g ≃ 0X then g ⊆ ¬f,
(b) If x ∈ ¬f then not x ∈ f,
(c) If x ∈ f ∪ g then x ∈ f or x ∈ g,

although the converse implications hold true.

The relationships between loci and Λ-algebras may be made more precise. In a
lattice L, when considered as a poset category, there exists an arrow aÐ→ b between
two elements of L iff a ≤ b. Since, furthermore, in a Λ-algebra, x ≤ a ⇒ b entails
x∧a ≤ b (the converse being generally false), the existence of an arrow xÐ→ (a⇒ b)
implies that of an arrow x ∧ a Ð→ b. This is reminiscent of the situation in a locus
where there is a bijection between a subset of Hom(x, ba) and Hom(x×a, b). Now, in
a Λ-algebra a∧x = x∧a is the product x×a and a⇒ b provides us with the exponential
ba. The evaluation arrow ba × a Ð→ b is the unique arrow (a ⇒ b) ∧ a Ð→ b which
appears in the definition of the semi-implication. Conversely, semi-exponentiation
provides semi-implication. Thus, categorically, a Λ-algebra is nothing but a category
with a terminal object, with pullbacks and pushouts for any pair of arrows, with
products and coproducts for any pair of objects and with a semi-exponentiation.
Thus any Λ-algebra is a locus.

3.4 Locus-validity

The above remark on the links between loci and Λ-algebras leads us to consider the
concept of locus-validity and its relation with localistic provability. Given a set Φ
of formulas, defined via the formation rules given in section 2.1, and a locus A, a
formula φ ∈ Φ is said to be A-valid, denoted A ⊧ φ, iff, for any object X of A and
for any valuation v: φ Ð→ Sub(X), v(φ) = 1X .

Theorem 3.10. ⊢LL φ iff φ is A-valid for any locus A.

Proof. (a) If ⊢LL φ then φ is L-valid for any Λ-algebra L. Then, in particular, φ is
Sub(X)-valid, for any X in A and any A, i.e. A ⊧ φ for any A.
(b) If A ⊧ φ for any locus A, then φ is Sub(X)-valid for any X in A and for any A.
Suppose that ⊬LL φ. Then ⊭LL φ i.e. there exists a Λ-algebra L such that φ is not
L-valid. But any Λ-algebra being a locus, this leads to a contradiction.

Clearly, in a locus with exponentiation we have f ⇒ (g⇒ f) ≃ 1X and f ⊆ g⇒ h
iff f ∩ g ⊆ h, for any object X and any f ∶ A ↣ X, g ∶ B ↣ X and h ∶ C ↣ X
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in Sub(X). This, in turn, leads us to compare the locus-theoretic and the topos-
theoretic frameworks, in particular from a logico-algebraic viewpoint. The question
of whether the algebraic operators ∩,∪,¬ and⇒ in the algebra Sub(X) of subobjects
of some X in a locus (or, equivalently, in view of theorem 3.10, the logical connectors
in localistic logic) may be - or should be - internalized is of prime interest. Indeed,
a remarkable feature of the above analysis and results is that loci theory makes
no use of the concept of subobject classifier and that the logical connectors or the
corresponding algebraic operators have no internal counterpart.

Far from being a drawback, the impossibility to internalize the logical connectors
and then to consider localistic logic as an internal logic of some (hence any) locus,
is a highly desirable result. First, it means that LL must be seen as emerging
from a locus-theoretic structure and it asserts the pre-eminence of the (categorical)
structure over the logic which emerges from it. The links between topoï theory
and intuitionistic logic (IL) convey the opposite - and highly controversial - view.
Second, the definition of a subobject classifier in Set, which allows to recapture the
definition of the Boolean topos Set as a special case of the general definition of a
topos, is rather artificial. Finally, the equivalence between IL-provability and topos
validity hides a situation which seems somehow anomalous. On the one hand, topos
validity and IL-provability only depend on the algebraic - hence external to the topos
- structure of the algebra Sub(1) of subobjects of the terminal object 1, Sub(1) being
not an actual object in a topos. On the other hand, from an internal viewpoint -
which should prevail since IL is defined, via truth-arrows, as an internal logic -, what
actually matters is ΩX , for any X, i.e. the internal version of the notion of power set,
of which Sub(X) is the external version. But ΩX plays no role in the definition of
the validity/provability. The divorce between the internal and the external versions
culminates in a rather counter-intuitive result: there are non-Boolean topoï, i.e.
topoï where Sub(Ω) is not a Boolean algebra, which do validate classical logic. The
usual claim that topoï theory is to IL what set theory is to classical logic (CL) and,
therefore, that topoï theory is the right generalization of set theory in some sense, is,
to say the least, questionable. Such a situation is just impossible in a locus-theoretic
framework. Indeed, if we define a Boolean locus as a locus such that, for any object
X, Sub(X) is a Boolean algebra (i.e. such that, for any f ∶ A ↣ X,g ∶ B ↣ X and
h ∶ C ↣ X,f ⇒ (g ⇒ f) ≃ 1X and f ∩ g ⊆ h iff f ⊆ g ⇒ h), a formula φ is CL-valid
iff φ is valid in any Boolean locus.
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Abstract
We describe protocols for secure computation of the sum, product, and

some other functions of two or more elements of an arbitrary constructible ring,
without using any one-way functions. One of the new inputs that we offer here
is that, in contrast with other proposals, we conceal intermediate results of a
computation. For example, when we compute the sum of k numbers, only the
final result is known to the parties; partial sums are not known to anybody.
Other applications of our method include voting/rating over insecure channels
and a rather elegant and efficient solution of the “two millionaires problem”.

We also give a protocol, without using a one-way function, for the so-called
“mental poker”, i.e., a fair card dealing (and playing) over distance.

Finally, we describe a secret sharing scheme where an advantage over
Shamir’s and other known secret sharing schemes is that nobody, including
the dealer, ends up knowing the shares (of the secret) owned by any particular
player.

It should be mentioned that computational cost of our protocols is negligible
to the point that all of them can be executed without a computer.
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1 Introduction

As a society, we have become dependent on information technology for many aspects
of our daily life, and as a consequence, dependent upon cryptography. The need for
developing various cryptographic tools to address new challenges in storing and
processing information is therefore clear. One of these challenges, namely how to
securely and efficiently process information owned by several different parties, is
addressed in this paper.

The problem of secure multi-party computation was originally suggested by Yao
[19] in 1982. The concept usually refers to computational systems in which several
parties wish to jointly compute some value based on individually held secret bits of
information, but do not wish to reveal their secrets to anybody in the process. For
example, two individuals, each possessing some secret numbers, x and y, respectively,
may wish to jointly compute some function f(x, y) without revealing any information
about x or y other than what can be reasonably deduced by knowing the actual value
of f(x, y).

Secure computation was formally introduced by Yao as secure two-party compu-
tation. His “two millionaires problem” (cf. our Section 3) and its solution gave way
to a generalization to multi-party protocols, see e.g. [4], [7]. Secure multi-party com-
putation provides solutions to various real-life problems such as distributed voting,
private bidding and auctions, sharing of signature or decryption functions, private
information retrieval, etc.

In this paper, we showcase several protocols, originally offered in [13], for secure
computation of various functions (including the sum and product) of three or more
elements of an arbitrary constructible ring, without using encryption or any one-way
functions whatsoever. We require in our scheme that there are k secure channels for
communication between the k ≥ 3 parties, arranged in a cycle. We also show that
less than k secure channels is not enough.

Unconditionally secure multiparty computation was previously considered in [4]
and elsewhere. A new input that we offer here is that, in contrast with [4] and other
proposals, we conceal “intermediate results” of a computation. For example, when
we compute a sum of k numbers ni, only the final result

∑k
i=1 ni is known to the

parties; partial sums are not known to anybody. This is not the case in [4] where
each partial sum

∑s
i=1 ni is known to at least some of the parties. This difference

is important because, by the “pigeonhole principle”, at least one of the parties may
accumulate sufficiently many expressions in ni to be able to recover at least some of
the ni other than his own.

Here we show how our method works for computing the sum (Section 2) and
the product (Section 2.2) of private numbers. We ask what other functions can be
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securely computed without revealing intermediate results.
Other applications of our method include voting/rating over insecure channels

(Section 2.4) and a rather elegant solution of the “two millionaires problem” (Section
3).

In Section 5, we consider a cryptographic primitive known as “mental poker”,
i.e., fair card dealing (and playing) over distance. Several protocols for doing this,
most of them using encryption, have been suggested, the first by Shamir, Rivest, and
Adleman [18], and subsequent proposals include [5] and [9]. As with bit commitment,
fair card dealing between just two players over distance is impossible without a one-
way function since commitment is part of any meaningful card dealing scenario.
However, this turns out to be possible if the number of players is k ≥ 3. What
we require though is that there are k secure channels for communication between
players, arranged in a cycle. We also show that our protocol can, in fact, be adapted
to deal cards to just 2 players. Namely, if we have 2 players, they can use a “dummy”
player (e.g. a computer), deal cards to 3 players, and then just ignore the “dummy”’s
cards, i.e., “put his cards back in the deck”. An assumption on the “dummy” player
is that he cannot generate any randomness, so randomness has to be supplied to him
by the two “real” players. Another assumption is that there are secure channels for
communication between either “real” player and the “dummy”. We believe that this
model is adequate for 2 players who want to play online but do not trust the server.
“Not trusting” the server exactly means not trusting with generating randomness.
Other, deterministic, operations can be verified at the end of the game; we give more
details in Section 5.2.

We note that the only known (to us) proposal for dealing cards to k ≥ 3 players
over distance without using one-way functions was published in [1], but their protocol
lacks the simplicity, efficiency, and some of the functionalities of our proposal; this is
discussed in more detail in our Section 6. Here we just mention that computational
cost of our protocols is negligible to the point that they can be easily executed
without a computer.

Finally, in Section 7, we propose a secret sharing scheme where an advantage over
Shamir’s [17] and other known secret sharing schemes is that nobody, including the
dealer, ends up knowing the shares (of the secret) owned by any particular players.
The disadvantage though is that our scheme is a (k, k)-threshold scheme only.

2 Secure computation of a sum

In this section, our scenario is as follows. There are k parties P1, . . . , Pk; each Pi

has a private element ni of a fixed constructible ring R. The goal is to compute the
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sum of all ni without revealing any of the ni to any party Pj , j 6= i.
One obvious way to achieve this is well studied in the literature (see e.g. [8, 9,

12]): encrypt each ni as E(ni), send all E(ni) to some designated Pi (who does
not have a decryption key), have Pi compute S =

∑
i E(ni) and send the result

to the participants for decryption. Assuming that the encryption function E is
homomorphic, i.e., that

∑
i E(ni) = E(

∑
i ni), each party Pi can recover

∑
i ni upon

decrypting S.
This scheme requires not just a one-way function, but a one-way function with

a trapdoor since both encryption and decryption are necessary to obtain the result.
What we suggest in this section is a protocol that does not require any one-

way function, but involves secure communication between some of the Pi. So, our
assumption here is that there are k secure channels of communication between the k
parties Pi, arranged in a cycle. Our result is computing the sum of private elements
ni without revealing any individual ni to any Pj , j 6= i. Clearly, this is only possible
if the number of participants Pi is greater than 2. As for the number of secure
channels between Pi, we will show that it cannot be less than k, by the number of
parties.

2.1 The protocol (computing the sum)

1. P1 initiates the process by sending n1 + n01 to P2, where n01 is a random
element (“noise”).

2. Each Pi, 2 ≤ i ≤ k−1, does the following. Upon receiving an element m from
Pi−1, he adds his ni + n0i to m (where n0i is a random element) and sends the
result to Pi+1.

3. Pk adds nk + n0k to whatever he has received from Pk−1 and sends the result
to P1.

4. P1 subtracts n01 from what he got from Pk; the result now is the sum S =∑
1≤i≤k ni +

∑
2≤i≤k n0i. Then P1 publishes S.

5. Now all participants Pi, except P1, broadcast their n0i, possibly over insecure
channels, and compute

∑
2≤i≤k n0i. Then they subtract the result from S to

finally get
∑

1≤i≤k ni.

Thus, in this protocol we have used k (by the number of the parties Pi) secure
channels of communication between the parties. If we visualize the arrangement as
a graph with k vertices corresponding to the parties Pi and k edges corresponding to
secure channels, then this graph will be a k-cycle. Other arrangements are possible,
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too; in particular, a union of disjoint cycles of length ≥ 3 would do. (In that case,
the graph will still have k edges.) Two natural questions that one might now ask
are: (1) is any arrangement with less than k secure channels possible? (2) with k
secure channels, would this scheme work with any arrangement other than a union
of disjoint cycles of length ≥ 3? The answer to both questions is “no”. Indeed, if
there is a vertex (corresponding to P1, say) of degree 0, then any information sent
out by P1 will be available to everybody, so other participants will know n1 unless
P1 uses a one-way function to conceal it. If there is a vertex (again, corresponding
to P1) of degree 1, this would mean that P1 has a secure channel of communication
with just one other participant, say P2. Then any information sent out by P1 will
be available at least to P2, so P2 will know n1 unless P1 uses a one-way function
to conceal it. Thus, every vertex in the graph should have degree at least 2, which
implies that every vertex is included in a cycle. This immediately implies that the
total number of edges is at least k. If now a graph Γ has k vertices and k edges, and
every vertex of Γ is included in a cycle, then every vertex has degree exactly 2 since
by the “handshaking lemma” the sum of the degrees of all vertices in any graph
equals twice the number of edges. It follows that our graph is a union of disjoint
cycles.

2.2 Secure computation of a product

Now we show how to use the general ideas of the protocol for computing the sum (see
Section 2.1) to securely compute a product. Again, there are k parties P1, . . . , Pk;
each Pi has a private (nonzero) element ni of a fixed constructible ring R. The goal
is to compute the product of all ni without revealing any of the ni to any party
Pj , j 6= i. Requirements on the ring R are going to be somewhat more stringent here
than they were in Section 2. Namely, we require that R does not have zero divisors
and, if an element r of R is a product a · x with a known a and an unknown x, then
x can be efficiently recovered from a and r. Examples of rings with these properties
include the ring of integers and any constructible field.

The protocol (computing the product)

1. P1 initiates the process by sending n1 ·n01 to P2, where n01 is a random nonzero
element (“noise”).

2. Each Pi, 2 ≤ i ≤ k−1, does the following. Upon receiving an element m from
Pi−1, he multiplies m by ni · n0i (where n0i is a random element) and sends
the result to Pi+1.
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3. Pk multiplies by nk · n0k whatever he has received from Pk−1 and sends the
result to P1. This result is the product P = Π1≤i≤k ni · Π2≤i≤k n0i.

4. P1 divides what he got from Pk by his n01; the result now is the product
P = Π1≤i≤k ni · Π2≤i≤k n0i. Then P1 publishes P .

5. Now all participants Pi, except P1, broadcast their n0i, possibly over insecure
channels, and compute Π2≤i≤k n0i. Then they divide P by the result to finally
get Π1≤i≤k ni.

2.3 Effect of coalitions

Suppose now we have k ≥ 3 parties with k secure channels of communication ar-
ranged in a cycle, and suppose 2 of the parties secretly form a coalition. Our
assumption here is that, because of the circular arrangement of secure channels, a
secret coalition is only possible between parties Pi and Pi+1 for some i, where the in-
dices are considered modulo k; otherwise, attempts to form a coalition (over insecure
channels) will be detected. If two parties Pi and Pi+1 exchanged information, they
would, of course, know each other’s elements ni, but other than that, they would not
get any advantage if k ≥ 4. Indeed, we can just “glue these two parties together”,
i.e., consider them as one party, and then the protocol is essentially reduced to that
with k − 1 ≥ 3 parties. On the other hand, if k = 3, then, of course, two parties
together have all the information about the third party’s element.

For an arbitrary k ≥ 4, if n < k parties want to form a (secret) coalition to
get information about some other party’s element, all these n parties have to be
connected by secure channels, which means there is a j such that these n parties
are Pj , Pj+1, . . . , Pj+n−1, where indices are considered modulo k. It is not hard to
see then that only a coalition of k − 1 parties P1, . . . , Pi−1, Pi+1, . . . , Pk can suffice
to get information about the Pi’s element.

2.4 Ramification: voting/rating over insecure channels

In this section, our scenario is as follows. There are k parties P1, . . . , Pk; each Pi

has a private integer ni. There is also a computing entity B (for Boss) who shall
compute the sum of all ni. The goal is to let B compute the sum of all ni without
revealing any of the ni to him or to any party Pj , j 6= i.

The following example from real life is a motivation for this scenario.

Example 1. Suppose members of the board in a company have to vote for a project
by submitting their numeric scores (say, from 1 to 10) to the president of the com-
pany. The project gets a green light if the total score is above some threshold
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value T . Members of the board can discuss the project between themselves and
exchange information privately, but none of them wants his/her score to be known
to either the president or any other member of the board.

In the protocol below, we are again assuming that there are k channels of com-
munication between the parties, arranged in a cycle: P1 → P2 → . . . → Pk → P1.
On the other hand, communication channels between B and any of the parties are
not assumed to be secure.

2.5 The protocol (rating over insecure channels)

1. P1 initiates the process by sending n1 + n01 to P2, where n01 is a random
number.

2. Each Pi, 2 ≤ i ≤ k − 1, does the following. Upon receiving a number m from
Pi−1, he adds his ni + n0i to m (where n0i is a random number) and sends the
result to Pi+1.

3. Pk adds nk + n0k to whatever he has received from Pk−1 and sends the result
to B.

4. Pk now starts the process of collecting the “adjustment” in the opposite direc-
tion. To that effect, he sends his n0k to Pk−1.

5. Pk−1 adds n0(k−1) and sends the result to Pk−2.

6. The process ends when P1 gets a number from P2, adds his n01, and sends the
result to B. This result is the sum of all n0i.

7. B subtracts what he got from P1 from what he got from Pk; the result now is
the sum of all ni, 1 ≤ i ≤ k.

3 Application: the “two millionaires problem”

The protocol from Section 2, with some adjustments, can be used to provide an
elegant and efficient solution to the “two millionaires problem” introduced in [19]:
there are two numbers, n1 and n2, and the goal is to solve the inequality n1 ≥?n2
without revealing the actual values of n1 or n2.

To that effect, we use a “dummy” as the third party. Our concept of a “dummy”
is quite different from a well-known concept of a “trusted third party”; importantly,
our “dummy” is not supposed to generate any randomness; it just does what it is
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told to. Basically, the only difference between our “dummy” and a usual calculator
is that there are secure channels of communication between the “dummy” and either
“real” party. One possible real-life interpretation of such a “dummy” would be an
online calculator that can combine inputs from different users. Also note that in our
scheme below the “dummy” is unaware of the committed values of n1 or n2, which
is useful in case the two “real” parties do not want their private numbers to ever be
revealed. This suggests yet another real-life interpretation of a “dummy”, where he
is a mediator between two parties negotiating a settlement.

Thus, let A (Alice) and B (Bob) be two “real” parties, and D (Dummy) the
“dummy”. Suppose A’s number is n1, and B’s number is n2.

3.1 The protocol (comparing two numbers)

1. A splits her number n1 as a difference n1 = n+
1 −n−1 . She then sends n−1 to B.

2. B splits his number n2 as a difference n2 = n+
2 − n−2 . He then sends n−2 to A.

3. A sends n+
1 + n−2 to D.

4. B sends n+
2 + n−1 to D.

5. D subtracts (n+
2 + n−1 ) from (n+

1 + n−2 ) to get n1−n2, and announces whether
this result is positive or negative.

Remark 1. Perhaps a point of some dissatisfaction in this protocol could be the fact
that the “dummy” ends up knowing the actual difference n1 − n2, so if there is a
leak of this information to either party, this party would recover the other’s private
number ni. This can be avoided if n1 and n2 are represented in the binary form
and compared one bit at a time, going left to right, until the difference between bits
becomes nonzero. However, this method, too, has a disadvantage: the very moment
the “dummy” pronounces the difference between bits nonzero would give an estimate
of the difference n1 − n2 to the real parties, not just to the “dummy”.

We note that the original solution of the “two millionaires problem” given in [19],
although lacks the elegance of our scheme, does not involve a third party, whereas
our solution does. On the other hand, the solution in [19] uses encryption, whereas
our solution does not, which makes it by far more efficient. Finally, we mention that
since our paper [13] was published, we have come up with several other solutions of
the “two millionaires problem” without using either one-way functions or a dummy
[14], [11]. Some of those solutions use simple laws of (classical) physics instead.
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4 Secure computation of symmetric functions
In this section, we show how our method can be easily generalized to allow secure
computation of any expression of the form

∑k
i=1 nr

i , where ni are parties’ private
numbers, k is the number of parties, and r ≥ 1 an arbitrary integer. We simplify
our method here by removing the “noise”, to make the exposition more transparent.
Otherwise, the protocol is the same as the protocol for secure computation of a sum
in Section 2.

4.1 The protocol (computing the sum of powers)

1. P1 initiates the process by sending a random element n0 to P2.

2. Each Pi, 2 ≤ i ≤ k−1, does the following. Upon receiving an element m from
Pi−1, he adds his nr

i to m and sends the result to Pi+1.

3. Pk adds his nr
k to whatever he has received from Pk−1 and sends the result to

P1.

4. P1 subtracts (n0 − nr
1) from what he got from Pk; the result now is the sum

of all nr
i , 1 ≤ i ≤ k.

Now that the parties can securely compute the sum of any powers of their ni,
they can also compute any symmetric function of ni. However, in the course of
computing a symmetric function from sums of different powers of ni, at least some
of the parties will possess several different polynomials in ni, so chances are that
at least some of the parties will be able to recover at least some of the ni. On the
other hand, because of the symmetry of all expressions involved, there is no way to
tell which ni belongs to which party.

4.2 Open problem

Now it is natural to ask:

Problem 1. What other functions (other than the sum and the product) can be
securely computed without revealing intermediate results to any party?

To be more precise, we note that one intermediate result is inevitably revealed
to the party who finishes computation, but this cannot be avoided in any scenario.
For example, after the parties have computed the sum of their private numbers, each
party also knows the sum of all numbers except his own. What we want is that no
other intermediate results are ever revealed.
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To give some insight into this problem, we consider a couple of examples of
computing simple functions different from the sum and the product of the parties’
private numbers.

Example 2. We show how to compute the function f(n1, n2, n3) = n1n2 + n2n3 in
the spirit of the present paper, without revealing (or even computing) any interme-
diate results, i.e., without computing n1n2 or n2n3.

1. P2 initiates the process by sending a random element n0 to P3.

2. P3 adds his n3 to n0 and sends n3 + n0 to P1.

3. P1 adds his n1 to n0 + n3 and sends the result to P2.

4. P2 subtracts n0 from n0 + n3 + n1 and multiplies the result by n2. This is now
n1n2 + n2n3.

Example 3. The point of this example is to show that functions that can be com-
puted by our method do not have to be homogeneous (in case the reader got this
impression based on the previous examples).

The function that we compute here is f(n1, n2, n3) = n1n2 + g(n3), where g is
any computable function.

1. P1 initiates the process by sending a random element a0 to P2.

2. P2 multiplies a0 by his n2 and sends the result to P3.

3. P3 multiplies a0n2 by a random element c0 and sends the result to P1.

4. P1 multiplies a0n2c0 by his n1, divides by a0, and sends the result, which is
n1n2c0, back to P3.

5. P3 divides n1n2c0 by c0 and adds g(n3), to end up with n1n2 + g(n3).

Note that in this example, the parties used more than just one loop of trans-
missions in the course of computation. Also, information here was sent “in both
directions” in the circuit.
Remark 2. Another collection of examples of multiparty computation without re-
vealing intermediate results can be obtained as follows. Suppose, without loss of
generality, that some function f(n1, . . . , nk) can be computed by our method in
such a way that the last step in the computation is performed by the party P1,
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i.e., P1 is the one who ends up with f(n1, . . . , nk) while no party knows any inter-
mediate result g(n1, . . . , nk) of this computation. Then, obviously, P1 can produce
any function of the form F (n1, f(n1, . . . , nk)) (for a computable function F ) as well.
Examples include nr

1 + n1n2 · · ·nk for any r ≥ 0; nr
1 + (n1n2 + n3)s for any r, s ≥ 0,

etc.

5 Mental poker

“Mental poker” is the common name for a set of cryptographic problems that con-
cerns playing a fair game over distance without the need for a trusted third party.
One of the ways to describe the problem is: how can 2 players deal cards fairly over
the phone? Several protocols for doing this have been suggested, including [5, 9, 18]
and [1]. As with bit commitment, it is rather obvious that fair card dealing to two
players over distance is impossible without a one-way function, or even a one-way
function with trapdoor. However, it turns out to be possible if the number of players
is at least 3, assuming, of course, that there are secure channels for communication
between at least some of the players. In our proposal, we will be using k secure
channels for k ≥ 3 players P1, . . . , Pk, and these k channels will be arranged in a
cycle: P1 → P2 → . . .→ Pk → P1.

To begin with, suppose there are 3 players: P1, P2, and P3 and 3 secure channels:
P1 → P2 → P3 → P1.

The first protocol, Protocol 1 below, is for distributing all integers from 1 to
m to the players in such a way that each player gets about the same number of
integers. (For example, if the deck that we want to deal has 52 cards, then two
players should get 17 integers each, and one player should get 18 integers.) In other
words, Protocol 1 allows one to randomly split a set of m integers into 3 disjoint
sets.

The second protocol, Protocol 2, is for collectively generating random integers
modulo a given integer M . This very simple but useful primitive can be used:
(i) for collectively generating, uniformly at random, a permutation from the group
Sm. This will allow us to assign cards from a deck of m cards to the m integers
distributed by Protocol 1; (ii) introducing “dummy” players as well as for “playing”
after dealing cards.

5.1 Protocol 1

For notational convenience, we are assuming below that we have to distribute inte-
gers from 1 to r = 3s to 3 players.
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To begin with, all players agree on a parameter N , which is a positive integer of
a reasonable magnitude, say, 10.

1. each player Pi picks, uniformly at random, an integer (a “counter”) ci between
1 and N , and keeps it private.

2. P1 starts with the “extra” integer 0 and sends it to P2.

3. P2 sends to P3 either the integer m he got from P1, or m+1. More specifically,
if P2 gets from P1 the same integer m less than or equal to c2 times, then he
sends m to P3; otherwise, he sends m+1 and keeps m (i.e., in the latter case m
becomes one of “his” integers). Having sent out m+1, he “resets his counter”,
i.e., selects, uniformly at random between 1 and N , a new c2. He also resets
his counter if he gets the number m for the first time, even if he does not keep
it.

4. P3 sends to P1 either the integer m he got from P2, or m+1. More specifically,
if P3 gets from P2 the same integer m less than or equal to c3 times, then he
sends m to P1; otherwise, he sends m+1 and keeps m. Having sent out m+1,
he selects a new counter c3. He also resets his counter if he gets the number
m for the first time, even if he does not keep it.

5. P1 sends to P2 either the integer m he got from P3, or m+1. More specifically,
if P1 gets from P3 the same integer m less than or equal to c1 times, then he
sends m to P2; otherwise, he sends m+1 and keeps m. Having sent out m+1,
he selects a new counter c1. He also resets his counter if he gets the number
m for the first time, even if he does not keep it.

6. This procedure continues until one of the players gets s integers (not count-
ing the “extra” integer 0). After that, a player who already has s integers
just “passes along” any integer that comes his way, while other players keep
following the above procedure until they, too, get s integers.

7. The protocol ends as follows. When all 3s integers, between 1 and 3s, are
distributed, the player who got the last integer, 3s, keeps this fact to himself
and passes this integer along as if he did not “take” it.

8. The process ends when the integer 3s makes N + 1 “full circles”.

We note that the role of the “extra” integer 0 is to prevent P3 from knowing that
P2 has got the integer 1 if it happens that c2 = 1 in the beginning.
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We also note that this protocol can be generalized to arbitrarily many players in
the obvious way, if there are k secure channels for communication between k players,
arranged in a cycle.

5.2 Protocol 2

Now we describe a protocol for generating random integers modulo some integer M
collectively by 3 players. As in Protocol 1, we are assuming that there are secure
channels for communication between the players, arranged in a cycle.

1. P2 and P3 uniformly at random and independently select private integers n2
and n3 (respectively) modulo M .

2. P2 sends n2 to P1, and P3 sends n3 to P1.

3. P1 computes the sum m = n2 + n3 modulo M .

Note that neither P2 nor P3 can cheat by trying to make a “clever” selection
of their ni because the sum, modulo M , of any integer with an integer uniformly
distributed between 0 and M − 1, is an integer uniformly distributed between 0 and
M − 1.

Finally, P1 cannot cheat simply because he does not really get a chance: if he
miscalculates n2 + n3 modulo M , this will be revealed at the end of the game. (All
players keep contemporaneous records of all transactions, so that at the end of the
game, correctness could be verified.)

To generalize Protocol 2 to arbitrarily many players P1, . . . , Pk, k ≥ 3, we can
just engage 3 players at a time in running the above protocol. If, at the same
time, we want to keep the same circular arrangement of secure channels between
the players that we had in Protocol 1, i.e., P1 → P2 → . . . Pk → P1, then 3 players
would have to be Pi+1, Pi, Pi+2, where i would run from 1 to k, and the indices are
considered modulo k.

Protocol 2 can now be used to collectively generate, uniformly at random, a
permutation from the group Sm. This will allow us to assign cards from a deck of m
cards to the m integers distributed by Protocol 1. Generating a random permutation
from Sm can be done by taking a random integer between 1 and m (using Protocol
2) sequentially, ensuring that there is no repetition. This “brute-force” method will
require occasional retries whenever the random integer picked is a repeat of an integer
already selected. A simple algorithm to generate a permutation from Sm uniformly
randomly without retries, known as the Knuth shuffle, is to start with the identity
permutation or any other permutation, and then go through the positions 1 through
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(m−1), and for each position i swap the element currently there with an arbitrarily
chosen element from positions i through m, inclusive (again, Protocol 2 can be
used here to produce a random integer between i and m). It is easy to verify that
any permutation of m elements will be produced by this algorithm with probability
exactly 1

m! , thus yielding a uniform distribution over all such permutations.
After this is done, we have m cards distributed uniformly randomly to the play-

ers, i.e., we have:

Proposition 1. If m cards are distributed to k players using Protocols 1 and 2, then
the probability for any particular card to be distributed to any particular player is 1

k .

5.3 Using “dummy” players while dealing cards

We now show how a combination of Protocol 1 and Protocol 2 can be used to deal
cards to just 2 players. If we have 2 players, they can use a “dummy” player (e.g.
a computer), deal cards to 3 players as in Protocol 1, and then just ignore the
“dummy”’s cards, i.e., “put his cards back in the deck”. We note that the “dummy”
in this scenario would not generate randomness; it will be generated for him by the
other two players using Protocol 2. Namely, if we call the “dummy” P3, then the
player P1 would randomly generate c31 between 1 and N and send it to P3, and P2
would randomly generate c32 between 1 and N and send it to P3. Then P3 would
compute his random number as c3 = c31 + c32 modulo N .

Similarly, “dummy” players can help k “real” players each get a fixed number s of
cards, because Protocol 1 alone is only good for distributing all cards in the deck to
the players, dealing each player about the same number of cards. We can introduce
m “dummy” players so that (m + k) · s is approximately equal to the number of
cards in the deck, and position all the “dummy” players one after another as part
of a circuit P1 → P2 → . . . Pm+k → P1. Then we use Protocol 1 to distribute all
cards in the deck to (m + k) players taking care that each “real” player gets exactly
s cards. As in the previous paragraph, “dummy” players have “real” ones generate
randomness for them using Protocol 2.

After all cards in the deck are distributed to (m + k) players, “dummy” players
send all their cards to one of them; this “dummy” player now becomes a “dummy
dealer”, i.e., he will give out random cards from the deck to “real” players as needed
in the course of a subsequent game, while randomness itself will be supplied to him
by “real” players using Protocol 2.
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6 Summary of the properties of our card dealing (Pro-
tocols 1 and 2)

Here we summarize the properties of our Protocols 1 and 2 and compare, where
appropriate, our protocols to the card dealing protocol of [1].

1. Uniqueness of cards. Yes, by the very design of Protocol 1.

2. Uniform random distribution of cards. Yes, because of Protocol 2; see our
Proposition 1 in Section 5.2.

3. Complete confidentiality of cards. Yes, by the design of Protocol 1.

4. Number of secure channels for communication between k ≥ 3 players:
k, arranged in a cycle.

By comparison, the card dealing protocol of [1] requires 3k secure channels.

5. Average number of transmissions between k ≥ 3 players: O(N
2 mk), where

m is the number of cards in the deck, and N ≈ 10. This is because in Protocol 1,
the number of circles (complete or incomplete) each integer makes is either 1 or the
minimum of all the counters ci at the moment when this integer completes the first
circle. Since the average of ci is at most N

2 , we get the result because within one
circle (complete or incomplete) there are at most k transmissions. We note that in
fact, there is a precise formula for the average of the minimum of ci in this situation:∑N

j=1 jk

Nk , which is less than N
2 if k ≥ 2.

By comparison, in the protocol of [1] there are O(mk2) transmissions.

6. Total length of transmissions between k ≥ 3 players: N
2 mk · log2 m

bits. This is just the average number of transmissions times the length of a single
transmission, which is a positive integer between 1 and m.

By comparison, total length of transmissions in [1] is O(mk2 log k).

7. Computational cost of Protocol 1: negligible (because computation amounts
to selecting random integers from a small interval).

By comparison, the protocol of [1] requires computing products of up to k per-
mutations from the group Sk to deal just one card; the total computational cost
therefore is O(mk2 log k).

7 Secret sharing
Secret sharing refers to method for distributing a secret amongst a group of partic-
ipants, each of whom is allocated a share of the secret. The secret can be recon-
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structed only when a sufficient number of shares are combined together; individual
shares are of no use on their own.

More formally, in a secret sharing scheme there is one dealer and k players. The
dealer gives a secret to the players, but only when specific conditions are fulfilled.
The dealer accomplishes this by giving each player a share in such a way that any
group of t (for threshold) or more players can together reconstruct the secret but no
group of fewer than t players can. Such a system is called a (t, k)-threshold scheme
(sometimes written as a (k, t)-threshold scheme).

Secret sharing was invented by Shamir [17] and Blakley [2], independent of each
other, in 1979. Both proposals assumed secure channels for communication between
the dealer and each player. In our proposal here, the number of secure channels
is equal to 2k, where k is the number of players, because in addition to the secure
channels between the dealer and each player, we have k secure channels for commu-
nication between the players, arranged in a cycle: P1 → P2 → . . .→ Pk → P1.

The advantage of our scheme over Shamir’s and other known secret sharing
schemes is that nobody, including the dealer, ends up knowing the shares (of the
secret) owned by any particular players. The disadvantage is that our scheme is a
(k, k)-threshold scheme only.

We start by describing a subroutine for distributing shares by the players among
themselves. More precisely, k players want to split a given number in a sum of k
numbers, so that each summand is known to one player only, and each player knows
one summand only.

7.1 The subroutine (distributing shares by the players among
themselves)

Suppose a player Pi receives a number M that has to be split in a sum of k private
numbers. In what follows, all indices are considered modulo k.

1. Pi initiates the process by sending M − mi to Pi+1, where mi is a random
number (could be positive or negative).

2. Each subsequent Pj does the following. Upon receiving a number m from
Pj−1, he subtracts a random number mj from m and sends the result to Pj+1.
The number mj is now Pj ’s secret summand.

3. When this process gets back to Pi, he adds mi to whatever he got from Pi−1;
the result is his secret summand.

Now we get to the actual secret sharing protocol.
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7.2 The protocol (secret sharing (k, k)-threshold scheme)

The dealer D wants to distribute shares of a secret number N to k players Pi so
that, if Pi gets a number si, then

∑k
i=1 si = N .

1. D arbitrarily splits N in a sum of k integers: N =
∑k

i=1 ni.

2. The loop: at Step i of the loop, D sends ni to Pi, and Pi initiates the above
Subroutine to distribute shares nij of ni among the players, so that

∑k
j=1 nij =

ni.

3. After all k steps of the loop are completed, each player Pi ends up with k
numbers nji that sum up to si =

∑k
j=1 nji. It is obvious that

∑k
i=1 si = N .
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Abstract

Originally, modern symbolic logic was supposed to be a disambiguated and
streamlined version of the logic of natural language. It has nevertheless failed
to provide a full account of several telltale semantical phenomena of ordinary
language, including Peirce’s paradox, “donkey sentences” and more generally
conditionals and different kinds of anaphora. It is shown here by reference
to examples how these phenomena can be treated by means of IF logic and
its semantical basis, game-theoretical semantics. Furthermore, methodological
questions like compositionality and logical form will be discussed.

1 Frege-gate
The relations between symbolic logic and linguistic theorizing have been (and still
are) complicated, close and confused. Symbolic logic was first thought, typically if
not universally, as a minor regimentation and smoothlining of ordinary language. In
another direction, mathematicians were formulating much of their reasoning in terms
of ordinary prose, not in terms of manipulation of equations or other complexes
of symbols. In fact mathematicians like Cauchy or Weierstrass were using – as
they had to do – an explicit but unformalized logic of quantifiers in the guise of
the so-called epsilon-delta technique, expressed in such ordinary language terms as
“given such-and-such a number”, “one can find” etc. (See here and in the following
Hintikka [3,5]).

But then a huge scientific scandal, a veritable Frege-gate, took place without any-
one’s noticing. Frege undertook to formalize our entire logic, to present a notation (a
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Schrift) for all our concepts. Yet he failed to understand his fellow mathematicians’
quantifier logic, and instead gave his followers a flawed logic that is only a part of the
full story. Subsequent logicians unfortunately followed Frege and used this defective
logic as their basic working logic. This alone would not been serious, for Frege’s logic
of quantifiers (by which I mean what is nowadays called first-order logic) is correct
as far as its expressive powers go. The catastrophic mistake the logicians made was
to think in effect that it is the full logic of quantifiers. The first specific disaster this
caused was the bunch of paradoxes of set theory, which prompted the entire crisis
of the foundations of set theory. This in turn led to further catastrophes, such as
Zermelo-Fraenkel first-order set theory and the wishful belief that such results as
Gödel’s, Tarski’s or Paul Cohen’s tell us something about the limitations of logic
and axiomatization or about the continuum hypothesis (Hintikka [4]).

This “Frege-gate” scandal came to light only recently when it was pointed out
that the logic that mathematicians were using already hundred years ago was not the
received first-order logic, but the richer logic that had been meanwhile rediscovered
and systematized under the title “independence-friendly logic” (IF logic). (see e.g.
Mann et al. [7]). However, the Frege-gate scandal has not hit headlines yet even in
logic journals.

2 IF logic and linguistics

In this paper, I will discuss one aspect of the new problem situation, viz., its impact
on linguistic theorizing. That there must be such an impact is obvious. To mention
only one indication, at one time Chomsky thought that his syntactical counterparts
to logical forms, the LF’s, were essentially like formulas of (the received) first-order
logic (see e.g. Chomsky, [1, p. 197]; [2, p. 67]). If they are not adequate representa-
tions of logical and, a fortiori, semantical forms of ordinary language sentences, we
do not only need a better logic, but also a better syntactical theory.

Now IF logic, at least in its simplest version, has been around for a while and
has even become an established research area in logic. Hence there has in fact been
some discussion of its role in natural language. Much ingenuity has been expended
on the first examples of purportedly IF sentences in ordinary language. They have
been mostly so-called branching quantifier sentences like

(2.1) F (x, y, z, u).

(∀z)(∃u)

(∀x)(∃y)
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Its meaning can be expressed by the IF sentence

(2.2) (∀x)(∀z)(∃y /∀z)(∃u /∀x)F (x, y, z, u).

This meaning cannot be expressed by a first-order quantifier sentence without
the independence indication slash.

Examples from ordinary language were presented and discussed. An example was

(2.3) Every villager has a friend and every townsman has a relative who know
each other.

Here choice of a friend is independent of the choice of a relative and vice versa.
Such examples are sufficiently complicated for confusing some philosophers.

However, it has turned out that the examples are only the tip of an iceberg. Other
examples look syntactically simple but still turn out to be semantically rather
complex, e.g.

(2.4) Everybody has a different friend.

Its logical form can be seen to be

(2.5) (∀x1)(∀x2)(∃y1 /∀x2)(∃y2 /∀x1)(((x1 = x2)↔
(y1 = y2)) & F (y1, x1) & F (y2, x2)).

What was explained in these early linguistic applications of IF logic are particular
examples, rather than general semantical or syntactical phenomena. In this paper,
we concentrate on one particular relatively unexplored semantical phenomenon, viz.,
informational independence involving propositional connectives instead of (or in ad-
dition to) quantifiers.

3 Peirce’s paradox

Ironically, the shortcomings of the usual (“Fregean”) first-order logic were known
already at the time of its formulation to Frege’s co-inventor Charles S. Peirce (see
Peirce [8, 4.546 and 4.580]). He pointed out a problem about the following pair of
English sentences:
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(3.1) Someone is such that, if he fails in business, he commits suicide.

(3.2) Someone is such that if everybody fails in business, he commits suicide.

Their respective logical forms seem to be

(3.3) (∃x)(F (x) ⊃ S(x)),

(3.4) (∃x)((∀y)F (y) ⊃ S(x)).

Here (3.4) is equivalent to

(3.5) (∃x)((∃y) ∼ F (y) ∨ S(x)).

But something is paradoxical here. Formulas (3.1) and (3.2) obviously mean
something different whereas, as Peirce pointed out, in the usual first-order logic
(3.3) and (3.4) are logically equivalent.

Various ad hoc explications have been proposed, but they remain just that:
adhockey. Yet game-theoretical semantics yields a diagnosis of the problem without
any further assumptions or considerations. The problem is how the conditional (3.4)
can be as strong as (3.3).

An answer is found by examining the meaning of (3.1) or (3.2) in game-
theoretical terms. What (3.5) says is that it is true. That truth means in the
existence of a winning strategy for the verifier (“myself”) in the semantical game
associated with (3.2). The first part of this strategy is a specification of the value
c of x in (∃x). In order for it to be part of a winning strategy, there has to be a
similar winning strategy in the game with

(3.6) (∃y) ∼ F (y) ∨ S(c).

The next step in a play of the game is the verifier’s choice of one of the disjuncts.
Whether or not this makes (3.6) true does depend on what the world is like.

If the world is such that everybody fails in business, the right choice of c is one
of the people who commit suicide. But the world might be such that there are no
such persons, so that the choice of x = c must make the other disjunct true, in
other words must satisfy ∼ F (x). This is guaranteed only if x satisfies ∼ F (x), in
other words if it is a case that
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(3.7) ∼ S(x) ⊃ ∼ F (x).

In other words only

(3.8) F (x) ⊃ S(x).

In that case, (3.2) can be true only if its antecedent is false, in other words
only if not everybody fails in business. Hence the choice of x must provide a
counter-example to everybody’s failing in business. And the choice x = c provides
such an counter-example only if

(3.9) ∼ S(c) ⊃ ∼ F (c).

The existence of such a counter-example means the truth of (3.3). Hence (the
truth of) (3.5) implies the (the truth of) (3.3), which is Peirce’s paradox.

In still other words, (3.3) is true only if there is an x such that if he fails in
business, he commits suicide. Depending on what the world is like in (3.1) the
verifier might have to choose ∼ F (c) or S(c). In other words, c depends on the world.
This means that the x in (3.5) or (3.4) is not the same individual independently of
what the world is like. It is not really a choice of an “individual” as is required in
(3.1) and (3.2).

4 Peirce’s paradox and independence

This is clear interpretationally. But what does it mean in terms of the semantical
games that convey our sentences their meaning? What is the right logic translation
of (3.2)?

The analysis carried out above shows that the choice of a disjunct (“of a world”)
must be neutral with respect to the choice of objects. Hence the solution is to make
∨ independent of (∃x). Instead of (3.4) one should have

(4.1) (∃x)((∀y)F (y)(∨/∃x) S(x)).

Thus the true representation of (3.2) is not (3.4) but (4.1). It cannot be for-
mulated in IF logic in the usual narrow sense, but it can be formulated if this logic
is amplified by allowing extra independencies between quantifiers and connectives.
This opens up a new dimension of the entire hierarchy of different logics, besides
further illustrating the inadequacy of Frege’s logic.
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5 Hierarchies of IF logics
In IF logic in the narrowest sense – which is the one in which it currently being used
in the literature – the only extra kind of independence allowed is an independence
of existential-force quantifiers of universal-force quantifiers within the formal scope
of which they occur. (Quantifiers, whose scopes are not nested are automatically
independent.) Only strong negations, ∼, are admitted. If we admit sentence-initial
contradictory negations, ¬, we obtain richer and more satisfactory logic which is
usually called extended independence-friendly logic (EIF) logic. It should perhaps
be considered as the “real” basic IF logic. If we allow arbitrary extra independen-
cies (existential quantifiers on existentials, universal quantifiers on universals, and
universal quantifiers on existentials) we obtain a still much stronger logic that might
be called generalized IF logic.

Here we are dealing with yet another way of enriching the basic or extended IF
logic. This way is to allow extra independencies between quantifiers and proposi-
tional connectives. From the Peircean example and from others it is seen that this
dimension of expressive enrichment is independent of quantifier independencies.

6 Simple donkey sentences
This new dimension also facilitates analysis of many interesting linguistic phenom-
ena. One instructive example is constituted by the so-called donkey sentences. The
interpretation of these sentences is a routine question discussed in the linguistic
literature on definite and indefinite pronouns. The simplest example has the same
form as the following sentence:

(6.1) If Peter owns a donkey, he beats it.

This is prima facie of the following form

(6.2) (∃x)(D(x) & O(p, x)) ⊃ B(p, x).

This would have to be equivalent with

(6.3) (∀x)(∼ D(x)∨ ∼ O(p, x)) ∨B(p, x).

But (6.2) is ill-formed in that the last x is not bound to (is outside the scope of)
(∃x). But the alternative
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(6.4) (∃x)((D(x) & O(p, x)) ⊃ B(p, x))

says only that there is at least one animal such that if it is a donkey and is owned
by Peter, he beats it. The true semantical form of (6.1) seems to be intuitively

(6.5) (∀x)((D(x) & O(p, x)) ⊃ B(p, x)).

But why? How come (6.1) should be translated as (6.5)? An indefinite article has
the force of an existential quantifier. So why does it seem to have here the force of
an universal one?

The answer can be obtained by analyzing the meaning of (6.1) the same way as
the meaning of Peirce’s paradoxical sentence (3.1) was analyzed earlier. The crucial
point is that the choice of x must be independent of the choice between different
relevant semantics codified in the second ∨ in (6.3). The solution is now to make
the quantifier and the connective ∨ independent of each other. Here the covert
logic translation of (6.1) will be

(6.6) (∃x)(D(x) & O(p, x))(⊃ /∃x)B(p, x)

which is equivalent with

(6.7) (∀x)(∼ D(x)∨ ∼ O(p, x))(∨ /∀x)B(p, x).

When is there a winning strategy for the verifier in the game with (6.7), as (6.7)
says? In that strategy, since ∨ is independent of (∀x), the falsifier chooses a value
d for x. The resulting sentence

(6.8) (∼ D(d)∨ ∼ O(p, d)) ∨B(p, d)

must be true, i.e. the verifier must be able to choose a true disjunct. Such a choice
is possible for any d if it is the case that for any donkey d owned by Peter it is true
that he beats it i.e. that B(p, d) is true. But this is obviously just what (6.1) says.

7 Complex donkey sentences

This shows that the extensive literature designed to account for donkey sentences
is, if not wrong, then at least redundant. Many purported explanations do not
work for more complex donkey sentences like
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(7.1) If you give each child a gift for Christmas, some child will open it to-day.

Here even a merely linguistic account of the role of the anaphoric phenomenon “it”
is very tricky. No usual IF logic expression captures the meaning of (7.1) either. Yet
its logic translation in terms of connective independence is possible.

The right translation is perhaps best seen if we first eliminate the existential
quantifier in terms of its Skolem function and express (7.1) as

(7.2) (∃g)(∀x)(G(x, g(x)) ⊃ (∃z)O(z, g(z))).

This is a second-order sigma one-one sentence. It is possible to translate such
sentences to the corresponding IF first-order language, but not without independent
connectives. Here is a translation:

(7.3) (∀x1)(∀x2)(∃y1 /∀x2)(∃y2 /∀x1)((x1 = x2) ⊃ (y1 = y2)) &

G(x1, y1) & G(x2, y2)(⊃ /∀x1, ∀x2)(∃z)((z = x1)∨ (z = x2) ⊃ (O(z, y1) & O(z, y2))).

This explains the meaning of (7.1).

8 Conditional reasoning

This is in explicit terms what the idea of “remembering” a strategy used in earlier
subgame amounts to.

In general we have found an important distinction. It may be called a distinction
between deductive reasoning and conditional reasoning. A deductive conclusion B
from a premise A is a proposition that is true as soon as A is true. In the language
of possible world semantics, B is true in each world in which A is true.

But the premise A does more than put forward a truth condition. It presents a
situation, a fragment of one particular possible world, maybe a world in which Peter
owns a donkey. We can then ask what else must be true in that particular world.
This is a different question from asking what is true of all the worlds in which the
premise A is true, for instance all worlds in which Peter owns some donkey or other.
We are asking about the fate of that particular donkey postulated by the premise.
Does Peter beat it?

What has been shown in this paper is how this question can be spelled out in
sample cases by means of quantifiers independent of propositional connectives. These
independencies are the gist of conditionality. It cannot be captured by ordinary
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“conditional” sentences of the form (A ⊃ B) or by ordinary logical consequence
relations. It is also the gist of the linguistic phenomenon of conditionality.

What is especially striking in all these examples is that the extra-connective-
independence is not just one formally possible explanation of certain semantical
phenomena, but the overwhelmingly natural one. This naturalness is easily con-
verted into generality. When (in game-theoretical terms) a quantifier invites a player
to choose an individual, the choice must not depend on what there may turn up later
in the game. Thus the normal logic translation of disjunctive “or” appears to be,
not ∨, but (∨ /Q1x1, Q2x2, . . .), where (Qixi) are the quantifiers within whose scope
∨ occurs in the translation.

9 Conditionality explained

These case studies illustrate ipso facto some of the explanatory possibilities in lin-
guistic theorizing that are opened here. Consider, for example, the equivalence of
(7.1) and (7.2). I have much earlier presented a semi-formal analysis of condition-
als in a game-theoretical framework (Hintikka & Kulas [6]). It worked, but it was
not purely logical. I had to resort to pre-formal ideas, e.g. the idea that a player
in a semantical game could “remember” a strategy from another subgame. Such
semiformal ideas can now be replaced by purely logical ones. For instance, look at
(7.2). The Skolem function g there codifies (a part of a) strategy. This is used in a
subgame with the antecedent of (7.1). From (7.2) one can see how it figures also as
a strategy function (partial) in a game with the consequent.

In (7.2), this transfer of a strategy becomes the possibility of making use of the
connection between x and y (subscripts do not matter) that was introduced in the
antecedent also in the consequent. This is precisely what is made possible by the
independence of ∨ of the quantifiers (∀x1), (∀x2).

This shows how by means of independences involving connectives we can cap-
ture the very conditionality of conditionals. This means that by means of such
independences we can develop a viable general theory of conditionals.

10 Explaining anaphora

Even more generally much of any first-order logic can be thought as framework for
a semantical representation of such phenomena as co-reference and anaphora. Not
all such logics can be applied directly to the analysis of these phenomena in natural
languages, mainly owing to the syntactical differences between them and natural
language.
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Certain general advantages of the kind of treatment of anaphora based on IF
logic over some typical linguistic theories can presently be pointed out. Linguistic
approaches to anaphora and co-reference often rely on the head-anaphora relation
as one of their explanatory concepts. Of course linguists are aware that there are
examples where there is no head to be found for a given anaphora or where the head
and the anaphora cannot be said to be literally co-referential, that is, refer to one
and the same entity. But such cases are typically considered somehow exceptional,
not automatically explainable by the normal operation of anaphora.

We have already analyzed such an apparently anomalous case. In the com-
plex donkey sentence (7.1), the obviously anaphoric pronoun “it” is not literally
co-referential with any other phrase in the sentence. (It is not a “pronoun of lazi-
ness” either.) Yet (7.1) has an explicit logical form (7.2).

An explanation is implicit in what has been said earlier. We can interpret “it”
because it is co-referential with an object that is functionally determined by other re-
ferring phrases in the same sentence or the same discourse. The functions that effect
this determination are sometimes expressed in the sentence in question by a separate
phrase. But they need not be. As we saw in our analysis of complex donkey sen-
tences, existential quantifiers can introduce such dependencies through their Skolem
functions. Sometimes the dependence is mediated by background information that
the actual or hypothetical speaker if assumed to possess.

Hence a purely syntactical approach to the phenomena of anaphora and co-
reference, such as Chomsky’s government and binding theory, is bound to be incom-
plete account these phenomena.

11 Limits of compositionality
There is another general methodological moral in the story of this paper. The mode
of operation of independent connectives illustrates a phenomenon that is as prevalent
as it is important both in natural and formal languages. It is non-compositionality.
(For a collection of articles on different aspects of compositionality, see Werning et
al. [9]).1

Compositionality is rightly understood tantamount to semantical context-inde-
pendence. Now we have seen in this paper how the logical force of a connective
is different according to what quantifiers in its context it depends on. Of course

1I take this opportunity to correct a group of mistakes. On page 10 the authors say that Hodges
has refuted “Hintikka’s claim that Independence-Friendly logic is non-compositional”. I have never
made such a claim simpliciter, and on the contrary suggested a way in which any logic can in
principle be given a compositional “semantics”. What is the case (also according to Hodges) is that
IF first-order logic cannot have a compositional semantics on the first order level.
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a similar non-compositionality is obvious (though it was not to Frege) already in
the dependence of quantifiers on other quantifiers. The main reason why this con-
text dependence has not been emphasized more is that in the received first-order
logic quantificational dependencies are expressed by the syntactical device of nest-
ing scopes. But the only thing the necessity of so doing shows is the inadequacy of
traditional first-order logic in semantic theorizing.
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In the paper Hintikka gives various arguments for the need of an extension
of Independence-Friendly logic (IF-logic) with informationally independent disjunc-
tions, i.e. connectives of the form

(∨/∀x)

that I will render more simply as (∨/x). Actually such an extension has been studied
in Sandu and Väänänen [4], Hella and Sandu [2] and Mann, Sandu and Sevenster [3]
but no application to natural language has been given. Thus I welcome Hintikka’s
endeavour. He introduces the case for informationally independent connectives by
first offering a solution to what he calls Peirce’s paradox which consists in the equiv-
alence of

Hintikka compares

(3.1) Someone is such that if he fails in business, he commits suicide.

with

(3.2) Someone is such that if everybody fails in business, he commits suicide.

when they are represented in ordinary first-order logic as

∃x(F (x)→ S(x))

and
∃x(∀yF (y)→ S(x))

respectively. (I will use ‘→’ instead of Hintikka’s ‘⊃’). Hintikka analyzes the equiv-
alence between these two sentences in game-theoretical semantics. This is a good
idea, although I prefer a more straightforward game-theoretical argument than the
one he offers. We establish the logical equivalence between

∃x(¬F (x) ∨ S(x))
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and
∃x(∃y¬F (y) ∨ S(x))

by showing that the Verifier has a winning strategy in one game if and only if she has
a winning strategy in the other game (on any underlying model). As usual, these
claims are established by a copy cat strategy argument. (Again a notational point:
Hintikka makes a distinction between game-theoretical negation that he symbolizes
by ‘∼’ and contradictory negation that he symbolizes by ‘¬’. I will simply use the
latter given that for ordinary first-order formulas the two are equivalent.)

Suppose there is a winning strategy for the Verifier in the first game. It consists
of the choice of an individual, x = a and the choice of a disjunct, left or right. Given
that the strategy is winning, then, if left is chosen, a must satisfy ¬F (x) and if right
is chosen, then x must satisfy S(x). Here is a winning strategy for Verifier in the
second game. If in the first game Verifier chooses left, then in the second game she
chooses x = a, then left, and then y = a. Given that a satisfies ¬F (x) then this is a
winning strategy. If in the first game Verifier chooses right, then in the second game
Verifier chooses x = a then right. Given that a satisfies S(x), then this is a winning
strategy in the second game.

For the converse, suppose the Verifier has a winning strategy in the second game.
It is: choose x = a; then choose left or right. If left, choose y = b; if right, do nothing.
Given that this is a winning strategy, then if right is chosen, x must satisfy S(x).
If left is chosen, then b must satisfy ¬F (y). Here is a winning strategy for Verifier
in the first game. If Verifier chooses right in the second game, then choose x = a
and then right in the first game. Then a satisfies S(x) and thus this is a winning
strategy. If Verifier chooses left and then y = b in the second game, then in the first
game she chooses x = b and then left. Clearly given that b must satisfy ¬F (y) this
is a winning strategy.

Actually ∃x(∃y¬F (y) ∨ S(x)) is logically equivalent with

(∃y)¬F (y) ∨ ∃xS(x)

and thus “Peirce’s paradox” is seen to be an instance of the more general law

∃x(A(x) ∨B(x)) ≡ ∃xA(x) ∨ ∃yB(y) ≡ ∃xA(x) ∨ ∃xB(x).

Hintikka’s suggestion in the paper is to block the paradox by blocking the above
equivalence in this particular case, that is, by taking the logical form of (3.2) to be
(there is a misprint in the text):

∃x(¬∀yF (y) (∨/x) S(x))
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that is
∃x(∃y¬F (y) (∨/x) S(x))

where (∨/x) means that when Verifier chooses a disjunct, she does not know the
value chosen earlier for x. Now apart from creating interpretational problems of its
own, the proposal will not help him. Informally the proposal says that the choice of
a disjunct should take place before the choice of a value of x takes place. But this
renders the last sentence logically equivalent with

∃y¬F (y) ∨ ∃xS(x)

which is, as pointed out above, logically equivalent with ∃x(¬F (x) ∨ S(x)). We
are back to square one! I guess Hintikka has in mind another way to analyze
the informational independence of Verifier of its own move than the one I pro-
posed (games of imperfect information), that is, a proposal that does not render
∃x(∃y¬F (y) (∨/x) S(x)) equivalent with ∃x(¬F (x) ∨ S(x)). I remember he once in
conversation objected to the equivalence between ∃x(∃y/x)x = y with ∃x∃yx = y
which holds in IF-logic. Fausto Barbero [1, forthcoming] has a notion of indepen-
dence which does not render the two equivalent. It might be that Hintikka is relying
in his proposal on a notion of independence on the basis of which ∃x(A (∨/x) B is
not equivalent with ∃xA ∨ ∃xB but this is something for future work.

Based on his attempted solution to Peirce’s paradox, Hintikka suggests also a
new way to analyze simple donkey sentences like

(6.1) If Peter owns a donkey, he beats it.

He takes the force of this sentence to be that of

(6.5) ∀x(D(x) ∧O(p, x))→ B(p, x)).

He asks: How do we get from (6.1) to (6.5)? One way to proceed is to take literally
the surface structure of (6.1) where the indefinite is in the “scope” of the implication,
and translate the indefinite “a donkey” by an existential quantifier, as standardly
done. The result is, as Hintikka correctly points out:

(6.2) ∃x(D(x) ∧O(p, x))→ B(p, x)

which is equivalent, as he points out with

(6.3) ∀x(¬D(x) ∨ ¬O(p, x)) ∨B(p, x).

But Hintikka is right to point out that (6.2) (and consequently (6.3)) is ill formed
given that the last occurrence of the variable x is not bound. On the other side, if
we try to bind the variable x by the existential quantifier, we get
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(6.4) ∃x(D(x) ∧O(p, x))→ B(p, x))

which, as Hintikka correctly points out, says only that “there is at least one animal
such that if it is a donkey and is owned by Peter, he beats it.” So it seems we cannot
obtained the true logical form of (6.1) which is (6.5).

Hintikka proposes an answer which is to go back to (6.2) and to take the impli-
cation to be independent of the existential quantifier

(6.6) ∃x(D(x) ∧O(p, x)) (→ /∃x) B(p, x)

or, if we operate instead on (6.3) which he takes to be equivalent to (6.2), he takes
disjunction to be independent of the universal quantifier:

(6.7) ∀x(¬D(x) ∨ ¬O(p, x)) (∨/∀x) B(p, x).

We are then told that the existence of a winning strategy for the Verifier in (6.7)
means that for any choice d by the Falsifier, the sentence

(6.8) (¬D(d) ∨ ¬O(p, d)) ∨B(p, d)

must be true. And this yields (6.5).
Hintikka’s analysis is ingenious but it does not get through, as it stands. I claim

that the independence (→ /∃x) of implication from the existential quantifier in (6.6),
or, equivalently the independence (∨/∀x) of disjunction from the universal quantifier
(6.7), does not make sense. The reason for this, focusing on the latter, is simply
that in IF-logic as it currently stands, for a move to be informationally independent
from another, the first must be in the syntactical scope of the second. Or this is not
the case in (6.7).

Finally Hitnikka motivates the use of informationally independent disjunctions
by its role in the logical representation of complex donkey sentences like

(7.1) If you give each child a gift for Christmas, some child will open it to-day.

that Hintikka represents in second-order logic by

(7.2) ∃g∀x (G(x, g(x))→ ∃zO(z, g(z))) .

He then tells us that (7.2) can be represented on the first-order level by the IF
sentence (7.3) which involves informationally independent disjunctions.

Hintikka’s claim is not true. (7.3) is a second-order existential formula and as
such known to be equivalent, by standard results of Walkoe [5], to an ordinary
IF-formula which does not involve informationally independent disjunctions. Let
me reproduce the procedure by which the IF-formula is obtained (I am grateful to
Fausto Barbero here).
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1. First in (7.2) we push the existential quantifier in front of the conditional and
then Skolemize it:

∃f∃g∀x(G(x, g(x))→ O(f(x), g(f(x)))).

2. Next we eliminate the nesting of functions to obtain

∃f∃g∀x∀y(y = f(x)→ (G(x, g(x))→ O(y, g(y)))).

3. Third we want each function to have a unique set of arguments (so we replace
the second g with a new h):

∃f∃g∃h∀x∀y(x = y → g(x) = h(y)∧
∧ [(y = f(x)→ (G(x, g(x))→ O(y, h(y))))]).

4. Finally we replace each function by its appropriate pair of quantifiers and
obtain the IF-formula which is the logical form of (7.1):

∀x∀y(∃u/y)(∃v/y, u)(∃w/x, u, v)(x = y → v = w∧
∧ [(y = u→ (G(x, v)→ O(y, w)))]).
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The two authors of this paper independently found themselves applying methods of
modern logic to medieval modal systems—Johnston to the divided modal syllogisms of
the 14th century French Scholastic Jean Buridan, and Hodges to the modal work of the
11th century scholar Ibn Sı̄nā, known in the West as Avicenna, who worked in Persia and
wrote mostly in Arabic. Quite late in the day we realised that there was a mathematical
equivalence between things in our work, and we put our heads together on this. There is
a curious twist: what Johnston did is mathematically equivalent to work of Avicenna, not
of Hodges. That adds a piquant question to the issue: What on earth are Kripke structures
doing in an 11th century text? The question naturally leads on to another one: What are
Kripke structures doing in any modal enquiry? It’s unlikely we could answer the question
about Avicenna in any depth without having some view on the role of Kripke structures in
general.

We would dearly have liked to discuss all this with Grisha Mints. Not least, this is
because Johnston’s work included a detailed comparison of Buridan’s proof theory with
natural deduction methods. Avicenna had a proof theory too—it went in a completely dif-
ferent direction both from Buridan’s and from anything we know of in today’s proof theory.
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second author; and Saloua Chatti for useful consultations. We also thank the members of a Workshop of the
Medieval Philosophy Network, organised by Anna Marmodoro and John Marenbon at the Warburg Institute in
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That creates a further issue where Grisha’s advice would have been invaluable. Avicenna
raised a range of new questions which seem to need a proof-theoretic answer, but as far as
we know, neither his own proof theory nor anything in the modern literature will provide
the required answers. So Hodges [9] concocted a proof theory that does the job, though
inelegantly. Grisha would surely have seen how to improve it. But the present paper is not
about these proof-theoretic questions.

The collection of facts that we bring together here is complex in several ways. First
there is the difference between Avicenna in Persia and Buridan three hundred years later in
Western Europe. Second there is the difference between medieval methods of logic and the
modern ones that we apply to the medieval authors. And third there are three kinds of fact in
play: (1) textual facts about what each of the medieval authors wrote and what their words
meant; (2) mathematical facts about the formalisms involved; and (3) interpretative facts
about the reasons why the medievals did certain things, or about what our reasons are for
doing certain things. In §1 below we survey the pieces of the jigsaw; we also examine one
of the mathematical equivalences involved, using Grisha’s textbook [17]. In §2 we examine
the textual facts about Buridan and the modern formalism that the second author brought
to bear on Buridan’s discussions. In §3 we do the same for Avicenna and the first author.
Then in §4 we ask the interpretative questions and suggest some answers. Finally §5 is an
Appendix with supporting texts.

1 Overview

Here is a picture of this paper:

(1)

same (nearly)
Avicenna’s Modal Logic ∼ Buridan’s Modal Logic

?

Avicenna

?

Johnston

2D logic Statements about
Kripke structures

-�

In the top row of the picture, Avicenna’s Modal Logic and Buridan’s Modal Logic are
both of the kind called divided alethic modal logic. This means that they are about logical
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inferences between sentences of the following forms:

(2)
{

Every A
Some A

}
is


necessarily

possibly
contingently


{

a B.
not a B.

}
where A and B are distinct. Both Avicenna and Buridan inherited these sentence forms from
Aristotle’s Prior Analytics [2]. Some shorter names for these sentences will be helpful.
Traditionally

(3)

‘a’ stands for ‘Every . . . is . . . ’,
‘e’ stands for ‘Every . . . is not . . . ’,
‘i’ stands for ‘Some . . . is . . . ’,
‘o’ stands for ‘Some . . . is not . . . ’.

If we use ‘nec’, ‘pos’ and ‘con’ for necessary, possible and contingent, then we can write
for example

(4)
(a-nec)(A, B) for ‘Every A is necessarily a B’,
(o-pos)(C,D) for ‘Some C is possibly not a D’

and so on. In practice we will often ignore the ‘contingently’ sentences, since their theory
is largely parasitic on that of the ‘possibly’ sentences.

Buridan adds a further kind of form by allowing ‘now’ as an alternative to ‘necessarily/-
possibly/contingently’; he calls the resulting sentences de inesse ut nunc sentences. Strictly
these further forms are not modal at all, but since Buridan integrates them with the modal
forms we will count them in as part of ‘Buridan’s (divided, alethic) modal logic’. The ‘same
(nearly)’ at the top of picture (1) represents two facts: Buridan considered a larger collection
of sentences than Avicenna did, and within the class of sentences common to Avicenna and
Buridan there is evidence that they had different views on the proper logical representation
of necessity (on which see (23) and (24) below).

The expressions A, B in the sentences above are called ‘terms’; A is the ‘subject’ and B
the ‘predicate’ of the sentence. Both Avicenna and Buridan concentrate on logical relation-
ships of the form ‘φ1 and φ2 entail φ3’ with three sentences; these are known as ‘syllogistic
moods’. In fact Buridan considers no logical relationships more complicated than this.
Avicenna spreads his net wider, but we ignore his extensions in the present paper.

Avicenna is on the left of picture (1) because he was earlier than Buridan. But no
line of influence from him to Buridan is known, and we won’t assume that there was any
such influence. In §§2 and 3 we will take Buridan before Avicenna because the facts to be
reported there for Buridan are less controversial than those for Avicenna.

On the righthand side of picture (1), the vertical arrow represents an action of John-
ston and a set of facts. Johnston’s action was to describe a family of Kripke structures
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and a translation from sentences of Buridan’s modal logic to set-theoretic statements about
Kripke structures. The set of facts are to the effect that this family of Kripke structures
and translations validates all Buridan’s claims for the validity or invalidity of the syllogistic
moods of his modal logic. Details are in §2 below.

On lefthand side of picture (1), the 2D logic, short for ‘Avicenna’s two-dimensional
logic’, is a logic invented and studied by Avicenna. We formalise it as a fragment of a
two-sorted first-order logic with two sorts ob ject and time, where every relation symbol is
binary and has first argument of sort ob ject and second argument of sort time. There is no
consensus of scholars about how Avicenna intended this logic to relate to his alethic modal
logic. The arrow in the picture represents a set of facts relating the two logics, together with
our conjecture that Avicenna knew this set of facts and intended it to be used to relate the
two logics in a certain way. The facts we will set out in §3, but we leave the question of
his intentions to §4, where we will argue that the comparison with Buridan strengthens our
interpretation.

The picture is tied together by the horizontal arrow at the bottom. This arrow represents
a mathematical fact about Kripke structures and modal sentences. The fact can be derived
as a generalisation of a result in Grisha’s introductory textbook of modal logic [17], and the
rest of this section will be devoted to deriving it.

In Chapter Two of [17] Grisha introduces ‘classical monadic predicate logic’—a logic
which contains Aristotle’s categorical syllogisms, as Hilbert and Ackermann [7] ii.3 point
out. On page 25 he identifies within monadic predicate logic a subclass of formulas which
he calls ‘modal-like’; we can suppose that they contain at most one free variable. His first
example is

(5) (P(y) ∨ Q(y)) ∧ ∀x(¬P(x) ∧ ¬Q(x) ∧ ∀x∃x(P(x) ∨ Q(x))).

He describes how to translate modal-like formulas into modal propositional logic so that
‘all information . . . is completely preserved’ (p. 26). The modal translation of the formula
above is

(6) (p ∨ q) ∧ �(¬p ∧ ¬q ∧ �^(p ∨ q)).

The modal sentences that contain or are within the scope of a modal operator in (6) are
exactly those that come from a subformula of (5) containing no variable that is free in (5).
On page 40 he shows that the modal sentences derived in this way from modal-like predicate
formulas are exactly the sentences of modal propositional logic. On page 42 he shows that
for every first-order structure M in the language of a modal-like formula such as (5) there is
a corresponding S5 Kripke structure M̃ with the property that (5) is satisfied by an element
of M if and only if (6) is true at some world in M̃. In fact M̃ can be taken to have a universal
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accessibility relation in the sense that every world is accessible from every world. As he
says (p. 41), there is ‘a very close semantic connection’ between the logic of modal-like
predicate sentences and the S5 logic. Essentially, the quantifiers of the modal-like predicate
sentences are taken to range over ‘worlds’.

The horizontal arrow in our picture above is Grisha’s ‘very close semantic connection’,
but lifted to monadic modal predicate logic, i.e. modal predicate logic where the relation
symbols are all monadic. An example of a sentence of this form is

(7) ∀z(Pz→ �Qz).

If we run Grisha’s translation backwards, starting with monadic modal predicate logic in-
stead of modal propositional logic, then we will reach a form of first-order logic where,
besides the variables ranging over worlds, there will be variables doing the job of z in the
sentence (7). It will be convenient to use different sorts of variables to do the different
jobs, so from now on we will use Greek variables to range over worlds. Thus the predicate
sentence corresponding to (7) will be

(8) ∀z(Pzα→ ∀βQzβ).

In short, the equivalence is now between monadic modal predicate sentences and a certain
class of two-sorted predicate sentences where each relation symbol is binary, with one vari-
able of the first sort and one of the second. We will call the two sorts ob ject and world.
The variable z in (8), which is inherited from the quantified variable in (7), has sort ob ject,
and the world variables α and β have sort world. Just as before, every sortal structure M for
the language of (8) translates into an S5 Kripke structure M̃ for the modal language of (7)
(again with universal accessibility), and a modal sentence is true at some world in M̃ if and
only if its sortal predicate translation is satisfied by some element of the sort world in M.

Since the sortal structure M will have just one domain D of objects, the universe of each
world in M̃ will be the same; we can take it to be D again. But we can loosen things up
by allowing that in each world, some objects may be actual and other objects may be non-
actual. Formally we do this by allowing the predicate formulas to include a distinguished
predicate symbol O read as ‘actual’; so Oxα means that x is actual in world α. In the modal
language this binary predicate symbol goes over to a monadic predicate symbol, which we
can write again as O, so that ‘Ox’ is read as ‘x is actual’.

We will call this equivalence between modal-like binary two-sorted predicate logic and
monadic modal predicate logic the ‘basic modal equivalence’. Of course we claim no orig-
inality for the observation that this equivalence exists; presumably it’s common knowledge
among modal logicians.
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2 Buridan

This section is closely based on part of the second author’s PhD thesis [16], though we have
changed some notation to make the comparison with the Avicennan material easier.

Buridan’s divided modal logic is a fragment of his treatment of the alethic modals neces-
sity, possibility, contingency, and non-contingency, treating only those propositions where
the modal occurs as either an adverb or a verb that has modal force (e.g. verbs like ‘can’),
together with assertoric propositions ([4] pp. 95–96). The core idea that underpins Buri-
dan’s treatment of divided modal propositions is that the subject in these propositions is
ampliated (i.e. the class of objects that the subject term is taken for is expanded) to include
those things which either do or could fall under the subject. For example, according to Buri-
dan, ‘the proposition “B can be A” is equivalent to “That which is or can be B can be A.” ’
([4] p. 97) In the presence of the assumption that whatever is the case can be the case, this
can be simplified to ‘Something can be B and can be A’. When Buridan says that something
‘can be B’, what exactly does he have in mind? The following passage from George Hughes
explains the intuition behind the use of the actual and the possible:

(9)

A short digression seems in order here. For a long time I was puz-
zled about what Buridan could mean by talking about possible but non-
actual things of a certain kind. Did he mean by a ‘possibly A’, I won-
dered, an actual object which is not in fact A, but might have been or
might become, A?. . . But this interpretation will not do; for Buridan
wants to talk, e.g., about possible horses; and it seems quite clear that
he does not believe that there are, or even could be, things which are not
in fact horses but which might become horses. What I want to suggest
here, very briefly, is that we might understand what he says in terms of
modern ‘possible world semantics’. Possible world theorists are quite
accustomed to talking about possible worlds in which there are more
horses than there are in the actual world. And then, if Buridan assures
us that by ‘Every horse can sleep’ he means ‘Everything that is or can be
a horse can sleep’ we could understand this to mean that for everything
that is a horse in any possible world, there is a (perhaps other) possible
world in which it is asleep. It seems to me, in fact, that in his modal
logic he is implicitly working with a kind of possible worlds semantics
throughout. ([15] p. 9)

We relativise Buridan’s statements to worlds α. In line with the quotation above, we con-
sider that an object x in the world α can in some sense be a man even if x is not actual in
α; to avoid confusion with anything that Buridan might understand to be implied by ‘is a
man’, we express our notion in symbols as v(α,man, x). We write O(α, x) for ‘x is actual in
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world α’, and D(x) for ‘x is an object’. We translate:

(10)
x is a P in world α 7→ O(α, x) ∧ v(α, P, x)
x is a non-P in world α 7→ D(x) ∧ ¬(O(α, x) ∧ v(α, P, x)).

Then ‘x can be a man’ translates to ‘There is a world α such that x is a man in α’, and
likewise ‘x is necessarily a man’ translates to ‘For every world α, x is a man in α’. These
translations justify the following definitions of V , M and L, with M and L representing
possibility and necessity:

(11)
V(α, P, x) ≡ O(α, x) ∧ v(α, P, x);
M(α, P, x) ≡ ∃βV(β, P, x);
L(α, P, x) ≡ ∀βV(β, P, x).

It will be convenient to write

(12)
V(α, P) ≡ {x : V(α, P, x)},
M(α, P) ≡ {x : M(α, P, x)},
L(α, P) ≡ {x : L(α, P, x)}.

These formulas can be interpreted in a suitable kind of Kripke structure, which we call
a ‘Buridan modal model’, as follows. A Buridan modal model is a tupleM = 〈D,W,R,O, v〉
such that:

D and W are non-empty sets. D is the domain of objects and W is a set of worlds.

R = W2.

O : W → P(D).

v : W × PRED→ P(D)

where PRED is the set of monadic predicate symbols P. Here R is the accessibility relation.
Since R is universal, by the standard Kripke semantics the interpretations of M(α, P) and
L(α, P) inM don’t depend on α, and we can simplify these terms to M(P), L(P). We write
V(α, P)M for the interpretation of V(α, P) in the Buridan modal model M; and likewise
M(P)M and L(P)M. Informally, we can think of V(α, P)M, M(P)M, and L(P)M as respec-
tively giving the class of objects that are P at α inM, can be P inM, and are necessarily P
inM.

With these definitions in place, we can translate Buridan’s sentences into conditions on
a Buridan modal modelM as follows. For the non-modal sentences the conditions are on a
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Buridan modal modelM at a world α:

(13)

(a-nec)(A, B) 7→ M(A)M ⊆ L(B)M and M(A)M , ∅;
(e-nec)(A, B) 7→ M(A)M ∩ M(B)M = ∅;
(i-nec)(A, B) 7→ M(A)M ∩ L(B)M , ∅;
(o-nec)(A, B) 7→ M(A)M * M(B)M or M(A)M = ∅;
(a-pos)(A, B) 7→ M(A)M ⊆ M(B)M and M(A)M , ∅;
(e-pos)(A, B) 7→ M(A)M ∩ L(B)M = ∅;
(i-pos)(A, B) 7→ M(A)M ∩ M(B)M , ∅;
(o-pos)(A, B) 7→ M(A)M * L(B)M or M(A)M = ∅;
(a-now)(A, B) 7→ V(α, A)M ⊆ V(α, B)M and V(α, A)M , ∅;
(e-now)(A, B) 7→ V(α, A)M ∩ V(α, B)M = ∅;
(i-now)(A, B) 7→ V(α, A)M ∩ V(α, B)M , ∅;
(o-now)(A, B) 7→ V(α, A)M * V(α, B)M or V(α, A)M = ∅;

If φ is a sentence on the left, we write φM (or φM,α for the last four sentences) for the
condition on the right that translates φ.

Formally, we define a syllogism, S, to be a triple 〈Φ, φ, ψ〉 such that:1

1. Φ, φ, and ψ are sentences of modal logic;

2. there are exactly three terms that occur in at least one of Φ, φ, and
ψ;

3. The predicate of ψ occurs in Φ;

4. The subject of ψ occurs in φ;

5. Φ and φ share a common term that does not occur in ψ.

We say that a syllogism 〈Φ, φ, ψ〉 is ‘semantically valid’ if for every Buridan modal model
M and every world α ofM,

(14) If Φ(M,α) and φ(M,α) hold, then ψ(M,α) holds.

Now Buridan himself makes detailed claims about which syllogisms are ‘valid’ (ualent
in his Latin). The following tables, due to Stephen Read ([4] pp. 41–44), summarise the
syllogisms that Buridan lists as valid. Read uses L for ‘necessary’, M for ‘possible’, Q

1This definition is standard; see for example [26]. The sentences Φ, φ, ψ are known respectively as the
major premise, the minor premise and the conclusion of the syllogism.
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L M X Q
L L L, M Darii, Ferio L, L, M

Celarent X Barbara, Celarent X Celarent X
M M M Darii, Ferio M M
X M ∅ Darii, Ferio M, ∅

Celarent X
Q M, Q M, Q Darii, Ferio Q Q

Table 1: Valid First Figure Syllogisms (by Buridan)

L M X Q
L L L,M Festino L L,M

Cesare X Camestres X Cesare X
Camestres X Baroco X Camestres X

M L,M, ∅ ∅ ∅

Cesare X
Camestres X

X M, ∅ Festino M ∅

Cesare X
Camestres X

Q M, ∅ ∅ ∅

Cesare X
Camestres X

Table 2: Valid Second Figure Syllogisms (by Buridan)

for ‘contingent’, and he lists under X the de inesse ut nunc sentences with ‘now’. The
lefthand column lists the major premise and the top row lists the minor premise. We assume
known the classification of syllogisms by mood and figure, together with their Latin names
(Celarent etc.).

Besides the validity claims in these tables, Buridan also says explicitly that a number of
other syllogisms are not valid.

Fact 2.1. All the syllogisms that Buridan claims to be valid are semantically valid, and
none of the syllogisms that Buridan claims to be invalid are semantically valid.
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L M X Q
L L,X L,M Darapti, Felapton X L,M

Datisi, Ferison X
Darapti, Felapton L
Datisi, Ferison L

M M M Darapti, Felapton M M
Datisi, Ferison M

X Darapti X Darapti M Datisi M Darapti M
Disamis X Disamis M Disamis M

Q M, Q Q Disamis, Bocardo M Q
Datisi, Ferison Q

Note: The entry for major premise L and minor premise X corrects the
table in [4]; see the errata at
http://www.st-andrews.ac.uk/~slr/Buridan_errata.html.

Table 3: Valid Third Figure Syllogisms (by Buridan)

This fact is proved in [16]. The valid cases are proved by direct argument or reduction
to other valid cases, and the invalid cases are proved by building explicit countermodels.

Given the complexity of the tables above, we can see that this agreement between Buri-
dan’s claims and the facts of semantic validity is highly significant in the statistical sense.
But we leave for the moment the question what it signifies, and turn our attention to Avi-
cenna.

3 Avicenna

The four main surviving logical works of Avicenna’s mature period (say 1024 to 1034)
are Qiyās, Mašriqiyyūn, Dānešnāmeh and Pointers. Dānešnāmeh doesn’t deal with modal
logic, so we ignore it here. As for Pointers, Avicenna warns his readers that the book will
give no benefit to ‘those not endowed with blazing sagacity, training and practice’ ([6] p.
48). He deliberately makes it difficult for people to use it as an introduction to his views,
though people still attempt this.

There remain Qiyās and Mašriqiyyūn, the latter written some four or five years later than
the former. Qiyās is much longer, but this is partly because the manuscript of Mašriqiyyūn
was stolen and destroyed soon after it was written. It may be that what we have is an
author’s draft of the first eighty-odd pages. Ibn Sı̄nā himself advises that Qiyās contains
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more details but was also written with some ulterior motives; Mašriqiyyūn tells it like it is
(cf. Text M in the Appendix and [6] pp. 44f). Both Qiyās and Mašriqiyyūn contain what
Avicenna considers to be the first steps in his logic. They set up a new logic of his own
invention, consisting of sentence-forms that are like those of Aristotle but with added tem-
poral operators. Qiyās i.3 states the forms by giving examples in Arabic, and Mašriqiyyūn
goes over the same ground but with abstract descriptions of the sentence forms. (See §5.2
below for the relevant texts.) The resulting logic is what we called two-dimensional or 2D
logic in §1 above. (The name comes from Oscar Mitchell, a student of C. S. Peirce who
proposed a similar extension of Aristotle’s logic in the 1880s; see [13].)

2D logic is not defined as precisely as we would require of a logic today. There is some
ambiguity about exactly what sentences should be included; also some of the distinctions
that Avicenna makes seem to be linguistic rather than logical. We will concentrate on some
central forms, where there is little doubt about the truth-conditions that Avicenna has in
mind, and hence little doubt about the appropriate formalisations. Chatti [5] is a good
recent survey of some of the same material.

Three groups of sentences of 2D logic will interest us. These are the groups that Avi-
cenna himself calls respectively ‘necessary’ (d. arūrı̄), ‘general absolute’ (mut.laq cāmm) and
‘at a time’ (zamānı̄); we abbreviate these to d, t and z respectively. In each group there are
an a sentence, an e sentence, an i sentence and an o sentence. So for example we have a
sentence (a-d)(A, B); its subject and predicate are A and B, its ‘assertoric form’ is (a) and
its ‘avicennan form’ is (d), and its ‘form’ is (a-d). The logic of the sentence forms (d) and
(t) forms the ‘dt fragment’.

The forms are as follows, written in a two-sorted first-order language with object vari-
able x, time variable τ and time constant δ, and a distinguished relation symbol E; Exτ is
read as ‘x exists at time τ’.

name sentence
(a-d)(A, B) (∀x(∃τAxτ→ ∀τ(Exτ→ Bxτ)) ∧ ∃x∃τAxτ)
(e-d)(A, B) ∀x(∃τAxτ→ ∀τ(Exτ→ ¬Bxτ))
(i-d)(A, B) ∃x(∃τAxτ ∧ ∀τ(Exτ→ Bxτ))
(o-d)(A, B) (∃x(∃τAxτ ∧ ∀τ(Exτ→ ¬Bxτ)) ∨ ∀x∀τ¬Axτ)
(a-t)(A, B) (∀x(∃τAxτ→ ∃τ(Exτ ∧ Bxτ)) ∧ ∃x∃τAxτ)
(e-t)(A, B) ∀x(∃τAxτ→ ∃τ(Exτ ∧ ¬Bxτ))
(i-t)(A, B) ∃x(∃τAxτ ∧ ∃τ(Exτ ∧ Bxτ))
(o-t)(A, B) (∃x(∃τAxτ ∧ ∃τ(Exτ ∧ ¬Bxτ)) ∨ ∀x∀τ¬Axτ)
(a-z)(A, B) (∀x(Axδ→ Bxδ) ∧ ∃xAxδ)
(e-z)(A, B) ∀x(Axδ→ ¬Bxδ)
(i-z)(A, B) ∃x(Axδ ∧ Bxδ)
(o-z)(A, B) (∃x(Axδ ∧ ¬Bxδ) ∨ ∀x¬Axδ)
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d t
d d d
t t t

Table 4: Valid First Figure Syllogisms (by Avicenna)

Examples that Avicenna himself offers in Text D below include:

(a-d): Every human is an animal. (Literally: Everything that
is sometimes a human is an animal for as long as it exists.)

(a-t): Everything that breathes in breathes out. (Literally:
Everything that sometimes breathes in breathes out sometime
during its existence.)

Avicenna has a tendency to treat the sentences with avicennan form (z) as if they had a
wide-scope time quantifier; for example he regards (a-z)(A, B) as close to

∃τ(∀x(Axτ→ Bxτ) ∧ ∃xAxτ)

with examples like ‘There is a time when all humans are Muslims’. He says in Text G that
‘many precautions’ need to be taken when we handle sentences like these, and he promises
a full treatment of them in his Appendices—which as far as we know were never written.

There is certainly more to be said about the passages in which Avicenna does discuss
(z) sentences. The resemblance between (z) sentences and Buridan’s de inesse ut nunc
sentences is clear to see.

We can repeat the definition of syllogism from the previous section, but we should add
some riders to it. Avicenna doesn’t talk of validity. He asks first whether a given pair Φ, φ
of 2D sentences entails some 2D sentence with the right terms as in the previous section;
if it does, he says that the pair is ‘productive’. For each productive pair, the ‘conclusion’
is the strongest 2D sentence, again with the right terms, that can be deduced. This is an
unambiguous notion; in the dt fragment of 2D logic there always is a strongest such sen-
tence. Counting conclusions this way, we can draw up tables like Read’s tables for Buridan.
Again the lefthand column is for the major premise, although when he writes out syllogisms,
Avicenna follows the Arabic custom of putting the minor premise first.

More precisely there are two ways of drawing up these tables. The first way is as with
Buridan in §2, letting the tables show the moods that Avicenna himself declares valid. Street
lists these at the end of [23], with L for d and X for t. We checked and confirmed Street’s list,
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d t
d d d
t d

Table 5: Valid Second Figure Syllogisms (by Avicenna)

d t
d d d
t t t

Table 6: Valid Third Figure Syllogisms (by Avicenna)

widening the scope to include Al-muk
¯

tas. ar al-awsat. , a relatively early work from around
1014. Apart from the telegraphic Pointers, Avicenna always gives the same list. The second
way is to calculate what syllogisms Avicenna ought to have declared valid, given his own
explanations of the forms of the sentences involved. The situation is different from that with
Buridan, because Buridan explained his sentences using modal notions and nothing like a
Kripke structure, so that the Johnston semantics involves a new set of concepts introduced
by Johnston. With Avicenna the sortal first-order formulas merely report what Avicenna
himself said the sentences mean, or more strictly the truth-conditions that he intended. So
we could draw up the tables to show which syllogisms are valid in first-order logic.

In parallel with §2 above, we have drawn up the tables in the first way, i.e. to report
what moods Avicenna himself describes as valid.

Fact 3.1. In the dt fragment, the 2D syllogisms that Avicenna lists as productive are exactly
those that are productive, and in every case he gives correctly the strongest conclusion.

This is proved in [9] as a corollary of a characterisation of all the minimal inconsistent
sets of 2D sentences; see §10.3 ‘Productive two-premise moods’ in [9].

The tables for Avicenna are very much simpler than those for Buridan. The main sim-
plification is that the conditions for validity in each figure are independent of the mood
(provided the mood is valid in assertoric logic) and depend only on the choices of d and
t. (This fact about the tables is a consequence of the more general Orthogonality Principle
for (d) and (t) sentences, [9] §10.2.) After seeing Johnston’s results, Hodges checked what
would happen to the tables if we added the (z) sentences. The result is that everything be-
comes much more complicated and requires ‘many precautions’, as Avicenna foresaw. We
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can be thankful that at least Buridan wasn’t discouraged from diving in. But maybe life’s
problems weighed less heavily on Buridan than they did on Avicenna.

Another reason why Buridan’s tables are more complicated than Avicenna’s is that Buri-
dan doesn’t limit himself to strongest conclusions. For example in first figure with neces-
sary major premise and possible minor premise he can deduce a necessary conclusion; but
he lists also a possible conclusion, though this follows from the necessary one. However,
there are a few cases where Buridan lists two conclusions, and we can show that in the
Johnston semantics there are two distinct strongest conclusions. One example is

(15)
Some B is now an A.
Every B is necessarily a C.

In the Johnston semantics the second sentence quantifies over possible objects that are Bs,
whereas the first quantifies only over things that are Bs actual in the present world. So we
can deduce that some actual A is necessarily a C. But none of Buridan’s sentence forms
express this; he can say only that some possible A is necessarily a C, or that some actual A
is actually a C. These two conclusions account for the L and the X in third figure Datisi.

Our result for Avicenna is in one way stronger than our result for Buridan: we show
not only that Avicenna’s claims about productivity and conclusions are correct, but also that
these claims are complete. Avicenna detected all the cases that arise. This is actually not
true for Buridan. For example in first figure Darii and Ferio he omits that we can get an X
conclusion from an L major premise and an X minor premise; the case is like (15), where
we can deduce that some actual A is necessarily a C, but this time Buridan catches the L
and misses the X. But overall he makes very few omissions.

So far we have been talking only about Avicenna’s 2D logic, not his alethic modal logic
with ‘necessarily’, ‘possibly’ and ‘contingently’. The facts about his alethic modal logic
are rather remarkable. As above, we are leaving aside the contingent propositions.

Fact 3.2. (a) Avicenna’s claims for validity of alethic modal syllogisms are exactly the
same as his claims of validity for 2D syllogisms, except that they replace d by ‘neces-
sarily’ and t by ‘possibly’.

(b) Avicenna’s Arabic name for (d) sentences is the same word as his name for the ‘nec-
essarily’ sentences, namely d. arūrı̄ (which just means ‘necessary’).

What on earth is going on here? Is Avicenna really using the same word ‘necessary’ both
for alethic modal necessary sentences and for 2D (d) sentences expressing that something
is true of x ‘so long as x exists’? We know that Avicenna was well aware of the difference
between ‘necessary’ and ‘permanent’. See for example Text I, where he says:

(16)
Being permanent is not the same as being necessary. . . . But it is not
for the logician as logician to know the truth about this.
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What can he mean?

We can say straight away that the problem is how to make sense of the alethic modal
logic, not how to make sense of the 2D logic. In Qiyās Avicenna presents us with a textbook
of his new 2D logic: he defines the sentence forms, and he shows how to prove the valid
syllogisms. His proofs, though sometimes missing some details, are accurate up to the most
rigorous modern standards, and in several cases they are completely new. Where possible he
copies Aristotle’s proofs from Prior Analytics i.3,4, but where these methods won’t deliver
the results he finds other methods that will. One example is a case of second figure Baroco,
where he introduces a method that involves defining a new term (an ecthesis). The received
wisdom of his time was that no such proof is possible for Baroco—his predecessor al-Fārābı̄
thought he had found such a proof, but his explanation suggests he had missed the point.
Avicenna gave an ecthetic proof of Baroco that avoided al-Fārābı̄’s infelicities, and showed
how to use it to plug the gap in the Aristotelian methods. For one case of second figure
Camestres he could find no proof along these lines, so he invented a new method that he
called ‘incorporating in the predicate’. Not only did this method work, but it could be made
the basis of an entirely new approach to proving syllogisms in logics more complicated
than Aristotle’s categorical syllogisms. In the century after Avicenna, the Persian genius
Suhrawardı̄ made it the main method of his logic. After trying other methods, the present
first author came to the conclusion that it was the best method to use in [9] for proving
metatheorems about the dt fragment. This is not even a full list of the accomplishments of
Avicenna’s 2D logic. But it’s enough to make the point that Avicenna’s results on validity
of 2D syllogisms need no support from modal arguments.

By contrast the arguments that Avicenna deploys to justify the alethic modal first figure
syllogisms are frankly appalling, if we are to take them at face value as logical inferences.
Some are just word-play. Others use methods that he rightly condemns elsewhere in Qiyās.
They betray no overall vision or plan. (See §5.5 and Texts J, K, L for documentation. In
§4 and §5.5 below we indicate how these arguments might be justified, but not as logical
inferences.)

The agreement stated in Fact 3.2 (a) between the 2D results and the alethic modal results
is far too non-trivial to be an accident, and it can hardly be the result of the nonsensical
proofs that Avicenna offers in the modal case. The only reasonable explanation is that
Avicenna uses the translation

(17)
necessary 7→ (d),
possible 7→ (t)

to read off from the 2D logic what syllogisms he should count as valid in the modal case.
One thing that he certainly does do in several places is to take a modal syllogism and claim
to justify it by translating it to a valid 2D syllogism by the translation (17). Text J below is
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a clear example of this, and Text L is at least a prima facie example.

The translation (17) is the vertical arrow on the lefthand side of picture (1). Its existence
and properties are mathematical facts. Avicenna’s reasons for using it are one of the main
interpretative questions to be discussed in §4 below.

4 Bringing the pieces together

We have explained the lefthand and righthand sides of picture (1), so we are now in a
position to explain what the Basic Modal Equivalence of §1 tells us about them.

Johnston found for each of Buridan’s sentences φ a translation φ(M,α) which is a state-
ment about any given Buridan modal modelM and world α ofM. We didn’t say it earlier,
but each of these statements φ(M,α) can be written as a modal sentence φmod, so that for any
M and α, φmod is true inM at α if and only if φ(M,α) is true. For example if φ is (a-nec)(A, B)
then φmod is

(18) (∀x(^(Ox ∧ Ax)→ �(Ox ∧ Bx)) ∧ ∃x^(Ox ∧ Ax)),

and if φ is (i-now)(A, B) then φmod is

(19) ∃x(Ox ∧ Ax ∧ Bx)

The other sentences are equally straightforward to find. So the Basic Modal Equivalence
converts each of these into a two-sorted first-order sentence. In fact Johnston’s formulations
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already go halfway to this two-sorted sentence, so let’s now go the whole way. We get

(20)

(a-nec)(A, B) 7→ (∀x(∃τ(Oxτ ∧ Axτ)→ ∀τ(Oxτ ∧ Bxτ))
∧∃x∃τ(Oxτ ∧ Axτ))

(e-nec)(A, B) 7→ ∀x(∃τ(Oxτ ∧ Axτ)→ ∀τ¬(Oxτ ∧ Bxτ))
(i-nec)(A, B) 7→ ∃x(∃τ(Oxτ ∧ Axτ) ∧ ∀τ(Oxτ ∧ Bxτ))
(o-nec)(A, B) 7→ (∃x(∃τ(Oxτ ∧ Axτ) ∧ ∀τ¬(Oxτ ∧ Bxτ))

∨∀x∀τ¬(Oxτ ∧ Axτ))
(a-pos)(A, B) 7→ (∀x(∃τ(Oxτ ∧ Axτ)→ ∃τ(Oxτ ∧ Bxτ))

∧∃x∃τ(Oxτ ∧ Axτ))
(e-pos)(A, B) 7→ ∀x(∃τ(Oxτ ∧ Axτ)→ ∃τ¬(Oxτ ∧ Bxτ))
(i-pos)(A, B) 7→ ∃x(∃τ(Oxτ ∧ Axτ) ∧ ∃τ(Oxτ ∧ Bxτ))
(o-pos)(A, B) 7→ (∃x(∃τ(Oxτ ∧ Axτ) ∧ ∃τ¬(Oxτ ∧ Bxτ))

∨∀x∀τ¬(Oxτ ∧ Axτ))
(a-now)(A, B) 7→ (∀x(Oxδ ∧ Axδ)→ Bxδ) ∧ ∃x(Oxδ ∧ Axδ))
(e-now)(A, B) 7→ ∀x(Oxδ ∧ Axδ)→ ¬Bxδ)
(i-now)(A, B) 7→ ∃x(Oxδ ∧ Axδ) ∧ Bxδ)
(o-now)(A, B) 7→ (∃x(Oxδ ∧ Axδ) ∧ ¬Bxδ) ∨ ∀x¬(Oxδ ∧ Axδ))

Apart from using O instead of E, the sentences on the right here are remarkably like the
corresponding sentences of Avicenna’s 2D logic, where the correspondence is2

(21)
(nec) ∼ (d)
(pos) ∼ (t)
(now) ∼ (z).

Of course the differences are interesting too; we will see that in most but not all cases these
differences can be ironed out. We will refer to this translation from Buridan’s sentences
to two-sorted sentences, and the slight variants of it that we will consider below, as the
‘Avicenna-Johnston semantics for Buridan’s modal logic’. The sentences on the right in
(20), and their variants below, are the ‘Avicenna-Johnston sentences’.

Fact 4.1. The logical relationships between the Avicenna-Johnston sentences are not af-
fected if we remove all parts of the form ‘Oxτ∧’ or ‘Oxδ∧’.

Sketch proof: Suppose first that T is a set of Avicenna-Johnston sentences as above,
and N is a model of T . Let T ′ be the result of removing all the O’s from T as described.

2Thom in [25] uses X to stand for (now) in the case of Buridan but for (t) in the case of Avicenna. Some-
times, as at the bottom of his page 174, he uses this correlation as a basis for comparing Avicenna and Buridan.
But comparing de inesse ut nunc sentences with (t) sentences is rather meaningless.
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Then we get a model N′ of T by taking N and re-interpreting each relation symbol A so that
N′ |= Aaβ if and only if N |= (Oaβ ∧ Aaβ) (for any object a and time/world β).

Suppose next that T and T ′ are as above, and K is a model of T ′. Then we get a model
K′ of T by adding a relation O so that Oaβ holds everywhere. �

So without affecting what moods come out as valid, we can replace the first version of
Avicenna-Johnston semantics by the following simpler form:

(22)

(a-nec)(A, B) 7→ (∀x(∃τAxτ→ ∀τBxτ) ∧ ∃x∃τAxτ)
(e-nec)(A, B) 7→ ∀x(∃τAxτ→ ∀τ¬Bxτ)
(i-nec)(A, B) 7→ ∃x(∃τAxτ ∧ ∀τBxτ)
(o-nec)(A, B) 7→ (∃x(∃τAxτ ∧ ∀τ¬Bxτ) ∨ ∀x∀τ¬Axτ)
(a-pos)(A, B) 7→ (∀x(∃τAxτ→ ∃τBxτ) ∧ ∃x∃τAxτ)
(e-pos)(A, B) 7→ ∀x(∃τAxτ→ ∃τ¬Bxτ)
(i-pos)(A, B) 7→ ∃x(∃τAxτ ∧ ∃τBxτ)
(o-pos)(A, B) 7→ (∃x(∃τAxτ ∧ ∃τ¬Bxτ) ∨ ∀x∀τ¬Axτ)
(a-now)(A, B) 7→ (∀x(Axδ→ Bxδ) ∧ ∃xAxδ)
(e-now)(A, B) 7→ ∀x(Axδ→ ¬Bxδ)
(i-now)(A, B) 7→ ∃x(Axδ ∧ Bxδ)
(o-now)(A, B) 7→ (∃x(Axδ ∧ ¬Bxδ) ∨ ∀x¬Axδ)

Can we perform a similar reduction on Avicenna’s 2D sentences? It turns out that we can,
with an important restriction.

Fact 4.2. The logical relationships between 2D sentences in the dt fragment are not affected
if in all the sentences we remove all parts of the form ‘Exτ∧’ or ‘Exτ→’.

Supersketch proof: This is harder than the previous result. It rests on the fact that the
sentences never correlate what holds at one object at a time τ with what holds at another
object at that same time τ; so we can manipulate the time frames of the elements separately
to ensure that everything always exists; in which case the statement of existence becomes
redundant. The proof is in §12.2 of [9]. This argument doesn’t work for the (z) sentences
since the time δ is fixed across all objects. �

It follows that the criterion for the semantic validity of a Buridan syllogism involving
only ‘necessarily’ and ‘possibly’ is equivalent to the criterion for the validity of the corre-
sponding 2D syllogism with ‘necessarily’ replaced by (d) and ‘possibly’ replaced by (t).
Given that Avicenna and Buridan did calculations that agree with these criteria for their
respective logics, we should be able to check that the L and M parts of Read’s tables above
agree exactly with the corresponding tables for Avicenna, with (d) for L and (t) for M,
except where Buridan includes non-optimal conclusions. And indeed this is the case.
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We can show that Fact 4.2 can’t be extended to include the sentences with avicennan
form (z). If it could, then the Buridan ‘now’ sentences would go over into (z) sentences. But
there are examples to show that this fails, for example the following from §12.2 of [9]. The
Buridan syllogism

(23)
Some B is necessarily an A.
Every B is necessarily a C.
Therefore some A is now a C.

is valid, and Read’s table for Third Figure witnesses this by showing X in the top left square
corresponding to L in both premises. But the corresponding 2D syllogism

(24)
Some B is an A throughout its existence.
Every B is a C throughout its existence.
Therefore at time δ some A is a C.

is invalid, since it could happen that none of the things that are sometimes a B exist at time
δ.

Now we come back to the second author’s discussion of Buridan’s modal logic. What
does his semantics for Buridan’s logic show? We have to tread carefully. Suppose someone
claims:

(25)
Claim One. Buridan is a reliable logician, because he gets correct an-
swers about which syllogisms are valid.

As it stands this is a non-sequitur, because it assumes that we know what answers are cor-
rect. We could claim to know it if we already knew that our semantics for Buridan’s logic
correctly reflects his intentions. Suppose someone claims:

(26)
Claim Two. Our semantics correctly reflects Buridan’s intentions, be-
cause it gives the same answers as he does about which syllogisms are
valid.

As it stands this is a non-sequitur too, for more than one reason. First, it assumes that
Buridan calculated correctly which syllogisms are valid. So we have a circular argument.
But second—and our calculations above bring this to the fore—there can be two different
semantics that express different intentions but happen to give the same verdicts on which
syllogisms are valid.

To expand this second point: Fact 4.1 above implies that the Johnston semantics for
Buridan’s modal logic would give exactly the same verdicts on which syllogisms are valid
if we added the restriction that all objects are actual in all worlds. (Any countermodel using
the notion of actuality can be replaced by a countermodel where the same work is done by
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the other relation symbols.) Does it follow, as the argument of Claim Two would imply, that
our evidence shows that Buridan assumes every object is necessarily actual? Clearly not.
We can’t even say we have shown that Buridan assumes something like this; other things
that we know about modal logic make it clear that the assumption is quite mad. (The point
is not always appreciated; see the last paragraph of §5.4 for an example in the literature.)

Another example that emerges from the comparison of Avicenna and Buridan is the fact
that Avicenna speaks of times where the corresponding items in Johnston’s semantics for
Buridan are possible worlds. Switching between times and worlds makes no difference to
the formalism at all. So could we argue, noting that Johnston’s semantics works equally well
with times instead of worlds, that Buridan really had in mind a temporal logic rather than an
alethic modal one? Or vice versa, could we argue that Ibn Sı̄nā really meant worlds when he
said times? Any answer to these questions must consult what the authors themselves said.
In the case of Buridan there is almost nothing in his text to suggest that he means a temporal
logic. (Granted, he does say ut nunc ‘as now’.) In the case of Avicenna the question has
some bite, because in his propositional logic where he uses the notion that something is
the case ‘always’ or ‘sometimes’, he says explicitly that ‘always’ is not meant to cover just
times; see Movahed [18] pp. 7–23 on this.

A further point is that two different semantics may give the same verdict over most syl-
logisms, but differ on some small group. It may not be obvious where to look for this group.
We saw this with Fact 4.2; if we took the 2D sentences as giving the semantics of the corre-
sponding Buridan sentences, we would get a different verdict from the Avicenna-Johnston
semantics on certain syllogisms involving ‘now’ sentences, but no difference would show
up using the ‘necessary’ and ‘possible’ sentences alone.

We have no snap answers to these problems. Claim Two is definitely dangerous and one
should be aware of that. But in many cases where we give a semantics to an author’s logic,
we can read the author’s statement of intentions, and any other evidence from the author,
as a guide to the appropriate semantics. We used the quotation (9) from George Hughes in
this spirit. And of course then we can argue as in Claim One to show that our author is a
reliable logician, if the author’s statements of validity agree with what we calculate to be
valid using the semantics that we derived from the author’s indications.

There are two things about set-theoretic semantics that make this a feasible enterprise.
The first thing is that a set-theoretic semantics is normally objective, in the sense that its
definitions are based on elementary set theory, and in consequence there is no room for
dispute about the properties of the semantics. One of the earliest logicians to recognise this
objectivity of elementary set theory was George Bentham, who recommended converting
arguments into set theoretic form as a way of detecting fallacies. He may have taken this
from his uncle Jeremy Bentham, whose unpublished notes on logic he used. In any case
the fact is now well recognised. The second thing is that we have ways of calculating in set
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theory, which are not simply paraphrases of informal arguments. In consequence the causes
of error are likely to be different; so if our author informally calculates that a syllogism is
valid, and we show it by a formal calculation, there is less chance that we and the author
have made the same mistake. All this is common sense.

We can add that a semantics for Buridan’s modal logic is also a prima facie semantics
for other people’s accounts of Buridan’s modal logic. So it can be used to correct misun-
derstandings. For example it has been claimed that Buridan forgot to include among the
valid syllogisms Barbara with both premises X and conclusion M. But we can show that
this mood is not semantically valid on the Johnston semantics, which makes it much less
likely that Buridan omitted it by mistake.

Turning back to Avicenna, does our experience with Buridan throw any light on what
Avicenna might be doing with his modal and 2D logics?

Yes, it does. By starting his logic in Qiyās and Mašriqiyyūn with the 2D sentences,
he has adopted a set of notions that can be represented in elementary set theory. So the
logic is objective, and it allows exact calculations. Here we are using modern language,
but there are things in Avicenna’s text that point in the same direction. One is his repeated
insistence that he quantifies only over ‘actuals’ (bil-ficl), for example in Text A. Another is
the interest that he expresses, in Qiyās i.2, 16.8–10, in those sciences that are ‘integrated
and orderly’, so that they are ‘unlikely to lead to error’ and the experts have few differences
of opinion about them. There is an obvious contrast with modal logic, where we expect
many philosophical disagreements.

Note one significant difference between what Johnston does to Buridan and what Avi-
cenna does with his 2D logic and his alethic modal logic. Buridan has a body of claims
about modal validity, and Johnston can use the semantics to check them. But Avicenna has
no body of modal theorems to start with. Rather the opposite: he proceeds as if he is casting
around for some way of finding theorems. Not having any direct access to alethic modal
theorems, he proves some theorems in 2D logic and then borrows them into modal logic.

Does it make sense for him to do this? Yes, we can defend this procedure in either of
two distinct ways, as follows.

First, suppose we are trying to find the laws of necessity. There are various kinds of
necessity, and maybe they obey different laws. But if the bare notion of necessity—let us
call it abstract necessity—obeys some laws, then all the more specific kinds of necessity
should obey these laws too. One particular kind of necessity is permanence, and happily we
can handle permanence in 2D logic where its laws can be found in an objective way. These
laws contain all the laws of abstract necessity. Do they contain anything more?

If we wanted to show that every law of permanence is also a law of necessity, then thanks
to the axiomatic form of Avicenna’s 2D logic, we have a procedure that we can follow. It
will suffice to show that abstract necessity obeys the axioms of permanence. These axioms
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consist mainly of conversions and first figure syllogisms, and it so happens that these are
exactly where Avicenna concentrates his arguments for validity of modal syllogisms. But
these axioms are precisely that, axioms, so Avicenna is not in a position to derive them
logically. In practice he is forced to fall back on a kind of conceptual analysis, which
consists of inviting the reader to play with the notions until the axioms feel natural. This
fact could go a long way towards accounting for the less than cogent treatment of the first
figure alethic syllogisms; it may be not so much bad logic as a device for creating intuitions.

He never says that this is what he is doing. But if we look at what he says about the
procedures of discovery in science in general, and in logic in particular, then much of it
makes good sense. (This point is expanded in [8].) So this first defence of Ibn Sı̄nā’s
procedure fits well with Ibn Sı̄nā’s known general view of logic.

The second defence is a frank anachronism. The various formal equivalences given in
this paper show that 2D logic is formally correct as a description of a Kripke semantics for
Ibn Sı̄nā’s alethic modal logic. (Ibn Sı̄nā’s own interpretation of 2D logic in terms of time is
irrelevant to this fact.) So when Ibn Sı̄nā claims to justify a modal syllogism by translating
it by (17) into a 2D syllogism, what he is doing is formally the same as giving a semantic
proof of the modal syllogism in terms of a Kripke semantics. His attempted proofs of the
modal axioms would, if they worked, show that the alethic modal logic is sound for the
Kripke semantics. Again this is not what Ibn Sı̄nā says he is doing—but then in the 11th
century, how could he?

So in both the Buridan case and the Avicenna case, a set-theoretic semantics is being
used to support a non-set-theoretic logic, and the properties of the set-theoretic semantics
that make this possible are similar in the two cases. But the further details of the two cases
are quite different.
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A Appendix

One of the referees asked for textual evidence to support our attribution of various views
to Avicenna. The main purpose of this Appendix is to give texts and put them in context.
Except where stated, the translations are by the first author, from the texts of Qiyās [22],
Mašriqiyyūn [20] and Najāt [21]. Normally he wouldn’t publish such a substantial amount
of translation without checking it in detail with a logically informed native Arabic speaker,
but under the present publication schedule there was no time for this. He will try to get
better-authenticated translations onto his website as soon as possible.

Since the paper was first submitted, an excellent scholarly treatment of Avicenna’s def-
initions of his sentence forms has appeared, namely Chatti [5]; see also Chatti’s article
Avicenna (Ibn Sina): Logic in the Internet Encyclopedia of Philosophy.

By giving so many texts, we are in danger of bringing up issues that will distract the
reader from the main business of the present paper. Unfortunately this is life with Avicenna.
There is material for many more papers.

A.1 Avicenna’s assertoric logic

Aristotle’s formal logic falls into two parts, which today one describes as ‘assertoric’ (or
‘categorical’) and ‘modal’. The modal sentences and inference rules are distinguished by
the fact that they use ‘alethic’ modalities necessary, possible and contingent, while the
assertoric logic has no modalities. Among Avicenna’s various logics, he has one which
corresponds to Aristotle’s assertoric logic and one which corresponds to Aristotle’s modal
logic; we carry over the names ‘assertoric’ and ‘modal’ to these two logics. (The name
‘assertoric’ is not Avicenna’s; when he needs a name for assertoric logic he tends to call
it ‘standard’, mašhūr. Some of the recent literature on Avicenna uses ‘assertoric’ without
defining it, but apparently as a synonym for Avicenna’s term ‘absolute’, mut.laq; we avoid
this usage.)

Assertoric logic has four sentence forms, which Avicenna expresses with Arabic or
Persian sentences that translate as

(27)

Every B is an A. (We write (a)(B, A).)
No B is an A. (We write (e)(B, A).)
Some B is an A. (We write (i)(B, A).)
Not every B is an A. (We write (o)(B, A).)

The notations (a)(B, A) etc., which can be shortened to (a), (e), (i), (o), are derived from
a Latin convention and are not found in Avicenna. He himself describes (a) as ‘universal
affirmative’, (e) as ‘universal negative’, (i) as ‘existential affirmative’ and (o) as ‘existential
negative’. The letters B, A can be replaced by any other letters, normally subject to the
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convention that the two letters in an assertoric sentence form are distinct. (A rare coun-
terexample is implied near the end of Text G below.) The first letter (B above) is called the
‘subject’ and the second letter (A above) is called the ‘predicate’.

An assertoric sentence (or assertoric proposition) is got by replacing the letters in an
assertoric sentence form by appropriate natural language text. The text put for B above, or
more accurately the meaning of this text, is called the ‘subject’ of the sentence; likewise
‘predicate’ with A. In practice Avicenna uses the letters B, A to mark holes where text
can be put. But from various passages, including his descriptions of logic as a theoretical
science, it seems that his theoretical account is different: apparently he regards the letters in
a logical inference rule as universally quantified by quantifiers (perhaps implicit) that range
over ‘well-defined meanings’ (macānı̄ macqūla). So for example the inference rule that the
Latins knew as Barbara, and Avicenna knew as the first mood of the first figure, should be
read as

(28)
For all well-defined meanings C, B and A, if it is assumed that ‘Every
C is a B’ and that ‘Every B is an A’, then these assumptions yield the
conclusion that ‘Every C is an A’.

The two assumptions are called ‘premises’ of the inference rule. ‘Conclusion’ here means
the strongest sentence with subject C and predicate A that can be inferred from the two
premises. (So for example Avicenna says that these premises have no conclusion with
subject A and predicate C—he rejects the ‘indirect moods’.)

Avicenna discusses the truth conditions of the assertoric sentence forms. One important
point is that when B is empty (i.e. there are no Bs), he takes the affirmative forms (a)(B, A)
and (i)(B, A) to be false and the negative forms (e)(B, A) and (o)(B, A) to be true (cf. [11]).
This allows the following first-order translations of his sentence forms.

(29)

(a)(B, A) : (∀x(Bx→ Ax) ∧ ∃xBx).
(e)(B, A) : ∀x(Bx→ ¬Ax).
(i)(B, A) : ∃x(Bx ∧ Ax).
(o)(B, A) : (∃x(Bx ∧ ¬Ax) ∨ ∀x¬Bx).

It seems beyond reasonable doubt that these first-order formulations have the same truth
conditions as Avicenna’s assertoric forms in (27) above. But they differ from Avicenna’s
forms in two other ways. First, they use modern symbolism. Second, the formulas for (a)
and (e) invove an analysis in terms of the truth-table or Philonic conditional →, and we
don’t know that Avicenna was aware of this conditional.

Following Aristotle, Avicenna describes a sentence ψ as a ‘contradictory negation’
(naqı̄d. ) of a sentence φ if ψ is logically equivalent to ¬φ. So (a)(B, A) and (o)(B, A) are
contradictory negations of each other, and (e)(B, A) and (i)(B, A) are contradictory nega-
tions of each other.
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Aristotle in Prior Analytics i.4–6 listed all the valid moods (i.e. two-premise inference
rules) of assertoric logic, classified them into three ‘figures’, and derived the second- and
third-figure moods from the first-figure moods and some further elementary logical pro-
cedures. This forms Aristotle’s proof theory of assertoric logic. Avicenna accepts all of
Aristotle’s assertoric proof theory, and repeats it in detail in all his major surviving accounts
of logic (except the late and telegraphic Pointers). He also makes some advances in this
logic. One is that in place of Aristotle’s one-by-one refutations of invalid moods, Avicenna
adopts syntactic rules for recognising valid moods; this continues a trend begun by the Ro-
man Empire logicians and continued further by the later Latin logicians who introduced the
laws of distribution. Another is that he develops the theory of compound assertoric syl-
logisms, i.e. inferences that involve a series of applications two-premise rules. His major
achievement here is a recursive proof search algorithm for these syllogisms, which he sets
out in Qiyās ix; cf. [10].

Besides expounding and developing assertoric logic in its own right, Avicenna also uses
it as a template for developing other logics, notably his two-dimensional logic.

A.2 The two-dimensional sentences

At the beginnings of his treatments of deductive logic in the encyclopedic Qiyās (‘Syllo-
gism’) and the slightly later Mašriqiyyūn (‘Easterners’), Avicenna sets out methodically a
collection of sentence forms that broadly resemble the assertoric forms—for example each
has a subject and a predicate—but allowing time arguments to occur in the terms. The ac-
count in Qiyās i.3 mainly consists of a list of sample sentences with some comments on
them. The account in Mašriqiyyūn consists of formal descriptions of the sentence forms.
The two accounts correlate neatly. Avicenna discusses separately what happens to the time
argument in the subject and what happens to it in the predicate.

For the subject, Avicenna’s clearest account is in the following text.

Text A: Qiyās i.3, 20.14–21.12.

Also we must understand that when we say ‘every white thing’, it doesn’t
mean ‘everything that fits the description “white” permanently’. In fact the
phrase ‘everything white’ is broader than the phrase ‘everything that is perma-
nently white’. “White” includes both “white at a certain time” and “perma-
nently white”. The phrase ‘every white thing’ means ‘each single thing /21/

that fits the description “white” permanently or not permanently, and regard-
less of whether it is a subject for “white” and it fits the description “white”, or
it is “white” itself’.

This description is not the same as describing [the subject] as ‘possibly such-
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and-such’, or ‘what could legitimately be such-and-such’. When we say ‘Every
white-coloured thing’, its sense is definitely not ‘everything that could legiti-
mately be coloured white’. Rather it means ‘everything that in actuality fits
the description “white”, where besides being actual, it can be so for some time
which is indeterminate or determinate or permanent’.

This actuality is not just the kind of actual existence that material things have.
In some cases the reference to the subject doesn’t place it as something satis-
fied in material things. An example is ‘Every spherical object whose surface
consists of twenty triangular faces’. This description is not one that a thing sat-
isfies on the basis of existing [in the material world]. Rather, [a thing satisfies
it] by being thought of as actually fitting the description, on the basis that the
intellect describes it as actually satisfying [the defining condition], regardless
of whether the thing exists [in the material world] or not. And the phrase “Ev-
ery white thing” means every single thing that is described in the intellect as
actually satisfying the condition that it is white, either permanently or at some
time, regardless of which time that is. This takes care of the subject side [of the
proposition].

In short, for the sentence forms under discussion here, Avicenna treats the subject term B as
standing for ‘thing which is an actual B at some time’. In symbols the Bx of the formulations
in (29) becomes ∃tBxt, where t is understood to range over times. We note also that with
his emphasis on actuality, Avicenna excludes merely possible Bs; he doesn’t ampliate to
the possible, at least in the sentence forms under discussion. But he makes the point that
mental constructs can count as actual if the intellect has actually made the construction,
even though these constructs are never objects in the world.

For the predicate side it will be best to switch to Mašriqiyyūn. The translations below
should be treated with caution, because the text of Mašriqiyyūn is not in a reliable state.

Text B: Mašriqiyyūn 65.1–11.

As a matter of usage, languages pretty much determine that the sentence ‘B is
a C’ expresses that a thing is a C sometime while it fits the description B. What
the unqualified meaning determines is called an ‘absolute’ (mut.laq) proposi-
tion. If a condition is made in it mentally which excludes the strict necessity
that we are about to mention, but does include those cases where the content
holds, not so long as the essence continues to be satisfied, but rather at some
time or under some condition and some case, [it is called] ‘temporary’ (wujūdı̄).

1055



W. Hodges and S. Johnston

Today people don’t distinguish between the absolute proposition and the tem-
porary. When the sentence is understood to mean that [every] B is a C while
its essence continues to be satisfied, [the proposition is said to be] ‘necessary’
(d. arūrı̄). When the meaning is [that it is a C] so long as it fits the descrip-
tion B, [the proposition is said to be] ‘adherent’ (lāzim). . . . The two [kinds of
proposition] are different. Thus there is a difference between the sentence

A thing that moves changes so long as its essence continues to
be satisfied.

(which means that the thing that fits the description ‘moving’ is changing so
long as its essence is satisfied), and the sentence

A thing which fits the description ‘moving’ changes as long as
it continues to move.

Of course there is a difference—the first [sentence] is false and the second is
true.

The word lāzim has a range of meanings, among them ‘necessary’. In Text B we probably
have to treat it as a technical term. We note that the definitions that Avicenna gives for
d. arūrı̄ and lāzim sentences make no explicit mention of anything being ‘necessary’, so
presumably Avicenna is here regarding permanence (in either of these forms) as a kind of
necessity. The world wujūdı̄ is also a technical term, and our translation ‘temporary’ fits its
application rather than its etymology.

Before discussing further details of this passage, we move to Mašriqiyyūn 68.3–13.
Here Avicenna discusses the same predicate forms as above, with one new form added, but
in each case specifically for universal affirmative sentences.

Text C: Mašriqiyyūn 68.3–13.

We consider the most general (acamm) universal affirmative absolute (mut.laq)
proposition, for example when we say

Every B is a C.

This proposition means that for everything that is taken to fit the description B
in actuality, without there being any condition about the ‘fit in actuality’ being
permanent or not permanent, each such thing fits the description C in actuality,
without any further elaboration.
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Next we consider the universally quantified necessary (d. arūrı̄) proposition.
This is like when you say

Necessarily every B is a C.

meaning that for everything that fits the description B in actuality, regardless
of whether it fits the description B permanently or not permanently, each such
thing fits the description that for as long as its essence is satisfied, it is a C. An
example is when you say

Necessarily everything that moves is a body.

Next we consider the adherent (lāzim) proposition. This is like when you say

Every B is a C.

—whether or not you say ‘necessarily’—meaning that for everything that either
permanently or not permanently fits the description B, each such thing also fits
the description of being a C for as long as it continues to fit the description B.
It is not [implied] that it also fits the description of being a C for as long as its
essence continues to be satisfied.

Next we consider the congruent (muwāfiq) proposition. This is like when you
say

(30) Every B is a C.

meaning that it is a C sometime when it is a B, but without adding that it is a C
permanently for as long as it is a B, or that it is so but not permanently [for as
long as it is a B].

The four universal affirmative forms that Avicenna here describes as d. arūrı̄, lāzim, muwāfiq
and mut.laq acamm (or elsewhere mut.laq cāmm) are the forms that in [9] are labelled (a-d),
(a-`), (a-m) and (a-t) respectively. Note also that Avicenna makes clear that a sentence can
have the form d. arūrı̄ without using the word ‘necessary’ or the curious piece of terminology
about ‘while its essence is satisfied’. The logician has to look at the sentence in context to
see what the user intended, and then find the appropriate logical form.

In fact ‘while its essence is satisfied’ is not a phrase used in any normal medieval Arabic
discourse, and clearly Avicenna intends it as a term of art. The sense is not controversial:
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if E is your individual essence, then to say that E is satisfied at time t is just to say that you
exist at time t. This is clear from many examples that Avicenna gives. (Avicenna may have
used this circumlocution to give emphasis to a notion that he wanted to introduce into logic.
Also he may have wanted to underline the point that logic is about propositions that we can
believe or assume, and you as a physical person are not part of anything that can be believed
or assumed; if a proposition involves you, it can do so only by including an object in the
mental world that corresponds to you, and this is your individual essence. This explanation
is speculative—Avicenna doesn’t explain himself.)

A few pages later in Mašriqiyyūn, Avicenna adjusts these sentence forms to the cases
(e), (i) and (o). Rather than follow these details (which are relatively routine), we move
back now to the examples of sentence forms given in Qiyās i.

Text D: Qiyās i.3, 21.14–23.7.

So we should say something about the affirmative universally quantified ab-
solute proposition, and pin down the difference between the absolute and the
necessary. We say: There are sentences that are all affirmative but behave in
different ways. We say:

God is alive.

and mean that he is permanently [alive]; he never stopped being alive and he
never will. But we say:

Every whiteness is a colour.

and

Every human is an animal.

meaning not that every single thing which is white is a colour which always
was and will be [a colour], or that every human is an animal and always was
and always will be [an animal]. Rather, we are just saying /22/ that everything
that fits the description “whiteness”, and that is [properly] said to be a white-
ness, is a colour so long as its essence continues to be satisfied. And likewise
everything [properly] said to be human [is not an animal in the sense] that it
always was and always will be an animal; but rather so long as its essence and
substance continue to be satisfied. And when we say:

Everything that moves is a body.
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we don’t mean that everything that moves is a body just so long as it continues
to move, but rather we just mean that even if it hadn’t been moving, it would be
a body for so long as its essence continued to be satisfied. There is a difference
between this and the previous case: in the previous case the phrase ‘so long as
its essence is satisfied’ and the phrase ‘so long as it remains white’ don’t de-
scribe different situations, whereas in the present case the situations described
by the phrase ‘everything that fits the description “moves” so long as its essence
continues to be satisfied’ and by the phrase ‘[everything etc.] so long as it is
moving’ are different. And when we say

Every white thing has a colour which opens out to the eye.

and we don’t mean that everything [properly] called white has a colour that
opens out to the eye as long as its essence is satisfied, but rather, as long as it
fits the description ‘white’. When a thing fits the description ‘white’ and then
ceases to be white, its essence doesn’t lapse, even though this description no
longer fits it.

When we say:

Everyone who travels from Rayy to Baghdad reaches Kerman-
shah.

(for example), we don’t mean that [he reaches Kermanshah] while [his essence]
continues to be satisfied or throughout the time while he is moving to Baghdad.
Rather [we mean] that there is some specific time at which he is described as
reaching Kermanshah. . . . Also we say

Everything that watches sleeps.

with the meaning that everything that fits the description of watching is asleep
at some specific time. [When we say]

Everything that breathes in breathes out.

we mean that everything that fits the description ‘breathing in’ breathes out, not
so long as its essence continues to be satisfied, or so long as it is breathing out;
rather [we mean that] there is a time at which it fits the description ‘breathing
out’.

Two terminological remarks are in order here. First, the word ‘watches’ is to ‘is awake’ as
‘sleeps’ is to ‘is asleep’. In English this usage is now obsolete, but it is needed to represent
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the Arabic. Second, the mention of ‘substance ’ (jawhar)—the only place where Avicenna
uses this word in this context—is an acknowledgment of al-Fārābı̄’s usage of jawhar to
mean essence. It is not a departure from Avicenna’s consistent position that logic doesn’t
make category distinctions, for example between substances and accidents. In fact animals
are substances, but whitenesses are qualities and hence accidents.

The examples in Text D correlate well with the sentence forms in Texts B and C. Every
human is a living being all the time he or she exists. Every white thing has physical prop-
erties of whiteness all the time that it’s white. Every traveller from Rayy to Baghdad is in
Kermanshah at some time while he or she is a traveller from Rayy to Baghdad. Everything
that breathes in does sometimes breathe out. Also Avicenna says here that he is explaining
‘necessary’ (d. arūrı̄), and by this he certainly means the form (a-d). But ln Qiyās we have
to wait another twelve pages for him to state this as a definition of d. arūrı̄, as follows.

Text E: Qiyās i.4, 33.8–10.

Among the propositions in this group, the purely necessary (d. arūrı̄) proposi-
tions are those in which the predicate is asserted or denied for so long as the
essence of whatever fits the subject description continues to be satisfied.

There are reminders of this definition at Qiyās ii.3, 99.14; iii.1, 126,15f; iii.3, 156.12; iv.3,
202.11f, 203.6–8.

The two-dimensional sentences are certainly more complicated than the assertoric ones,
and using them to validate natural language arguments is correspondingly more hazardous.
But there seems to be no ambiguity at all in their truth conditions, except perhaps about what
happens when the subject term is empty. Chatti’s paper [5] is largely about this last question.
Here we note briefly that there are three prima facie sources of relevant evidence. One is
Avicenna’s own explicit statements about existential assumptions, if he makes any. The
second is his argument for these assumptions in the assertoric case; we can consider whether
it should carry over to the two-dimensional case. The third is his proof theory for two-
dimensional logic; does it contain moves that depend on the existential assumptions? (This
third form of evidence depends on our correctly identifying the two-dimensional sentences
within Avicenna’s proof theory.)

Taking all these sources into account, we feel confident that Avicenna meant his state-
ments about assertoric sentences with empty subject terms to carry over to two-dimensional
logic too. But there is room for further discussion. Chatti [5] rightly argues that the second
kind of evidence can be used to make a case that Avicenna should have required the subject
to be nonempty also in (e-t) and (i-t); but it seems that the rest of the evidence overrules this
reading.
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The texts above, and others along similar lines, provide the basis for the symbolisations
given for the (d) and (t) sentences in §3 above. We can add corresponding symbolisations
for the lāzim and muwāfiq sentences:

name sentence
(a-`)(A, B) (∀x(∃τAxτ→ ∀τ(Axτ→ Bxτ)) ∧ ∃x∃τAxτ)
(e-`)(A, B) ∀x(∃τAxτ→ ∀τ(Axτ→ ¬Bxτ))
(i-`)(A, B) ∃x(∃τAxτ ∧ ∀τ(Axτ→ Bxτ))
(o-`)(A, B) (∃x(∃τAxτ ∧ ∀τ(Axτ→ ¬Bxτ)) ∨ ∀x∀τ¬Axτ)

(a-m)(A, B) (∀x(∃τAxτ→ ∃τ(Axτ ∧ Bxτ)) ∧ ∃x∃τAxτ)
(e-m)(A, B) ∀x(∃τAxτ→ ∃τ(Axτ ∧ ¬Bxτ))
(i-m)(A, B) ∃x(∃τAxτ ∧ ∃τ(Axτ ∧ Bxτ))
(o-m)(A, B) (∃x(∃τAxτ ∧ ∃τ(Axτ ∧ ¬Bxτ)) ∨ ∀x∀τ¬Axτ)

The reader may notice that some of these formulas, for example (a-`), can be simplified so
as to remove a repetition of A.

The authors claim no originality for these formalisations. Almost equivalent formalisa-
tions, for the sentence forms of types (d), (`), (m) and (t), were given by Rescher and van
der Nat [19] in 1974. They used a notation of their own devising, and didn’t include the
condition on empty subject terms.

A.3 (z) sentences and wide time scope

Avicenna defines several other temporal sentence forms. One that we discuss in the paper
above is where the time is taken to be a certain fixed time, for example the present. Avicenna
describes it in Mašriqiyyūn as follows.

Text F: Mašriqiyyūn 68.16–19.

Next we consider the ‘as-of-now’ (h. ād. ir) proposition. This is like when
you say

Every human is a Muslim.

at a time when it happens to be the case that there is no human unbe-
liever. It’s plausible to say that such sentences, for example

Every animal is human.

would be true if they were [uttered] at such a time. The [existence] con-
dition for this affirmative proposition is that the subject term is satisfied
[at the relevant time].
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Avicenna has two other names for these sentences: waqtı̄ (Mašriqiyyūn 65.14) and zamānı̄
(Mašriqiyyūn 72.7), both of which carry the meaning ‘at a given time’. In [9] the sentences
are called (z) after zamānı̄.

Avicenna tends to conflate three kinds of sentence: (1) sentences φ(now) which express
that something is the case now, (2) sentences φ(δ) which express that something is the case
at a given time δ, and (3) sentences ∃δφ(δ) which express that for some time δ, something is
the case at δ. For him the main difference between (2) and (3) is how determinate the time δ
is in the speaker’s mind; this is not the only place where he allows linguistic considerations
to mix with logical ones. As noted in the paper, he does discuss the logical roles of sentences
of these three kinds, but this part of his work has yet to be analysed with modern tools. Text
G below is a sample.

Text G: Qiyās 134.11–136.6.

An example is that when we say, at some time when there is no white colour
and no red colour or colour intermediate [between white and black] (assuming
this is possible):

Every colour is black.

[In this meaning] this proposition would be true at that time, but not a necessary
(d. arūrı̄) truth. Neither would it be meant that every individual that fits the
description ‘colour’ has ‘black colour’ true but not necessarily true of it, so that
that individual can continue to have its essence satisfied, and be a colour, but
cease to be [the colour] black. That would be as if we had judged that

Each thing fitting the description ‘colour’ at that time is not
black permanently and for as long as its essence continues to
be satisfied—far from it!

So in fact the non-necessary truth of this sentence of ours just has to do with
truth [on] the quantifier, and not with whether the non-necessary predication
applies to a single individual or to all of them.

Likewise in the negative proposition the assertion is not about whether the sub-
ject term is satisfied; rather it is about the satisfaction of the truth of the univer-
sally quantified denial. Even if the subject term in an affirmative proposition
has to be satisfied if the quantifier is to be true, the position with the negative
proposition has to be as we said. In fact if at some particular time no colour is
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white or intermediate [between black and white], and all colours are black and
there is no [non-black] colour at all, it is true that

No [non-black] colour is the colour white, at a certain time.

namely at that time. This is because an unsatisfied [subject] doesn’t satisfy the
description ‘white colour’ or have any affirmative property. When the affirma-
tion is not true the [corresponding] denial must be true. If we take care about
what we say, and pay regard to the satisfaction of truth on the quantifier, we
can apply [the rule of] conversion to this proposition.

If [the Peripatetic logicians] were to follow the path I have presented, they
would discover for themselves the great number of different kinds of proposi-
tion . . . Thus when we have

Every eclipse of the moon is a black colour.

and

No eclipse of the moon at time t is a black colour.

because there isn’t an eclipse of the moon [at time t], then

No eclipse of the moon at time t is an eclipse [of the moon].

One gets in the same way that no person is a person, and likewise with all sorts
of things. . . . One doesn’t consider whether the subject term of the negative
proposition is satisfied. In future we will take this view for granted.

We have been lengthy and repetitious about this topic, so as to give the student
a feeling for what the topic is about, and for the many precautions that need to
be taken into account when this approach is adopted . . .

References to ‘the quantifier’ in this and related passages are to the quantifier over objects,
not the quantification over times. Avicenna’s notion is that when the time quantification is
taken with wide scope, it is semantically attached to the object quantifier; see for example
[12]. Movahed [18] Ch. 3 on wide scope modalities in Avicenna is also relevant.

Although Avicenna consistently takes the position that his object quantifiers should be
read as quantifying over actuals (as for example in Text A above), Text G seems to show
him quantifying over possible times. This fits with Movahed’s observation ([18] p. 14) that

1063



W. Hodges and S. Johnston

at least some of Avicenna’s quantifications over ‘times’ should be read as quantifications
over situations or circumstances.

The next text illustrates Avicenna’s view that the temporal qualifications in the two-
dimensional sentence forms should be seen as kinds of modality, regardless of how they
may be expressed in natural Arabic.

Text H: Mašriqiyyūn 71.3f.

Being d. arūrı̄, being lāzim and being waqtı̄ are each a modality, but /123/ some-
times in some such sentences there is no [explicit] modal [expression] to signify
the modality.

A.4 The alethic modal sentences

Avicenna’s chief alethic modal sentences are, on his own account in cIbāra, the same as
the assertoric sentences but with an alethic modality attached either to the copula or to the
quantifier. There is evidence that the sentences where he counts the modality as attached
to the copula are those where the scope of the modality includes just the predicate, and the
negation if there is one; attachment to the quantifier means that the modality has wide scope
taking in the whole sentence. (See Movahed [18] Chapter 2.) This distinction matches the
distinction between (d) and (t) on the one hand, and wide-scope time quantification as in
the previous subsection on the other hand.

In Qiyās Avicenna tends to give modal sentences with the modality expressed by a
phrase ‘with necessity’ or ‘with possibility’ or ‘with contingency’, and this phrase can ap-
pear at the beginning or the end or in the middle of the sentence. There seems to be no
correlation between the place of the phrase and the distinction between modality on the
copula and modality on the quantifier.

The first author’s present impression is that for any modal proposition there are three
forms to be considered in Avicenna’s view:

• The vernacular form is how an Arabic speaker would naturally express the proposi-
tion.

• The semantic form is a structure describing how the meanings of the parts of the
proposition relate to each other.

• The logical form is the form that Avicenna uses to represent the proposition in dis-
cussions of formal logic.
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Probably the copula/quantifier distinction refers to the semantic form, and the phrases ‘with
necessity’ etc. are part of the logical form. Avicenna seems happy to accept a wide variety
of vernacular forms.

In any event the alethic modal logic operates with sentence forms that come from asser-
toric forms (a), (e) and (i) and (o) by adding necessity, possibility or contingency, and we
can label the resulting forms

(31) (a-nec), (e-nec), (a-pos) etc., etc.

Avicenna defines ‘possibly φ’ as ‘not necessarily not φ’; he is emphatic that ‘possibly’
should be defined in terms of ‘necessarily’ and not the other way round (cf. Qiyās 170.7
and the surrounding discussion). This definition allows us to calculate that the contradic-
tory negation of (a-nec)(A, B) is (o-pos)(A, B), and so on. In this paper we will ignore
contingency, which is the modal counterpart of the 2D wujūdı̄.

But none of this tells us what Avicenna takes ‘necessary’ and ‘possible’ to mean, let
alone what the modal sentence forms containing them mean. For these meanings we have
to look at his various comments on the notions of necessity and possibility. (Bäck [3] is
an introduction.) Be aware that not everything that Avicenna says about these notions is
relevant to his alethic modal logic. For example in several places he discusses a notion of
possibility that refers to the future; he takes this notion from the Peripatetic tradition, but
the notion doesn’t appear in any of his formal logic.

There is no simple array of texts that will show what Avicenna intended by his alethic
modalities. But one text worth noting is the following, in which Avicenna distinguishes
between permanence and necessity.

Text I: Qiyās 48.9–18.

We come to the existentially quantified affirmative case, as in the sentence

(32) Some B is an A.

taken as general absolute. In this case the facts are obscure. Are

(33) [No B is an A,] necessarily.

and

(34) [No B is an A,] contingently.
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both opposed to (32)? It’s plausible that it is not correct to say that

(35)
Something which is contingent for each individual could fail to
be true of any of them ever.

If (35) is not correct, then a thing that is contingent will become true of some
individuals and not of others; and then the truth of (34) is a special case of
the truth of (32), so the two are not contradictory negations of each other. It
remains the case that (33) is opposed to (32). And even if (35) is correct, it is
still the case that

(36) [No B is an A,] permanently.

is [contradictory] opposite of (32).

But being permanent is not the same as being necessary. [A thing is] necessarily
what it is by its nature, and this requires that if it is false of an individual then
it is permanently false of that individual; while [a thing is] permanent either by
its nature or because it just happens to be. It is not for the logician as logician
to know the truth about this.

Then let us take it that the [contradictory] opposite of the negative [general
absolute, i.e.

(37) Some B is not an A.

taken as general absolute], is the permanent, [i.e.

(38) Every B is permanently an A.]

This has the effect that if the only things that are permanent are those that are
necessary, then that’s how it is; but if there are things that are permanent but
not necessary, then the [permanent which is] contingent would come with the
contradictory negation [of the general absolute].

No doubt readers will want to make up their own minds about this passage; but let us throw
in comments on two points.

The first point is Avicenna’s statement about what logicians need to know. Avicenna
says that being permanent is not the same as being (alethic) necessary, but he adds that
it is not for logicians to know the truth about this. We can straight away point out two
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situations in which it certainly would be for logicians to know about the difference between
permanence and alethic necessity; and so prima facie Avicenna is ruling out these two
situations.

The first situation is that the logical laws of permanence are different from those of
alethic necessity. In this case certainly the logician would need to know the difference.
Also because of the relations between general absolute and permanent on the one hand, and
those between possible and necessary on the other, the logician would need to know any
place where the laws of the dt fragment of two-dimensional logic fail to correspond to the
laws of the (nec)-(pos) part of alethic modal logic. It should follow that Avicenna is telling
us there is no such failure of correspondence: the laws map across to each other exactly.

This is too much to extract safely from just a pair of lines of Avicenna’s text. But
it leads immediately to the question whether Avicenna does ever point to any failure of
correspondence between these two sets of laws. And the answer seems to be that he never
does. This is a strong fact. We can say more: sometimes he justifies an alethic syllogism
simply by showing that the corresponding 2D syllogism under translation (17) holds.

Text J: Najāt 73.9–12.

As for mixing contingency and Necessity [premises] in the first figure . . . Let us
explain this in another way that is easier to understand. We say that if every B is
A perpetually by Necessity, then that thing of which B is said is perpetually A.
So if B is said of J, it will always be A, not [just] for as long as it is described as
B. For the Necessity that we intend in these figures is other than of this [type];
and we have already explained this. Rather, [the qualifying condition is] ‘as
long as the essence of J, described as B, is satisfied’. So if a certain J comes to
be B, it was already A, even before its coming to be B. And so [it will continue
to be] after its coming to be [B] and after [the latter’s] passing away from it.
(Trans. Ahmed [1] p. 57f, with slight adjustments.)

Here Avicenna justifies the inference

(39)
Every C is contingently a B; every B is necessarily an A; therefore every
C is necessarily an A.

by inferring from ‘contingently’ to ‘possibly’, and then translating across into 2D logic by
(17). This move makes sense only if we know, or postulate, that laws of 2D logic carry over
to laws of alethic modal logic under this translation.

The second situation is that the logician needs to handle an argument which involves
both an alethic proposition and a 2D proposition, and the validity of the argument rests
on some non-obvious relationship between the two kinds of proposition. To see whether
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Avicenna does avoid situations of this kind, we first need to be able to allocate his d. arūrı̄
sentences between (d) and (nec). This leads directly to the problem of his k

¯
abt. , which we

address in the next section below.

The second point for comment is Avicenna’s statement that the necessary properties of a
thing are those which it has ‘by its nature’—which in Avicenna’s terminology is equivalent
to ‘by its essence’. Does this mean that Avicenna’s alethic modal logic should be taken to
be essentialist in the sense that its laws are intended to express properties of essences?

There are plenty of places where Avicenna claims that some statement is a necessary
truth because of some feature of the essence of the subject term. But he distinguishes
between the properties that a thing has ‘by its nature’ and those properties that are parts of
its nature. For example fire burns by its nature or essence, but burning is not part of the
essence of fire; it is deducible from the essence by a logical deduction using suitable middle
terms (Burhān 83.5–8). Likewise ‘having its internal angles add up to two right angles’ is
not a part of the essence of triangle, but it is deducible from the essence of triangle and
hence is an ‘essential accident’ of triangle.

So it may very well be the case that for the reading of ‘necessary’ that he has in mind
in Text I, Avicenna believes that every necessary property of a thing is ‘by its nature’ in
the sense that it is logically deducible from the essence of the thing. But this belief puts no
constraints on the laws of logic. In fact we know of no place, in all his treatments of modal
logic, where Avicenna justifies a rule of inference by reference to properties of essences.
(This puts him in a totally different logical world from the viewpoint of al-Fārābı̄’s Burhān.)

In [24] Street offers a different kind of reason for thinking that Avicenna’s modal logic
is essentialist. He argues that since Avicenna’s divided modal logic can be translated into
sentences of monadic predicate S5 in such a way that the inferences claimed valid by Avi-
cenna are those valid in S5, it follows that the divided modal logic is essentialist. This is an
incomprehensible argument, since there are plenty of interpretations of � and ^ that exactly
validate monadic predicate S5 but have nothing to do with properties of essences. In fact
permanence for �, and its dual for ^, are one such interpretation. We mention this as an
example of the second difficulty that we raise with Claim Two of §4 of our paper, namely
that ‘there can be two different semantics that express different intentions but happen to give
the same verdicts on which syllogisms are valid’.

A.5 The k
¯

abt.
A reader who starts at the beginning of Qiyās and proceeds section by section will first
meet the two-dimensional sentences, then a discussion of their contradictory negations,
then a discussion of their conversions, and finally a discussion of the syllogistic moods that
consist of them. This is the ‘two-dimensional textbook’ referred to in §3 above. But already
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in the discussion of contradictory negations the reader will face a disturbing fact: there are
two quite different kinds of sentence form that Avicenna describes as d. arūrı̄. The first is the
(d) two-dimensional sentences, and the second is the alethic modal sentences of the form
(nec).

A century or so after Avicenna, Abū al-Barakāt in his treatment of logic summed up
the situation neatly with two short phrases: there is necessity in the sense of permanence
(dawām) and there is necessity in the sense of inevitability (lā budda). Thus (d) is per-
manence and (nec) is inevitability. Fak

¯
r al-Dı̄n Rāzı̄ picked up Barakāt’s distinction and

coined a slogan. Logicians in the past, he said (and he clearly had Avicenna in mind),
stumbled around in the dark because of their failure to distinguish between permanence and
inevitability. Following Rāzı̄, we can speak of Avicenna’s ‘stumbling’ (k

¯
abt.).

Rāzı̄’s comments contain a strong suggestion that Avicenna himself didn’t always know
whether he was talking about permanence or inevitability. Is this fair?

Go back to our imagined reader of Qiyās. She will learn in Qiyās i that d. arūrı̄ means
(d). Then (nec) will come briefly into the picture, but only in connection with possibiiity.
For almost all of Qiyās i–ii she will have no reason not to take Ibn Sı̄nā at his word and read
d. arūrı̄ as (d).

In Qiyās, and in fact in all his major treatments of modal logic except that in the late
Pointers, Avicenna follows Aristotle’s arrangement of the material, but with absolute in
place of assertoric. This produces the following pattern:

1. Conversion of absolutes.
2. Conversion of modals.
3. Moods with both premises absolute.
4. Moods with both premises necessary.
5. First figure moods, one premise absolute and one necessary.
6. Second figure moods, one premise absolute and one necessary.
7. Third figure moods, one premise absolute and one necessary.
8. First figure moods, both premises possible.
9. First figure moods with one premise possible and one absolute.

10. First figure moods with one premise possible and one necessary.
11. Second figure moods with both premises possible.
12. Second figure moods with one premise possible and one absolute.
13. Second figure moods with one premise possible and one necessary.
14. Third figure moods with both premises possible.
15. Third figure moods with one premise possible and one absolute.
16. Third figure moods with one premise possible and one necessary.

Apart from a bumpy patch at 2, our reader will take all of 1–7 to be about 2D logic. This is
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the two-dimensional textbook. In Qiyās it consists of books i, ii and the first three sections
of iii, a clean initial segment of the whole book.

The problems of k
¯

abt. are concentrated in the first sections of Qiyās iv. As we note in the
paper, Avicenna presents the two-dimensional logic as an axiomatic system. For those infer-
ences that are derived from the axioms, similar derivations are available for the correspond-
ing alethic inferences; Avicenna moves through most of these quickly. The problems arise
when Avicenna has to justify the alethic inferences that correspond to the two-dimensional
axioms—in particular the conversions and the first-figure syllogisms. And these are exactly
the places where something seems to go badly wrong, as if someone had switched off the
light.

The referee encouraged us to quote texts to illustrate this darkness. Two features of the
darkness are hard to illustrate with single texts. One is the general sense of aimlessness.
In his calculations in the two-dimensional textbook, Avicenna was usually precise, efficient
and methodical. But as far as we know, nobody has detected a cogent overall logical strategy
in Qiyās iv. The second feature is that in Qiyās iv Avicenna seems to have given no genuine
solutions of genuine logical problems, and made no original suggestions that he or anybody
else could pursue. Seven and a half for effort but zero for results. If anybody can prove us
wrong about this, we would be hugely pleased to hear it.

Turning to more specific faults that we can illustrate, we begin with an example of a
piece of reasoning that is hardly more than word-play. Avicenna considers the mood

(40)
Every C is possibly a B.
Every B is possibly an A.
Therefore every C is possibly an A.

His claim about this mood is not that it is valid, but that it is ‘perfect’, i.e. so obviously and
immediately valid that no proof is needed for it. He argues for this claim as follows.

Text K: Qiyās iv.1, 183.1–4.

One should learn that it often happens that something is clear for people to
see, but people want to force the explanation in a particular direction and this
compels them to deviate from what is clear. Just as it is clear that things that
are true of what is true of something are true of that thing, so likewise it is
clear that a thing that is possibly possible is possible. There is no clear way of
making this obvious fact more obvious than it already is.

The analogy with ‘true’ doesn’t work—‘truly φ’ implies φ but ‘possibly φ’ doesn’t imply φ.
One might guess that there is some kind of S5 argument here involving the inference

^^φ ` ^φ. Movahed [18] p. 49 follows up this lead and shows that the most obvious way
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of applying the S5 rule needs a further rule, namely

(φ→ ψ) ` (^φ→ ^ψ),

and even with this rule his proof runs to nine lines. This is no help at all for showing that
the mood is perfect.

Next we give an example of an argument that Avicenna himself has rightly condemned
elsewhere. In Prior Analytics i.15 Aristotle gives an argument by reductio ad absurdum,
where he can be read as claiming that the contradiction is caused by just one of the premises.
Avicenna in his treatment of reductio ad absurdum in Qiyās mentions an argument that
looks very much like Philoponus’s version of this argument, and he expresses the view
that looking for one premise that causes the contradiction ‘gives us no new information’
(cf. [14]). It’s a little surprising to find Avicenna reporting this same argument at Qiyās
192.9–11 without any comment on this deficiency; but at least he does make it clear that
he is reporting Aristotle’s argument, not giving one of his own. There is less excuse for the
following text, where he claims to be offering his own argument.

Text L: Qiyās 202.3–8.

I say: Both the affirmative and the negative moods whose major premises are
necessity propositions entail a necessity conclusion. An example of the affir-
mative case is:

Every C is a B with possibility;
and (?) every B is an A with necessity;
so every C is an A with necessity.

Otherwise it is possible for some C not to be an A. And so let us posit that

(??) Some C is not an A.

is true. Then this [and the major premise (?)] form a productive syllogism in
the second figure, yielding the conclusion that possibly some C is not a B; or
rather,

It is not possible that every C is a [B].

This is an absurdity. It follows not from the premise [(?)] that was counted as
true, but from the one [(??)] that was considered dubious.

1071



W. Hodges and S. Johnston

The red herring about a single premise causing the absurdity is in the final sentence.

It is of course very bad practice in the history of ideas to dismiss a text as erroneous
when there is any chance that we might have misunderstood it. But part of our claim in
this paper is that there are better explanations of what Avicenna is doing in Qiyās iv, that
absolve him from the charge of accepting fallacious or irrelevant logical arguments. We can
point to three other things that he is doing instead.

The first is that he justifies alethic arguments by translating them through (17) into sound
arguments of 2D logic. Text J was an instance of this in Najāt. It seems very likely that
Text L contains another instance, at the point where Avicenna cites Baroco (his ‘productive
syllogism in the second figure’) with necessary major premise. If ‘necessary’ is read here as
(nec), then this is a mood that he hasn’t yet justified; moreover he would need to check that
the justification of it doesn’t involve the very mood that he is proving, or another first-figure
mood proved by the same means. So probably he intends ‘necessary’ as (d) here, and he is
relying on the fact that he has already proved Baroco with (t) minor premise and (d) major
premise.

It transpires that Street in [23] noticed this translation strategy but misinterpreted what
he saw. On his page 141 he remarks that some of Avicenna‘s proofs ‘contain a move in
which a possible proposition is supposed to be an absolute proposition’. In other words,
a (pos) proposition is translated into the corresponding (t) proposition. But first, Street
manoeuvres from ‘absolute’ to ‘assertoric’ and hence to ‘actual’; this is an irrelevance,
based on a conjectured analogy with a move made by Alexander of Aphrodisias. And
second, Street fails to notice that when the (pos) premise is translated to a (t) premise, a
(nec) premise is simultaneously translated to a (d) premise. As a result, where he should be
noticing a translation from an argument in alethic modal logic to an argument in 2D logic,
he finds instead a dubious logical move which he describes as ‘supposing a possible actual’.

The translation is not a move in a logical argument. We discussed at the end of §4 two
ways in which it can be justified, noting that the first of these justifications fits Avicenna’s
own general scheme, and the second is one that is an accepted practice of metalogic today.

The second thing that Avicenna is doing in Qiyās iv is to discuss axioms in a way that
he hopes will generate an intuition of the truth of the axioms. This is different from deriving
the axioms by logical procedures. It will be discussed more fully in [8].

There is a residue of unhelpful quotations of arguments from Aristotle. This is the third
thing that Avicenna does in Qiyās iv, and in this case we can quote his own justification for
doing it. Text M is taken from the Prologue of Mašriqiyyūn; Avicenna is describing some
defects of his writings before Mašriqiyyūn, and these writings include Qiyās.
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Text M: Mašriqiyyūn 3.14–4.1.

We perfected what [the Peripatetics] meant to say but fell short of doing, never
reaching their aim in it; and we pretended not to see what they were mistaken
about, devising reasons for it and pretexts, while we were conscious of its real
nature and aware of its defect. If ever we spoke out openly our disagreement
with them, then it concerned matters which it was impossible to tolerate; the
greater part [of these matters], however, we concealed with the veils of feigned
neglect: . . . in many matters with whose difficulty we were fully acquainted,
we followed a course of accommodation [with the Peripatetics] rather than one
of disputation . . . (trans. Gutas [6] p. 38f)

This goes a long way towards accounting for features of Text L and similar passages.
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It is shown that no intermediate predicate logic that is sound and complete
with respect to a class of frames, admits a strict alternative Skolemization
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1 Introduction
The insight that certain quantifier combinations can be reduced in complexity by
introducing fresh function symbols, goes back to Thoralf Skolem’s work at the be-
ginning of the twentieth century [18]. This insight has been used in the meta-
mathematical study of logics, but it also has practical applications, since it provides,
in combination with Herbrand’s Theorem, a connection between propositional and
predicate logic that is one of the key ingredients in automated theorem proving and
logic programming. Because of the elegance and usefulness of the Skolemization
method, one might hope to be able to use it also in nonclassical settings, such as in-
termediate predicate logics. Grigori Mints was one of the first to study Skolemization
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and Herbrand’s Theorem in nonclassical logic, and from the references it can be seen
that it remained a point of interest for him throughout his life [13, 14, 15, 16, 17].

As it turns out, to many nonclassical logics, including intuitionistic predicate
logic, the Skolemization method does not apply. This gave rise to the search for
alternative methods, that, in combination with Herbrand’s Theorem, result in a
connection between propositional and predicate intermediate logics, similar to the
one for classical logic. In the case of intuitionistic logic, a partial solution that only
applies to the fragment without universal quantifiers has been obtained, by extending
the logic with an existence predicate [2, 4], and in [12] it has been shown that
for intermediate logics with the finite model property this existence Skolemization
method applies to the full logic. In [3] an alternative method for full intuitionistic
predicate logic IQC has been developed, but at the cost of extending the language
considerably. There have appeared various results on the Skolemization method
and Herbrand’s Theorem in substructural logics, and in some cases, when the latter
does not hold, an alternative approximate Herbrand Theorem has been obtained [8,
1, 6, 7, 9, 10]. For intermediate logics with the finite model property, an alternative
Skolemization method called parallel Skolemization has been developed [5], and in
[9] a similar method has been developed for substructural logics.

In this paper we take the opposite approach and try to establish, given an in-
termediate logic, what alternative Skolemization methods cannot exist for it. For
this, we first need to define what an alternative Skolemization method is, as will be
done in Section 5, where the notion of a strict method will be defined as well. In
Section 6 it will be shown that no intermediate logic that is sound and complete
with respect to a class of frames, admits a strict alternative Skolemization method.
In particular, this holds for IQC, QDn, QKC, QLC, and all tabular logics.

As the reader will see, none of the theorems in this short paper are complex.
In fact, the proof of the main result is surprisingly simple. Nevertheless, what is
obtained improves our understanding of Skolemization in nonclassical logics to such
an extend that I think it worthwhile to publish it separately in this note.

2 Preliminaries

We consider intermediate predicate logics, which are predicate logics between in-
tuitionistic predicate logic IQC and classical predicate logic CQC. The language
L consists of infinitely many variables, which are denoted by x, y, z, xi, yi, . . . , in-
finitely many predicate symbols, function symbols (of every arity infinitely many),
and the connectives ∧,∨,→, the truth constants >,⊥, the quantifiers ∀,∃, and ¬ϕ
is defined as ϕ→ ⊥. Constants are included in the language and treated as nullary
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function symbols. Terms and formulas are defined as usual. We use x̄ as an abbrevi-
ation of x1, . . . , xn, where the n will always be clear from the context. For example,
∀x1∃y1∀x2∃y2ϕ(x̄, ȳ) is short for ∀x1∃y1∀x2∃y2ϕ(x1, x2, y1, y2). Given a logic L, `L
denotes valitidy in L.

Important in this paper is the distinction between strong and weak quantifiers,
where the former are exactly those quantifier occurrences that become universal un-
der classical prenexification: A quantifier occurrence in ϕ is strong if it is a positive
occurrence of a universal quantifier or a negative occurrence of an existential quan-
tifier, and it is called weak otherwise. Let Fns and Fnw denote the set of formulas
without strong and weak quantifiers, respectively. Identifying a logic with its set of
theorems, the strong quantifier free fragment of a logic consists of those theorems of
the logic that do not contain strong quantifiers, and likewise for weak quantifiers.

3 Kripke models
Kripke models are defined as in Section 5.11 of [19], although we use slightly differ-
ent notation. First, we define, given a set D, the notion of an interpretation I in
D, which is such that for every n-ary relation symbol R and every n-ary function
symbol f in the language, I(R) ⊆ Dn and I(f) is a function from Dn to D. Inter-
pretation I in D is extended to all terms by letting it be the identity on variables,
and by inductively defining for an n-ary function symbol f and terms t1, . . . , tn:
I(f(t1, . . . , tn)) = I(f)(I(t1), . . . , I(tn)). Given a term t(x1, . . . , xm) and a sequence
d1, . . . , dm of elements in D, we denote by I(t)(d1, . . . , dm) the result of replacing
xi in I(t) by di. Note that I(t)(d1, . . . , dm) ∈ D. Given a set D, let L(D) be the
language to which the elements of D are added as constants.

A Kripke model is defined to be a tuple (K,4,D, I,
), where

◦ K is a set and 4 a partial order on it with a least element, the root;

◦ D = {Dk | k ∈ K} is a collection of sets;

◦ I = {Ik | k ∈ K}, where Ik is an interpretation in Dk;

◦ 
 is a relation between elements of K and atomic formulas in L(Dk).

Moreover, such a Kripke model must satisfy the following persistency requirements
for any relation symbol R and any function symbol f in the language, where the
graph of an n-ary function f : Dn → D is defined as {(ē, d) ∈ Dn+1 | f(ē) = d} and
denoted by graph(f):

◦ k 4 l implies Dk ⊆ Dl;
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◦ k 4 l implies Ik(R) ⊆ Il(R);

◦ k 4 l implies graph(Ik(f)) ⊆ graph(Il(f));

◦ for any n-ary predicate ϕ, any d̄ = d1, . . . , dm in D, and terms t1(x̄), . . . , tn(x̄)
which free variables are among x̄ = x1, . . . , xm: if k 
 ϕ(I(t1)(d̄), . . . , I(tn)(d̄))
and k 4 l, then l 
 ϕ(I(t1)(d̄), . . . , I(tn)(d̄)).

The forcing relation 
 is extended to all formulas in the usual way.
If no confusion is possible, the model (K,4,D, I,
) is denoted by K. The model

has constant domains if all elements of D are equal. Note that the Kripke models are
in general not required to have constant domains. Given a class of Kripke models
K, let Kcd denote the set of those models in K that have constant domains.

4 Skolemization
The most popular consequence of the Skolemization method is the statement that
in classical predicate logic CQC, a prenex formula

∀x1∃y1 . . . ∀xn∃ynϕ(x̄, y1, . . . , yn)

is satisfiable if and only if its Skolemization

∀x1 . . . xnϕ
(
x̄, f1(x1), f2(x1, x2), . . . , fn(x1, . . . , xn)

)
is satisfiable, where fi is a function symbol of arity i that does not occur in ϕ. This
is equivalent to the statement that for such function symbols fi:

`CQC ∃x1∀y1 . . . ∃xn∀ynϕ(x̄, y1, . . . , yn)
⇔

`CQC ∃x1 . . . xnϕ
(
x̄, f1(x1), f2(x1, x2), . . . , fn(x1, . . . , xn)

)
.

This formulation in terms of derivability rather than satisfiability is the one used in
this paper.

Less well-known is the fact that Skolemization also applies to infix formulas,
formulas that are not necessarily in prenex normal form. To state this result one
needs to distinguish strong from weak quantifiers, defined in Section 2.

The Skolemization, ϕs, of a formula ϕ is the result of replacing every strong quan-
tifier occurrence Qxψ(x, ȳ) by ψ(f(ȳ), ȳ), where f is a fresh function symbol and the
variables ȳ are the variables of the weak quantifiers in the scope of which Qxψ(x, ȳ)
occurs. In formal terms: The Skolemization, ϕs, of a formula ϕ is such that ϕs does
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not contain strong quantifiers and there exist formulas ϕ = ϕ1, . . . , ϕn = ϕs such
that every ϕi+1 is the result of replacing the leftmost strong quantifier occurrence
Qxψ(x, ȳ) in ϕi by ψ(fi(ȳ), ȳ), where the f1, . . . , fn−1 are distinct fresh function
symbols that do not occur in ϕ and ȳ are the variables of the weak quantifiers in
the scope of which Qxψ(x, ȳ) occurs.

The following is an example of Skolemization.(
∀u∃vϕ(u, v)→ ∀x∃y∀zψ(x, y)

)s = ∀uϕ
(
u, f1(u))→ ∃yψ(f2, y, f3(y)

)
.

Note that f2 is a constant, as the corresponding quantifier ∀x is not in the scope of
any weak quantifiers.

Classical logic admits Skolemization:

`CQC ϕ ⇔ `CQC ϕ
s.

Note that the result for prenex formulas given above is a special case of this theorem.
Interestingly, many of the standard nonclassical logics do not admit Skolemiza-

tion. For example, in IQC and the predicate versions of LC and KC1 there are various
counterexamples, such as the following formulas, in which ϕ ranges over predicates,
and which are not derivable in the logics, though their Skolemization (at the right)
is.2

DNS ∀x¬¬ϕ(x)→ ¬¬∀xϕ(x) ∀x¬¬ϕ(x)→ ¬¬ϕ(c)

SMP ¬¬∃xϕ(x)→ ∃x¬¬ϕ(x) ¬¬ϕ(c)→ ∃x¬¬ϕ(x)

CD ∀x(ϕ(x) ∨ ψ)→ ∀xϕ(x) ∨ ψ ∀x(ϕ(x) ∨ ψ)→ ϕ(c) ∨ ψ
As mentioned above, in this paper we are not concerned with developing alternative
methods but rather with proving that certain alternatives cannot obtain for certain
logics. The question then is what one requires of such an alternative method, and the
answer to that question clearly depends on the application one has in mind. Starting
point in this paper is the idea that an alternative method (·)a should produce a
formula without strong quantifiers and that a logic L admits this method if

`L ϕ ⇔ `L ϕ
a. (1)

In this way, the alternative method provides a connection between the propositional
fragment of L and L itself, at least in case the logic admits some form of a Herbrand

1By this we mean the predicate logics QLC and QAJ from [11], axiomatized by ∀x̄
(
(ϕ(x) →

ψ(x̄)) ∨ (ψ(x̄) → ϕ(x̄))
)

and ∀x̄
(
¬ϕ(x̄) ∨ ¬¬ϕ(x̄)

)
, respectively.

2These principles can be found in [11]: DNS is shown to be equivalent, over IQC, to the principle
KF, which is ¬¬∀x(ϕ(x) ∨ ¬ϕ(x)); the strong Markov principle SMP appears under the name Ma.
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Theorem, by which we mean a translation (·)h such that ϕh ∈ Fnw and for all
ϕ ∈ Fns:

`L ϕ ⇔ `L ϕ
h.

Therefore, requirement (1) seems a reasonable one. However, if no further require-
ments are made, then the notion trivializes in the sense that every logic with > and
⊥ admits at least one alternative Skolemization method:

ϕa ≡def

{
> if `L ϕ
⊥ if 6`L ϕ.

This is the reason that alternative methods are required to be computable as well.
We show in this paper that under the mild condition of strictness, to be defined

in Section 5, there is no intermediate logic except CQC that is sound and complete
with respect to a class of frames and that admits a strict, alternative Skolemization
method. Thus implying that the logic IQC, the predicate versions of the Gabbay-
deJongh logics, the predicate version of DeMorgan logic and Gödel–Dummett logic,
as given in [11], and all tabular logics, which are the logics of a single frame, do not
admit any strict, alternative Skolemization method.

5 Alternative Skolemization methods
An alternative Skolemization method is a computable total translation (·)a from for-
mulas to formulas such that for all formulas ϕ, ϕa does not contain strong quantifiers.
A logic L admits the alternative Skolemization method if

` ϕ ⇔ ` ϕa. (2)

The method is strict if for every Kripke model K of L and all formulas ϕ:

K 6
 ϕa ⇒ K 6
 ϕ. (3)

Clearly, standard Skolemization is an alternative Skolemization method, and
CQC admits that method since ϕ → ϕs holds in CQC. An example of a different
alternative Skolemization method is the one where occurrences of strong quantifiers
Qxψ(x, ȳ) are replaced by ψ(f(ȳ)) ∨ ψ(g(ȳ)) for fresh distinct f and g. Note that
this method, a special case of the parallel Skolemization method introduced in [5], is
strict, as is parallel Skolemization. On the other hand, the existence Skolemization
method from [2, 4] is not strict.

Note that the form of Skolemization that we consider here does not take into
account the identity axioms for Skolem functions as is usually done in the setting

1080



Alternative Skolemization Methods

of model theory. This strengthens our results in the sense that if the problematic
direction from right to left in (2) fails to hold, it does so too if we allow the identity
axioms for Skolem functions on the right.

The requirement of computability alone does not suffice to prove that intuition-
istic logic does not admit alternative Skolemization methods, as the following trans-
lation satisfies (2): ϕa = (ψ1 → ψ2), where ψ1 consists of a conjunction of defining
axioms for suitable primitive recursive functions that imply ψ2, which is a coded
statement that ϕ is provable in IQC, exactly whenever ϕ is provable in IQC. Since
ψ1 and ψ2 can be defined in such a way that the first is a universal and the second
an existential formula, the translation thus defined is an alternative Skolemization
method. It is, however, not strict.

6 The strong and the weak quantifier fragments

Given a Kripke model K (recalling that they are assumed to be rooted), K↓ denotes
the Kripke model that is the result of replacing every domain in K by the domain at
the root of K and K↑ denotes the Kripke model that is the result of replacing every
domain in K by the union of all domains in K. For predicates P (x̄) and nodes k,
we put K↓, k 
 P (d̄) precisely if d̄ consists of elements in D and K, k 
 P (d̄), and
we put K↑, k 
 P (d̄) precisely if d̄ consists of elements in Dk and K, k 
 P (d̄).

Lemma 6.1. Let K be a rooted Kripke model, which root has domain D. Then
the following holds for all k in K. Recall that d̄ is short for d1, . . . , dn, and d̄ ∈ D
means that di ∈ D for all i ≤ n.

1. For all formulas ϕ(x̄) ∈ Fnw, for all d̄ ∈ D: K, k 
 ϕ(d̄)⇒ K↓, k 
 ϕ(d̄).

2. For all formulas ϕ(x̄) ∈ Fnw, for all d̄ ∈ Dk: K, k 6
 ϕ(d̄)⇒ K↑, k 6
 ϕ(d̄).

3. For all formulas ϕ(x̄) ∈ Fns, for all d̄ ∈ Dk: K, k 
 ϕ(d̄)⇒ K↑, k 
 ϕ(d̄).

4. For all formulas ϕ(x̄) ∈ Fns, for all d̄ ∈ D: K, k 6
 ϕ(d̄)⇒ K↓, k 6
 ϕ(d̄).

Proof. The four properties are proved simultaneously, by formula induction. For
atomic formulas ϕ(x̄) the lemma follows by definition. The case where ϕ is a con-
junction or disjunction follows immediately from the induction hypothesis.

Suppose ϕ(x̄) = ϕ1(x̄) → ϕ2(x̄). For 1., assume ϕ ∈ Fnw and K, k 
 ϕ(d̄) for
some d̄ ∈ D, and consider l < k such that K↓, l 
 ϕ1(d̄). Because ϕ1 does not
contain strong quantifiers, it follows from 4. that K, l 
 ϕ1(d̄). Hence K, l 
 ϕ2(d̄),
and thus K↓, l 
 ϕ2(d̄) by 1. and the fact that ϕ2 does not contain weak quantifiers.
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For 2., assume ϕ ∈ Fnw and K, k 6
 ϕ(d̄) for some d̄ ∈ Dk and consider l < k such
that K, l 
 ϕ1(d̄) and K, l 6
 ϕ2(d̄). Because ϕ1 does not contain strong quantifiers,
it follows from 3. that K↑, l 
 ϕ1(d̄). Because ϕ2 does not contain weak quantifiers,
K↑, l 6
 ϕ2(d̄) follows from 2. Thus K↑, k 6
 ϕ1(d̄)→ ϕ2(d̄). The proofs of 3. and 4.
are analogous.

Suppose ϕ(ȳ) = ∀xψ(x, ȳ). For 1., assume ϕ ∈ Fnw and K, k 
 ∀xψ(x, ē) for
some ē ∈ D and consider l < k and d ∈ D. By the induction hypothesis and the
fact that ψ does not contain weak quantifiers and D is the domain at the root of K,
it follows that K↓, l 
 ψ(d, ē). Hence K↓, k 
 ∀xψ(x, ē). For 2., assume ϕ ∈ Fnw

and K, k 6
 ∀xψ(x, ē) for some ē ∈ Dk and consider l < k and d ∈ Dl such that
K, l 6
 ψ(d, ē). By the induction hypothesis and the fact that ψ does not contain
weak quantifiers, it follows that K↑, l 6
 ψ(d, ē). Hence K↑, k 6
 ∀xψ(x, ē). Cases 3.
and 4. do not apply, as ϕ contains a strong quantifier.

Suppose ϕ = ∃xψ(x). Cases 1. and 2. do not apply, as ϕ contains a weak
quantifier. For 3., assume ϕ ∈ Fns and K, k 
 ∃xψ(x, ē) for some ē ∈ Dk and
consider d ∈ Dk such that K, k 
 ψ(d). By the induction hypothesis and the fact
that ψ does not contain strong quantifiers, it follows that K↑, k 
 ψ(d). Hence
K↑, k 
 ∃xψ(x, ē). For 4., assume ϕ ∈ Fns and K, k 6
 ∃xψ(x, ē) for some ē ∈ D.
Thus for all d ∈ D, K, k 6
 ψ(d, ē). Since ψ does not contain strong quantifiers the
induction hypothesis gives K↓, k 6
 ψ(d, ē) for all d ∈ D. Hence K↓, k 6
 ∃xψ(x, ē).

Theorem 6.2. Let L be a logic that is sound and complete with respect to a class
of Kripke models K which is closed under ↓ and ↑, then the strong quantifier free
fragment of L is sound and complete with respect to Kcd. And so is the weak
quantifier free fragment of L.

Proof. For the first case, suppose that ϕ is a formula without strong quantifiers that
is not derivable. Thus there is a model K in K that refutes ϕ. Let Subneg(ϕ) and
Subpos(ϕ) denote the formulas that occur in ϕ negatively and positively, respectively.
It suffices to show that

1. For all ψ(x̄) ∈ Subpos(ϕ), for all d̄ in D: K, k 6
 ψ(d̄)⇒ K↓, k 6
 ψ(d̄).

2. For all ψ(x̄) ∈ Subneg(ϕ), for all d̄ in D: K, k 
 ψ(d̄)⇒ K↓, k 
 ψ(d̄).

This follows from the previous lemma, using the fact that Subpos(ϕ) ⊆ Fns and
Subneg(ϕ) ⊆ Fnw.

The second case is similar, using K↑ instead of K↓.
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1 
 ϕ(d) 6
 ϕ(e) 
 ψ D1 = {d, e}

0 
 ϕ(d) 6
 ψ D0 = {d}

Figure 1: Model that refutes CD

Corollary 6.3. Except for CQC, there is no intermediate logic that is sound and
complete with respect to a class of frames and that admits a strict, alternative
Skolemization method.

Proof. Consider an intermediate logic L that is sound and complete with respect
to a class of frames, that is not equal to CQC, and that admits an alternative
Skolemization method (·)a that is strict. We show how this leads to a contradiction.
Let K be the class of Kripke models based on the frames in the given class.

First, we show that L is sound and complete with respect to the class Kcd of
models in K that have constant domains:

`L ϕ ⇔ ∀K ∈ Kcd(K 
 ϕ).

The direction from left to right is trivial. The other direction is easy too: If 6` ϕ,
then 6` ϕa, and so K 6
 ϕa for some K ∈ K. Therefore K↓ 6
 ϕa by Lemma 6.1.
Thus K↓ 6
 ϕ by strictness, and since K↓ ∈ Kcd, this completes the argument.

Having proven that L is sound and complete with respect to Kcd, it follows that
the constant domain formula CD (Section 4) holds in L, as it holds in all models
with constant domains. However, if L 6= CQC, then its class of frames contains at
least one frame in which at least one node has a successor. Since on such a frame
there exists a model that refutes CD, as in Figure 1, CD does not hold in L. The
desired contradiction has been obtained.

Let QDn be the intermediate predicate logic of the frames of branching at most
n, let QKC be the logic of the frames with one maximal node, and QLC be the logic
of linear frames.

Corollary 6.4. The logics IQC, QDn, QKC, QLC, and all tabular logics, do not
admit any strict, alternative Skolemization method.

Note that the constant domain logics, such as the Gödel logics, are not covered
by Corollary 6.4, as they are not complete with respect to a class of frames, but
with respect to the constant domain models on a certain class of frames.
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We close with a short observation about logics that do not admit any strict alter-
native Skolemization method. Suppose that for such a logic there is an alternative
method (·)a that it admits, and that the proof of this fact is semantical, showing
that for every countermodel K to ϕ there is a countermodel K ′ to ϕa and vice versa.
Then from the fact that the method cannot be strict, and thus cannot satisfy (3),
it follows that not in all cases one can take K for K ′, as one could do in CQC.
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Abstract

This paper presents an outline of a new account of counterfactuals. It is
based on a proof-theoretic perspective that allows a controlled replacement of
axioms questioned in the antecedence of a counterfactual.

Keywords: Counterfactuals, Soccer.

1 Introduction
The dominant formal treatment of counterfactuals, due to Stalnaker [11] and Lewis
[6], is given in the setting of possible world semantics. As appealing as it might be,
possible world semantics not only raises ontological worries, it also makes use of an
entirely intuitive neighborhood relation that—in our judgment—makes it impossible
to evaluate specific counterfactual statements.2 Here we propose an alternative
account for counterfactuals, which could be dubbed proof-theoretical.3 The idea is
to take a rather limited set of examples of counterfactuals placed in a “real world”

1When this paper was presented at the conference Philosophy, Mathematics, Linguistics: As-
pects of Interaction 2014 (PhML-2014) in St. Petersburg in April 2014, Grisha Mints showed great
interest in the approach; of course, I do not claim that he agreed, but he acknowledged that the
current state of the logical analysis of counterfactuals is unsatisfactory and that new approaches
are desirable. Here we would like to show such a possible new approach.

2See [10] to see how messy an analysis of counterfactuals in terms of a neighborhood relation
can become, This paper give also a neat overview of a classical example (Fine’s bomb) discussed
by Fine, Lewis, and others.

3This work can be considered as a contribution to the programme of proof-theoretic semantics
[5], understood in a rather broad sense. An account related to necessity was proposed in [3]; see
also [4].
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environment, i.e., that may easily be encountered in “everyday” conversations. This
limitation will allow us to evaluate the counterfactuals in a context of rather precisely
given rules; the “real world” environment will give us some feedback about the
common sense understanding of these counterfactuals. As a matter of fact, our
analysis aims more for a descriptive or empirical analysis of counterfactuals, rather
than a normative one.

As examples we choose counterfactual statements about the results of soccer
matches.4 There are two reasons for this choice. Firstly, results of soccer matches
(and their consequences) follow quite well-defined rules, which can be formalized
easily and allow, therefore, for an uncontroversial formal treatment. Secondly, results
of soccer matches (and their consequences) are subject to quite profound discussions
involving counterfactual conditionals—as you can easily experience if you have a
discussion with a soccer fan.

In the next section we give a list of examples, taken from the European Cham-
pionship in 2012, together with an informal evaluation; in section 3 we prepare the
formal environment in which to analyze the examples and argue, in the following
section, for a special treatment of axioms in this context. Sections 5 and 6 serve to
introduce a narrow and a wide notion of the logical cone. In the following section we
propose a specific understanding of the communicative function of counterfactuals
in view of our previous analysis. In the final section we give a short conclusion with
directions for further research.

2 “If the team had won this match, . . . ”
Spain won the European Championship in 2012 with a 4–0 win over Italy in the
final.5 Now, consider the following statement:

(1) If Italy had won the final, it would have been European Champion.

There should be no discussion that it is simply true. In view of the following exam-
ples, also its variation

(1’) If Italy had won the final, it would have become European Champion.

has to be considered true.
We see the difference in (1) and (1’) that, in the former case, the hypothetical

fact in the consequent is an immediate consequence of the hypothetical fact in the
4The examples can, of course, be replaced by some from other sports, in particular for our North

American fellows.
5All results of the tournament can be found on Wikipedia (http://en.wikipedia.org/wiki/

UEFA_Euro_2012) or on the official UEFA pages (http://www.uefa.com/).
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antecedent.6 while the latter case “leaves space” for further hypothetical facts taking
place “between” the antecedent and the consequent (see the next example).

Based on the fact that Germany lost its semifinal against Italy, we may consider
the statement:
(2) If Germany had won the semifinal, it would have become European Champion.

Let us first note that its variation corresponding to (1):
(2’) If Germany had won the semifinal, it would have been European Champion.
is clearly false. Germany would not have been immediately European Champion
after winning the semifinal, as the final in which Germany would now be one of the
teams would still have to be played.

But also (2) would—taken literally—widely be considered as false, simply
because there is no reason why Germany should have (also) won the final. But,
of course, to consider it as false would not mean that one would consider its “conse-
quent-negation” as true
(2∗) If Germany had won the semifinal, it would not have become European Cham-

pion.
In fact, a natural reply to (2) is neither “that’s true” nor “that’s false” but the

affirmation “that we don’t know”; one could even remove the apparent epistemic
aspect by replying “that would not be decided”. The fact that (2) leaves the outcome
of the consequent open can be made explicit by stating:
(3) If Germany had won the semifinal, it could have become European Champion.

In contrast to (2), this counterfactual should be considered as true.7
Now let us consider the following statements (bearing in mind that Ireland was

already eliminated at the group stage of the European Championship):

(4) If Germany had won the semifinal, Ireland could have become European Cham-
pion.

The statement (4) is surely to be considered as false, simply because of the fact
that Ireland, at the time Germany played its semifinal, was already eliminated and
therefore could not become European Champion, regardless of what had happen in
a semifinal match.

Interesting are the following two examples (taking into account that Portugal
lost its semifinal with Spain a day before Germany played Italy):

6In the following we will use “antecedent” and “consequent” directly for the hypothetical facts
expressed in the antecedent and in the consequent of a counterfactual, respectively.

7But we will come back to (2) in the last section.
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(5) If Germany had won the semifinal, Portugal could have become European
Champion.

(6) If Portugal had won the semifinal, Germany could have become European
Champion.

(5) could be considered as false, in the way we rejected (4), as Portugal was
already eliminated a day before the match of Germany took place. However, in the
case of (6), it is arguable that the Germany–Italy match might have taken another
course, and therefore (6) could be true.

3 Formal treatment
For a formal treatment of counterfactuals as given in the previous section we assume
that one can formalize the usual rules for soccer results and the European Cham-
pionship, together with the results of the particular matches in a sufficiently rich
logical framework.

Among the rules we should find formulas expressing, for instance:

(L1) If team A scores more goals than team B in the match of A against B, team
A wins this match.

(L2) The team that wins the final of the European Championship is the European
Champion.

(L3) The teams that play in the final are the winners of the two semifinals.

The results should be expressed by formulas corresponding to the outcome of
the matches, for instance:

(C1) Spain won the final against Italy.

(C2) Italy won the semifinal against Germany.

(C3) Spain won the semifinal against Portugal.

Both the rules and results can be considered as axioms which allow us to reason
about the European Championship. With them, it should be more or less straight-
forward to prove facts like:

• Spain became European Champion.

• Ireland was eliminated at the group stage.
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For our analysis it will be important that we split the rules and results into two
different groups of axioms. This separation recalls some features of the separation of
general laws and specific conditions in the well-known Hempel–Oppenheim scheme
of scientific explanations [2, 15], and we will borrow from it the designations L and C
for the axioms of rules and axioms of results, respectively. As a matter of fact, what is
usually considered in a soccer discussion in the antecedent of a counterfactual is only
the result of a particular match, but not a rule. The rules should provide a frame
for the discussion, which is generally not put into question by the counterfactual
situation proposed in the antecedent (see the end of the next section).

If we consider again example (1), it is easy to observe that we only need L-
axioms, in fact just rule (L2), together with the hypothetical fact that Italy won the
final, to prove that Italy would be European Champion. In this sense it would be
an “immediate” consequence, and we can obtain a proof of the consequent if we just
replace the C-axiom (C1) by one which expresses that Italy won the final.

But in the other examples, (2)–(6), the result of a semifinal is put into question
and this raises the question, of which other results are also put into question. It
should be clear that axiom (C1) does not make any sense any longer, as the teams in
the final are now different. Thus, questioning (C2) or (C3) implies that (C1) cannot
be an axiom any longer.8 Replacing, in (2)–(5), the axiom (C2) by an axiom (C2’)
stating that Germany won the semifinal, does not give us any hint how to replace
(C1). We would have to retract this axiom without replacing it. As a consequence,
the resulting axiom system would be incomplete with respect to the winner of the
final. This explains why we should consider neither (2) nor (2∗) as true, but should
consider (2’) as false, and our analysis is in line with the reply that the “European
Champion would not be decided”.

In (3) we weakened the consequent to be (only) possible. Possibility is here
simply understood as underivability of the negation.9 With this understanding of
possibility, (3) turns out to be true: the antecedent of (3), together with (L3) allows
one to derive that Germany would play in the final. This implies the removal of (C1)
without any replacement. The usual soccer rules will also not allow one to derive
the result of the final (that is, a proof, in one way or another, of the result of the
final), thus also not the negation of the consequent.

The statemente (4), however, is false, as changing the result of the semifinal does

8This implication can be made explicit by deriving formally the teams which play the final from
the results of the semifinals by invoking the rule (L3).

9This is in line with (the first part of) Frege’s observation: “If a proposition is advanced as
possible, either the speaker is suspending judgment by suggestion that he knows no laws from which
the negation of the proposition would follow or he says that the generalization of this negation is
false.” [1, p. 13].
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not imply any change of the results at the group stage. A proof of the elimination
of Ireland is not affected by a change of (C2), as this axiom does not imply any
change of the matches played on the group stage. The change of (C2) to (C2’) will
not affect the proof of the fact that Ireland was already eliminated.

As in the informal analysis, we could consider (5) to be false on the same basis
as (4): the semifinal between Portugal and Spain was played the day before the
semifinal between Germany and Italy; thus changing the result of the latter match
could not change the result of the former one.

But what about (6)? If (C3) is replaced by an axiom expressing that Portugal
won against Spain, we already know that (C1) has to be retracted as axiom. (C2),
however, is not related by any axiom to the result of other semifinal and there is no
need to retract (C2) as axiom. But as the Germany–Italy match was played after
the Portugal–Spain match, we already noted, that it is arguable that the former
match had taken another course. Soccer fans might invoke (strange) arguments
like: knowing they would face Portugal, the German players would have been so
excited that their performance would been sufficient to beat Italy, or conversely,
Italy would have feared facing Cristiano Ronaldo so much that they would have lost
their semifinal. Although such arguments are far-fetched, it is reasonable to consider
at least the possibility that when questioning facts at time t0, one may also question
facts at time t for t > t0 (or t ≥ t0). We will see below how this possibility can be
included in our analysis, even reopening the question whether (5) should, indeed, be
considered as false.

4 On L- and C-axioms
We start with an affirmative counterfactual of the form:

(?) If φ were the case, then ψ would be the case.

Its analysis should take place in a formal system describing the actual situation.
The non-logical axioms of the formal system are collected in a set T , and its deduc-
tive closure will be designated by T . To be a counterfactual, (?) presupposes that
the negation10 of φ, here designated by φ¬, is actually the case, i.e., φ¬ ∈ T .

To argue in the counterfactual situation—to be given by a set of axioms T ′
with its deductive closure T ′—we need to have φ¬ /∈ T ′, but φ ∈ T ′. A consistent
replacement of φ¬ by φ would be rather complicated, if φ¬ could be an arbitrary
formula in T . It would require tracing all axioms of T which are involved in all

10We do not want to be too formal here, but the negation of φ should something like ¬φ modulo
double negation elimination.
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possible derivations of φ¬, and to replace some of them (which?) by some other
axioms (which?) to obtain an axiom system T ′ with φ ∈ T ′. However, if we assume
that φ¬ is an axiom in T , its replacement by φ is a quite reasonable operation.

Although it seems to be a technical condition here, we think that it is natural to
demand that the antecedent (and its negation) has to be considered as an axiom in
some representation of the hypothetical (actual, respectively) situation. It would be
going too far here to give a full justification of this claim, but one may note that—
with the formulation of a counterfactual like (?)—φ is definitely not questionable
in (a description of) the hypothetical situation; it is, of course, the role of the
antecedent to fix φ as starting point of any further argument. In this perspective
φ¬ just “inherits” this status—or, to put it the other way around: to evaluate a
counterfactual, the actual situation has to be described in a way that the fact put
into question, i.e., φ¬, is considered as starting point of any further discussion, i.e.,
as an axiom.11

As counterfactuals suggest the existence of arguments—or, on the formal side,
proofs—of the consequent from the antecedent, we take a closer look to the setting
in which such arguments or proofs can be performed. The first aspect, that φ¬
should be settled on the level of axioms, was just discussed. If we replace φ¬ by
φ in the hypothetical situation, we would like to have, of course, that φ¬ does not
enter again in the discourse, making it inconsistent. Thus, the representation of the
actual situation should be “sufficiently independent”. As a matter of fact, this is
more complicated as it sounds: if we consider the antecedent of (2), for instance,
we would like to replace (C2) by its negation. However (L3), together with (C1)—
expressing that Italy was playing the final—implies that Italy won its semifinal.

To overcome this problem we introduce the separation of L- and C-axioms, as
indicated above: L-axioms should collect general rules, or “laws”, which construct
the frame in which a counterfactual should be evaluated; this frame is fixed and
is not up for debate. C-axioms, however, are the “facts” that might be subject to
changes—not only the one explicitly questioned in the antecedent.

In general, there are no apriori criteria that say what is an L-axiom and what is
a C-axiom. In the soccer example, it seems to be quite clear that L-axioms should
be the rules, while the C-axioms are the results. In other contexts, however, this
separation is probably simply stipulated.

The specific feature of the L-axioms is that they should not be questioned in the
discussion of the counterfactual. Soccer fans do not like replies to (1)

“If Italy had won the final, it would have been European Champion.”

of the form:
11A similar argument is put forward in our analysis of necessity in [3].

1093



R. Kahle

“No, in this case—if Italy had won the final—UEFA would have changed the
rules so that the loser of the final would be European Champion.”

In contrast, the C-axioms are those which are subject to revisions. And we will
discuss in the next section how those that should be retracted in a hypothetical
situation are chosen.

5 The logical cone
As a specification we may say that the logical cone of φ¬ should consist of exactly
those formulae that should be removed from T in the hypothetical situation proposed
by the antecedent of the counterfactual (?).

Intuitively, it should be sufficient to retract those (C-)axioms which “depend” on
φ¬. In our examples, for instance, an axiom about the result of the final depends on
the axioms about the results of the semifinals (as they determine the teams playing
in the final). Note, however, that the results of the two semifinals do not depend on
each other (we will come back to this issue in the next section).

For the time being, we will dispense with a formal definition of the dependency
of one C-axiom on another,12 but use it as an undefined, intuitive notion (and note
that an axiom depends on itself). Given χ,13 we say that the set of C-axioms that
depend on χ, designated by Dχ, are in the logical cone of χ. More generally, the
(narrow) logical cone of a C-axiom χ in T consists of those formulae of T which
need for their proofs axioms from Dχ; in formal terms, the (narrow) logical cone of
χ is the set {θ | θ ∈ T and θ 6∈ T \ Dχ}.14 It should be clear, that χ should be in its
own logical cone, i.e., that χ 6∈ T \ Dχ (otherwise, χ would have been redundant in
T ). T \ Dχ (and in abuse of language also T \Dχ) may well be called a background
theory, as it consists of those formulas (axioms) which should not be influenced by
a change of χ.

Our (narrow) reading of the counterfactual:

(?) If φ were the case, then ψ would be the case.

is now that

(?) is true, if and only if, ψ follows from (T \ Dφ¬) ∪ {φ}.

12This is, admittedly, in part because we encounter some technical problems in making it precise;
it can, however, also be justified by the fact that the determination of a logical cone is subject to
stipulation; this will be discussed in connection with the umbra in the next section.

13In the following, the role of φ and φ¬ would have to be reversed; therefore, we use χ here.
14The same idea of dependence of θ on χ to formalize “χ is necessary for θ” is discussed in [3].
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The intuitive idea is that the removal of the logical cone “gives space” to prove
ψ, even if it contradicts a fact in T . As φ¬ will not be in its own logical cone, we
get that (T \ Dφ¬) ∪ {φ} is consistent whenever T is consistent.

With this analysis,

(1) If Italy had won the final, it would have been European Champion.

turns out to be true: if φ expresses Italy wins the final, then Dφ¬ is essentially (C1)
(i.e., Spain won the final against Italy) and (L2) allows one to derive in (T \Dφ¬)∪{φ}
that Italy is European Champion.

But as noted above, for the other examples (2)–(6), we cannot expect to have
an affirmative counterfactual of the type (?) turn out to be true. In all these cases,
φ is the result of a semifinal; following the intuitive description, the (actual) result
of the final (C1) will be in the logical cone of φ¬, i.e., Dφ¬ contains (C1). In this
case, however, (T \ Dφ¬) ∪ {φ} will no longer contain any axiom that could give us
the result of the final, necessary to verify the consequent. In this view, (2), (2’), and
(2∗) are indeed false in our reading.

Thus, we were considering instead what we like to call a possibility counterfactual
where the consequent is qualified as (only) possible.15 If the possibility of χ in a
theory T is formally rendered as T does not prove ¬χ, we propose as analysis of

(??) If φ were the case, then ψ could be the case.

the following:

(??) is true, if and only if, ¬ψ does not follow from (T \ Dφ¬) ∪ {φ}.

With this analysis,

(3) If Germany had won the semifinal, it could have become European Champion.

turns out to be true: If φ expresses Germany wins its semifinal, then Dφ¬ should
contain (C2) and (C1), and (T \ Dφ¬) ∪ {φ} should clearly not prove that Ger-
many became not European Champion—it should be incomplete with respect to
this question.

(4), however, is false, as (T \Dφ¬)∪{φ}—in fact, already the background theory
(T \ Dφ¬) alone—proves that Ireland will not be European Champion, using only

15Possibility counterfactuals are discussed by Lewis under the name of ‘might’ counterfactual,
[6, § 1.5]. But as he defines them in terms of his ‘would’ counterfactuals (the counterpart of our
affirmative counterfactuals), we prefer another name here. The choice between ‘might’ and ‘could’
is, of course, rather a question of taste than of significance.

1095



R. Kahle

the results of the group stage, which are not affected by the change of a semifinal
result.

Also (5) and (6) turn out to be false in this reading, as—according to our informal
account of dependency—the result of one semifinal does not depend on the result of
the other, and, thus, the teams in the consequents of (5) and (6), respectively, would
not be in the final. But, as noted, (6) is, at least, arguable, and we will discuss in
the next section how this can be incorporated in an enlargement of our analysis.

6 The umbra and the wide logical cone
Our intuitive characterization of Dχ presupposes some kind of dependency between
χ and the elements of Dχ in the way that these elements should be incompatible
with the negation of χ. As argued in the discussion of (6), it is, however, reasonable
to permit also changes of facts which are not directly incompatible with χ, but for
which one can “construct a scenario” that would change them after a change of
χ—just as described in the far-fetched arguments given above for (6).

C-axioms of such facts are not elements of the (narrow) logical cone of χ. We
can say, however, that they are in the umbra of χ.

But how to determine the element of the umbra of a formula? From the analysis
(6) we could consider the temporal aspect, i.e., any fact taking place later than—or,
not earlier than—χ could be considered as an element of the umbra. But we are not
inclined to give a fixed characterization of the umbra. Instead, we suggest that it is
actually stipulated by the context (or the utterer) of the counterfactual.

Such a stipulation can be checked explicitly by questioning the umbra of a given
counterfactual. The utterer of (6) might be asked a question like: “If you change
the result of Portugal’s semifinal, you also allow changing the result of Germany’s
semifinal, don’t you?” Or even better, one can demand that elements of the umbra
are explicitly mentioned. For instance, one could ask the utterer of (6), whether
(s)he means that:16

(6’) If Portugal had won the semifinal and the result of Germany’s semifinal could
have been different, Germany could have become European Champion.

If the umbra is, indeed, stipulated, it is also conceivable, that, when one questions
the result of one semifinal, the result of the other semifinal is added to the umbra,

16If you consider this counterfactual as odd—as it seems to depend just on the change in the
umbra—you can consider also the following one:

If Portugal had won the semifinal and the result of Germany’s semifinal could therefore have
been different, Germany could have become European Champion.
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independently of the historical timing, but just because the matches are played on
the “same level”. In this sense, it would not be surprising that soccer fans would
come to the conclusion that (5) could be considered as true, if the change of the
result of Germany’s semifinal also allows changing the result of Portugal’s semifinal,
despite the fact that the match was played before. Again, this could be made explicit
by questioning whether Portugal’s semifinal should be considered to be in the umbra
of Germany’s semifinal.

Letting Uχ be Dχ augmented by the elements of the umbra of χ, the wide log-
ical cone of a C-axiom χ in T consists of those formulae of T that need for their
proofs axioms from Uχ. With this notion, we can propose a wide reading of the
counterfactual:

(?) If φ were the case, then ψ would be the case.

as

The counterfactual (?) is true, if and only if, ψ follows from (T \ Uφ¬) ∪ {φ}.

and analogously for (??).
On the basis of example (5) and (6) we prefer the wide reading of counterfactuals

over the narrow one. As this includes the stipulation of the umbra, we can overcome
the problem of the definition of Dχ by simply treating it in a similar way. Instead
of demanding a formal definition, we let the elements of Dχ be subjects to confir-
mations, i.e., one may ask whether a certain formula is considered to be dependent
on the antecedent of a counterfactual.

7 “. . . , the team would have become European Cham-
pion” revisited

We will finish this paper by reconsidering affirmative counterfactuals, as given in
(2). On the base of our analysis, given so far, only rather trivial, somehow non-
informative affirmative counterfactuals will turn out to be true; probably no soccer
fan would find the example (1) of particular interest. In contrast, statements like
(2) may occur naturally in a soccer discussion, despite being controversial.

We believe that affirmative counterfactuals—which are not trivially true because
the consequent follows immediately from the antecedent by L-axioms—have actu-
ally a specific status in a discussion. They are not meant as propositions with a
fixed truth value, but rather as assertions which commit oneself implicitly to hidden
assertions which would make the affirmative counterfactual true. This requires, in
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fact, that the corresponding possibility counterfactual needs to be true (in the sense
of our analysis).

Let illustrate this using the example

(2) If Germany had won the semifinal, it would have become European Champion.

The corresponding possibility counterfactual is true according to our analysis: if we
replace (C2) by (C2’), expressing that Germany won the semifinal, we have to retract
(C1), and the negation of the consequent is not provable. In this theory, however,
it is also not provable that Germany is European Champion. But it is possible
to augment the theory by a new axiom (C1’), expressing that Germany wins the
final. In fact, such an axiom would be necessary to obtain the consequent.17 Thus,
our claim is that the utterer of (2) implicitly commits h(im/er)self to this additional
axiom (C1’), which, if added, makes the counterfactual true in terms of our analysis.

This analysis can be cross-checked: it is easy to question the utterer of (2): “Oh,
you mean, if Germany had won its semifinal, it would also have won the final, don’t
you?” and one would probably get an affirmative answer.18

Thus, our analysis leads to the consequence that, in general, affirmative coun-
terfactuals are not bivalent propositions, but rather assertions which hide implicit
presuppositions in a subjective line of argument. This explains, at least, why coun-
terfactuals are often so controversial.

8 Conclusion
We propose a new account of counterfactuals which is based on the notion of a
logical cone.

First, we have to separate the description T of the “actual world” into two classes
of axioms, L-axioms for fixed rules and facts and C-axioms for those which might
be altered.

Secondly, we define the logical cone of a (C-)axiom φ, which consists intuitively
of all formulas in the deductive closure T of T which depend on φ.

Now we may add the negation of φ to the background theory obtained by re-
moving the logical cone of φ from T and investigate whether the consequence of an

17Again, the notion of necessity expressed in this condition can be made formal along the proposal
given in [3]. There, we invoke a stipulated variety of alternatives, and it will be essential, for instance,
that this variety consists of potential C-axioms, but does not involve L-axioms.

18Soccer discussions continue, in fact, along these lines, and may continue with a discussion like:
“Thus, you mean Germany would have been better than Spain, don’t you?” etc., and sooner or
later people start to disagree. . .
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affirmative counterfactual follows—or, for possibility counterfactuals, whether it is
consistent with the background theory.

Further, we notice that, in many instances, affirmative counterfactuals are only
defensible under hidden assumptions which are left out. These assumptions corre-
spond to traces in the logical cone of the antecedence leading to the consequence.
Such hidden assumptions, however, can be uncovered by asking for them.

In the present paper we provide a qualitative outline of our approach. A further
elaboration has to specify better the status and dependency of the C-axioms. Also,
we have to address how certain properties of combinations of counterfactuals behave
in the proof-theoretic setting.19 But one may already observe that the background
theory T \ Dχ gives rise to a variety of possible worlds which may allow one to
compare our approach with the usual semantic ones. Here, we see several advantages
for the proof-theoretic account. First of all, it comes without any ontological burden.
Secondly, the logical cone allows one to identify the sentences which are, indeed,
affected by the antecedent, leaving “unreachable” sentences out of consideration.20

In this way, there is also no need for “avoidance of big miracles” (see [10]), as they
should be ruled out by the L-axioms. Furthermore, along the lines of § 7, arguments
for counterfactuals are easily “checkable” by inquiry; they correspond to traces in the
logical cone, which allows us to dispense with any kind of “neighborhood relation”,
needed in possible worlds semantics. Finally, the axiomatic setting gives us “full
control” over the background theory and the way it is modified by the alternatives
of an antecedent of a counterfactual. In general, we see it as one of the defects of
approaches using possible worlds semantics that they usually do not provide criteria
for determining the possible worlds, but just argue on the base of a given variety of
them.21

Let us finish by recalling Wehmeier [12, 13, 14], who pointed out the fact that
the grammatical mood plays an essential role in counterfactuals; it is important, for
instance, to distinguish the evaluation of definite descriptions in the actual world
versus the (or any) counterfactual world(s). In our account such a distinction can
be mirrored by evaluating such descriptions in the theory T of the actual situation
or in the one for the counterfactual situation, (T \Dφ¬)∪ {φ} (if not already in the
background theory T \ Dφ¬). Also Wehmeier’s subjunctive-indicative conditionals

19One may consult [9] for a discussion of such combinations in the semantic approaches growing
out from Lewis’s account.

20The term “logical cone” was, of course, chosen in analogy to Minkowski’s light cone in relativity
theory, [7, § III].

21It is worth mentioning here that, in particular, modal logic (see, for instance, [8]) as syntactic
counterpart of possible worlds is just investigating the relation between given possible worlds, but
not contributing to the question how to determine a variety of possible worlds, see also [4].
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[14, § 2] fit in our context. The given example is: “If everybody who voted for Christa
had voted for Barbara, Anna wouldn’t have been elected chair.” In our context, a
corresponding example would be: “If every team that lost its semifinal had won it,
Spain wouldn’t have become Champion.” The indicative part (“every team that lost
its semifinal”) just specifies the (teams and matches for which the) axioms of the
actual situation that would have to be retracted ((C2) and (C3) in our example);
the subjunctive part (“[each of these teams] had won [its semifinal]”) tells us how to
replace them. In this analysis, the antecedent is used as some kind of “instruction”
how to modify an existing axiom system, rather than a formula on the object level
which has to be integrated in one or the other way in the existing theory. But it
is the proof-theoretic setting that allows to perform such an “instruction” in a fully
controlled way.

In general, we see good potential in our proof-theoretic approach for all kind
of intensional phenomena, as axiomatic frameworks allow for a more fine-grained
analysis of logical relationships than approaches based on “structureless” worlds.
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Abstract

Parsing and generation (or surface realization) are two of the most impor-
tant tasks in the processing of natural language by humans and by computers.
This paper studies both tasks in the style of formal language theory, using
typed λ-terms to represent meanings. It is shown that the problems of
parsing and surface realization for grammar formalisms with “context-free”
derivations, coupled with a kind of Montague semantics (satisfying a certain
restriction) can be reduced in a uniform way to Datalog query evaluation. This
makes it possible to apply to parsing and surface realization known efficient
evaluation methods for Datalog. Moreover, the reduction has the following
complexity-theoretic consequences for all such formalisms: (i) the decision
problem of recognizing grammaticality (surface realizability) of an input string
(logical form) is in LOGCFL; and (ii) the search problem of computing all
derivation trees (in the form of shared forest) from an input string or input
logical form is in functional LOGCFL. These bounds are tight. The reduction
is carried out by way of “context-free” grammars on typed λ-terms, a relaxation
of the second-order fragment of de Groote’s abstract categorial grammar. The
method works whenever a grammar uses only “almost linear” λ-terms.

Keywords: Generation, Surface Realization, Parsing, Datalog, LOGCFL,

Montague Semantics, Abstract Categorial Grammar, Typed Lambda Calculus,

Almost Linear Lambda Term.

1 Introduction

The representation of context-free grammars (augmented with features) in terms
of definite clause programs is well-known. In the case of a bare-bone CFG, the

This paper originally evolved from an inspiration I got from a discussion with Sylvain Salvati on
his work [63]. I was supported by the Japan Society for the Promotion of Science under the Grant-
in-Aid for Scientific Research (KAKENHI), Grant Numbers 19500019 and 21500025.
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corresponding program is in the function-free subset of logic programming, known
as Datalog. For example, determining whether a string John found a unicorn belongs
to the language of the CFG in (1) is equivalent to deciding whether the Datalog
program in (2) together with the database in (3) can derive the goal or query (4):1

S → NP VP

VP → V NP

V → V and V

NP → Det N

NP → John

V → found

V → caught

V → is

Det → a

N → man

N → unicorn

(1)

S(i, j) :− NP(i, k), VP(k, j).
VP(i, j) :− V(i, k), NP(k, j).
V(i, j) :− V(i, k), and(k, l), V(l, j).
NP(i, j) :− Det(i, k), N(k, j).
NP(i, j) :− John(i, j).
V(i, j) :− found(i, j).

V(i, j) :− caught(i, j).
V(i, j) :− is(i, j).
Det(i, j) :− a(i, j).
N(i, j) :− man(i, j).
N(i, j) :− unicorn(i, j).

(2)

John(0, 1). found(1, 2). a(2, 3). unicorn(3, 4). (3)

?−S(0, 4). (4)

In the Datalog representation, terminals and nonterminals of the CFG are in-
terpreted as binary predicates on positions within the input string. The database
representing a string can be viewed as a certain type of directed graph (called a
string graph). We depict a string graph by a diagram like (5), where circles rep-
resent nodes (string positions) and boxes are labels of directed edges, which, by
convention, point from left to right.

0 John 1 found 2 a 3 unicorn 4 (5)

By naive (or seminaive) bottom-up evaluation (see, e.g., [76] or [1]), the answer
to a query like (4) can be computed in polynomial time in the size of the database, for
any fixed Datalog program. This method of evaluation generates all facts derivable
from the program together with the input database in the order of the height of
the Datalog derivation tree, until no new fact is derivable. By recording ground
instances of rules used to derive facts, a packed representation of the complete set
of Datalog derivation trees for a given query can also be obtained in polynomial
time using this technique. Since a Datalog derivation tree uniquely determines a
grammar derivation tree and vice versa (Figure 1), the translation gives a reduction

1The term query means different things in logic programming/Prolog and relational database
theory/finite model theory. The use of the term in this paper follows the logic programming/Prolog
tradition.
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S

NP

John

VP

V

found

NP

Det

a

N

unicorn

S(0, 4)

NP(0, 1)

John(0, 1)

VP(1, 4)

V(1, 2)

found(1, 2)

NP(2, 4)

Det(2, 3)

a(2, 3)

N(3, 4)

unicorn(3, 4)

Figure 1: A CFG derivation tree (left) and a Datalog derivation tree (right).

S

A

ǫ

ANA

a A

b A∗
NA c

d

Figure 2: A TAG with one initial tree (left) and one auxiliary tree (right)

of context-free recognition and parsing to query evaluation in Datalog. This is of
course all well known and well understood, even though the Datalog parlance is not
universally adopted.

In this paper, I extend this reduction in two directions. First, I show that
a similar reduction to Datalog is possible for more powerful grammar formalisms
that have “context-free” derivations, such as (multi-component) tree-adjoining gram-
mars [37, 80], IO macro grammars [24], and (parallel) multiple context-free gram-
mars [66]. For instance, the tree-adjoining grammar in Figure 2 is represented by
the Datalog program in (6).

S(i1, i3) :− A(i1, i3, i2, i2).
A(i1, i8, i4, i5) :− a(i1, i2), b(i3, i4), c(i5, i6), d(i7, i8), A(i2, i7, i3, i6).
A(i1, i2, i1, i2).

(6)

Second, I extend the technique to the problem of tactical generation (surface real-
ization) for such “context-free” grammar formalisms supplemented with a kind of
Montague semantics [57], under a certain restriction to be made precise below. The
method of reduction is uniform in both cases, and essentially relies on the encoding
of different formalisms in terms of abstract categorial grammars [17].

The reduction to Datalog makes it possible to apply to parsing and generation
sophisticated evaluation techniques for Datalog queries; in particular, an application
of generalized supplementary magic-sets rewriting [8] automatically yields Earley-
style algorithms for both parsing and generation. The reduction can also be used
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to obtain a tight upper bound, namely LOGCFL, on the computational complexity
of the problem of recognition of input strings as well as of the problem of checking
surface realizability of input logical forms.2 This means that, in rough complexity-
theoretic terms, these problems are no more difficult than the recognition problem
for context-free languages.

With regard to parsing and recognition of input strings, polynomial-time algo-
rithms and the LOGCFL upper bound on the computational complexity are already
known for the grammar formalisms covered by our results [22]. Also, efficient tab-
ular algorithms have already been obtained for many of these formalisms, and a
general perspective on tabular parsing, in the names of deductive parsing [69] and
parsing schemata [70], which can be equivalently expressed in terms of Datalog, is
already available. Nevertheless, I believe that my method of reduction to Datalog
is of independent interest, as it shows that efficient tabular parsing (recognition)
algorithms are automatically obtained from various types of grammars in a uniform
way. Concerning generation, where the input is a structured expression involving
binding, the present results seem to be entirely new.3

Since the precise statement of my method of reduction and the proof of its
correctness are quite technical, I first give an informal exposition of the method in
Section 2. I develop the theory formally, complete in all details, in Section 3. I then
discuss some consequences and extensions of the main results in Section 4, before
giving a brief conclusion in Section 5.

The main results of the present paper were first announced in [42]; Sections 1
and 2.1, part of Section 2.2, and Section 4.3 are based on that paper.

2LOGCFL is the class of decision problems that can be reduced to some context-free language
by a deterministic Turing machine operating in logarithmic space, and lies between the complexity
classes NL and AC1 (see [35]). Since LOGCFL is a subclass of NC, problems in LOGCFL are
efficiently parallelizable. There are context-free languages that are complete for LOGCFL under
log-space reduction (see [27]).

3As I explain below, the present method primarily applies to exact generation only, where the
input logical form is supposed to exactly match the logical form produced by the grammar.
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2 An informal exposition

2.1 Context-free grammars on λ-terms

Let us consider an augmentation of the CFG (1) with Montague semantics, which
uses λ-terms as representations of meanings:4

S(X1X2) → NP(X1) VP(X2)
VP(λx.X2(λy.X1yx)) → V(X1) NP(X2)
V(λyx.∧t→t→t(X1yx)(X2yx)) → V(X1) and V(X2)
NP(X1X2) → Det(X1) N(X2)
NP(λu.u Johne) → John

V(finde→e→t) → found

V(catche→e→t) → caught

V(=e→e→t) → is

Det(λuv.∃(e→t)→t(λy.∧t→t→t(uy)(vy))) → a

N(mane→t) → man

N(unicorne→t) → unicorn

(7)

Here, the left-hand side of each rule is annotated with a λ-term that tells how the
meaning of the left-hand side is composed from the meanings of the right-hand side
nonterminals, represented by upper-case variables X1, X2, . . . . Note that λ-terms
may contain any number of constants, whose types are indicated by superscripts.5

In such a grammar, the meaning of a sentence is computed from its derivation
tree. For example, given the derivation tree of John found a unicorn (the left tree
in Figure 1), we can decorate each nonterminal node with a λ-term in accordance
with the grammar rule being applied at that node, obtaining the decorated tree in
Figure 3. The λ-term decorating the root node,

(λu.u John)(λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.find y x)),

β-reduces to the λ-term

∃(λy.∧(unicorn y)(find y John)) (8)

encoding the first-order logic formula representing the meaning of the sentence (i.e.,
its logical form):

∃y(unicorn(y) ∧ find(John, y)).

4Grammars like this one are basically generalized phrase structure grammars [25] without fea-
tures or metarules.

5We follow standard notational conventions in typed λ-calculus, rather than Montague’s [57].
Thus, an application M1M2M3 (written without parentheses) associates to the left, λx.λy.M is
abbreviated to λxy.M , and α → β → γ stands for α → (β → γ).
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S
(
(λu.u John)(λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.find y x))

)

NP(λu.u John)

John

VP
(
λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.find y x)

)

V(find)

found

NP
(
(λuv.∃(λy.∧(uy)(vy))) unicorn

)

Det
(
λuv.∃(λy.∧(uy)(vy))

)

a

N(unicorn)

unicorn

Figure 3: A decorated derivation tree of a CFG with Montague semantics.

Thus, computing the logical form(s) of a sentence—the task of semantic interpre-
tation6—involves parsing and λ-term normalization. Conversely, to find a sentence
expressing a given logical form—the task of surface realization—it suffices to find
a derivation tree whose root node is decorated with a λ-term that β-reduces to the
given logical form; the desired sentence can simply be read off from the derivation
tree. At the heart of both tasks is the computation of the derivation tree(s) that
yield the input. In the case of surface realization, this may be viewed as parsing
the input λ-term with a “context-free” grammar that generates a set of λ-terms (in
β-normal form), which is obtained from the given CFG with Montague semantics
by stripping off terminal symbols:

S(X1X2) :− NP(X1), VP(X2).
VP(λx.X2(λy.X1yx)) :− V(X1), NP(X2).
V(λyx.∧t→t→t(X1yx)(X2yx)) :− V(X1), V(X2).
NP(X1X2) :− Det(X1), N(X2).
NP(λu.u Johne).
V(finde→e→t).
V(catche→e→t).
V(=e→e→t).

Det(λuv.∃(e→t)→t(λy.∧t→t→t(uy)(vy))).
N(mane→t).
N(unicorne→t).

(9)

Determining whether a given logical form is surface realizable with the original gram-
mar (7) is equivalent to recognition with the resulting context-free λ-term grammar
(CFLG) (9). As with CFG recognition/parsing, solving the problem of recognition
for CFLGs almost amounts to solving the problem of parsing; so algorithms and

6This is sometimes called “semantic parsing” or “parsing to logical form”.
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complexity results for the former translate into algorithms and complexity results
for the problem of surface realization.

In a CFLG such as (9), there is a mapping f from nonterminals to their semantic
types:

f =





S 7→ t,

NP 7→ (e→ t)→ t,

VP 7→ e→ t,

V 7→ e→ e→ t,

Det 7→ (e→ t)→ (e→ t)→ t,

N 7→ e→ t





.

A rule that has B on the left-hand side and B1, . . . , Bn as right-hand side nonter-
minals has its left-hand side annotated with a well-formed λ-term M that has type
f(B) under the type environment X1 : f(B1), . . . , Xn : f(Bn), or in symbols:

⊢ X1 : f(B1), . . . , Xn : f(Bn)⇒M : f(B).

For example, in the case of the third rule of (9), we have

⊢ X1 : e→ e→ t, X2 : e→ e→ t⇒ λyx.∧t→t→t(X1yx)(X2yx) : e→ e→ t. (10)

What we are calling a context-free λ-term grammar is nothing but an alterna-
tive notation for an abstract categorial grammar [17] whose abstract vocabulary is
second-order, with the restriction to linear λ-terms removed.7 In the linear case,
Salvati [62] showed the recognition/parsing complexity to be in P, and exhibited an
algorithm similar to Earley parsing for TAGs. Second-order linear ACGs are known
to be expressive enough to encode well-known mildly context-sensitive grammar
formalisms in a straightforward way, including TAGs and (non-deleting) multiple
context-free grammars (also known as linear context-free rewriting systems) [18, 19].

For example, the following linear CFLG is an encoding of the TAG in Figure 2,
where f(S) = o→o and f(A) = (o→o)→o→o (see [18] for details of this encoding):

S(λy.X1(λz.z)y) :− A(X1).
A(λxy.ao→o(X1(λz.bo→o(x(co→oz)))(do→oy))) :− A(X1).
A(λxy.xy).

(11)

In encoding a string-generating grammar, a CFLG uses o as the type of string
position and o→ o as the type of string. Each terminal symbol is represented by a

7A λ-term is a λI-term if each occurrence of λ binds at least one occurrence of a variable. A
λI-term is linear if no subterm contains more than one free occurrence of the same variable.
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constant of type o→ o, and a string a1 . . . an is encoded by the λ-term

/a1 . . . an/ = λz.ao→o
1 (. . . (ao→o

n z) . . . ),

which has type o→ o.8

A string-generating grammar coupled with Montague semantics may be repre-
sented by a synchronous CFLG, a pair of CFLGs with matching rule sets, as in
Figure 4.9 The transduction between strings and logical forms in either direction
consists of parsing the input λ-term with the source-side grammar and normaliz-
ing the λ-term(s) constructed in accordance with the target-side grammar from the
derivation tree(s) output by parsing.

2.2 Reduction to Datalog

We can show that under a weaker condition than linearity, a CFLG can be rep-
resented by a Datalog program. The presentation in this section is informal and
not fully precise; formal definitions and rigorous proof of correctness are deferred to
Section 3.

We use the grammar (9) as an example, which is repeated below:

S(X1X2) :− NP(X1), VP(X2).
VP(λx.X2(λy.X1yx)) :− V(X1), NP(X2).
V(λyx.∧t→t→t(X1yx)(X2yx)) :− V(X1), V(X2).
NP(X1X2) :− Det(X1), N(X2).
NP(λu.u Johne).
V(finde→e→t).
V(catche→e→t).
V(=e→e→t).

Det(λuv.∃(e→t)→t(λy.∧t→t→t(uy)(vy))).
N(mane→t).
N(unicorne→t).

(9)

Note that all λ-terms in this grammar are almost linear in the sense of satisfying
the following conditions:

• every occurrence of λ binds at least one occurrence of a variable (i.e., they are
λI terms), and

8It is known that the class of string languages generated by linear CFLGs under this encoding
coincides with the class of multiple context-free languages [63]. The class of tree languages generated
by linear CFLGs has been characterized by Kanazawa [45].

9The use of a pair of ACGs with a common abstract vocabulary as a synchronous grammar has
already been advocated by de Groote [17].
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S(λz.Y1(Y2z), X1X2) :− NP(Y1, X1), VP(Y2, X2).
VP(λz.Y1(Y2z), λx.X2(λy.X1yx)) :− V(Y1, X1), NP(Y2, X2).
V(λz.Y1(/and/(Y2z)), λyx.∧t→t→t(X1yx)(X2yx)) :− V(Y1, X1), V(Y2, X2).
NP(λz.Y1(Y2z), X1X2) :− Det(Y1, X1), N(Y2, X2).
NP(/John/, λu.u Johne).
V(/found/, finde→e→t).
V(/caught/, catche→e→t).
V(/is/, =e→e→t).

Det(/a/, λuv.∃(e→t)→t(λy.∧t→t→t(uy)(vy))).
N(/man/, mane→t).
N(/unicorn/, unicorne→t).

S(λz.Y1(Y2z)) :− NP(Y1), VP(Y2).
VP(λz.Y1(Y2z)) :− V(Y1), NP(Y2).
V(λz.Y1(/and/(Y2z))) :− V(Y1), V(Y2).
NP(λz.Y1(Y2z)) :− Det(Y1), N(Y2).
NP(/John/).
V(/found/).
V(/caught/).
V(/is/).
Det(/a/).
N(/man/).
N(/unicorn/).

S(X1X2) :− NP(X1), VP(X2).
VP(λx.X2(λy.X1yx)) :− V(X1), NP(X2).
V(λyx.∧t→t→t(X1yx)(X2yx)) :− V(X1), V(X2).
NP(X1X2) :− Det(X1), N(X2).
NP(λu.u Johne).
V(finde→e→t).
V(catche→e→t).
V(=e→e→t).

Det(λuv.∃(e→t)→t(λy.∧t→t→t(uy)(vy))).
N(mane→t).
N(unicorne→t).

Figure 4: The grammar in (7) expressed as a synchronous CFLG (top), with its
two components separated out. The first component is a linear CFLG encoding the
CFG (1), and the second component is the CFLG (9).

• for every subterm N , if a variable x occurs free more than once in N , x has
an atomic type,

where the type of an occurrence of a variable is determined by the typing assigned
to the λ-term by the grammar. The reduction to Datalog is guaranteed to be correct
only when the grammar is almost linear in this sense.

The key to our construction is the principal typing of an almost linear λ-term.
In this informal exposition, we represent principal typings graphically by means
of hypergraphs of a certain kind. A hypergraph is a generalization of a directed
graph where an edge (called a hyperedge) may be incident on any number of nodes,
depending on its label.10

10The connection between CFLGs and hypergraphs goes beyond the present informal exposition.
See [45] for the relation between linear CFLGs and hyperedge replacement grammars, a context-free
grammar formalism generating sets of hypergraphs.
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For example, take the λ-term

λyx.∧t→t→t(X1yx)(X2yx) (12)

annotating the left-hand side of the third rule of the grammar (9). Recall that
the function f mapping nonterminals to their types gives a typing of the λ-term
annotating the left-hand side of each rule. The typing assigned to the λ-term (12)
is expressed by the typing judgment (10):

⊢ X1 : e→ e→ t, X2 : e→ e→ t⇒ λyx.∧t→t→t(X1yx)(X2yx) : e→ e→ t. (10)

(Note that the bound variables x and y both have type e in this typing.) Given the
typing judgment (10), we can build the hypergraph for the λ-term (12):

∧

X1

y

X2

x

3 2

1 (13)

In a diagram like this, circles represent nodes, and circles with numbers attached to
them are external nodes of the hypergraph. Each hyperedge is represented by a box
with a label inside and tentacles connecting it to the nodes that it is incident on.
The tentacles of a hyperedge are ordered; in this paper, we adopt the convention
that they are ordered clockwise starting from the 12 o’clock position. Thus, the
hyperedge with label X2 in (13) has three tentacles, with the first tentacle leading
to the node right above it, the second to the node right below it, and the third to
the node right below the hyperedge with label X1. We call the first node in the
sequence of nodes that a hyperedge is incident on the result node of the hyperedge.

In general, the hypergraph graph(M) for a typed almost linear λ-term M is
constructed by induction on the structure of M , as follows. If α is a type, let |α| be
the number of occurrences of atomic types in α.11

11In this paper, we greatly overload the notation | · |. In addition to the use just defined, we use
it to mean the number of nodes of a tree, the length of a string, and the number of components of
a tuple. It should be clear from the context which meaning is intended.
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For a variable or a constant a of type α, graph(a) consists of |α| nodes v1, . . . , v|α|,
all of which are external nodes, and a single hyperedge labeled by a, which is incident
on v1, . . . , v|α|, in this order. Given the typing in (10), we have:

graph(∧) = ∧

3 2

1

graph(X1) = X1

3 2

1

graph(X2) = X2

3 2

1

graph(y) =
y

1

graph(x) =
x

1

If M is an application M1M2, where M1 and M2 are of type α → β and α,
respectively, graph(M) is constructed from the union of graph(M1) and graph(M2)
by identifying the last |α| external nodes of graph(M1) with the external nodes of
graph(M2); the remaining external nodes of graph(M1) become the external nodes
of M . If M1 and M2 share a free variable x (which must be of atomic type since
M is almost linear), then the x-labeled hyperedge in graph(M1) and the x-labeled
hyperedge in graph(M2), as well as the nodes that they are incident on, are also
identified.

graph(X1y) =
X1

y

2

1

graph(X1yx) =
X1

y x

1

graph(X2y) =
X2

y

2

1

graph(X2yx) =
X2

y x

1
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graph(∧(X1yx)) =

∧

X1

y x

2

1

graph(∧(X1yx)(X2yx)) =

∧

X1

y

X2

x

1

Finally, if M is a λ-abstraction λx.M1, then graph(M) is obtained from
graph(M1) by appending the sequence of nodes that the x-labeled hyperedge is
incident on to the sequence of external nodes.

graph(λx.∧(X1yx)(X2yx)) =

∧

X1

y

X2

x

2

1

graph(λyx.∧(X1yx)(X2yx)) =

∧

X1

y

X2

x

3 2

1

= (13)

There are several important points to note about this construction:

• If M has type α, graph(M) has |α| external nodes.

• For each free variable x in M , there is exactly one hyperedge labeled by x in
graph(M).
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• When M is in η-long β-normal form, graph(M) is what is called a term graph
(see [59]) with external nodes; in particular, for each node v in graph(M),
there is exactly one hyperedge whose result node is v.

To convert an almost linear CFLG rule

B(M) :− B1(X1), . . . , Bn(Xn)

into a Datalog rule, we take graph(M) and name its nodes with Datalog variables
(for which we use i1, i2, i3, . . . ). In the case of the third rule of the grammar (9),

V(λyx.∧t→t→t(X1yx)(X2yx)) :− V(X1), V(X2), (14)

we get:

i1

∧

i2

X1

i3

y

i5

X2

i4

x

3 2

1 (15)

Then we do three things to the CFLG rule:

(i) replace the left-hand side λ-term M by the sequence of external nodes of
graph(M),

(ii) replace each right-hand side variable Xi by the sequence of nodes that the
Xi-labeled hyperedge is incident on in graph(M), and

(iii) for each hyperedge in graph(M) labeled by a constant b, add to the right-
hand side of the rule an atom b(~v), where ~v is the sequence of nodes that the
hyperedge is incident on.

Applying this procedure to (14) produces the following result:

V(i1, i4, i3) :− ∧(i1, i5, i2), V(i2, i4, i3), V(i5, i4, i3).

For another example, consider the ninth rule of the CFLG in Figure 9:

Det(λuv.∃(e→t)→t(λy.∧t→t→t(uy)(vy))).
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The hypergraph for this λ-term is

i1

∃

i2

∧

i3

u

i5

v

i4

y

5

4

3

2

1

and the corresponding Datalog rule is

Det(i1, i5, i4, i3, i4) :− ∃(i1, i2, i4), ∧(i2, i5, i3).

Applying the same procedure to all the rules in (9), we get the following Datalog
program:

S(i1) :− NP(i1, i2, i3), VP(i2, i3).
VP(i1, i4) :− V(i2, i4, i3), NP(i1, i2, i3).
V(i1, i4, i3) :− ∧(i1, i5, i2), V(i2, i4, i3), V(i5, i4, i3).
NP(i1, i4, i5) :− Det(i1, i4, i5, i2, i3), N(i2, i3).
NP(i1, i1, i2) :− John(i2).
V(i1, i3, i2) :− find(i1, i3, i2).
V(i1, i3, i2) :− catch(i1, i3, i2).
Det(i1, i5, i4, i3, i4) :− ∃(i1, i2, i4), ∧(i2, i5, i3).
N(i1, i2) :−man(i1, i2).
N(i1, i2) :− unicorn(i1, i2).

(16)

The construction of the database representing the input λ-term is similar, but
slightly more complex. A simple case is the λ-term (8), where each constant occurs
just once:

∃(λy.∧(unicorn y)(find y John)) (8)

This is an almost linear λ-term in η-long β-normal form, from which we obtain the
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S((λu.u John)(λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.find y x)))

NP(λu.u John) VP(λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.find y x)))

V(find) NP((λuv.∃(λy.∧(uy)(vy))) unicorn)

Det(λuv.∃(λy.∧(uy)(vy))) N(unicorn)

Figure 5: The CFLG derivation tree for (8)

following hypergraph:

1

∃

2

∧

3

unicorn

5

find

4

y

6

John

1

The hyperedges of this hypergraph that are labeled by constants in the λ-term
constitute the facts in the database representing the λ-term:

∃(1, 2, 4). ∧(2, 5, 3). unicorn(3, 4). find(5, 6, 4). John(6). (17)

(Note that here, we are using database constants 1, 2, 3, . . . , rather than Datalog
variables, to name nodes.) The external nodes of the hypergraph (of which there is
only one in this example) determine the query:

?−S(1). (18)

The λ-term (8) is in the language of the CFLG (9). Correspondingly, the answer
to the query (18) against the program in (16) and the database in (17) is “yes”.
Figures 5 and 6 show the associated CFLG and Datalog derivation trees.

The situation becomes more complex when the input λ-term contains more than
one occurrence of the same constant. Such is the case with the λ-term (19) (this is

1117



M. Kanazawa

S(1)

NP(1, 1, 6)

John(6)

VP(1, 6)

V(5, 6, 4)

find(5, 6, 4)

NP(1, 5, 4)

Det(1, 5, 4, 3, 4)

∃(1, 2, 4) ∧(2, 5, 3)

N(3, 4)

unicorn(3, 4)

Figure 6: The Datalog derivation tree for the query (18) against the database in
(17) and the program in (16).

the λ-term associated with John found and caught a unicorn by the grammar (7)):

∃(λy.∧(unicorn y)(∧(find y John)(catch y John))). (19)

Let us apply the same procedure to (19) as we did to (8). The hypergraph for (19)
is the following:

1

∃

2

∧

3

unicorn

4

y

5

∧

6

find

7

John

8

catch

9

John

1 (20)

From this hypergraph, we would get the database (21) and the query (22):

∃(1, 2, 4). ∧(2, 5, 3). unicorn(3, 4). ∧(5, 8, 6). find(6, 7, 4). John(7).
catch(8, 9, 4). John(9).

(21)

?−S(1). (22)
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S
(
(λu.u John)(λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.(λyx.∧(find y x)(catch y x)) y x))

)

NP(λu.u John) VP
(
λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.(λyx.∧(find y x)(catch y x)) y x)

)

V
(
λyx.∧(find y x)(catch y x)

)

V(find) V(catch)

NP
(
(λuv.∃(λy.∧(uy)(vy))) unicorn

)

Det
(
λuv.∃(λy.∧(uy)(vy))

)
N(unicorn)

Figure 7: The CFLG derivation tree for (19).

It turns out, however, that (21) is not the correct database corresponding to the
input λ-term (19). Even though (19) is generated by the CFLG in (9) with the
derivation tree in Figure 7, the answer to the query (22) against the database (21)
and the program (16) is “no”, as the reader can easily verify.

To obtain the desired database, we need to modify (20) by identifying the two
hyperedges labeled by John and the nodes they are incident on, as follows:

1

∃

2

∧

3

unicorn

4

y

5

∧

6

find

7

John

8

catch

1 (23)

This gives the database (24).

∃(1, 2, 4). ∧(2, 5, 3). ∧(5, 8, 6). unicron(3, 4). find(6, 7, 4). John(7).
catch(8, 7, 4).

(24)

Against this database and the program in Figure 16, the query (22) is correctly
answered “yes”. Figure 8 shows the associated Datalog derivation tree for this query.
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S(1)

NP(1, 1, 7)

John(7)

VP(1, 7)

V(5, 7, 4)

∧(5, 8, 6) V(6, 7, 4)

find(6, 7, 4)

V(8, 7, 4)

catch(8, 7, 4)

NP(1, 5, 4)

Det(1, 5, 4, 3, 4)

∃(1, 2, 4) ∧(2, 5, 3)

N(3, 4)

unicorn(3, 4)

Figure 8: The Datalog derivation tree for the query (22) against the database (24)
and the program in (16).

Note that the database (24) can also be obtained from the following non-β-normal
λ-term, which β-reduces to (19):

∃(λy.∧(unicorn y)((λx.∧(find y x)(catch y x)) John)). (25)

The hypergraph for (25) is identical to (23), except for the presence of an additional
hyperedge labeled by x (incident on the node named “7”).

The general rule is that the input λ-term should first be β-expanded to an
almost linear λ-term that is the most “compact” in the sense of containing the
fewest occurrences of constants, before the hypergraph and the associated database
and query are extracted out of it. This explains why the two hyperedges labeled by
∧ in (23) cannot be identified, because there is no almost linear λ-term with just one
occurrence of ∧ that β-reduces to (19). On the level of hypergraphs, the necessary
operation is similar to the conversion of term graphs to their fully collapsed form
(see [59]). This is by no means an accurate formulation, however, because the “fully
collapsed form” does not always correspond to an almost linear λ-term, and there is
some subtlety involved in the treatment of hyperedges labeled by bound variables.12

A precise method of converting the input λ-term N to the desired almost linear
λ-term N◦ will be given by Algorithm 1 in Section 3.7.13

Note that the way we obtain a database from an input λ-term generalizes
the standard database representation of a string: from the λ-term encoding

12For example, the algorithm β-expands d(b(λu.a(uc)))(b(λv.a(vc))) to (λx.dxx)(b(λu.a(uc))),
but does not β-expand d(λu.a(uc))(λu.a(uc)) to (λx.dxx)(λu.a(uc)), which would correspond to
the fully collapsed form.

13The input λ-terms we have used as examples are both almost linear. Since the class of almost
linear λ-terms is not closed under β-reduction, a β-normal λ-term generated by an almost linear
CFLG is not necessarily almost linear. Thus, in general, the input λ-term has to be β-expanded
to an almost linear λ-term before any hypergraph can be obtained by the method outlined above,
even when no constant occurs more than once in the input λ-term.
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/a1 . . . an/ = λz.ao→o
1 (. . . (ao→o

n z) . . . ) of a string a1 . . . an, we obtain the database
{a1(0, 1), . . . , an(n− 1, n)} and the query ?−S(0, n), as the reader may verify.

2.3 An outline of the proof of correctness

Let us give a rough idea of the proof of correctness of our reduction, presented
informally in Section 2.2.

For the reader familiar with the notion of a principal typing, it should be clear how
the hypergraph graph(M) for an almost linear λ-term M corresponds to a principal
(i.e., most general) typing of M , where occurrences of constants are treated like
mutually distinct free variables. For instance, corresponding to the hypergraph (20)
for the almost linear λ-term (19), we have the principal typing

∃ : (4→ 2)→ 1, ∧1 : 3→ 5→ 2, unicorn : 4→ 3, ∧2 : 6→ 8→ 5,

find : 4→ 7→ 6, John1 : 7, catch : 4→ 9→ 8, John2 : 9 ⇒ 1. (26)

Note that distinct occurrences of ∧ and of John in (19) are regarded as distinct free
variables. In the case of the λ-term (25), which has just one occurrence of John,
we have

∃ : (4→ 2)→ 1, ∧1 : 3→ 5→ 2, unicorn : 4→ 3, ∧2 : 6→ 8→ 5,

find : 4→ 7→ 6, John : 7, catch : 4→ 7→ 8 ⇒ 1 (27)

as its principal typing, corresponding to (23).14

What is special about almost linear λ-terms is that when an almost linear λ-
term with constants (in η-long form) is “maximally compact” in the sense that it
has no β-equal almost linear λ-term with fewer occurrences of constants, its principal
typing exactly characterizes the set of almost linear λ-terms (in η-long form) that
are β-equal to it. More precisely, let M be such a maximally compact almost linear
λ-term in η-long form and let Γ ⇒ α be its principal typing. Then we have the
following equivalence for every almost linear λ-term M ′ in η-long form:

M ′ has a typing Γ′ ⇒ α for some subset Γ′ of Γ

if and only if M ′ is β-equal to M . (28)

14The exact correspondence between graph(M) and a principal typing of M requires M to be in
η-long form. Note that this notion of typing of a λ-term with constants is different from the notion
of typing expressed by judgments like (10), where constants have fixed, pre-assigned types. In the
rigorous presentation of Section 3, typings like (26) and (27) will be replaced by typings of pure
λ-terms that result by replacing distinct occurrences of constants by distinct free variables.
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The main ingredients of the proof of this property of almost linear λ-terms are
the following:

• A principal typing of an almost linear λ-term is negatively non-duplicated in
the sense that each atomic type has at most one negative occurrence in it
(cf. [2]).

• All λ-terms that share a negatively non-duplicated typing are βη-equal [3].
This is a generalization of the Coherence Theorem (see [56]).

• The leftmost β-reduction from an almost linear λ-term is non-erasing and
almost non-duplicating in the sense that for each β-redex (λx.P )Q that is
contracted, x can occur free more than once in P only when the type of x is
atomic.

• If there is a non-erasing, almost non-duplicating β-reduction from a pure (i.e.,
constant-free) λ-term M to N , every typing of N is a typing of M . This is a
generalization of the Subject Exapnsion Theorem (see [31]).

Now let P be the Datalog program constructed from the given almost linear
CFLG G , and let N be the input λ-term (in η-long β-normal form). Suppose that
our algorithm first β-expands N to an almost linear λ-term N◦. Let Γ ⇒ α be a
principal typing of N◦, and let D and ?−S(α) be the database and query constructed
from this typing.

Suppose that there is a Datalog derivation tree T for the query ?−S(α) against
the program P and the database D. Given the one-one correspondence between the
rules of G and the rules of P, the Datalog derivation tree T determines a CFLG
derivation tree T ′. (See Figures 5, 6, 7, 8 for examples.) The former, however,
contains more information than the latter. Each ground instance ρ of a Datalog rule
used in T corresponds to a typing of the λ-term in the corresponding CFLG rule.
For instance, the ground instance

V(5, 7, 4) :− ∧(5, 8, 6), V(6, 7, 4), V(8, 7, 4)

of the third rule of (16) that is used in the Datalog derivation tree in Figure 8 gives
the following typing judgment:

⊢ ∧ : 6→ 8→ 5, X1 : 4→ 7→ 6, X2 : 4→ 7→ 8⇒ λyx.∧(X1yx)(X2yx) : 4→ 7→ 5.

Piecing together all these typing judgments corresponding to ground instances of
rules used in T gives a typing judgment

⊢ Γ′ ⇒ P : α′,
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where P is the (non-β-normal) almost linear λ-term at the root node of T ′. Since α′

and Γ′ correspond to the root node and the leaf nodes of T , respectively, we must
have α′ = α and Γ′ ⊆ Γ. By the special property (28) of almost linear λ-terms,
it follows that P is βη-equal to N◦ and hence to N , which implies that T ′ is a
derivation tree for N .

Let us now consider the converse direction and suppose that a derivation tree
T ′ of G has its root node labeled by S(P ) and P β-reduces to N . By the one-one
correspondence between the rules of G and the rules of P, T ′ determines a “skele-
tal” Datalog derivation tree made up of non-ground instances of rules of P, where
predicates have Datalog variables as arguments, instead of database constants. The
question is whether one can replace these Datalog variables with database constants
from D in such a way that leaf nodes will correspond to facts in D, so that the
derivation tree will become a derivation tree for S(α) against P and D. This is
possible precisely when P has a typing Γ′ ⇒ α with Γ′ ⊆ Γ. By the special property
(28) again, this must be so since P is almost linear and is βη-equal to N and hence
to N◦.

2.4 The scope of the present method

The present method of reduction to Datalog is directly applicable only to formalisms
expressible in almost linear CFLGs. Almost linear λ-terms suffice to represent for-
mulas in a logical language with quantification over individual variables only, so
when the meaning representation language used in a surface realization problem is
such a language, the input to the corresponding CFLG recognition problem will
always be an almost linear λ-term. For instance, in the extensional subfragment
of Montague’s [57] fragment of English, the translations of English sentences will
fall within such a language. Consequently, it is possible to extend the grammar
(7) to one that covers a large portion of Montague’s [57] fragment while keeping
the semantic half of the grammar almost linear. However, even when almost linear
λ-terms suffice to encode the target logical forms, we sometimes need grammar rules
that are not almost linear.15

For example, suppose we add to the synchronous grammar in Figure 4 the fol-
lowing rules:

NP(λz.Y1(/and/(Y2z)), λu.∧t→t→t(X1(λx.ux))(X2(λx.ux))) :− NP(Y1, X1), NP(Y2, X2).
VP(/sang/, singe→t).
NP(/Bill/, λu.u Bille).

15This is already evidenced in the grammar of Montague [57], which has a rule similar to the
first of the three rules below.
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With these rules, the grammar can now generate John and Bill sang, with the logical
form

∧(sing John)(sing Bill). (29)

Let us see how we might convert to Datalog the “semantic half” of the three
synchronous rules above:

NP(λu.∧t→t→t(X1(λx.ux))(X2(λx.ux))) :− NP(X1), NP(X2).
VP(singe→t).
NP(λu.u Bille).

(30)

Recall that f(NP) = (e→ t)→ t, so the type of the variables X1 and X2 in the
first rule of (30) are (e→ t)→ t and the type of u is e→ t. This means that the
λ-term M on the left-hand side of this rule is not almost linear. The method we
described was not meant to apply to a case like this, but suppose we extend it to
cover this case. We would get the following hypergraph.16

i1

∧

i2

X1

i5

X2

i3

u

i4

x

1

2

3

Thus, from the three CFLG rules in (30), we get the following Datalog rules:

NP(i1, i3, i4) :− ∧(i1, i5, i2), NP(i2, i3, i4), NP(i5, i3, i4).
VP(i1, i2) :− sing(i1, i2).
NP(i1, i1, i2) :− Bill(i2).

(31)

16This graph corresponds to the principal typing of the λ-term M .
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As for the λ-term (29), there are two conceivable hypergraphs that can be asso-
ciated with it:

1

∧

2

sing

3

John

4

sing

5

Bill

1
1

∧

2

sing

3

John Bill

1

The first graph is what we obtain with the method described above. The second
graph is the result of identifying the two edges labeled by sing and the nodes they
are incident on. The corresponding databases are:

∧(1, 4, 2). sing(2, 3). sing(4, 5). John(3). Bill(5). (32)

∧(1, 2, 2). sing(2, 3). John(3). Bill(3). (33)

Against the database (32) and the program consisting of the rules in (16) and
(31), the query

?−S(1).

is answered “no”. Against the database (33) and the same program, the same query
is answered “yes”, but there are too many Datalog derivation trees for this query.
In addition to the correct one corresponding to the CFLG derivation tree for (29),
there are three others, corresponding to the CFLG derivation trees for the following
λ-terms:

∧(sing John)(sing John)

∧(sing Bill)(sing John)

∧(sing Bill)(sing Bill)

This means that if (33) is used to solve the task of finding sentences expressing
meaning (29), the output obtained contains not just John and Bill sang, but also
John and John sang, Bill and John sang, and Bill and Bill sang. Thus, neither (32) nor
(33) gives a correct reduction of surface realization to Datalog query evaluation.

As for applications to parsing and recognition, the present method directly ap-
plies to string-generating grammars with no copying operation, like multiple context-
free grammars, but not to formalisms like macro grammars [24] and parallel multiple
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context-free grammars [66], where derivations involve copying of strings. To repre-
sent grammar rules that duplicate strings, a CFLG must use multiple occurrences
of the same variable of type o→ o, and so cannot be almost linear. An almost lin-
ear CFLG can represent tree grammars with copying operations, however, because
trees are represented by λ-terms of atomic type o. It turns out that this provides
an indirect way of applying the present method to grammars with string copying,
using as input a representation of a finite set of trees that yield a given input string.
This point will be elaborated in Section 4.2.

2.5 The present approach to generation

In this section, I clarify some basic assumptions I make in this work about the mean-
ing representation language and the task of surface realization. These assumptions
do not concern the formal result about the reduction of almost linear CFLGs to
Datalog, but rather the kind of application of the formal result to grammars for
natural language I have in mind.

In Montague’s [57] work, the meaning representation language, which incorpo-
rates a form of λ-calculus, is just a convenient tool used to give a model-theoretic
semantics to the object language, and can in principle be dispensed with. In con-
trast, this work assumes that the level of semantic representation is crucial and that
grammar rules specifically refer to λ-terms as structured, “syntactic” objects. Any
computation on meanings must be performed on some form of representation or
other; using λ-terms as semantic representations seems to be a convenient choice.

The formalism of λ-calculus can be used in different ways for different purposes.
The example grammar I have given uses λ-terms to more or less directly represent
formulas of the language of some logic (subsuming at least first-order logic), using
appropriately typed constants for logical and non-logical symbols of the language.
Binding of a variable by a quantifier is represented by an application of the constant
representing the quantifier to a λ-abstract.17 A pleasant consequence of this is
that two formulas that are related by renaming of bound variables translate into
α-equivalent λ-terms and are treated as the same. However, since constants are just
uninterpreted symbols, all other cases of logically equivalent pairs of formulas come
out as distinct λ-terms.

This use of λ-calculus, as an alternative syntax for the language of some logic, is
of course not the only way to use λ-calculus as a meaning representation language.
For example, logical connectives and quantifiers may be defined in terms of equality
(at different types), à la Henkin [29].18 It is also common to represent truth values,

17Following Church [14], Barwise and Cooper [7], and Lloyd [53], among many others.
18For example, the universal quantifier (over individuals) may be defined as ∀

(e→t)→t =
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Boolean functions, etc., with pure (i.e., constant-free) λ-terms, using τ → τ → τ as
the type of truth values.19 One can even represent finite models as λ-terms and cast
sentence meanings as functions from finite models to truth values [30]. These more
sophisticated uses of λ-calculus, however, almost always take us outside of the realm
of almost linear λ-terms, so the main result of this paper will not be applicable.20

The main result of this paper applies to surface realization as understood to be
the problem of finding a sentence such that the logical form associated with it by
the grammar exactly matches the input logical form. This means that the question
of whether or not the input logical form is surface realizable depends on the exact
shape of the input. If we take our example grammar (7), the answer is different for
each of the following pairs:

(34) a. ∃(λy.∧(unicorn y)(find y John))

b. ∃(λy.∧(find y John)(unicorn y))

(35) a. ∃(λy.∧(unicorn y)(∧(find y John)(catch y John)))

b. ∃(λy.∧(∧(unicorn y)(find y John))(catch y John))

(36) a. ∃(λx.∧(man x)(∃(λy.∧(unicorn y)(find y x))))

b. ∃(λy.∧(unicorn y)(∃(λx.∧(man x)(find y x))))

(37) a. ∃(λy.∧(man y)(= y John))

b. man John

It is generally agreed in computational linguistics that the input to surface realiza-
tion should not be informed by the particularities of the grammar and that ideally,
both members of these pairs should lead to the same result, since they are obviously
logically equivalent [68]. While accounting for the full range of logical equivalence
is clearly intractable, capturing commutativity and associativity of conjunction is
considered particularly important in machine translation applications, and partly
for this reason it is popular in computational linguistics to use a “flat” and “un-
ordered” meaning representation language where equivalences like (34) and (35) are
built in (see, e.g., [15] or [51]). Another motivation for flat semantics is the need
for compact “underspecified” representation of a range of different scope readings
of sentences with multiple scope-taking operators. Generation from flat semantics

λue→t. =(e→t)→(e→t)→t u (λxe. =e→e→t x x)
19The truth values “true” and “false” are encoded by the λ-terms λxy.x and λxy.y, respectively.

These are known as Church Booleans.
20Surface realization in such a setting is still decidable since Salvati [65] proves that recognition

is decidable for general CFLGs. It is an open question how far the class of almost linear λ-terms
can be extended without making the resulting CFLG recognition problem intractable.
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has been shown to be NP-hard [50], however, so adopting a flat representation lan-
guage is (for all we know) incompatible with polynomial-time algorithms for surface
realization.

Typed λ-terms, with “hierarchical” and “ordered” structures, do not seem to be
particularly well suited to encoding of flat semantics, but it is possible to adapt to
λ-calculus the idea of Koller et al. [49], who have proposed to use regular tree gram-
mars that generate finite sets of trees as a formalism for underspecification. Trees
cannot properly represent variable binding, so a reasonably compact description of
a “regular” set of λ-terms will improve upon Koller et al.’s [49] proposal.21 It turns
out that in certain cases, a database serves as such a compact representation. In
Section 4.2, I present a result extending the main result to handle certain regular
sets of λ-terms as input to the recognition problem for almost linear context-free
λ-term grammars. Notwithstanding this possibility of accommodating underspec-
ification, I believe that thorough understanding of the simpler problem of “exact”
surface realization should take precedence.

The underlying theme of this work is that the problem of surface realization can
and should be studied in the style of formal language theory, just like parsing. For
this purpose, the problem of surface realization should be formulated in abstract,
general terms. The primary goals of any such study would be to identify the compu-
tational complexity class for which the problem is complete, and to provide natural,
efficient algorithms (insofar as is allowed by the complexity lower bound) to solve the
problem. The formalism in which the input to surface realization is encoded should
be sufficiently rich to support constructs (e.g., variable binding) that are necessary
to express natural language meaning, but should not be tied to one particular logical
language. Typed λ-calculus seems to fit this role very well; it has a wide variety of
uses, its formal properties have been extensively studied, and its use is also fairly
common in computational linguistics. All other things being equal, a general, math-
ematically elegant, and well-understood formalism should be preferred over ad hoc,
application-specific, ill-understood alternatives.

3 Formal development

3.1 Preliminaries

3.1.1 Datalog

A database schema is a pair D = (R, U), where R is a finite set of predicates, each
of fixed arity, and U is a (possibly infinite) set of database constants. A ground fact

21See [64] for a definition of a regular or recognizable set of typed λ-terms.
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over D is
p(~s),

where p is a predicate in R of arity k, and ~s is a k-tuple of constants in U , for some
k. A database over D is a finite set of ground facts over D. If D is a database, the
universe of D, written UD, is the finite set of constants appearing in D.

We assume that we are given a countably infinite supply of variables. A Datalog
program over R is a finite set of rules, which are function-free definite clauses of the
form

p0(~x0) :− p1(~x1), . . . , pn(~xn),

where n ≥ 0, pi are predicates, each of fixed arity, and ~xi are tuples of variables
(not necessarily distinct) of appropriate length, matching the predicate’s arity. A
predicate together with its arguments constitutes an atom. The left-hand side of a
rule (the part to the left of :−) is called the head, and the right-hand side the body.
The atoms that constitute the body are the subgoals of the rule.22 The predicates in a
program P are divided into the intensional predicates and the extensional predicates.
A predicate is an intensional predicate if it appears in the head of some rule, and
an extensional predicate otherwise. An extensional database for P is a database D
for a schema D = (R, U) for some U , where R consists of the extensional predicates
of P. We call ground facts in an extensional database extensional facts. We follow
the logic programming parlance and call a negative Horn clause a query.23 In this
paper, we are mainly interested in simple (i.e., non-conjunctive) ground queries of
the form

?− p(~s),

where ~s is a tuple of constants from UD (of appropriate length).
Given a Datalog program P and an extensional database D, a ground fact p(~s)

is derivable from P and D, written

P ∪D ⊢ p(~s),

if and only if either p(~s) ∈ D or there is a ground instance

p(~s) :− p1(~s1), . . . , pn(~sn)

22In Datalog, it is often required that the variables in the head of a rule all appear in the body,
but we do not assume this restriction. In particular, we allow rules with empty body (i.e., facts) in
Datalog programs.

23In relational database theory and finite model theory, the term query sometimes means a
function that maps a finite relational structure to a finite relational structure. A query in this
sense may be expressed by a pair (P, R′) consisting of a Datalog program P and a subset R′ of
its intensional predicates [16]. See [1] for a similar use of the term “datalog query”. The logic
programming parlance was used by Ullman [77] in the context of Datalog query evaluation.
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of a rule in P such that

P ∪D ⊢ pi(~si)

for each i = 1, . . . , n. A derivation tree is a tree whose nodes are labeled by ground
facts in accordance with the above inductive definition. That is to say, a derivation
tree for p(~s) from P and D is either a tree with a single node labeled by an extensional
fact p(~s) ∈ D, or a tree of the form

p(~s)

T1 · · · Tn

where there exists some ground instance p(~s) :− p1(~s1), . . . , pn(~sn) of a rule in P

and Ti is a derivation tree for pi(~si) for i = 1, . . . , n.

It is easy to see that for a fixed Datalog program P, the problem of determining,
given a database D and a fact q, whether P∪D ⊢ q holds can be solved in polynomial
time in the size of (D, q). For some Datalog program, this problem is known to be
P-complete (see [48] for an overview of complexity issues). Among the most basic
polynomial-time algorithms for this problem are naive and seminaive bottom-up
evaluation (see [1] or [76]). In these methods, derived facts that share the same
predicate are grouped together into a relation, and relational algebra operations
are used to expedite the iterative, bottom-up computation of the relations. In the
application of Datalog to recognition and parsing, however, the number of derivable
facts is usually not large, so it is not so unreasonable to process one fact at a time.
Under this simplification, seminaive bottom-up evaluation can be expressed by the
following pseudocode. If π is a rule, we write ground(π, U) to denote the set of
ground instances of π using only constants from U .

1: procedure Seminaive(P, D)
2: D0 ← ∅

3: D1 ← D ∪ { p(~s) | p(~s) ∈ ground(π, UD) for some π ∈ P }
4: ∆1 ← D1

5: i← 1
6: while ∆i 6= ∅ do

7: ∆i+1 ←





p(~s)

∣∣∣∣∣∣∣∣

π = p(~x) :− p1(~x1), . . . , pn(~xn) ∈ P,
p1(~s1), . . . , pj−1(~sj−1) ∈ Di, pj(~sj) ∈ ∆i,
pj+1(~sj+1), . . . , pn(~sn) ∈ Di−1 for some j ∈ [1, n],
and p(~s) :− p1(~s1), . . . , pn(~sn) ∈ ground(π, UD)




−Di

8: Di+1 ← Di ∪∆i+1

9: i← i + 1
10: end while

11: return Di
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12: end procedure

In this algorithm, Di is the set of ground facts whose derivation trees have minimal
height i− 1.

Derivation trees are assembled from ground instances of rules. If, in addition to
derived ground facts, we record ground instances of rules used to derive facts, we
can obtain a packed representation of all derivation trees for ground facts derivable
from the given program and the input database:24

1: procedure Seminaive-parse(P, D)
2: D0 ← ∅

3: D1 ← D ∪ { p(~s) | p(~s) ∈ ground(π, UD) for some π ∈ P }
4: G1 ← D1

5: ∆1 ← D1

6: i← 1
7: while ∆i 6= ∅ do

8: ∆i+1 ←





p(~s)

∣∣∣∣∣∣∣∣

π = p(~x) :− p1(~x1), . . . , pn(~xn) ∈ P,
p1(~s1), . . . , pj−1(~sj−1) ∈ Di, pj(~sj) ∈ ∆i,
pj+1(~sj+1), . . . , pn(~sn) ∈ Di−1 for some j ∈ [1, n],
and p(~s) :− p1(~s1), . . . , pn(~sn) ∈ ground(π, UD)




−Di

9: Gi+1 ←





π′

∣∣∣∣∣∣∣∣

π = p(~x) :− p1(~x1), . . . , pn(~xn) ∈ P,
p1(~s1), . . . , pj−1(~sj−1) ∈ Di, pj(~sj) ∈ ∆i,
pj+1(~sj+1), . . . , pn(~sn) ∈ Di−1 for some j ∈ [1, n],
and π′ = p(~s) :− p1(~s1), . . . , pn(~sn) ∈ ground(π, UD)




∪Gi

10: Di+1 ← Di ∪∆i+1

11: i← i + 1
12: end while

13: return Gi

14: end procedure

In the implementation of seminaive-parse, the operations in lines 8 and 9 should
be performed simultaneously. In this algorithm, the final value of Gi records all rule
instances whose subgoals are derivable facts, and constitutes a propositional Horn
clause program.25

There is a natural way to associate an alternating Turing machine operating
in logarithmic space with each Datalog program [67, 48], and this is useful for the
complexity analysis of Datalog programs. Alternating Turing machines (ATMs) [13]
are a generalization of non-deterministic Turing machines. The set of states of

24The algorithms seminaive and seminaive-parse can also be written in the style of chart

parsing [69, 71]. The set ∆i will correspond to the agenda. See Section 4.3 below.
25At the end of the execution of seminaive-parse, we have Di = Di−1, but not necessarily

Gi = Gi−1; it would require one more iteration for Gi to stabilize.
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an ATM is partitioned into existential and universal sates. If a configuration is
in an existential state, at least one of the successor configurations must lead to
acceptance, whereas if a configuration is in a universal sate, all of its successor
configurations must lead to acceptance. A computation tree of an ATM M is a finite
rooted directed tree whose nodes are configurations of M such that the root node
is an initial configuration, each existential configuration has just one of its successor
configurations as its child, and each universal configuration has all of its successor
configurations as its children. An accepting computation tree is a computation tree
whose leaves are all accepting configurations. An ATM M operates (simultaneously)
in space S(n) and tree size Z(n) if on each input x of length n accepted by M , there
is an accepting computation tree of size at most Z(n) in which each configuration
uses at most space S(n). Ruzzo [61] characterizes the complexity class LOGCFL as
the class of problems for which there is an ATM operating in logarithmic space and
in polynomial tree size.

A log-space-bounded ATM MP simulating a Datalog program P may behave as
follows. The input to MP is a pair (D, q) of an extensional database D for P and
a ground fact q; MP accepts (D, q) if and only if P ∪D ⊢ q. This ATM uses k + 1
work tapes, where k is at least as large as the maximal arity of the predicates in P

and the maximal number of variables in rules of P. Each of the first k work tapes
serves as a pointer to a position on the input tape where an occurrence of a constant
starts. The last work tape is used to check identity of two occurrences of constants
(which we assume to be coded as binary strings). Part of MP’s finite control is used
to store a predicate or a rule in P. We call the combination of this part of the finite
control and the first k work tapes the “storage area”. The storage area of MP either
stores a ground fact p(~s), using the work tapes to store the sequence ~s of constants,
or a ground instance of a rule π = p(~x) :− p1(~x1), . . . , pn(~xn), using the work tapes
to store a ground substitution for the variables in π. The machine starts by copying
the ground fact q on the input tape onto its storage area. Whenever MP has a
ground fact q′ in the storage area, it tries to verify P∪D ⊢ q′. If q′ is an extensional
fact, it verifies that q′ appears in the database on the input tape and accepts. If q′

is an intensional fact, the machine uses existential branching and guesses a ground
instance πθ of a rule π = p(~x) :− p1(~x1), . . . , pn(~xn) in P whose head matches q′,
and places πθ in the storage area. The machine then uses universal branching and
for all i = 1, . . . , n, places pi(~xi)θ in the storage area, and repeats the procedure. It
should be clear that if there is a derivation tree T for P∪D ⊢ q, then the ATM MP

on input (D, q) has an accepting computation tree of size |T | ·O(f(n)), where |T | is
the size of T , f is a polynomial, and n is the size of the input (D, q).

Lemma 3.1. Let P be a Datalog program and g(n) be a polynomial. The following
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problem is in LOGCFL:

{ (D, q, 1
m) | there is a derivation tree for P ∪D ⊢ q of size ≤ g(m) }

Proof. The idea is from [26]. We modify MP by including bounds on the size
of Datalog derivation trees in each configuration. The modified ATM starts by
computing g(m). This computation and the storage of the resulting value (in binary)
can both be done within logarithmic space. When the machine is in a configuration
storing an extensional fact q′ and a bound b (a natural number in binary), it checks
that q′ appears in D and b ≥ 1, and accepts. When the machine is in a configuration
storing an intensional fact p(~s) and a bound b, it checks that b > 1 and guesses
a ground instance p(~s) :− p1(~s1), . . . , pn(~sn) of some rule, together with bounds
b1, . . . , bn on the size of the derivations trees for p1(~s), . . . , pn(~sn), such that b1 +
· · ·+bn = b−1. It then uses universal branching to write pi(~si) and bi in the storage
area and try to find a derivation tree for pi(~si) of size ≤ bi. It is clear that the size
of any accepting computation tree of this ATM on input of size n is bounded by
some polynomial in n.

We call a node in a derivation tree an extensional node if it is labeled by an
extensional fact (i.e., facts from the database), and an intensional node otherwise.
A derivation tree is called tight [79] if no fact occurs more than once on any of its
paths. Note that whenever T is a derivation tree for P ∪D ⊢ p(~s) that is not tight,
one can turn T into a tight derivation tree for P∪D ⊢ p(~s) by deleting some nodes
from T .

The following elementary lemma will be useful later.

Lemma 3.2. Let P be a Datalog program. Then there is a polynomial g(n) such
that whenever there is a derivation tree for P ∪D ⊢ p(~s) with l extensional nodes,
there is a derivation tree P∪D ⊢ p(~s) with n ≤ l extensional nodes whose size does
not exceed g(n).

Proof. Let k be the number of intensional predicates in P, r be the maximal arity
of intensional predicates in P, and m be the maximal number of subgoals of rules
in P.

If p is an extensional predicate, p(~s) must be in D and there is a one-node
derivation tree for P∪D ⊢ p(~s). In the following, we assume that p is an intensional
predicate.

We first show that there is a constant c (depending on P) such that if P ⊢ p(~s),
then there is a derivation tree for p(~s) with at most c nodes. (Note that P ⊢ p(~s)
means that p(~s) is derivable without using any extensional facts.) Let T be a smallest
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derivation tree for P ⊢ p(~s). Without loss of generality, we can assume that all
constants that appear in T appear in p(~s), so that there are at most r of them. This
is because if T contains other constants, they can be safely replaced by constants in
~s. Since T must be a tight derivation tree, the height of T is bounded by krr − 1.
Therefore, the size of T is bounded by mkrr

(if m ≥ 2) or krr (if m ≤ 1).

Now suppose P∪D ⊢ p(~s) and let T be a smallest derivation tree for P∪D ⊢ p(~s)
with n ≤ l extensional nodes. As before, we can assume without loss of generality
that all constants in T occur in p(~s) or in facts labeling extensional nodes, so that
there are at most (n + 1)r of them. The intensional nodes of T may be divided into
the following three types:

Type 0 Intensional nodes that are not ancestors of any extensional nodes.

Type 1 Intensional nodes that have just one child that is an ancestor of some
extensional node.

Type 2 Intensional nodes that have two or more children that are ancestors of
extensional nodes.

Since the case of n = 0 has already been taken care of, assume n ≥ 1. It is easy to
see that the number of intensional nodes of type 2 is at most n− 1.

To find a bound on the number of type 1 nodes, note first that all children of
type 1 nodes are type 0 nodes, except one, which is either an extensional node, a
type 1 node, or a type 2 node. We call two type 1 nodes equivalent if they are
related by the smallest equivalence relation extending the child-of relation restricted
to type 1 nodes. Each equivalence class of type 1 nodes is linearly ordered by the
child-of relation, and its minimal element is the parent of an extensional node or
of a type 2 node. Since T must be tight by the minimality of T , the size of each
equivalence class of type 1 nodes cannot exceed k((n+1)r)r. Since there are at most
2n − 1 equivalence classes of type 1 nodes, the number of type 1 nodes is bounded
by (2n− 1)k((n + 1)r)r.

We finally turn to type 0 nodes. Note that all children of type 0 nodes are type 0
nodes. We call a type 0 node maximal if it is not a child of a type 0 node. Since we
are assuming n ≥ 1, any maximal type 0 node has a parent, which is either a type
1 node or a type 2 node. This implies that either there is no type 0 node or m ≥ 2.
Note that there may be up to m− 1 or m− 2 maximal type 0 nodes that share the
same parent (m − 1 if the parent is type 1, m − 2 if the parent is type 2). Type
0 nodes that are not maximal are in a unique subtree rooted at a maximal type 0
node. Since we have seen that such a subtree has at most mkrr

nodes, there are at
most ((n− 1)(m− 2) + (2n− 1)k((n + 1)r)r(m− 1))mkrr

type 0 nodes in total.
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Therefore, the number of nodes of T is bounded by

2n− 1 + (2n− 1)k((n + 1)r)r + ((n− 1)(m− 2) + (2n− 1)k((n + 1)r)r(m− 1))mkrr

when n ≥ 1, which is O(nr+1).

3.1.2 Untyped λ-calculus with constants

In this and the next two sections, we review some basic concepts in λ-calculus
we will need in what follows, introducing some nonstandard notions and notations
along the way. For a more thorough introduction to the subject, see [6], [31], [73],
or [32]. Like Sorensen and Urzyczyn [73], we make an explicit distinction between
λ-terms and notations that represent them. It is important for our purposes to be
completely precise about basic notions such as “subterm occurrence”, “substitution”,
“β-reduction”, “descendant”, etc.

Following Statman [74], we consider a λ-term as an abstract object—namely,
a binary tree equipped with some additional structure. We use a fixed scheme of
naming nodes in a tree with strings of 0s and 1s. A binary tree domain is a finite,
prefix-closed subset T of {0, 1}∗ such that w1 ∈ T implies w0 ∈ T . A node of
the form wi with i ∈ {0, 1} is a child of the node w. A node is a leaf, a unary
node, or a binary node according to whether it has 0, 1, or 2 children. We write
T (0), T (1), T (2), for the sets of leaves, unary nodes, and binary nodes, respectively,
of T . We write v ≤ w to mean v is a prefix of w, and v < w to mean v ≤ w and
v 6= w. The lexicographic order on {0, 1}∗ is the strict total order ≺ extending <
such that u0t ≺ u1t′ for every u, t, t′ ∈ {0, 1}∗. We say that v is to the left of w if
v ≺ w. We let |w| denote the length of the string w. If w ∈ T , then the height of w
in T is max{ |v| | wv ∈ T }. Note that v < w implies that the height of v is greater
than the height of w.

We assume that we are given a fixed countably infinite set V = {v0, v1, v2, . . . }
of variables. Let C be a finite set of constants. A λ-term over C is a structure
(T , f, b), where

• T is a binary tree domain,

• f is a function from a subset of T (0) to C ∪ V,

• b is a function from T (0) − dom(f) to T (1) such that for all w ∈ dom(b),
b(w) < w.

Let M = (T , f, b) be a λ-term over C. If c ∈ C and f(w) = c, we say that c occurs
at w in M , and call the node w an occurrence of c in M . If x ∈ V and f(w) = x,
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then we say that x occurs free at w in M , and call w a free occurrence of x in M .
For w ∈ dom(b), we call b(w) the binder of w. The set of variables that occur free in
M is written FV(M); its elements are the free variables of M . When FV(M) = ∅,
M is a closed λ-term (over C). When no constant occurs in M , M is called a pure
λ-term.

Let M = (TM , fM , bM ) and N = (TN , fN , bN ) be λ-terms (over C). Then the
application of M to N is the λ-term MN = (T , f, b) defined as follows:

T = {ǫ} ∪ 0TM ∪ 1TN ,

f = { (0w, fM (w)) | w ∈ dom(fM ) } ∪ { (1w, fN (w)) | w ∈ dom(fN ) },

b = {(0w, 0bM (w)) | w ∈ dom(bM ) } ∪ { (1w, 1bN (w) | w ∈ dom(bN ) }.

It is easy to see that the map (M, N) 7→MN is one-to-one and every λ-term whose
root is a binary node is an application.

Let M be as above. For each variable x ∈ V, we define the λ-term λx.M =
(T , f, b) by:

T = 0TM ,

f = { (0w, fM (w)) | w ∈ dom(fM ) and fM (w) 6= x },

b = { (0w, 0bM (w)) | w ∈ dom(bM ) } ∪ { (0w, ǫ) | w ∈ dom(fM ) and fM (w) = x }.

A λ-term of the form λx.M is called a λ-abstract. Clearly, any λ-term P whose root
is a unary node is a λ-abstract; indeed, given any variable x 6∈ FV(P ), P can be
written uniquely as λx.M .

A λ-expression over C is an expression built up from variables, constants, paren-
theses, the dot “.”, and the symbol λ by the following rules:26

• If c ∈ C, then c is a λ-expression over C.

• If x ∈ V, then x is a λ-expression over C.

• If M, N are λ-expressions over C, then (MN) is a λ-expression over C.

• If M is a λ-expression over C and x ∈ V, then (λx.M) is a λ-expression over
C.

Then each λ-expression represents a λ-term, under the convention that a constant
or variable a ∈ C ∪ V represents the λ-term

({ǫ}, {(ǫ, a)},∅).

26A λ-expression is called a pre-term by Sorensen and Urzyczyn [73].
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It is clear that a λ-expression has the same tree structure as the λ-term it represents.
If M = (T , f, b) is a λ-term, a writing of M [74] is a function ℓ : T (1) → V

satisfying the following conditions:

• If u, v ∈ T (1), w ∈ T (0), u < v < w, and b(w) = u, then ℓ(u) 6= ℓ(v).

• If u ∈ T (1), v ∈ T (0), u < v, and v ∈ dom(f), then ℓ(u) 6= f(v).

It is clear that every λ-term has a writing; in particular, there is always a writing ℓ
of M such that ℓ is one-to-one and ran(ℓ) ∩ FV(M) = ∅.27

Given a λ-term M = (T , f, b) together with a writing ℓ, we can define a function
subM,ℓ from T to λ-expressions as follows:

subM,ℓ(w) =





f(w) if w ∈ dom(f),

ℓ(b(w)) if w ∈ dom(b),

λx. subM,ℓ(w0) if w ∈ T (1) and ℓ(w) = x,

(subM,ℓ(w0) subM,ℓ(w1)) if w ∈ T (2).

Then it is easy to see that subM,ℓ(ǫ) is a λ-expression representing M . The λ-term
represented by subM,ℓ(w) is usually called the subterm of M occurring at w; but
“subterm” is only defined relative to a writing ℓ of M .

We use usual abbreviations in writing λ-expressions. We omit the outermost
parentheses from λ-expressions and write MNP for (MN)P , λx.MN for λx.(MN),
and λx1x2 . . . xn.M for λx1.(λx2. . . . (λxn.M) . . . ).

We define the operation of substitution of a λ-term for a free variable in another
λ-term. Let M = (TM , fM , bM ) and N = (TN , fN , bN ) be λ-terms and x be a variable

in V. Let X = { v ∈ T
(0)

M | fM (v) = x }. The result of substituting N for x in M is
the λ-term M [x := N ] = (T , f, b) defined by

T = TM ∪XTN ,

f = { (w, fM (w)) | w ∈ dom(fM )−X } ∪ { (vw, fN (w)) | v ∈ X, w ∈ dom(fN ) },

b = bM ∪ { (vw, vbN (w)) | v ∈ X, w ∈ dom(bN ) }.

It follows from this definition that for all λ-terms P, Q, N , all y ∈ V − {x}, and all
z ∈ V − ({x} ∪ FV(N)), we have

x[x := N ] = N,

y[x := N ] = y,

27Such a writing corresponds to what Loader [54] calls a regular λ-term.
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(PQ)[x := N ] = P [x := N ] Q[x := N ],

(λx.P )[x := N ] = λx.P,

(λz.P )[x := N ] = λz.(P [x := N ]).

The simultaneous substitution of λ-terms N1, . . . , Nk for pairwise distinct variables
x1, . . . , xk in a λ-term M is defined similarly, and is written M [x1:=N1, . . . , xk :=Nk].
We write M [x1, . . . , xk] to indicate that {x1, . . . , xk} ⊆ FV(M [x1, . . . , xk]), and write
M [N1, . . . , Nk] for (M [x1, . . . , xk])[x1 := N1, . . . , xk := Nk].

Let M = (T , f, b) be a λ-term. Suppose that w ∈ T (2) is a binary node of
M such that w0 ∈ T (1). Such a node w is called a β-redex. Note that for every
writing ℓ of M , the λ-term represented by subM,ℓ(w) is of the form (λx.P )N . Let
X = { v | w0v ∈ T (0), b(w0v) = w0 }. (The set of leaves of M whose binder is w0 is
w0X.) We write

M
w
→β M ′

if M ′ = (T ′, f ′, b′), where

T ′ = {u ∈ T | w 6≤ u } ∪ {wv | w00v ∈ T } ∪ {wvu | v ∈ X, w1u ∈ T },

f = { (u, f(u)) | u ∈ dom(f), w 6≤ u } ∪ { (wv, f(w00v)) | w00v ∈ dom(f) } ∪

{ (wvu, f(w1u)) | v ∈ X, w1u ∈ dom(f) },

b′ = { (u, b(u)) | u ∈ dom(b), w 6≤ u } ∪

{ (wv, b(w00v) | w00v ∈ dom(b), w 6≤ b(w00v) } ∪

{ (wv, wv′) | w00v ∈ dom(b), b(w00v) = w00v′ } ∪

{ (wvu, b(w1u)) | v ∈ X, w1u ∈ dom(b), w 6≤ b(w1u) } ∪

{ (wvu, wvu′) | v ∈ X, w1u ∈ dom(b), b(w1u) = w1u′ }.

See Figure 9. If ℓ is a writing of M and (λx.P )N is the λ-term represented by
subM,ℓ(w), then for every writing ℓ′ of M ′ such that ℓ′ agrees with ℓ on {u ∈ T (1) |
u < w }, subM ′,ℓ′(w) represents P [x := N ].

From here on, we will let λ-expressions denote λ-terms, rather than themselves,
unless we explicitly indicate otherwise, keeping in mind that distinct λ-expressions
may represent the same λ-term. For example, if M = c(λy.d((λx.yxx)(yzz))),

then the node 101 of M is a β-redex, and M
101
→β c(λy.d(y(yzz)(yzz))) =

c(λy.d((yxx)[x := yzz])).
We write M →β M ′ if M

w
→β M ′ for some β-redex w in M . We say that M

β-reduces to M ′ (or M ′ β-expands to M) and write M ։β M ′ if there is a finite
sequence of λ-terms M0, M1, . . . , Mn (n ≥ 0) such that

M = M0 →β M1 →β · · · →β Mn = M ′.
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Figure 9: A one-step β-reduction. The dotted arrows represent the binding map.

If M and M ′ are related by the symmetric transitive closure of the relation ։β , we
say M is β-equal to M ′ and write M =β M ′.

Theorem 3.3 (Church-Rosser Theorem). If M ։β N and M ։β P , then there
exists a Q such that N ։β Q and P ։β Q.

See [6] for a proof.
A λ-term is called β-normal if it does not contain a β-redex. If a λ-term β-

reduces to a β-normal λ-term, the latter is called the β-normal form of the former.
By the Church-Rosser Theorem for β-reduction, any λ-term M has at most one
β-normal form. If a λ-term M has a β-normal form, we denote it by |M |β.

If M ։β M ′, each node of M ′ is a descendant of a unique node (its ancestor) of
M . For example, in M = (λx.yxx)(zw) ։β y(zw)(zw) = M ′, both occurrences of
z in M ′ are descendants of the unique occurrence of z in M . We give the definition
of the ancestor-descendant relation for one-step β-reduction as follows.28

Let M = (T , f, b), M ′ = (T ′, f ′, b′), and suppose w is a β-redex in M and

M
w
→β M ′. We write (M, u)

w
◮ (M ′, u′) to mean that the node u′ of M ′ is a

descendant of the node u of M . Let u ∈ T . There are four cases to consider:
Case 1. w 6≤ u. Then (M, u)

w
◮ (M ′, u′) if and only if u′ = u.

Case 2. u = w or u = w0. Then there is no u′ such that (M, u)
w
◮ (M ′, u′).

Case 3. u = w00s. Case 3a. If u ∈ dom(b) and b(u) = w0, then there is no u′

such that (M, u)
w
◮ (M ′, u′). Case 3b. Otherwise, (M, u)

w
◮ (M ′, u′) if and only if

u′ = ws.
Case 4. u = w1s. Then (M, u)

w
◮ (M ′, u′) if and only if u′ = wvs for some v

such that w00v ∈ dom(b) and b(w00v) = w0.

28See [10] for a formal definition of the ancestor-descendant relation using the technique of
labeling bracket pairs, originally due to Newman [58].
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It is clear that each node of M ′ is a descendant of a unique node of M . In Cases
1 and 3b, the node u of M has just one descendant in M ′. In Case 4, it has as
many descendants in M ′ as there are leaves in M whose binder is w0. We write

(M, u)
w
◮k (M ′, u′) to mean that the node u′ of M ′ is the k-th among the descendants

of the node u of M under the lexicographic ordering of the nodes of M ′.
Here are some important properties of the ancestor-descendant relation. The

proof is by straightforward inspection.

Lemma 3.4. Let M = (T , f, b) and M ′ = (T ′, f ′, b′), and suppose (M, u)
w
◮

(M ′, u′).

(i) u ∈ T (i) if and only if u′ ∈ T ′(i) for i = 0, 1, 2.

(ii) u ∈ dom(f) if and only if u′ ∈ dom(f ′).

(iii) u ∈ dom(b) if and only if u′ ∈ dom(b′).

(iv) If u ∈ dom(b), then (M, b(u))
w
◮ (M ′, b′(u′)).

We write (M, v)
w1,...,wn

◮ (M ′, v′) if there are sequences M0, M1, . . . , Mn and
v0, v1, . . . , vn such that (M, v) = (M0, v0), (M ′, v′) = (Mn, vn), and for 1 ≤ i ≤ n,

(Mi−1, vi−1)
wi

◮ (Mi, vi). The following theorem says that if M ։β M ′ and M ′ is in
β-normal form, the ancestor-descendant relation between the nodes of M and the
nodes of M ′ does not depend on the β-reduction sequence from M to M ′.

Theorem 3.5. If (M, u)
w1,...,wn

◮ (|M |β , v) and (M, u′)
v1,...,vm

◮ (|M |β, v), then u =
u′.

Proof. The proof is via an equivalent definition of the ancestor-descendant relation
in terms of simply labeled λ-calculus λA [10]. This calculus defines β-reduction
on labeled λ-terms, where each node carries a label, and the label of a node is
passed to the node’s descendants. If u is the only node labeled by a in a labeled
λ-term M , the set of descendants of u in |M |β consists of those nodes labeled by a,
which is independent of the β-reduction path from M to |M |β because λA , being
an orthogonal combinatory reduction system, enjoys the Church-Rosser Property
(see [10] for details).

A unary node w of M = (T , f, b) is an η-redex if w0 is a binary node and w01 is
the only node whose binder is w. If ℓ is a writing of M , then the λ-term represented
by subM,ℓ(w) is of the form λx.Px, where x 6∈ FV(P ). We write

M
w
→η M ′
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w

0

0

1

w

w

η

Figure 10: A one-step η-reduction. The node w01 is the unique node whose binder
is w.

if M ′ = (T ′, f ′, b′), where

T ′ = {u ∈ T | w 6≤ u } ∪ {wv | w00v ∈ T },

f ′ = { (u, f(u)) | u ∈ dom(f), w 6≤ u } ∪ { (wv, f(w00v) | w00v ∈ dom(f) },

b′ = { (u, b(u)) | u ∈ dom(b), w 6≤ u } ∪

{ (wv, b(w00v) | w00v ∈ dom(b), b(w00v) < w } ∪

{ (wv, wv′) | w00v ∈ dom(b), b(w00v) = w00v′ }.

See Figure 10. If ℓ is a writing of M and λx.Px is the λ-term represented by
subM,ℓ(w), then for every writing ℓ′ of M ′ such that ℓ′ agrees with ℓ on {u ∈ T (1) |
u < w }, the λ-term represented by subM ′,ℓ′(w) is P . The notions of η-reduction, η-
expansion, and η-equality are defined analogously to β-reduction, β-expansion, and
β-equality. We write M ։η M ′ to mean M η-reduces to M ′ and M =η M ′ to mean
M is η-equal to M ′. The transitive closure of the union of ։β and ։η is written
։βη, and similarly for =βη.

The following are lemmas needed to prove the Church-Rosser Theorem for βη-
reduction (see [6] for a proof):

Lemma 3.6 (η-Postponmenet Theorem). If M ։η Q ։β T , then there exists a
λ-term P such that M ։β P ։η T .

Lemma 3.7 (Commuting Lemma). If M ։β P and M ։η Q, then there exists a
λ-term T such that P ։η T and Q ։β T .

The following lemma is straightforward (see [31]):

Lemma 3.8. If M is in β-normal form and M ։η M ′, then M ′ is in β-normal
form.
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A λ-term M is a λI-term if every unary node of M binds at least one leaf. A
λ-term M is affine if every variable occurs free in M at most once, and every unary
node of M binds at most one leaf. A λ-term is linear if it is an affine λI-term. The
class of λI-terms and the class of affine λ-terms are both closed under β-reduction
and η-equality.

We introduce some nonstandard notations. The sequence of constants in M =

(T , f, b), denoted
−−→
Con(M), is

−−→
Con(M, ǫ), where

−−→
Con(M, w) is defined as follows:

−−→
Con(M, w) =





() if w ∈ dom(b),

() if w ∈ dom(f) and f(w) ∈ V,

(f(w)) if w ∈ dom(f) and f(w) ∈ C,
−−→
Con(M, w0) if w ∈ T (1),
−−→
Con(M, w0)

a−−→
Con(M, w1) if w ∈ T (2),

where
a

denotes juxtaposition. The sequence of free variables of M , denoted
−→
FV(M),

is
−→
FV(M, ǫ), where

−→
FV(M, w) is defined as follows:

−→
FV(M, w) =





() if w ∈ dom(b),

(f(w)) if w ∈ dom(f) and f(w) ∈ V,

() if w ∈ dom(t) and f(w) ∈ C,
−→
FV(M, w0) if w ∈ T (1),
−→
FV(M, w0)

a−→
FV(M, w1) if w ∈ T (2),

If
−−→
Con(M) = (c1, . . . , cn) and {x1, . . . , xn} ∩ FV(M) = ∅ (with x1, . . . , xn pair-

wise distinct), we let M̂ [x1, . . . , xn] denote the pure λ-term such that (x1, . . . , xn)

is a subsequence of
−→
FV(M̂ [x1, . . . , xn]) and M = M̂ [c1, . . . , cn]. For example,

if M = λy.c(y(c(zd)), then
−−→
Con(M) = (c, c, d),

−→
FV(M) = (z), M̂ [x1, x2, x3] =

λy.x1(y(x2(zx3))), and
−→
FV(M̂ [x1, x2, x3]) = (x1, x2, z, x3).

3.1.3 Simply typed λ-calculus with constants

Given a set A of atomic types, we let T (A) denote the set of types built up from
atomic types using → as the sole type constructor. In other words, T (A) is the
smallest set extending A such that

α, β ∈ T (A) implies (α→ β) ∈ T (A).

We omit the outermost parentheses in writing types, and write α→ β→ γ to mean
α→ (β→ γ).
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For α ∈ T (A), we write |α| to denote the number of occurrences of atomic types
in α. The notation α denotes the sequence of atomic types (with repetitions) that
appear in α from right to left, defined as follows:

p = (p) if p ∈ A,

α→ β = β
a

α.

As before,
a

denotes juxtaposition of sequences. For example, p→ p→ q = (q, p, p).
Note that the length of α is |α|.

The set of positions within α, denoted 〈α〉, is defined as follows:

〈p〉 = {ǫ},

〈α→ β〉 = {ǫ} ∪ 1〈α〉 ∪ 0〈β〉.

Then for every type α, 〈α〉 is a binary tree domain that has no unary nodes. The
subtype of α that occurs at position w ∈ 〈α〉, subtype(α, w) in symbols, is defined
as follows:

subtype(α, ǫ) = α,

subtype(α→ β, 1w) = subtype(α, w),

subtype(α→ β, 0w) = subtype(β, w).

The polarity of position w, pol(w), is 1 if the number of occurrences of 1 in w is
even, −1 otherwise. We say that β occurs positively (negatively) at position w in α
if subtype(α, w) = β and pol(w) = 1 (pol(w) = −1).

A type substitution is a mapping σ from T (A) to T (A′), written in postfix
notation, satisfying the condition (α→ β)σ = ασ→ βσ. A type relabeling is a type
substitution that sends atomic types to atomic types. Note that 〈α〉 = 〈β〉 if and
only if there exist a type γ and type relabelings σ1 and σ2 such that α = γσ1 and
β = γσ2. If |α| = n and q1, . . . , qn ∈ A, then we let 〈α〉(q1, . . . , qn) denote the unique
type β in T (A) such that β = (q1, . . . , qn) and 〈α〉 = 〈β〉. For any type β, we have
〈β〉(β) = β.

A higher-order signature is a triple (A, C, τ), where A is a finite set of atomic
types, C is a finite set of constants, and τ is a mapping from C to T (A). We write
Λ(Σ) for the set of λ-terms over C.

A type environment is a finite partial function from V to T (A). A type environ-
ment Γ = {(x1, α1), . . . , (xn, αn)} is usually written as a list x1 : α1, . . . , xn : αn.
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Let Γ be a type environment and M = (T , f, b) ∈ Λ(Σ). A function t : T →
T (A) is a type decoration of M under Γ if dom(Γ) = FV(M) and

t(w) =





Γ(f(w)) if w ∈ dom(f) and f(w) ∈ V,

τ(f(w)) if w ∈ dom(f) and f(w) ∈ C,

γ if w ∈ dom(b) and t(b(w)) = γ→ δ,

γ→ δ for some γ if w ∈ T (1) and t(w0) = δ,

γ→ δ if for some v ∈ T (2), w = v0, t(v) = δ, and t(v1) = γ.

If t is a type decoration of M (under Γ), we call (M, t) a typed λ-term over Σ (under
Γ).

A typed λ-term (M, t) can be visualized in the form of a natural deduction: each
unary and binary node w is labeled with its type t(w), each node w ∈ dom(f) is
labeled with a:γ, where f(w) = a and t(w) = γ, and each node w ∈ dom(b) is labeled
with [γ]v, where b(w) = v and t(w) = γ. For example, the following figure depicts a
typed λ-term (M, t) under the type environment z : p, where M = (λy.y(yz))(λx.x):

[p→ p]0
[p→ p]0 z : p

p
p

(p→ p)→ p
0 [p]1

p→ p 1

p

To aid legibility, we have also placed the label v next to the horizontal line right
above each unary node v.29

Another familiar representation of a typed λ-term is by means of a λ-expression
together with a type superscript on each of its subexpression. For instance, one way
of representing the above example of a typed λ-term is

((λyp→p.(yp→p(yp→pzp)p)p)(p→p)→p(λxp.xp)p→p)p.

We call an expression of the form Γ⇒ α, where Γ is a type environment and α
is a type, a sequent. A sequent Γ⇒ α is a typing of M if there is a type decoration
t of M under Γ such that t(ǫ) = α. In this case, we write

⊢Σ Γ⇒M : α.

29The resulting figure is identical to the natural deduction as defined in, e.g., [75], except that
we use strings in {0, 1}∗, rather than variables, as markers for closed assumptions, and we label
open assumptions with variables or constants. Hindley [31] also uses node addresses as assumption
markers in natural deductions, albeit in a different way.
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and say that t is a type decoration for the typing judgment Γ ⇒ M : α. When Γ is
empty, we omit the symbol ⇒ and write ⊢Σ M : α. Reference to Σ is dropped when
M is pure.

We say that an (untyped) λ-term M is typable if it has a typing. It is known
that every typable λ-term has a β-normal form. A sequent is said to be inhabited
if there is a pure λ-term M (an inhabitant) such that ⊢ Γ ⇒ M : α. A sequent is
inhabited if and only if it is a theorem of intuitionistic logic.30

Let M = (T , f, b) ∈ Λ(Σ) and t be a type decoration of M . If ℓ is a writing of
M and w ∈ T , then it is clear that

tw(v) = t(wv) for wv ∈ T

determines a type decoration tw for subM,ℓ(w), and we have

⊢Σ { (x, t(wv)) | f(wv) = x} ∪ { (ℓ(b(wv)), t(wv)) | b(wv) < w } ⇒ subM,ℓ(w) : t(w).

An important property of a typed λ-term in β-normal form is the so-called
subformula property:

Theorem 3.9. Let M = (T , f, b) be a pure untyped λ-term in β-normal form. If t
is a type decoration for x1 : α1, . . . , xn : αn ⇒M : α0, then for every w ∈ T , t(w) is
a subtype of αi for some i ∈ {0, . . . , n}.

Proof. The theorem is a consequence of the following statement, which is easy to
see: for every w ∈ T , if w 6= ǫ and w 6∈ dom(f), then there exists a v ∈ T such that
t(v) = t(w)→ α or t(v) = α→ t(w) for some α.

In general, the same typing of a λ-term may have more than one type decoration.
See [31] for the proof of the following theorem:

Theorem 3.10. If M ∈ Λ(Σ) is a λI-term, any typing of M has a unique type
decoration.

Thus, a λI-term M together with a typing of M can be treated in the same way as
a typed λ-term.

A typing Γ ⇒ α of M is a principal typing of M if for every typing Γ′ ⇒ α′ of
M , there is a type substitution σ such that Γ′ ⇒ α′ = (Γ ⇒ α)σ. We call a type
decoration t of M (under some type environment) a principal type decoration of M
if for every type decoration t′ of M (under some type environment), there is a type
substitution σ such that t′ = σ ◦ t. Clearly, the typing determined by a principal
type decoration is a principal typing.

30We use the symbol ⇒ in the same way as Mints [56] does. This is the way Hindley [31] uses the
symbol 7→. Although ⊢Σ Γ ⇒ M : α implies dom(Γ) = FV(M), it is always possible to weaken the
antecedent in the sense that ⊢Σ Γ ⇒ M : α implies ⊢Σ Γ, x : β ⇒ (λy.M)x : α, where x, y 6∈ FV(M).
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Theorem 3.11 (Principal Type Theorem). If M is typable, then M has a principal
typing and a principal type decoration.

See [31] for a proof.

Let M = (TM , fM , bM ) and N = (TN , fN , bN ) be λ-terms and x be a variable in

FV(M). Let X = { v ∈ T
(0)

M | fM (v) = x }. Let M [x := N ] = (T , f, b) be the result
of substituting N for x in M . The following lemmas are straightforward:

Lemma 3.12. Suppose that tM and tN are type decorations for Γ1, x : β ⇒ M : α
and Γ2 ⇒ N :β, respectively, and that Γ1 and Γ2 agree on (FV(M)−{x})∩FV(N).
Then we can define a type decoration t for Γ1 ∪ Γ2 ⇒M [x := N ] : α by

t(w) =

{
tM (w) if w ∈ TM ,

tN (v′) if w = vv′ for some v ∈ X and v′ ∈ TN .

Lemma 3.13. Suppose that t is a type decoration for Γ⇒M [x := N ] : α such that
for some type β, t(v) = β for every v ∈ X. Pick a v ∈ X. Then we can define type
decorations tM and tN for Γ1, x : β ⇒M : α and Γ2 ⇒ N : β, respectively, by

tM (w) = t(w) for all w ∈ TM ,

tN (w) = t(vw) for all w ∈ TN ,

where Γ1 and Γ2 are the restrictions of Γ to FV(M) and to FV(N), respectively.

Let M [x1, . . . , xn] be a pure λ-term such that FV(M [x1, . . . , xn]) = {x1, . . . , xn}.
For any c1, . . . , cn ∈ C, we have

⊢Σ M [c1, . . . , cn] : α if and only if ⊢ x1 : τ(c1), . . . , xn : τ(cn)⇒M [x1, . . . , xn] : α.

Let (M, t) be a typed λ-term. If M
w
→β M ′, then t, in conjunction with the

ancestor-descendant relation, induces a type decoration t′ of M ′, defined by

t′(v′) = t(v) if (M, v)
w
◮ (M ′, v′).

This is denoted by (M, t)
w
→β (M ′, t′). Note that even though we do not have

(M, w)
w
◮ (M ′, w), it is always the case that t′(w) = t(w), since t(w) = t(w00) and

(M, w00)
w
◮ (M ′, w).

Theorem 3.14 (Subject Reduction Theorem). If ⊢Σ Γ ⇒ M : α and M ։β M ′,
then ⊢Σ Γ′ ⇒M ′ : α, where Γ′ is the restriction of Γ to FV(M ′).
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See, e.g., [31] for a proof.
Let M = (T , f, b) and suppose M

w
→β M ′. This β-reduction step is called

erasing if there is no v ∈ T (0) such that b(v) = w0, and duplicating if for some
v, v′ ∈ T (0), v 6= v′ and b(v) = b(v′) = w0. (The right child w1 of the β-redex w has
no descendant in an erasing β-reduction step, and has more than one in a duplicating
β-reduction step.) A β-reduction from M to M ′ is non-erasing (non-duplicating) if
it consists entirely of non-erasing (non-duplicating) β-reduction steps.

Theorem 3.15 (Subject Expansion Theorem). If ⊢Σ Γ ⇒ M ′ : α and M ։β M ′

by non-erasing, non-duplicating β-reduction, then ⊢Σ Γ⇒M : α.

See [31]. As a special case, if M is linear and M ։β M ′, then ⊢Σ Γ⇒M ′ :α implies
⊢Σ Γ⇒M : α.

As with β-reduction, the η-reduction relation between untyped λ-terms induces
the η-reduction relation between typed λ-terms. A typed λ-term (M, t), where
M = (T , f, b), is in η-long form if every node w ∈ T satisfies the following condition:

• t(w) = β→ γ for some β, γ implies that either w ∈ T (1) or w = v0 for some
v ∈ T (2).

If (M, t) has a node w that does not satisfy this condition, there is a unique typed λ-
term (M ′, t′) such that (M ′, t′)

w
→η (M, t). Both nodes w and w00 of (M ′, t′) satisfy

the condition, and t′(w0) = γ, t′(w01) = β, both of which are shorter than β→ γ.
Thus, every typed λ-term can be converted to one in η-long form by a sequence of
η-expansion steps applied to nodes that do not satisfy this condition. It is easy to
see that the resulting λ-term is unique; we call it the η-long form of the original
λ-term.

We say that an untyped λ-term M ∈ Λ(Σ) is in η-long form relative to Γ⇒ α if
there is a type decoration t of M under Γ such that t(ǫ) = α and (M, t) is in η-long
form. We say that M is in η-long form if M is η-long relative to some typing (or,
equivalently, relative to its principal typing).

The following lemmas are from [34]:

Lemma 3.16. Let M and N be λ-terms and x be a variable in FV(M). Suppose
that tM and tN are type decorations for Γ1, x:β ⇒M :α and Γ2 ⇒ N :β, respectively,
and that Γ1 and Γ2 agree on (FV(M)−{x})∩FV(N). Let t be the type decoration
for Γ1 ∪ Γ2 ⇒ M [x := N ] : α defined according to Lemma 3.12. If (M, tM ) and
(N, tN ) are in η-long form, then (M [x := N ], t) is in η-long form.

Lemma 3.17. If M is in η-long form relative to Γ ⇒ α and M ։β M ′, then M ′

is in η-long form relative to Γ′ ⇒ α, where Γ′ is the restriction of Γ to FV(M ′).
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Thus, the β-normal form of an η-long λ-term is η-long.
We refer to an occurrence of a type β in a sequent x1 : α1, . . . , xn : αn ⇒ α0 or

a typing judgment x1 : α1, . . . , xn : αn ⇒ M : α0 by a pair (i, v), with 0 ≤ i ≤ n
and v ∈ 〈αi〉, such that subtype(αi, v) = β. We say that an occurrence (i, v) is
positive (resp., negative) and write pol(i, v) = +1 (pol(i, v) = −1) if either i = 0
and pol(v) = 1 (pol(v) = −1) or i ≥ 1 and pol(v) = −1 (pol(v) = 1). For example,
in x : p, y : p→ q ⇒ q, the pairs (1, ǫ) and (2, 0) refer to the first occurrences of p
and q, respectively, which are both negative, and the pairs (2, 1) and (0, ǫ) refer to
the second occurrences of p and q, respectively, which are both positive. A sequent
or typing judgment is balanced if every atomic type has at most one positive and at
most one negative occurrence in it.

Theorem 3.18 (Coherence Theorem). All inhabitants of a balanced sequent are
βη-equal. In particular, if Γ ∪ Γ′ ⇒ α is a balanced sequent and both ⊢ Γ ⇒ M : α
and ⊢ Γ′ ⇒M ′ : α hold, then M =βη M ′.

See [56] for a proof.
According to Hirokawa [33], the first of the following theorems is due to Bel-

nap [9]. See [33] for the proof of the second.

Theorem 3.19 ([9]). If M is a pure affine λ-term, then the principal typing of M
is balanced.

Theorem 3.20 ([33]). If a pure λ-term M in β-normal form has a balanced typing,
then M is affine.

Theorem 3.19 together with the Coherence Theorem (Theorem 3.18) implies that
a pure affine λ-term is uniquely determined by its principal typing up to βη-equality.

3.1.4 Links in typed λ-terms

It will be convenient for our purposes to introduce a strengthening of the notion of
η-long form. We say that a typed λ-term (M, t) with M = (T , f, b) is in strict η-long
form if every node w ∈ T satisfies the following condition:

• if t(w) = β→ γ, then either (i) w ∈ T (1) and b(v) = w for some v ∈ T (0), (ii)
w ∈ T (1) and β is an atomic type, or (iii) w = v0 for some v ∈ T (2).

Note that if M is a λI-term and (M, t) is in η-long form, then (M, t) is in strict η-long
form. For every typed λ-term (M, t) in η-long form, there is a typed λ-term (M ′, t′)
in strict η-long form such that both (M ′, t′) ։β (M, t) and (M ′, t′) ։η (M, t).
Unlike η-long form, strict η-long form is not preserved under β-reduction, but we
have the following:
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Lemma 3.21. Lemma 3.16 holds with “strict η-long form” in place of “η-long
form”.

As with η-long form, we speak of an untyped λ-term being in strict η-long form
relative to a typing.

Clearly, if M ∈ Λ(Σ) is a closed λ-term and
−−→
Con(M) = (c1, . . . , cn), then M is

in (strict) η-long form relative to α if and only if M̂ [x1, . . . , xn] is in (strict) η-long
form relative to x1 : τ(c1), . . . , xn : τ(cn)⇒ α.

Lemma 3.22. Let M be a pure λ-term, and suppose that t is a type decoration of
M such that (M, t) is in strict η-long form. Let t̃ be a principal type decoration of
M . Then there is a type relabeling σ such that t = σ ◦ t̃.

Proof. It is easy to see that if an atomic type p occurs anywhere in (M, t), then
it must be that there is a node of M that is assigned type p by t, or else there is
a unary node of M that is assigned a type of the form p→ γ. In both cases, the
relevant node must be assigned a type of the same shape by t̃.

Lemma 3.22 implies the following:

Remark 3.23. Suppose that M ∈ Λ(Σ) is a λ-term in strict η-long form relative

to x1 : γ1, . . . , xn : γn ⇒ γ0,
−−→
Con(M) = (d1, . . . , dm), and y1 : β1, . . . , ym : βm, x1 :

α1, . . . , xn : αn ⇒ α0 is a principal typing of M̂ [y1, . . . , ym]. Then M̂ [y1, . . . , ym] is
in strict η-long form relative to y1 : β1, . . . , ym : βm, x1 : α1, . . . , xn : αn ⇒ α0, and
moreover, we have

〈βi〉 = 〈τ(di)〉 for i = 1, . . . , m,

〈αi〉 = 〈γi〉 for i = 0, . . . , n.

Let (M, t) be a pure typed λ-term, where M = (T , f, b). We associate with
(M, t) a certain directed graph G(M,t) = (V(M,t), E(M,t)).

31 The set V(M,t) of vertices
of G(M,t) consists of all triples of one of the forms

(w, v, ↑) and (w, v, ↓),

where w ∈ T and v ∈ 〈t(w)〉(0). (Recall that 〈t(w)〉(0) is the set of leaves of 〈t(w)〉,
that is, the set of positions where atomic types occur in t(w).) Triples (w, v, ↑) and
(w, v, ↓) correspond to the same position in t(w). The existence of an edge from
(w, v,−) to (w′, v′,−) (where “−” is to be filled by ↑ or ↓) implies that the same

31Our graph is essentially the natural deduction counterpart of the logical flow graph of Buss [12].
See [41] for an equivalent definition.
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atomic type must occur at v in t(w) and at v′ in t(w′) (i.e., subtype(t(w), v) =
subtype(t(w′), v′)). The last component of the triples indicates the “direction of
travel”, which is explained below. The set E(M,t) of edges of G(M,t) is defined as
follows:

((w, v, ↑), (w′, v′, ↑)) ∈ E(M,t) iff either w ∈ T (1), w0 = w′, and v = 0v′, or

w ∈ T (2), w0 = w′, and 0v = v′.

((w, v, ↓), (w′, v′, ↓)) ∈ E(M,t) iff either w′ ∈ T (1), w = w′0, and 0v = v′, or

w′ ∈ T (2), w = w′0, and v = 0v′.

((w, v, ↑), (w′, v′, ↓)) ∈ E(M,t) iff either w ∈ T (1), w = b(w′) and v = 1v′, or

w′ ∈ T (1), b(w) = w′ and 1v = v′.

((w, v, ↓), (w′, v′, ↑)) ∈ E(M,t) iff for some u ∈ T (2),

either w = u0, w′ = u1, and v = 1v′, or

w = u1, w′ = u0, and 1v = v′.

Note that the edges in E(M,t) come in pairs: given an edge in E(M,t), one can
interchange source and destination, then reverse the direction of the arrows in the
third component of both vertices, and obtain another edge in E(M,t).

The meaning of the graph G(M,t) becomes easy to grasp when it is superimposed
on the natural deduction representing (M, t). Each pair of edges is represented
by a single curve connecting two occurrences of an atomic type; the two edges in
the pair correspond to the two ways of traversing the curve, with the direction
of traversal at each end point of the curve matching the direction of the arrow
in the third component of the tuple (w, v,−) corresponding to that point. Thus,
((w, v, ↓), (w′, v′, ↓)) is an edge of the graph G(M,t) if there is a curve that departs
downward from the atomic type occurrence at position v in the type labeling the
node w of the natural deduction tree for (M, t) and reaches from above the atomic
type occurrence at position v′ in the type labeling the node w′; similarly for other
combinations of ↑ and ↓. See Figure 11 for an example.

It is easy to see that for any pure typed λ-term (M, t), if there is a directed path
from (w, v, d) to (w′, v′, d′), where d, d′ ∈ {↑, ↓}, then pol(v) = pol(v′) if and only if
d = d′.

Note that the graph depicted in Figure 11 contains a directed cycle:

(0, 10, ↓)− (1, 0, ↑)− (10, ǫ, ↑)− (1, 1, ↓)− (0, 11, ↑)− (000, 1, ↓)− (001, ǫ, ↑)−

(0010, 0, ↑)− (0, 10, ↓)
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p

(p → p) → p p → p

[p]1p

p[p → p]0

z : p[p → p]0

0 1

Figure 11: A natural deduction with links.

It is not hard to see that any cycle must involve the two children w0, w1 of a binary
node w and positions u, v of t(w1) such that

• pol(u) = −pol(v),

• there is a directed path from (w0, 1u, ↑) to (w0, 1v, ↓) inside the subtree rooted
at w0, and

• there is a directed path from (w1, v, ↑) to (w1, u, ↓) inside the subtree rooted
at w1.

This implies that there exists an n ≥ 0 such that w0n is a β-redex.

Lemma 3.24. If (M, t) is a pure typed λ-form in β-normal form, then G(M,t)

contains no directed cycle.

Let M = (T , f, b) be a pure untyped λ-term with FV(M) = {x1, . . . , xn}, and
let t be a type decoration for x1 : α1, . . . , xn : αn ⇒ M : α0. We augment the graph
G(M,t) with the nodes of the form

(i, v, d)

where 0 ≤ i ≤ n, v ∈ 〈αi〉
(0), d ∈ {↑, ↓}, and the edges

((i, v, ↑), (w, v, ↓)) and ((w, v, ↑), (i, v, ↓))

with 1 ≤ i ≤ n and f(w) = xi, and

((0, v, ↑), (ǫ, v, ↑)) and ((ǫ, v, ↓), (0, v, ↓)).
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We refer to the resulting extended graph as G(M,t). Note that when G(M,t) has a
directed path from (i, v, ↑) to (w, u, d) with w ∈ T , we have pol(i, v) = pol(u) if and
only if d = ↑, and likewise when G(M,t) has a directed path from (w, u, d) to (i, v, ↓).

In terms of G(M,t), we define two binary relations on the set

{ (i, v) | 0 ≤ i ≤ n, v ∈ 〈αi〉
(0) }

of occurrences of atomic types in x1 : α1, . . . , xn : αn ⇒ α0. We say that (i, v) is
linked to (i′, v′) in (M, t) if G(M,t) contains a directed path from (i, v, ↑) to (i′, v′, ↓).

We say that (i, v) is connected to (i′, v′) in (M, t) if G(M,t) contains an undirected
path from (i, v, d) to (i′, v′, d′) for some d, d′ ∈ {↑, ↓}. Note that the relation of
being linked is symmetric, but not necessarily transitive; the relation of being con-
nected is symmetric and transitive. Clearly, if (i, v) is connected to (i′, v′), then
subtype(αi, v) = subtype(αi′ , v′).

The following is clear from the definitions of G(M,t) and of principal typing:

Lemma 3.25. Let M be a pure λ-term and t be a principal type decoration of M ,
with the associated principal typing x1 : α1, . . . , xn : αn ⇒ α0. Then (i, v) and (i′, v′)
are connected in (M, t) if and only if subtype(αi, v) = subtype(αi′ , v′).

It is clear that the graph G(M,t), where M = (T , f, b), is completely determined
by M and { (w, 〈t(w)〉) | w ∈ T }. This means that if σ is a type relabeling,
G(M,t) = G(M,σ◦t). Thus, Lemmas 3.22 and 3.25 give

Lemma 3.26. Let M be a pure λ-term and t be a type decoration of M under the
type environment x : γ1, . . . , xn : γn such that (M, t) is in strict η-long form. Let
x1 : α1, . . . , xn : αn ⇒ α0 be a principal typing of M . Then (i, v) and (i′, v′) are
connected in (M, t) if and only if subtype(αi, v) = subtype(αi′ , v′).

Moreover, we have

Lemma 3.27. Let M be a pure λI-term in β-normal form and t be a type decoration
of M under the type environment x : γ1, . . . , xn : γn such that (M, t) is in η-long
form. Let x1 : α1, . . . , xn : αn ⇒ α0 be a principal typing of M . Then (i, v) and
(i′, v′) are related by the transitive closure of the relation of being linked in (M, t) if
and only if subtype(αi, v) = subtype(αi′ , v′).

Proof. Since G(M,t) does not contain any directed cycles, the fact that M is a λI-
term implies that every directed path can be extended to one that starts in a node
of the form (i, v, ↑) and ends with one that ends in a node of the form (i′, v′, ↓).

The usefulness of the notion of being linked will become clear later.
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3.2 Context-free λ-term grammars

A context-free λ-term grammar (CFLG) is a quintuple G = (N , Σ, f, P, S), where
N is a finite alphabet of nonterminals, Σ = (A, C, τ) is a higher-order signature,
f is a function from N to T (A), S is a distinguished member of N , and P is a
finite set of rules of the form:

B(M) :− B1(X1), . . . , Bn(Xn),

where X1, . . . , Xn are pairwise distinct variables and M is a λ-term in Λ(Σ) that is
in η-long form relative to

X1 : f(B1), . . . , Xn : f(Bn)⇒ f(B).

It is not required that M be in β-normal form. The language of a CFLG G =
(N , Σ, f, P, S) is defined in terms of the predicate ⊢G . For a nonterminal B ∈ N

and a closed λ-term P ∈ Λ(Σ),

⊢G B(P )

holds if and only if there exist a rule

B(M) :− B1(X1), . . . , Bn(Xn)

in P and closed λ-terms Qi (i = 1, . . . , n) such that

P = M [X1 := Q1, . . . , Xn := Qn],

⊢G Bi(Qi).

When this holds, we have a derivation tree for B(P ) of the form

B(P )

T1 . . . Tn

where Ti is a derivation tree for Bi(Qi) (i = 1, . . . , n). Note that ⊢G B(P ) implies
⊢Σ P : f(B).

The language of G is

L(G ) = { |N |β | ⊢G S(N) }.

Thus, the language of a CFLG is a set of closed β-normal λ-terms that are in η-long
form relative to a certain type (namely f(S)) (cf. Lemmas 3.16 and 3.17).
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In example grammars we have given, we have not always adhered to the condition
that λ-terms in rules be in η-long form. Any rule with a non-η-long λ-term M should
be understood as an abbreviation for the “official” rule that has the η-long form of
M instead. The reason that we only allow λ-terms in η-long form in the language
of a CFLG is that we do not wish to distinguish between λ-terms that are η-equal.

Example 3.28. The earlier example CFLG (9) in official notation is G =
(N , Σ, f, P, S), where

N = {S, NP, VP, V, Det, N},

Σ = (A, C, τ),

A = {e, t},

C = {∧, John, find, catch, =, ∃, man, unicorn},

τ =





∧ 7→ t→ t→ t,

John 7→ e,

find 7→ e→ e→ t,

catch 7→ e→ e→ t,

= 7→ e→ e→ t,

∃ 7→ (e→ t)→ t,

man 7→ e→ t,

uncorn 7→ e→ t





,

f =





S 7→ t,

NP 7→ (e→ t)→ t,

VP 7→ e→ t,

V 7→ e→ e→ t,

Det 7→ (e→ t)→ (e→ t)→ t,

N 7→ e→ t





,

and P consists of the following rules:

S(X1(λx.X2x)) :− NP(X1), VP(X2).

VP(λx.X2(λy.X1yx)) :− V(X1), NP(X2).

V(λyx.∧(X1yx)(X2yx)) :− V(X1), V(X2).

NP(λu.X1(λx.X2x)(λx.ux)) :− Det(X1), N(X2).

NP(λu.u John).
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V(λyx.find y x).

V(λyx.catch y x).

V(λyx.= y x).

Det(λuv.∃(λy.∧(uy)(vy))).

N(λx.man x).

N(λx.unicorn x).

3.3 Datalog programs associated with CFLGs

We associate with a CFLG G = (N , Σ, f, P, S), where Σ = (A, C, τ), a Datalog
program program(G ), whose set of intensional predicates is N and whose set of
extensional predicates is C. The arity of B ∈ N is |f(B)|, and the arity of d ∈ C
is |τ(d)|.

In order to facilitate the definition of program(G ) and the statement of the next
lemma, we adopt the following conventions:

Convention 1. If
B(M) :− B1(X1), . . . , Bn(Xn)

is a rule in P, then M is in strict η-long form relative to

X1 : f(B1), . . . , Xn : f(Bn)⇒ f(B).

Convention 2. If
B(M) :− B1(X1), . . . , Bn(Xn)

is a rule in P, then
−→
FV(M) = (X1, . . . , Xn) and all occurrences of constants in M

precede the occurrences of X1, . . . , Xn.

It is easy to transform a rule that does not obey these conventions into
an equivalent one that does by changing M to the strict η-long form of
(λX1 . . . Xn.M)X1 . . . Xn, so adopting this convention does not lead to any loss
of generality. It is also possible to complicate the definition of program(G ) and the
statement and proof of the lemma to make the following results not depend on the
conventions.

We now give the definition of program(G ), assuming Conventions 1 and 2. Con-
sider a rule

π = B0(M) :− B1(X1), . . . , Bn(Xn),

in P. Let
−−→
Con(M) = (d1, . . . , dm),
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and let

y1 : β1, . . . , ym : βm, X1 : α1, . . . , Xn : αn ⇒ M̂ [y1, . . . , ym] : α0

be a principal typing of M̂ [y1, . . . , ym]. (Recall that M̂ [y1, . . . , ym] is a pure λ-term

such that M̂ [d1, . . . , dm] = M .) Note that by Convention 2,
−→
FV(M̂ [y1, . . . , ym]) =

(y1, . . . , ym, X1, . . . , Xn). By Convention 1 and Remark 3.23,

〈βi〉 = 〈τ(di)〉 for i = 1, . . . , m,

〈αi〉 = 〈f(Bi)〉 for i = 0, . . . , n.
(38)

The Datalog rule ρπ corresponding to π is defined as

B0(α0) :− d1(β1), . . . , dm(βm), B1(α1), . . . , Bn(αn),

where atomic types in αi, βi are considered Datalog variables. Clearly, ρπ does not
depend on the choice of variables y1, . . . , ym. Also, the choice of atomic types in
αi, βi is immaterial. So it does not matter which principal typing of M̂ [y1, . . . , ym]
we use.32

The Datalog program associated with G is defined as

program(G ) = { ρπ | π ∈P }.

Remark 3.29.

B0(~s0) :− d1(~t1), . . . , dm(~tm), B1(~s1), . . . , Bn(~sn)

is an instance of ρπ if and only if

⊢ y1 : 〈τ(d1)〉(~t1), . . . , ym : 〈τ(dm)〉(~tm), X1 : 〈f(B1)〉(~s1), . . . , Xn : 〈f(Bn)〉(~sn)

⇒ M̂ [y1, . . . , ym] : 〈f(B0)〉(~s0).

Example 3.30. For the CFLG G of Example 3.28, program(G ) consists of the rules
in (16) in Section 2.2. For example, let M3 be the λ-term in the third rule π3 of G .

We have
−−→
Con(M3) = (∧), and the following is a principal typing of M̂3[z1]:

z1 : i2→ i5→ i1, X1 : i3→ i4→ i2, X2 : i3→ i4→ i5 ⇒ λyx.z1(X1yx)(X2yx) : i3→ i4→ i1.

32This definition of ρπ is applicable to arbitrary CFLG rules satisfying Conventions 1 and 2.
When M is almost linear, the definition of ρπ given here is equivalent to the definition given in
Section 2.2 in terms of the hypergraph representation graph(M) of a principal typing of M .

1156



Parsing and Generation as Datalog Query Evaluation

We thus obtain

ρπ3 = V(i1, i4, i3) :− ∧(i3, i5, i2), V(i2, i4, i3), V(i5, i4, i3).

Note that the hypergraph representation (15) of M3 encodes the same information
as its principal typing.

The following is a key fact about program(G ) that holds of any CFLG G satis-
fying Conventions 1 and 2. It basically says that under the correspondence between
π and ρπ defined above, a CFLG derivation tree plus a typing (of a certain kind)
for the associated λ-term corresponds to a Datalog derivation tree, and vice versa.
Its proof is quite straightforward, if rather tedious. If ~u is a tuple (sequence) of
constants, we let |~u| denote its length, i.e., the number of its components.

Lemma 3.31. Let G = (N , Σ, f, P, S) with Σ = (A, C, τ) be a CFLG, and let U
be some set of constants. Let e1, . . . , el ∈ C, B ∈ N , and ~u1, . . . , ~ul, ~s be sequences
of constants from U such that |~ui| = |τ(ei)| and |~s| = |f(B)|. The following are
equivalent:

(i) There exists P ∈ Λ(Σ) such that

⊢G B(P ),
−−→
Con(P ) = (e1, . . . , el),

⊢ z1 : 〈τ(e1)〉(~u1), . . . , zl : 〈τ(el)〉(~ul)⇒ P̂ [z1, . . . , zl] : 〈f(B)〉(~s).

(ii) There exists a derivation tree T for

program(G ) ∪ { ei(~ui) | 1 ≤ i ≤ l } ⊢ B(~s)

such that (e1(~u1), . . . , el(~ul)) lists the labels of the extensional nodes of T in
the order from left to right.

Proof. (i) ⇒ (ii). Induction on the derivation of ⊢G B(P ). Assume that ⊢G B(P )
is inferred from

⊢G Bi(Pi) (i = 1, . . . , n)

using a rule

π = B(M) :− B1(X1), . . . , Bn(Xn)

such that

P = M [X1 := P1, . . . , Xn := Pn].
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Let m = |
−−→
Con(M)| and li = |

−−→
Con(Pi)| for i = 1, . . . , n. Then l = m + l1 + · · · + ln

and

P̂ [z1, . . . , zl] = M̂ [z1, . . . , zm]

[X1 := P̂1[zh(1,1), . . . , zh(1,l1)], . . . , Xn := P̂n[zh(n,1), . . . , zh(n,ln)]],
−−→
Con(M) = (e1, . . . , em),
−−→
Con(Pi) = (eh(i,1), . . . , eh(i,li)),

where
h(i, j) = m + l1 + · · ·+ li−1 + j.

By assumption,

⊢ z1 : 〈τ(e1)〉(~u1), . . . , zl : 〈τ(el)〉(~ul)⇒ P̂ [z1, . . . , zl] : 〈f(B)〉(~s). (39)

By Lemma 3.13, any type decoration for (39) splits into type decorations for

z1 : 〈τ(e1)〉(~u1), . . . , zm : 〈τ(em)〉(~um), X1 : α1, . . . , Xn : αn

⇒ M̂ [z1, . . . , zm] : 〈f(B)〉(~s)

and

zh(i,1) : 〈τ(eh(i,1))〉(~uh(i,1)), . . . , zh(i,li) : 〈τ(eh(i,li))〉(~uh(i,li))

⇒ P̂i[zh(i,1), . . . , zh(i,li)] : αi (40)

(i = 1, . . . , n). In order to apply the induction hypothesis to (40), we need

〈αi〉 = 〈f(Bi)〉 for each i = 1, . . . , n. (41)

If P̂ [z1, . . . , zl] is not λI, type decorations for (39) need not be unique, and indeed
there may be one for which (41) fails. We show that a desirable type decoration for
(39) can be obtained from a principal typing of P̂ [z1, . . . , zl] by type relabeling.

Since Convention 1 ensures that Pi is in strict η-long form relative to f(Bi)
and M is in strict η-long form relative to X1 : f(B1), . . . , Xn : f(Bn) ⇒ f(B),
it follows that P̂i[zh(i,1), . . . , zh(i,li)] is in strict η-long form relative to zh(i,1) :

τ(eh(i,1)), . . . , zh(i,li) :τ(eh(i,li))⇒ f(Bi) and M̂ [z1, . . . , zm] is in strict η-long form rel-
ative to z1 :τ(e1), . . . , zm :τ(em), X1 :f(B1), . . . , Xn :f(Bn)⇒ f(B). By Lemma 3.21,
there is a type decoration t

P̂ [z1,...,zl]
for

z1 : τ(e1), . . . , zl : τ(el)⇒ P̂ [z1, . . . , zl] : f(B)
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that is obtained by combining the type decoration for

z1 : τ(e1), . . . , zm : τ(em), X1 : f(B1), . . . , Xn : f(Bn)⇒ M̂ [z1, . . . , zm] : f(B)

and the type decoration for

zh(i,1) : τ(eh(i,1)), . . . , zh(i,li) : τ(eh(i,li))⇒ P̂i[zh(i,1), . . . , zh(i,li)] : f(Bi)

for i = 1, . . . , n, such that (P̂ [z1, . . . , zl], t
P̂ [z1,...,zl]

) is in strict η-long form.

Let t̃
P̂ [z1,...,zl]

be a principal type decoration for P̂ [z1, . . . , zl] with the associated

principal typing
z1 : δ1, . . . , zl : δl ⇒ γ.

By Lemma 3.13, t̃
P̂ [z1,...,zl]

splits into type decorations for

z1 : δ1, . . . , zm : δm, X1 : γ1, . . . , Xn : γn ⇒ M̂ [z1, . . . , zm] : γ (42)

and

zh(i,1) : δh(i,1), . . . , zh(i,li) : δh(i,li) ⇒ P̂i[zh(i,1), . . . , zh(i,li)] : γi (i = 1, . . . , n). (43)

By Lemma 3.22, we must have

〈δi〉 = 〈τ(ei)〉 for i = 1, . . . , l,

〈γ〉 = 〈f(B)〉,

〈γi〉 = 〈f(Bi)〉 for i = 1, . . . , n.

By (39), there is a type substitution σ such that

δiσ = 〈τ(ei)〉(~ui),

γσ = 〈f(B)〉(~s)

that leaves atomic types that do not appear in δ1, . . . , δl, γ unchanged. Then σ is a
type relabeling, and there are sequences ~s1, . . . , ~sn of atomic types such that

γiσ = 〈f(Bi)〉(~si) for i = 1, . . . , n.

Without loss of generality, we may assume that ~s1, . . . , ~sn are sequences of constants
from U . (Otherwise we may replace any constants not in U by constants in U .)

Applying σ to (42) and (43), we get
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⊢ z1 : 〈τ(e1)〉(~u1), . . . , zm : 〈τ(em)〉(~um), X1 : 〈f(B1)〉(~s1), . . . , Xn : 〈f(Bn)〉(~sn)

⇒ M̂ [z1, . . . , zl] : 〈f(B)〉(~s), (44)

and

⊢ zh(i,1) : 〈τ(eh(i,1))〉(~uh(i,1)), . . . , zh(i,li) : 〈τ(eh(i,li))〉(~uh(i,li))

⇒ P̂i[zh(i,1), . . . , zh(i,li)]〈f(Bi)〉(~si) (45)

for i = 1, . . . , n.

By (45), the induction hypothesis applies to Pi, giving a Datalog derivation tree
Ti for

program(G ) ∪ { eh(i,j)(~uh(i,j)) | 1 ≤ j ≤ li } ⊢ Bi(~si) (46)

such that (eh(i,1)(~uh(i,1)), . . . , eh(i,li)(~uh(i,li))) lists the labels of the extensional nodes
of Ti from left to right.

By (44) and Remark 3.29,

B(~s) :− e1(~u1), . . . , em(~um), B1(~s1), . . . , Bn(~sn) (47)

is an instance of ρπ. Combining (46) and (47), we obtain a Datalog derivation tree
T for

program(G ) ∪ { ei(~ui) | 1 ≤ i ≤ l } ⊢ B(~s),

such that (e1(~u1), . . . , el(~ul)) lists the labels of the extensional nodes of T from left
to right.

(ii)⇒ (i). Induction on T . Assume that T is of the form

p(~s)

e1(~u1) · · · em(~um) T1 · · · Tn

and the root node of T is obtained by an application of an instance

B(~s) :− e1(~u1), . . . , em(~um), B1(~s1), . . . , Bn(~sn)

of some ρπ, where m ≤ l and

π = B(M) :− B1(X1), . . . , Bn(Xn), (48)
−−→
Con(M) = (e1, . . . , em). (49)
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Let li be the number of extensional nodes of Ti. Then l = m + l1 + · · ·+ ln, and for
i = 1, . . . , n, Ti is a derivation tree for

program(G ) ∪ {eh(i,1)(~uh(i,1)), . . . , eh(i,li)(~uh(i,li))} ⊢ Bi(~si),

where h(i, j) = m + l1 + · · · + li−1 + j, and (eh(i,1)(~uh(i,1)), . . . , eh(i,li)(~uh(i,li))) lists
the labels of the extensional nodes of Ti from left to right.

By Remark 3.29, we have

⊢ z1 : 〈τ(e1)〉(~u1), . . . , zm : 〈τ(em)〉(~um), X1 : 〈f(B1)〉(~s1), . . . , Xn : 〈f(Bn)〉(~sn)

⇒ M̂ [z1, . . . , zm] : 〈f(B)〉(~s). (50)

By induction hypothesis, for i = 1, . . . , n, there exists Pi ∈ Λ(Σ) such that

⊢G Bi(Pi), (51)
−−→
Con(Pi) = (eh(i,1), . . . , eh(i,li)), (52)

and

⊢ zh(i,1) : 〈τ(eh(i,1))〉(~uh(i,1)), . . . , zh(i,li) : 〈τ(eh(i,li))〉(~uh(i,li))

⇒ P̂i[zh(i,1), . . . , zh(i,li)] : 〈f(Bi)〉(~si). (53)

Let
P = M [X1 := P1, . . . , Xn := Pn].

Then by (48), (51), (49), and (52),

⊢G B(P ),
−−→
Con(P ) = (e1, . . . , em, eh(1,1), . . . , eh(1,l1), . . . , eh(n,1), . . . , eh(n,ln))

= (e1, . . . , el).

We have

P̂ [z1, . . . , zl] =

M̂ [z1, . . . , zm][X1 := P̂1[zh(1,1), . . . , zh(1,l1)], . . . , Xn := P̂n[zh(n,1), . . . , zh(n,ln)]].

By Lemma 3.12 applied to (50) and (53), we get

⊢ z1 : 〈τ(e1)〉(~u1), . . . , zm : 〈τ(em)〉(~um),
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zh(1,1) : 〈τ(eh(1,1))〉(~uh(1,1)), . . . , zh(1,l1) : 〈τ(eh(1,l1))〉(~uh(1,l1)),

...

zh(n,1) : 〈τ(eh(n,1))〉(~uh(n,1)), . . . , zh(n,ln) : 〈τ(eh(n,ln))〉(~uh(n,ln))

⇒ P̂ [z1, . . . , zl] : 〈f(B)〉(~s).

Hence P satisfies the required properties.

Example 3.32. Let G be the CFLG of Example 3.28. Let

P = (λu.u John)(λx.

(λx.

(λu.

(λuv.∃(λy.∧(uy)(vy)))

(λx.

(λx.unicorn x)

x)(λx.ux))

(λy.

(λyx.find y x)

y x))

x).

Then ⊢G S(P ). The derivation tree for S(P ) (in abbreviated notation) was shown

in Figure 5 in Section 2.2. We have
−−→
Con(P ) = (John, ∃, ∧, unicorn, find) and

P̂ [z1, z2, z3, z4, z5] = (λu.uz1)(λx.

(λx.

(λu.

(λuv.z2(λy.z3(uy)(vy)))

(λx.

(λx.z4x)

x)(λx.ux))

(λy.

(λyx.z5yx)

yx))

x).
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By one direction of Lemma 3.31, whenever we have

⊢ z1 : u1,1, z2 : (u2,3→ u2,2)→ u2,1,

z3 : u3,3→ u3,2→ u3,1, z4 : u4,2→ u4,1, z5 : u5,3→ u5,2→ u5,1

⇒ P̂ [z1, z2, z3, z4, z5] : s, (54)

we must have

program(G ) ∪ {John(u1,1), ∃(u2,1, u2,2, u2,3), ∧(u3,1, u3,2, u3,3),

unicorn(u4,1, u4,2), find(u5,1, u5,2, u5,3)} ⊢ S(s). (55)

The Datalog derivation tree for (55) will have the same shape as the one in Figure 6
in Section 2.2. Conversely, whenever (55) has a derivation tree of this shape, we
must have (54), by (the proof of) the other direction of Lemma 3.31

Let Σ = (A, C, τ) be a higher-order signature and U be some set of database
constants. We write DΣ,U for the database schema (C, U), where each d ∈ C has
arity |τ(d)|. Let D be a database over DΣ,U and α ∈ T (A). We define a set Λ(D, α)
of closed λ-terms over Σ as follows:

Λ(D, α) =
{

M ∈ Λ(Σ)

∣∣∣∣∣
FV(M) = ∅,

−−→
Con(M) = (d1, . . . , dn), {d1(~s1), . . . , dn(~sn)} ⊆ D,

⊢ z1 : 〈τ(d1)〉(~s1), . . . , zn : 〈τ(dn)〉(~sn)⇒ M̂ [z1, . . . , zn] : α

}
.

Example 3.33. Let Σ′ be the extension of the higher-order signature Σ in Ex-
ample 3.28 with an additional constant ¬ of type t→ t. Let U = {a, b, 0, 1}, and
consider the following database D over DΣ′,U :

man(1, a), man(0, b), unicorn(0, a), unicorn(1, b),

∧(1, 1, 1), ∧(0, 1, 0), ∧(0, 0, 1), ∧(0, 0, 0), ¬(0, 1), ¬(1, 0),

∃(1, 1, a), ∃(1, 1, b).

The set Λ(D, 1) contains, e.g.,

∧(∃(λx.man x))(∃(λy.unicorn y)),

∃(λx.∧(man x)(¬(unicorn x))),

but not, e.g.,
∃(λx.∧(man x)(unicorn x)).
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Lemma 3.34. Let M, M ′ ∈ Λ(Σ).

(i) If M ։β M ′, then M ∈ Λ(D, α) implies M ′ ∈ Λ(D, α).

(ii) If M ′ ։β M by non-erasing non-duplicating β-reduction, then M ∈ Λ(D, α)
implies M ′ ∈ Λ(D, α).

Proof. Let M ∈ Λ(D, α) and
−−→
Con(M) = (d1, . . . , dn). By the definition of Λ(D, α),

for some ~s1, . . . , ~sn such that {d1(~s1), . . . , dn(~sn)} ⊆ D,

⊢ z1 : 〈τ(d1)〉(~s1), . . . , z1 : 〈τ(dn)〉(~sn)⇒ M̂ [z1, . . . , zn] : α.

(i). Suppose M ։β M ′. Let m = |
−−→
Con(M ′)| and g : {1, . . . , m} → {1, . . . , n} be

the function such that the ith occurrence of a constant in M ′ is a descendant of the
g(i)th occurrence of a constant in M . Then

−−→
Con(M ′) = (dg(1), . . . , dg(m)) and

M̂ [z1, . . . , zn] ։β M̂ ′[zg(1), . . . , zg(m)].

By the Subject Reduction Theorem (Theorem 3.14),

⊢ { zg(i) : 〈τ(dg(i))〉(~sg(i)) | 1 ≤ i ≤ m } ⇒ M̂ ′[zg(1), . . . , zg(m)] : α,

and thus

⊢ y1 : 〈τ(dg(1))〉(~sg(1)), . . . , ym : 〈τ(dg(m))〉(~sg(m))⇒ M̂ ′[y1, . . . , ym] : α.

This shows M ′ ∈ Λ(D, α).
(ii). Suppose M ′ ։β M by non-erasing non-duplicating β-reduction. Then

|
−−→
Con(M ′)| = n and there is a permutation g of {1, . . . , n} such that the ith occur-
rence of a constant in M ′ is the ancestor of the g(i)th occurrence of a constant in

M . We have
−−→
Con(M ′) = (dg(1), . . . , dg(n)) and M̂ ′[zg(1), . . . , zg(n)] ։β M̂ [z1, . . . , zn]

by non-erasing non-duplicating β-reduction. By the Subject Expansion Theorem
(Theorem 3.15),

⊢ z1 : 〈τ(d1)〉(~s1), . . . , zn : 〈τ(dn)〉(~sn)⇒ M̂ ′[zg(1), . . . , zg(n)] : α.

Therefore, M ′ ∈ Λ(D, α).

The next lemma is an immediate consequence of Lemma 3.31:

Lemma 3.35. Let G = (N , Σ, f, P, S) be a CFLG. Let U be some set of database
constants, D be a database over DΣ,U , and ~s be a sequence of constants from U such
that |~s| = |f(S)|. The following are equivalent:
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{P ∈ Λ(Σ) | ⊢G S(P ) } ∩ Λ(D, 〈f(S)〉(~s)) 6= ∅ ⇐⇒ program(G ) ∪D ⊢ S(~s)

⇓

L(G ) ∩ Λ(D, 〈f(S)〉(~s)) 6= ∅

Figure 12: A general property of program(G ).

(i) There exists some P ∈ Λ(D, 〈f(S)〉(~s)) such that ⊢G S(P ).

(ii) program(G ) ∪D ⊢ S(~s).

Lemma 3.36. Let G , U, D,~s be as in Lemma 3.35. If program(G )∪D ⊢ S(~s), then
L(G ) ∩ Λ(D, 〈f(S)〉(~s)) 6= ∅.

Proof. By Lemma 3.34, part (i) and Lemma 3.35.

See Figure 12. The converse of Lemma 3.36 does not hold in general, but we
shall see below some special cases where it does hold (Theorems 3.40, 3.65, and 4.3).

3.4 Databases determined by λ-terms

Let M ∈ Λ(Σ) be a closed λ-term in strict η-long form relative to γ such that
−−→
Con(M) = (d1, . . . , dm). Define

database(M) = { di(βi) | 1 ≤ i ≤ m },

tuple(M) = α

where
y1 : β1, . . . , ym : βm ⇒ M̂ [y1, . . . , ym] : α

is a principal typing of M̂ [y1, . . . , ym].33 Here, atomic types that occur in
β1, . . . , βm, α are regarded as database constants. Note that by Remark 3.23,
〈γ〉(tuple(M)) = α and Λ(database(M), 〈γ〉(tuple(M))) is well-defined. The fol-
lowing is obvious from the above definition:

Lemma 3.37. If M ∈ Λ(Σ) is a closed λ-term in strict η-long form relative to γ,
then M ∈ Λ(database(M), 〈γ〉(tuple(M))).

33When M is almost linear, the definition of (database(M), tuple(M)) here is equivalent to the
definition in terms of graph(M) given in Section 2.2.

1165



M. Kanazawa

Note that if M is in strict η-long form relative to γ, then |M |β is in η-long form
relative to γ and belongs to Λ(database(M), 〈γ〉(tuple(M))) (Lemma 3.34). We
shall see below that in some special cases |M |β is the only η-long β-normal λ-term
in Λ(database(M), 〈γ〉(tuple(M))) (Lemmas 3.41 and 3.54).

Example 3.38. Consider the λ-term (8) from Sections 2.1–2.2:

M = ∃(λy.∧(unicorn y)(find y John)).

Using the principle typing

z1 : (4→2)→1, z2 : 3→5→2, z3 : 4→3, z4 : 4→6→5, z5 : 6⇒ z1(λy.z2(z3y)(z4yz5)) : 1

of M̂ [z1, z2, z3, z4, z5], we obtain

database(M) = {∃(1, 2, 4), ∧(2, 5, 3), unicorn(3, 4), find(5, 6, 4), John(6)},

tuple(M) = (1).

Lemma 3.54 below implies that M is the only λ-term in Λ(database(M), 1) that is
in η-long β-normal form relative to the type t.

3.5 From CFLGs to Datalog: The case of linear CFLGs

We first treat the special case of linear CFLGs because the reduction to Datalog as
well as the proof of its correctness can be made much simpler in this case than in
the more general case of almost linear CFLGs.

The crucial property is the following:

Lemma 3.39. Let Σ = (A, C, τ) be a higher-order signature, U be a set of database
constants, D be a database over DΣ,U , and α ∈ T (A). For every linear closed
λ-term M ∈ Λ(Σ), M ∈ Λ(D, α) if and only if |M |β ∈ Λ(D, α).

Proof. The “only if” direction is by Lemma 3.34, part (i). Since the β-reduction
M ։β |M |β must be non-erasing and non-duplicating, the “if” direction follows by
part (ii) of the same lemma.

Theorem 3.40. Let G = (N , Σ, f, P, S) be a linear CFLG. Let U be some set of
database constants, D be a database over DΣ,U , and ~s be a sequence of constants
from U such that |~s| = |f(S)|. The following are equivalent:

(i) L(G ) ∩ Λ(D, 〈f(S)〉(~s)) 6= ∅.

(ii) program(G ) ∪D ⊢ S(~s).

1166



Parsing and Generation as Datalog Query Evaluation

Proof. In view of Lemmas 3.35 and 3.36, it suffices to show that ⊢G S(P ) and
|P |β ∈ Λ(D, 〈f(S)〉(~s)) imply P ∈ Λ(D, 〈f(S)〉(~s)). But this is immediate from
Lemma 3.39, since ⊢G S(P ) implies that P is linear.

Lemma 3.41. If M is an affine λ-term in strict η-long form relative to γ, then
|M |β is the only λ-term in Λ(database(M), 〈γ〉(tuple(M))) that is in η-long β-
normal form relative to γ.

Proof. Let
−−→
Con(M) = (d1, . . . , dm), and let

y1 : β1, . . . , ym : βm ⇒ α (56)

be a principal typing of M̂ [y1, . . . , ym]. Then database(M) = { di(βi) | 1 ≤ i ≤ m }.
Note that M̂ [y1, . . . , ym] is a pure affine λ-term. By Theorem 3.19, (56) is a balanced
typing.

We know from Lemmas 3.17, 3.34 and 3.37 that |M |β is in η-long form rel-
ative to γ and that |M |β ∈ Λ(database(M), 〈γ〉(tuple(M))). Suppose M ′ ∈

Λ(database(M), 〈γ〉(tuple(M))) and |
−−→
Con(M ′)| = n. Then there is a function

g : {1, . . . , n} → {1, . . . , m} such that
−−→
Con(M ′) = (dg(1), . . . , dg(n)) and

⊢ z1 : βg(1), . . . , zn : βg(n) ⇒ M̂ ′[z1, . . . , zn] : α.

Substituting yg(i) for zi, we get

⊢ { yg(i) : βg(i) | 1 ≤ i ≤ n } ⇒ M̂ ′[yg(1), . . . , yg(n)] : α.

By the Coherence Theorem (Theorem 3.18), M̂ ′[yg(1), . . . , yg(n)] =βη M̂ [y1, . . . , yn],
and so M ′ =βη M . It follows that if M ′ is in η-long β-normal form relative to γ,
then M ′ = |M |β.

Theorem 3.42. Let G = (N , Σ, f, P, S) be a linear CFLG. Suppose that N ∈
Λ(Σ) is a linear λ-term in η-long β-normal form relative to f(S). Then the following
are equivalent:

(i) N ∈ L(G ).

(ii) program(G ) ∪ database(N) ⊢ S(tuple(N)).

Proof. Immediate from Lemma 3.41 and Theorem 3.40.

Let us analyze the computational complexity of this reduction.
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Lemma 3.43. Given a linear λ-term N ∈ Λ(Σ) in η-long β-normal form relative
to f(S), the pair (database(N), S(tuple(N))) can be computed by a deterministic
log-space-bounded Turing machine.

Proof (sketch). We sketch how a deterministic log-space-bounded Tur-
ing machine M that has multiple heads on the input tape can compute
(database(N), S(tuple(N)), relying on the fact that an extra head can be
simulated by a log-space-bounded work tape. We assume that the input λ-term N
is given in the form of a λ-expression; the λ symbol, parentheses, and constants in
N are represented by individual symbols of the input alphabet of M , and variables
are represented by strings of the form vl, where v is a special symbol and l is a
natural number written in binary (i.e., a string over {0, 1}).

Let
−−→
Con(N) = (c1, . . . , cn). The output of M will be of the form

c1(k1,1, . . . , k1,r1), . . . , cn(kn,1, . . . , kn,rn), S(k0,1, . . . , k0,r0),

where ri = |τ(ci)| for i = 1, . . . , n and r0 = |f(S)|, and each ki,j is a natural number
in binary. Let vi,j be the jth leaf (counting from the right) of 〈τ(ci)〉 if 1 ≤ i ≤ n
and 1 ≤ j ≤ ri, and let v0,j be the jth leaf (from right) of 〈f(S)〉 for 1 ≤ j ≤ r0.
If either 1 ≤ i ≤ n and pol(vi,j) = 1 or i = 0 and pol(vi,j) = −1, then for some
p ≤

∑ri
i=0 ri, the pair (i, vi,j) represents the pth negative atomic type occurrence in

z1 : τ(c1), . . . , zn : τ(cn)⇒ N̂ [z1, . . . , zn] : f(S). (57)

In this case, ki,j will be the binary representation of p (which can be computed in
logarithmic space). If either 1 ≤ i ≤ n and pol(vi,j) = −1 or i = 0 and pol(vi,j) = 1,
then the pair (i, vi,j) represents a positive atomic type occurrence in (57). In this
case, ki,j will be ki′,j′ , where (i′, j′) is the unique pair such that (i, vi,j) is linked to

(i′, vi′,j′) in (N̂ [z1, . . . , zn], t), where t is the type decoration that is determined by
the typing (57). (Uniqueness is guaranteed by the linearity of N .)

For each pair (i, j) for which (i, vi,j) is positive, the machine M computes
the corresponding pair (i′, j′) by starting from (i, vi,j , ↑) and following edges of
G

(N̂ [z1,...,zn],t)
. The machine does this without explicitly computing the type dec-

oration t. In order to represent a vertex (w, v, d) of G
(N̂ [z1,...,zn],t)

, the machine M

can place one of its heads at the beginning of the subexpression of N occurring at
node w, and store (v, d) in its finite control. This is possible because the fact that
N̂ [z1, . . . , zn] is β-normal implies that for all nodes w of N̂ , t(w) is a subtype of
some type in {τ(c1), . . . , τ(cn), f(S)} ⊆ { τ(c) | c ∈ C } ∪ {f(S)} by the subformula
property, and there are only finitely many possible values of v. Traversal of edges
in G

(N̂ [z1,...,zn],t)
, which is deterministic because N̂ [z1, . . . , zn] is linear, can easily
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be done using an extra head. For example, suppose M is in a configuration rep-
resenting (w, 1v, ↑), where w is a unary node (λ-abstract) and t(w) = γ → δ. The
machine’s head is at the first symbol of a string of the form (λvl.P ). In order to
switch to a configuration representing (w′, v, ↓), where b(w′) = w, M can use an
extra head to locate the occurrence of vl bound by the lambda. For another ex-
ample, suppose M is in a configuration representing (w1, v, ↓), where w is a binary
node (application) and t(w0) = γ→ δ. The machine’s head is at the first symbol of
Q in a string of the form (PQ). In order to switch to a configuration representing
(w0, 1v, ↑), the machine can move the head to the first symbol of P by counting in
binary unmatched closing parentheses encountered along the way, which requires no
more than logarithmic space.

Thus, for every linear CFLG G , the set L(G ) is log-space-reducible to { (D, q) |
program(G ) ∪D ⊢ q }. Since for every Datalog program P, the language { (D, q) |
P∪D ⊢ q } is in P, it immediately follows that L(G ) is in P for every linear CFLG G ,
a fact first proved by Salvati [62]. A more careful analysis gives a tight complexity
upper bound:

Theorem 3.44. For every linear CFLG G , L(G ) belongs to LOGCFL.

Proof. Let G = (N , Σ, f, P, S), and let g(n) be the polynomial associated with
program(G ) by Lemma 3.2. We show that whenever N ∈ L(G ), there is a derivation

tree for program(G ) ∪ database(N) ⊢ S(tuple(N)) of size ≤ g(|
−−→
Con(N)|). The

proof of this claim is by a more careful use of Lemma 3.31 than in the proof of
Theorem 3.42.

Let N ∈ Λ(Σ) be a linear λ-term in η-long β-normal form relative to f(S).

Assume N ∈ L(G ). Let
−−→
Con(N) = (d1, . . . , dm) and let

y1 : β1, . . . , ym : βm ⇒ α

be a principal typing of N̂ [y1, . . . , ym]. Then

database(N) = { di(βi) | 1 ≤ i ≤ m },

tuple(N) = α.

Since G is linear, there exists some linear λ-term P ∈ Λ(Σ) such that ⊢G S(P )
and P ։β N . Since the β-reduction from P to N must be non-erasing and non-

duplicating, |
−−→
Con(P )| = m, and P̂ [yh(1), . . . , yh(m)] ։β N̂ [y1, . . . , ym] for some per-

mutation h on {1, . . . , m}. This means

⊢ y1 : 〈τ(d1)〉(β1), . . . , ym : 〈τ(dm)〉(βm)⇒ P̂ [yh(1), . . . , yh(m)] : 〈f(S)〉(α).
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By Lemma 3.31, there is a derivation tree for program(G ) ∪ database(N) ⊢ S(α)
with m extensional nodes. By Lemma 3.2, it follows that there is a derivation
tree for program(G ) ∪ database(N) ⊢ S(α) of size at most g(m). Therefore,

(database(N), S(tuple(N)), 1
|
−−→
Con(N)|) belongs to the set

{ (D, q, 1
n) | there is a derivation tree for program(G ) ∪D ⊢ q of size ≤ g(n) }.

(58)
Now assume N 6∈ L(G ). Then by Theorem 3.42, it is not

the case that program(G ) ∪ database(N) ⊢ S(tuple(N)), and

(database(N), S(tuple(N)), 1
|
−−→
Con(N)|) does not belong to (58).

By Lemmas 3.1 and 3.43, we conclude that L(G ) is log-space reducible to a
problem in LOGCFL. Since the class of functions computable in logarithmic space
is closed under composition, L(G ) itself is in LOGCFL.

3.6 Almost affine λ-terms

A typed λ-term (M, t), where M = (T , f, b) ∈ Λ(Σ), is almost affine if for every
w, w′ ∈ T such that w 6= w′, f(w) = f(w′) ∈ V or b(w) = b(w′) implies that
t(w) = t(w′) is an atomic type. An untyped λ-term M is almost affine relative to
Γ⇒ α if there is a type decoration t for Γ⇒M : α such that (M, t) is almost affine.
We say that a typable λ-term is almost affine if it is almost affine relative to some
typing, or equivalently, relative to its principal typing.

If a typed λ-term is almost affine, then so is its η-long form. The class of almost
affine untyped λ-terms is closed under η-reduction, but not under β-reduction. For
example, a pure λ-term M = (λx.yxx)(zw) is almost affine relative to y : o, z : o→
o, w : o⇒ o, but |M |β = y(zw)(zw) is not (relative to any typing).

We say that a λ-term M ∈ Λ(Σ) is almost linear if M is an almost affine λI-term.
A sequent is negatively non-duplicated if no atomic type has more than one

negative occurrence in it. The following result generalizes the Coherence Theorem
(Theorem 3.18):

Theorem 3.45 (Aoto and Ono [3]). All inhabitants of a negatively non-duplicated
sequent are βη-equal.34

The following is a slight generalization of a result by Aoto [2]:

Theorem 3.46. If Γ⇒ α is a principal typing of an almost affine pure λ-term M ,
then Γ⇒ α is negatively non-duplicated.

34This theorem can be stated in the same style as the Coherence Theorem: If Γ ∪ Γ′ ⇒ α is a
negatively non-duplicated sequent and both ⊢ Γ ⇒ M : α and ⊢ Γ′ ⇒ M ′ : α hold, then M =βη M ′.
See [46].
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Proof. Let Γ = x1 : α1, . . . , xn : αn and let t be a principal type decoration for
M associated with the typing Γ ⇒ α. Suppose that (i, v), (i′, v′) are two distinct
negative occurrences of the same atomic type p in Γ⇒ α. By Lemma 3.25, (i, v) is
connected to (i′, v′) in (M, t). This means that G(M,t) contains an undirected path
from (i, v, d) to (i′, v′, d′) for some d, d′ ∈ {↑, ↓}. Since both (i, v) and (i′, v′) are
negative, by the property of G(M,t) mentioned above immediately after its definition,
we must have d = d′. We may assume d = d′ = ↑. Since there cannot be a directed
path from (i, v, ↑) to (i′, v′, ↑), this implies that there are three nodes ν1, ν2, ν3 of
G(M,t) such that

• ν1 6= ν3,

• there is a directed path from (i, v, ↑) to ν1,

• (ν1, ν2) and (ν3, ν2) are edges of G(M,t), and

• there is an undirected path from (i′, v′, ↑) to ν3.

The first and third conditions can obtain only in two cases:

• ν2 = (j, u, ↓) for some j ∈ {1, . . . , n} and ν1 = (w1, u, ↑), ν3 = (w3, u, ↑), where
f(w1) = f(w3) = xj .

• ν2 = (w2, 1u, ↓), ν1 = (w1, u, ↑), ν3 = (w3, u, ↑), and b(w1) = b(w3) = w2.

In both cases, since (M, t) is almost affine, it must be the case that t(w1) = t(w3) = p
and u = ǫ. However, since pol(i, v) = −1 and pol(ǫ) = 1, there cannot be a directed
path from (i, v, ↑) to ν1 = (w1, ǫ, ↑), a contradiction.

Theorems 3.45 and 3.46 show that a principal typing of an almost affine pure
λ-term uniquely characterizes it up to βη-equality.

Although we do not need it in establishing the results to follow, we note that
the converse of Theorem 3.46 also holds [46]:

Theorem 3.47. Suppose Γ ⇒ α is a negatively non-duplicated sequent. For every
pure λ-term M such that ⊢ Γ⇒M :α, there exists a λ-term M ′ such that M ′ =βη M
and M ′ is almost affine relative to Γ⇒ α.

Let M ∈ Λ(Σ) be a typable λ-term, and let t be a principal typing for M . A
β-reduction step M

w
→β M ′ is almost non-duplicating if either it is non-duplicating

or subtype(t(w0), 1) = t(w1) is atomic. A β-reduction M ։β M ′ is almost non-
duplicating if it consists entirely of almost non-duplicating β-reduction steps.
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Example 3.48. Let M = (λx.(λz.yzz)(xz))(λz.uz). Then

M
ǫ
→β (λz.yzz)((λz.uz)z)
ǫ
→β y((λz.uz)z)((λz.uz)z)

is almost non-duplicating, whereas

M
00
→β (λx.y(xz)(xz))(λz.uz)
ǫ
→β y((λz.uz)z)((λz.uz)z)

is not, because the second step duplicates the subterm (λz.uz), whose type must be
non-atomic.

A β-reduction M0
w1→β M1

w2→β · · ·
wn→β Mn is called leftmost if for i = 1, . . . , n,

wi is the leftmost β-redex of Mi−1, i.e., wi is the first β-redex of Mi−1 under the
lexicographic ordering ≺ of the nodes of Mi−1.

Lemma 3.49. If M ∈ Λ(Σ) is almost affine, then the leftmost β-reduction from M
to |M |β is almost non-duplicating.

Proof. Let M = M0
w1→β M1

w2→β · · ·
wn→β Mn = |M |β by leftmost β-reduction, and let

Mi = (Ti, fi, bi). We show that each step of this reduction is almost non-duplicating.
Let t be a principal type decoration of M , and for i = 0, . . . , n, let ti be the type
decoration for Mi such that

(M, t) = (M0, t0)
w1→β (M1, t1)

w2→β · · ·
wn→β (Mn, tn).

To prove the lemma, it suffices to show that for every i and every unary node

w ∈ T
(1)

i , either

(i) w is to the left of any β-redex in Mi,

(ii) subtype(ti(w), 1) is an atomic type, or

(iii) there is at most one w′ ∈ Ti such that bi(w
′) = w.

The condition holds of (M0, t0) by the assumption that M is an almost affine λ-term.
Assume that (Mi, ti) satisfies the condition, and let v be a unary node of Ti+1. Then
v is a descendant of a unary node w of Ti distinct from wi0.

Suppose that (i) holds of w. Then w is to the left of wi. Clearly, v must be to
the left of any β-redex in Mi+1, satisfying (i).
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Suppose that (ii) holds of w. Since ti+1(v) = ti(w), it holds that
subtype(ti+1(v), 1) is an atomic type. So v satisfies (ii).

Suppose that (iii) holds of w. Assume that v does not satisfy (iii), i.e., there are
v′, v′′ ∈ Ti+1 such that v′ 6= v′′ and bi+1(v′) = bi+1(v′′) = v. Then v′ and v′′ must be
descendants of the unique node w′ of Ti such that bi(w

′) = w. For this to hold, it
must be the case that w < wi and wi1 ≤ w′. Then v = w. Since wi is the leftmost
β-redex of Mi, there is no β-redex in Mi to the left of w, and it follows that there
is no β-redex in Mi+1 to the left of v.

We now define a certain equivalence relation between nodes in a λ-term. Let
M = (T , f, b), and let w, w′ ∈ T . We say that w and w′ are congruent in M and
write w ∼=M w′, if the following conditions hold:

• { v | wv ∈ T } = { v | w′v ∈ T },

• for all v such that wv ∈ T (0), either

– wv, w′v ∈ dom(f) and f(wv) = f(w′v),

– wv, w′v ∈ dom(b) and b(wv) = b(w′v), or

– wv, w′v ∈ dom(b) and b(wv) = wu and b(w′v) = w′u for some u < v.

It is clear that if w ∼=M w′, then for every writing ℓ of M , the λ-expressions subM,ℓ(w)
and subM,ℓ(w

′) represent the same λ-term.

The following is clear from the definition of the ancestor-descendant relation for
one-step β-reduction.

Lemma 3.50. Let M
w
→β M ′ be a duplicating β-reduction step. If (M, w1)

w
◮

(M ′, v1) and (M, w1)
w
◮ (M ′, v2), then v1

∼=M ′ v2.

Let M = (TM , fM , bM ) be a λ-term. Suppose that v1, . . . , vk are nodes in TM

such that v1
∼=M . . . ∼=M vk. Let w be a node in TM such that for all i, w < vi, and

bM (viu) < w holds whenever bM (viu) < vi. It is clear that there must be such a w.
Define expand(M, w, {v1, . . . , vk}) = (T , f, b) as follows:

T = { v ∈ TM | w 6< v } ∪ {w0} ∪ {w00v | wv ∈ TM ,¬∃i(vi < wv) } ∪
{w1u | v1u ∈ TM },

f = { (v, fM (v)) | w 6< v, v ∈ dom(fM ) } ∪
{ (w00v, fM (wv)) | wv ∈ dom(fM ),¬∃i(vi < wv) } ∪
{ (w1u, fM (v1u)) | v1u ∈ dom(fM ) }
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b = { (v, bM (v)) | w 6< v, v ∈ dom(bM ) } ∪
{ (w00v, bM (wv)) | bM (wv) < w,¬∃i(vi ≤ wv) } ∪
{ (w00v, w00u) | bM (wv) = wu,¬∃i(vi ≤ wv) } ∪
{ (w00vi, w0) | 1 ≤ i ≤ k } ∪
{ (w1u, bM (v1u)) | bM (v1u) < w } ∪ { (w1u, w1s) | bM (v1u) = v1s }.

It is clear that expand(M, w, {v1, . . . , vk}) is a λ-term, and we have

expand(M, w, {v1, . . . , vk})
w
→β M and (expand(M, w, {v1, . . . , vk}), w1)

w
◮ (M, vi)

for i = 1, . . . , k.

Lemma 3.51. Let M ∈ Λ(Σ), where Σ = (A, C, τ), and let t be a type decoration
of M . Suppose that w, w′ are two nodes of M such that w ∼=M w′. If t(w) is an
atomic type, then t(w) = t(w′).

Proof. Let ℓ be a writing of M and let N = subM,ℓ(w) = subM,ℓ(w
′). Let

Γw = { (x, t(wv)) | x = f(wv) ∈ V } ∪ { (ℓ(b(wv)), t(wv)) | b(wv) ≤ w }

Γw′ = { (x, t(w′v)) | x = f(w′v) ∈ V } ∪ { (ℓ(b(w′v)), t(w′v)) | b(w′v) ≤ w′ }.

Then we have

⊢Σ Γw ⇒ N : t(w),

⊢Σ Γw′ ⇒ N : t(w′).

Since w ∼=M w′, we must have Γw = Γw′ . By the Subject Reduction Theorem
(Theorem 3.14),

⊢Σ Γ′ ⇒ |N |β : t(w),

⊢Σ Γ′ ⇒ |N |β : t(w′)

where Γ′ = Γw ↾ FV(|N |β). By assumption, t(w) is some atomic p, so |N |β must be
of the form

yP1 . . . Pl

for some variable y, or else of the form

cP1 . . . Pl

for some constant c. In the former case, y : γ1 → · · · → γl → p is in Γ′, and in the
latter case, τ(c) = γ1 → · · · → γl → p for some types γ1, . . . , γl. In either case, we
must have t(w′) = p.
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The following lemma generalizes the Subject Expansion Theorem (Theo-
rem 3.15):

Lemma 3.52. Let M, M ′ ∈ Λ(Σ) be typable λ-terms. Suppose M ։β M ′ by non-
erasing, almost non-duplicating β-reduction. If ⊢Σ Γ⇒M ′ : α, then ⊢Σ Γ⇒M : α.

Proof. Clearly, it suffices to consider the case where the β-reduction consists of just
one step and Γ⇒ α is a principal typing of M ′. Let M = (T , f, b), M ′ = (T ′, f ′, b′),
and M

w
→β M ′. Let t be a principal type decoration of M , t′ be the type decoration

of M ′ induced by t (i.e., (M, t)
w
→β (M ′, t′)), and t̃ be a principal type decoration

of M ′ (with the associated typing Γ ⇒ α). If the β-reduction step M
w
→β M ′ is

non-erasing and non-duplicating, then ⊢Σ Γ ⇒ M : α by the Subject Expansion
Theorem. So suppose that this β-reduction step is duplicating. Let

{ v | b(w00v) = w0 } = {v1, . . . , vk},

where k ≥ 2. Since the β-reduction step is almost non-duplicating, we have t(w1) =
p for some atomic type p. For each i ∈ {1, . . . , k}, we have

(M, w1)
w
◮ (M ′, wvi)

and t′(wvi) = p. Since t̃ is a principal type decoration of M ′, there is a type
substitution σ such that t′ = σ ◦ t̃. It follows that for each i = 1, . . . , k, there is an
atomic type qi such that t̃(wvi) = qi. By Lemma 3.50, we have

wv1
∼=M ′ . . . ∼=M ′ wvk,

and by Lemma 3.51, it follows that

q1 = · · · = qk.

Define a function t̃1 : T → T (A) as follows:

t̃1(v) =





t̃(v) if w 6≤ v,

t̃(w) if v = w,

q1→ t̃(w) if v = w0,

t̃(wu) if v = w00u,

t̃(wv1u) if v = w1u.

It is clear that t̃1 is a type decoration of M . Although (M, t̃1)
w
→β (M ′, t̃) does not

necessarily hold, it is easy to see that t̃1 is a type decoration for Γ⇒M : α.
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Lemma 3.53. If M is an almost linear λ-term, M and |M |β have the same prin-
cipal typing.

Proof. Since M is almost affine, by Lemma 3.49, the leftmost β-reduction from M to
|M |β is almost non-duplicating. Since M is a λI-term, this β-reduction must also be
non-erasing. By the Subject Reduction Theorem (Theorem 3.14) and Lemma 3.52,
any typing of M is a typing of |M |β and vice versa.

3.7 From CFLGs to Datalog: The case of almost linear CFLGs

Given Aoto and Ono’s [3] generalization of the Coherence Theorem (Theorem 3.45),
we easily obtain a generalization of Lemma 3.41 to almost affine λ-terms.

Lemma 3.54. Let M be an almost affine λ-term in strict η-long form relative to γ.
Then |M |β is the only λ-term in Λ(database(M), 〈γ〉(tuple(M))) that is in η-long
β-normal form relative to γ.

Proof. The proof parallels that of Lemma 3.41. Let
−−→
Con(M) = (d1, . . . , dm), and let

y1 : β1, . . . , ym : βm ⇒ α (59)

be a principal typing of M̂ [y1, . . . , ym]. Then database(M) = { di(βi) | 1 ≤ i ≤ m }.
Note that M̂ [y1, . . . , ym] is a pure almost affine λ-term in strict η-long form. By
Theorem 3.46, (59) is negatively non-duplicated.

We know from Lemmas 3.17, 3.34, and 3.37 that |M |β is in η-long β-normal
form relative to γ and that |M |β ∈ Λ(database(M), 〈γ〉(tuple(M))). Suppose N ∈

Λ(database(M), 〈γ〉(tuple(M))) and |
−−→
Con(N)| = n. Then there is a function g :

{1, . . . , n} → {1, . . . , m} such that
−−→
Con(N) = (dg(1), . . . , dg(n)) and

⊢ z1 : βg(1), . . . , zn : βg(n) ⇒ N̂ [z1, . . . , zn] : α.

Substituting yg(i) for zi, we get

⊢ { yg(i) : βg(i) | 1 ≤ i ≤ n } ⇒ N̂ [yg(1), . . . , yg(n)] : α.

By Theorem 3.45, N̂ [yg(1), . . . , yg(n)] =βη M̂ [y1, . . . , yn], and so N =βη M . It follows
that if N is in η-long β-normal form relative to γ, then N = |M |β .

A CFLG G = (N , Σ, f, P, S) is almost linear if for every π ∈P, the λ-term on
the left-hand side of π is almost linear. An example of an almost linear CFLG is the
grammar in Example 3.28. Almost linear CFLGs can encode IO context-free tree
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grammars [21] in a straightforward way, similarly to de Groote and Pogodalla’s [19]
encoding of linear context-free tree grammars.35

Lemma 3.39 and Theorem 3.40 do not generalize to the almost linear case, and
there is no simple analogue of Theorem 3.42 for almost linear CFLGs. The reason
is that Λ(D, α) need not be closed under the converse of non-erasing almost non-
duplicating β-reduction (in contrast to part (ii) of Lemma 3.34), despite the fact
that the Subject Expansion Theorem generalizes to such β-reduction (Lemma 3.52).
This is so even when D = database(N) and α = 〈γ〉(tuple(N)) for an almost linear
λ-term N ∈ Λ(Σ) in η-long β-normal form relative to γ.

Example 3.55. Consider the λ-term (19) from Section 2.2:

N = ∃(λy.∧(unicorn y)(∧(find y John)(catch y John))),

where the types of the constants ∃, ∧, unicorn, find, John, catch are as follows:

∃ : (e→ t)→ t,

∧ : t→ t→ t,

unicorn : e→ t,

find : e→ e→ t,

John : e,

catch : e→ e→ t.

We have
−−→
Con(N) = (∃, ∧, unicorn, ∧, find, John, catch, John). A principal typ-

ing of
N̂ [z1, z2, z3, z4, z5, z6, z7, z8] = z1(λy.z2(z3y)(z4(z5yz6)(z7yz8)))

is

z1:(4→2)→1, z2:3→5→2, z3:4→3, z4:6→8→5, z5:4→7→6, z6:7, z7:4→9→8, z8:9⇒ 1,

which gives rise to

database(N) = {∃(1, 2, 4), ∧(2, 5, 3), unicorn(3, 4), ∧(5, 8, 6), find(6, 7, 4), John(7),
catch(8, 9, 4), John(9)},

35With respect to string languages, it is easy to see that almost linear CFLGs generating λ-terms
representing strings are no more powerful than linear CFLGs (see footnote 41). What this means is
that encodings of “non-linear” grammars like IO macro grammars [24] and parallel multiple context-
free grammars [66] in terms of CFLGs cannot be almost linear. However, our reduction to Datalog
applies to these cases indirectly if we take almost linear CFLGs encoding tree analogues of these
grammars (i.e., IO context-free tree grammars and what one might call “parallel multiple regular
tree grammars”) and use regular sets of trees as input. See Section 4.2 below.
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tuple(N) = (1).

Now consider the λ-term (25):

N◦ = ∃(λy.∧(unicorn y)((λx.∧(find y x)(catch y x)) John)).

Although N◦ ։β N by non-erasing almost non-duplicating β-reduction, it is easy
to see that N◦ 6∈ Λ(database(N), 1). This does not contradict Lemma 3.52, because

N̂◦[y1, y2, y3, y4, y5, y6, y7] 6։β N̂ [z1, z2, z3, z4, z5, z6, z7, z8],

no matter how one picks the variables y1, y2, y3, y4, y5, y6, y7.

Let G = (N , Σ, f, P, S) be an almost linear CFLG, and suppose that N ∈
Λ(Σ) is in η-long β-normal form relative to f(S). In order to find a database D
and a tuple ~s such that N ∈ L(G ) if and only if program(G ) ∪ D ⊢ S(~s), what
we do is to β-expand N to a ‘most compact’ almost linear λ-term N◦ such that
N◦ ։β N in the sense that for any almost linear P ∈ Λ(Σ), if P ։β N and
two occurrences of the same constant in N have a common ancestor in P , then
they have a common ancestor in N◦. Thus, for every constant c ∈ C, N◦ contains
the fewest occurrences of c among all almost linear λ-terms that β-reduce to N .
We have P ∈ Λ(database(N◦), tuple(N◦)) if and only if P ։β N for all almost
linear P ∈ Λ(Σ) in η-long form,36 and the desired equivalence of N ∈ L(G ) and
program(G ) ∪ database(N◦) ⊢ S(tuple(N◦)) follows. We show that such N◦ can be
computed efficiently.

Let us call a node v of a λ-term M = (T , f, b) a pivot if (i) v ∈ T (0) ∪ T (2), and
(ii) v = v′0 implies v′ ∈ T (1). A pivot v is duplicated if v 6∈ dom(b) and there is
another pivot v′ ∈ T such that v ∼=M v′. If some type decoration of M assigns a
node v an atomic type, then v must be a pivot. If M is in η-long form and v is a
pivot of M , then the principal type decoration of M assigns v an atomic type.

Algorithm 1.

1: procedure Collapse(M)
2: M◦ ←M
3: while there is a duplicated pivot in M◦ do

4: Let V be the set of duplicated pivots of maximal height in M◦

5: Let v1 be the leftmost (i.e., lexicographically first) node in V
6: Let {v2, . . . , vk} = { v | v is a pivot, v 6= v1, and v1

∼=M◦ v }
7: Let w be the pivot of minimal height such that w < vi for i = 1, . . . , k

36This corresponds to the special property (28) mentioned in Section 2.3.
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8: M◦ ← expand(M◦, w, {v1, . . . , vk})
9: end while

10: return M◦

11: end procedure

It is clear that the node w picked in line 7 is such that
expand(M◦, w, {v1, . . . , vk}) in line 8 is defined.

Lemma 3.56. Let M be a typable λ-term in η-long form, and consider the execution
of Algorithm 1 on input M . If wi is the node w that is picked in line 7 during the ith
iteration of the while loop, then the following conditions hold after the ith iteration
of the while loop.

(i) M◦ is a typable λ-term in η-long form.

(ii) M◦ ։β M by non-erasing, almost non-duplicating β-reduction.

(iii) If u1 and u2 are pivots of M such that u1
∼=M u2 and (M◦, u′

1)
wi,...,w1

◮ (M, u1)

and (M◦, u′
2)

wi,...,w1

◮ (M, u2), then u′
1 and u′

2 are also pivots and u′
1
∼=Mi

u′
2.

Proof. Let M0 = M , and let Mi be the value of M◦ after the ith iteration of the
while loop. We show that the conditions (i), (ii), and (iii) hold by induction on i,
on the understanding that u′

1 = u1 and u′
2 = u2 when i = 0.

The three conditions clearly hold when i = 0. Assume that the three conditions
hold of Mi and let v1, v2, . . . , vk be the nodes that the algorithm picks in lines 5–6
during the (i + 1)st iteration of the while loop. Since Mi is typable and in η-long
form, the principal type decoration ti of Mi assigns v1 an atomic type p, and by
Lemma 3.51, ti(v2) = · · · = ti(vk) = p. As in the proof of Lemma 3.52, this allows
us to define a type decoration for Mi+1 = expand(Mi, wi+1, {v1, . . . , vk}) that assigns

p to the node wi+11. It follows that the β-reduction step Mi+1
wi+1
→ β Mi is almost

non-duplicating. It is also easy to see that Mi+1 is in η-long form. So (i) and (ii)
hold of Mi+1. To see that (iii) holds of Mi+1, let s1 and s2 be pivots of Mi such

that s1
∼=Mi

s2, and let s′
1 and s′

2 be the nodes such that (Mi+1, s′
1)

wi+1

◮ (Mi, s1)

and (Mi+1, s′
2)

wi+1

◮ (Mi, s2). It is easy to see that s′
1 and s′

2 are also pivots, so it
suffices to show s′

1
∼=Mi+1 s′

2. If s1 = s2, then clearly s′
1 = s′

2. If s1 6= s2, since v1

is a duplicated pivot of maximal height in Mi and v1, v2, . . . , vk are all of the same
height, it cannot be the case that s1 < vi or s2 < vi for any i. This ensures that

{ s | s1s is a node of Mi } = { s | s′
1s is a node of Mi+1 }, (Mi+1, s′

1s)
wi+1

◮ (Mi, s1s),
and likewise for s2 and s′

2. By Lemma 3.4, it is easy to check that the remaining
conditions for s′

1
∼=Mi+1 s′

2 are satisfied.
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Lemma 3.57. Algorithm 1 always terminates.

Proof. One can prove by induction that the following condition holds at each stage
of the algorithm: every pivot v in M◦ = (TM◦ , fM◦ , bM◦) that is not in dom(bM◦) is
either an ancestor of a pivot in M or else a β-redex such that v00 and v1 are pivots
not in dom(bM◦). It follows that every pivot in M◦ that is not in dom(bM◦) contains
an ancestor of a node in M , and the number of nodes in M◦ that are ancestors of
nodes in M strictly decreases at each iteration of the while loop.

We now prove two lemmas (Lemmas 3.60 and 3.61) needed to show that
Collapse(M) is more compact than any almost affine λ-term that β-reduces to
M . These lemmas require us to introduce two new binary relations on nodes. The
following lemma is needed to prove the first of these lemmas:

Lemma 3.58. Let M = (T , f, b) ∈ Λ(Σ), and v, v′ ∈ T be two nodes such that
v ∼=M v′. Suppose M = M0

w1→β M1
w2→β · · ·

wn→β Mn = |M |β. Let v0 = v, v′
0 = v′,

and for 1 ≤ i ≤ n, let vi and v′
i be nodes of Mi that satisfy one of the following

conditions:

(i) (Mi−1, vi−1)
wi

◮k (Mi, vi) and (Mi−1, v′
i−1)

wi

◮k′ (Mi, v′
i), where k = k′ if both

wi1 ≤ vi−1 and wi1 ≤ v′
i−1 hold.

(ii) vi−1 = vi = wi and (Mi−1, v′
i−1)

wi

◮ (Mi, v′
i).

(iii) (Mi−1, vi−1)
wi

◮ (Mi, vi) and v′
i−1 = v′

i = wi.

Then vn
∼=|M |β v′

n. Moreover, (M, vu)
w1,...,wn

◮ (|M |β, vns) implies (M, v′u)
w1,...,wn

◮

(|M |β, v′
ns).

Proof. Let Mi = (Ti, fi, bi) for i = 0, 1, . . . , n. For i = 1, . . . , n, define ŵi by:

ŵi =





v′
ir if wi = vir,

vir if wi = v′
ir,

wi if vi 6≤ wi and v′
i 6≤ wi.

Then it is not hard to see that there are λ-terms M̂i = (T̂i, f̂i, b̂i) for i = 0, 1, . . . , n
such that

vi, v′
i ∈ T̂i,

{u | u ∈ Ti, vi 6< u, v′
i 6< u } = {u | u ∈ T̂i, vi 6< u, v′

i 6< u },
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{u | viu ∈ Ti } = {u | v′
iu ∈ T̂i },

{u | v′
iu ∈ Ti } = {u | viu ∈ T̂i },

and

M = M̂0
ŵ1→β M̂1

ŵ2→β · · ·
ŵn→β M̂n = |M |β.

Moreover, we can check that the following conditions hold for i = 0, 1, . . . , n by
induction:

• viu ∈ dom(fi) if and only if v′
iu ∈ dom(f̂i),

• if viu ∈ dom(fi), then fi(viu) = f̂i(v
′
iu),

• viu ∈ dom(bi) if and only if v′
iu ∈ dom(b̂i),

• if viu ∈ dom(bi), then vi ≤ bi(viu) if and only if v′
i ≤ b̂i(v

′
iu),

• if viu ∈ dom(bi) and vi ≤ bi(viu), then for some s, bi(viu) = vis and b̂i(v
′
iu) =

v′
is,

• if viu ∈ dom(bi) and bi(viu) < vi, then bi(viu) = b̂i(v
′
iu),

• i ≥ 1 and (Mi−1, vi−1u)
wi

◮ (Mi, vis) imply (M̂i−1, v′
i−1u)

ŵi

◮ (M̂i, v′
is).

From these conditions, we can see that vn
∼=|M |β v′

n and that (M, vu)
w1,...,wn

◮

(|M |β, vns) implies (M, v′u)
ŵ1,...,ŵn

◮ (|M |β , v′
ns). By Theorem 3.5, we can conclude

that (M, vu)
w1,...,wn

◮ (|M |β, vns) implies (M, v′u)
w1,...,wn

◮ (|M |β , v′
ns).

Let M = (T , f, b) ∈ Λ(Σ). We call two nodes w, w′ of M homologous and write
w ≈M w′ if there are v, v′, u satisfying the following conditions:

• w = vu, w′ = v′u,

• v ∼=M v′, and

• v and v′ are pivots.

The relation ≈M is symmetric, but not transitive. We call two nodes w, w′ of M
similar if w ≈∗M w′ (i.e., if they stand in the reflexive transitive closure of the relation
of being homologous).
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Example 3.59. Let

M = λyzvw.w(v(λx.z(yx)(yx)))(v(λx.z(yx)(yx))).

This is a λ-term in η-long β-normal form, and the following is a natural deduction
representation of (M, t), where t is a principal type decoration of M :

[2→ 2→ 1]000

[(5→ 3)→ 2]00

[4→ 4→ 3]0
[5→ 4]ǫ [5]0000011

4

4→ 3

[5→ 4]ǫ [5]0000011

4
3

5→ 3 0000011

2

2→ 1

[(5→ 3)→ 2]00

[4→ 4→ 3]0
[5→ 4]ǫ [5]000011

4

4→ 3

[5→ 4]ǫ [5]000011

4
3

5→ 3 000011

2
1

(2→ 2→ 1)→ 1
000

((5→ 3)→ 2)→ (2→ 2→ 1)→ 1
00

(4→ 4→ 3)→ ((5→ 3)→ 2)→ (2→ 2→ 1)→ 1
0

(5→ 4)→ (4→ 4→ 3)→ ((5→ 3)→ 2)→ (2→ 2→ 1)→ 1
ǫ

Note that a node v of M is a pivot if and only if t(v) is an atomic type. We have

• 000001 ∼=M 00001 (the two occurrences of v(λx.z(yx)(yx)) (with type 2) are
congruent)

• 0000011001 ∼=M 000001101 (the first and second occurrences of yx (with type
4) are congruent)

• 000011001 ∼=M 00001101 (the third and fourth occurrences of yx (with type
4) are congruent)

Consequently, we have

• 00000110010 ≈M 0000110010 (the first and third occurrences of y are homol-
ogous),

• 0000011010 ≈M 000011010 (the second and fourth occurrences of y are homol-
ogous),

• 00000110010 ≈M 0000011010 (the first and second occurrences of y are ho-
mologous),

• 0000110010 ≈M 000011010 (the third and fourth occurrences of y are homol-
ogous),
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and all four occurrences of y in (the above λ-expression for) M are similar. Note
that M β-expands to an almost linear λ-term

M ′ = λyzvw.(λx1.wx1x1)(v(λx.(λx2.zx2x2)(yx))))),

in which all four occurrences of y in M have a common ancestor.

Lemma 3.60. Let M ∈ Λ(Σ) be a typable λ-term and suppose M ։β |M |β by
almost non-duplicating β-reduction. If two distinct nodes of |M |β share a common
ancestor in M , then they are similar.

Proof. Consider two distinct nodes v, v′ of |M |β that share a common ancestor in

M . Let M = M0
w1→β M1

w2→β · · ·
wn→β Mn = |M |β be an almost non-duplicating

β-reduction, and let ti be a principal type decoration of Mi. Let vn = v, v′
n = v′, and

for i = 1, . . . , n, let vi−1 and v′
i−1 be the nodes of Mi−1 such that (Mi−1, vi−1)

wi

◮ki

(Mi, vi) and (Mi−1, v′
i−1)

wi

◮k′

i
(Mi, v′

i). By assumption, v0 = v′
0. We first prove the

following:

Claim. For some distinct nodes u, u′ of |M |β, it holds that u ≤ v, u′ ≤ v′, u ∼=|M |β u′,
and u and u′ are pivots.

Since v and v′ are distinct, there is an i ≥ 1 such that vi−1 = v′
i−1 and vi 6= v′

i.
We must have wi1 ≤ vi−1, wi1 ≤ v′

i−1, and ki 6= k′
i. Let m = max{ i | 1 ≤ i ≤

n, wi1 ≤ vi−1, wi1 ≤ v′
i−1, ki 6= k′

i }. There must be nodes um, u′
m of Mm such

that (Mm−1, wm1)
wm

◮ km
(Mm, um), (Mm−1, wm1)

wm

◮ k′
m

(Mm, u′
m), um ≤ vm, and

u′
m ≤ v′

m. By Lemma 3.50, we have um
∼=Mm u′

m. Since by assumption the β-
reduction step Mm−1

wm→β Mm is almost non-duplicating, tm−1(wm1) must be an
atomic type. It follows that um and u′

m are pivots; in particular, neither um nor u′
m

is a unary node.

For i = m + 1, . . . , n, define ui and u′
i as follows:

ui =





wi if ui−1 = wi,

the node such that (Mi−1, ui−1)
wi

◮ki
(Mi, ui) if wi1 ≤ ui−1,

the node such that (Mi−1, ui−1)
wi

◮1 (Mi, ui) otherwise.

u′
i =





wi if u′
i−1 = wi,

the node such that (Mi−1, u′
i−1)

wi

◮k′

i
(Mi, u′

i) if wi1 ≤ u′
i−1,

the node such that (Mi−1, u′
i−1)

wi

◮1 (Mi, u′
i) otherwise.
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It is easy to see by induction that such ui and u′
i always exist, and it holds that

ui ≤ vi and u′
i ≤ v′

i. By the assumption about m, we have that for i ∈ {m+1, . . . , n},
if wi1 ≤ ui−1 and wi1 ≤ u′

i−1, then ki = k′
i. By Lemma 3.58, it follows that

un
∼=|M |β u′

n.
For i = m− 1, . . . , n, define a type decoration t′

i for Mi by

t′
m−1 = tm−1,

(Mi−1, t′
i−1)

wi→β (Mi, t′
i) for i = m, . . . , n.

Then it is easy to see tm−1(wm1) = t′
i(ui) = t′

i(u
′
i) for all i = m, . . . , n. Since

tm−1(wm1) is an atomic type, it follows that un and u′
n are pivots. So we have

proved the above claim, with u = un and u′ = u′
n.

Now we show that v and v′ are similar by induction on |v| − |u|+ |v′| − |u′|. Let
s, s′ be such that v = us and v′ = u′s′. If s = s′, then v and v′ are homologous and
hence similar. Suppose s 6= s′. By Lemma 3.58, the nodes v = us and us′ of |M |β
share a common ancestor in M . By the above claim applied to us, us′ in place of
v, v′, we must have s = s1s2, s′ = s′

1s′
2, s1 6= s′

1, us1
∼=|M |β us′

1, and us1 and us′
1 are

pivots. Since |us|− |us1|+ |us′|− |us′
1| = |s2|+ |s

′
2| < |s|+ |s

′| = |v|− |u|+ |v′|− |u′|,
the induction hypothesis applies; hence us and us′ are similar. Since us′ and u′s′

are homologous, it follows that us and u′s′ are similar.

Lemma 3.61. Let M = (T , f, b) ∈ Λ(Σ) be a closed typable λ-term in η-long form,
and let M◦ = Collapse(M). Suppose that u1 and u2 are distinct nodes of M such
that u1 ≈

∗
M u2. Unless u1 is a pivot and u1 ∈ dom(b), u1 and u2 share a common

ancestor in M◦.

Proof. Clearly, it suffices to consider the case where u1 ≈M u2. There must be a pair
of pivots s1, s2 such that s1

∼=M s2 and for some u, u1 = s1u and u2 = s2u. By the
assumption about u1, u2, we have s1, s2 6∈ dom(b). At each stage of the execution of
Algorithm 1, let u′

1, u′
2, s′

1, s′
2 be the ancestors of u1, u2, s1, s2, respectively, in M◦.

By Lemma 3.56, s′
1 and s′

2 are pivots and s′
1
∼=M◦ s′

2. We must have s′
1 = s′

2 at
the end of the execution of Algorithm 1. Since the nodes v1, v2, . . . , vk picked in
lines 5–6 of the algorithm are duplicated pivots of maximal height in M◦, we cannot
have s′

1 < vi or s′
2 < vi for some i ∈ {1, 2, . . . , k} until s′

1 = s′
2. Hence, until s′

1 = s′
2,

we have u′
1 = s′

1u and u′
2 = s′

2u. This means that at the first stage where s′
1 = s′

2

holds, we have u′
1 = u′

2. Therefore, u1 and u2 have the same ancestor.

Lemma 3.62. Let M ∈ Λ(Σ) be a closed λ-term in η-long β-normal form and
M◦ = Collapse(M). Suppose M ′ ։β M by almost non-duplicating β-reduction.

Let m = |
−−→
Con(M◦)| and n = |

−−→
Con(M ′)|. The following hold:
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(i) |M̂◦[y1, . . . , ym]|β = |M̂ ′[yg(1), . . . , yg(n)]|β for some g : {1, . . . , n} →
{1, . . . , m}.

(ii) If M ′ is almost affine, then so is M◦.

Proof. (i) Consider two occurrences v1, v2 of a free variable zi in |M̂ ′[z1, . . . , zn]|β .

Since each free variable occurs just once in M̂ ′[z1, . . . , zn], the unique occurrence u of
zi in M̂ ′[z1, . . . , zn] is the common ancestor of the nodes v1 and v2 of |M̂ ′[z1, . . . , zn]|β .
This means that the node u of M ′ is the common ancestor of the nodes v1 and v2

of M . By Lemma 3.60, we have v1 ≈
∗
M v2. Since some constant occurs at v1

and v2 in M , Lemma 3.61 implies that v1 and v2 have the same ancestor in M◦.
This means that the same free variable occurs at v1 and v2 in |M̂◦[y1, . . . , ym]|β .

Therefore, there is a function g : { i | zi ∈ FV(|M̂ ′[z1, . . . , zn]|β) } → {1, . . . , m}

such that if v is an occurrence of zi in |M̂ ′[z1, . . . , zn]|β, then v is an occurrence

of yg(i) in |M̂◦[y1, . . . , ym]|β. Some zi may not occur in |M̂ ′[z1, . . . , zn]|β, but by
extending g to a function from {1, . . . , n} → {1, . . . , m} in an arbitrary way, we
have |M̂◦[y1, . . . , ym]|β = |M̂ ′[yg(1), . . . , yg(n)]|β.

(ii) Let tM◦ be a principal type decoration of M◦ = (TM◦ , fM◦ , bM◦). Suppose

that M◦ is not almost affine. Then there are two distinct leaves v1, v2 ∈ T
(0)

M◦ such
that bM◦(v1) = bM◦(v2) and tM◦(v1) = tM◦(v2) is a non-atomic type. Since M◦ is

in η-long form, we have v1 = u10 and v2 = u20 for some u1, u2 ∈ T
(2)

M◦ . Since the β-
reduction from M◦ to M = (TM , fM , bM ) is non-erasing and almost non-duplicating,
it is easy to see that by taking the leftmost (i.e., lexicographically first) descendants

at each step, we can arrive at u′
1, u′

2 ∈ T
(2)

M such that u′
10, u′

20 are descendants of v1

and v2, respectively, and bM (u′
10) = bM (u′

20). Now let v′
1 and v′

2 be the ancestors
of u′

10 and u′
20, respectively, in M ′ = (TM ′ , fM ′ , bM ′). By Lemma 3.4, part (iv), we

see that bM ′(v′
1) = bM ′(v′

2). Let tM ′ be a principal type decoration of M ′. Since M ′

is almost affine, either v′
1 = v′

2 or tM ′(v′
1) = tM ′(v′

2) is an atomic type q. Let tM

be a type decoration of M such that (M ′, tM ′) ։β (M, tM ). If tM ′(v′
1) = tM ′(v′

2) =

q, then tM (u′
10) = tM (u′

20) = q, contradicting u′
1, u′

2 ∈ T
(2)

M . Hence v′
1 = v′

2.
By Lemma 3.60, u′

10 ≈∗M u′
20. By Lemma 3.61, v1 = v2, a contradiction. This

contradiction shows that M◦ is almost affine.

Lemma 3.63. Let M ∈ Λ(Σ) be a closed λI-term in η-long β-normal form relative
to γ, and let M◦ = Collapse(M). The following hold:

(i) M◦ is a λI-term in η-long form.

(ii) If M ′ ։β M by non-erasing almost non-duplicating β-reduction, then M ′ ∈
Λ(database(M◦), 〈γ〉(tuple(M◦))).
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Proof. Part (i) is by Lemma 3.56, parts (i) and (ii).

For part (ii), let
−−→
Con(M◦) = (d1, . . . , dm) and let

y1 : β1, . . . , ym : βm ⇒ α

be a principal typing of M̂◦[y1, . . . , ym]. Then di(βi) ∈ database(M◦) for i =

1, . . . , m, and 〈γ〉(tuple(M◦)) = α. Let n = |
−−→
Con(M ′)|. By Lemma 3.62, there

is a function g : {1, . . . , n} → {1, . . . , m} such that

|M̂◦[y1, . . . , ym]|β = |M̂ ′[yg(1), . . . , yg(n)]|β

Since M ′ ։β M by non-erasing almost non-duplicating β-reduction, we also have

M̂ ′[yg(1), . . . , yg(n)] ։β |M̂ ′[yg(1), . . . , yg(n)]|β by non-erasing almost non-duplicating
β-reduction. Then by the Subject Reduction Theorem (Theorem 3.14) and
Lemma 3.52, we have

⊢ { yg(i) : βg(i) | 1 ≤ i ≤ n } ⇒ M̂ ′[yg(1), . . . , yg(n)] : α.

This means that M ′ ∈ Λ(database(M◦), 〈γ〉(tuple(M◦))).

Lemma 3.63 does not say that Λ(database(M◦), 〈γ〉(tuple(M◦))) is closed under
non-erasing almost non-duplicating β-expansion, but together with Lemma 3.54
implies the following, which corresponds to the special property (28) highlighted in
the rough proof sketch given in Section 2.3.

Lemma 3.64. Let M ∈ Λ(Σ) be a closed λ-term in η-long β-normal form relative
to γ, and suppose that M◦ = Collapse(M) is almost linear. Then for every almost
linear closed λ-term M ′ ∈ Λ(Σ) in η-long form relative to γ, M ′ ։β M if and only
if M ′ ∈ Λ(database(M◦, 〈γ〉(tuple(M◦))).

Proof. First note that M ∈ Λ(database(M◦), 〈γ〉(tuple(M◦))) by Lemma 3.37 and
part (i) of Lemma 3.34.

Suppose M ′ ։β M . By Lemma 3.49, the leftmost β-reduction from M ′ to
M = |M ′|β is non-erasing and almost non-duplicating. Lemma 3.63 then implies
M ′ ∈ Λ(database(M◦), 〈γ〉(tuple(M◦))).

Conversely, suppose M ′ ∈ Λ(database(M◦), 〈γ〉(tuple(M◦))). By part (i) of
Lemma 3.34 again, |M ′|β ∈ Λ(database(M◦), 〈γ〉(tuple(M◦))). Since by Lemma 3.17
|M ′|β must be in η-long form relative to γ, Lemma 3.54 implies |M ′|β = M .

The following theorem is the main result of the paper.
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Theorem 3.65. Let G = (N , Σ, f, P, S) be an almost linear CFLG. Suppose that
N ∈ Λ(Σ) is a λ-term in η-long β-normal form relative to f(S). Then the following
are equivalent:

(i) N ∈ L(G ).

(ii) N◦ = Collapse(N) is almost linear and program(G ) ∪ database(N◦) ⊢
S(tuple(N◦)).

Proof. (i) ⇒ (ii). Suppose N ∈ L(G ). Then there is a closed λ-term P ∈ Λ(Σ) in
η-long form such that ⊢G S(P ) and P ։β N . Since G is almost linear, P is almost
linear. By part (ii) of Lemma 3.62 and part (i) of Lemma 3.63, N◦ = Collapse(N)
is almost linear. By Lemma 3.64, P ∈ Λ(database(N◦), 〈f(S)〉(tuple(N◦))).
Lemma 3.35 then implies program(G ) ∪ database(N◦) ⊢ S(tuple(N◦)).

(ii)⇒ (i). By Lemma 3.35, there is an almost linear λ-term P ∈ Λ(Σ) in η-long
form such that ⊢G S(P ) and P ∈ Λ(database(N◦), 〈f(S)〉(tuple(N◦))). Since N◦ is
almost linear, Lemma 3.64 implies that P ։β N . Therefore, N ∈ L(G ).

Notice that when G is a linear CFLG and N is a linear λ-term, Theorems 3.42
and 3.65 both hold of G and N , even though N◦ 6= N in general.

Let us turn to the complexity analysis of the reduction. Since it is easy to see
that Algorithm 1 runs in polynomial time, an immediate corollary to Theorem 3.65
is that the language of every almost linear CFLG belongs to the complexity class P.
As in the linear case, we can obtain a tight complexity upper bound. Recall that ≺
is the lexicographic order on {0, 1}∗. We write ≈M ∩ ≺ for the intersection of the
two relations ≈M and ≺, thought of as sets of ordered pairs.

Lemma 3.66. Let M = (T , f, b) be a λ-term, and suppose that u1 (≈M ∩ ≺) v and
u2 (≈M ∩ ≺) v. Then there exists a v′ such that

(i) either v′ (≈M ∩ ≺) u1 or v′ = u1, and

(ii) either v′ (≈M ∩ ≺) u2 or v′ = u2.

Proof. There are û1, û2 and pivots w1, w, s, s2 such that

w1
∼=M w, w1 ≺ w, u1 = w1û1, v = wû1,

s2
∼=M s, s2 ≺ s, u2 = s2û2, v = sû2.

Since w and s are prefixes of v, either w ≤ s or s ≤ w. We may assume w ≤ s. We
have

s = wŝ, û1 = ŝû2
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for some ŝ.
Case 1. There is an s′ such that w ≤ b(ss′) < s. Since s2

∼=M s, it must be the
case that w ≤ b(ss′) = b(s2s′) < s2. So there is an ŝ2 such that

s2 = wŝ2, ŝ2 ≺ ŝ.

Since wŝ2 = s2
∼=M s = wŝ and w1

∼=M w, the definition of the congruence relation
∼=M implies that w1ŝ2 and w1ŝ are pivots and

w1ŝ2
∼=M w1ŝ.

Therefore,

u1 = w1û1 = w1ŝû2 ≈M w1ŝ2û2 ≈M wŝ2û2 = s2û2 = u2.

Let v′ = w1ŝ2û2. Since ŝ2 ≺ ŝ and w1 ≺ w, we have v′ ≺ u1 and v′ ≺ u2.
Case 2. There is no s′ such that w ≤ b(ss′) < s. Since w1

∼=M w, we must have

s2
∼=M s = wŝ ∼=M w1ŝ,

and w1ŝ is a pivot. Therefore,

u2 = s2û2 ≈M w1ŝû2 = w1û1 = u1,

and the conclusion clearly holds with either v′ = u1 or v′ = u2.

The next lemma easily follows from Lemma 3.66.

Lemma 3.67. If u ≈∗M v, then there exists a w such that w (≈M ∩ ≺)∗ u and
w (≈M ∩ ≺)∗ v.

Lemma 3.68. Let G = (N , Σ, f, P, S) be an almost linear CFLG. There is a log-
space-bounded deterministic Turing machine that takes as input a λ-term N ∈ Λ(Σ)
in η-long β-normal form relative to f(S) and decides whether Algorithm 1 returns
an almost linear N◦, and if so, computes (database(N◦), S(tuple(N◦))).

Proof (sketch). Let N = (T , f, b). We assume that N is given as a λ-expression as
before. We must avoid computing the output N◦ = Collapse(N) of Algorithm 1
explicitly. By Lemmas 3.60 and 3.61, N◦ is almost affine if and only if for every pair
of nodes v, v′ ∈ T (0) such that b(v) = b(v′), it holds that v ≈∗N v′. By Lemma 3.67,
this is so if and only if w (≈N ∩ ≺)∗ v′, where w is the leftmost node such that
w (≈N ∩ ≺)∗ v.37 Checking whether two nodes are homologous clearly requires no

37In fact, by refining the proof of Lemma 3.60, it is not hard to see that it suffices to take the
leftmost w such that b(w) = b(v) = b(v′) and check w (≈N ∩ ≺)∗ v and w (≈N ∩ ≺)∗ v′.
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more than logarithmic space, so the relation (≈N ∩ ≺)∗ can be decided in logarith-
mic space as well. It follows that the similarity of v and v′ can also be checked in
logarithmic space. It is also easy to see that N◦ is a λI-term if and only if N is, and
clearly this can be checked in logarithmic space.

Now suppose that N is λI and N◦ is almost linear. Let
−−→
Con(N) = (d1, . . . , dm),

and let

y1 : β1, . . . , ym : βm ⇒ β0

z1 : γ1, . . . , zn : γn ⇒ γ0

be principal typings of N̂ [y1, . . . , ym] and N̂◦[z1, . . . , zn], respectively. Let
{w1, . . . , wm} = dom(f), where w1 ≺ . . . ≺ wm. (We have f(wi) = di.) Let

I = { i ∈ {1, . . . , m} | there is no k < i such that wk ≈
∗
N wi }.

Let g : {1, . . . , m} → I be the function such that wg(i) ≈
∗
N wi for i ∈ {1, . . . , m}.

By Lemmas 3.60 and 3.61, we must have a bijection h : {1, . . . , n} → I such that
N̂◦[yh(1), . . . , yh(n)] ։β N̂ [yg(1), . . . , yg(m)]. Let σ be a most general unifier of

{ (βi, βj) | i ∈ I, wi ≈
∗
N wj }

Then
{ yi : βiσ | i ∈ I } ⇒ β0σ (60)

is a principal typing of N̂ [yg(1), . . . , yg(m)]. By Lemma 3.53, (60) is a principal typing

of N̂◦[yh(1), . . . , yh(n)] as well, and we have

database(N◦) = { di(βiσ) | i ∈ I },

tuple(N◦) = β0σ.

By Theorem 3.46, (60) is negatively non-duplicated. For every i ∈ {0, . . . , m} and
v ∈ 〈βi〉

(0), let pi,v = subtype(βi, v). Then if (i1, v1), (i2, v2) are distinct negative
occurrences and i1, i2 ∈ {0} ∪ I, then pi1,v1σ 6= pi2,v2σ. Now consider a positive
occurrence (i, v) of pi,v such that i ∈ {0} ∪ I. The fact that N̂ [y1, . . . , ym] is a
λI-term implies that in (N̂ [y1, . . . , ym], t̂), where t̂ is a principal type decoration of
N̂ [y1, . . . , ym], the occurrence (i, v) is linked to some negative occurrence (i′, v′) of
pi,v = pi′,v′ . If i′ ∈ {1, . . . , m}, let j = g(i′); otherwise let j = i′ = 0. Then it must
be that pi,vσ = pi′,v′σ = pj,v′σ. Note that although (i, v) may be linked to more than

one (i′, v′) in (N̂ [y1, . . . , ym], t̂), the pair (j, v′) is uniquely determined independently
of the choice of (i′, v′) because (60) is negatively non-duplicated.
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As in the proof of Lemma 3.43, a deterministic log-space-bounded Turing ma-
chine can compute a negative occurrence (i′, v′) linked to a positive occurrence (i, v)
by following edges of G

(N̂ [y1,...,ym],t̂)
= G

(N̂ [y1,...,ym],t)
, where t is the type decoration

for y1 : τ(d1), . . . , ym : τ(dm) ⇒ N̂ [y1, . . . , ym] : f(S). Again, the type decoration t
is not explicitly computed. There may be more than one maximal directed path
starting from (i, v), but any such path will do, so the machine simply picks the first
relevant edge that it can find at each point. Once the machine reaches a configura-
tion representing (wi′ , v′, ↑), it can then find the least j such that wj (≈N ∩ ≺)∗ wi′

using no more than logarithmic space.

Theorem 3.69. For every almost linear CFLG G , L(G ) belongs to LOGCFL.

Proof. The proof is similar to that of Theorem 3.44. Note that if P ։β N by

non-erasing β-reduction, then |
−−→
Con(P )| ≤ |

−−→
Con(N)|. This implies that whenever

program(G ) ∪ database(N◦) ⊢ S(tuple(N◦)) holds, there is a derivation tree for it
whose size is bounded by a polynomial in the number of occurrences of constants in
N .

4 Some consequences and extensions

4.1 Further complexity-theoretic consequences

We have seen that the problem of recognition for a fixed almost linear CFLG is in
LOGCFL. Since there is a context-free language that is LOGCFL-complete [27], it
follows that LOGCFL is a tight upper bound on the computational complexity of
fixed almost linear CFLG recognition.

Let us sketch some further complexity-theoretic consequences of this work. These
concern three different types of problems: (i) the problem of uniform recognition for
subclasses of almost linear CFLGs, (ii) the problem of parsing for a fixed almost
linear CFLG, and (iii) the problem of finding one target λ-term from an input λ-
term for a fixed almost linear synchronous CFLG.

4.1.1 Uniform recognition

If the grammar is not fixed and is part of the input, the recognition problem (known
as uniform recognition) is known to be P-complete for general context-free grammars,
and PSPACE-complete for non-deleting multiple context-free grammars [38, 39].
Since it is easy to translate non-deleting multiple context-free grammars into linear
CFLGs, the latter gives a lower bound on the complexity of uniform recognition for
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almost linear CFLGs. The EXPTIME-completeness of the program complexity of
general Datalog query evaluation [16] provides an upper bound; currently I do not
know whether either of these bounds is tight, however.

A lower complexity bound for uniform recognition can be obtained for restricted
subclasses of almost linear CFLGs. We call a Datalog program P k-bounded if k is
at least as large as the maximal arity of predicates in P and the number of variables
in any rule of P. For a k-bounded Datalog program P, the number of work tapes
needed in the “storage area” in the log-space-bounded ATM MP simulating P does
not exceed k. (The description of MP was given in Section 3.1.1.) With additional
work tapes to serve as pointers to rules and predicates in the Datalog program, the
program can be moved from the finite control of the ATM to part of the input.
The resulting log-space-bounded ATM can decide, given input (P, D, q) with P k-
bounded, whether P ∪ D ⊢ q. Now consider the class of k-bounded almost linear
CFLGs, i.e., almost linear CFLGs G such that program(G ) is k-bounded. As in
the proof of Lemma 3.68, it is clear that the translation from G to program(G ) can
be done in logarithmic space. This means that there is a log-space reduction from
the uniform recognition problem for k-bounded almost linear CFLGs to a problem
in ALOGSPACE = P. Since uniform recognition for CFGs whose rules are all of
the form A→ BC or A→ ǫ is already P-complete [36], it follows that the uniform
recognition problem for k-bounded almost linear CFLGs is P-complete.

It is folklore [55] that the uniform recognition problem for the class of context-
free grammars without ǫ-productions is in LOGCFL. What corresponds to an ǫ-
production in the case of CFLGs is a rule of the form

B(M)

(with an empty right-hand side) where M is a pure λ-term. We can eliminate all
such ǫ-rules from an almost linear CFLG by the same method that Kanazawa and
Yoshinaka [47] used for linear CFLGs, so the uniform recognition problem for the
class of almost linear CFLGs without ǫ-rules is of interest. If G is such a CFLG,
then all leaves of Datalog derivation trees for program(G ) are extensional nodes. By
the analysis in the proof of Lemma 3.2, we can show that the uniform recognition
problem for the class of ǫ-free k-bounded almost linear CFLGs is in LOGCFL.

4.1.2 Parsing

It is also interesting to ask the computational complexity of parsing, as opposed to
recognition. Functional LOGCFL (written FLLOGCFL) is the class of solution search
problems that can be solved by a deterministic log-space-bounded Turing machine
with a LOGCFL oracle [26]. It is a natural functional analogue of LOGCFL. Gottlob
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et al. [26] show that given an ATM M with simultaneous log-space and poly-size
bounds, the problem of finding a first accepting computation tree of M on input w
(within a given polynomial size bound) is in functional LOGCFL. In the course of
proving this result, they also show that the set of all accepting computation trees
(within a given polynomial size bound), in the form of a ‘shared forest’, can be
computed by a log-space-bounded Turing machine with a LOGCFL oracle. We can
use this result to show that the problem of parsing for a fixed almost linear CFLG
is in functional LOGCFL, but here we opt to give the following direct proof, which
is straightforward and more informative.

Let P be a Datalog program, D an extensional database for P, and q a ground
fact. The ‘shared forest’ representation of the set of all derivation trees for P∪D ⊢ q
is just the set F all ground instances

p(~s) :− p1(~s1), . . . , pl(~sl)

of rules p(~x) :− p1(~x1), . . . , pl(~xl) ∈ P that can appear in some derivation tree for
P ∪ D ⊢ q which use only constants from D ∪ {q}.38 Suppose that the number of
extensional nodes in any derivation tree for P ∪D ⊢ q is bounded by a number k,
depending only on D. In order to see whether p(~s) :− p1(~s1), . . . , pl(~sl) is in F , one
need only check whether there are derivation trees (with no more than k extensional
nodes) for

P ∪D ⊢ pi(~si) (i = 1, . . . , l)

and one for
P ∪ {p(~s)} ∪D ⊢ q

in which p(~s) appears on exactly one of its leaves. Let g(n) be the polynomial that
Lemma 3.2 associates with P. Then derivation trees for P∪D ⊢ pi(~si) (i = 1, . . . , l)
can be found from among those with at most g(k) nodes, if there are any. It is not
hard to see that the same reasoning as in the proof of Lemma 3.2 shows that the
minimal size of the required kind of derivation tree for P ∪ {p(~s)} ∪ D ⊢ q can be
bounded by g(k + 1). Thus, answers to these questions can be obtained through
oracle queries to two sets

{ (D, q1, 1
m) | there is a derivation tree for P ∪D ⊢ q1 of size ≤ g(m) },

{ ({q2} ∪D, q1, 1
m) | there is a derivation tree for P ∪ {q2} ∪D ⊢ q1 of size ≤ g(m)

with q2 on exactly one leaf }.

38It would be more appropriate to call the set F the “reduced” shared forest, since a shared
parse forest in general may contain useless elements.
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The former is in LOGCFL by Lemma 3.1. A slight modification of its proof shows
that the latter is in LOGCFL, too, and it is easy to combine the two into a single
LOGCFL oracle. Thus, if (D, q, 1

k) is given as input, the set F can be computed in
logarithmic space with a LOGCFL oracle by cycling through all ground instances
of all rules in P.

Let P = program(G ) for some almost linear CFLG, and suppose (D, q) is ob-
tained from a λ-term N as in Theorems 3.65 and 3.69. Then we can take the
number k to be |

−−→
Con(N)|, and the set F can be computed in logarithmic space with

a LOGCFL oracle.

With the one-one correspondence between the rules of the Datalog program
program(G ) and the rules of the CFLG G , the set F can also be taken to be a
shared forest representation of the set of all derivation trees of G for the input λ-
term N . Thus, given an almost CFLG G , the problem of computing the shared
forest of all derivation trees of G for an input λ-term N is in functional LOGCFL.

4.1.3 Transduction with almost linear synchronous CFLGs

Suppose we are given a synchronous CFLG consisting of a pair of almost linear
CFLGs. Given an input λ-term M generated by one of the component CFLGs (call
it the “source-side” grammar), the set of all derivation trees of M can be efficiently
computed in the form of a shared forest, as we have seen above. In order to find a
“target-side” λ-term N that the synchronous grammar pairs with M , we can take
one of the derivation trees T , construct a λ-term P that the “target-side” CFLG
associates with T , and then compute the β-normal form N = |P |β of P . It is of
course impossible to explicitly enumerate all such N , because there may be infinitely
many derivation trees of M ; nor is there any simple “packed” representation of all
such N (because the set of all such N is in general as complex as the language
of an arbitrary almost linear CFLG). Let us therefore consider the computational
complexity of finding one λ-term N that the synchronous grammar pairs with M .

As in [26], a deterministic log-space-bounded Turing machine with a LOGCFL
oracle can compute a single derivation tree T of M (whenever there is one). It is easy
to see that given a derivation tree T , the λ-term P that the target-side grammar
associates with T can be computed in logarithmic space. Although the size of |P |β
is in general exponential in the size of P and so it is not feasible to compute |P |β
explicitly, the pair (database(P ), tuple(P )) can be computed in logarithmic space
as in the proof of Lemma 3.68. Since P is almost linear, by Lemma 3.54, |P |β is
the only λ-term in η-long β-normal form in Λ(database(P ), 〈γ〉(tuple(P ))), where γ
is the type that the target-side grammar assigns to P . So (database(P ), tuple(P ))
serves as a kind of compact representation of |P |β . (In fact, when |P |β is a tree,
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(database(P ), tuple(P )) is a representation of a term graph that unfolds to (the hy-
pergraph representation of) |P |β.) All in all, given a fixed almost linear synchronous
CFLG, the problem of finding one target-side λ-term N corresponding to an input
source-side λ-term M is in functional LOGCFL, if we allow as output a compact
representation of N in the form of a pair of a database and a tuple of constants.

Note that in the special case where P is linear and |P |β is an encoding of a string
or a tree, (database(P ), tuple(P )) is nothing but an explicit hypergraph represen-
tation of the latter. Thus, with respect to a fixed synchronous grammar consisting
of a linear string grammar (e.g., a CFG or MCFG) and an almost linear Montague
semantics, the problem of explicitly computing one surface realization of an input
logical form is in functional LOGCFL.

4.2 Regular sets as input

4.2.1 Parsing as intersection for linear CFLGs

In ordinary parsing/recognition of string languages, it is sometimes useful to allow
as input a regular set of strings (usually represented as a finite automaton), rather
than a single string. The resulting generalization of the problem is a key element
of the view of “parsing as intersection”, where the “shared parse forest” that is the
output of parsing is given in the form of a grammar generating the intersection of
the language of the original grammar and the input regular set. Various dynamic
parsing techniques can then be regarded as variants of Bar-Hillel et al.’s [5] original
proof of the closure of the context-free languages under intersection with regular
sets [52].

Many well-known grammar formalisms, including context-free grammars, tree-
adjoining grammars [37], (parallel) multiple context-free grammars [66], and IO
macro grammars [24], have the property that given a regular set R, any grammar G
can be “specialized” into a grammar G′ generating the intersection of the language
of G and R, in such a way that G is the image of G′ under a simple “projection”
that maps nonterminals of G′ to nonterminals of G. Kanazawa [40] has shown that
the same property holds of de Groote’s [17] abstract categorial grammars. Linear
context-free λ-term grammars are nothing but abstract categorial grammars whose
abstract vocabulary is second-order. Via encoding in linear CFLGs, Kanazawa’s [40]
result provides a uniform proof of closure under intersection with regular sets for
linear formalisms such as context-free grammars, (multi-component) tree-adjoining
grammars, and multiple context-free grammars.

Theorem 3.40 shows how the recognition problem for linear CFLGs in a gener-
alized form, where an input is a set of λ-terms represented by a pair of a database
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and a type, reduces to Datalog query evaluation. It is easy to see that any regular
set of strings or trees can be represented in this way. In the string case, a non-
deterministic finite automaton with an initial state qI and just one final state qF

translates into the pair (D, qF → qI), where D is the database consisting of all facts
of the form c(q, r) such that the automaton has a transition from state q to state r
labeled by c. In the tree case, a nondeterministic bottom-up finite automaton with
a unique final state qF translates into the pair (D, qF ), where D is the database
consisting of all facts f(q, qn, . . . , q1) such that the automaton has a transition rule
f(q1(x1), . . . , qn(xn)) → q(f(x1, . . . , xn). More generally, any set of λ-terms that
can be expressed as the set Λ(D, α) with a database D and a type α can be used as
an input to recognition with a linear CFLG.

With Lemma 3.31, the problem of parsing in this generalized setting reduces to
the problem of computing (a representation of) the set of all derivation trees from a
Datalog program P and a database D. The connection to parsing as intersection is
that the specialized grammar generating the intersection language corresponds to the
propositional Horn clause program consisting of the database D and an appropriate
subset of the set

⋃
π∈P

ground(π, UD) of ground instances of rules in P.

4.2.2 Almost linear CFLGs and deterministic databases

As we noted, Theorem 3.40 does not hold of almost linear CFLGs, because there
is no analogue of part (ii) of Lemma 3.34 for non-erasing almost non-duplicating
β-reduction: if D is a database over DΣ,U and α ∈ T (A), the set Λ(D, α) is not
always closed under the converse of non-erasing almost non-duplicating β-reduction.
One sufficient condition for this closure property to hold is given by the following
definition:

• D is said to be deterministic if for all types γ1, . . . , γm and all atomic types
p, q,

Λ(D, γ1→ · · · → γm→ p) ∩ Λ(D, γ1→ · · · → γm→ q) 6= ∅

implies p = q.

It is not difficult to show that determinism is a decidable property of databases, but
I leave a detailed analysis of this notion for another occasion.39

Lemma 4.1. Let Σ = (A, C, τ) be a higher-order signature, M, M ′ ∈ Λ(Σ) be typable
λ-terms, and D be a deterministic database over DΣ,U . If M ′ ։β M by non-erasing
almost non-duplicating β-reduction, then M ∈ Λ(D, α) implies M ′ ∈ Λ(D, α).

39In particular, I have been unable to settle the question whether database(N◦) is deterministic
whenever N◦ is almost linear.
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Proof. Let M = (T , f, b), M ′ = (T ′, f ′, b′) be typable closed λ-terms, and let t′ be
a principal type decoration of M ′. Assume M ∈ Λ(D, α) and M ′ w

→β M by a
non-erasing almost non-duplicating one-step β-reduction. Let {v1, . . . , vk} = { v |
b′(w00v) = w0 }. By assumption, k ≥ 1. Since the case k = 1 is taken care of by
Lemma 3.34, part (ii), assume k ≥ 2 and t′(w1) = p for some atomic type p. Since
M ∈ Λ(D, α), there is a type decoration t̂ for

z1 : δ1, . . . , zm : δm ⇒ M̂ [z1, . . . , zm] : α,

where
−−→
Con(M) = (c1, . . . , cm) and for i = 1, . . . , m, we have ci(δi) ∈ D and 〈τ(ci)〉 =

〈δi〉.
To show that M ′ ∈ Λ(D, α), it suffices to prove that

t̂(wv1) = t̂(wvi) for all i ∈ {1, . . . , n}. (61)

For, if (61) holds, then it is easy to see that there are a subset {i1, . . . , im′} of
{1, . . . , m} and a function g : {1, . . . , m} → {i1, . . . , im′} satisfying the following
conditions:

ci = cg(i) for all i ∈ {1, . . . , m},

M̂ ′[zi1 , . . . , zim′
]

w
→β M̂ [zg(1), . . . , zg(m)],

⊢ zi1 : δi1 , . . . , zim′
: δim′

⇒ M̂ [zg(1), . . . , zg(m)] : α,

⊢ zi1 : δi1 , . . . , zim′
: δim′

⇒ M̂ ′[zi1 , . . . , zim′
] : α,

M̂ ′[ci1 , . . . , cim′
] = M ′.

The reasoning here is similar to that in the proof of Lemma 3.52.
We prove (61). Let ℓ′ be a writing of M ′. There exists a writing ℓ of M that

agrees with ℓ′ on {u ∈ T ′(1) | u < w } such that subM ′,ℓ′(w1) = subM,ℓ(wvi) for
i = 1, . . . , k. Let N = subM ′,ℓ′(w1) and let n be the number of occurrences of
constants in N . Clearly, we have a function h : {1, . . . , k}×{1, . . . , n} → {1, . . . , m}
such that

sub
M̂ [z1,...,zm],ℓ

(wvi) = N̂ [zh(i,1), . . . , zh(i,n)].

Let FV(N) = {y1, . . . , yr}. Then ℓ and t̂ determine types γ1, . . . , γr such that

⊢ y1 : γ1, . . . , yr : γr, zh(i,1) : δh(i,1), . . . , zh(i,n) : δh(i,n) ⇒ N̂ [zh(i,1), . . . , zh(i,n)] : t̂(wvi).

Similarly, ℓ′ and t′ determine types γ′
1, . . . , γ′

r such that

⊢Σ y1 : γ′
1, . . . , yr : γ′

r ⇒ N : p.
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There are two cases to consider.

Case 1. |N |β = yj
~Q and γ′

j = ~β′→ p. Then we must have γj = ~β→ t̂(wvi) for

all i ∈ {1, . . . , k}. Hence t̂(wv1) = t̂(wvi) for all i ∈ {1, . . . , k}.

Case 2. |N |β = cj
~Q and τ(cj) = ~β′ → p. Then for all i ∈ {1, . . . , k},

|N̂ [zh(i,1), . . . , zh(i,n)]|β = zh(i,1)
~Pi and δh(i,1) = ~βi→ t̂(wvi) for some ~Pi and ~βi such

that ~β′ and ~βi are sequences of types of the same length. Since ch(i,1) = cj , it must

be that 〈τ(cj)〉 = 〈δh(i,1)〉, which implies that t̂(wvi) = qi for some atomic qi. Then
we have

⊢ zh(i,1) :δh(i,1), . . . , zh(i,n) :δh(i,n) ⇒ λy1 . . . yr.N̂ [zh(i,1), . . . , zh(i,n)] :γ1→· · ·→γr→qi,

which implies

λy1 . . . yr.N ∈ Λ(D, γ1→ · · · → γr→ qi).

Since D is deterministic, it follows that q1 = qi.

Lemma 4.2. Let Σ = (A, C, τ) be a higher-order signature, U be a set of database
constants, D be a deterministic database over DΣ,U , and α ∈ T (A). For every
almost linear closed λ-term M ∈ Λ(Σ), M ∈ Λ(D, α) if and only if |M |β ∈ Λ(D, α).

Proof. The “only if” direction is by Lemma 3.34, part (i). Since the β-reduction
M ։β |M |β must be non-erasing and almost non-duplicating (Lemma 3.49), the
“if” direction follows from Lemma 4.1.

Theorem 4.3. Let G = (N , Σ, f, P, S) be an almost linear CFLG and B ∈ N .
Let U be some set of constants, D be a deterministic database over DΣ,U , and ~s be
a sequence of constants from U such that |~s| = |f(S)|. The following are equivalent:

(i) L(G ) ∩ Λ(D, 〈f(S)〉(~s)) 6= ∅.

(ii) program(G ) ∪D ⊢ S(~s).

Proof. The implication from (ii) to (i) is by Lemma 3.36.

(i) ⇒ (ii). Assume (i). Then there is an almost linear λ-term P ∈ Λ(Σ) such
that ⊢G S(P ) and |P |β ∈ Λ(D, 〈f(S)〉(~s)). Since P is almost linear, Lemma 4.2
implies P ∈ Λ(D, 〈f(S)〉(~s)). Then (ii) follows by Lemma 3.35.

It is easy to see that if D is a database representing a finite automaton A (on
strings), then D is deterministic if and only if A is. If D is a database representing
a bottom-up tree automaton A , then, again, D is deterministic if and only if A

is. So Theorem 4.3 applies when a regular set is given as input in the form of a
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deterministic finite (string or tree) automaton.40 The string case of this result is not
useful, however, because every almost linear CFLG generating λ-term encodings of
strings is equivalent to some linear CFLG.41

With respect to tree languages, almost linear CFLGs are more powerful than
linear CFLGs, and can encode grammars that allow copying of subtrees, like IO
context-free tree grammars. For these grammars, Theorem 4.3 implies that parsing
as intersection where input is given in the form of a deterministic bottom-up tree
automaton reduces to Datalog query evaluation.

4.2.3 An application to string grammars with copying

This last point can be exploited to show that there is a way of representing recogni-
tion/parsing (of ordinary single-string input) with respect to some string grammars
with copying operations, such as IO macro grammars and parallel multiple context-
free grammars, in terms of Datalog query evaluation, even though Theorem 3.65
is powerless for that purpose. Such a string grammar can always be turned into
a corresponding tree grammar that generates a tree language whose yield image is
the language of the string grammar. Since tree copying can be represented by al-
most linear λ-terms, these tree grammars can be encoded in almost linear CFLGs.
Moreover, we can associate with every string w a regular set of trees that yield w so
that the language of the tree grammar has a non-empty intersection with that set
of trees if and only if w is in the language of the original string grammar.

For example, consider the following parallel multiple context-free grammar [66]:42

S(x1x2) :− A(x1, x2).

A(1, 0).

A(x1x21, x20) :− A(x1, x2).

40When the automaton has more than one final state, non-empty intersection is equivalent to a
disjunction of queries of the form “?− S(qI , q)” (in the string case) or “?− S(q)” (in the tree case),
one for each final state q. To reduce this to a single query, one can add the rules of the form
“S′ :− S(qI , q)” or “S′ :− S(q)” for all final states q, and use the query “?− S′”.

41This can be seen as follows. Suppose that P ∈ Λ(Σ) is an almost linear closed λ-term such
that |P |β = /c1 . . . cn/ = λz.c1(. . . (cnz) . . . ). Then by Lemma 3.49, P ։β |P |β by non-erasing,

almost non-duplicating β-reduction. But Lemma 3.60 implies that
−−→
Con(P ) is some permutation

(cj1
, . . . , cjn

) of (c1, . . . , cn), and P̂ [zj1
, . . . , zjn

] ։β λz.z1(. . . (znz) . . . ) by non-erasing, almost non-
duplicating β-reduction. However, it is easy to see that the set of non-affine pure λ-terms is closed
under non-erasing almost non-duplicating β-reduction. Since λz.z1(. . . (znz) . . . ) is linear, it follows

that P̂ [zj1
, . . . , zjn

], and hence P , must be linear.
42The notation here follows that of elementary formal systems [72, 4, 28], which are logic pro-

grams on strings.
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This grammar generates the language {wn | n ≥ 1 }, where wn = 1010
2 . . . 10

n. The
third rule involves copying of the variable x2. The translation of this grammar into
a CFLG looks as follows:

S
(
λz.X(λx1x2.x1(x2z))

)
:− A(X).

A
(
λw.w(λz.1z)(λz.0z)

)
.

A
(
λw.X(λx1x2.w(λz.x1(x2(1z)))(λz.x2(0z)))

)
:− A(X).

Here, f(S) = o→ o, and f(A) = ((o→ o)→ (o→ o)→ o)→ o. This grammar is not
almost linear, since the bound variable x2 in the λ-term on the left-hand side of the
third rule must have a non-atomic type in the principal typing of the λ-term.

Here is a grammar that generates a set of trees whose yield image is the language
of the above PMCFG:

S(c(x1, x2)) :− A(x1, x2).

A(1, 0).

A(c(x1, c(x2, 1)), c(x2, 0)) :− A(x1, x2).

Here, c is a symbol of rank 2, and 1 and 0 are symbols of rank 0. A grammar like
this, where a nonterminal denotes a relation on trees and a rule may duplicate trees,
may be called a parallel multiple regular tree grammar, in analogy with a multiple
regular tree grammar [60, 23]. For example, the tree

c(c(1, c(0, 1)), c(0, 0))

is generated by the above tree grammar with the following derivation:

S(c(c(1, c(0, 1)), c(0, 0)))

A(c(1, c(0, 1)), c(0, 0))

A(1, 0)

The yield of this tree is 10100 = w2.
It is straightforward to encode the above tree grammar into an almost linear

CFLG:

S
(
X(λx1x2.cx1x2)

)
:− A(X).

A
(
λw.w10

)
.

A
(
λw.X(λx1x2.w(cx1(cx21))(cx20))

)
:− A(X).
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Here, f(S) = o and f(A) = (o→ o→ o)→ o. This CFLG G translates into the
following Datalog program PG :

S(i1) :− c(i2, i4, i3), A(i1, i2, i4, i3).

A(i1, i1, i3, i2) :− 1(i2), 0(i3).

A(i1, i2, i8, i3) :− c(i3, i5, i4), c(i5, i7, i6), 1(i7), c(i8, i9, i6), 0(i9), A(i1, i2, i6, i4).

The above Datalog program PG can be used to parse input strings with respect
to the original PMCFG. For example, if the input string is 10100, we first form a
deterministic bottom-up tree automaton A that recognizes the set of trees over the
ranked alphabet {1(0), 0

(0), c(2)} whose yield is 10100. The states of this automaton
are of the form qw, where w is one of the non-empty substrings of this string:

0, 1, 00, 01, 10, 010, 100, 101, 0100, 1010, 10100

For each of these strings w and nonempty strings u, v such that w = uv, the au-
tomaton A has the rule

c(qu(x1), qv(x2))→ qw(c(x1, x2)).

which gives rise to the extensional fact

c(qw, qv, qu).

Moreover, for each symbol a occurring in w, the automaton has the rule

a→ qa(a)

which translates into the extensional fact

a(qa).

The database obtained this way is deterministic. In the present case, we get the
database D consisting of the following facts (we write w instead of qw):43

0(0). 1(1).

c(00, 0, 0). c(01, 0, 1). c(10, 1, 0).

43If the PMCFG rules contain occurrences of the empty string ǫ, then the corresponding PMRTG
will have a special rank 0 symbol corresponding to ǫ, and one needs to take all substrings of the
input string, not just non-empty ones, in the construction of the automaton A . The automaton
will then represent the syntactic monoid of the singleton set consisting of the input string.
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c(010, 0, 10). c(010, 01, 0).

c(100, 1, 00). c(100, 10, 0).

c(101, 1, 01). c(101, 10, 1).

c(0100, 0, 100). c(0100, 01, 00). c(0100, 010, 0).

c(1010, 1, 010). c(1010, 10, 10). c(1010, 101, 0).

c(10100, 1, 0100). c(10100, 10, 100). c(10100, 101, 00). c(10100, 1010, 0).

By Theorem 4.3,
PG ∪D ⊢ S(10100) (62)

if and only if G generates (the λ-term representation of) a tree whose yield is 10100.
This is so if and only if the original PMCFG generates this string. Since the rules of
the PMCFG are in one-one correspondence with the rules of G , parsing the string
with this PMCFG reduces to the problem of computing all derivation trees for (62),
in the form of a shared forest.

This reduction generally applies to the yield images of the tree languages that
can be generated by almost linear CFLGs. It is shown in unpublished work [44] that
the class of tree languages generated by almost linear CFLGs coincides with the class
of output languages of tree-valued attribute grammars or attributed tree transducers
(see [11]). As a consequence, the class of yield images of these tree languages is
simply the class of output languages of string-valued attribute grammars, studied by
Engelfriet [22].

Clearly, the deterministic bottom-up tree automaton A (and the corresponding
database) associated with the input string can be constructed in logarithmic space.
Note that all trees accepted by A have the same number of constants, namely 2n−1
for input string of length n.44 This implies that recognition and parsing with these
grammars are in (functional) LOGCFL, matching the result of Engelfriet [22].45

4.2.4 An application to generation from underspecified semantics

Koller et al. [49] have proposed to use a regular tree grammar as an underspecified
representation of various readings of sentences with multiple scope-taking operators.
However, when the operators include variable-binders, a tree is not ideally suited to
represent the scope relation because one needs to associate a variable name to each

44This number assumes that A does not have a special symbol representing the empty string.
45Note that parsing as intersection with these grammars, where the input is a regular set of

strings, can also be represented as Datalog query evaluation. The deterministic bottom-up tree
automaton that determines the database and query can be obtained from the syntactic monoid of
the input regular set.
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S
(
λz.Y (λy1y2.y1(y2z)), X

)
:− NP_VP(Y, X).

NP_VP
(
λw.Y (λy1y2.w(λz.y1z)(λz.didn’t(y2z))), ¬X

)
:− NP_VP(Y, X).

NP_VP
(
λw.w(λz.Y1z)(λz.Y2z), X1(λx.X2x)

)
:− NP(Y1, X1), VP(Y2, X2).

NP_VP
(
λw.Y1(λy1y2.w(λz.y1z)(λz.y2(Y2z))), X2(λx.X1x)

)
:− NP_V(Y1, X1), NP(Y2, X2).

NP_V
(
λw.Y (λy1y2.w(λz.y1z)(λz.didn’t(y2z))), λx.¬(Xx)

)
:− NP_V(Y, X).

NP_V
(
λw.w(λz.Y1z)(λz.Y2z), λy.X1(λx.X2yx)

)
:− NP(Y1, X1), V(Y2, X2).

VP
(
λz.didn’t(Y z), λx.¬(Xx)

)
:− VP(Y, X).

VP
(
λz.Y1(Y2z), λx.X2(λy.X1yx)

)
:− V(Y1, X1), NP(Y2, X2).

NP
(
λz.Y1(Y2z), λv.X1(λx.X2x)(λx.vx)

)
:− Det(Y1, X1), N(Y2, X2).

Det
(
/a/, λuv.∃(λx.∧(ux)(vx))

)
.

Det
(
/every/, λuv.∀(λx.→(ux)(vx))

)
.

Det
(
/no/, λuv.∀(λx.→(ux)(¬(vx)))

)
.

Det
(
/not every/, λuv.¬(∀(λx.→(ux)(vx)))

)
.

N
(
/book/, λx.book x

)
.

N
(
/student/, λx.student x

)
.

V
(
/read/, λyx.read y x

)
.

Figure 13: A synchronous CFLG.

occurrence of a binder to represent the binding relation. These variable names must
be chosen in such a way as to avoid clashes of variables, and some mechanism is
needed to identify α-equivalent representations (i.e., representations that differ only
in renaming of bound variables).

A compact representation of a set of λ-terms, rather than trees, will improve
upon Koller et al.’s [49] approach. We can use a deterministic database D over a
database schema DΣ,U associated with a higher-order signature Σ as a representation
of a set of λ-terms over Σ. If the syntax-semantics is given as a “synchronous” CFLG
whose semantics side is an almost linear CFLG G , then Theorem 4.3 tells us that
D can serve as an “underspecified” input to surface realization.

For example, the synchronous CFLG in Figure 13 generates every student didn’t

read a book with six possible readings:

∀(λx.→(student x)(¬(∃(λy.∧(book y)(read y x)))))

∀(λx.→(student x)(∃(λy.∧(book y)(¬(read y x)))))

¬(∀(λx.→(student x)(∃(λy.∧(book y)(read y x)))))

¬(∃(λy.∧(book y)(∀(λx.→(student x)(read y x)))))

∃(λy.∧(book y)(∀(λx.→(student x)(¬(read y x)))))
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∃(λy.∧(book y)(¬(∀(λx.→(student x)(read y x)))))

The set of these λ-terms can be represented by the following database:

student(s, x). book(b, y). read(r, x, y).

¬(¬, r). ¬(∃¬, ∃). ¬(∀¬, ∀). ¬(∀∃¬, ∀∃).

∧(∧, r, b). ∧(∧¬, ¬, b). ∧(∧∀, ∀, b). ∧(∧∀¬, ∀¬, b).

∃(∃, ∧, y). ∃(∃¬, ∧¬, y). ∃(∀∃, ∧∀, y). ∃(∀∃¬, ∧∃¬, y).

→(→, r, s). →(→¬, ¬, s). →(→∃, ∃, s). →(→∃¬, ∃¬, s).

∀(∀, →, x). ∀(∀¬, →¬, x). ∀(∀∃, →∃, x). ∀(∀∃¬, →∃¬, x).

In this database (call it D), we use mnemonic names like ∀∃¬, instead of integers,
as database constants. For instance, λ-terms in Λ(D, ∀∃) contain ∀ and ∃, but not
¬. A database like this can be thought of as a hypergraph that can be obtained
from the disjoint union of the hypergraphs corresponding to the above six almost
linear λ-terms by identifying certain nodes and hyperedges. It is easy to check
that this database is deterministic; it can then be used together with the Datalog
program associated with the semantic side of the synchronous grammar in Figure 13
to obtain a shared parse forest of all derivation trees of sentences that have at least
one reading in common with the sentence every student didn’t read a book—namely,
no student read a book, not every student read a book, and the same sentence itself.
This procedure is more efficient than the brute-force method, where each reading of
the sentence is input to a surface realization routine in turn.46

4.3 Magic sets and Earley-style algorithms

The magic-sets rewriting of a Datalog program allows bottom-up evaluation to avoid
deriving useless facts by mimicking top-down evaluation of the original program. The
result of the generalized supplementary magic-sets rewriting of Beeri and Ramakr-
ishnan [8] applied to the Datalog program representing a CFG essentially coincides
with the deduction system [69] or uninstantiated parsing system [70] for Earley pars-
ing [20]. By applying the same rewriting method to Datalog programs representing
almost linear CFLGs, we can obtain efficient parsing and generation algorithms for
various grammar formalisms with context-free derivations.

46There is the question of how a deterministic database representing the range of possible readings
of a sentence can be found, if one exists. In the case at hand, there is a way of constructing the
desired database from the shared parse forest of the sentence by duplicating certain nodes (namely,
the NP nodes and the Det nodes). However, it is easy to see that no such deterministic database
may exist in general. It is an open question when and how a desired database can be constructed
efficiently.
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We illustrate this approach with the program in (6), repeated below, following the
presentation of Ullman [77, 78]. We assume the query to take the form “?−S(0, x).”,
so that the input database can be processed incrementally.

S(i1, i3) :− A(i1, i3, i2, i2).
A(i1, i8, i4, i5) :− a(i1, i2), b(i3, i4), c(i5, i6), d(i7, i8), A(i2, i7, i3, i6).
A(i1, i2, i1, i2).

(6)

The program is first made safe by eliminating the rule with empty right-hand side:

S(i1, i3) :− A(i1, i3, i2, i2).
A(i1, i8, i4, i5) :− a(i1, i2), b(i3, i4), c(i5, i6), d(i7, i8), A(i2, i7, i3, i6).
A(i1, i8, i4, i5) :− a(i1, i2), b(i2, i4), c(i5, i6), d(i6, i8).

The subgoal rectification removes duplicate arguments from subgoals, creating new
predicates as needed:

S(i1, i3) :− B(i1, i3, i2).
A(i1, i8, i4, i5) :−, a(i1, i2), b(i3, i4), c(i5, i6), d(i7, i8), A(i2, i7, i3, i6).
A(i1, i8, i4, i5) :− a(i1, i2), b(i2, i4), c(i5, i6), d(i6, i8).
B(i1, i8, i4) :−, a(i1, i2), b(i3, i4), c(i4, i6), d(i7, i8), A(i2, i7, i3, i6).
B(i1, i8, i4) :− a(i1, i2), b(i2, i4), c(i4, i6), d(i6, i8).

We then attach to predicates adornments indicating the free/bound status of argu-
ments in top-down evaluation, reordering subgoals so that as many arguments as
possible are marked as bound:

Sbf(i1, i3) :− Bbff(i1, i3, i2).
Bbff(i1, i8, i4) :− a

bf(i1, i2), Abfff(i2, i7, i3, i6), b
bf(i3, i4), c

bb(i4, i6),
d

bf(i7, i8).
Bbff(i1, i8, i4) :− a

bf(i1, i2), b
bf(i2, i4), c

bf(i4, i6), d
bf(i6, i8).

Abfff(i1, i8, i4, i5) :− a
bf(i1, i2), Abfff(i2, i7, i3, i6), b

bf(i3, i4), c
bb(i5, i6),

d
bf(i7, i8).

Abfff(i1, i8, i4, i5) :− a
bf(i1, i2), b

bf(i2, i4), c
ff(i5, i6), d

bf(i6, i8).

The generalized supplementary magic-sets rewriting finally gives the following rule
set:

r1 : m_B(i1) :− m_S(i1).

r2 : S(i1, i3) :− m_B(i1), B(i1, i3, i2).

r3 : sup2.1(i1, i2) :− m_B(i1), a(i1, i2).
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r4 : sup2.2(i1, i7, i3, i6) :− sup2.1(i1, i2), A(i2, i7, i3, i6).

r5 : sup2.3(i1, i7, i6, i4) :− sup2.2(i1, i7, i3, i6), b(i3, i4).

r6 : sup2.4(i1, i7, i4) :− sup2.3(i1, i7, i6, i4), c(i4, i6).

r7 : B(i1, i8, i4) :− sup2.4(i1, i7, i4), d(i7, i8).

r8 : sup3.1(i1, i2) :− m_B(i1), a(i1, i2).

r9 : sup3.2(i1, i4) :− sup3.1(i1, i2), b(i2, i4).

r10 : sup3.3(i1, i4, i6) :− sup3.2(i1, i4), c(i4, i6).

r11 : B(i1, i8, i4) :− sup3.3(i1, i4, i6), d(i6, i8).

r12 : m_A(i2) :− sup2.1(i1, i2).

r13 : m_A(i2) :− sup4.1(i1, i2).

r14 : sup4.1(i1, i2) :− m_A(i1), a(i1, i2).

r15 : sup4.2(i1, i7, i3, i6) :− sup4.1(i1, i2), A(i2, i7, i3, i6).

r16 : sup4.3(i1, i7, i6, i4) :− sup4.2(i1, i7, i3, i6), b(i3, i4).

r17 : sup4.4(i1, i7, i4, i5) :− sup4.3(i1, i7, i6, i4), c(i5, i6).

r18 : A(i1, i8, i4, i5) :− sup4.4(i1, i7, i4, i5), d(i7, i8).

r19 : sup5.1(i1, i2) :− m_A(i1), a(i1, i2).

r20 : sup5.2(i1, i4) :− sup5.1(i1, i2), b(i2, i4).

r21 : sup5.3(i1, i4, i5, i6) :− sup5.2(i1, i4), c(i5, i6).

r22 : A(i1, i8, i4, i5) :− sup5.3(i1, i4, i5, i6), d(i6, i8).

The following is a version of the seminaive bottom-up evaluation algorithm ex-
pressed in the form of chart parsing:

1. (init) Initialize the chart to the empty set, the agenda to the singleton
{m_S(0)}, and n to 0.

2. Repeat the following steps:

(a) Repeat the following steps until the agenda is exhausted:

i. Remove a fact from the agenda, called the trigger.

ii. Add the trigger to the chart.

iii. Generate all facts that are immediate consequences of the trigger
together with all facts in the chart, and add to the agenda those gen-
erated facts that are neither already in the chart nor in the agenda.
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(b) (scan) Remove the next fact from the input database and add it to the
agenda, incrementing n. If there is no more fact in the input database,
go to step 3.

3. If S(0, n) is in the chart, accept; otherwise reject.

The following is the trace of the algorithm on input string aabbccdd; the derived
facts are recorded in the order they enter the agenda:

1. m_S(0) init

2. m_B(0) r1, 1
3. a(0, 1) scan

4. sup2.1(0, 1) r3, 2, 3
5. sup3.1(0, 1) r8, 2, 3
6. m_A(1) r12, 4
7. a(1, 2) scan

8. sup4.1(1, 2) r14, 6, 7
9. sup5.1(1, 2) r19, 6, 7

10. m_A(2) r13, 8
11. b(2, 3) scan

12. sup5.2(1, 3) r20, 9, 11
13. b(3, 4) scan

14. c(4, 5) scan

15. sup5.3(1, 3, 4, 5) r21, 12, 14
16. c(5, 6) scan

17. sup5.3(1, 3, 5, 6) r21, 12, 16
18. d(6, 7) scan

19. A(1, 7, 3, 5) r22, 17, 18
20. sup2.2(0, 7, 3, 5) r4, 4, 19
21. sup2.3(0, 7, 5, 4) r5, 20, 13
22. sup2.4(0, 7, 4) r6, 21, 14
23. d(7, 8) scan

24. B(0, 8, 4) r7, 22, 23
25. S(0, 8) r2, 2, 24

Note that unlike previous Earley-style parsing algorithms for TAGs, the present
algorithm is an instantiation of a general schema that applies to parsing with more
powerful grammar formalisms as well as to generation with Montague semantics.47

5 Conclusion

This paper has shown that recognition and parsing for a wide range of grammars
with “context-free” derivations, as well as surface realization (tactical generation)
for those grammars coupled with a certain restricted kind of Montague semantics, all
reduce to Datalog query evaluation and hence allow highly efficient algorithms. The
method of reduction is uniform for both recognition/parsing and surface realization,
and the complexity upper bound that has been established, namely, LOGCFL, is

47The above Earley-style recognition algorithm for tree-adjoining languages does not have the
correct prefix property, a desirable feature for Earley-style algorithms for string grammars. See [43]
for how to supplement magic-sets rewriting with another simple rewriting to achieve the correct
prefix property.
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tight. By regarding the problem of surface realization as the problem of recogni-
tion/parsing of languages of λ-terms, this paper has demonstrated that it is possible
to study surface realization abstractly in the style of formal language theory, just like
parsing. I hope that the methods employed here help pave the way for eliminating
much of the ad hoc methodology that is so common in computational linguistics.
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Abstract

This talk presents foundations of mathematics as a historically variable set
of principles appealing to various modes of human intuition and devoid of any
prescriptive/prohibitive power. At each turn of history, foundations crystallize
the accepted norms of interpersonal and intergenerational transfer and justifi-
cation of mathematical knowledge.

Introduction
Foundations vs Metamathematics. In this talk, I will interpret the idea of
Foundations in the wide sense. For me, Foundations at each turn of history embody
currently recognized, but historically variable, principles of organization of math-
ematical knowledge and of the interpersonal/transgenerational transferral of this
knowledge. When these principles are studied using the tools of mathematics itself,
we get a new chapter of mathematics, metamathematics.

Modern philosophy of mathematics is often preoccupied with informal interpre-
tations of theorems, proved in metamathematics of the XX–th century, of which the
most influential was probably Gödel’s incompleteness theorem that aroused consid-
erable existential anxiety.

In metamathematics, Gödel’s theorem is a discovery that a certain class of finitely
generated structures (statements in a formal language) contains substructures that
are not finitely generated (those statements that are true in a standard interpreta-
tion).
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It is no big deal for an algebraist, but certainly interesting thanks to a new
context.

Existential anxiety can be alleviated if one strips “Foundations” from their rigid
prescriptive/prohibitive, or normative functions and considers various foundational
matters simply from the viewpoint of their mathematical content and on the back-
ground of whatever historical period.

Then, say, the structures/categories controversy is seen in a much more realistic
light: contemporary studies fuse (Bourbaki type) structures and categories freely,
naturally and unavoidably.

For example, in the definition of abelian categories one starts with structurizing
sets of morphisms: they become abelian groups. In the definition of 2–categories,
the sets of morphisms are even categorified: they become objects of categories, whose
morphisms become then the morphisms of the second level of initial category. Since
in this way one often obtains vast mental images of complex combinatorial structure,
one applies to them principles of homotopy topology (structural study of topological
structures up to homotopy equivalence) in order to squeeze it down to size etc.

I want to add two more remarks to this personal credo.
First, the recognition of quite restrictive and historically changing normative

function of Foundations makes this word somewhat too expressive for its content.
In a figure of speech such as “Crisis of Foundations” it suggests a looming crash of
the whole building (cf. similar concerns expressed by R. Hersh, [8]).

But, second, the first “Crisis of Foundations” occurred in a very interesting his-
torical moment, when the images of formal mathematical reasoning and algorithmic
computation became so precise and detailed that they could be, and were, described
as new mathematical structures: formal languages and their interpretations, par-
tial recursive functions. They could easily fit Bourbaki’s universe, even if Bourbaki
himself was too slow and awkward to really appreciate the new development.

At this juncture, contemporary “foundations” morphed into a superstructure,
high level floor of mathematics building itself. This is the reason why I keep using
the suggestive word “metamathematics” for it.

This event generated a stream of philosophical thought striving to recover the
lost normative function. One of the reasons of my private mutiny against it (see e.g.
[11]) was my incapability to find any of the philosophical arguments more convincing
than even the simplest mathematical reasonings, whatever “forbidden” notions they
might involve.

In particular, whatever doubts one might have about the scale of Cantorial car-
dinal and ordinal infinities, the basic idea of set embodied in Cantor’s famous “defi-
nition”, as a collection of definite, distinct objects of our thought, is as alive as ever.
Thinking about a topological space, a category, a homotopy type, a language or a
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model, we start with imagining such a collection, or several ones, and continue by
adding new types “of distinct objects of our thought”, derivable from the previous
ones or embodying fresh insights.

To summarize: good metamathematics is good mathematics rather than shackles
on good mathematics.

Plan of the article. Whatever one’s attitude to mathematical Platonism might
be, it is indisputable that human minds constitute an important part of habitat of
mathematics. In the first section, I will postulate three basic types of mathematical
intuition and argue that one can recognize them at each scale of study: personal,
interpersonal and historical ones.

The second section is concerned with historical development of the dichotomy
continuous/discrete and evolving interrelations between its terms.

Finally, in the third section I briefly recall the discrete structures of linear lan-
guages studied in classical metamathematics, and then sketch the growing array of
language–like non–discrete structures that gradually become the subject–matter of
contemporary metamathematics.

1 Modes of mathematical intuition

1.1 Three modes. I will adopt here the viewpoint according to which at the
individual level mathematical intuition, both primary and trained one, has three
basic sources, that I will describe as spatial, linguistic, and operational ones.

The neurobiological correlates of the spatial/linguistic dichotomy were elaborated
in the classical studies of lateral asymmetry of brain. When its mathematical content
is objectivized, one often speaks about the opposition continuous/discrete.

The linguistic/operational dichotomy is observed in many experiments studying
proto–mathematical abilities of animals. Animals, when they solve and communi-
cate solutions of elementary problems related to counting, use not words but actions:
cf. some expressive descriptions by Stanislas Dehaene in [6], Chapter 1: “Talented
and gifted animals”. Operational mode, when it is externalized and codified, be-
comes a powerful tool for social expansion of mathematics. Learning by rote of
“multiplication table” became almost a symbol of democratic education.

The sweeping subdivision of mathematics into Geometry and Algebra, to which
at the beginning of modern era was added Analysis (or Calculus) can be considered
as a correlate on the scale of whole (Western) civilization of the trichotomy that we
postulated above on the scale of an individual (cf. [2]).
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It is less widely recognized that even at the civilization scale, at various histor-
ical periods, each of the spatial, linguistic and operational modes of mathematical
intuition can dominate and govern the way that basic mathematical abstractions
are perceived and treated.

I will consider as an example “natural” numbers. Most of us nowadays immedi-
ately associate them with their names: decimal notation 1, 2, 3, ... , 1984, ... , perhaps
completed by less systemic signs such as 106 or XIX.

This was decidedly not always so as the following examples stretching over cen-
turies and millennia show.

1.2 Euclid and his “Elements”: spatial and operational vs linguistic.
For Euclid, a number was a “magnitude”, a potential result of measurement. Mea-
surement of a geometric figure A by a “unit”, another geometric figure U , was
conceived as a “physical activity in mental space”: moving a segment of line inside
another segment, step by step; paving a square by smaller squares etc. Inequality
A < B roughly speaking, meant that a figure A could be moved to fit inside B
(eventually, after cutting A into several pieces and rearranging them in the interior
of B).

In this sense, Euclidean geometry might be conceived as “physics of solid bodies
in the dimensions one, two and three” (or more precisely, after Einstein, physics
in gravitational vacuum of respective dimension). This pervasive identification of
Euclidean space with our physical space probably influenced the history of Euclid’s
“fifth postulate”. This history includes repeating attempts to prove it, that is, to
deduce properties of space “at infinity” from observable ones at a finite distance,
and then only reluctant acceptance of the Bólyai and Lobachevsky non–Euclidean
spaces as “non–physical” ones.

As opposed to addition and subtraction, the multiplication of numbers naturally
required passage into a higher dimension: multiplying two lengths, we get a surface.
This was a great obstacle, but, I think, also opened for trained imagination the
door to higher dimensions. At least, when Euclid has to speak about the product
of an arbitrary large finite set of primes (as in his proof involving p1 . . . pn + 1), he
is careful to explain his general reasoning by the case of three factors, but without
doubt, he had some mental images overcoming this restriction.

In fact, the strength of spatial and operational imagination required and achieved
by modern mathematics can be glimpsed on a series of examples, starting, say
with Morse theory and reaching Perelman’s proof of Poincaré conjecture. Moreover,
physicists could produce such wonders as Feynman’s path integral and Witten’s
topological invariants, which mathematicians include in their more rigidly organized
world only with considerable efforts.
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At first sight, it might seem strange that the notion of a prime number, theorem
about (potential) infinity of primes, and theorem about unique decomposition could
have been stated and proved by Euclid in his geometric world, when no systematic
notation for integers was accepted as yet, and no computational rules dealing with
such a notation rather than numbers themselves were available.

But trying to rationalize this historical fact, one comes to a somewhat paradoxical
realization that an efficient notation, such as Hindu–Arabic numerals, actually does
not help, and even hinders the understanding of properties related to divisibility,
primality etc. that is, all properties that refer to numbers themselves rather than
their names.

In fact, the whole number theory could come into being only unencumbered by
any efficient notation for numbers.

1.3 “Algorist and Abacist”: linguistic vs operational. The dissemina-
tion of a positional number system in Europe after the appearance of Leonardo
Fibonacci’s Liber Abaci (1202) was, in essence, the beginning of the expansion of a
universal, truly global language. Its final victory took quite some time.

The book by Gregorio Reisch, Margarita Philosophica, was published in Stras-
bourg in 1504. One engraving in this book shows a female figure symbolizing Arith-
metics. She contemplates two men, sitting at two different tables, an abacist and an
algorist.

The abacist is bent over his abacus. This primitive calculating device survived
until the days of my youth: every cashier in any shop in Russia, having accepted a
payment, would start calculating change clicking movable balls of her abacus.

The algorist is computing something, writing Hindu–Arabic numerals on his
desk. The words “algorist” and modern “algorithm” are derived from the name of
the great Al Khwarezmi (born in Khorezm c. 780).

In the context of this subsection, the abacus illustrates the operational mode
whereas computations with numerals do the same for linguistic one (although in
other contexts the operational side of such computations might dominate).

This engraving in the reception of contemporary readers was more politicised.
It symbolized coming of a new epoch of democratic learning.

The Catholic Church supported the Roman tradition, usage of Roman numerals.
They were fairly useless for practical commercial bookkeeping, calender computa-
tions such as dates of Easter and other moveable feasts etc. Here the abacus was of
great help.

The competing tribe of algorists was able to compute things by writing strange
signs on paper or sand, and their art was associated with dangerous, magical, secret
Muslim knowledge. Al Khwarezmi teaching became their (and our) legacy.

Arithmetics blesses both practitioners.
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1.4 John Napier and Alan Turing: operational. The nascent programming
languages for centuries existed only as informal subdialects of a natural language.
They had a very limited (but crucially important) sphere of applicability, and were
addressed to human calculators, not electronic or mechanical ones. Even Alan Turing
in the 20th century, when speaking of his universal formalization of computability,
later called Turing machine, used the word “computer” to refer to a person who
mechanically follows a finite list of instructions lying before him/her.

The ninety–page table of natural logarithms that John Napier published in his
book Mirifici Logarithmorum Canonis Descriptio in 1614 was a paradoxical example
of this type of activity that became a cultural and historical monument on a global
scale. Napier, who computed the logarithms manually, digit by digit, combined
in one person the role of creator of new mathematics and that of computer–clerk
who followed his own instructions. His assistant Henry Briggs later performed this
function.

Napier’s tables were tables of (approximate values of) natural logarithms, with
the base e = 2, 718281828... . However, it seems that he neither referred to e explic-
itly, nor even recognized its existence. Roughly speaking, after having chosen the
precision which he wanted to calculate logarithms, say with error < 10−7, he dealt
with integer powers of the number 1 + 10−8, whose 108 power was close to e.

This is one more example of the seemingly paradoxical fact, that an efficient and
unified notation for objects of mathematical world can hinder a theoretical under-
standing of this world.

All the more amazing was the philosophical insight of Leibniz, who in his famous
exhortation Calculemus! postulated that not only numerical manipulations, but any
rigorous, logical sequence of thoughts that derives conclusions from initial axioms can
be reduced to computation. It was the highest achievement of the great logicians of
the 20th century (Hilbert, Church, Gödel, Tarski, Turing, Markov, Kolmogorov,...)
to draw a precise map of the boundaries of the Leibnizian ideal world, in which

· reasoning is equivalent to computation;

· truth can be formalized, but cannot always be verified formally;

· the “whole truth” even about the smallest infinite mathematical universe, nat-
ural numbers, exceeds potential of any finitely generated language to generate
true theorems.

The central concept of this program, formal languages, inherited the basic fea-
tures of both natural languages (written form fixed by an alphabet) and the posi-
tional number systems of arithmetic. In particular, any classical formal language is
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one–dimensional (linear) and consists of discrete symbols that explicitly express the
basic notions of logic.

Euclid found the remedy for the deficiencies of this linearity by strictly restricting
role of natural language to the expression of logic of his proofs. The content of his
mathematical imagination was transmitted by pictures.

2 Continuous or discrete? From Euclid to Cantor to
homotopy theory

2.1 From continuous to discrete in “Elements”. As we have seen, integers
(and a restricted amount of other real numbers) for Euclid were results of (mental)
measurement: discrete came from continuous. This was one–way road: continuous
could not be produced from discrete. The idea that a line “consists” of points, so
familiar to us today, does not seem to belong to Euclid’s mental world and, in fact,
to mental worlds of many subsequent generations of mathematicians until Georg
Cantor. For Euclid, a point can be (a part of) the boundary of a (segment) of line,
but such a segment cannot be scattered to a heap of points.

Geometric images are the source and embodiment not only of numbers, but of
logical reasoning as well: in “Elements” at least a comparable part of its logic is
encoded in figures rather than in words.

This was made very clear in the London publication of 1847, entitled

THE FIRST SIX BOOKS OF

THE ELEMENTS OF EUCLID
IN WHICH COLOURED DIAGRAMS AND SYMBOLS

ARE USED INSTEAD OF LETTERS FOR THE

GREATER EASE OF LEARNERS

whose author was Oliver Byrne, “Surveyor of her Majesty’s settlements in the Falk-
lands Islands”, (see a recent republication [5]).

Byrne literally writes algebraic formulas whose main components are triangles,
colored sectors of circle, segments of line etc. connected by more or less conventional
algebraic signs.

2.2 From discrete to continuous: Cantor, Dedekind, Hausdorff, Bour-
baki ... This way is so familiar to my contemporaries that I do not have to spend
much time to its description. The description of a mathematical structure, such as
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a group, or a topological space, according to Bourbaki starts with one or several un-
structured sets, to which one adds elements of a these sets or derived sets satisfying
restrictions formulated in terms of set theory.

Thus the twentieth century idea of “continuous” is based upon two parallel no-
tions: that of topological space X (a set with the system of “open” subsets) and that
of a “continuous map” f : X → Y between topological spaces. Further elaboration
involving sheaves, topoi etc does not part with this basic intuition.

However, the set–theoretic point of departure helped enrich the geometric intu-
ition by images that were totally out of reach earlier. The discovery of difference
between continuous and measurable (from Lebesgue integral to Brownian motion to
Feynman integral) was a radical departure from Euclidean universe.

In a finite–dimensional context, one could now think about Cantor sets, Haus-
dorff dimension and fractals, curves filling a square, Banach–Tarski theorem. In
infinite–dimensional contexts wide new horizons opened, starting with topologies of
Hilbert and Banach linear spaces and widening in an immense universe of topology
and measure theory of non–linear function spaces.

2.3 From continuous to discrete: homotopy theory. One of the most im-
portant development of topology was the discovery of main definitions and results
of homotopy theory. Roughly speaking, a homotopy between two topological spaces
X,Y is a continuous deformation producing Y from X, and similarly a homotopy
between two continuous maps f, g : X → Y is a continuous deformation producing
g from f . A homotopy type is the class of spaces that are homotopically equivalent
pairwise. To see how drastically the homotopy can change a space, one can note
that a ball, or a cube, of any dimension is contractible, that is, can be homotopically
deformed to a point, so that dimension ceases to be invariant.

The basic discrete invariant of the homotopy type of X is the set of its connected
components π0(X). To see, how this invariant gives rise to one of the basic structures
of mathematics, ring of integers Z, consider a real plane P with a fixed orientation, a
point x0 on it, different from (0, 0), and the set of homotopy classes of loops (closed
paths) in P , starting and ending at x0 and avoiding (0, 0). This latter set can be
canonically identified with Z: just count the number of times the loop goes around
(0, 0). Each loop going in the direction of orientation counts as +1, where as the
“counter–clockwise” loops count as −1.

On a very primitive level, this identification shows how the ideas of homotopy
naturally introduce negative numbers. In the historically earlier periods when inte-
gers were measuring geometric figures (or counting real/mental objects) even idea
of zero was very difficult and slowly gained ground in the symbolic framework of
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positional notation. Introduction of negative numbers required appellation to an
extra–mathematical reality, such as debt in economics.

More generally, Voevodsky in his research project [14] introduces the following
hierarchy of homotopy types graded by their h–levels. Zero level homotopy type
consists of one point representing contractible spaces. If types of level n are already
defined, types of level n+ 1 consist of spaces such that the space of paths between
any two points belongs to type of level n.

He further interprets types of level 1, represented by one point and empty sets,
as truth values, and types of level 2 as sets. All sets in this universe are thus of the
form π0(X).

Higher levels are connected with theory of categories, poly–categories etc, and
we will return to them in the next section. At this point, we mention only that
Voevodsky hierarchy does not replace sets but rather systematically embeds set–
theoretical and categorical constructions and intuitions into a vaster universe where
continuous and discrete are treated on an equal footing.

3 Language–like mathematical structures
and metamathematics

3.1 Metamathematics: mathematical studies of formalized languages of
mathematics. Philosophy of mathematics in the XX–th century had to deal with
lessons of metamathematics, especially of Gödel’s incompleteness theorem.

As I have already said, I will consider metamathematics as a special chapter
of mathematics itself, whose subject is the study of formal languages and their
interpretations. On the foreground here were the first order formal languages, a
formalization of Euclid’s and Aristotle’s legacy. Roughly speaking, to Euclid we owe
the mathematics of spatial imagination (and/or kinematics of solid bodies), whereas
Aristotle founded the mathematics of logical deduction, expressed in “Elements” by
natural language and creative usage of drawings.

An important parallel development of formal languages involved languages for-
malizing programs for and processes of computation, of which chronologically first
in the XX–th century was Church’s lambda calculus [9].

An important feature of lambda calculus is the absence of formal distinctions
between the language of programs and the language of input/output data (unlike
Turing’s machines, where a machine “is” the program, whereas input/output are
represented by binary words). When, due to von Neumann’s insights, this feature
became implemented in hardware, lambda calculus was rediscovered and became in
the 1960’s the basis of development of programming languages.
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These languages are linear, in the following sense: the set of all syntactically cor-
rect expressions in a formal language L could be described as a Bourbaki structure
consisting of a certain words, – finite sequences of letters in a given alphabet, and
finite sequences of such words, expressions. Words and expressions must be syn-
tactically correct (precise description of this is a part of definition of each concrete
language). Letters of alphabet are subdivided into types: variables, connectives and
quantifiers, symbols for operations, relations ... Syntactically correct expressions
can be terms, formulas, ...

Such Bourbaki structures can be sufficiently rich to produce formal versions of
real mathematical texts, existing and potential ones, and make them an object of
study.

I will explain how the advent of category theory (and, to a lesser degree, theory
of computability) required enriched languages, that after formalization become at
first non–linear, and then multidimensional. Such languages require for their study
homotopy theory and suggest a respective enrichment of the universe in which in-
terpretations/models are supposed to live, from Sets to Homotopy Types, as in the
Voevodsky’s project (cf. above).

3.2 One–dimensional languages of diagrams and graphs. With the de-
velopment of homological algebra and category theory in the second half of the
XX–th century, the language of commutative diagrams began to penetrate ever
wider realms of mathematics. It took some time for mathematicians to get used to
“diagram-chasing.” A simply looking algebraic identity kg = hf , when it expresses
a property of four morphisms in a category, means that we are contemplating a
simple commutative diagram, in which, besides morphisms f, g, k, h, also the objects
A,B,C,D invisible in the formula kg = hf play key roles:

A

f
��

g
// B

k
��

C
h // D

Although this square is not a “linear expression”, one may argue that it, and its
various generalizations of growing size (even the whole relevant category), are still
“one–dimensional”. This means that they can be encoded in a graph, whose vertices
are labeled by (names of) objects of our category, whereas edges are labeled by pairs
consisting of an orientation and a morphism between the relevant objects.

Similarly, a program written in a linear programming language can be encoded
in a graph whose vertices are labeled by (names of) elementary operations that can
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be performed over the relevant data. To understand labeling of (oriented) edges,
one must imagine that they encode channels, forwarding output data calculated by
the operation at the start (input) of the edge to the its endpoint where they become
input of the next operation (or the final output, if the relevant vertex is labeled
respectively). Labels of edges might then include types of the relevant data.

3.3 From graphs to higher dimensions. Generally, a square of morphisms
as above need not be commutative (i. e. it is possible that kg 6= hf). In order to
distinguish these two cases graphically, we may decide to associate with a commu-
tative square the two–dimensional picture, by glueing the interior part of the square
to the relevant graph.

A well known generalization of this class of spaces are cell complexes, or, in more
combinatorial and therefore more language–like version, simplicial complexes. Of
course, we must allow labels of cells as additional structures.

In this way, we can get, for example, a geometric encoding of the category C by a
simplicial complex, in which labeled (n+ 1)–complexes are sequences of morphisms

X0
f0
// X1

f1
// . . .

fn−1
// Xn

whereas the face map ∂i omits one of the objects Xi and, if 1 ≤ i ≤ n− 1, replaces
the pair of arrows around Xi by one arrow labeled by the composition of the relevant
morphisms. The resulting simplicial space encodes the whole category in a simplicial
complex that is called the nerve of the category. Clearly, not only objects and
morphisms, but also all compositions of morphisms and relations between them can
be read off it.

Thus the language of commutative diagrams becomes a chapter of algebraic
topology, and when the study of functors is required, the chapter of homotopical
topology.

3.4 Quillen’s homotopical algebra and univalent foundations project.
In his influential book [13], Quillen developed the idea that the natural language for
homotopy theory should appeal not to the initial intuition of continuous deformation
itself, but rather to a codified list of properties of category of topological spaces
stressing those that are relevant for studying homotopy.

Quillen defined a closed model category as a category endowed with three special
classes of morphisms: fibrations, cofibrations, and weak equivalences. The list of ax-
ioms which these three classes of morphisms must satisfy is not long but structurally
quite sophisticated. They can be easily defined in the category of topological spaces
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using homotopy intuition but remarkably admit translation into many other situa-
tions. An interesting new preprint [7] even suggests the definition of these classes in
appropriate categories of discrete sets, contributing new insights to old Cantorian
problems of the scale of infinities.

Closed model categories become in particular a language of preference for many
contexts in which objects of study are quotients of “large” objects by “large” equiv-
alence relations, such as homotopy.

It is thus only natural that the most recent Foundation/Superstructure, Voevod-
sky’s Univalent Foundations Project (cf. [14] and [3]) is based on direct axiomati-
zation of the world of homotopy types.

As a final touch of modernism, the metalanguage of this project is a version
of typed lambda calculus, because its goal is to develop a tool for the computer
assisted verification of programs and proofs. Thus computers become more and
more involved in the interpersonal habitat of “theoretical” mathematics.

It remains to hope that humans will not be finally excluded from this habitat,
as some aggressive proponents of databases replacing science suggest (cf. [1]).

Post Scriptum: Truth and Proof in Mathematics

As I have written in [12], the notion of “truth” in most philosophical contexts is a
reification of a certain relationship between humans and texts/utterances/statements,
the relationship that is called “belief”, “conviction” or “faith”.

Professor Blackburn in [4] in his keynote speech to the Balzan Symposium on
“Truth” (where [12] was delivered) extensively discussed other relationships of hu-
mans to texts, such as scepticism, conservatism, relativism, deflationism. However,
in the long range all of them are secondary in the practice of a researcher in math-
ematics.

I will only sketch here what must be said about texts, sources of conviction, and
methods of conviction peculiar to mathematics.

Texts. Alfred North Whitehead said that all of Western philosophy was but a foot-
note to Plato.

The underlying metaphor of such a statement is: “Philosophy is a text”, the sum
total of all philosophic utterances.

Mathematics decidedly is not a text, at least not in the same sense as philosophy.
There are no authoritative books or articles to which subsequent generations turn
again and again for wisdom. Already in the XX–th century, researchers did not
read Euclid, Newton, Leibniz or Hilbert in order to study geometry, calculus or
mathematical logic. The life span of any contemporary mathematical paper or book
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can be years, in the best (and exceptional) case decades. Mathematical wisdom,
if not forgotten, lives as an invariant of all its (re)presentations in a permanently
self–renewing discourse.

Sources and methods of conviction. Mathematical truth is not revealed, and its
acceptance is not imposed by any authority.

Ideally, the truth of a mathematical statement is ensured by a proof, and the ideal
picture of a proof is a sequence of elementary arguments whose rules of formation
are explicitly laid down before the proof even begins, and ideally are common for all
proofs that have been devised and can be devised in future. The admissible starting
points of proofs, “axioms”, and terms in which they are formulated, should also be
discussed and made explicit.

This ideal picture is so rigid that it became the subject of mathematical study
in metamathematics.

But in the creative mathematics, the role of proof is in no way restricted to
its function of carrier of conviction. Otherwise, there would be no need for Carl
Friedrich Gauss to consider eight (!) different proofs the quadratic reciprocity law
(cf. [10] for an extended bibliography; I am grateful to Prof. Yuri Tschinkel for this
reference).

One metaphor of proof is a route, which might be a desert track boring and
unimpressive until one finally reaches the oasis of one’s destination, or a foot path
in green hills, exciting and energizing, opening great vistas of unexplored lands and
seductive offshoots, leading far away even after the initial destination point has been
reached.
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Abstract

Geometric sequents “A implies C” where all axioms A and conclusion C are
universal closures of implications of positive formulas play distinguished role in
several areas including category theory and (recently) logical analysis of Kant’s
theory of cognition. They are known to form a Glivenko class: existence of a
classical proof implies existence of an intuitionistic proof. Existing effective
proofs of this fact involve superexponential blow-up, but it is not known
whether such increase in size is necessary. We show that any classical proof of
such a sequent can be polynomially transformed into an intuitionistic geometric
proof of (classically equivalent but intuitionistically) weaker geometric sequent.

Keywords: Geometric Formulas, Glivenko Classes, Intuitionistic Logic.

Introduction
Geometric sequents (see definition below) play distinguished role in several areas
including category theory [3]. This fragment of first order logic attracted new atten-
tion in the light of recent work by Theodora Achourioti and Michiel van Lambalgen
[1] who propose a translation of the philosophical language of Kant’s theory of judge-
ments into the language of elementary logic and provide a convincing justification
of their view.

Geometric sequents are known to form a Glivenko class: existence of a classical
proof of a geometric sequent S implies existence of an intuitionistic proof. Existing
proofs of this fact involve superexponential blow-up, but we do not know whether
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such increase in size is necessary. We show that any classical proof of S can be poly-
nomially transformed into an intuitionistic geometric proof of (classically equivalent
but intuitionistically) slightly weaker geometric sequent.

We consider formulas of first order logic.

Definition 1. Positive formulas are constructed from atomic formulas and the con-
stant ⊥ by &,∨, ∃.

Geometric implications are positive formulas, implications of positive formulas
and results of prefixing universal quantifiers to such implications.

Geometric sequents are expressions of the form

I1, . . . In ⇒ I

where I1, . . . In, I are geometric implications.
A geometric derivation is a derivation consisting of geometric sequents.

The second proof of Theorem 1 given below is non-effective, but the first one
allows one to derive some complexity bound. The proof begins with construction
of a cut-free derivation, therefore the only obvious bound is the same as for cut-
elimination, that is hyperexponential one. This contrasts with the most prominent
Glivenko class, namely that of negative formulas. When a classical derivation of a
negative formula is given, its intuitionistic derivation is constructed by “negativizing”
all formulas in the derivation plus local changes to reinstate the inferences that were
destroyed by this transformation. These transformations are polynomial.

We show here a weaker result for geometric sequents. Any classical proof (with
cut) of a geometric sequent Γ ⇒ I can be polynomially transformed into an intu-
itionistic geometric proof of a geometric sequent D, Γ ⇒ I where D is obtained by
introducing abbreviations for some formulas. In fact D, Γ ⇒ I is intuitionistically
derivable iff Γ ⇒ I is intutionistically derivable, but on the surface the definitions
in D are only classical.

In section 1 we give two proofs of the Glivenko property of geometric sequents.
Section 2 describes depth-reducing transformations we need for our proofs. As

far as I know, this use of formulas (17-19) especially to achieve that the whole proof
is new. It is inspired by similar use of (18) by V. Orevkov [5] in a different situation.

Section 3 contains the proof of the main result.
We use ≡ for literal coincidence of syntactic objects and ↔ for a logical equiva-

lence connective.
LK, LJ are Gentzen’s systems for classical and intuitionistic logic, both with cut.
`c,`i denote derivability in classical or intuitionistic logic, that is in LK, LJ with

cut.
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A formula translation of a sequent S ≡ A1, . . . An ⇒ B1, . . . Bm is a formula
Sf ≡ (A1& . . . &An → B1 ∨ . . . ∨ Bm). Many notions defined for formulas are
generalized to sequents via the formula translation. For example S ↔ T for sequents
S, T means Sf ↔ T f .

c-models are ordinary models for the classical predicate logic, i-models are Kripke
models.

1 Geometric sequents have Glivenko property
The next theorem is well-known. The deductive proof given here is due to V. Orevkov
[5] and can be traced back to the work of H. Curry [2].
Theorem 1. A geometric sequent is derivable classically iff it is derivable intuition-
istically.
1. A deductive proof. Consider a cut-free proof of a geometric sequent

Γ→ I

in LK. Since the succedent rules for →, ∀ are invertible in LK, we can analyze away
initial universal quantifiers and implication in I, then assume that I is a positive
formula. After that the sequent Γ ⇒ I contains only connective occurrences that
give rise to rules

⇒ &,⇒ ∨,⇒ ∃, &⇒,∨ ⇒,∃ ⇒,→⇒ .

These rules are common for LK and LJm, hence our LK-derivation is already LJm-
derivation, as required. `

2. A model-theoretic proof. The idea here is rather similar, but I have not seen this
proof in literature. Suppose a geometric sequent Γ ⇒ I with positive formula I is
underivable in LJm. Consider its proof search tree in LJm (see for example Mints
[4]). This tree is not a derivation, and hence has a non-closed branch generating a
Kripke countermodel for Γ ⇒ I. The rules for analysis of the connectives ∀,→ in
succedent are not applied in this tree. But these are exactly the rules that add new
worlds to a model. Therefore the resulting model has just one world, and hence it
is a classical model refuting our sequent. `

2 Reducing formula depth
Familiar depth-reducing transformations by introduction of new predicate variables
are modified here to preserve geometric sequents. There are subtle points noted
below. Let’s first recall well-known facts.
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Let’s define a relation between formulas (widely used in literature without a
special name) which is weaker than provable equivalence but in some respects similar
to it.

Write F �s G where s ∈ {c, i} if

G ≡ F ′ → F and `s F ′[P1/F1, . . . Pn/Fn]

where Pi/Fi are substitutions (performed in this order) for predicate variables
P1, . . . Pn not occurring in F .

Lemma 1. Assume F �s G. Then

1. `s F iff `s G,

2. s-models for G are expansions (with respect to P1, . . . Pn) of s-models for F .

Proof. 1. `s F → G is obvious. If `s G then since G ≡ (F ′ → F ) the substitu-
tions P1/F1, . . . Pn/Fn and modus ponens yield `s F .

2. Similarly to 1.
`

Notation x below stands for x1, . . . xn with distinct variables x1, . . . xn.

Lemma 2. If x contains all free variables of formulas A(x), B(x) then

LJ ` ∀x(A(x)↔ B(x))→ (F (A)↔ F (B)).

Proof. Induction on F . `

Lemma 3. If P is a fresh n-ary predicate symbol, x contains all free variables of
the formula A(x) then for L ∈ {LJ, LK}

L `⇒ F (A) iff L ` ∀x(A(x)↔ P (x))⇒ F (P )

Proof. If L ` F (A), apply the previous Lemma.
If L ` ∀x(A(x) ↔ P (x)) ⇒ F (P ), substitute A for P . The antecedent of the

sequent becomes ∀x(A(x)↔ A(x)). `

For a given formula F assume that for every non-atomic subformula G of F
a fresh predicate symbol PG is chosen with the same arity as the number of free
variables of G. In particular PF has free variables of F as arguments. Atomic
subformula P (t1, . . . tn) is not changed.
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Symbols PG can be treated as pointers to subformulas of F . This informal
observation can be formalized by assigning equivalences EG to subformulas G in the
following way:

If G(x) ≡ H(y)�K(z) for � ∈ {&,∨,→} then

EG ≡ ∀x(PG(x)↔ (PH(y)� PK(z))) (1)

where y, z ⊆ x.
If G(x) ≡ QyH(x, y) for Q ∈ {∀,∃} then

EG ≡ ∀x(PG(x)↔ QyPH(x, y)). (2)

Lemma 4. Let G, H . . . F be all non-atomic subformulas of F . Then for L ∈
{LJ, LK}

L ` F ↔ L ` EG, EH , . . . EF ⇒ PF .

Proof. Apply previous Lemma successively to subformulas, beginning with the in-
nermost ones. `

Let’s rewrite equivalences (1),(2) as pairs or triples of implications, transforming
these implications in LJ-equivalent way.

∀x(PG&H(x) → PG(y)), (3)
∀x(PG&H(x) → PH(z)), (4)

∀x(PG(y)&PH(z) → PG&H(x); (5)
∀x(PG(y) → PG∨H(x)), (6)
∀x(PH(z) → PG∨H(x)), (7)

∀x(PG∨H(x) → (PG(y) ∨ PH(z)); (8)
∀x(P∃yPG

(x) → ∃yPG(x, y)) (9)
∀x∀y(PG(x, y) → P∃yPG

(x)) (10)
∀x∀y(P∀yPG

(x) → PG(x, y)); (11)
∗ ∀x(∀yPG(x, y) → P∀yPG

(x)) (12)
∗ ∀x(¬PG(x) → P¬G(x)) (13)

∀x(PG(x)&P¬G(x) → ⊥) (14)
∀x(PG→H(x)&PG(y) → PH(z)) (15)
∗ ∀x((PG(y)→ PH(z)) → PG→H(x)) (16)
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All these universally quantified implications are geometric except the three marked
by a *. Let’s replace them by classically equivalent geometric implications.

∀x∃y(PG(x, y) → P∀yPG
(x)) (17)

∀y(PG(y) ∨ P¬G(y)) (18)
∀x((PH(z)→ PG→H(x)) & (PG(y) ∨ PG→H(x))) (19)

Denote the resulting set of geometric implications (3-11), (14,15) and (17,18,19) for
subformulas of a set F of formulas by DEFF.

3 Transformation of classical derivations
In this section we mean by intuitionistic predicate calculus a multiple-succedent
formulation LJm (cf. Mints [4]) which differs from LK only in the requirement that
the list ∆ is empty in the succedent rules for →,¬,∀:

A, Γ⇒ ∆
Γ⇒ ∆,¬A

A, Γ⇒ ∆, B

Γ⇒ ∆, A→ B

Γ⇒ ∆, A(b)
Γ⇒ ∆, ∀xA(x)

Definition 2. Formulas ¬A, A → B, ∀xA introduced by these rules in an LK-
derivation are called below special formulas when ∆ is non-empty.

Let d be a derivation of a geometric sequent S in LK. Then f(d) denotes the set
of all cut formulas in d and DEFd denotes DEFf(d).

Theorem 2.

1. Let d be a derivation of a geometric sequent Π ⇒ Φ in LK. Then it can be
polynomially transformed into a geometric derivation in LJm of the sequent

DEFd, Π→ Φ

consisting of geometric sequents.

2. DEFd, Π⇒ Φ �c Π⇒ Φ.

3. `c DEFd, Π⇒ Φ iff `i DEFd, Π⇒ Φ iff `i Π⇒ Φ

Proof. We assume that all axioms A, Γ → ∆, A have atomic A. Using if needed
inversion transformations we assume that Φ consists of positive formulas. Then
every special formula F is traceable to a cut formula. More precisely, F ≡ F ′(t)
where F ′(x) is a subformula of some cut formula. Formula F ′ has a “representative”
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PF ′(x) in DEFd where x are free variables of F ′. In this sense any occurrence of a
formula F traceable to a cut formula has a representative which we write as PF (t).

Denote by d+ the result of replacing every such occurrence of F (t) as a separate
formula in a sequent in d by PF (t).

This replacement destroys inferences having such F (t) as principal formulas.
Consider these inferences in turn to show they can be repaired using DEFd.

Axioms are assumed to be atomic, therefore they are preserved. The cut infer-
ences become cuts on atomic formulas.

Antecedent inferences are repaired using geometric implications in Defd. For
example →-antecedent inference

Γ⇒ ∆, G(t1) H(t2), Γ⇒ ∆
G(t1)→ H(t2), Γ⇒ ∆

goes into the figure
Γ⇒ ∆, PG(t1) PH(t2), Γ⇒ ∆

PG→H(t), Γ⇒ ∆

which is transformed using the formula PG→H(t)&PG(t1) → PH(t2) denoted below
by I which is an instance of a formula (15) in DEFd.

axiom
PG→H(t)⇒ PG→H(t) Γ⇒ ∆, PG(t1)

PG→H(t), Γ⇒ ∆, PG→H(t)&PG(t1) PH(t2), Γ⇒ ∆
I, PG→H(t), Γ⇒ ∆

DEFd, PG→H(t), Γ⇒ ∆ ∀ ⇒

Other antecedent rules and succedent rules common to LK and LJm are treated
similarly. Of the remaining rules consider ¬,→ and ∀ in succedent. Given derivations
are transformed as follows. The derivation

G, Γ⇒ ∆
Γ⇒ ∆,¬G

goes to
PG(t), Γ⇒ ∆ P¬G(t)⇒ P¬G(t)
PG(t) ∨ P¬G(t), Γ⇒ ∆, P¬G(t) ∨ ⇒

DEFd, Γ⇒ ∆, P¬G(t)

The derivation
G, Γ⇒ ∆, H

Γ⇒ ∆, G→ H
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goes to

PG(t1), Γ⇒ ∆, PH(t2) axioms
PH(t2)→ PG→H(t), PG(t1) ∨ PG→H(t), Γ⇒ ∆, PG→H(t)

∨ ⇒,→⇒

DEFd, Γ⇒ ∆, PG→H(t)

The derivation
Γ→ ∆, G(b)

Γ→ ∆,∀yG(y)

goes to
Γ→ ∆, PG(t, b) P∀yG(y)(t)→ P∀yG(y)(t)
PG(t, b)→ P∀yG(y)(t), Γ→ ∆, P∀yG(y)(t)

→⇒

∃y(PG(y, t)→ P∀yG(y)(t)), Γ→ ∆, P∀yG(y)(b, t) ∃ →

DEFd, Γ→ ∆, P∀yG(y)(t)

This completes the proof of the first part of the theorem.
The second part follows from classical derivability of the results of substitution

PG/G into formulas in DEFd.
For the third part, if `c DEFd, Π→ Φ then substitution PG/G for G ∈ f(d) yields

`c Π⇒ Φ, then (by Theorem 1) `i Π⇒ Φ and hence `c DEFd, Π⇒ Φ completing
the chain of equivalences. As pointed out in the Introduction, the transformation in
Theorem 1 is not polynomial. `
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This paper studies a Glivenko sequent class, i.e. a class of sequents where classical
derivability entails intuitionistic derivability; more specifically, the paper is about
“geometric sequents”. The main old result in this topic is a direct consequence [11]
of Barr’s theorem.1 As background, Mints sketches an old deductive proof (from
[7]) and an old model-theoretic proof, as in Exercise 2.6.14 of [10]; but, his interest
being in complexity of proof transformations, he gives a third proof, of a result both
more and less general.

A modern reconstruction [6] of Orevkov’s proof [7, Theorem 4.1, part (1)] relies
on what we would now call the “cut-free G3c calculus” [9], in which Cut and other
structural rules are admissible and all the logical rules are invertible (indeed, height-
preserving invertible). His result is that the list (or “σ-class”) [→+,¬+,∀+] is a
“completely Glivenko class”; in other words, he shows that if a sequent with a single
succedent has no positive occurrences of →, ¬ or ∀ then its classical derivability
implies its intuitionistic derivability. In modern terminology, this means just that
if a sequent Γ ⇒ A (where Γ consists of geometric implications and A is a positive
formula) is derivable in cut-free G3c, then it is already derivable in the intuitionistic
calculus m-G3i (also from [9]). The proof method actually shows the stronger result,
that the cut-free G3c derivation is already a m-G3i derivation. The weaker result
extends to the case where A is a geometric implication by using the invertibility in
cut-free G3c of the succedent rules for the three mentioned connectives. Other work,

1 “Let E be a Grothendieck topos. Then there is a complete Boolean algebra B and an exact
cotripleable functor E → FB”, FB being the topos of sheaves over B [1].

Vol. 4 No. 4 2017
IfCoLog Journal of Logics and their Applications



R. Dyckhoff and S. Negri

such as [4], related to the deductive proof of this result, is cited in the bibliographies
of [5] and [6]. The usefulness of cut-free G3 calculi in the study of Glivenko classes
has been further demonstrated in [6], with direct proofs of generalisations of results
in [7].

Mints’ interest, however, in this paper is in derivations in G3c with Cut. One
can apply standard cut-elimination transformations, and then those corresponding
to the inversions; but this leads to a “super-exponential blow-up”, as can be seen in
a similar context in [9, Section 5.2]. How can this be avoided? One solution is just to
start with a cut-free derivation. One can go even further, using the cut-free calculi
introduced in [5], where the axioms Γ are replaced by inference rules: this avoids
proof transformations entirely (since, in such calculi, classical proofs of a geometric
implication A are already intuitionistic proofs). But, Mints would insist that G3c
with Cut is a traditional (i.e. respectable) starting point.

The question then arises: can the transformation be changed so that there is an
at most polynomial expansion of the derivation? Clearly it should not begin with
cut elimination, so a trick is needed to handle instances of the Cut rule rather than
eliminating them. The trick is attributed to Orevkov [7]; one might also attribute
it to Skolem, who pioneered in [8] the use of what [2] should have called “relational
Skolemisation”, i.e. the replacement, by introduction of new relation symbols, of
complex formulae by atomic formulae. When this is sufficiently thorough to ensure
that every formula is equivalent to an atomic formula, it is called “atomisation” or
“Morleyisation”; this paper doesn’t go so far.

The novel result of this paper is now the result (both weaker and stronger)
that, if d is a classical proof of a geometric sequent, then it can be polynomially
transformed into an intuitionistic proof of the sequent conservatively extended by
extra antecedent formulae that are geometric implications. These extra implications
are generated by relational Skolemisation of the subformulae of the cut formulae in
d. The result is weaker by virtue of having these extra implications; it is stronger
by virtue of the complexity reduction.

There are the following points at which the paper is incorrect:

1. Mints’ (9) should be ∀x(P∃yG(x) → ∃yPG(x, y)) rather than ∀x(P∃yPG
(x) →

∃yPG(x, y));

2. His (10) should be ∀x∀y(PG(x, y) → P∃yG(x)) rather than ∀x∀y(PG(x, y) →
P∃yPG

(x));

3. His (11) should be ∀x∀y(P∀yG(x) → PG(x, y)) rather than ∀x∀y(P∀yPG
(x) →

PG(x, y));
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4. His (12) should be ∀x(∀yPG(x, y) → P∀yG(x)) rather than ∀x(∀yPG(x, y) →
P∀yPG

(x));

5. His (19) (replacing (16)) is not a geometric implication;

6. His (17) (replacing (12)) is not a geometric implication.

The first four of these problems are minor: note that in Mints’ (9) the suffix
∃yPG is not a subformula of one of the cut-formulae, and similarly for (10), (11)
and (12). The penultimate problem can be fixed by distributing ∀x across the
conjunction, thus obtaining two geometric implications: ∀x(PH(z) → PG→H(x))
and ∀x(PG(y) ∨ PG→H(x)). [It has already been made clear that y and z are
subsets of the set x of variables.]

The final problem is not so easily fixed: the paper wrongly claims that the
formula ∀x∃y(PG(x, y) → P∀yPG

(x)) is a geometric implication. This is not fixed by
changing (12) (as proposed above) to ∀x(∀yPG(x, y) → P∀yG(x)) and then obtaining
∀x∃y(PG(x, y) → P∀yG(x)); this is still not geometric, because of the implication
within the scope of the existential quantifier.

A partial solution may be had by changing this formula to the geometric impli-
cation

∀x(∃yP¬G(x, y) ∨ P∀yG(x)) (17)
but this introduces a new relation symbol P¬G, where ¬G may not be a subformula
of one of the cut formulae. To fix this problem, the relational Skolemisation needs
to be applied not just to all such subformulae but also to all their negations.

With these changes, the application of the extra formulae (i.e. members of DEFd)
to deal with the special formulae of the derivation is unchanged for implication. We
show (for example) the effects of improving (9) on the treatment of an antecedent
∃-inference and of correcting the treatment of universal quantification.

The improved version of (9) is ∀x(P∃yG(x) → ∃yPG(x, y)). The step

G(b),Γ ⇒ ∆
∃yG(y),Γ ⇒ ∆

is transformed to
PG(y)(t, b),DEFd,Γ ⇒ ∆

∃yPG(y)(t, y)),DEFd,Γ ⇒ ∆ ∃⇒
.

DEFd, P∃yG(y)(t),Γ ⇒ ∆
Using the improved version of (17), the step

Γ ⇒ ∆, G(t, b)
Γ ⇒ ∆, ∀yG(t, y)
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is transformed (with some implicit weakenings to save space and aid readability) to

DEFd, Γ ⇒ ∆, PG(x,y)(t, b)
P¬G(x,y)(t, b), DEFd, Γ⇒∆, PG(x,y)(t, b) W kn

P¬G(x,y)(t, b), DEFd, Γ⇒∆, P¬G(x,y)(t, b) ∧ PG(x,y)(t, b)
⇒∧, axiom

P¬G(x,y)(t, b), ¬(P¬G(x,y)(t, b) ∧ PG(x,y)(t, b)), DEFd, Γ⇒∆
¬⇒

P¬G(x,y)(t, b), DEFd, Γ⇒∆
∃yP¬G(x,y)(t, y), DEFd, Γ⇒∆ ∃⇒

P∀yG(x,y)(t), Γ⇒∆, P∀yG(x,y)(t) axiom

∃yP¬G(x,y)(t, y) ∨ P∀yG(x,y)(t), DEFd, Γ⇒∆, P∀yG(x,y)(t)
∨⇒

DEFd, Γ⇒∆, P∀yG(x,y)(t) .

Note the importance of having P∀yG(x,y)(t) (rather than, from the succedent of the
old (17), Mints’ P∀yPG

(t)) in the antecedent of the lowest axiom step. It is not the
case that ∀yPG(x,y) (i.e. Mints’ ∀yPG) is a subformula of one of the cut formulae;
the presence of the fresh predicate symbol PG(x,y) forbids this.

Note also the use of the Weakening rule Wkn; either this rule should be included
in the m-G3i calculus or the admissibility of the rule exploited once the derivation
has been fully transformed.
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1 Introduction
The advent of Kripke semantics marked a decisive turning point for philosophical
logic: earlier axiomatic studies of modal concepts were replaced by a solid semantic
method that displayed the connections between modal axioms and conditions on the
accessibility relation between possible worlds. However, the success of the semantic
method was not followed by equally powerful syntactic theories of modal and con-
ditional concepts and reasoning: Concerning the former, the situation was depicted
by Melvin Fitting in his survey in the Handbook of Modal Logic [7] as: “No proof
procedure suffices for every normal modal logic determined by a class of frames”;
In the chapter on tableau systems for conditional logics, Graham Priest stated that
“there are presently no known tableau systems of the kind used in this book for S”
(Lewis’ logic for counterfactuals) ( [40], p. 93).

The insufficiency of traditional Gentzen systems to meet the challenge of the de-
velopment of a proof theory for modal and non-classical logic has led to alternative
formalisms which, in one way or another, extend the syntax of sequent calculus.

Parts of the results of this paper were presented in workshops and conferences whose respective
organisers are gratefully acknowledged: Proof theory of modal and non-classical logics, Helsinki,
August 2015 (Giovanna Corsi), Workshop Trends in Proof Theory, Hamburg, September 2015
(Stefania Centrone), Estonian-Finnish Logic Meeting, Rakvere, November 2015 (Tarmo Uustalu).
The paper was completed during a stay at the University of Verona, within the “Programma di
Internazionalizzazione di Ateneo, Anno 2015, Azione 3, Cooperint.” Discussions with my host Peter
Schuster have been very useful. Finally, detailed and insightful comments by two referees have
contributed to improving the paper.
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There have been two main lines of development, one that enriches the structure of
sequents (display calculi, hypersequents, nested sequents, tree-hypersequents, deep
inference), another that maintains their simple structure but adds labels, thus in-
ternalizing the possible worlds semantics within the proof system. In particular, for
the proof theory of conditional logics there have been several contributions in the
literature from both approaches [1, 10,12,20,30,34–36,44].1.

In his work of 1997, Grisha Mints has been among the forerunners2 of the latter
approach to the sequent calculus proof theory of modal logic.3 In [23], he showed
how one can obtain sequent calculi for normal modal logics with any combination
of reflexivity, transitivity, and symmetry in their Kripke frames. Possible worlds
were represented as prefixes, in fact, finite sequences of natural numbers, with the
properties of the accessibility relations of a Kripke frame implicit in the management
of prefixes in the logical rules. By this approach, it was possible to give a proof
of cut elimination that can be considered as a formalization of Kripke’s original
completeness proof.

By making explicit the accessibility relation and by using variables, rather than
sequences for possible worlds, it is possible to capture a much wider range of modal
logics, in particular those characterised by geometric frame conditions, with prop-
erties such as seriality or directness of the accessibility relation; by using the con-
version of geometric implications into rules that extend sequent calculus in a way
that maintains the admissibility of structural rules [24], it has been possible to ob-
tain a uniform presentation of a large family of modal logics, including provability
logic, with modular proofs of their structural properties [25] and direct semantic
completeness proofs [26].

Later, this labelled sequent calculus approach to the proof theory of modal logic
has been extended to wider frame classes [27], and in further work it has been shown
how the method can capture any logic characterized by first-order frame conditions
in its relational semantics [5]; the reason is that arbitrary first-order theories can be
given an analytic treatment through the extension of G3-style sequent calculi with
geometric rules. Notably, in these calculi, all the rules are invertible and a strong
form of completeness holds, with a simultaneous construction of formal proofs, for
derivable sequents, or countermodels, for underivable ones, as shown in [28].

Despite their wide range of applications, the powerful methods of Kripke seman-
tics are not a universal tool in the analysis of philosophical logics: they impose the
straitjacket of normality, i.e., validity of the rule of necessitation, from ` A to infer

1See the conclusion of [34] for a discussion and comparison of these different formalisms.
2See also the extensive studies of labelled systems for modal logics and non-classical logics in

A. Simpson’s PhD dissertation from 1994 [42] and L. Viganò’s monograph from 2000 [45].
3Labelled tableaux, on the other hand, were developed since the early 1970’s, cf. [6].
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` 2A, and of the K axiom, 2(A ⊃ B) ⊃ (2A ⊃ 2B). The limitative character of
these imposed validities becomes clear in epistemic logic: with the epistemic reading
of the modality, an agent knows A if A holds in all the epistemic states available
to her, and then the normality properties yield that (1) whatever has been proved is
known and that (2) an agent knows all the logical consequences of what she knows.
This leads to logical omniscience, clearly inadequate for cognitive agents with human
capabilities, and thus to the rejection of both requirements. The same limitation is
clear in the interpretation of the modality as a likelihood operator where one sees
that the normal modal logic validity 2A&2B ⊃ 2(A&B) should be avoided.

Another limitation in systems based on a Kripke-style semantics is that the
propositional base is classical or intuitionistic logic. In both cases, one is forced
to an implication which has been shown since the analysis of C.I. Lewis to be an
inadequate form of conditional if a logical analysis is to be pursued in other venues
than mathematics: the classical propositional base of modal logic is insufficient to
treat conditionals beyond material or strict implication, as shown by David Lewis’
path-breaking book Counterfactuals [22], and intuitionistic implication shares many
of the undesired properties of (classical) material implication.

The early literature on the semantics of conditional logic started with an attempt,
in the work of Stalnaker, to reduce the reading of the conditional to a standard pos-
sible worlds semantics through the notion of limit and selection functions [43]. This
approach has been criticized as inadequate in many cases: first, the aforementioned
limit might not exist (as shown by Lewis in [22]), second, it can be too difficult to
achieve and so cannot be taken as a standard basis for a formalization (as in the
perfectly moral life of deontic systems), third, it could be impossible to define as in
situations with more than one ordering, or, more concretely, conflicting obligations.
The inadequacy of a normal modal base as a general framework for modal logic
has also been shown in the case of the modal formalization of deontic notions by a
series of paradoxes, such as the paradox of the gentle murder [8], that were used in
a revisionist way to motivate non-normal modal logics.

The more general neighbourhood semantics was introduced in the 1970’s to pro-
vide a uniform semantic framework for philosophical logics that cannot be accommo-
dated within the setting of normal modal logic. Instead of an accessibility relation on
a set of possible worlds, one has for every possible world a family of neighbourhoods,
i.e., a collection of some special subsets of the set of possible worlds.

As is usual when a new semantics is introduced, its relationship with the earlier
one is investigated. In this case, one can prove that there is a precise link between
neighbourhood and relational semantics, in the sense that there is a way to define
a neighbourhood frame from a given relational frame, and conversely, a relational
frame from a neighbourhood frame. Given a relational frame (W,R), one can define
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a neighbourhood frame by taking as neighbourhoods of a world w the supersets
of the set of worlds accessible from w. Conversely, given a neighbourhood frame
(W, I) one can define a relational frame by identfying the worlds accessible from w
as the intersection of all the neighbourhoods of w. Neighbourhood frames are more
general than relational frames, and in fact the correspondence is a bijection over a
certain class of neighbourhood frames called augmented ones, those that contains
the intersection of all their members and are closed under supersets (cf. [38] for
details). The correspondence between relational and neighbourhood frames can be
seen also as a way to transfer an intuitive explanation from one semantics to the
other: roughly, worlds in a neighbourhood of w replace worlds accessible from w, and
correspondingly the intuition on what it means to be an element of a neighbourhood
or of the intersection of all the neighbourhoods of a worlds will depend on the kind
of modality or conditional that is being modelled; the intuition thus varies from the
properties of indistinguishability of worlds as epistemic states to that of plausibility
of worlds as factual scenarios.

Among non-normal modal logics, classical modal logics are those obtained by
requiring that the modality respects logical equivalence, that is, closure under the
rule A⊃⊂B

2A⊃⊂2B . One can then obtain other systems below the normal modal logic
K by removing the normality axiom and the necessitation rule and adding the
axiom schemas M,C,N and their combinations. A lattice of eight different logics is
obtained (cf. the diagram on p. 237 of [4]). On the logical side, it has been shown
by Gasquet and Herzig [9] and Kracht and Wolter [18] that non-normal modal logics
can be simulated through an appropriate translation by a normal modal logic with
three modalities. This translation has been used by Gilbert and Maffezioli [11] to
define modular labelled sequent calculi for the basic classical modal logics. Since
the frame conditions considered go beyond the geometric class, systems of rules (in
the sense of [27]) have been used.

Our goal is to set the grounds for a proof theory of non-normal modal systems
based on neighbourhood semantics, to achieve this directly, i.e., without the use of
translations, with local rules, and in a modular way, open to extensions in various
interweaving directions4.

The goal will be accomplished through the guidelines of inferentialism, that is,
by starting from the meaning explanation of logical constants and by converting it
into well-behaved rules of a calculus, as detailed in [29].

The paper is organized as follows: In Section 2, after having recalled the basic
definitions of neighbourhood semantics, we show how it naturally gives rise to the

4Such flexibility is already witnessed by developments of the labelled proof theory based on
neighbourhood semantics for preferential conditional logic and conditional doxastic logic in [13,30].
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four distinct modalities [ ], 〈 ], [ 〉, and 〈 〉; the nesting of quantifiers in their seman-
tic explanation is factorized with the help of local forcing relations, i.e., relations
between (formal) neighbourhoods and formulas. Correspondingly, we have sequent
calculus rules for such relations and for the modalities defined upon them. We then
show how the basic calculus so obtained can be used to find the rules that cor-
respond to additional properties of the neighbourhoods and the relations between
such properties and the normality conditions for the 〈 ] modality. It is also shown
how the rules obtained validate 〈 ](A&B) ⊃ 〈 ]A& 〈 ]B, and how a modified forcing
condition for the modality gives a more general explanation. The link between the
two is given by the operation of supplementation in minimal models. In the deter-
mination of the rules of the systems we use a sort of ‘bootstrapping’ procedure, as
we use the basic rules of the calculus to find other rules. We also assume at this
early stage of the construction of the proof system that the structural properties are
available, even if such properties are necessarily proved further on, when all the rules
have been determined. In Section 3 we apply the methodology to classical modal
logics and generate labelled G3-style sequent calculi for them. The structural prop-
erties, height-preserving invertibility of all the rules, height-preserving admissibility
of weakening and contraction and admissibility of cut are proved in Section 4. In
Section 5, we give a direct proof of completeness for these systems with respect to
neighbourhood models as well as an indirect completeness proof via the axiomatic
systems. Finally, in the conclusion, our approach to the proof theory of non-normal
modal logic is related to other approaches in the literature.

2 The general framework

A neighbourhood frame is a pair F ≡ (W, I), where W is a set of worlds (states) and
I is a neighbourhood function

I : W −→ P(P(W ))

that assigns a collection of sets of worlds to each world inW . A neighbourhood model
is then a pairM≡ (F ,V), where F is a neighbourhood frame and V a propositional
valuation, i.e., a map V : Atm −→ P(W ) from atomic formulas to sets of possible
worlds.

Worlds in a neighbourhood are the substitute, in this more general semantics, of
accessible worlds. The inductive clauses for truth of a formula in a model are the
usual ones for the propositional clauses; for the modal operator we have

M, w 
 2A ≡ ext(A) is in I(w),
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where ext(A) ≡ {u ∈W |M, u 
 A}.5
Starting from the standard forcing relation between possible worlds and formulas,

we extend the standard labelled language to a multi-sorted labelled language, with
labels for worlds and neighbourhoods, and define two local, rather than pointwise,
forcing relations, 
∃ and 
∀. These forcing relations are local because unlike the
usual forcing of a formula A at a world x, they are relations between elements a of a
system of neighbourhoods, that is, sets of subsets of possible worlds, and formulas.
The subset a thus ranges in a family of neighbourhoods I(x), which is supposed
to be given for every world x. The first relation corresponds to the existence, in
the neighbourhood, of a world that forces the formula, the second to the forcing
for every world in the neighbourhood; here A is a formula of the propositional
modal language (as we shall see below, we shall actually consider an extension of
the standard propositional language with four modalities naturally arising from the
semantics):

a 
∃ A is true iff there is some world x in a such that x 
 A

a 
∀ A is true iff for any world x in a, x 
 A.

The standard forcing relation can be then obtained as a special case of both
existential and universal forcing through singleton sets (under the condition that
they belong to the family of neighbourhoods):
{x} 
∃ A iff {x} 
∀ A iff x 
A
Through the standard method of conversion of forcing clauses into sequent calcu-

lus rules [25,32], we obtain the following rules for the local forcing relations; observe
that the language of standard labelled systems is extended by the local forcing re-
lations and has, in place of relational atoms, atoms of the form x ∈ a, a ∈ I(x):

x ∈ a,Γ⇒ ∆, x : A
Γ⇒ ∆, a 
∀ A

R 
∀, x fresh
x ∈ a, x : A, a 
∀ A,Γ⇒ ∆
x ∈ a, a 
∀ A,Γ⇒ ∆ L 
∀

x ∈ a,Γ⇒ ∆, x : A, a 
∃ A
x ∈ a,Γ⇒ ∆, a 
∃ A R 
∃

x ∈ a, x : A,Γ⇒ ∆
a 
∃ A,Γ⇒ ∆

L 
∃, x fresh

Table 1: Rules for local forcing

The use of neighbourhood semantics in place of the relational semantics gives a
splitting of the standard alethic modalities into four modalities, [ ], 〈 ], [ 〉, 〈 〉
[38], corresponding to the four different combinations of quantifiers in the semantic
explanation:

5We observe that ext(A) is also denoted by [A].
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x
[ ]A iff for every neighbourhood a of x, a 
∀ A

x
〈 ]A iff there is some neighbourhood a of x such that a 
∀ A

x
[ 〉A iff for every neighbourhood a of x, a 
∃ A

x
〈 〉A iff there is some neighbourhood a of x such that a 
∃ A

The semantic clauses are translated into the following rules:

a ∈ I(x),Γ⇒ ∆, a 
∀ A
Γ⇒ ∆, x : [ ]A R[ ], a fresh

a ∈ I(x), x : [ ]A, a 
∀ A,Γ⇒ ∆
a ∈ I(x), x : [ ]A,Γ⇒ ∆ L[ ]

a ∈ I(x),Γ⇒ ∆, x : 〈 ]A, a 
∀ A
a ∈ I(x),Γ⇒ ∆, x : 〈 ]A R〈 ]

a ∈ I(x), a 
∀ A,Γ⇒ ∆
x : 〈 ]A,Γ⇒ ∆ L〈 ], a fresh

a ∈ I(x),Γ⇒ ∆, a 
∃ A
Γ⇒ ∆, x : [ 〉A R[ 〉, a fresh

a ∈ I(x), x : [ 〉A, a 
∃ A,Γ⇒ ∆
a ∈ I(x), x : [ 〉A,Γ⇒ ∆ L[ 〉

a ∈ I(x),Γ⇒ ∆, x : 〈 〉A, a 
∃ A
a ∈ I(x),Γ⇒ ∆, x : 〈 〉A R〈 〉

a ∈ I(x), a 
∃ A,Γ⇒ ∆
x : 〈 〉A,Γ⇒ ∆ L〈 〉, a fresh

Table 2: Rules for alethic modalities
Finally, in a G3-style labelled calculus there are two types of initial sequents, those
with labelled atomic formulas, from the basic propositional base, of the form x : P ,
Γ⇒ ∆, x : P and those with relational atoms. For labelled calculi based on possible
worlds semantics, the latter have the form xRy,Γ ⇒ ∆, xRy. As observed in [25],
such sequents are not needed because none of the rules of the calculus has active
relational atoms on the right-hand side, so such initial sequents cannot have an active
role in derivations and can thus be dispensed with. Here we have a similar situation,
with the two potential types of relational initial sequents being x ∈ a,Γ⇒ ∆, x ∈ a
and a ∈ I(x),Γ ⇒ ∆, a ∈ I(x): none of the rules introduced so far has active
formulas of the form x ∈ a or a ∈ I(x) in the right-hand side, so such initial sequents
are not needed. But there is a caveat, and, as we shall see, once the assumption of
monotonicity which is behind the determination of the above rules is relaxed, we’ll
have to include rules that have relational atoms of the form x ∈ a on the right-hand
side, and consequently, initial sequents for them.

The basic calculus for neighbourhood semantics, G3n, is obtained by adding the
above rules of local forcing together with the rules for alethic modalities together
with the needed relational initial sequents to the standard labelled G3c sequent
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calculus (the propositional part of the calculus G3K [25]). For ease of the reader,
we give such rules in the table below, with the added relational initial sequents; they
are in parentheses since they are needed in extensions but not for the basic system
with the rules presented so far.

Initial sequents:

x : P,Γ⇒ ∆, x : P (x ∈ a,Γ⇒ ∆, x ∈ a)

Propositional rules:

x : A, x : B,Γ⇒ ∆
x : A&B,Γ⇒ ∆ L&

Γ⇒ ∆, x : A Γ⇒ ∆, x : B
Γ⇒ ∆, x : A&B R&

x : A,Γ⇒ ∆ x : B,Γ⇒ ∆
x : A ∨B,Γ⇒ ∆ L∨

Γ⇒ ∆, x : A, x : B
Γ⇒ ∆, x : A ∨B R∨

Γ⇒ ∆, x : A x : B,Γ⇒ ∆
x : A ⊃ B,Γ⇒ ∆ L⊃

x : A,Γ⇒ ∆, x : B
Γ⇒ ∆, x : A ⊃ B R⊃

x :⊥,Γ⇒ ∆ L⊥

Table 3: The propositional part of system G3n

As an example of the use of the system obtained, we show how to obtain a for-
mal derivation of one of the sequents which gives the known dualities between the
compound alethic modalities, namely x : 〈 ]A ⇒ x : ¬[ 〉¬A (here and elsewhere in
the paper negation is not primitive, but defined through implication); by root-first
application of the rules we find the following partial derivation:

a ∈ I(x), y ∈ A, a 
∀ A, y : A, x : [ 〉¬A⇒ x : ⊥, y : A x : ⊥, . . .⇒ . . .

a ∈ I(x), y ∈ A, a 
∀ A, y : A, y : ¬A, x : [ 〉¬A⇒ x : ⊥
L ⊃

a ∈ I(x), y ∈ A, a 
∀ A, y : ¬A, x : [ 〉¬A⇒ x : ⊥
L 
 ∀

a ∈ I(x), a 
∀ A, a 
∃ ¬A, x : [ 〉¬A⇒ x : ⊥
L 
 ∃

a ∈ I(x), a 
∀ A, x : [ 〉¬A⇒ x : ⊥
L[ 〉

x : 〈 ]A, x : [ 〉¬A⇒ x : ⊥ L〈 ]

x : 〈 ]A⇒ x : ¬[ 〉¬A R ⊃

Derivability of the left topsequent follows from Lemma 4.2 below. In a similar way
we obtain the other parts of the dualities between 〈 ] and [ 〉 and between 〈 〉 and
[ ], namely we have:
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Proposition 2.1. The following sequents are derivable in G3n:

1. x : 〈 ]A⇒ x : ¬[ 〉¬A

2. x : ¬[ 〉¬A⇒ x : 〈 ]A

3. x : 〈 〉A⇒ x : ¬[ ]¬A

4. x : ¬[ ]¬A⇒ x : 〈 〉A

We proceed with finding the properties required of the family of neighbourhoods
I(x) to obtain a modality that satisfies the K axiom and necessitation6 through
application of the invertible rules of the calculus. Before doing so, we need a formal
definition of inclusion between neighbourhoods. Unsurprisingly, inclusion between
two neighbourhoods a, b is defined by

a ⊆ b ≡ ∀x(x ∈ a ⊃ x ∈ b)

with the sequent calculus rules

x ∈ a,Γ⇒ ∆, x ∈ b
Γ⇒ ∆, a ⊆ b R ⊆, x fresh x ∈ b, x ∈ a, a ⊆ b,Γ⇒ ∆

x ∈ a, a ⊆ b,Γ⇒ ∆ L ⊆

Observe that to keep the notation simpler we use the same symbols (∈,⊆) both at
the semantic and at the syntactic level.

Definition 2.2. A family of neighbourhoods I(x) is prebasic if for all a, b ∈ I(x),
there exists c ∈ I(x) such that c ⊆ a and c ⊆ b.

If the definition of a prebasic family of neighbourhoods is not fully unfolded to
the level of worlds but left at the level of inclusion between neighbourhoods, the
property of being prebasic can be translated into sequent calculus rules that follow
the geometric rule scheme:

a ∈ I(x), b ∈ I(x), c ∈ I(x), c ⊆ a, c ⊆ b,Γ⇒ ∆
a ∈ I(x), b ∈ I(x),Γ⇒ ∆ Prebasic, c fresh

We have:

Lemma 2.3. Suppose that for all x the family of neighbourhoods I(x) is prebasic.
Then 〈 ](A ⊃ B) ⊃ (〈 ]A ⊃ 〈 ]B) is valid with respect to the neighbourhood semantics.

6Among the four modalities introduced above, the modality now in question is 〈 ].
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Proof. Validity is guaranteed by the following derivation in the labelled calculus

...y : A⇒ y : A... ...y : B ⇒ ...y : B
...y : A, y : A ⊃ B ⇒ ...y : B L ⊃

y ∈ a, y ∈ b, y ∈ c, a ∈ I(x), b ∈ I(x), c ∈ I(x), c ⊆ a, c ⊆ b, a 
∀ A, b 
∀ A⊃B ⇒ x : 〈 ]B, y : B
L
∀ (twice)

y ∈ c, a ∈ I(x), b ∈ I(x), c ∈ I(x), c ⊆ a, c ⊆ b, a 
∀ A, b 
∀ A ⊃ B ⇒ x : 〈 ]B, y : B
L⊆ (twice)

a ∈ I(x), b ∈ I(x), c ∈ I(x), c ⊆ a, c ⊆ b, a 
∀ A, b 
∀ A ⊃ B ⇒ x : 〈 ]B, c 
∀ B R 
∀

a ∈ I(x), b ∈ I(x), c ∈ I(x), c ⊆ a, c ⊆ b, a 
∀ A, b 
∀ A ⊃ B ⇒ x : 〈 ]B
R〈 ]

a ∈ I(x), b ∈ I(x), a 
∀ A, b 
∀ A ⊃ B ⇒ x : 〈 ]B
Prebasic

x : 〈 ]A, x : 〈 ](A ⊃ B)⇒ x : 〈 ]B
L〈 ] (twice)

x : 〈 ](A ⊃ B)⇒ x : 〈 ]A ⊃ 〈 ]B
R ⊃

⇒ x : 〈 ](A ⊃ B) ⊃ (〈 ]A ⊃ 〈 ]B)
R ⊃

where the topsequents are derivable by Lemma 4.2. To conclude the proof one needs
to show that the calculus G3n is sound with respect to neighbourhood semantics.
This will be established as a general result in Theorem 5.3 below. QED

The condition of being prebasic is not only sufficient but also necessary to validate
the normality axiom, in fact if rule prebasic is not available proof search is limited
to the rules of G3n and we have:

Lemma 2.4. Proof search for the K-axiom in the calculus G3n fails and from the
failed proof search it is possible to construct a countermodel in the class of neigh-
bourhood frames.

Proof. We apply all the rules of G3n with conclusion that matches the sequent;
we start from the sequent a ∈ I(x), b ∈ I(x), a 
∀ A, b 
∀ A ⊃ B ⇒ x : 〈 ]B of
the above proof search,7 and obtain, through two applications resp. of R〈 ], R 
∀
and L 
∃, the sequent a ∈ I(x), b ∈ I(x), y ∈ a, z ∈ b, y : A, z : A ⊃ B, a 
∀ A,
b 
∀ A ⊃ B ⇒ x : 〈 ]B, y : B, z : B; next a step of L ⊃ gives a right derivable
premiss (that contains both in the left-hand side and in the right-hand side the
labelled formula z : B) and a left premiss a ∈ I(x), b ∈ I(x), y ∈ a, z ∈ b, y : A,
a 
∀ A, b 
∀ A ⊃ B ⇒ x : 〈 ]B, z : A, y : B, z : B. This is not derivable and a
countermodel is obtained by taking I(x) to consist of the neighbourhoods a and b
inhabited by (only) the worlds in the antecedent, i.e., a ∈ I(x), b ∈ I(x), y ∈ a, z ∈ b
with the forcing relations y 
 A, z 1 A, y 1 B, z 1 B. Clearly, a 
∀ A, b 
∀ A ⊃ B,
but there is no neighbourhood of x that forces universally B. QED

Observe that the above doesn’t exclude the possibility that the normality axiom
would be derivable in other extensions of G3n since proof search in these calculi

7Since all the rules applied are invertible, this is not restrictive.
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would be different, and the countermodel constructed here might not be in the class
of frames for the stronger logic.

Next, we look for the property of I(x) that characterizes validity of the rule of
necessitation, i.e., the rule

` x : A
` x : 〈 ]A Nec

If we want to apply root-first the rules of G3n from the sequent ⇒ x : 〈 ]A, the
only way to start is to enable the application of rule R〈 ] by assuming the existence
of a ∈ I(x), i.e., to assume the availability of the geometric rule (with the condition
that a is a fresh neighbourhood label)

a ∈ I(x),Γ⇒ ∆
Γ⇒ ∆ Nondeg

This justifies the following definition:

Definition 2.5. A family of neighbourhoods I(x) is nondegenerate if I(x) contains
at least a neighbourhood.

Lemma 2.6. The rule of necessitation is admissible in the calculus G3n extended
with rule Nondeg.

Proof. We have the following

⇒ x : A
⇒ y : A hp-subst

a ∈ I(x), y ∈ a⇒ x : 〈 ]A, y : A LW,RW

a ∈ I(x),⇒ x : 〈 ]A, a 
∀ A R 
∀

a ∈ I(x),⇒ x : 〈 ]A R〈 ]

⇒ x : 〈 ]A Nondeg

Here we have used the admissible rules of height-preserving substitution and weak-
ening (to be proved in Propositions 4.3, 4.4 below), hence the statement on admis-
sibility rather than derivability. QED

Relation with minimal models: Neighbourhood models are also called min-
imal models in the literature.8 Observe that the definition of forcing that we have
given for the modality 〈 ] validates

〈 ](A&B) ⊃ 〈 ]A& 〈 ]B
8See Chapter 7 of Chellas (1980), in particular 7.1, for the definition of minimal models.

1251



S. Negri

and therefore is not minimal in the sense that it automatically imposes some validi-
ties. This is avoided if the forcing is modified by requiring that the neighbourhood
a not only is included, but coincides with the extension ext(A) of A, i.e.,

x
+〈 ]A iff there is a in I(x) such that a 
∀ A and ext(A) ⊆ a

Then the rules for 〈 ] justified by the semantics of minimal models are as follows:

a ∈ I(x),Γ⇒ ∆, x : 〈 ]A, a 
∀ A a ∈ I(x),Γ⇒ ∆, x : 〈 ]A, ext(A) ⊆ a
a ∈ I(x),Γ⇒ ∆, x : 〈 ]A R〈 ]′

a ∈ I(x), a 
∀ A, ext(A) ⊆ a,Γ⇒ ∆
x : 〈 ]A,Γ⇒ ∆ L〈 ]′, a fresh

together with the rules for inclusion and the obvious rules for ext(A), namely9

y : A,Γ⇒ ∆
y ∈ ext(A),Γ⇒ ∆

Γ⇒ ∆, y : A
Γ⇒ ∆, y ∈ ext(A)

It is easy to show that with these rules the sequent ⇒ x : 〈 ](A&B) ⊃ 〈 ]A& 〈 ]B is
not derivable, the reason being that from ext(A&B) ⊆ a we cannot infer ext(A) ⊆ a
and ext(B) ⊆ a .

There is however a precise link between the two forcing conditions. We first
recall a definition:10

Definition 2.7. The supplementation of a neighbourhood model M ≡ (W, I,
) is
the neighbourhood model M+ ≡ (W, I+,
) obtained by taking the superset closure
of I(x) for each x in W , i.e., a ∈ I(x)+ if and only if a ⊇ b for some b ∈ I(x).

We also recall the following:11

Proposition 2.8. For all formula A we have

M, x 
 〈 ]A if and only ifM+, x 
+ 〈 ]A

Proof. In one direction, if there is a in I(x) such that a 
∀ A, i.e., a ⊆ ext(A), then
ext(A) is in I(x)+ (and ext(A) = ext(A)). For the converse, if there is a in I(x)+

such that a = ext(A), then b ⊆ ext(A) for some b in I(x). QED
9The rules in terms of ext are intuitively semantically motivated. We shall give below an

alternative, more concise, version of the rules in which the inclusion ext(A) ⊆ a is replaced by a
binary predicate A C a with its own rules which do not require separate rules for inclusion.

10This is Definition 7.6 in Chellas (1980).
11This is essentially exercise 7.25 (b) in Chellas’s book.
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3 Classical and other non-normal modal logics
Classical modal logics12 are non-normal modal logics obtained as extensions of clas-
sical propositional logic (CL) that contain the schema

3A ⊃⊂ ¬2¬A

and the rule of inference
A ⊃⊂ B

2A ⊃⊂ 2B
RE

System E is the smallest classical system thus obtained. Other classical modal
logics are obtained as extensions of E. Extensions containing the rule

A ⊃ B
2A ⊃ 2B

RM

are calledmonotonic logics and the smallest such system is denoted byM; extensions
containing the rule

A&B ⊃ C
2A&2B ⊃ 2C

RR

are called regular, and the smallest such system is denoted by C.
It is well know (and easily provable) that every normal system is regular, every

regular system is monotonic, and every monotonic system is classical.
It can be convenient to give a characterization of extensions E through axiom

schemas. Among such extension, of particular interest are those obtained by the
addition of any combination of the following:

(M) 2(A&B) ⊃ 2A&2B

(C) 2A&2B ⊃ 2(A&B)

(N) 2>

We recall from Chellas (1980, ch. 8):

Proposition 3.1. Let Σ be an extension of E. Then

1. Σ is monotonic iff it contains the axiom schema M.
12See ch. 8 of Chellas (1980) for a thorough treatment of classical, monotonic and regular modal

logics in an axiomatic setting.
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2. Σ is regular iff it contains the axiom schema C and is closed under RM.

3. Σ is regular iff it contains the axiom schemas C and M.

4. Σ is normal iff it is regular and contains the axiom schema N.

These logics are denoted with ES1 . . .Sn or simply S1 . . .Sn, where S1, . . . ,Sn
are the axiom/rule schemas added to system E. With this notation we have K =
RN = MCN = EMCN.

We recall that the forcing clause for the alethic modality in neighbourhood se-
mantics is as follows:

x 
 2A ≡ ∃a ∈ I(x)(a 
∀ A& ∀y(y 
 A ⊃ y ∈ a))

or equivalently
x 
 2A ≡ ∃a ∈ I(x)(a 
∀ A& ext(A) ⊆ a)

The semantic clause is not one of the form that can be directly translated into
geometric rules, but we proceed in a way similar to Skolem’s definitional extension
( [41], see also Section 2 of [5]) and add a new predicate A C a for ∀y(y 
 A ⊃ y ∈ a)
together with its definition. The definition is in turn formulated in terms of rules to
be added to the calculus. When all the requirement to obtain a calculus with the
desired properties are taken care of, the rules are as follows:13

y ∈ a,A C a, y : A,Γ⇒ ∆
A C a, y : A,Γ⇒ ∆ L C

y : A,Γ⇒ ∆, y ∈ a
Γ⇒ ∆, A C a R C, y fresh

a ∈ I(x), a 
∀ A,A C a,Γ⇒ ∆
x : 2A,Γ⇒ ∆ L2, a fresh

a ∈ I(x),Γ⇒ ∆, x : 2A, a 
∀ A a ∈ I(x),Γ⇒ ∆, x : 2A,A C a
a ∈ I(x),Γ⇒ ∆, x : 2A R2

Table 4: Modal rules of system E

13See [29] for details making explicit a procedure used to obtain such sequent rules starting from
the meaning explanation in terms of neighbourhood semantics.
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The complete G3-system for E is obtained by adding the above rules to the rules for

∀ of table 1 and the rules for the propositional part of G3n of table 3, including
the initial sequents of the form x ∈ a,Γ ⇒ ∆, x ∈ a.14 We shall denote with G3E
the resulting system.

In the proofs that follow we use admissibility of the structural rules, that will be
proved in Section 4.

Lemma 3.2. The rule

x : A,Γ⇒ ∆, x : B
a 
∀ A,Γ⇒ ∆, a 
∀ B

(x /∈ Γ,∆)

is admissible in G3E.

Proof. By admissibility of weakening and steps of L 
∀ and R 
∀. QED
Neither rule RE nor a labelled version of the rule has to be added as a rule of G3E.
The situation is similar to what happens with G3K, the sequent calculus for basic
normal modal logic, where the rule of necessitation doesn’t have to be added as an
explicit rule because it is admissible, i.e., whenever it premiss is derivable, also its
conclusion is. With the proviso of completeness (proved in Section 5), this amounts
to proving that whenever ⇒ x : A ⊃⊂ B is derivable for an arbitrary label x then
also ⇒ x : 2A ⊃⊂ 2B is derivable for an arbitrary label x:

Lemma 3.3. Rule RE is admissible in G3E.
Proof. By the following derivation (where we use admissible cut and weakening

steps):

x : A⇒ x : B
a 
∀ A⇒ a 
∀ B

3.2

a ∈ I(x), a 
∀ A,A C a⇒ x : 2B, a 
∀ B

y : B ⇒ y : A
y ∈ a, . . .⇒ . . . , y ∈ a

y : A, a ∈ I(x), a 
∀ A,A C a⇒ x : 2B, y ∈ a
L C

y : B, a ∈ I(x), a 
∀ A,A C a⇒ x : 2B, y ∈ a
cut

a ∈ I(x), a 
∀ A,A C a⇒ x : 2B,B C a
R C

a ∈ I(x), a 
∀ A,A C a⇒ x : 2B
R2

x : 2A⇒ x : 2B L2

Observe that the topsequents in the derivations correspond to both assumptions of
rule RE and that it is also required that sequents of the form x ∈ a,Γ ⇒ ∆, x ∈ a
are taken as initial. QED
Next we show how to use this basic calculus to find the extra rules that have to
be added to obtain a G3 proof system for each of the above classical modal logics.

14The reason for the addition will be clear in the proof of Lemma 3.3 below.
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Again, as we are “bootstrapping” to find the rules of the calculus, we assume that
the desired invertibility and structural properties (to be proved in Section 4 below)
are available.

We proceed by root-first proof search in the invertible sequent calculus G3E.
By abduction we find a sufficient rule for deriving the labelled form of each axiom.
Further on, we shall give all the formal definitions and prove that this heuristic
method really does yield a complete sequent system for the logic in question.

First, observe that by invertibility of the rules R⊃ and R& the derivability of
the sequent ⇒ x : 2(A&B) ⊃ 2A&2B is equivalent to the derivability of both
⇒ x : 2(A&B) ⊃ 2A and ⇒ x : 2(A&B) ⊃ 2B. Let us see how the former can be
obtained with the following derivation, where we use derivability of initial sequents
with arbitrary formulas, a result proved in the next section; the latter sequent is
derivable mutatis mutandis:

Lemma 4.2

a ∈ I(x), y ∈ a, y : A, y : B, a 
∀ A&B, . . .⇒ x : 2A, y : A

a ∈ I(x), y ∈ a, y : A&B, a 
∀ A&B, . . .⇒ x : 2A, y : A
L 
∀

a ∈ I(x), y ∈ a, a 
∀ A&B, . . .⇒ x : 2A, y : A
R 
∀

a ∈ I(x), a 
∀ A&B, . . .⇒ x : 2A, a 
∀ A
R

....
a ∈ I(x), a 
∀ A&B, A&B C a⇒ x : 2A, A C a

a ∈ I(x), a 
∀ A&B, A&B C a⇒ x : 2A
R2

x : 2(A&B)⇒ x : 2A
L2

with the dotted part as follows:
Lemma 4.2

b 
∀ A, . . .⇒ . . . , b 
∀ A
Lemma 4.2

A C b, . . .⇒ . . . , A C b

b ∈ I(x), b 
∀ A, A C b, a 
∀ A&B, a ∈ I(x), a 
∀ A&B, A&B C a⇒ x : 2A, A C a
R2

a ∈ I(x), a 
∀ A&B, A&B C a⇒ x : 2A, A C a
R

The extra rule applied (R ) amounts to requiring that ext(A&B) ∈ I(x) implies
ext(A) ∈ I(x). Since ext(A&B) ⊆ ext(A) holds by definition, this follows from the
property of monotonicity of I(x):

a ∈ I(x) & a ⊆ b ⊃ b ∈ I(x) Mon

As a rule, the property is expressed as

a ∈ I(x), a ⊆ b, b ∈ I(x),Γ⇒ ∆
a ∈ I(x), a ⊆ b,Γ⇒ ∆ M

Lemma 3.4. In the presence of monotonicity (Mon), the following forcing condi-
tions give the same class of valid formulas:

1. x 
1 2A ≡ ∃a ∈ I(x)(a 
∀ A& ∀y(y 
 A ⊃ y ∈ a))
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2. x 
2 2A ≡ ∃a ∈ I(x).a 
∀ A

Proof. Let V (1) (resp. V (2)) be the class of valid formulas according to 1
(resp. 2). We show that V (1) = V (2). We show by induction on formulas that
A is in V (1) if and only if A is in V (2). The only non-trivial case is the one for
boxed formulas, so suppose that |=1 2A, that is, for all models (W, I,V) and for
all x we have ∃a ∈ I(x)(a 
∀ A&A C a). It is then clear by first-order logic that
∃a ∈ I(x).a 
∀ A. Therefore |=2 2A.

Conversely, if |=2 2A, then for an arbitrary x we have ∃a ∈ I(x).a 
∀ A. Let b
be ext(A). By monotonicity, we have that b ∈ I(x) and b clearly satisfies A C b, so
x 
1 2A. Since x was arbitrary, |=1 2A. QED
It follows that in the case of logical systems closed under monotonicity the rules for
the necessity operator can be simplified to the following form:

a ∈ I(x), a 
∀ A,Γ⇒ ∆
x : 2A,Γ⇒ ∆ L2′, a fresh

a ∈ I(x),Γ⇒ ∆, x : 2A, a 
∀ A
a ∈ I(x),Γ⇒ ∆, x : 2A R2′

Table 5: Modal rules of system G3M

Remark 3.5. Whenever monotonicity is present, we shall consider the above, sim-
plified rules for 2 rather than the original ones with the addition of rule M ; this is
not just a choice to streamline the sequent calculus, but it follows also from the fact
that rule M together with the right rule for inclusion gives a problematic case in the
cut elimination procedure.

Next, we proceed to the determination of the rule for system C. We have the
following derivation:

. . . , a ∩ b 
∀ A&B, . . .⇒ x : 2(A&B), a ∩ b 
∀ A&B . . . , A&B C a ∩ b, . . .⇒ x : 2(A&B), A&B C a ∩ b

a ∩ b ∈ I(x), a ∈ I(x), b ∈ I(x), a ∩ b 
∀ A&B, a 
∀ A, b 
∀ B, A&B C a ∩ b, A C a, B C b⇒ x : 2(A&B)
R2

a ∩ b ∈ I(x), a ∈ I(x), b ∈ I(x), a ∩ b 
∀ A&B, a 
∀ A, b 
∀ B, A C a, B C b⇒ x : 2(A&B)
Adm2

a ∩ b ∈ I(x), a ∈ I(x), b ∈ I(x), a 
∀ A, b 
∀ B, A C a, B C b⇒ x : 2(A&B)
Adm1

a ∈ I(x), b ∈ I(x), a 
∀ A, b 
∀ B, A C a, B C b⇒ x : 2(A&B)
Rule

a ∈ I(x), a 
∀ A, A C a, x : 2B ⇒ x : 2(A&B)
L2

x : 2A, x : 2B ⇒ x : 2(A&B)
L2

x : 2A&2B ⇒ x : 2(A&B)
L&

Here we have used two steps whose admissibility follows from admissibility of cut
and contraction (to be proved below) and the derivability in G3E of the sequents
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1. a 
∀ A, b 
∀ B ⇒ a ∩ b 
∀ A&B

2. A C a,B C b⇒ A&B C a ∩ b
in a system extended with the following rules for formal intersection:
x ∈ a, x ∈ b, x ∈ a ∩ b,Γ⇒ ∆

x ∈ a ∩ b,Γ⇒ ∆ L∩
Γ⇒ ∆, x ∈ a ∩ b, x ∈ a Γ⇒ ∆, x ∈ a ∩ b, x ∈ b

Γ⇒ ∆, x ∈ a ∩ b R∩

So the extra condition that should be required on the neighbourhoods is just

a ∈ I(x) & b ∈ I(x)→ a ∩ b ∈ I(x)

that is, closure of I(x) under intersection. It corresponds to the rule

a ∩ b ∈ I(x), a ∈ I(x), b ∈ I(x),Γ⇒ ∆
a ∈ I(x), b ∈ I(x),Γ⇒ ∆ C

Observe that if I(x) is closed under supersets, then the above condition can be
equivalently replaced by the weaker

a ∈ I(x) & b ∈ I(x)→ ∃c ∈ I(x).c ⊆ a & c ⊆ b

which can be translated into the geometric rule Prebasic seen already in Section 2:
c ∈ I(x), a ∈ I(x), b ∈ I(x), c ⊆ a, c ⊆ b,Γ⇒ ∆

a ∈ I(x), b ∈ I(x),Γ⇒ ∆ C ′

where c is a fresh neighbourhood label.
Finally, we determine the rule needed to prove the validity of 2>. As a prelim-

inary remark, we observe that in the calculus G3K which shares the propositional
base with G3E, the constant > (for true) is not primitive but defined as ⊥⊃⊥ (or
A ⊃ A for any formula A). The rule to be added for a labelled calculus with > as a
primitive is the dual of the rule L⊥, that is, the zero-premiss rule15

Γ⇒ ∆, x : > R>

We have the search tree16

a ∈ I(x), a 
∀ >,> C a⇒ x : 2>, a 
∀ > a ∈ I(x), a 
∀ >,> C a⇒ x : 2>,> C a
a ∈ I(x), a 
∀ >,> C a⇒ x : 2>

R2

⇒ x : 2> rule

15Observe that the rule is actually derivable with > defined as ⊥⊃⊥.
16Since the topsequents are derivable, the proof search is a derivation once the step indicated by

rule is taken to be a rule of the system; here, as elsewhere, proof search in the basic calculus is used
to determine which additional rules have to be included in the system to make certain sequents
derivable.

1258



Proof Theory for Non-normal Modal Logics ...

The extra rule correponds to the following property of neighbourhoods

(1.) ∃a ∈ I(x).a 
∀ > & > C a

which is clearly equivalent to

(1.′) ∃a ∈ I(x).> C a

and corresponds to the rule

a ∈ I(x),> C a,Γ⇒ ∆
Γ⇒ ∆ N

with a fresh. In the presence of monotonicity rule Nondeg (Definition 2.4) suffices,
because we have

a ∈ I(x)⇒ x : 2>, a 
∀ >
a ∈ I(x)⇒ x : 2> R2′

⇒ x : 2> Nondeg

with topsequent clearly derivable.

3.1 Adding 3

The possibility modality is defined in classical modal logic, as in normal modal logic,
as the dual of necessity (cf. [4])

3A ≡ ¬2¬A

and therefore it is not usually considered as a modality with its own rules. It is
however convenient, for the same reasons why it is convenient to have classical logic
with all the connectives, not just two (or even one) of them, to have primitive rules
for possibility. The rules are found by imposing the above duality and using the
rules of 2 and the duality between 
∀ and 
∃. In practice, to find the left and right
rules for 3 we start with the sequents x : 3A,Γ ⇒ ∆ and Γ ⇒ ∆, x : 3A, replace
them with x : ¬2¬A,Γ ⇒ ∆ and Γ ⇒ ∆, x : ¬2¬A, respectively, and apply the
rules for ¬ and 2. It becomes clear that the former sequent needs also a ∈ I(x) in
the antecedent, else R2 cannot be applied. The decomposition then gives a 
∀ ¬A
in the succedent (resp. antecedent) which is replaced by the equivalent a 
∃ A in
the antecedent (resp. succedent). The formula ¬A C a instead cannot be moved to
the other side with negation removed because the scope of the negation is A, not
A C a. In the end, the rules for the possibility modality are as follows:

a ∈ I(x), x : 3A, a 
∃ A,Γ⇒ ∆ a ∈ I(x), x : 3A,Γ⇒ ∆,¬A C a
a ∈ I(x), x : 3A,Γ⇒ ∆ L3
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a ∈ I(x),¬A C a,Γ⇒ ∆, a 
∃ A
Γ⇒ ∆, x : 3A R3

In R3, a is a fresh neighbourhood label.
To see the rules at work, we can use them to verify the duality between the two

alethic modalities, where both topsequents are derivable17:

a ∈ I(x), x : 3A, y ∈ a, y : A, y : ¬A, a 
∀ ¬A,¬A C a⇒x : ⊥

a ∈ I(x), x : 3A, y ∈ a, y : A, a 
∀ ¬A,¬A C a⇒ x : ⊥
L 
∀

a ∈ I(x), x : 3A, a 
∃ A, a 
∀ ¬A,¬A C a⇒ x : ⊥
L 
∃

a ∈ I(x), x : 3A, a 
∀ ¬A,¬A C a⇒ x : ⊥,¬A C a

a ∈ I(x), x : 3A, a 
∀ ¬A,¬A C a⇒ x : ⊥
L3

x : 3A, x : 2¬A⇒ x : ⊥ L2

x : 3A⇒ x : ¬2¬A
R¬

⇒ x : 3A ⊃ ¬2¬A
R ⊃

The derivation of the other direction of the duality, namely ⇒ x : ¬2¬A ⊃ 3A, is
found in a similar way using the rules for negation, the alethic modalities and the
local forcing relations.

If monotonicity is absorbed into the modal rules, also the rules for 3 get modified
(and simplified). The monotonic version of the rules for 3 is as follows:

a ∈ I(x), x : 3A, a 
∃ A,Γ⇒ ∆
a ∈ I(x), x : 3A,Γ⇒ ∆ L3′

a ∈ I(x),Γ⇒ ∆, a 
∃ A
Γ⇒ ∆, x : 3A R3′

We remark here that all the results below continue to hold when 3 is added as an
explicit modality, rather than a defined one, in the calculus.

4 Structural properties
In this section we shall give detailed proofs of the structural properties for the sys-
tems based on neighbourhood semantics that we have considered. Rather than giving
specific proofs for specific systems, we shall indicate how the structural properties
can be established by following a generalization of the guidelines presented in [25]
and [32], section 11.4. There are some important non-trivial extra considerations
caused by the layering of rules for the modalities defined in terms of neighbourhood
semantics, which gives a quantifier alternation more complex than in the Kripke-style
semantics. Likewise, some preliminary results are needed, namely height-preserving

17This is a consequence of Lemma 4.2 proved in the following section.
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admissibility of substitution (in short, hp-substitution) and height-preserving in-
vertibility (in short, hp-invertibility) of the rules. We recall that the height of a
derivation is its height as a tree, i.e., the length of its longest branch, and that `n
denotes derivability with derivation height bounded by n in a given system.

In the following we shall denote with G3n∗ any extension of the basic system
G3n with rules for the modalities [ ], 〈 ], [ 〉, and 〈 〉, 218 and with extra (mathemat-
ical) rules. This extension is intended to follow the standard closure condition for
extensions of contraction-free labelled sequent calculi (cf. [25]) to guarantee admis-
sibility of contraction in the resulting system.

As observed above, in the light of Remark 3.5, we can obtain system G3nM by
modifying the rules L2, R2 to the form L2′ and R2′; for extensions, we can take
in place of C and N the rules C ′ and Nondeg.

In many proofs we shall use an induction on formula weight. In order to find
a definition of weight that makes the induction work we have to take into account
several constraints that emerge from the proofs of the structural results; the choice
for this particular definition will thus become clear from the proofs to follow.

Observe that the definition extends the usual definition of weight from (pure)
formulas to labelled formulas and local forcing relations, namely, to all formulas of
the form x : A, a 
∀ A, a 
∃ A, A C a, as well as the relational formulas x ∈ a,
a ∈ I(x), a ⊆ b.

Definition 4.1. The label of formulas of the form x : A is x. The label of formulas
of the form a 
∀ A, a 
∃ A, A C a is a. The label of a formula F will be denoted by
l(F). The pure part of a labelled formula F is the part without the label and without
the forcing relation, either local (
∃, 
∀) or worldwise (:) and will be denoted by
p(F).

The weight of a labelled formula F is given by the pair (w(p(F)), w(l(F))) where

• For all worlds labels x and all neighbourhood labels a, w(x) = 0 and w(a) =
1 + n(∩), where n(∩) is the number of formal intersections in a.

• – w(P ) = w(⊥) = 1,
– w(A◦B) = w(A)+w(B)+1 for ◦ conjunction, disjunction, or implication,
– w(2A) = w([ ]A) = w(〈 ]A) = w([ 〉A) = w(〈 〉A) = w(A) + 1

For formulas of the form a ∈ I(x), x ∈ a, we stipulate w(a ∈ I(x)) = w(x ∈ a) =
(0, w(a)) and for formulas of the form a ⊆ b, w(a ⊆ b) = (w(a), w(b)). Weights of
labelled formulas are ordered lexicographically.

18We assume that for each modality, the extension has to contain both the right and left rule.
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From the definition of weight it is clear that the weight gets decreased if we move
from a formula labelled by a neighbourhood label to the same formula labelled by
a world label, or if we move (regardless the label) to a formula with a pure part of
strictly smaller weight.

Lemma 4.2. Sequents of the following form are derivable in G3n∗ for arbitrary
formulas A and B in the propositional modal language of G3n∗:

1. a ⊆ b,Γ⇒ ∆, a ⊆ b

2. A C a,Γ⇒ ∆, A C a

3. a 
∀ A,Γ⇒ ∆, a 
∀ A

4. a 
∃ A,Γ⇒ ∆, a 
∃ A

5. x : A,Γ⇒ ∆, x : A

Proof. 1. By the following derivation

x ∈ b, x ∈ a, a ⊆ b,Γ⇒ ∆, x ∈ b
x ∈ a, a ⊆ b,Γ⇒ ∆, x ∈ b L ⊆

a ⊆ b,Γ⇒ ∆, a ⊆ b R ⊆

where the topsequent is initial.
2. By the following derivation

x ∈ a, x : A,A C a,Γ⇒ ∆, x ∈ a
x : A,A C a,Γ⇒ ∆, x ∈ a L C

A C a,Γ⇒ ∆, A C a R C

where the topsequent is initial.
3–5 are proved by simultaneous induction on formula weight.
3. We have the following inference

x : A, x ∈ a, a 
∀ A,Γ⇒ ∆, x : A
x ∈ a, a 
∀ A,Γ⇒ ∆, x : A L 
∀

a 
∀ A,Γ⇒ ∆, a 
∀ A R 
∀

The topsequent is derivable by induction hypothesis because w(x : A) < w(a 
∀ A).
4. Similar, with L 
∃ and R 
∃ in place of R 
∀ and L 
∀, respectively, using

w(x : A) < w(a 
∃ A).
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5. We distinguish subcases according to the structure of A. If it is atomic or
⊥, the sequent is initial or conclusion of L⊥. If the outermost connective of A
is a conjunction or a disjunction, or an implication, the sequent is derivable by
application of the respective rules and the induction hypothesis. If it is a modality,
we have the following further subcases:

5.1. A ≡ [ ]B. We have the following inference

a 
∀ B, a ∈ I(x), x : [ ]B,Γ⇒ ∆, a 
∀ B
a ∈ I(x), x : [ ]B,Γ⇒ ∆, a 
∀ B

L[ ]

x : [ ]B,Γ⇒ ∆, x : [ ]B R[ ]

where the topsequent is derivable by induction hypothesis because w(a 
∀ B) <
w(x : [ ]B).

5.2. A ≡ 〈 ]B. Similar with the rules L〈 ], R〈 ], and the inductive hypothesis on
a 
∀ B, using w(a 
∀ B) < w(x : 〈 ]B).

5.3. A ≡ [ 〉B. Similar with the rules R[ 〉, L[ 〉, and the inductive hypothesis on
a 
∃ B, using w(a 
∃ B) < w(x : [ 〉B).

5.4 A ≡ 〈 〉B. Similar with the rules L〈 〉, R〈 〉, and the inductive hypothesis on
a 
∀ B.

5.5 A ≡ 2B. We have the following inference

a ∈ I(x), a 
∀ B,B C a,Γ⇒ ∆, x : 2B, a 
∀ B a ∈ I(x), a 
∀ B,B C a,Γ⇒ ∆, x : 2B,B C a
a ∈ I(x), a 
∀ B,B C a,Γ⇒ ∆, x : 2B

R2

x : 2B,Γ⇒ ∆, x : 2B L2

where the left topsequent is derivable by induction hypothesis because w(a 
∀ B) <
w(x : 2B) and the right one by clause 2 above.

For extensions of G3nM we have the following inference:

a ∈ I(x), a 
∀ B,Γ⇒ ∆, x : 2B, a 
∀ B
a ∈ I(x), a 
∀ B,Γ⇒ ∆, x : 2B R2′

x : 2B,Γ⇒ ∆, x : 2B L2′

and we can treat this as a sub-case of the above. QED

In our system, in addition to world labels, we have neighbourhood labels. The
latter are subject to similar conditions, such as the conditions of being fresh in
certain rules, as the world labels. Consequently, we shall need properties of hp-
substitution in our analysis. Before stating and proving the property, we observe that
the definition of substitution of labels given in [25] can be extended in an obvious way
– that need not to be pedantically detailed here – to all the formulas of our language
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and to neighbourhood labels. We’ll have, for example, x : 〈 〉A(y/x) ≡ y : 〈 〉A,
a 
∃ A(b/a) ≡ b 
∃ A, and A C a(b/a) ≡ A C b. Next, we prove that the calculus
enjoys the property of hp-substitution both of world and neighbourhood labels:19

Proposition 4.3. 1. If `n Γ⇒ ∆, then `n Γ(y/x)⇒ ∆(y/x);

2. If `n Γ⇒ ∆, then `n Γ(b/a)⇒ ∆(b/a).

Proof. Both statements are proved by induction on the height of the derivation.
If it is 0, then Γ⇒ ∆ is an initial sequent or a conclusion of L⊥. The same then

holds for Γ(y/x)⇒ ∆(y/x) and for Γ(b/a)⇒ ∆(b/a).
If the derivation has height n > 0, we consider the last rule applied. If Γ ⇒ ∆

has been derived by a rule without variable conditions, we apply the induction
hypothesis and then the rule. Rules with variable conditions require that we avoid
a clash of the substituted variable with the fresh variable in the premiss. This is
the case for the logical rules R 
∀, L 
∃, R[ ], L〈 ], R[ 〉, L〈 〉, L2, L2′ and for
the neighbourhood rules R ⊆, Prebasic/C ′, Nondeg. So, if Γ⇒ ∆ has been derived
by any of these rules, we apply the inductive hypothesis twice to the premiss, first
to replace the fresh variable with another fresh variable different, if necessary, from
the one we want to substitute, then to make the substitution, and then apply the
rule. QED

The rules of weakening for the language of a labelled system with internalized
neighbourhood semantics such as G3n∗ have the following form, where φ is either a
“relational” atom of the form a ∈ I(x)20 or x ∈ a or a labelled formula of the form
x : A, a 
∀ A, a 
∃ A or a formula of the form A C a:

Γ⇒ ∆
φ,Γ⇒ ∆ L-Wkn

Γ⇒ ∆
Γ⇒ ∆, φ R-Wkn

Proposition 4.4. The rules of left and right weakening are hp-admissible in G3n∗.

Proof. Straightforward induction, with a similar proviso as in the above proof for
rules with variable conditions. QED

Next, we prove hp-invertibility of the rules ofG3n∗, i.e., for every rule of the form
Γ′⇒∆′
Γ⇒∆ , if `n Γ⇒ ∆ then `n Γ′ ⇒ ∆′, and for every rule of the form Γ′⇒∆′ Γ′′⇒∆′′

Γ⇒∆
if `n Γ⇒ ∆ then `n Γ′ ⇒ ∆′ and `n Γ′′ ⇒ ∆′′. Items 7′ and 8′ are the invertibility

19We remind that of the two possible notations for substitution we use the one in which A(y/x)
indicates the result of substituting y for x in A.

20Indeed, such formulas are not needed for right weakenening because they are never active on
the right.
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for the non-monotonic rules for 〈 ], R〈 ]′ and L〈 ]′, and 15′ for the monotonic version
of L2:

Lemma 4.5. The following hold in G3n∗:

1. If `n Γ⇒ ∆, a 
∀ A then `n x ∈ a,Γ⇒ ∆, x : A.

2. If `n x ∈ a, a 
∀ A,Γ⇒ ∆ then `n x ∈ a, x : A, a 
∀ A,Γ⇒ ∆.

3. If `n x ∈ a,Γ⇒ ∆, a 
∃ A then `n x ∈ a,Γ⇒ ∆, x : A, a 
∃ A.

4. If `n a 
∃ A,Γ⇒ ∆ then `n x ∈ a, x : A,Γ⇒ ∆.

5. If `n Γ⇒ ∆, x : [ ]A then `n a ∈ I(x),Γ⇒ ∆, a 
∀ A.

6. If `n a ∈ I(x), x : [ ]A,Γ⇒ ∆ then `n a ∈ I(x), x : [ ]A, a 
∀ A,Γ⇒ ∆.

7. If `n a ∈ I(x),Γ⇒ ∆, x : 〈 ]A then `n a ∈ I(x),Γ⇒ ∆, x : 〈 ]A, a 
∀ A.

7′. If `n a ∈ I(x),Γ ⇒ ∆, x : 〈 ]A then `n a ∈ I(x),Γ ⇒ ∆, x : 〈 ]A, a 
∀ A and
`n a ∈ I(x),Γ⇒ ∆, x : 〈 ]A,A C a.

8. If `n x : 〈 ]A,Γ⇒ ∆ then `n a ∈ I(x), a 
∀ A,Γ⇒ ∆.

8′. If `n x : 〈 ]A,Γ⇒ ∆ then a ∈ I(x), a 
∀ A,A C a,Γ⇒ ∆.

9. If `n Γ⇒ ∆, x : [ 〉A then `n a ∈ I(x),Γ⇒ ∆, a 
∃ A.

10. If `n a ∈ I(x), x : [ 〉A,Γ⇒ ∆ then `n a ∈ I(x), x : [ 〉A, a 
∃ A,Γ⇒ ∆.

11. If `n a ∈ I(x),Γ⇒ ∆, x : 〈 〉A then `n a ∈ I(x),Γ⇒ ∆, x : 〈 〉A, a 
∃ A.

12. If `n x : 〈 〉A,Γ⇒ ∆ then `n a ∈ I(x), a 
∃ A,Γ⇒ ∆.

13. If `n A C a, y : A,Γ⇒ ∆ then `n y ∈ a,A C a, y : A,Γ⇒ ∆.

14. If `n Γ⇒ ∆, A C a then `n y : A,Γ⇒ ∆, y ∈ a.

15. If `n x : 2A,Γ⇒ ∆ then `n a ∈ I(x), a 
∀ A,A C a,Γ⇒ ∆.

15′. If `n x : 2A,Γ⇒ ∆ then `n a ∈ I(x), a 
∀ A,Γ⇒ ∆.

16. If `n a ∈ I(x),Γ ⇒ ∆, x : 2A then `n a ∈ I(x),Γ ⇒ ∆, x : 2A, a 
∀ A and
`n a ∈ I(x),Γ⇒ ∆, x : 2A,A C a.

17. If `n Γ⇒ ∆, a ⊆ b then `n x ∈ a,Γ⇒ ∆, x ∈ b.
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18. If `n x ∈ a, a ⊆ b,Γ⇒ ∆ then `n x ∈ a, a ⊆ b, x ∈ b,Γ⇒ ∆.

Proof. Observe first that all the cases (2, 3, 6, 7, 7′, 10, 11, 13, 16, 18) that are
instances of hp-admissibility of weakening follow from Proposition 4.4 above. For
the rest, the proof is by induction on n and we show in detail, by way of example
item 5., the other cases being shown in a similar way.

Base case: Suppose that Γ ⇒ ∆, x : [ ]A is an initial sequent or conclusion of
L⊥. Then, in the former case, x : [ ]A not being atomic or of the form x ∈ a,
a ∈ I(x),Γ⇒ ∆, a 
∀ A is an initial sequent, in the latter it is a conclusion of L⊥.

Inductive step: Assume hp-invertibility up to n, and let `n+1 Γ⇒ ∆, x : [ ]A. If
x : [ ]A is principal, then the premiss a ∈ I(x),Γ ⇒ ∆, a 
∀ A (possibly obtained
through hp-substitution) has a derivation of height n. If x : [ ]A is not principal
in the last rule, we distinguish the case in which the last rule is not a rule with
eigenvariable from the case in which it is. In the former case, the last rule has
one or two premisses of the form Γ′ ⇒ ∆′, x : [ ]A of derivation height ≤ n. By
induction hypothesis we have a ∈ I(x),Γ′ ⇒ ∆′, a 
∀ A for each premiss, with
derivation height at most n. Thus, `n+1 a ∈ I(x),Γ ⇒ ∆, a 
∀ A. In the latter
case, we proceed as in the previous case if the last rule has the eigenvariable for world
labels, the critical case being (here) the one with the eigenvariable for neighbourhood
labels. So, if the last rule is, say, L〈 ], then Γ = 〈 ]B,Γ′ and we have a premiss
that we can assume to be of the form b ∈ I(x), b 
∀ B,Γ′ ⇒ ∆, x : [ ]A with
b different from a (this can be assumed without loss of generality because of hp-
substitution). By inductive hypothesis we obtain a derivation of height n of a ∈
I(x), b ∈ I(x), b 
∀ B,Γ′ ⇒ ∆, a 
∀ A and by a step of L〈 ] we conclude derivability
of a ∈ I(x),Γ⇒ ∆, a 
∀ A with height n+ 1. Cases 8, 8′, 9, 12, 15, 15′, are proved
with a similar analysis. There is a final group of cases (items 1, 4, 14, 17), those of
rules with an eigenvariable condition for world labels. The treatment is similar to
the case detailed above, with a similar distinction of cases as for the last rule applied
in the derivation. A special proviso is needed for the case in which the last rule is not
the rule with the principal formula in question and it is a rule with eigenvariable of
the same type, namely a world label. The claim is obtained by inductive hypothesis
after use, if needed, of hp-substitution on the premisses of such rules to avoid a clash
of variables so that the last rule can be applied after the inductive step to restore
the original contexts. QED

Lemma 4.6. All the propositional rules of G3n∗ are hp-invertible.

Proof. Similar to the proof for G3c (Theorem 3.1.1 in [31]). QED

Therefore, as a general result, we have:

1266



Proof Theory for Non-normal Modal Logics ...

Corollary 4.7. All the rules of G3n∗ are hp-invertible.

Proof. By Lemmas 4.5, 4.6, and 4.4 (the latter gives hp-invertibility of the neigh-
bourhood rules). QED

The rules of contraction for the language of a labelled system with internalized
neighbourhood semantics such as G3n∗ have the following form, where φ is either
a “relational” atom of the form a ∈ I(x) or x ∈ a or a labelled formula of the form
x : A, a 
∀ A, a 
∃ A or a formula of the form A C a:

φ, φ,Γ⇒ ∆
φ,Γ⇒ ∆ L-Ctr Γ⇒ ∆, φ, φ

Γ⇒ ∆, φ R-Ctr

Theorem 4.8. The rules of left and right contraction are hp-admissible in G3n∗.

Proof. By simultaneous induction on the height of derivation for left and right con-
traction.

If n = 0 the premiss is either an initial sequent or a conclusion of a zero-premiss
rule. In each case, the contracted sequent is also an initial sequent or a conclusion
of the same zero-premiss rule.

If n > 0, consider the last rule used to derive the premiss of contraction. There
are two cases, depending on whether the contraction formula is principal or not in
the rule.21

1. If the contraction formula is not principal in it, both occurrences are found in
the premisses of the rule and they have a smaller derivation height. By the induction
hypothesis, they can be contracted and the conclusion is obtained by applying the
rule to the contracted premisses.

2. If the contraction formula is principal in it, we distinguish two sub-cases:
2.1. The last rule is one in which the principal formulas appear also in the

premiss (such as L 
∀, R 
∃, L[ ], R〈 ], L[ 〉, R〈 〉, L C, R2, R2′, L ⊆, and
the neighbourhood rules). In all these cases we apply the induction hypothesis to
the premiss(es) and then the rule. For example, if the last rule used to derive the
premiss of contraction is R2 we have:

a ∈ I(x),Γ⇒ ∆, x : 2A, x : 2A, a 
∀ A a ∈ I(x),Γ⇒ ∆, x : 2A, x : 2A,A C a
a ∈ I(x),Γ⇒ ∆, x : 2A, x : 2A R2

21We recall that the principal formula of a logical rule is the formula containing the constant
named by the rule in question, which in this case can be a connective, a modality, or a local
forcing relation (
∃, 
∀), or the inclusion operator; the other formulas in the rule are active or side
formulas. Side formulas are the formulas in the contexts and the other formulas, which are neither
side not principal formulas are active formulas. In the case of labelled systems there can be active
formulas in the conclusion of the rules. For example, the formula a ∈ I(x) in the conclusion of R2

is regarded as an active formula.
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By induction hypothesis applied to the premiss we obtain a one step shorter deriva-
tion of a ∈ I(x),Γ ⇒ ∆, x : 2A, a 
∀ A and a ∈ I(x),Γ ⇒ ∆, x : 2A,A C a and
thus by a step of R2 we obtain a ∈ I(x),Γ ⇒ ∆, x : 2A with the same derivation
height of the given premiss of contraction.

For the neighbourhood rules we follow the standard procedure as for added extra-
logical rules and observe that in case the contraction formulas are both principal in
the rule (as in the case of rule C) we apply the closure condition

2.2. The last rule is one in which the principal formula does not appear in the
premiss(es) (such as the rules for &, ∨, ⊃, R 
∀, L 
∃, R[ ], L〈 ], R[ 〉, L〈 〉, L2,
R ⊆). In all such cases, we apply hp-invertibility to the premiss(es) of the rule so
that we have a duplication of formulas at a smaller derivation height, then apply
the induction hypothesis (as many times as needed) then apply the rule in question.
For example, if the last rule is L2, we have:

a ∈ I(x), a 
∀ A,A C a, x : 2A,Γ⇒ ∆
x : 2A, x : 2A,Γ⇒ ∆ L2, a fresh

Using hp-invertibility of L2 we obtain from the premiss a derivation of height n− 1
of

a ∈ I(x), a ∈ I(x), a 
∀ A, a 
∀ A,A C a,A C a,Γ⇒ ∆

By the induction hypothesis we get a derivation of the same height of the sequent
a ∈ I(x), a 
∀ A,A C a,Γ ⇒ ∆ and application of L2 gives a derivation of height
n of x : 2A,Γ⇒ ∆. QED

Cut is a rule of the form

Γ⇒ ∆, φ φ,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′ Cut

where φ is any formula of the language of the labelled calculus G3n∗. We have:

Theorem 4.9. Cut is admissible in G3n∗.

Proof. By double induction, with primary induction on the weight of the cut formula
and subinduction on the cut height, i.e., the sum of the heights of derivations of the
premisses of cut. The cases in which the premisses of cut are either initial sequents
or obtained through the rules for &, ∨, or ⊃ follow the treatment of Theorem 3.2.3
of [31]. Among such cases, we just consider a significant one here, the case in which
the initial sequent is x ∈ a,Γ ⇒ ∆, x ∈ a and the other premiss is conclusion of a
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rule for inclusion in which x ∈ a is an active formula. The cut, with Γ′ = a ⊆ b,Γ′′,
is as follows

x ∈ a,Γ⇒ ∆, x ∈ a
x ∈ a, x ∈ b, a ⊆ b,Γ′′ ⇒ ∆′

x ∈ a,Γ′ ⇒ ∆′ L ⊆

x ∈ a,Γ,Γ′ ⇒ ∆,∆′ Cut

and it is converted into a cut of reduced height as follows

x ∈ a,Γ⇒ ∆, x ∈ a x ∈ a, x ∈ b, a ⊆ b,Γ′′ ⇒ ∆′

x ∈ a, x ∈ b, a ⊆ b,Γ,Γ′′ ⇒ ∆,∆′ Cut

x ∈ a,Γ,Γ′ ⇒ ∆,∆′ L ⊆

For the cases in which the cut formula is a side formula in at least one rule used
to derive the premisses of cut, the cut reduction is dealt with in the usual way
by permutation of cut, with possibly an application of hp-substitution to avoid a
clash with the fresh variable in rules with variable condition. In all such cases the
cut height is reduced. We give one example to give concreteness to this qualitative
analysis:

Γ⇒ ∆, b 
∀ B
a ∈ I(x), a 
∀ A,A C a, b 
∀ B,Γ′ ⇒ ∆′

x : 2A, b 
∀ B,Γ′ ⇒ ∆′
L2

x : 2A,Γ,Γ′ ⇒ ∆,∆′ Cut

the neighbourhood label in the premiss of L2 is fresh, but nothing prevents it from
appearing in the left premiss of cut; therefore, prior to the permutation of cut, we
need to replace it with a neighbourhood label which is fresh not just with respect
to the conclusion of L2 but also with respect to the left premiss of cut. Let the
new fresh variable be c. The transformed derivation, with cut reduced to a cut of
smaller height, is as follows:

Γ⇒ ∆, b 
∀ B c ∈ I(x), c 
∀ A,A C c, b 
∀ B,Γ′ ⇒ ∆′

c ∈ I(x), c 
∀ A,A C a,Γ,Γ′ ⇒ ∆,∆′
Cut

x : 2A,Γ,Γ′ ⇒ ∆,∆′ L2

Next we consider in full detail the cases with cut formula principal in both
premisses of cut and of the form a 
∀ A, a 
∃ A, x : [ ]A, x : 〈 ]A, x : [ 〉A, x : 〈 〉A
or A C a, x : 2A.
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1. The cut formula is a 
∀ A, principal in both premisses of cut. We have a
derivation of the form

D
x ∈ a,Γ⇒ ∆, x : A

Γ⇒ ∆, a 
∀ A R 
∀
y : A, y ∈ a, a 
∀ A,Γ′ ⇒ ∆′

y ∈ a, a 
∀ A,Γ′ ⇒ ∆′ L 
∀

y ∈ a,Γ,Γ′ ⇒ ∆,∆′ Cut

This is converted into the following derivation:

D(y/x)
y ∈ a,Γ⇒ ∆, y : A

Γ⇒ ∆, a 
∀ A y : A, y ∈ a, a 
∀ A,Γ′ ⇒ ∆′

y ∈ a, y : A,Γ,Γ′ ⇒ ∆,∆′ Cut1

y ∈ a, y ∈ a,Γ,Γ,Γ′ ⇒ ∆,∆,∆′ Cut2

y ∈ a,Γ,Γ′ ⇒ ∆,∆′ Ctr∗

Here D(y/x) denotes the result of application of hp-substitution to D, using the fact
that x is a fresh variable; compared to the original cut, Cut1 is a cut of reduced
height, Cut2 is one of reduced weight of cut formula, because w(y : A) < w(a 
∀ A),
and Ctr∗ denote repreated applications of (hp-)admissible contraction steps.

2. The cut formula is a 
∃ A, principal in both premisses of cut. The cut is
reduced in a way similar to the one in the case above and the inequality to be used
on formula weight is w(y : A) < w(a 
∃ A).

3. The cut formula is x : [ ]A, principal in both premisses of cut.
We have a derivation of the form

D
a ∈ I(x),Γ⇒ ∆, a 
∀ A

Γ⇒ ∆, x : [ ]A
R[ ]

b 
∀ A, b ∈ I(x), x : [ ]A,Γ′ ⇒ ∆′

b ∈ I(x), x : [ ]A,Γ′ ⇒ ∆′
L[ ]

b ∈ I(x),Γ,Γ′ ⇒ ∆,∆′ Cut

The transformed derivation is obtained as follows:

D(b/a)
b ∈ I(x),Γ⇒ ∆, b 
∀ A

Γ⇒ ∆, x : [ ]A b 
∀ A, b ∈ I(x), x : [ ]A,Γ′ ⇒ ∆′

b 
∀ A, b ∈ I(x),Γ,Γ′ ⇒ ∆,∆′
Cut

b ∈ I(x), b ∈ I(x),Γ,Γ,Γ′ ⇒ ∆,∆,∆′ Cut

b ∈ I(x),Γ,Γ′ ⇒ ∆,∆′ Ctr∗

where the upper cut is of reduced height and the lower one of reduced weight because
w(b 
∀ A) < w(x : [ ]A).

The cases with cut formula of the form x : 〈 ]A, x : [ 〉A, and x : 〈 〉A are all
treated in a similar way, using, respectively, the following inequalities that hold for
the weight of the cut formulas, namely, w(b 
∀ A) < w(x : 〈 ]A), w(b 
∃ A) < w(x :
[ 〉A), and w(b 
∃ A) < w(x : 〈 〉A).
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We observe that it is essential here that the rules are in harmony in the sense
that for each modality each pair of rules has either 
∀ or 
∃ in the premisses.

4. The cut formula is A C a, principal in both premisses of cut. We have:

D
x : A,Γ⇒ ∆, x ∈ a

Γ⇒ ∆, A C a R C
y : A, y ∈ a,A C a,Γ′ ⇒ ∆′

y ∈ a,A C a,Γ′ ⇒ ∆′ L C

y : A,Γ,Γ′ ⇒ ∆,∆′ Cut

The cut is converted as follows:

D(y/x)
y : A,Γ⇒ ∆, y ∈ a

Γ⇒ ∆, A C a y : A, y ∈ a,A C a,Γ′ ⇒ ∆′

y : A, y ∈ a,Γ,Γ′ ⇒ ∆,∆′ Cut

y : A, y : A,Γ,Γ,Γ′ ⇒ ∆,∆,∆′ Cut

y : A,Γ,Γ′ ⇒ ∆,∆′ Ctr∗

where the upper cut is of reduced cut height and the lower one of reduced weight of
cut formula because w(y ∈ a) < w(A C a).

5. The cut formula is x : 2A, principal in both premisses of cut. We have a cut
of the form

b ∈ I(x),Γ⇒ ∆, x : 2A, b 
∀ A b ∈ I(x),Γ⇒ ∆, x : 2A,A C b
b ∈ I(x),Γ⇒ ∆, x : 2A R2

D
a ∈ I(x), a 
∀ A,A C a,Γ′ ⇒ ∆′

x : 2A,Γ′ ⇒ ∆′ L2

b ∈ I(x),Γ,Γ′ ⇒ ∆,∆′ Cut

This is transformed into derivation with four smaller cuts as follows. First we have
b ∈ I(x), Γ⇒ ∆, x : 2A, b 
∀ A x : 2A, Γ′ ⇒ ∆′

b ∈ I(x), Γ, Γ′ ⇒ ∆, ∆′, b 
∀ A
Cut D(b/a)

b ∈ I(x), b 
∀ A, A C b, Γ′ ⇒ ∆′

(b ∈ I(x))2, A C b, Γ, (Γ′)2 ⇒ ∆, (∆′)2 Cut

with two reduced cuts, the upper one with the original cut formula but smaller
derivation height, and the lower one with a cut formula of reduced weight because
w(b 
∀ A) < w(x : 2A).

We then continue with two more cuts as follows:
b ∈ I(x), Γ⇒ ∆, x : 2A, A C b x : 2A, Γ′ ⇒ ∆′

b ∈ I(x), Γ, Γ′ ⇒ ∆, ∆′, A C b
Cut (b ∈ I(x))2, A C b, Γ, (Γ′)2 ⇒ ∆, (∆′)2

(b ∈ I(x))3, (Γ)2, (Γ′)3 ⇒ (∆)2, (∆′)3 Cut

b ∈ I(x), Γ, Γ′ ⇒ ∆, ∆′ Ctr∗

where the upper cut is on the original cut formula, but of reduced height, and the
lower one of reduced weight because w(A C b) < w(x : 2A).
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If instead the monotonic rules R2′, L2′ have been used, the conversion is simpler:
We have a cut of the form

b ∈ I(x),Γ⇒ ∆, x : 2A, b 
∀ A
b ∈ I(x),Γ⇒ ∆, x : 2A R2′

D
a ∈ I(x), a 
∀ A,Γ′ ⇒ ∆′

x : 2A,Γ′ ⇒ ∆′ L2′

b ∈ I(x),Γ,Γ′ ⇒ ∆,∆′ Cut

This is converted into a derivation with two cuts, the upper one of reduced height
and the lower one or reduced weight, followed by contractions, so that the inductive
hypothesis applies. The details are easy and left to the reader.

For extensions of the basic system, we need to consider also the cases of cut with
cut formula of the form a ⊆ b or x ∈ a∩ b principal in both premisses of cut. In the
first case, we have a derivation of the form

x ∈ a,Γ⇒ ∆, x ∈ b
Γ⇒ ∆, a ⊆ b R ⊆

y ∈ a, y ∈ b, a ⊆ b,Γ′ ⇒ ∆′

y ∈ a, a ⊆ b,Γ′ ⇒ ∆′ L ⊆

y ∈ a,Γ,Γ′ ⇒ ∆,∆′ Cut

This is converted into a derivation with two cuts, the first of reduced height, the
second of reduced weight, as follows:

y ∈ a,Γ⇒ ∆, y ∈ b
Γ⇒ ∆, a ⊆ b y ∈ a, y ∈ b, a ⊆ b,Γ′ ⇒ ∆′

y ∈ a, y ∈ b,Γ,Γ′ ⇒ ∆,∆′ Cut1

y ∈ a2,Γ2,Γ′ ⇒ ∆2,∆′
Cut2

y ∈ a,Γ,Γ′ ⇒ ∆,∆′ Ctr∗

Here the left premiss of the second cut is obtained by a hp-substitution on the
premiss of R ⊆.

In the second case, we have a derivation of the form

Γ⇒ ∆, x ∈ a ∩ b, x ∈ a Γ⇒ ∆, x ∈ a ∩ b, x ∈ b
Γ⇒ ∆, x ∈ a ∩ b R∩

x ∈ a, x ∈ b, x ∈ a ∩ b,Γ′ ⇒ ∆′

x ∈ a ∩ b,Γ′ ⇒ ∆′ L∩

Γ,Γ′ ⇒ ∆,∆′ Cut

This is converted into a derivation with five cuts, Cut1, Cut2 and Cut4 of reduced
height, and the remaining two of reduced weight of cut furmula:

Γ⇒ ∆, x ∈ a ∩ b, x ∈ b x ∈ a ∩ b,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′, x ∈ b Cut4

....
x ∈ b,Γ2,Γ′2 ⇒ ∆2,∆′2

Γ3,Γ′3 ⇒ ∆3,∆′3
Cut5

Γ,Γ′ ⇒ ∆,∆′ Ctr∗
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where the dotted part is continued as follows:
Γ⇒∆, x∈a ∩ b, x∈a x∈a ∩ b, Γ′⇒∆′

Γ, Γ′ ⇒ ∆, ∆′, x ∈ a
Cut1

Γ⇒∆, x∈a ∩ b x∈a, x ∈ b, x∈a ∩ b, Γ′⇒∆′

x∈a, x∈b, Γ, Γ′ ⇒ ∆, ∆′
Cut2

x ∈ b, Γ2, Γ′2 ⇒ ∆2, ∆′2
Cut3

QED

5 Soundness and completeness
Next, we give a proof of soundness and a direct proof of completeness of our calculus
with respect to neighbourhood semantics. Specifically, we show that all the rules
are sound, and show that proof search in the calculus either produces a proof, or
provides us with a saturated branch which is used to define a countermodel. The
countermodel will be defined directly, that is, using the syntactic elements (labels)
and the forcing conditions in the saturated branch, without any need for additional
constructions.

Soundness

We recall a definition from Chellas ( [4], p. 215):

Definition 5.1. Let F ≡ (W, I) be a neighbourhood frame.

• F is supplemented if for all subsets α, β of W and for all x ∈W , if α ∈ I(x)
and α ⊆ β, we have β ∈ I(x).

• F is closed under intersection if for all x ∈ W for all α, β in I(x), we
have α ∩ β ∈ I(x).

• F is contains the unit if for all x ∈W , W is in I(x).

Definition 5.2. Given a set S of world labels x and a set NL of neighbourhood
labels a, and a neighbourhood model M = (W, I,V), an SN -realisation (ρ, σ) is a
pair of functions mapping each x ∈ S into ρ(x) ∈ W and mapping each a ∈ NL
into σ(a) ∈ I(w) for some w ∈ W . As SN -realisation (ρ, σ) has to respect formal
intersection of the language, i.e., σ(a ∩ b) = σ(a) ∩ σ(b)22. We introduce the notion
“M satisfies a formula F under an SN -realisation (ρ, σ)” and denote it byM |=ρ,σ

22Observe that the symbol on the left denotes formal intersection, the one on the right set-
theoretic intersection.
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F , where we assume that the labels in F occur in S, NL. The definition extends the
usual clauses for the propositional connectives by cases on the form of F :23

• M |=ρ,σ x ∈ a if ρ(x) ∈ σ(a)

• M |=ρ,σ a ∈ I(x) if σ(a) ∈ I(ρ(x))

• M |=ρ,σ a ⊆ b if σ(a) ⊆ σ(b)

• M |=ρ,σ x : A if ρ(x) 
 A

• M |=ρ,σ a 
∃ A if there exists w in σ(a) such that w 
 A

• M |=ρ,σ a 
∀ A if for all w in σ(a), w 
 A

• M |=ρ,σ A C a if [A] ⊆ σ(a)

• M |=ρ,σ x : 2A if for some a, σ(a) ∈ I(ρ(x)) and σ(a) = [A]

Given a sequent Γ ⇒ ∆, let S, NL be the sets of world and neighbourhood labels
occurring in Γ ∪∆, and let (ρ, σ) be an SN -realisation; we define M |=ρ,σ Γ ⇒ ∆
to hold if whenever M |=ρ,σ F for all formulas F ∈ Γ then M |=ρ,σ G for some
formula G ∈ ∆. We further defineM-validity by

M |= Γ⇒ ∆ iffM |=ρ,σ Γ⇒ ∆ for every SN -realisation (ρ, σ)

We finally say that a sequent Γ ⇒ ∆ is valid in a neighbourhood frame F if M |=
Γ⇒ ∆ for every neighbourhood modelM based on F .

Below, we shall use the notationM |=ρ,σ Γ forM |=ρ,σ F for all F ∈ Γ. We shall
denote with G3nM∗, G3nC∗, G3nN∗ the extensions of G3n which are monotonic,
contain rule C, and rule N , respectively. Since extensions are obtained in a modular
way, further extensions with rules that correspond to the frame properties ∗ are
indicated by the asterisk.

Theorem 5.3. If Γ ⇒ ∆ is derivable in G3n∗ (respectively G3nM∗, G3nC∗,
G3nN∗), then it is valid in the class of neighbourhood frames (respectively neigh-
bourhood frames which are supplemented, closed under intersection, containing the
unit) with the ∗ properties.

23Observe that hereafter we use the more compact notation [A], in place of ext(A), for the
extension of A.
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Proof. By induction on the height n of the derivation of Γ ⇒ ∆ in G3nE∗ (resp.
G3nM∗, G3nC∗, G3nN∗).

For n = 0, observe that initial sequents have the same labelled formula in the
antecedent and in the succedent so the claim is obvious. Similarly if the antecedent
contains x : ⊥ because we assume that for no w ∈W , w 
 ⊥.

For the inductive step, consider the last rule in the derivation of Γ⇒ ∆. If it is
a propositional rule, the claim is immediate by the definition of the forcing clauses
for the propositional connectives.

If the last rule is R 
∀, assume by induction hypothesis that M |= x ∈ a,Γ ⇒
∆, x : A. Let (ρ, σ) be an arbitrary SN -realisation for the conclusion and assume
that M |=ρ,σ Γ. Since x is fresh, it can be extended to ρ′, an S-realization for
the premiss with ρ′(x) ∈ σ(a). Then (using the assumption that x /∈ Γ) we have
M |=ρ′,σ x ∈ a,Γ. By the hypothesisM |= x ∈ a,Γ⇒ ∆, x : A, we have that either
(1) M |=ρ′,σ G for some G in ∆ or (2) M |=ρ′,σ x : A. In the former case we are
done, so let us assume thatM |=ρ′,σ G for no G in ∆. Since x /∈ ∆, this will be the
case uniformly, independently of the choice of ρ′(x), so we’ll haveM |=ρ′,σ x : A for
all ρ′(x) ∈ σ(a), and thereforeM |=ρ,σ a 
∀ A.

If the last rule is L 
∀, the claim holds because if M |=ρ,σ x ∈ a and M |=ρ,σ

a 
∀ A, thenM |=ρ,σ x : A by simply unfolding the definitions.
If the last rule is R 
∃, consider an arbitrary SN -realisation (ρ, σ) and assume

that (1) M |=ρ,σ x ∈ a,Γ. Then, by induction hypothesis, either (2) M |=ρ,σ G
for some G ∈ ∆, or (3) M |=ρ,σ x : A, or (4) M |=ρ,σ a 
∃ A. If (2) or (4) hold,
then the claim follows. If (3) holds, we have ρ(x) 
 A. Observe that (1) gives in
particular ρ(x) ∈ σ(a), so there is w ∈ σ(a) such that w 
 A. It follows that the
conclusion of the rule isM-valid for the SN -realization (ρ, σ).

If the last rule is L 
∃, assume that M |=ρ,σ a 
∃ A,Γ for an arbitrary SN -
realisation for the conclusion (ρ, σ). Then there is w ∈ σ(a) such that w 
 A.
Since x is fresh, we can extend ρ to and S-realization for the premiss by choosing
ρ′(x) = w. Then we haveM |=ρ′,σ x ∈ a, x : A by definition, andM |=ρ′,σ Γ because
x /∈ Γ. By induction hypothesis, the premiss of the rule is M-valid, and therefore
there is G in ∆ such thatM |=ρ′,σ G. Since x /∈ ∆, this is the same asM |=ρ,σ G.

If the last rule is R C, with premiss y : A,Γ⇒ ∆, y ∈ a, let (ρ, σ) be an arbitrary
SN -realisation for the conclusion and assume that M |=ρ,σ Γ. The claim is that
for some formula B in ∆, M |=ρ,σ B or M |=ρ,σ A C a. Since y is fresh, we
can extend ρ to a S-realization for the premiss ρ′ by choosing ρ′(y) ∈ [A]. Since
M |= y : A,Γ⇒ ∆, y ∈ a, we have that there exists B ∈ ∆ such thatM |=ρ′,σ B or
M |=ρ′,σ y ∈ a. In the first case, since y does not occur in B, we have alsoM |=ρ,σ B.
In the second case, since ρ′(y) was arbitrary in [A], we haveM |=ρ,σ A C a.

If the last rule is L C, assume that the premiss y ∈ a,A C a, y : A,Γ ⇒ ∆ is
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valid, and let (ρ, σ) be an arbitrary SN -realisation with M |=ρ,σ A C a, y : A,Γ.
Then we have ρ(y) ∈ [A] and [A] ⊆ σ(a), so that ρ(y) ∈ σ(a), thus M |=ρ,σ y ∈
a,A C a, y : A,Γ. By the assumption, there is B in ∆ such that M |=ρ,σ B and
thus the claim follows.

If the last rule is L2, assume the premiss valid and let (ρ, σ) be an arbitrary
SN -realisation with M |=ρ,σ x : 2A,Γ. This means in particular that ρ(x) ∈ [A],
i.e., there is α in I(ρ(x)) with α = [A]. Since a is fresh, we can extend σ to σ′ by
having σ′(a) = α. We haveM |=ρ,σ′ a ∈ I(x), A C a, a 
∀ A by the definitions and
alsoM |=ρ,σ′ Γ because a /∈ Γ and by hypothesisM |=ρ,σ Γ. Again by hypothesis,
there is B in ∆ with M |=ρ,σ′ B and thus by freshness of a (not in B) we have
M |=ρ,σ B.

If the last rule is R2, assume the premisses valid and assume for an arbitrary
SN -realisation (ρ, σ) that M |=ρ,σ a ∈ I(x),Γ. From the validity of the premisses
we have that one of the following alternatives holds: 1: M |=ρ,σ B for some B in ∆.
2. M |=ρ,σ x : A. 3. M |=ρ,σ a 
∀ A,A C a. Observe that the latter gives, together
with M |=ρ,σ a ∈ I(x) that M |=ρ,σ x : 2A so in each of the three cases we have
proved the claim.

Next, we consider the rules for inclusion. If the last rule is R ⊆, consider an
SN -realisation such that M |=ρ,σ Γ. Since x is fresh, we can extend ρ to ρ′ by
choosing ρ′(x) ∈ σ(a). Since the premiss in M-valid, by inductive hypothesis we
have that M |=ρ′,σ G for some G ∈ ∆ or M |=ρ′,σ x ∈ b. Since x is not in ∆, the
former givesM |=ρ,σ G for some G ∈ ∆, whereas the latter gives, by the choice in
the range of ρ′(x),M |=ρ,σ a ⊆ b.

The case with L ⊆ as the last rule is immediate.
The preservation of validity in the case of rules [ ], 〈 ], [ 〉, and 〈 〉 follows the

same pattern of that for the 2 rules. To conclude, it is immediate that rules M , C,
N (and the monotonic variants C ′, Nondeg) are valid in frames frames which are
supplemented, closed under intersection, containing the unit (and supplemented for
the latter two with the monotonic variants) respectively. QED

Definition 5.4. We say that a branch in a proof search from the endsequent up to
a sequent Γ⇒ ∆ is saturated with respect to a rule R if condition (R) below holds,
where we indicate with ↓ Γ (↓∆) the union of the antecedents (succedents) in the
branch from the end-sequent up to Γ⇒ ∆:

(Init0) There is no x ∈ a in Γ
⋂

∆.

(Init) There is no x : P in Γ
⋂

∆.

(L⊥) There is no x :⊥ in Γ.
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(L&) If x : A&B is in ↓Γ, then x : A and x : B are in ↓Γ.

(R&) If x : A&B is in ↓∆, then either x : A or x : B is in ↓∆.

(L∨) If x : A ∨B is in ↓Γ, then either x : A or x : B is in ↓Γ.

(R∨) If x : A ∨B is in ↓∆, then x : A and x : B are in ↓∆.

(L⊃) If x : A ⊃ B is in ↓Γ, then either x : A is in ↓∆ or x : B is in ↓Γ.

(R⊃) If x : A ⊃ B is in ↓∆, then x : A is in ↓Γ and x : B is in ↓∆

(R 
∀) If a 
∀ A is in ↓∆, then for some x there is x ∈ a in Γ and x : A in ↓∆

(L 
∀) If x ∈ a and a 
∀ A and are in Γ, then x : A is in ↓Γ.

(R 
∃) If x ∈ a is in Γ and a 
∃ A is in ∆, then x : A is in ↓∆.

(L 
∃) If a 
∃ A is in ↓Γ, then for some x there is x ∈ a in Γ and x : A is in ↓Γ

(L C) If A C a and y : A are in ↓Γ, then y ∈ a is in Γ.

(R C) If A C a is in ↓∆, then for some y, y : A is in ↓Γ and y ∈ a is in ∆.

(L2) If x : 2A is in ↓Γ, then for some a, a ∈ I(x), a 
∀ A, A C a are in ↓Γ.

(L2′) If x : 2A is in ↓Γ, then for some a, a ∈ I(x), a 
∀ A are in ↓Γ.

(R2) If a ∈ I(x) is in Γ and x : 2A is in ↓∆, then either a 
∀ A or A C a is in
↓∆.

(R2′) If a ∈ I(x) is in Γ and x : 2A is in ↓∆, then a 
∀ A is in ↓∆.

(L ⊆) If x ∈ a and a ⊆ b are in ↓Γ, then x ∈ b is in Γ.

(R ⊆) If a ⊆ b is in ↓∆, then for some x there is x ∈ a in Γ and x ∈ b in ∆.

(L∩) If x ∈ a ∩ b is in Γ, then x ∈ a and x ∈ b are in Γ.

(R∩) If x ∈ a ∩ b is in ∆, then either x ∈ a or x ∈ b are in ∆.

(M) If a ∈ I(x), a ⊆ b are in Γ, then b ∈ I(x) is in Γ.

(C) If a ∈ I(x), b ∈ I(x) are in Γ, then a ∩ b is in Γ.

(C ′) If a ∈ I(x), b ∈ I(x) are in Γ, then for some c, c ∈ I(x), c ⊆ a, c ⊆ b are in
Γ.
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(N) For some a, a ∈ I(x),> C a are in Γ.

(Nondeg) For some a, a ∈ I(x) is in Γ.

A branch is saturated relative to a systems S of rules if it is saturated with respect
each rule of S.

The definition of saturation with respect to the rules for the modalities [ ], 〈 ],
[ 〉, and 〈 〉 has been left out as it involves eight more clauses and it should be by
now clear from the meaning of saturation with respect a rule and the pattern of
the other cases. The definition of saturated branch is extended to infinite branches
B ≡ {Γi ⇒ ∆i}i≥0 by replacing, in the definition above, Γ (or ↓Γ) by Γ, the union
of the Γi, and ∆ (or ↓∆) by ∆, the union of the ∆i. The first and second clause
(Init0, Init) are modified to requiring that for all i, there is no x ∈ a in Γi ∩∆i and
for all i, there is no x : P in Γi ∩∆i.

Given a sequent Γ ⇒ ∆ we apply root-first all the available rules. Observe
that by invertibility of the rules, there is no prescribed order in which they need to
be applied. We want to avoid the possibility that the search produces an infinite
branch which is not saturated, something that would result, e.g., from applying the
same rule infinitely many times in consecutive steps. This is achieved as usual in
such proofs through a counter: if there are m rules, apply at step 1 rule R1 to all
formulas that match its conclusion, at step 2 rule R2, and in general for all n ≥ 0
apply at step n ×m + j rule Rj . In this way we’ll obtain a proof-search tree that
can be a derivation, or a non-derivation; the latter can either be a finite search tree
that contains finite saturated branches, or an infinite search that, by König’s lemma
contains an infinite, saturated branch. We shall now prove that a saturated branch
(either finite or infinite) for a sequent Γ⇒ ∆ gives a countermodel.

Lemma 5.5. Let B ≡ {Γi ⇒ ∆i} be a saturated branch in a proof-search tree for
Γ ⇒ ∆. Then there exists a countermodel M to Γ ⇒ ∆, which makes all the
formulas in Γ true, and all the formulas in ∆ false.

Proof. Consider a saturated branch and define the countermodelM≡ (W, I,V) as
follows:

1. The set W of worlds consists of all the world labels in Γ;

2. For each neighbourhood label a in Γ, we associate αa, the set that consists of
all the y in W such that y ∈ a is in Γ;

3. For each x in W , the set of neighbourhoods of x consists of all the αa such
that a ∈ I(x) is Γ;
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4. The valuation is defined by x ∈ V(P ) if x : P is in Γ.

We then define a realization (ρ, σ) by ρ(x) ≡ x and σ(a) ≡ αa. Next we prove
the following:

1. If A is in Γ, thenM |=ρ,σ A.

2. If A is in ∆, thenM |=/ρ,σ A.

The two claims are proved simultaneously by cases/induction on the weight of
A (cf. Definition 4.1).

(a) If A is a formula of the form a ∈ I(x), x ∈ a, a ⊆ b, claim 1. holds by
definition of M; if A is x ∈ a ∩ b, by saturation we have that x ∈ a and x ∈ b are
in Γ. These are lighter formulas, so the inductive hypothesis applies and we have
ρ(x) ∈ σ(a) and ρ(x) ∈ σ(b), so ρ(x) ∈ σ(a) ∩ σ(b). The conclusion ρ(x) ∈ σ(a ∩ b)
follows from the fact that σ respects intersection. Claim 2. is empty for a ∈ I(x)
because such formulas never occur on the right-hand side of sequents. If x ∈ a is
in ∆, then x ∈ a is not in Γ and thus ρ(x) /∈ αa, so M |=/ρ,σ x ∈ a. If a ⊆ b is
in ∆, then for some x, x ∈ a is in Γ and x ∈ b is in ∆, so by inductive hypothesis
M |=ρ,σ x ∈ a andM |=/ρ,σ x ∈ b, and thereforeM |=/ρ,σ a ⊆ b.

(b) If A is a labelled atomic formula x : P , the claims hold by definition of V and
by the saturation clause Init no inconsistency arises. If A is ⊥, it holds by definition
of the forcing relation that it is never forced, and therefore 2. holds, whereas 1.
holds by the saturation clause for L ⊥. If A is a conjunction, or a disjunction, or an
implication, the claim holds by the corresponding saturation clauses and inductive
hypothesis on smaller formulas.

(c) If a 
∃ A is in Γ, by the saturation clause (L 
∃), for some x there is x ∈ a
in Γ and x : A is in Γ. Then M |=ρ,σ x ∈ a by (a) and by induction hypothesis
M |=ρ,σ x : A, therefore M |=ρ,σ a 
∃ A. If a 
∃ A is in ∆, consider an arbitrary
world x in αa. Then by definition of M we have x ∈ a in Γ and thus by the
saturation clause (R 
∃) we also have x : A is in ∆. By induction hypothesis we
have M |=/ρ,σ x : A and therefore M |=/ρ,σ a 
∃ A. The proof for formulas of the
form a 
∀ A is similar.

(d) If A C a is in Γ, let y be an arbitrary label such thatM |=ρ,σ y : A. Then
by definition ofM we have y : A in Γ and then by saturation y ∈ a is in Γ thus by
inductive hypothesis and by definition ofM we obtainM |=ρ,σ A C a.

If A C a is in ∆, by the corresponding saturation clause we have that for some
y, y : A is in Γ and y : a is in ∆ , so by induction hypothesis we have that there is y
such thatM |=ρ,σ y : A andM |=/ρ,σ y ∈ a. Overall, this means thatM |=/ρ,σ A C a.
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(e) If x : 2A is in Γ, then for some a, a ∈ I(x), a 
∀ A, A C a are in Γ. By
induction hypothesis we obtainM |=ρ,σ a 
∀ A andM |=ρ,σ A C a, and therefore
M |=ρ,σ x : 2A.

If x : 2A is in ∆, let αa be a neighbourhood in I(x) in the model. By the
saturation clause, we have that either a 
∀ A or A C a is in ∆. By induction
hypothesis we obtainM |=/ρ,σ a 
∀ A orM |=/ρ,σ A C a, and thereforeM |=/ρ,σ x :
2A.

In order to prove completeness for extensions of E we need to prove that the
countermodelM is in the intended class. ForM (1), we shall consider the version of
the 2 rules with monotonicity built-in and modify the model to impose monotonicity;
for C (2) and N (3) instead we shall extend in a consistent way the saturated branch.

(1) LetM be defined asM above, but taking for I(x) supersets of the αa. In this
wayM is supplemented. We need to verify that if x : 2A is in Γ thenM |=ρ,σ 2A:
by the saturation clause for L2 we have that for some a such that a ∈ I(x) is in Γ,
a 
∀ A is in Γ. By inductive hypothesis,M |=ρ,σ a 
∀ A and therefore, sinceM is
supplemented, M |=ρ,σ 2A. If x : 2A is in ∆, let αa be a neighbourhood of x in
the model. This means that a ∈ I(x) is in Γ. By the R2 saturation clause, a 
∀ A
is in ∆, so by inductive hypothesisM |=/ρ,σ a 
∀ A, and therefore it is not the case
that for all w in αa, w 
 A. Since αa was an arbitrary neighbourhood of x, we have
M |=/ρ,σ 2A.

(2) The saturated branch is extended as follows: whenever Γ contains x ∈ a and
x ∈ b, we add x ∈ a ∩ b to Γ (observe that this move doesn’t collapse the saturated
branch into an initial sequent since if x ∈ a ∩ b was in ∆, then by saturation
either x ∈ a or x ∈ b would be in ∆, against the assumption that we started with a
saturated branch). We call the branch thus obtained a C-extended saturated branch.
Next we prove that the modelM built on the C-extended saturated branch is closed
under intersection. Let αa and αb be in I(x). This means that a ∈ I(x) and b ∈ I(x)
are in Γ. We show that αa∩αb = αa∩b and therefore conclude that αa∩αb is also in
I(x). Clearly, if y ∈ αa∩b, i.e., y ∈ a∩ b in Γ, then by saturation y ∈ a and y ∈ b are
in Γ, therefore y ∈ αa∩αb. The converse inclusion is guaranteed by the C-extension
of the saturated branch. Observe that the equality just proved also shows that the
added formulas x ∈ a ∩ b are true in the model.

(3) The saturated branch is extended as follows: for every label y in the branch,
we add the formula y : > to Γ. The branch thus obtained is an N-extended saturated
branch. By the saturation condition for N we have that for some a ∈ I(x), > C a is
in Γ. By the N-extension and the saturation with respect to LC, we have that αa
coincides with W , and therefore W is a neighbourhood of x, so the model contains
the unit. QED
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We are ready to prove the completeness of the calculus.

Theorem 5.6. If A is valid then there is a derivation of ⇒ x : A, for any label x.

Proof. For every A we either find a derivation or a saturated branch. By the above
lemma a saturated branch gives a countermodel to A. It follows that if A is valid it
has to be derivable. QED

The above completeness proof gives a method to construct countermodels for
unprovable sequents. It is also possible to give a simple completeness proof as a
direct consequence of the structural properties of the calculus and the derivability
of the characteristic axiom of each of the non-normal systems considered:

Theorem 5.7. Let A be a formula in the language of the modal propositional logic,
and let E∗ be any extension of E with axioms M , C, N (and combinations thereof)
and G3n∗ the corresponding labelled sequent calculus. Then if E∗` A, we have
G3n∗ ` ⇒ x : A where x is an arbitrary world label.

Proof. By induction on the derivation in the axiomatic system. Observe that the
result holds for classical propositional axioms and has been proved for each specific
modal axiom in Section 3, so it is enough to prove the inductive step for the only rule
of the axiomatic system, i.e., that if E∗` A is obtained by modus ponens, then G3n∗
` ⇒ x : A. Consider derivable premisses B and B ⊃ A. By inductive hypothesis
we have G3n∗ ` ⇒ x : B and G3n∗ ` ⇒ x : B ⊃ A. The latter gives by (hp-)
invertibility of R ⊃, G3n∗ ` x : B ⇒ x : A. An admissible step of cut gives the
desired conclusion. QED

Computational issues about the calculi are not in the scope of the present paper,
and we shall deal with termination and complexity of our calculi in further work.
However, following the line of our [30] and [13], we can outline the recipe to obtain a
terminating proof search in the calculi here presented. First of all, it is useful to make
the distinction between static and dynamic rules. The former do not introduce new
labels in moving from conclusions to premisses, whereas the latter do.24 The main
difficulty in obtaining termination is that a proof branch may potentially introduce
infinitely many world and neighbourhood labels by unconstrained application of
the dynamic rules. The termination of proof search requires to adopt a suitable
strategy of rule application which on the one hand preserves the completeness and
on the other ensures that in any proof branch only a finite number of labels will be
introduced. The strategy will be specific to each calculus, but it contains at least
the following constraints:

24For example, in G3n the rule L2 is dynamic and R2 static.
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1. Do not apply a rule R to a sequent Γ ⇒ ∆ if ↓ Γ and/or ↓ ∆ satisfy the
saturation condition associated to R.

2. Apply static rules before dynamic rules.

The strategy may specify further constraints on the order of applications of rules
(e.g. rule R1 must always be applied before rule R2) or on the temporal order in
which the labels must be treated (e.g. apply all rules to a label x before applying
any rule to y if x is “older” than y, that is, introduced earlier in the branch).

There is also an additional difficulty for systems where intersection of neigh-
bourhood labels is allowed, as neighbourhood labels become complex terms so that
infinitely many terms can be generated from a finite number of labels. To handle
this case we shall need to identify term labels which are equivalent modulo commu-
tativity and associativity of intersection.

We shall carry on a detailed analysis of all computation issues along the above
lines in further work.

6 Concluding remarks
We have presented a systematic development of labelled sequent calculi for logical
systems based on neighbourhood semantics, with focus on classical modal systems.
Other approaches to the proof theory of classical modal logics besides the ones men-
tioned in the introduction include the nested sequent calculi of [21].25 Additionally,
in [16] standard sequent systems (most of them cut free) are provided for extensions
of the monotonic system M by all combinations of the modal axioms D, T, 4, B, and
5. Similar results are obtained for congruent modal logics (another name for exten-
sions of E) in [17]. Standard sequents are also considered in [19] via an approach
based on a treatment of “sequents as sets” that makes contraction implicit, rather
than admissible as in the G3-calculi. When such approach to sequent calculus proof
theory is followed, all the rules become context-dependent and the proof of cut elim-
ination presents some difficulties that one does not have with the usual approach
to sequents as lists or multisets (cf. [33]). Standard, contraction-free sequent calculi
for non-normal systems of deontic logic are presented in [37]. A different approach
to the proof-theoretic study of non-normal modal logics, with focus on conditional
logics, is pursued in [39]: here a criterion is developed for guaranteeing absorption
of the structural rules into a system of sequent rules. The conditions the system has
to satisfy are closure conditions and typically generate a large number of rules.

25We remark that nested sequent calculi have been developed also in other venues in non-classical
logics (e.g. for modal logic [3] and bi-intuitionistic logic [14]); complexity has been studied in [2].

1282



Proof Theory for Non-normal Modal Logics ...

Labelled calculi for monotonic and regular modal logics have already been consid-
ered in [15]. As in our work the labelling originates from neighbourhood semantics,
but there are important differences: first, the proof system is a tableau with signed
formulas, rather than a sequent style proof system. Second, the calculus has labels
with a path structures and no relations, whereas in our approach we have two sorts
of labels and the explicit relation of formal membership. Correspondingly, in one
systems there are rules that operate on the structured labels through an unification
algorithm, whereas in our system there are rules for the neighbourhood semantics
counterpart of the accessibility relation of Kripke semantics.

Labelled systems, on the whole, have several advantages over other formalisms
for modal logic. First, the systems originate from a uniform methodology which has
reached a wide range of applications; the transparent semantic motivation behind
the rules makes them intuitive and allows a direct completeness proof. As we have
seen, we can use a ground basic system to find, through proof search by invertible
rules, which additional rules are needed to obtain complete systems for extensions;
this can be useful especially in the absence of known correspondence results.

This extension of the labelled approach inherits the flexibility and far reach of
neighbourhood semantics. Here we have focused on the most basic classical systems
but it is possible extend the approach to systems with further requirements on the
neighbourhood frames, as those listed in section 7.4 of [4]. A property such as
a ∈ I(x)→ x ∈ a is straightforward to handle and corresponds to an added rule of
the form x∈a,a∈I(x),Γ⇒∆

a∈I(x),Γ⇒∆ . Other properties, such as a ∈ I(x) → ac /∈ I(x) can also
be treated by the method of conversion into rules, but one also needs rules for the
formal complement of a neighbourhood.

Rather than dwelling on abstract generality, we stress that alongside with the
completion of this ground work, labelled calculi based on neighbourhood semantics
have been developed for other logics that cannot be studied simpliciter through
possible world semantics, such as preferential conditional logic [30] and conditional
doxastic logic [13]. Classical modal logics are decidable. The finite model property
and finitary proof search can be established in parallel for labelled calculi; we expect
that no special difficulties should arise in the case of classical logics, but a detailed
proof, along the lines sketched at the end of Section 5, is left to further work.
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1 Motivation

Generally speaking, Temporal Logic is any system of rules and symbolism for repre-
senting, and reasoning about propositions qualified in terms of time. Temporal logic
is one of the most traditional kinds of modal logic, introduced by Arthur Prior in
the late 1950s, but it is also one of the most controversial kinds of modal logic, as
people have different intuitions about time, how to represent it, and how to reason
about it.

There has been a large amount of work in Modal Logic in the last sixty years,
mainly in classical modal logic. We are mostly interested in constructive systems, not
classical ones. In particular we are interested in a constructive version of temporal
logic that satisfies some well-known and desirable proof-theoretical properties, but
that is also algebraically and category-theoretically well-behaved.

Prior’s ‘Time and Modality’ [24] introduced a propositional modal logic with two
temporal connectives (modal operators), F and P , corresponding to “sometime in
the Future” and “sometime in the Past”. This propositional system has been called
tense logic to distinguish it from other temporal systems.

Ewald [10] produced a first version of an intuitionistically based temporal logic
system with not only operators for “sometime in the Future” and “sometime in the
Past”, but also operators for “in all future times” and “for all past times”. The
intuitive reading of these operators is very reasonable:

• P “It has at some past time been the case that”

• F “It will at some future time be the case that”

• H “It has always been the case in the past that”

• G “It will always be the case in the future that”

Ewald and most of the researchers that followed his path of constructivization of
tense logic, did so assuming a symmetry between past and future. This symmetry, as
well as the symmetry between universal and existential quantifiers, both in the past
and in the future, are somewhat at odds with intuitionistic reasoning. In particular
while an axiom like A → GPA “What is, will always have been” makes sense in a
constructive way of thinking, the dual one A→ HFA paraphrased in the Stanford
Encyclopedia of Philosophy as “What is, has always been going to be” feels very
classical.

Constructivizing a classical system is alwys prone to proliferation of systems,
as is evident when considering the several versions of intuitionistic set theory, for
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3(A ∨B) → 3A ∨3B
3⊥ → ⊥

Figure 1: Distributivity rules

example. In particular the basic constructive modal logic S4 (using Lewis’ original
naming convention) has two main variants.

The first version of an intuitionistic S4, originally presented by Dag Prawitz in
his Natural Deduction book [23] does not satisfy the distributivity of the possibility
operator 3 over the logical disjunction. Prawitz’s system satisfies neither the binary
distribution nor its nullary form, as given in Figure 1. We call this system CS4. This
system was investigated from a proof theoretical and categorical perspective in [5].

The second main version of an intuitionistic modal S4 does enforce these dis-
tributivities and it was thoroughly investigated in Simpson’s doctoral thesis [25].
This system is part of a framework for constructive modal logics, based on incorpo-
rating, as part of the syntax, the intended semantics of the modal logic, as possible
worlds. We call this system IS4.

Ewald’s tense logic system consists of a pair of Simpson-style S4 operators [25],
representing past and future over intuituionistic propositional logic. This is his-
torically inaccurate, as Simpson based his systems in Ewald’s, but it will serve to
make some of our main points clearer below. The system we describe in this note
is the tense logic system obtained by joining together two pairs of Prawitz-style S4
operators. So it satisfies some of Ewald’s rules, but not all.

Simpson remarks that intuitionistic or constructive modal logic is full of inter-
esting questions. As he says:

Although much work has been done in the field, there is as yet no con-
sensus on the correct viewpoint for considering intuitionistic modal logic.
In particular, there is no single semantic framework rivalling that of pos-
sible world semantics for classical modal logic. Indeed, there is not even
any general agreement on what the intuitionistic analogue of the basic
modal logic, K, is.

In an intuitionistic logic we do not expect perfect duality between quantifiers,
(∀x.P (x) is not the same as ¬∃x.¬P (x)) or even between conjunction and disjunc-
tion (full De Morgan laws do not hold for intuitionistic propositional logic). So one
should not expect a perfect duality between intuitionistic possibility and necessity ei-
ther. But considerations from first principles do not seem to indicate clearly whether
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distributivity rules as the ones in Figure 1 should hold or not. Hence it seems sensi-
ble to develop different kinds of systems in parallel, proving equivalences, whenever
possible. In this paper we develop the idea of tense logic in Prawitz’ style. We recall
some deductive systems for this tense logic and provide categorical semantics for it.

Much has been done recently in the proof theory of constructive modal logics us-
ing more informative sequent systems (e.g. hypersequents, labelled sequents, nested
sequents, tree-style sequents, etc.). In particular nested sequents have been used to
produce ‘modal cubes’ for the two variants of constructive modal logics described
above. See the pictures below from [2, 26].

Figure 2: Intuitionistic and constructive modal cubes

Sequent calculi by themselves are not enough to provide us with Curry-Howard
correspondences and/or term assignments for these systems. However, using the
Prawitz S4 version of these modal systems we can easily produce a Curry-Howard
correspondence and a categorical model for the Prawitz-style intuitionistic tense
logic, our goal in this paper.

We start by recalling the system using axioms, plain sequent calculus and plain
natural deduction. In the next section we describe a term assignment based on
the dual calculus described in [12] and show some of its syntactic properties. The
next section introduces the categorical model (a cartesian closed category with two
intertwined adjunctions) and show the usual soundness and completeness results.
Finally we discuss potential applications and limitations of our constructive tense
logic.
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∆, A ` A Id
Γ ` B B,∆ ` C

Γ,∆ ` C Cut Γ,⊥ ` A ⊥L

Γ, A ` C Γ, B ` C
Γ, A ∨B ` C

∨L
Γ ` A

Γ ` A ∨B
∨R1

Γ ` B
Γ ` A ∨B

∨R2

Γ, A ` C
Γ, A ∧B ` C

∧L1
Γ, B ` C

Γ, A ∧B ` C
∧L2

Γ ` A Γ ` B
Γ ` A ∧B

∧R

Γ ` A Γ, B ` C
Γ, A→ B ` C

→L
Γ, A ` B

Γ ` A→ B
→R

Figure 3: Intuitionistic propositional calculus (LJ)

2 Tense logic CS4-style

We build up to the constructive tense logic we are interested in TCS4 in progressive
steps. We start with the intuitionistic basis LJ, add the modalities to get the con-
structive modal S4 system, CS4, provide the dual context modification (to help with
the reuse of libraries, amongst other things), obtaining dual CS4, DCS4 and then
finally consider the two adjunctions to obtain the tense constructive system TCS4.

2.1 Intuitionistic sequent calculus

We start by recalling the basic sequent calculus for intuitionistic propositional logic,
Gentzen’s intuitionistic sequent calculus LJ. The syntax of formulas for LJ is defined
by the following grammar:

A ::= p |⊥| A ∧A | A ∨A | A→ B

The formula p is taken from a set of countably many propositional atoms. The
constant > could be added, but it is the negation of the falsum constant ⊥. The
initial inference rules, which just model propositional intuitionistic logic, are as in
Figure 3.

Sequents denoted Γ ` C consist of a multiset of formulas, (written as either Γ,
∆, or a numbered version of either), and a formula C. The intuitive meaning is
that the conjunction of the formulas in Γ entails the formula C. So far this is our
intuitionistic basis.
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Γ, A ` B
Γ,@A ` B @L @Γ ` A

@Γ,∆ ` @A
@R

@Γ, A ` 3B
∆,@Γ,3A ` 3B

3L Γ ` A
Γ ` 3A

3R

Figure 4: Constructive S4 modal rules (CS4)

2.2 Constructive modal S4

Next we recall the sequent calculus formalization of system CS4 as described in [5].

We recap the modality rules in Figure 4. These, in addition to the initial set of
inference rules, define the sequent calculus for CS4. In Figure 3, we write @Γ for the
sequence of boxed formulas @G1,@G2, . . . ,@Gk where Γ is the set G1, G2, . . . , Gk.

Note that we do have right rules and left rules for introducing the new modal
operators @ (necessity) and 3 (posssibility), but these rules are not as symmetric
as the propositional ones. Most importantly, we have a local restriciton on the rule
that introduces the @ operator: We can only introduce @ in the conclusion, if all the
assumptions are already boxed. Also the rules for the 3 operator presuppose that
you have already defined @ operators. This system is indeed constructive, @ and
3 are independent logical operators and @A is not logically equivalent to ¬3¬A,
nor is 3A logically equivalent to ¬ @ ¬A. Note that the necessity only fragment is
well-behaved and closed, while to define the possibility operator you need a necessity
operator in place.

This system has a reasonably nice proof theory. Bierman and de Paiva [5] show
that it has a Hilbert-style presentation, a Natural Deduction presentation, as well as
a sequent calculus presentation and these presentations are provably equivalent, that
is, they prove the same theorems. The sequent calculus satisfies cut-elimination, an
old result from Ohnishi and Matsumoto [21], as well as a form of the subformula
property. The Natural Deduction formulation has a colourful history: one of its
distinct features is that it was described in Prawitz’ seminal book in Natural Deduc-
tion [23], hence it is sometimes called Prawitz’ S4 intuitionistic modal logic. Most
interestingly the system has both Kripke and categorical semantics, described re-
spectively in [1] and [5] as well as an independent mathematical semantics in terms
of simplicial sets, described by Goubault-Larrecq [14].
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Γ; ∅ ` A
Γ; ∆ ` @A

@I
Γ; ∆ ` @A Γ, A; ∆ ` B

Γ; ∆ ` B
@E

Γ; ∆ ` A
Γ; ∆ ` 3A

3I
Γ; ∆ ` 3A Γ;A ` 3B

Γ; ∆ ` 3B
3E

Figure 5: The dual context modal calculus (DCS4)

2.3 The dual context modal S4 calculus

An equivalent (in terms of provability) but more type-theoretic system can be pro-
duced for the modal logic CS4. This is not so well-known, but this system can
be given a presentation in terms of a categorical adjunction, between two cartesian
closed categories, as we will show in the next section. This categorical presentation
has been described both in [5] and in [12], in the former, this is called the multi-
context formulation of CS4 and the rules are given in Figure 5. (We prefer to call
it the dual context sequent calculus.) Note that the rules are Natural Deduction
rules, as it should be clear from the fact that they are introduction and elimination
rules.

The main difference between the system CS4 and the dual context formulation of
CS4 is the fact that the context now has modal formulas and non-necessarily modal
ones, separated by a semi-colon as in Γ; ∆. The previously difficult rule of @ intro-
duction now says that to introduce a necessity operator @ on a conclusion, we need
to have an empty context of non-modal assumptions (that is, all the assumptions
of this conclusion must be modal). This corresponds to the traditional idea that to
prove something is necessarily the case, all its assumptions have to be also necessary
(or it must have no assumptions whatsoever).

These rules have been shown by Benton [4] and Barber [3] to correspond to an
adjunction of the categories, in the case where the basis is Linear Logic and the
modalities correspond to the exponentials. Instead of Linear Logic, we deal with
constructive modal logic and the adjunction is between functors corresponding to
operators 3 ` @.

2.4 The tense CS4 calculus

Finally to get to the tense logic which is the main aim of this note, we need two
such adjunctions, but intertwined. This follows the pattern explained by Ewald [10].
Thus 3 is left-adjoint to � and � is left-adjoint to @, where we are writing � for the
operator we called past universal H before and @ for the future necessity operator
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G. The past existential P is 3 and the future existential is � or F .
A sequent calculus system for this constructive tense logic is given by the rules in

Figure 6. This can be transformed into Natural Deduction in the style of [5] as shown
in Figure 8. The problem is that the last two adjunction rules in Figure 6 (that relate
the two sets of modalities) are extremely badly-behaved proof-theoretically (no cut-
elimination and no subformula property even for cut-free proofs), as discussed in
page 35 of Benton’s full report [4]. In fact they are the reason for moving to a dual
context calculus, as explained in that paper and also in Barber’s work [3].

The dual context systems, as described in Barber and Benton’s work, are proved
equivalent to the system with a single modality operator, either ‘!’ or ‘@’. This is
because in Intuitionistic Linear Logic one is not usually interested in either why not?
‘?’ or ‘3’. (In Classical Linear Logic the possibility modality is defined by negation
of the necessity modality, so this extension is easier to make [22].) Given that our
main goal is to discuss categorical semantics, which we can do easily for the necessity
modalities, in this note we consider only two necessity-like modalities @ and �.

We would like to have a natural deduction version of the tense calculus in dual
context style. A dual context-style presentation of a single necessity modality has
been presented in Figure 5. Now we need to add another necessity-like modality and
discuss their interaction. A preliminary attempt at such calculus is given in Figure
9.

This corresponds to an intuitionistic tense logic obtained by extending IPL with
two pairs of adjoint modalities (�,@) and (3,�), with no explicit relationship be-
tween the modalities of the same colour, namely, (�,�) and (3,@).

2.5 Axioms

Axiom sets for the system TCS4 are easier to provide. We need a set for the basic
system intuitionistic logic LJ, and any traditional set would do, plus the axioms
for modalities, as well as the rules modus ponens and necessitation for the two
necessity operators:

We have similar axioms to Ewald’s [10], except that the duality between necessity
and possibility is not strict (Ewald’s original axioms (7) and (7’) in page 171 of [10]
are not valid) and that the possibility modalities we deal with, do not distribute
over disjunction (Ewald’s axioms (4) and (4’) are not valid). Also note we do have
introspection and reflexivity valid, which correspond to Ewald’s extra axioms (12)
and (12’), as well as (13) and (13’).

We are interested in the term assignment system and its properties, as our aim
is to use these as type systems for innovative programming languages. So we needed
to provide the systematic work that shows basic properties of the type system TCS4
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Γ, A ` B
Γ,@A ` B @L @Γ ` A

@Γ,∆ ` @A
@R

@Γ, A ` �B
∆,@Γ,�A ` �B �L

Γ ` A
Γ ` �A �R

Γ, A ` B
Γ,�A ` B �L

�Γ ` A
�Γ,∆ ` �A �R

�Γ, A ` 3B
∆,�Γ,3A ` 3B

3L Γ ` A
Γ ` 3A

3R

A ` @B
�A ` B adj1L

�A ` B
A ` @B adj1R

A ` �B
3A ` B adj2L

3A ` B
A ` �B adj2R

Figure 6: Tense S4 sequent rules (biCS4)

Θ `C X Y ,Φ `C Z
Θ,X → Y ,Φ `C Z →Cl

Θ,X `C Y
Θ `C X → Y→

C
r

Θ; ∅ `L A
Θ `C G A Gr

Θ `C X Y ,Φ; Γ `L A
Θ,X → Y ,Φ; Γ `L A →Ll

Θ; Γ,A `L B
Θ; Γ `L A( B(

L
r

Θ; Γ `L A Φ; ∆,B `L C
Θ; Γ,A( B,∆ `L C (Ll

Θ `C X
Θ; ∅ `L F X Fr

Θ,X ; Γ `L A
Θ; F X ,Γ `L A Fl

Θ; B,Γ `L A
Θ,G B; Γ `L A Gl

Figure 7: LNL sequent rules
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Γ ` @B
Γ ` B @E

Γ ` @A1, . . . ,Γ ` @Ak @A1, . . . @Ak ` B
Γ ` @B

@I

Γ ` A
Γ ` �A �I

Γ ` �A
Γ ` A �E

Γ ` �A1, . . . ,Γ ` �Ak �A1, . . .�Ak ` B
Γ ` �B �I

Γ ` A
Γ ` 3A

3I

Γ ` @A1 . . .Γ ` @Ak Γ ` �B @A1 . . . @Ak, B ` �C
Γ ` �C �E

Γ ` �A1 . . .Γ ` �Ak Γ ` 3B �A1 . . .�Ak, B ` 3C
Γ ` 3C

3E

Figure 8: Tense S4 rules ND first version (NDCS4)

Γ1; ∅ ` A
Γ1; ∆ ` @A

@I
Γ1; ∆ ` @A Γ1;A; ∆ ` B

Γ1; ∆ ` B
@E

Γ ` A
Γ ` �A �I

Γ1; ∆ ` �A Γ1;A ` �B
Γ1; ∆ ` �B �E

Γ; ∅ ` A
Γ; ∅ ` �A �I

Γ1; ∆ ` �A Γ1;A; ∆ ` B
Γ1; ∆ ` B �E

Γ ` A
Γ ` 3A

3I
Γ1; ∆ ` 3A Γ1;A ` 3B

Γ1; ∆ ` 3B
3E

Figure 9: biS4 rules, dual context version (ND2CS4)
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Γ1; Γ2, A; ∆ ` A @Id Γ1, A; Γ2; ∆ ` A �Id

Γ1; Γ2; ∅ ` A
Γ1; Γ2; ∆ ` @A

@I
Γ1; Γ2; ∆ ` @A Γ1; Γ2, A; ∆ ` B

Γ1; Γ2; ∆ ` B
@E

Γ1; Γ2; ∆ ` A
Γ1; Γ2; ∆ ` �A �I

Γ1; Γ2; ∆ ` �A Γ1; Γ2;A ` �B
Γ1; Γ2; ∆ ` �B �E

Γ1; Γ2; ∅ ` A
Γ1; Γ2; ∆ ` �A �I

Γ1; Γ2; ∆ ` �A Γ1, A; Γ2; ∆ ` B
Γ1; Γ2; ∆ ` B �E

Γ1; Γ2; ∆ ` A
Γ1; Γ2; ∆ ` 3A

3I
Γ1; Γ2; ∆ ` �A Γ1; Γ2;A ` �B

Γ1; Γ2; ∆ ` �B �E

Figure 10: Dual context 2CS4 calculus (TCS4)

A
@A

@Nec
A
�A
�Nec

A→ B A
B

MP

Figure 11: Axiomatic rules

we are interested in, this is what we do in the next section.

3 Term assignment
In this section we provide a term assignment to constructive tense logic with only @
and �. We leave term assignments to the other varieties of tense logic with 3 and
� for future work.

The typing rules can be found in Figure 13 with the typed equality rules in
Figure 14. Here we can see that types are tense S4 formulas. The sequents have
the form Γ ` t : A and Γ ` s = t : A where Γ is a multiset of free variables and their
types denoted x : A, and s and t are terms with the following syntax:

t := x | λx : A.t | s t | let@ x1 : @ A1, ... , xk : @ Ak be t1, ... , tk in t |
let� x1 : �A1, ... , xk : �Ak be t1, ... , tk in t | unbox@ t | unbox� t

Equality is straightforward where it is apparent that the let-expressions model ex-
plicit substitutions. These substitutions are triggered when they are applied to an
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propositional basic intuitionistic axioms

@(A→ B) → (@A→ @B)
@(A→ B) → (�A→ �B)
(@A→ A) ∧ (A→ �A)

(@A→ @ @A) ∧ (� �A→ �A)
�(A→ B) → (�A→ �B)
�(A→ B) → (3A→ 3B)
(�A→ A) ∧ (A→ 3A)

(�A→ ��A) ∧ (33A→ 3A)
3�A→ A ∧ A→ �3A
� @A→ A ∧ A→ @ �A

Figure 12: Axioms for TCS4

Γ, x : A ` x : A Id Γ, x :⊥` contra : A⊥E
Γ, x : A ` t : B

Γ ` λx : A.t : A→ B→I

Γ ` t1 : A→ B Γ ` t2 : A
Γ ` t1 t2 : B →E

Γ ` t : @ B
Γ ` unbox@ t : B @E

Γ ` t1 : @ A1, ... ,Γ ` tk : @ Ak x1 : @ A1, ... , xk : @ Ak ` t : B
Γ ` let@ x1 : @ A1, ... , xk : @ Ak be t1, ... , tk in t : @ B @I

Γ ` t : �B
Γ ` unbox� t : B�E

Γ ` t1 : �A1, ... ,Γ ` tk : �Ak x1 : �A1, ... , xk : �Ak ` t : B
Γ ` let� x1 : �A1, ... , xk : �Ak be t1, ... , tk in t : �B �I

Figure 13: TCS4 typing rules
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Γ, x : A ` t2 = s2 : B Γ ` t1 = s1 : A
Γ ` (λx : A.t2) t1 = [s1/x]s2 : B β

Γ ` t1 = s1 : @ A1, ... ,Γ ` tk = sk : @ Ak x1 : @ A1, ... , xk : @ Ak ` t = s : B
Γ ` unbox@ (let@ x1 : @ A1, ... , xk : @ Ak be t1, ... , tk in t) = [s1/x1] ... [sk/xk ]s : B @

Γ ` t1 = s1 : �A1, ... ,Γ ` tk = sk : �Ak x1 : �A1, ... , xk : �Ak ` t = s : B
Γ ` unbox� (let� x1 : �A1, ... , xk : �Ak be t1, ... , tk in t) = [s1/x1] ... [sk/xk ]s : B�

Γ ` t : A
Γ ` t = t : A refl

Γ ` t2 = t1 : A
Γ ` t1 = t2 : A sym

Γ ` t1 = t2 : A Γ ` t2 = t3 : A
Γ ` t1 = t3 : A trans

Figure 14: TCS4 equality rules

unbox-expression.
We have the following basic properties of this term assignment.

Lemma 1 (Substitution for Typing). If Γ1 ` t1 : A, and Γ1, x : A,Γ2 ` t2 : B, then
Γ1,Γ2 ` [t1/x]t2 : B.

Proof. This proof holds by straightforward induction on the form of the assumed
typing derivation. Please see Appendix A.1.1 for the proof.

Lemma 2 (Weakening). If Γ1,Γ2 ` t : B, then Γ1, x : A,Γ2 ` t : B.

Proof. This proof holds by straightforward induction on the form of the assumed
typing derivation. Please see Appendix A.1.2 for the proof.

4 The categorical model

There is not much essentially new in what we discuss here about the tense logic
based on CS4. Similar ideas were discussed by Ghilardi and Meloni [13], Makkai
and Reyes [18] and more recently in by Dzik et al [7, 9] and Menni and Smith [19].

The upshot of our discussion is that the categorical model we advance is a carte-
sian closed category endowed with two adjunctions, corresponding to the (limited)
universal and existential quantifications relative to the past and to the future that
correspond to the two sets of necessity and possibility operators.

This setting is though different enough from the precursors we know about,
to justify this note. First, as discussed elsewhere [5], we see no reason for the
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monads/comonads emerging from this setting to be idempotent operators, as they
are in [13] or [18] (the idempotency simplification does not seen warranted by the
proof theory). Secondly we see no reason to take our models as part of toposes, as
we are not interested in the extra structure provided by toposes. However, we also
see no reason to confine ourselves to algebraic models such as Heyting algebras with
operators, as degenerate posetal categories, as both [7] and [19] do. Different proofs
of the same theorem are important to us as they correspond to different morphisms
in the category between the same objects. Thus we are interested in proof relevant
semantics, not simply provability.

We build our main definition in stages. To begin with, a categorical model of
propositional intuitionistic logic is a cartesian closed category C with coproducts.
Then we recall from [5] that to model a pair of modalities using dual contexts we
need a monoidal adjunction.

Definition 3 (adjoint model). An adjoint categorical model of dual context modal
logic DCS4 consists of the following data:

1. A cartesian closed category with coproducts (C, 1, 0,×,+,→);

2. A monoidal adjunction F a G, where (F,m) and (G,n) : C // C are monoidal
functors such that their composition GF is a monoidal comonad, written as
@;

3. The monad (3, η, µ, stA,B), induced by the adjunction F a G, is @-strong.

Recall that a monoidal comonad @ implies that there is a natural transformation
m : @A× @B → @(A×B) (and m> : > → @>) satisfying the coherence conditions
described in page 23 of [5]. Recall as well that by a monad being @-strong, we mean
that there is a strength natural transformation stA,B : @ A × 3B → 3(@A × B)
satisfying the four equations in page 27 of [5]. These two natural transformations
are required to model the Fisher-Servi axioms, which are a weakening of the duality
between @ and 3 that the classical modalities satisfy.

Finally we consider two pairs of modalities (or two adjunctions), intertwined, as
in tense logic.

Definition 4 (tense calculus model). A categorical model of tense calculus dual
context modal logic TCDS4 is a cartesian closed category C as above, together with
two intertwined adjunctions (� a @,3 a �). The adjunctions (� a @) and (3 a �)
on C are connected by the Fisher-Servi axioms, namely 3(A → B) → (�A → 3B)
and (3A → �B) → �(A → B), as well as �(A → B) → (@A → �B) and
(�A→ @B)→ @(A→ B).
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This model is more general than the system, TCS4, given above in that it contains
two possibility modalities, which we do not deal with, in the type theory. These
possibility operators could be treated as syntactic sugar for ¬@¬A (and respectively
¬�¬A), as they usually are in Intuitionistic Linear Logic, for instance. We refrain
from doing so explicitly and prefer to consider the necessity-only fragment in the type
theory, as this allows us to bypass the discussion of which possibility modality is more
appropriate for each setting. More importantly it allows us to dodge the question
of how to provide a Curry-Howard categorical interpretation for what we called
Simpson-style modal S4. Thus the model should be seen as an over approximation.
We give the more general model here to set the stage for future work.

Categorical soundness is proved, as usual, checking the natural deduction rules
preserve validity of the constructions used, i.e function spaces, products, coproducts
and the two adjunctions.

Define an interpretation [[_]] : TCS4→ C which takes the types and sequents of
TCS4 (over a basic set of types) to a model C as follows:

[[p]] = I(p) for p a base type
[[>]] = >

[[A→ B]] = [[A]]→ [[B]]
[[@A]] = FG([[A]])
[[�A]] = F ′G′([[A]])

We extend this interpretation to lists of types by saying that for a list A1, ..., An of
types, the interpretation is the product of the interpretations [[A1, ...An]] = [[A1]] ×
. . .× [[An]]. The interpretation will take a sequent Γ ` t : A to an arrow [[Γ ` t : A]] :
[[Γ]]→ [[A]] in the tense modal category.

Theorem 5. The type theory TCS4 has sound models provided by the structures C
defined above. In other words, given a tense adjoint modal category C, using the
above interpretation, the following hold:

• Assume Γ ` t : A in TCS4. Then [[Γ ` t : A]] is a morphism with domain [[Γ]]
and codomain [[A]];

• Assume Γ ` t = s : A. Then [[Γ ` t : A]] = [[Γ ` s : A]].

Proof. The first part holds by induction on Γ ` t : A, and the second by induction
on Γ ` t = s : A, but uses the first part. Please see Appendix A.1.3 for the proof.

We have completeness of the tense modal categories when the model is restricted
to box modalities only.
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Theorem 6. The adjoint modal models are complete in the appropriate sense for
the type theory TCS4. This is to say, if we have equality of the interpretations
[[Γ ` t : A]] = [[Γ ` s : A]] (where [[ ]] is the interpretation defined above) in the tense
modal category C for any derived sequents Γ ` t : A and Γ ` s : A then we can derive
the equation in the type theory TCS4 Γ ` t = s : A.

Proof. This result can be shown by constructing a cartesian closed category with
coproducts and two comonads, one for @ and one for �, internal to TCS4 where the
objects are types and the morphisms are α-equivalence classes of terms in context
Γ ` t : A. This category is called the syntactic category. Please see Appendix A.1.4
for the remainder of the proof.

Categorical completeness requires providing an equivalence relation in the Lin-
denbaum algebra of the formulae, as usual in algebraic semantics. The basic cal-
culations, for traditional algebraic semantics in Heyting algebras were provided, for
instance, by Figallo et al in [11] or Dzik et al in [8]. Mutatis mutantis these calcu-
lations will apply for our version of the system (no distribution of diamonds over
disjunctions, no definibility of diamonds in terms of negated boxes).

5 Conclusions

We have described a tense version of constructive temporal logic, conceived as a
basic category of propositions, together with two adjunctions, corresponding to two
kinds of necessity modalities, in the future and in the past. This system is based
on traditional work of Ewald in [10], where we simply do the modifications required
to account for the categorical model desired. This work is somewhat inspired by
recent work on Functional Reactive Programming (FRP) by Jeltsch [16] and Jeffrey
[15], independently. Both of these works consider Curry-Howard correspondents
to temporal logic, but they tend to concentrate on the next temporal operator,
originally considered in LTL (Linear Temporal Logic), as suggested by Davies [6].
The temporal operators we consider are more abstract and one can hope that they
may shed some light on the issues of FRP. But this is future work.
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A Appendix

A.1 Proofs

A.1.1 Proof of substitution for typing

Lemma (Substitution for Typing). If Γ1 ` t1 : A, and Γ1, x : A,Γ2 ` t2 : B, then
Γ1,Γ2 ` [t1/x]t2 : B.

Proof. Suppose Γ1 ` t1 : A and Γ1, x : A,Γ2 ` t2 : B. We case split on the structure
of the latter, but only show the non-trivial cases. All other cases are similar.

Case Identity.

Γ1, x : A,Γ2 ` y : C
Id

In this case t2 = y and B = C . We are not sure if x = y, thus, we must
consider the case when they are and are not equal.
Suppose x 6= y. Then [t1/x]t2 = [t1/x]y = y by the definition of substitution.
In addition, it must be the case that either y : C ∈ Γ1 or y : C ∈ Γ2. This
implies that Γ1,Γ2 ` y : C or Γ1,Γ2 ` [t1/x]t2 : B hold.
Now suppose x = y. Then A = B, and [t1/x]t2 = [t1/x]x = t1 by the definition
of substitution. Thus, Γ1,Γ2 ` [t1/x]t2 : B holds, because we know Γ1,Γ2 `
t1 : A.

Case Implication Introduction.

Γ1, x : A,Γ2, y : C1 ` t : C2

Γ1, x : A,Γ2 ` λy : C1.t : C1 → C2
→I

In this case B = C1 → C2 and t2 = λy : C .t. By the induction hypothesis we
know Γ1,Γ2, y : C1 ` [t1/x]t : C2, and then by reapplying the rule we know
Γ1,Γ2 ` λy : C1.[t1/x]t : C2 holds. However, by the definition of substitution
we know λy : C1.[t1/x]t = [t1/x](λy : C1.t), and thus, we obtain our result.

Case Implication Elimination.
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Γ1, x : A,Γ2 ` t ′1 : C1 → C2 Γ1, x : A,Γ2 ` t ′2 : C1

Γ1, x : A,Γ2 ` t ′1 t ′2 : C2
→E

We now have that B = C2 and t2 = t ′1 t ′2. By the induction hypothesis we
know that Γ1,Γ2 ` [t1/x]t ′1 : C1 → C2 and Γ1,Γ2 ` [t1/x]t ′2 : C1 both hold.
Then by reapplying the rule we obtain that Γ1,Γ2 ` ([t1/x]t ′1) ([t1/x]t ′2) : C2,
and thus, by the definition of substitution Γ1,Γ2 ` [t1/x](t ′1 t ′2) : C2 holds.

Case @ Introduction.

Γ1, x : A, Γ2 ` t′
1 : @ C1, ... , Γ1, x : A, Γ2 ` t′

k : @ Ck x1 : @ C1, ... , xk : @ Ck ` t : C
Γ1, x : A, Γ2 ` let@ x1 : @ C1, ... , xk : @ Ck be t′

1, ... , t′
k in t : @ C

@I

In this case B = @ C and t2 = let@ x1 : @ C1, ... , xk : @ Ck be t ′1, ... , t ′k in t. By
the induction hypothesis we know that

Γ1,Γ2 ` [t1/x]t ′1 : @ C1, . . . ,Γ1, x : A,Γ2 ` [t1/x]t ′k : @ Ck

all hold. Then by reapplying the rule we know that

Γ1,Γ2 ` let@ x1 : @ C1, ... , xk : @ Ck be [t1/x]t ′1, ... , [t1/x]t ′k in t : @ C ,

but by the definition of substitution and the fact that [t1/x]t = t because t
does not depend on x we know that

Γ1,Γ2 ` [t1/x](let@ x1 : @ C1, ... , xk : @ Ck be t ′1, ... , t ′k in t) : @ C

holds.

A.1.2 Proof of weakening

Lemma (Weakening). If Γ1,Γ2 ` t : B, then Γ1, x : A,Γ2 ` t : B.

Proof. This proof is by induction on the form of Γ1,Γ2 ` t : B. We only show a few
cases, because the others are similar.

Case Identity.

Γ1,Γ2, y : C ` y : C
Id
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In this case we have that B = C and t = y. We must show that Γ1, x :
A,Γ2, y : C ` y : C holds, but this clearly holds by reapplying the rule.

Case @ Introduction.

Γ1, Γ2 ` t1 : @ C1, ... , Γ1, Γ2 ` tk : @ Ck x1 : @ C1, ... , xk : @ Ck ` t′ : C
Γ1, Γ2 ` let@ x1 : @ C1, ... , xk : @ Ck be t1, ... , tk in t′ : @ C

@I

This case is similar to the previous case. First, apply the induction hypothesis
to the left-most premise, and then reapply the rule.

A.1.3 Proof of soundness of TCS4

Theorem. The type theory TCS4 has sound models provided by the structures C
defined above. In other words, given a tense adjoint modal category C, using the
above interpretation, the following hold:

• Assume Γ ` t : A in TCS4. Then [[Γ ` t : A]] is a morphism with domain [[Γ]]
and codomain [[A]];

• Assume Γ ` t = s : A. Then [[Γ ` t : A]] = [[Γ ` s : A]].

Proof. The first part holds by induction on Γ ` t : A, and the second by induction
on Γ ` t = s : A. We give a few cases of each part, as the others are similar.
Throughout the proof we drop semantic brackets on objects, and we assume, without
loss of generality, that the interpretation of contexts are left associated. We begin
with the first part.

Case Identity.

Γ, x : A ` x : A Id

We need to provide a morphism Γ×A f //A and we choose f = π2 (the 2nd
projection), as usual.

Case Implication Introduction.

Γ, x : A ` t : B
Γ ` λx : A.t : A→ B→I
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By the induction hypothesis we know that there is a morphism Γ×A f //B.
Then we need to find a morphism Γ g // (A→ B). Choose g = curry(f) where
curry : HomC(A × B,C ) // HomC(A,B → C ) is a natural isomorphism that
exists because C is closed.

Case @ Introduction.

Γ ` t1 : @ A1, ... ,Γ ` tk : @ Ak x1 : @ A1, ... , xk : @ Ak ` t : B
Γ ` let@ x1 : @ A1, ... , xk : @ Ak be t1, ... , tk in t : @ B @I

By the induction hypothesis we have the family of morphisms Γ f1 // @

A1, . . . ,Γ
fk //@ Ak , and a given morphism @ A1×· · ·×@ Ak

f //B. We need to
find a morphism Γ g // B. As in previous work, we choose
g = 〈f1; δA1 , . . . , fk; δAk 〉; m; @f , where 〈−,−〉 : HomC(Γ,@ A1) × · · · × HomC
(Γ,@ Ak) // HomC(Γ,@ A1 × · · · × @ Ak) exists because C is cartesian and we
make the simplifying assumption that @ is an endofunctor.

Case @ Elimination.

Γ ` t : @ B
Γ ` unbox@ t : B @E

By the induction hypothesis there is a morphism Γ f // @ B. It suffices to
find a morphism Γ g // B. Choose g = f ; ηB where ηB : @ B // B is the unit
of the adjunction.

We now turn to the second part:
Case Unboxing @.

Γ ` t1 = s1 : @ A1, ... , Γ ` tk = sk : @ Ak x1 : @ A1, ... , xk : @ Ak ` t = s : B
Γ ` unbox@ (let@ x1 : @ A1, ... , xk : @ Ak be t1, ... , tk in t) = [s1/x1] ... [sk/xk ]s : B

@

Using the interpretations given above we must show that:

〈f1; δA1 , . . . , fk; δAk 〉; m; @f ; ηB = 〈f1, . . . , fk〉; f : Γ // B.

This holds by the following equational reasoning:
〈f1; δA1 , . . . , fk; δAk 〉; m; @f ; ηB = 〈f1; δA1 , . . . , fk; δAk 〉; m; η; f

= 〈f1; δA1 , . . . , fk; δAk 〉; (ηA1 × · · · × ηAk ); f
= 〈f1; δA1 ; ηA1 , . . . , fk; δAk ; ηAk 〉; f
= 〈f1, . . . , fk〉; f
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A.1.4 Proof of completeness for TCS4

Theorem. The adjoint modal models are complete in the appropriate sense for
the type theory TCS4. This is to say, if we have equality of the interpretations
[[Γ ` t : A]] = [[Γ ` s : A]] (where [[ ]] is the interpretation defined above) in the tense
modal category C for any derived sequents Γ ` t : A and Γ ` s : A then we can derive
the equation in the type theory TCS4 Γ ` t = s : A.

Proof. This result can be shown by constructing a cartesian closed category with
two monoidal comonads, one for @ and one for �, internal to the type theory TCS4
where the objects are types and the morphisms are α-equivalence classes of terms in
context Γ ` t : A. This category is called the syntactic category for the TCS4 type
theory.

Showing that this syntactic category is cartesian closed is well known, but we
illustrate the proof by describing the case of the @ comonad.

We denote a morphism by the α-equivalence class:

[~x, t]~A,B = [~x : ~A ` t : B]

We then have the following definitions:

• (Identity) id = [x, x]A,A

• (Composition) Given morphisms [~x, t] ~A,Bi and [~y, t ′] ~B,C , their composition
[~x, t] ~A,Bi ; [~y, t ′] ~B,C = [ ~xi−1, ~y, ~xi+1, [t/xi]t ′]

~A,C .

• (Equality) Two parallel morphisms [~x, t] ~A,B and [~x, t ′] ~A,B are equal if and only
if ~x : ~A ` t = t ′ : B.

Using basic facts about substitution one can show that composition preserves iden-
tity and is associative.

We first must show that @ is an endofunctor on the syntactic category. Suppose
we have the morphism [~x, t] ~A,B. Then we must construct a morphism [~y, t′]

−−→
@ A,@ B.

The latter morphism can be defined in two steps. The first is to change the ~A to−−→
@ A:

[~y,∧unbox@ yi ]
−−→
@ A, ~A; [~x, t] ~A, ~B = [~y, [unbox@ yi/xi ]t]

−−→
@ A, ~B

The second step is to change B into @ B:

[~y, let@ ~y : −−→@ A be ~y in [unbox@ yi/xi ]t)]
−−→
@ A,@ B

Straightforward calculations show that this construction preserves identities and
composition.
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The unit of the comonad is defined as [y, unbox@ y]@ A,A. Next we need to define
a morphism between @ A and @ @ A:

[y, let@ y : @ A be y in y]@ A,@ @ A

Finally, using these constructions it is possible to show the usual diagrams defining
the comonad @ hold. The definition for � is similar.
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Abstract

The article represents the outcomes of the reconstruction of Kant’s classifi-
cation of kinds of logic. It demonstrates that it would be impossible to form
the traditional understanding of so-called formal logic, as well as of today’s
symbolic logic, without Kant’s notion of pure general logic. It was formed by
Kant within the framework of his critique of reason. Critique has changed our
understanding of logic from seeing it as organon to an understanding of it as
a canon of finite cognition. In conclusion we pose the question of the status
of Kant’s transcendental logic with regard to its connection to classification of
types of logic given by him and possibility of its formalization in account of
Kant’s idea of pure general logic.
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1 Introduction
Currently, at a casual glance, it might appear that logic, of the shape it was created
in by Aristotle, is a science of forms of thought. There have been many speculations
presuming that logic of such type deals only with the formal thought-structures,
independent of any content. Therefore, logic, understood in a such way, could
be entitled formal logic, i.e. a pure formal science. At the same time, this kind
of logic is often treated as wrong, obsolete or, at least, as insufficient one. Such
critique generally goes from the point of contemporary logic, which overcame the
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notion of a thought-form by reducing of object-matter of logic, to the pure symbols
and the rules of their combinations. The representatives of so-called symbolic logic
understand it as the direct opposite of the traditional formal one. Herein, the
question of what the proper quid juris of their criticism of traditional logic actually
is, arises. In the fact, there is the following reason for such a question to arise.
Symbolic logic deals with forms as well, but contemporary logicians understand
them quite otherwise. Moreover, being self-evident but not distinct enough the
notion of formality is presupposed in both cases. It is obvious that symbols and
rules of their combinations are formal as the thought-forms pari passu. Namely,
both forms of thinking and signs are independent of their possible content. Hence,
we have to ask whether symbolic logic is a later descendant of formal logic which
has forgotten its own roots.

In other words, is it permissible to consider the definition, given currently both
to ontological and epistemological statuses of such symbols, symbolic structures and
rules of their combinations, as strict and correct? It is a well-known fact that pure
forms of such a kind play a significant role in the process of so-called formalization as
one of the basic methods of the contemporary scientific knowledge, but what kind of
formalization would allow them to become forms empty of any content? If we tried
to formalize the things themselves, which we can accomplish any formalization by,
it would lead us into regressus ad infinitum. Hence, the formality of logical symbols
remains problematic both for ontology and epistemology.

Further, we can inquire into the following matter. Which understanding of the
essence of logic and its object domain does play the role of the basis of the differen-
tiation of the mentioned kinds of logic at all? Moreover, it raises another question.
Which understanding of the essence of logic and its objects domain does make the
basis of the notion of the formality of logical forms in each case?

Indeed, the necessity of the separation of both forms of thought and symbols
from their specific content is not self-evident. Moreover, it is perfectly possible that
the differentiation existing between them is the extremely later term-division which
was being made through the abstractive work of “pure reason” during the history of
philosophy. Therefore, this differentiation, as such, has to be justified both ontolog-
ically and epistemologically. It is to our regret, that it is impossible to accomplish
such a justification in the systematical regard here, but we could undertake a re-
construction of an indicative example of interpretation of logic from the history of
philosophy which would emphasize the problematic character of the logical formal-
ity. In this way, the validity of the logical formalism could be justified not by a
formal deduction of its possibility, which, as it was said, would lead to regressus
ad infinitum, but by detection of the transcendental genesis of the separation of
form and content and, hence, of the notion of logic as of a pure formal discipline
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in any sense. To be more precise, the matter concerns the transformation of the
understanding of the essence of logic made by Immanuel Kant.

It is doubtless that Kant’s revolutionary conception of logic is one of the most
important points in the historical path of the separation of the notions of form and
content which remains, even latently, a live issue nowadays. Hence, it is a matter of
great importance for the genuine conception of conditions of possibility and limits
of applicability of logic as a formal science. We believe that today it could induce
our philosophical disputations on the nature of logical forms and structures.

In this context, on one hand, the main aim of the article is to demonstrate the
conditions of shaping of notion of form in its logical sense, by reconstructing Kant’s
logical views. On the other hand, we should remember that Kant showed of all oth-
ers that logic in its transcendental shape could have some content. Its content can
be only the a priori one. Thereby, the correlation between logic as a discipline of the
pure universal forms and transcendental logic has to remain controversial. However,
we presuppose that the transcendental conditions of Kant’s interpretation of logic
are historically responsible for the genesis of symbolic logic of nowadays. And there-
fore, it might be justified theoretically only by an ontological and epistemological
justification of Kant’s logical views.

We believe that the transformation of the understanding of the essence of logic
made by Kant cannot be attacked from the standpoint of today’s logic and semantics
which finally have been derived from Kant’s position. Moreover, there is no need in
justifying Kant’s logic through them.

In this context, in the course of this consideration, we referred to the following
paper by Achourioti and van Lambalgen [1]. It is devoted to a justification of the
Kant’s idea of logic from the perspective of today’s symbolic logic. As it was stated,
our thesis is the opposite one. One ought to verify today’s logical approaches through
the reconstruction of the transcendental and historical genesis of the ontological and
epistemological conditions of logic, shaping it as a discipline of formal symbols and
structures from the transformation of the essence of logic made by Kant.

2 Traditional logic

Nevertheless, it remains very questionable whether logic could be described as a
formal discipline starting right from its origin in Aristotle. It is well-known fact that
Aristotle treated form (μορφή) as a shape (εἶδος) or even a prototype (παράδειγμα).
For instance, he speaks about form in the sense of causa formalis, “The form and
template, which is the account of the what-it-was-to-be-that-thing. Also the kinds
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of form are causes in this way. [ . . . ] Also the intrinsic parts of the account.”1 [3,
p. 115]. Hence, to be more exact one ought to say that form as εἶδος is connected
with logos as a meaningful definition. Certainly, εἶδος is one of the possible senses
of the term of form. At the same time, it is the preferential one. Anyway, the
form, treated in Aristotelian way, is something always rich in content. In this case,
no form can be separated from its content. It remains questionable, whether it
could be possible to differentiate form from formless content in εἶδος within the
framework of Aristotle’s views on logic. We believe that no distinction of form and
content can exist inside εἶδος at all. Any form is always form of certain content,
they correspond in an absolute way to each other in Aristotle’s opinion. Any εἶδος,
itself, is form (μορφή) as such which holds its own certain content as its “What”
in itself. Therefore, one cannot understand logic only as a discipline of pure forms
of thinking, independent of any content. Farther, it is doubtful whether logic (the
title which Aristotle himself hasn’t used) meant ἐπιστήμη, i.e. a science in the strict
sense for him. We have to remember that any science, insofar it is a science, should
have its own object domain which would have its own ontological status (being in
things or only in our mind and so on) and which should be distinct strictly from the
object domains of all other sciences in accordance with Aristotle.

Yet we could not find something alike logic in his set of sciences, both theoretical
and practical. For instance, logic is absent in Aristotle’s set of theoretical sciences,
which philosophia prima, physics and mathematics belong to. It indicates that logic,
from its creator’s standpoint, does not have its own object, possessing necessary and
invariable principles. Therefore, there is no specific domain of beings (including
the domain of mathematical objects which are immovable and dependent upon our
mind) which could be the object domain of logical investigations as such. Hence,
any specific realm of pure logical forms exists neither per se nor in rebus nor in
mentis. Therefore, logic cannot be understood as a true science.

Rather, logic is a kind of τέχνη which deals only with the rules of any correct
cognition. Thus, we should learn it before we start to cognize any object domain.

3 The misinterpretation of traditional logic
In opposition, there is an existent conviction, that logic even in its Aristotelian
version, is a science in the most rigorous sense. One can compare its status, with
regard to exactness, only to the status of mathematics. (Assuming, that the question

1In his own words Aristotle even says, “ . . . ἄλλον δὲ τὸ εἶδος καὶ τὸ παράδειγμα, τοῦτο δ᾿ ἐστὶν
ὁ λόγος τοῦ τί ἦν εἶναι καὶ τὰ τούτου γένη [ . . . ] καὶ τὰ μέρη τὰ ἐν τῷ λόγῳ”(Metaph., V, 1013a, 25).
Here ἄλλον δὲ means “one can speak about something as cause”. See English translation in [2].
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of propinquity or heterogeneity of both logic and mathematics remains disputable).
Thereby, this conviction has an essential presupposition and, in accordance with it,
logic, consistent with the general notion of a science, should have a specific object
domain which ought to be cognized by it. This presupposition is generally missed.
This domain is considered a region of empty thinking-forms or, in today’s version,
sign-forms. On the other hand, in this regard it might even appear that today’s
understanding of logic, in the constructive version, recovers original treating of it as
τέχνη in Aristotelian sense. For instance, logic could be understood as τέχνη in a
sense of creation of logical formulas by the combination of signs which corresponds
to given rules. But what kind of ontological or epistemological status can these
rules, as such, have?

Indeed, various types of today’s logic do not need to possess any kind of object
domain to be considered as an exact and rigorous discipline. But, as it was said,
this circumstance does not exclude logic dealing with empty forms in the way which
they attribute to Aristotelian Analytics. However, such forms mustn’t be treated
as forms of thinking. As it was stated, the status of such forms is ontologically
problematic. In this regard, contemporary logic remains just a specification of an
idea of a science of pure forms but technically it is more sophisticated. The truth is
that Aristotle himself did not consider his analytic as a science of pure forms.

4 Kant’s modification of logic

Now, the following question should be posed. What served as the origin of as well
as the reason for transformation, the idea of logic undergone, from its Aristotelian
understanding as τέχνη to treating it as a science of pure forms both of thought
and signs? Perhaps, such transformation began a great while ago. We could even
propose that it began a long while ago before Kant. However, Kant’s treating of
logic is one of the most notable examples of a reinterpretation of the essence of
logical knowledge which could cast the light on the problem of the genesis of the
notion of logic as a science which deals only with pure forms apart from their actual
content. Nevertheless, Zinkstok emphasizes, “The first thing we should note is that
Kant calls logic a science. This is, in fact, a break with most of the traditional
views . . . ” [13, p. 39]. The possible answer to this question is the following. The
origin of transformation of the understanding of the logic’s essence could be found
in Immanuel Kant’s Critique of Pure Reason.
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4.1 Logic, noumena and phenomena

It is a well-known fact that the transformation of idea of logic made by Kant is
connected with the change in treating of this science as ὄργανον of knowledge (as
it was for Aristotle) to treating it as κανών of any possible cognition. From Kant’s
standpoint, previously it was thought, that logic as ὄργανον is not only necessary
condition for any knowledge but also the sufficient one. For instance, before Kant
it was considered that logical criteria are absolutely sufficient for rational cognition,
i.e. for such kind of cognition which does not refer to any possible experience.

Kant has turned the tide. In accordance with his standpoint, logic can serve
as the necessary but not the sufficient condition of cognition. Any knowledge has
to correspond to logic, i.e. it must not come into a contradiction with logical laws,
in the first instance, to first analytical principle of tertium non datur. In other
words, any cognition has to be free from contradiction within itself. At the same
time, according to Kant, logic (without its connection with a possible experience)
is not sufficient for acquiring new knowledge. Hence, it is impossible to obtain new
knowledge in the pure rational disciplines with such object domains which cannot be
given in any possible experience (soul as simple substance, world as a whole, God).
These objects are just ideas of reason in Kant’s terminology.

Kant justifies this new conception by the thesis that logic is applicable only to the
things as phenomena, but not to the things as such or to entities as entities (ens qua
ens) in the terms of Aristotle. Thus, logic corresponds to something that does not
have objective (in the sense of being in rebus themselves) but belongs only to the field
of subjectivity. The meaning of subjectivity in this and following expressions does
not refer to subject as to a singular person. It is related only to a subject in general
or, in other words, to a structures of subjectivity as such. Thereby, these structures
should necessarily have a relation to the mode which something what exists in itself
can be given to us as subjects in a transcendental sense of subjectivity in. As it was
said, it implies that any cognition has to be measured by logic, but logic as such
cannot give any new knowledge. Insofar, it is isolated from experience (i.e. from
the way which the phenomena could appear in) logic can have only subjective but,
at the same time, a general and necessary value. In such a way, logic acquires the
meaning of sine qua non of any knowledge but not of actual cognition. Hence, it is
unacceptable to treat Kant’s view of logic without regard for the division made by
him between phenomena and noumena.

At the same time, a science of logic acquires the meaning of a science of pure
forms of thought which are originally on the subjective side and, hence, indepen-
dent of the concrete content of phenomena given to us through experience. Such
acquiring of the subjective character by logic is a necessary condition for the shaping
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of the notion of pure form. Nevertheless, such acquiring, insofar it is based on the
transcendental character of the subjectivity, cannot relativize logic. By the possible
relativization of logic we mean such kind of its treating, which implies that the com-
mon value of the logical forms is relative to an empirical subject or, in other words,
to a singular person who uses these forms. Kant denied any empirical relativity of
logic in this sense. Namely, the matter of experience appears in an accidental mode
but forms of thought are general and necessary according to him. They have to be
present in us a priori to make appearance of a matter through experience possible.
However, they justify their objective value only by applying themselves to the things
as phenomena, i.e. to content of our experience.

On one hand, one can understand the famous division of types of logic made by
Kant in his Critique of Pure Reason only in the context of the described transfor-
mation of the role of logic for human cognition. On the other hand, this division can
brilliantly demonstrate the reduction of logic to a science of pure forms of thought
made by Kant. In order to do so we have to make an attempt to reconstruct an
architectonic of logical disciplines given by Kant, in broad outline. For further in-
formation on the matter see, for example, [13].

4.2 The general and the particular use of understanding

Thus, Kant has primarily divided the general notion of logic into (i) logic of the
general and (ii) logic of the particular use of our understanding. He stated,

Now, logic in its turn may be considered as twofold, – namely, as logic of the
general [universal], or of the particular use of understanding. (A52, B77) [9,
pp. 46–47]

The type of logic, last mentioned, deals with a particular object domain in each
case as well as with main rules of its cognition. The logic of the particular use of
understanding always refers to a matter of one of object domains. In a manner
of speaking, it should follow a content of this domain. Hence, as it depends on
concrete content of an object domain, logic of such type cannot be detected as a
pure or formal science.

Thus, it is quite noteworthy that Kant considers logic, which would refer to some
matter, being possible only as a particular but not as an universal discipline. One
can suppose that this circumstance goes back up to Aristotle’s fundamental thesis,
“That which is is spoken of in many ways” [3, p. 167],2 or – in scholastic formula – to
analogia entis. In fact, Kant does not refer to these formulas. It is unlikely at all that

2In Aristotle’s own words: (τὸ ᾿όν λέγεται πολλαχῶς) (Metaph., VII, 1, 1028 a, 10). See [2].
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he actually knew this Aristotelian conception. For German-speaking philosophy it
was rediscovered later, thanks to the efforts of Brentano.

It is more important that Kant accepted that logic can be non-universal in any
case. The possibility of the non-universality of logic stems from the fact that it is
connected with its content, i.e. with a matter of a certain object domain. Therefore,
following the thesis τὸ ᾿όν λέγεται πολλαχῶς there is no universal object domain.
Moreover, no universal object domain is ontologically possible. Hence, logic can be
universal on the assumption of an abstraction from any particular object domain.
Any type of universal logic or other formal calculus can, it seems, be only objectless.
Here, the objectlessness implies that universal logic does not refer to any object,
neither to universal (which is ontologically impossible) nor to particular (which are
non-universal) ones. In this sense, it refers only to its own structures which has no
objective character but only the (transcendental) subjective one.

On the other hand, as may be supposed, universal logic could not be objectless
but it relates to all possible objects by the abstraction from differences of individual
entities, of types of objects and so on. Indeed, it is acceptable to interpret Kant’s
notion of universal logic in this way. In such case, logic would be directed toward an
object. But its object would be non-particular. We are opposed to such treating of
Kant’s view on universal logic. Here, one ought to emphasize two reasons for doing
so. (i) We adhere to the above-mentioned Aristotelian thesis which we consider
an ontological principle, any understanding of logic has to be founded on. Τὸ ᾿όν
λέγεται πολλαχῶς. Therefore, as it was said, no universal object (even an empty and
indifferent one) is ontologically possible. Any object should have its own essence
as well as a way-of-being. “Object in general” is a flatus vocis. The source of
the general validity of logic is quite different from any objectivity. It is subjective
in a transcendental sense of subjectivity. (ii) Since Kant made a division between
noumena and phenomena we cannot tell if logical forms could be applied to noumena
which belong to “object in general”. For instance, we do not know whether thinking
of God has to be yielded to the principle of tertium non datur. After all, the mystics
of all time have been telling us that God is being and non-being at the same moment.

Anyway, we assent to an opinion of MacFarlane who has stated the following,

Kant’s claim that logic is purely Formal – that it abstracts entirely from the
objective content of thought – is in fact a radical innovation. [11, pp. 44–45]

MacFarlane demonstrated that this “radical innovation” was bounded to Kant’s
rejection of neo-Leibnizian views on logic, implying that logic is general but not
objectless. It has its own most general content. In contraposition to them, Kant
started to understand logic as a discipline which deals only with rules of thinking,
i.e. which has only subjective sense.
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One way or another, Kant himself described logic of the particular use of under-
standing in the following words,

The logic of the particular use of the understanding contains the laws of correct
thinking upon a particular class of objects. (A52, B77) [9, p. 47]

As opposed to logic of the general use of understanding, logic of its particular use
may be organon of cognition of a specific object domain in accordance with Kant.
He stated,

The former3 may be called elemental logic, – the latter, the organon of this
or that particular science. The latter is for the most part employed in the
schools, as a propaedeutic to the sciences, although, indeed, according to the
course of human reason, it is the last thing we arrive at, when the science is
already matured, and needs only in finishing touches toward its correction and
completion; for our knowledge of the objects of our attempted science must be
tolerably extensive and complete before we can indicate the laws by which a
science of these objects can be established. (A52, B77) [9, p. 47]

We may presuppose that the logic of the particular use of our understanding could
be identified with methodology of a particular science in contemporary word usage.
It deals with the rules of cognition of a specified object domain but it can appear
only after the maturity of one or another particular science.

However, we think that Kant’s idea of the particular logic of understanding re-
mains relevant at the present day. Namely, we believe that an attempt of comparison
of Kant’s logic of the particular use of understanding and the notion of the regional
ontology in the phenomenological branch of today’s philosophy could be productive
in various methodological perspectives.4 Though, the notion of the regional ontology
is not derived directly from Kant’s notion of particular logic, this Kant’s term usage
could clarify the proper meaning of the term “logic”, for instance, in Heidegger’s
word-combination “productive logic of science” [6, p. 4] which was understood as a
regional ontology by him.

Nevertheless, we have to dismiss this analogy between logic of the particular
use of understanding and the regional ontology and revert to the above-mentioned
division between the logic of the general use of understanding and the logic of its
particular use accomplished by Kant. Now we should inquire into first part of this
division.

3 “The former” means here the logic of the general use of understanding.
4See, for instance, [8].
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4.2.1 Back to the division made by Kant

Here, we have to recall that Kant defined logic of the general use of understanding
as a discipline which deals with general rules of thought regardless of any matter
of applying of this thought. As it was said, in contrast to logic of the particular
use of understanding, logic of its general use cannot be general organon of our finite
cognition. It can be only its canon. Then, Kant called it “elemental logic”.

Namely, he stated that logic of the general use of understanding

[ . . . ] contains the absolutely necessary laws of thought, no use of understanding
at all could be possible without, and therefore gave laws to understanding,
regardless of the difference of objects, which it may be applied to. (A52, B77)
[9, p. 47]

It is obvious that such distinction was a good step forward in the direction of shaping
of the notion of logic as a science of pure forms abstracted from any content. Namely,
Kant started to consider a logical form on the base of the notion of the law of
thought. The laws of thought are of functional character. So, a form of thought is
a function which prescribes the one and only mode which it could act in, regardless
of its content. This functional character is based on the spontaneity of thinking
as such. The condition, necessary for it, is the universality of a law of thought,
i.e. its independence of a concrete matter or content. MacFarlane emphasized the
normative character of general logic in this regard,

The generality of logic, for Frege as for Kant, is a normative generality: logic
is general in the sense that it provides constitutive norms for thought as such,
regardless of its subject matter. [11, p. 35]

Only logic of such kind can be universal. In other words, it can be used indifferently
to the peculiarity of an object domain. In particular, it has to be noted that such
understanding of general logic leads to very productive and, yet, very disputable idea
of formal ontology which reckons as its object not just subjective “laws of thought”
(as it considered by Kant) but also the universal and the only formal definitions of
something in general, or of “quasi-region” (Husserl). Nevertheless, here one has to
dismiss the reason for a turn from pure formal logic (from the mathesis universalis
in the widest sense) to formal ontology without prejudice.

In any case, the mentioned step is still insufficient for the ultimate formation of
the notion of logic as of a science of pure forms in Kant’s interpretation. We just
have to point out here, that the distinction between logic of general and logic of the
particular use of understanding is based on the quantitative principle of the difference
between generality and particularity. Thereby this qualitative principle is aligned
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with the difference between dependence upon content and its independence stated
by Kant. Only the independence of any content of logic ensures its quantitative
generality.

4.3 Pure and applied universal logic

As distinct from the notion of logic of the particular use of understanding, the notion
of logic of its general use is divisible further from Kant’s standpoint. He believed
that logic of the general use of understanding can be divided in two parts. Namely,
they are, on one hand, pure logic and, on the other hand, applied logic. The common
condition for both types of logic is their generality.

The first of the mentioned types of logic, as of a general discipline, deals only with
the rules of thought regardless of the concrete conditions of its implementation by
an empirical subject. The laws of thought are equally independent of the situation
which someone applies them in. Nevertheless, they belong not to objectivity but
to the subjective field only, they possess an ideal identity within themselves. The
universal and transcendental character of subjectivity in accordance with Kant is
the guarantee for such identity. Hence, it is indifferent for the formality of the laws
of thought who, where, when and how applies them. In each case, they will remain
the same. In this sense, it has to be said, that the laws of logic have “objective
value” but it does not mean that the ground of this value lies in objects. It doesn’t
mean that their source lies in objectivity in its opposition to empirical subjects. This
characteristic of the laws of logic refers only to “objectivity” in the sense of the ideal
“universal validity”.

On the contrary, general but applied logic takes into account such empirical
conditions of thinking. This difference could be well-clarified by a few statement
made by Kant in his Critique of Pure Reason,

General logic is again either pure or applied. In the former, we abstract all the
empirical conditions under which the understanding is exercised; for example,
the influence of the senses, the play of the fantasy or imagination, the laws
of the memory, the force of habit, of inclination etc, consequently also, the
sources of prejudice, – in a word, we abstract all causes from which particular
cognitions arise, because these causes regard the understanding under certain
circumstances of its application, and, to the knowledge of them experience is
required. (A52-3, B77) [9, pp. 47–48]

Hence, we could detect that Kant’s term “applied logic” is equal to psychology
of logical knowledge in the contemporary usage of terms. The author of Critique
of Pure Reason has especially emphasized that he used the term “applied” with
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regard to logic in quite a different sense than it is commonly used. According to
Kant’s interpretation of applied logic, it doesn’t belong to any kind of τέχνη. It is
not a technical discipline or a kind of skill which teaches how to apply the logical
rules and laws correctly. Applied logic is exactly general logic, not a particular
one. Since it is one of subsections of general logic, one cannot use it as ὄργανον of
cognition. In any event, it does not consider the logical laws in a strict sense. It
treats the domain, which should be already yielded to the rules of the general use of
understanding. Hence, it, in fact, remains questionable whether Kant’s characteristic
of this discipline as of logic is correct. At the same time, it cannot be understood
as κανών of knowledge, in contrast to other subsection of logic of the general use of
understanding.

The thinker stated the following, concerning general applied logic,

General logic is called applied, when it is directed to the laws of the use of
the understanding, under the subjective empirical conditions which psychology
teaches us. It has therefore empirical principles, although, at the same time, it
is in so far general, that it applies to the exercise of the understanding, without
regard to difference of objects. On this account, moreover, it is neither a canon
of the understanding in general, nor an organon of a particular science, but
merely a cathartic of the human understanding. (A53, B77-78) [9, p. 48]

Since the domain, which applied general logic inquires into, is already yielded to
the general rules of understanding, pure general logic has no need to follow such
empirical conditions. It its origin lies not in our actual but in contingent experience,

Pure general logic has to do, therefore, merely with pure a priori principles,
and is a canon of understanding and reason, but only in respect of the formal
part of their use, be the content what it may, empirical or transcendental. (A53,
B77) [9, p. 48]

Therefore, the laws of use of understanding, which pure applied logic discovers,
should correspond to the “pure a priori principles”. For, in its turn, applied logic
as such has to be commensurate to the common κανών of knowledge, i.e. to pure
general logic. Hence, general logic is not deducible from pure applied logic. In other
words, it is impossible to derive logical forms as such from the modes, we use and
apply them in, in our empirical circumstances. As it was said, the logical forms
should be already present in a way. They can be applicable in this case only. The
usage and the application of logical forms are already yielded to these forms.

In this regard, Kant concluded,
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In general logic, therefore, that part which constitutes pure logic must be care-
fully distinguished from that which constitutes applied (though still general)
logic. The former alone is properly science, although short and dry, as the me-
thodical exposition of an elemental doctrine of the understanding ought to be.
(A53-4, B78) [9, p. 48]

It is our belief that in this way Kant derived the notion of logic, very close to
“formal logic” in a contemporary sense. In Kant’s words, formal logic is the pure
general one, i.e. it is logic, independent as well of concrete content given by the
experience as of concrete conditions of accomplishing of thinking by an empirical
subject.

In summary of this subsection, we would state that principle of the differen-
tiation of pure and applied logic within the framework of logic of the general use
of understanding lies in the difference of the notions of the transcendental and the
empirical fields. Hence, it is a qualitative or, to be more precise, essential, principle
as distinct from the basis of the differentiation of general and particular logics. As
it becomes apparent, Kant pointed out two requirements for such kind of logic or
conditions it could be formed in:

(i) One ought to differentiate form and content in a thought disregarding to the
differences between objects which could be thought by a logical form. Then,
one ought to expound form as that what belongs to subjective field. Content
has to be considered as that what derives from objects. In that way, we can
differentiate form and content finally and, then, get the notion of the form of
thought, which would be independent of its content.

(ii) One ought to exclude “empirical principles” of usage of logical forms and,
hence, to show that psychological conditions of application of logic have noth-
ing to do with the laws of logic as such. In this way, one can justify why the
relativity of the logical forms in their application does not follow from their
subjective status. Namely, we show that the universality of these forms does
not contradict to their subjectivity because of their subjectivity is not the
empirical one. See, for instance, [11, p. 48].

Hence, formality of logical forms is defined in a privative way through the inde-
pendence (i) of objective content and (ii) circumstances of accomplishing of thinking.
As it was said, MacFarlane believed that Kant’s understanding of logic as of a formal
discipline, hence, the peculiarity of his concept of logical form, became a real “inno-
vation”. The path of shaping of the notion of logical form goes through abstraction
from content both particular and general.
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4.3.1 Pure logic and antipsychologism

One especially ought to emphasize Kant’s second requirement for pure general logic.
In fact, this thinker formed some conditions for arising of so-called antipsychol-
ogism in treating of the essence of logic. He made it by rigorous distinguishing
between pure formal principles and subjective empirical conditions of thinking. It
is a well-known fact that detailed critique of the reduction of logical laws as well as
of mathematical objects and structures to the phenomena of the psychical life was
elaborated subsequent to Kant in two very different schools of philosophy, namely
in analytical philosophy (Frege) and phenomenology (Husserl). The members of the
mentioned schools didn’t accept Kant’s way of treating nature and status of logic
and, especially, of its relation to mathematics and their objects. For instance, Frege
has elaborated a program of logical justification of the mathematics, conflicting with
Kant’s understanding of the essence of the mathematics (see, in particular, [4]). In
this regard, we have to remember that logic as a science of pure forms of thought and
mathematics as knowledge based on pure forms of sensibility have transcendentally
different origin and nature form Kant’s standpoint. Hence, he can be acknowl-
edged as the forerunner of the mathematical intuitionism. On the contrary, it would
be wrong to speak about the elements of intuitionism in Kant’s treating of logic.
Thereby, we can find the same situation with regard to a status of the universal
validity of logic in all three cases. One can reach the mentioned only by separation
of logic forms not only from content delivered from a side of objects but also from
private or empirical-subjective conditions of the validity of logical statements.

Nevertheless, all the above-mentioned philosophers have quite different under-
standings of the logic. It is our belief that one ought to bear in view such kind
of difference in presupposing of the possibility in the interpretation of Kant’s logi-
cal views, for instance, from the point of view of Frege’s philosophy. Namely, one
should pose a question whether Frege’s notion of logic could be justified on the base
of the same conception of the (transcendental) subjectivity as Kant’s treating of
logic. Does Frege’s idea of logic require any conception of subjectivity at all?

Conversely, it was demonstrated that Kant’s notion of pure general logic is im-
possible without the admission of a distinction between pure and the applied logic
and, thus, without the admission of subjectivity and a subjective character of such
kind of logic at all. For instance, MacFarlane has shown that a possible problem in
interpretations of the nature of logic made by Kant and Frege lies in the circum-
stance that both philosophers had very different understanding of a function of logic.
MacFarlane stated that Kant’s “[ . . . ] picture of logic is evidently incompatible with
Frege view that logic can supply us with substantive knowledge about objects” [11,
p. 29].
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On the other hand, Husserl has agreed that one has to consider the logic as well
as the mathesis universalis, as a whole, and as an effect of the constitutive activity
of the transcendental subjectivity. Hence, the idea of transcendental subjectivity
is presupposed in Husserl’s case of treating of logic as well. However, it is very
doubtful that it is the same activity of subjectivity which constitutes logical forms
within Kant’s and Husserl’s understanding.

However, it is very doubtful that this is the same activity of subjectivity which
constitutes logical forms in Kant and Husserl.

5 The idea of transcendental logic
Yet, the given reconstruction of Kant’s view on logic remains insufficient. It was
shown that Kant has created a notion of pure general logic as a science of pure
forms of thought. Nonetheless, he laid down demands for creating of a very peculiar
type of universal logic which, none the less, would have certain content. Namely, he
introduced the notion of transcendental logic beyond his taxonomy of types of logic.
It is clear that his notion of pure general logic, as logic in a current sense of formal
science, belongs to this taxonomy. But a new type of logic also claims to deal with
the universal and necessary knowledge.

In his laterLectures on Logic, Kant distinguished between these two types of logic
in the following way,

Now as propaedeutic to all use of the understanding in general, universal logic
is distinct also on another side from transcendental logic, in which the object
itself is represented as an object of the mere understanding; universal logic, on
the contrary, deals with all objects in general. [10, p. 530]

Then, we have to ask again. How is it possible for logic to have universal validity
and certain content at the same time? Does it not reduce the Kant’s breakthrough
with regard to the justification of the logic’s purity and its universality to absurdity?

There could be an exact following answer to this question. Transcendental logic
in Kant’s term-use deals with very specific content, namely, with the relations of
our cognitions with their objects. These relations are also of very peculiar kind.
Namely, the transcendental logic should inquire into the origin of our cognitions of
objects, insofar, it cannot be contained directly within these objects.

It deals with the transcendental origin of the cognitions a priori, therefore, the
nature of transcendental logic is not analytic, but synthetic. Thereby, it differs prin-
cipally from pure general logic which deals only with analytical forms. In opposition
to it, transcendental logic is non-analytic and intends to explicate the grounds of
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a connection of logical forms with objects. Hence, transcendental logic cannot be
explained through any formal analysis. It only could be justified through the tran-
scendental synthesis. Since it has synthetic essence, transcendental logic deals with
the transcendental genesis of both knowledge and objectivity.

Kant himself stated with concern to his idea of transcendental logic,

In this case, there would exist a kind of logic, in which we should not make
abstraction of all content of cognition; for that logic which should comprise
merely the laws of pure thought (of an object), would of course exclude all
those cognitions which were of empirical content. This kind of logic would also
examine the origin of our cognitions of objects, so far as that origin cannot
be ascribed to the objects themselves; while, on the contrary, general logic has
nothing to do with the origin of our cognitions [ . . . ] (A55, B81) [9, p. 48]

It might appear at the first sight that Kant, himself, has destroyed his own idea
of pure logic with the introduction of the notion of logic which would deal not only
with pure forms, as such, but also with their origin a fortiori.

Yet, Kant’s own opinion was the opposite one. The point is, that transcendental
logic is not connected with the origin of cognition of all types of objects but only of
the objects, which could be known a priori, exclusively. However, in Kant’s opinion
a priori possesses only a formal character. To be more exact, one also ought to
limit the notion of a priori in the current context, for it could have a regard to the
transcendental use of logic. This logic deals not with all a priori cognitions but with
the cognitions of such kind, which allow us to know that some concepts are present
a priori and can be applied only a priori. This type of logic clarifies how it can be
possible at all. But it excludes from the consideration sensitive a priori, i.e. forms
of sensibility as well as their relations to objects. Consideration of these forms be-
longs to transcendental aesthetics. Moreover, transcendental logic does not consider
the very notion of the pure understanding, as such, but it treats relations of the
mentioned to the objects only. As it was said, its subject is the origin and the limits
of their applicability. To be more precise, from Kant’s standpoint, transcendental
logic deals with the possibility of relation of forms of thought (categories etc.) to
objects as phenomena. Therefore, it takes a part in “substantive knowledge about
objects”.

Hence, we can speak about content of transcendental logic in some peculiar
aspect. But if we try to analyze this content we will notice that such kind of
content, in its turn, is, in some sense, the formal one. Namely, transcendental logic
deals with synthetic formality of thought. For instance, Kant always thought that
the categories of the pure understanding are pure forms of understanding. Their
relations to objects, in the same measure, are the formal ones. In other words,
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transcendental logic presupposes abstraction of content too. But this abstraction is
not total. One could describe abstraction of such kind as reduction of content to
formal relations.

It is very significant that such forms and their formal relations to objects rep-
resent the proper content of this discipline. Hence, form, in a way, is content in
case of transcendental logic. Thereby, transcendental logic is still pure logic. Since
transcendental logical forms have a relation only to objects as phenomena, namely,
to their realm as whole, insofar, it even is constituted by such forms. Transcendental
logic, in a way, is universal. For further details, see [12].

Dealing with the genesis of a priori concepts, transcendental logic, in the way
it was treated by Kant, has a productive moment within itself, but not absolutely.
Namely, Kant searched after the subjective conditions a priori of a possible rela-
tion of our knowledge to objects. Hence, his understanding of transcendental logic
remains subjective (but not empirical). Still, Kant’s transcendental logic is not the
logic of any, so to say, objective content. Kant’s treatment of transcendental logic
as of a discipline which has some content rooted in his doctrine of transcendental
subjectivity and its structures a priori.

Hence, we can conclude that Kant’s idea of transcendental logic meets the condi-
tions of pure universal logic mentioned above. On one hand, although it does indeed
relate to some specific kind of objects excludes all sensitive objects as well as the
rules of the empirical thought from consideration, (i) it can obtain universal validity
in a certain sense. Since it inquires only into a priori forms of thinking of objects,
its content is also only form or, so to say, it is empty of empirical content. On the
other hand, since it treats only a priori structures of transcendental subjectivity, (ii)
transcendental logic does not depend upon the empirical conditions of cognition and
therefore upon an empirical accomplishing of our cognition. Therefore, it can have
the universal validity in the domain of objects which are also constituted by pure
notions of understanding. Yet, from Kant’s standpoint, this domain is exclusively
inside the realm of phenomena.

More to the point, Kant’s idea of transcendental logic remains currently relevant.
It has been existing in the phenomenological branch of today’s philosophy, at least,
since Husserl’s Formal and Transcendental Logic.5 Phenomenological treating of
these two kinds of logic has indicated the following questions. Which correlation
between the formal and transcendental kinds of logic is proper? Should formal logic
be grounded by transcendental logic? On the contrary, should transcendental logic
be understood as widening of formal logic which would underlie to it? Sadly, we have
to shelve these questions here. But one ought to emphasize here that the relation of

5In this context, see [7].
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this new type of logic to reconstructed Kant’s taxonomy of types of logic is initially
ambiguous. Please, find the description of the possible modes of this relation, as well
as various reconstructions of Kant’s taxonomy of types of logic here: [13, pp. 1–10].

6 Exclusion of “speculative logic”

Now, we have to reject one noteworthy solution which, in our opinion, followed from
Kant’s dividing form of thought from content as its matter (as well as from division
he made between pure general and transcendental logic). We think this solution
intends to resolve the fundamental dualism of form and content in logic, which has
arisen due to the mentioned divisions made by Kant. The solution we have in mind
seems to be very effective and grandiose but, at the same time, very controversial.

Namely, we would like to make an exclusion of so-called “speculative logic”, which
has originated from Hegel’s philosophy of absolute idealism and its materialistic
reinterpretation made in the ideology of Marxism (so-called “dialectical logic”) from
our discussion. Nevertheless, it should be noted that this quasi-logical solution is not
absolutely unusual in the history of logic. Moreover, it could shed the light on the
problem of the possibility of formalization of logic in some negative way. Namely, it
can show possible limits of this formalization.

Thus, this kind of philosophical thinking makes a claim to elaborate the so-
called logic of content. It seems to be initially incoherent, being undertaken after a
sufficient separation of form from content in logic made by Kant. Yet, we would like
just to emphasize the proper way which it was planned to be done in. Sadly, this way
often remains undetected by logicians and historians of logic. For instance, Hegel
referred not just to the possibility of explication of concrete content of concepts from
their implicative condition but also to the possibility of producing and generating
of such content through combining of pure logical forms. From his standpoint, the
idea of logic, as of a formal discipline, roots in the abstract mode it is considered
in. In fact, according to Hegel, logic itself can generate its content and provide a
matter of thought to itself. He stated in the Introduction to his Science of Logic,

More to the point is that the emptiness of the logical forms lies rather solely
in the manner in which they are considered and dealt with. Scattered in fixed
determinations and thus nor held together in organic unity, they are dead forms
[ . . . ] Therefore they lack proper content [ . . . ] But logical reason is itself the
substantial or real factor which, within itself, holds together all the abstract
determinations and constitutes their proper, absolutely concrete, unity. [5,
pp. 27–28]

1328



The Historical Role of Kant’s Views on Logic

Nevertheless, it is permissible to notice that the idea of “logic of content”, based
on Hegel’s ontological premise of speculative identity of logic and ontology, should
not be identified with Aristotelian understanding of form as of something rich in
content. Therefore, “speculative logic” is situated outside of the main path of elab-
oration of logic as of a science of empty forms, whereas the Aristotelian shape of
logic lies in the initial point of this path. Hegel and other “dialectical” logicians
tried to get over a chasm between form and content in logic through logical (in the
sense which they generally understood the logic in) tools. Hence, they aimed at
unifying form and content through the quasi-logical combinations in the situation of
historically already-actualized separation between form and content. Therefore, it
could not be confused with the initial Aristotelian notion of form as something, rich
in content within itself. So, these dialectical ideas don’t belong to the mainstream
of elaboration of logic starting from the Aristotelian treating of form to an idea of
it as of a science of pure forms and form-combinations.

7 Summary and conclusion

In this way, Kant has discovered the possibility of logic which describes the correla-
tion of the pure notions with objects. Thereby he has made room in his architectonic
of logic for the kind of logic which would be general and pure, in a sense, yet it could
not be independent of content. At the same time, its content doesn’t have an em-
pirical source. On this ground, this logic could be titled as properly “philosophical
logic” which deals with the origin of our cognitions and their possible relation to
objects unlike all the other types of logic which do not have proper philosophical
sense. Since this logic considers conditions of our cognitions of objects, we would
also call it epistemological logic. Since it discovers condition of relation to objects,
we, as well, could define it as ontological logic.

Appositely, one ought to add that our earlier hypothesis implying that the pos-
sible conceptual origin of an idea of a regional ontology in phenomenology should lie
not just in Kant’s idea of logic of the particular use of understanding but also in his
concept of transcendental logic. Indeed, logic of the particular use of understand-
ing can, however, play an exclusively methodological role for a particular positive
science but the regional ontology should ground one or another particular positive
science on the basis of categories and their relation to the subject matter of this
science.

Nevertheless, transcendental logic is quite different from pure logic, which has
only a formal sense that does not contradict with formal characteristics which are
present in both logics, philosophical and non-philosophical (pure formal logical)

1329



A. Patkul

at the same time. However, the final questions arise. Is it possible to formalize
this philosophical logic, which Kant’s doctrine of kinds of judgment and categories
belongs to? Does logic in interpretation given to it by Kant need any formalization
or, at least, allow it? There is the following reason for such kind of questions. As
it has been demonstrated already, Kant’s transcendental logic is pure and formal
(in the sense that its content is the pure formal relations) as well as independent
of singular empirical conditions. Hence, we have to ask whether it is possible to
formalize this type of logic which has long been logic of forms.

One ought to say that there have been some attempts made recently in order to
rehabilitate Kant’s transcendental logic with regard to today’s semantics through
the formalization with the tools of today’s symbolic logic. They are of high interest
and sophisticated. For instance, we could refer to the paper by Achourioti and van
Lambalgen [1] which was mentioned above. In particular, these authors speak about
“typical modern dismissal of Kant’s formal logic” [1, p. 254]. (They refers to Frege’s
and Strawson’s works in this regard). Regarding the contemporary evaluation of his
transcendental logic, they have stated, “Worse, Kant’s transcendental logic does not
seem to be a logic in the modern sense at all: no syntax, no semantics, inferences”
[1, p. 254]. Achourioti and van Lambalgen think magnanimously that they will
save Kant’s transcendental logic by the demonstrating that “a logical system very
much like Kant’s formal logic is a distinguished fragment of first-order logic, namely,
geometric logic” [1, p. 254]. And we do not think that it is a “hopeless enterprise.”
[1, p. 254].

Yet, from our standpoint, the following question arises in this regard. Is it still
necessary to justify Kant’s logics both pure general and transcendental from the
point of view of symbolic logic or semantics? It is a problem (i) because, as was
shown, the mentioned disciplines are possible in dimension which was cleared away
only by the transformation of the understanding of logic with regard to the notion
of a pure form made by Kant. Today’s logic has just exchanged thought-forms to
sign-forms but transcendental-philosophical conditions of the formality which were
recognized by Kant remain the same. Moreover, (ii) Kant’s logic (even transcenden-
tal one) does not need to be, as well as, it and cannot be formalized because, in a
way, it has always possessed the formal status, as it is. Therefore, a question posed
here should be not of how to justify Kant’s views of logic from the perspective of
symbolic logic and semantics but of existence of a possibility, as such, for justifying
Kant’s understanding of logic. It is a fact that both symbolic logic and semantics
do not pose the question of their own quid juris unlike Kant did with regard to
logic. Hence, it is still unclear where an epistemological source of the contemporary
fetishism of “syntax, semantics and inferences” is. Maybe we could find it in Kant’s
philosophy itself. Therefore, it remains disputable whether it is possible or needed
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to formalize the Kantian conception of logic, even following the semantic character
of contemporary logicism which was emphasized by MacFarlane.
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Abstract
Vagueness is a phenomenon whose manifestation occurs most clearly in linguis-
tic contexts. And some scholars believe that the underlying cause of vagueness
is to be traced to features of language. Such scholars typically look to formal
techniques that are themselves embedded within language, such as supervalu-
ation theory and semantic features of contexts of evaluation. However, when
a theorist thinks that the ultimate cause of the linguistic vagueness is due to
something other than language – for instance, due to a lack of knowledge or
due to the world’s being itself vague – then the formal techniques can no longer
be restricted to those that look only at within-language phenomena. If, for
example a theorist wonders whether the world itself might be vague, it is most
natural to think of employing many-valued logics as the appropriate formal
representation theory. I investigate whether the ontological presuppositions of
metaphysical vagueness can accurately be represented by (finitely) many-valued
logics, reaching a mixed bag of results.

Keywords: Vagueness, Many-valued Logic, Evans-argument.

Introduction
Even though people sometimes point to vague memories (e.g., of that very first date
you had) or vague objects (like the cloud above me as I write, or the mist that
covered St. Petersburg a few nights ago), it is in language where vagueness most
clearly manifests itself, and where most theorists focus their attention. The reasons
for this are not hard to fathom:
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• The majority of our linguistic terms admit borderline cases;

• We are unable to resolve the application vs. non-application of many scalar
predicates;

• We sometimes may not be able to determine what proposition (if any) is
asserted when using certain vague terms.

But even if it is in the realm of language where we find vagueness manifested,
there is still the question What is the “ultimate” cause of the vagueness? Is it
perhaps a matter of lack of knowledge? Perhaps lack of knowledge of some relevant
features of the world? Or perhaps lack of knowledge of the relevant context? Or
is it instead that the precise language is correctly representing a vague reality? Or
is it merely that language itself does not completely and precisely represent (the
non-vague, precise) reality?

It is traditional to divide viewpoints concerning the ultimate cause of vagueness
into three sorts: (a) Epistemological Vagueness, where vagueness is claimed to be
due to a lack of knowledge – an inability to tell whether some statement is true or
false, even though it might correctly represent reality or represent it incorrectly; (b)
Linguistic Vagueness, where vagueness is claimed to be due to a shortcoming in the
language itself – the language is not adequate to correctly or fully represent the de-
tailed features of the world; and (c) Metaphysical (or Ontological) Vagueness, where
vagueness is claimed to be inherent in reality – our language correctly represents
reality, but these items are themselves vague. We will look briefly at each in turn,
before we focus on the use (and motivation for the use) of many-valued logic.

Most accounts of vagueness, of all these different types, focus on properties that
can manifest vagueness, particularly properties that characterize a “scale” – such as
tallness, or being a heap, or intelligence, or . . . . Less time has been spent on the
possibility of vague objects.1 (Of course, some scholars think that one way to have
a vague object is for it to manifest one of the vague properties in a vague manner.)
In this paper we investigate the vague objects more closely than vague properties,
although of necessity we talk also about vague properties.

1 Epistemological vagueness
The natural way to understand this viewpoint on vagueness is that the “world” is
precise, determinate, definite, and so on, but our apprehension of these precise facts
is limited in one way or another by our finite epistemological powers. In the “world”

1Compare the differences in focus and detail of the papers [1] and [20].
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there are objects that have precise boundaries, and all properties have sharp cut-off
points (or maybe: all objects are in the clear extension or anti-extension of all the
properties).

However, because we lack knowledge, vagueness is introduced: For example, old
Prof. Worthington, the ancient don at Wembley College, only vaguely/indetermi-
nately/fuzzily remembers who was present at his Doctoral Viva. He can almost
remember someone with white or maybe blond hair. But he can’t recall clearly
whether it was the long-dead Coppleston or the equally dead Millingston.

That was a case of “individual vagueness” on Worthington’s part. But there can
be wider and wider cases of vagueness: no one quite remembers what the priest
looked like at old Dr. Benoit’s baptism. And maybe it is even more pervasive: a
feature of the way the world has developed (all relevant people have died, and no
one left any unambiguous memoirs) – for instance, did Galileo actually drop balls of
different weights from on high? And did he also tether together different weighted
balls in order to determine how fast the composite object fell? These are events that
actually happened or didn’t happen – totally and completely – in the actual world.
But since there is now no evidence of any sort to decide which way the world actually
went, we say it is vague whether Galileo dropped balls of different weights from a
height. One might even go so far as to say that this is the category of “verifiable in
principle but not actually verifiable”.

And it could be more radical than this: For example, the Epistemological Vague-
ness position holds that in reality there is in fact a particular number of grains of
sand that would make this pile of sand be a heap (say, m grains). However, we can’t
know that m grains of sand make a heap because all the evidence that we (or any-
one) have available is the same for adding one grain of sand to an (m−2)-grains pile
as it is for adding one grain of sand to an (m− 1)-grains pile. (Since by hypothesis
we can’t discern a change when only one grain is added). Yet in the former case we
don’t know that a pile has become a heap (because by hypothesis it hasn’t). So in
the latter case we can’t know either (even though it has become a heap).2

What would be an appropriate representational medium for this conception of
vagueness? Well, since the view holds that

• in the world there is no indeterminacy. . . every factual sentence either is true
or is false, every object is unique, distinct, and separate from all others, and

• vagueness comes from a lack of positive or negative knowledge of these facts,
including lack of knowledge as to what proposition is being asserted,

2The epistemic conception of vagueness is most famously championed by [21,22,29].
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it seems to follow that some sort of epistemic logic is called for. Thus the epistemic
interpretation really involves two logics: classical, two-valued logic for “the world”
and the just-mentioned epistemic logic to accommodate the state of knowledge of
people. Vagueness seems then just to be identified with conceptual indeterminacy
on the part of a speaker. Such an epistemic logic would employ a modal operator
that means “is vague”, but of course, in this conception, being vague is interpreted
as being epistemically indeterminate, and so something can be non-vague by being
definitely (in the epistemic sense) false, as well as by being definitely true (again,
in the epistemic). Thus, if something is vague (epistemically), then so is its nega-
tion, under this conception. Using O to represent this indeterminacy (and 4 for
determinacy), typical postulates of such a logic include, among others

if � ϕ, then 4ϕ

4ϕ↔4¬ϕ

4ϕ↔ ¬Oϕ

So the required modal logic couldn’t be a Kripke-normal modal logic. In [12],
I proposed a class of logics of epistemic vagueness (or epistemic indeterminacy):
every statement is in fact either true or false (at a world), but when inside the
epistemic vagueness operator, we are to evaluate what is going on at a certain class
of related worlds. But as I mentioned, this class is not determined in a classical
Kripke-manner, but rather in terms of “neighbourhood semantics”.

2 Linguistic vagueness

Linguistic Vagueness posits the same ontology as Epistemological Vagueness, namely
that the “world” is precise, determinate, definite, and so on. But it differs from the
epistemological version by saying that our description of these precise facts is limited
in one way or another, rather than our knowledge of the precise facts. It holds that
in the “world” there are objects that have precise boundaries, and all properties have
sharp cut-off points. Vagueness in this conception is a matter of a kind of mismatch
between language and “the world” and not a matter of a mismatch between people’s
knowledge and “the world”, as it is in the epistemological conception. (Of course,
different versions of Linguistic Vagueness will have differing accounts of what specific
parts of language exhibit the mismatch.)

One version of this mismatch might hold, for example, that when Allen says
that George is tall, the name ‘George’ picks out some specific individual in the
world (namely, George) who has some specific height such as 180 cm. But it might
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hold that there is no such primitive property in the world as being tall, for only
the specific heights count as primitive properties. In this view, either the property
tallness doesn’t exist, or if it does, then at least it is not a “basic” property3

but is instead defined, in one way or another, in terms of the more basic, specific
properties and (perhaps) “contexts of use” (as in some of the “contextual theories
of vagueness”, [8, 16,19]).

It is a shortcoming of our language, according to some (but not all) of the
believers in Linguistic Vagueness, that it has developed with these sorts of predicate-
terms. Some also hold it to be a shortcoming of our language that the denotation
relation is not precise: the name ‘Mt. Everest’ does not unproblematically designate
a specific region of the Earth; so when people use this linguistic term they are not
accurately identifying what is the case “in the world”. When a person says “This
rock is a part of Mt. Everest”, the imprecision of the denotation relation forces the
sentence as a whole to be vague.4

Advocates of the explication of vagueness in terms of a linguistic mismatch have
formed the largest group of philosophers, at least starting with Frege. Some were
dismayed by the fact that natural language had vague predicates, and saw the ideal
language as remedying this:5

We have to throw aside concept-words that do not have a Bedeutung.
These are. . . such as have vague boundaries. It must be determinate
for every object whether it falls under a concept or not; a concept word
which does not satisfy this condition on its Bedeutung is bedeutungslos. [7,
p. 178]

Some others who also thought that vagueness was linguistic believed instead that it
was a good thing in natural language:

3I use ‘basic’ and “primitive’ in an intuitive manner, allowing that the relevant theories will be
obliged to provide a detailed analysis of these notions.

4This view of vagueness – although without the feeling that it is a shortcoming – is expressed
in [10]:

The only intelligible account of vagueness locates it in our thought and language. The
reason it’s vague where the outback begins is not that there’s this thing, the outback
with imprecise borders; rather, there are many things, with different borders, and
nobody’s been fool enough to try to enforce a choice of one of them as the official
referent of the word ‘outback’. (p. 212)

A similar view is expressed in [27].
5Actually, it is very difficult to find any theorist of vagueness – of whatever sort – who thinks

that vagueness is a shortcoming in language as a whole. What is more problematic, they would say,
is the use of some vague term or phrase in a context where more precision, accuracy, or definiteness
is desired and is available for use but just not chosen.
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. . . a vague belief has a much better chance of being true than a pre-
cise one, because there are more possible facts that would verify it.
. . . Precision diminishes the likelihood of truth.” [18, p. 91]
Vagueness is a natural consequence of the basic mechanism of word learn-
ing. The penumbral objects of a vague term are the objects whose sim-
ilarity to ones for which the verbal response has been rewarded is rela-
tively slight. . . . Good purposes are often served by not tampering with
vagueness. Vagueness is not incompatible with precision. [15, pp. 113–
115]
There are contexts in which we are much better off using a term that
is vague in a certain respect than using terms that lack this kind of
vagueness. One such context is diplomacy. [2, pp. 85–86]

(For example, “We will take strenuous measures to block unwanted aggression when-
ever and wherever it occurs” allows for a wide course of actions, whereas any non-
vague statement would not allow such freedom.)

What would be an appropriate representational medium for this conception of
vagueness? Well, since the view holds that

• in the world there is no indeterminacy. . . every factual sentence that uses only
the basic predicates and the correct denotation relation either is true or is
false, and

• vagueness comes from the use of non-basic predicates (and “ambiguously de-
noting” singular terms) where there is no relevantly determined method of
stating how they are related to the basic predicates,

it seems to follow that some semantic technique is needed for displaying the various
types of results that might hold between the non-basic predicates used in some
linguistic expression and the basic predicates that describe “the world”.

For example, one might decide that one class of non-basic predicates actually
are abbreviations of some (ordered) range of the basic predicates, and that it is
“context” that determines which part of this ordered range is relevant to evaluating
the truth value of the expression. (Supervaluations and maybe some other semantic
techniques, as introduced by [23, 24], and developed by [3, 28], are plausible candi-
dates for this sort of evaluation, as are some of the theories that employ context,
like [8, 16,19]).

Unlike the Epistemic conception of vagueness in which every (declarative) sen-
tence either is true or is false (but in some cases we may not know which, so that
vagueness is a type of epistemic shortfall), in the Linguistic conception only some
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sentences are true and only some are false. Among the ones that are true or are false
are those composed with basic predicates (and no funny stuff with the denotation
relation). Many of the sentences containing non-basic predicates will be given the
value ‘vague’ (i.e., ‘neither true nor false’). But not all of these latter type of sen-
tence will be vague, as for example when the specific object of a predication clearly
satisfies the predicate. For instance, when 200 cm. in height LeBron James is said
to be tall, this is true despite the vagueness inherent in ‘tall’.

And there can even be true (also false) sentences about the tallness of middle-
height people. . . and similarly for other non-basic terms. For example, supervalua-
tion theory allows that classical logical truths and contradictions are true/false. And
perhaps different semantic techniques, such as contextual theories, could generate
other examples.

3 Ontological vagueness

Ontological/Metaphysical/Realistic Vagueness locates vagueness “in the world”. So,
as opposed to being unclear as to whether a situation actually obtains or not (Epis-
temic Vagueness), and as opposed to being vaguely described by a language that con-
tains non-basic predicates (Linguistic Vagueness), Realistic Vagueness claims that
certain objects in the world just plain are vague. (The intent here, which I will
in general follow, is to target physical objects with this characterization, although
it might also apply to abstracta, events, relations, and so on.) Few writers have
explained it, but [18], who is an advocate of Linguistic Vagueness, assures us that it
used to be a common view: “. . . it is a case of the fallacy of verbalism – the fallacy
that consists in mistaking the properties of words for the properties of things.”

One might also point to fictional entities as neither having nor lacking certain
properties: Hamlet neither has nor lacks a 5 mm wart on his left shoulder. Even
though this example is from the realm of fiction, Realistic Vagueness might claim
that for an vague actual object, there is some property which it neither has nor
lacks.

As is well-known, [5] claims that all views advocating ontological vagueness must
invoke the claim that, for certain names a and b, the sentence a = b is neither defi-
nitely true nor definitely false. (That is, Ontological Vagueness predicts that there
are vague objects in the world, and when we have vague objects, then whether they
are or are not the same object can also be indeterminate, at least according to
some advocates. This gives at least a sufficient condition for metaphysical vague-
ness.) [25, 26] also proposed that the crucial test would be a situation in which the
question ‘In talking about x and y, how many things are we talking about?’ has the
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features that ‘none’ is definitely a wrong answer; ‘three’, ‘four’, etc., are all definitely
wrong answers; and neither ‘one’ nor ‘two’ is either definitely a right or definitely
a wrong answer to it. I call this viewpoint about what is the underlying feature of
Ontological Vagueness the Evans/van Inwagen criterion, or, when discussing specific
argumentation that turns on exactly how this criterion is to be represented formally,
the Evans assumption (or the van Inwagen assumption), and when considering the
argumentation that makes use of the Evans assumption I call it Evans’ argument
and sometimes an Evans argument (to emphasize that, while it is not exactly Evans’
argument, it is an argument inspired by Evans’ argument).

What would be an appropriate representational medium for this conception of
vagueness? Well, since the view holds that

• in the world there is indeterminacy. . . vague objects actually have the real
property: being neither red nor not-red, for example, and

• for any object/property pair, either the object has the property (definitely),
or the object lacks the property (definitely), or else it neither has nor lacks it
– and this last fact is, in its own way, just as definite as the former two,

it seems that the appropriate representation of this conception will employ a many-
valued logic. If a has property F , then Fa is true; if a lacks F , then Fa is false;
so in the case where a neither has nor lacks F , Fa must take on some other truth
value (counting ‘neither True nor False’ as a truth value).

Employing a modal logic would not accurately capture Realistic Vagueness, for
a modal logic presumes that in each world, every sentence either is true or is false.
Employing unusual semantic techniques also does not adequately capture Realistic
Vagueness, for the Realist insists that all the properties under discussion are in fact
“real” and “basic”. Only a many-valued logic could capture the Realist’s attitude
toward vagueness.

And it is to many-valued logics that I now turn.

4 A 3-valued logic embodying vagueness
There are three values: intuitively, true, false, indeterminate.6 These are taken
to describe three different ways the actual world might relate to a sentence describing
it. That is, the portion of the actual world that is under discussion is actually one
of: definitely the way being described, definitely not the way being described, or
correctly described as indeterminate.

6We turn later to logics with more than three values, when we discuss the possibility of describing
“degrees of vagueness” as an account of “higher-order vagueness”.
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We would like our language to be able to express the facts that sentence ϕ is
true, false or indeterminate (calling these semantic values T, F, I). So let us
invent sentence operators (“parametric operators”) that do that: Dt, Df , V . They
are ordinary, extensional logic operators, having the following truth tables.

ϕ Dtϕ Dfϕ V ϕ

T T F F
F F T F
I F F T

We use standard 3-valued (Łukasiewicz) interpretations of negation, and, or. (And
use the convention that the truth values are ordered: T > I > F ).

ϕ ¬ϕ
T F [ϕ ∧ ψ ] = min([ϕ ], [ψ ])
I I [ϕ ∨ ψ ] = max([ϕ ], [ψ ])
F T

I am going to steer clear of the intricacies involved in the interpretation of the
conditional and biconditional, other than to advocate on behalf of these principles:

[Dt-axiom] : �Dtϕ → ϕ

[EQ-rules] : If � (ϕ↔ ψ), then infer � (Dtϕ↔Dtψ)
If � (ϕ↔ ψ), then infer � (Dfϕ↔Dfψ)
If � (ϕ↔ ψ), then infer � (V ϕ↔ V ψ)

Although neither (ϕ∧¬ϕ) nor (¬Dtϕ∧¬Dfϕ) is a contradiction in a three-valued
logic, contradictions can be described by insisting on the Uniqueness of Semantic
Value in 3-valued logic.7

[USV3]: Every sentence takes exactly one of the three values:
(Dtϕ ∨Dfϕ ∨ V ϕ) ∧ ¬(Dtϕ ∧Dfϕ) ∧ ¬(Dtϕ ∧ V ϕ) ∧ ¬(Dfϕ ∧ V ϕ).

Lemma. If the main operator of formula Φ is Dt, Df , or V , then JV ΦK = F .

Proof. If the main connective of Φ is one of the three parametric operators, then (as
can be seen from their truth tables) the value of Φ is either T or F . But then V Φ
will be F .

7Although in Graham Priest’s logic LP [14], the third value is claimed to be both T and F
simultaneously, and “not really” a different third value.
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Corollary. If all sentential parts of formula Φ are in the scope of any of Dt, Df , V ,
then JV ΦK = F , or equivalently, J¬V ΦK = T or equivalently, JDf V ΦK = T .

With regards to using a three-valued interpretation in the predicate logic (with
identity), I do not give a full characterization, but only three principles:

[V-∀]: � V [(∀x)F (x)]→ ¬(∃x)Df [F (x)]
(i.e., if it is vague that everything is F , then there cannot be anything of which it is
definitely false that it is F )

[ref=]: �Dt[α = α]
(i.e., self-identities are definitely true).

[LL]: � a = b↔ (∀F )(Fa↔ Fb)
(Leibniz’s Law, as this is usually called: Two things are identical if and only if they
share all properties.8)

Now, while some scholars might find some of these principles questionable (I
mention Graham Priest in footnote 9 below), the holders of Ontological Vagueness
have pretty much uniformly taken them on.

5 An argument against vague objects in this logic

The argument
An Evans argument proceeds by assuming the Evans/van Inwagen criterion of what
the believers in Ontological Vagueness hold: that it can be vague whether there is
one or two objects before a person; and it continues, using the principles mentioned
above about many-valued logic. The following version is given in [13].

a. V [a = b] the Evans assumption
b. a = b ↔ (∀F )(Fa ↔ Fb) LL
c. V [a = b] ↔ V (∀F )(Fa ↔ Fb) (b) and [EQ-rule]
d. V (∀F )(Fa ↔ Fb) (a), (c), ↔-elim
e. ¬(∃F )Df (Fa ↔ Fb) (d) and [V-∀]
f. (∀F )[Dt(Fa ↔ Fb) ∨ V (Fa ↔ Fb)] (e) and [USV3]
g. Dt[Dt[a = a] ↔ Dt[a = b]]∨ (f), instantiate (∀F ) to

V [Dt[a = a] ↔ Dt[a = b]] λxDt[a = x] and λ-convert
h. Dt[Dt[a = a] ↔ Dt[a = b]] (g), [Lemma], disjunctive syllogism
i. Dt[a = a] ↔ Dt[a = b] (h) and [Dt-axiom]
j. Dt[a = b] (i) and [ref=], ↔-elim
k. ¬V [a = b] (j) and [USV3]

8As both [6, 11] remark, Leibniz himself only took pains to argue for the right-to-left aspect of
[LL], and that with a restriction on the types of properties that F designate. Presumably everybody
finds the left-to-right direction of [LL] undeniable. As is often noted, there is a peculiarity with
this verbalization of the formula, since the formula gives a condition for there being just one thing
under consideration, not two, and says that any property this one thing has is a property it has.
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Although not every pair of formulas of the form ϕ and ¬ϕ contradict one another
in a three-valued logic, (a) and (k) do really contradict each other. (a) is either T,
F, or I (by [USV3]); by the truth-table for V it cannot be I; so it is either T or F.
But this argument shows that if (a) is T then it is F, but if (a) is F then it is T (à
la (k) and the truth table for ¬). But [USV3] claims that no formula can be both
T and F.9

Comments & defense of the argument

Was there any “cheating” going on in this proof, or with the postulates? Is there
something “funny” about the V -operator? Might one question the λ-abstract: is
it a “real” property? Might one have concerns about one of the principles used:
[Dt-axiom], [EQ-rules], [USV3], [LL], [V -∀], [ref=]?

The argument I presented proceeds by λ-abstraction, using the predicate: ‘being
definitely true of x that it is identical to a’. Does that predicate correspond to
a real property? If not, then this is not a legitimate case of λ-abstraction, by the
standards of Ontological Vagueness.

For the advocate of Metaphysical Vagueness, the answer must be ‘yes, it is a
genuine property’. For, it is a feature of this position that in the world there is
vagueness, and its contrary, definiteness. These are real, actual properties that are
designated by these predicates. And unless the advocates of this position want there
to be some sort of “ineffability” when it comes to their postulated properties-in-the-
world, they have to admit that such expressions do designate such properties. The
language is entirely extensional – there is no “funny business” going on about ‘opaque
contexts’ or rigid vs. non-rigid names or . . . . The λ-abstraction picks out what the
believer in Ontological Vagueness must acknowledge is a legitimate property.

But let’s look again at this presumed notion of vagueness and definiteness. It
cannot be the modal notion of the epistemicists, since that characterizes one’s epis-
temic states rather than reality. That kind of (in)definiteness does not characterize
an item “in the world” but rather cognizer’s apprehension of objects. Any indefinite-
ness operator of this variety will endorse a principle like Oϕ↔ O¬ϕ, as I mentioned
above, and such a principle does not characterize the usual ontological vagueness
theorists’ view.10

9This shows that if we were to interpret the middle value V as it is in Priest’s [14] – as being both
T and F – we would have to rephrase the interpretation of [USV3]. And in fact, Priest (p.c.) says
that he denies [USV3], believing that there are but two truth values, but that some formulas can
take both. Therefore, I propose this argument only against those who do not think that vagueness
leads to true contradictions.

10Well, except perhaps for dialetheic views like that of Priest [14].
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The view of Heck in [9] that O should in fact obey this principle shows that his
argumentation is not really directed against nor in favour of metaphysical vague-
ness, but rather at or in favour of some hybrid view of metaphysical and epistemic
vagueness.

I say again: only the many-valued logic viewpoint accurately captures the onto-
logical vagueness theorist’s view.

So far as I am aware, no one has faulted the following principles that are used
in the proof (well, so long as they are willing to allow a 3-valued logic in the first
place, and as long as they see the extra values as being truly distinct from true
and false, contrary to Priest’s viewpoint expressed in footnote 9):

• USV3: � (Dtϕ∨Dfϕ∨V ϕ) ∧¬(Dtϕ∧Dfϕ)∧¬(Dtϕ∧V ϕ)∧¬(Dfϕ∧V ϕ);

• Dt-axiom: �Dtϕ → ϕ;

• ref=: �Dt[α = α];

• V-∀: � V [(∀x)Φ(x)]→ ¬(∃x)Df [Φ(x)].

In the case of those believers in ontological vagueness who hold there to be more
“degrees of metaphysical vagueness” than just the three we have been assuming, a
strictly analogous proof to the very same conclusion can be crafted, as discussed
in [13]. One changes the [USV] axiom to accommodate the further truth values,
and generalizes the [V-∀] axiom for the extra truth values.

We will return to a discussion of the argument after a brief excursion into higher-
order vagueness.

6 Higher-order vagueness

The topic of higher-order vagueness concerns the issue of whether it can be vague
that something is vague (and even further iterations, such as being definite that it is
vague that it is vague). For the believer in Ontological Vagueness, the first iteration
amounts to wondering whether it can be vague that some aspect of reality is vague?
It is not clear to me that a proponent of Vagueness-in-Reality will wish to accept
this as a part of their doctrine concerning Reality. They might instead prefer to view
it as a mixture of different types of vagueness: “We don’t know whether it is true
or false that such-and-so is metaphysically vague”, and would thereby prefer some
mixture of a many-valued logic with an epistemic logic of vagueness (like that of [12])
added on. Certainly, if they do wish to have metaphysical higher-order vagueness,
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they wouldn’t represent it by iterating the V -operator (nor with iterated mixtures of
any of the V -, Dt, and Df -operators). The previously-mentioned Lemma precludes
this.

Instead they would increase the number of truth values. . . and with them, the
number of truth-operators in the language. For this purpose, it is common in dis-
cussions of many-valued logic to take the truth-values to be integers, with 1 being
“most true” and (for an n-valued logic) to make n be the “most false” value. And
then it is common to introduce the so-called Ji-operators [17]. Such an operator is a
generalization of the ideas behind our Dt, Df and V operators – like our operators,
the J-operators have a formula as an argument, and are semantically valued as being
“completely true” (that is, take the value 1) if the formula-argument takes the value
indicated in the subscript of the J-operator, and “completely false” (that is, take
the value n) otherwise. Semantically this is to say, for any value i of an n-valued
logic (1 ≤ i ≤ n)

JJi(ϕ)K = 1 if JϕK = i
= n otherwise

For example, a five-valued logic would have J1,J2,J3,J4,J5 as J-operators), with
truth tables:

ϕ J1ϕ J2ϕ J3ϕ J4ϕ J5ϕ

1 1 5 5 5 5
2 5 1 5 5 5
3 5 5 1 5 5
4 5 5 5 1 5
5 5 5 5 5 1

and this account might say that J3ϕ makes the claim that ϕ is completely vague,
while J2ϕ asserts that it is vague whether ϕ is completely vague or is true; and that
J4ϕ claims that it is vague whether ϕ is completely vague or false.

With suitable additions of the number of truth-values, this seems as plausible
a way to represent higher-order metaphysical vagueness as it is in modal logic to
represent higher order epistemological vagueness by the iteration of a modal operator
OOΦ. However: a version of the Argument can be made using any (finitely-) many
valued logic (with suitable emendations to the various principles). I don’t rehearse
the proof of that fact here; details can be found in [13].

I think the ability to represent higher-order vagueness (of any finite number of
iterations) shows that it is not that many-valued logics are incapable of giving some
sense to higher-order vagueness, but that the argument in [13] demonstrates that
there is some other, perhaps deeper, incoherency with Metaphysical Vagueness.
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Although the ploy of increasing the number of truth values shows that many-
valued logics are in fact capable of giving a plausible account of higher-order vague-
ness for any finite number of iterations, there remains still the issue just mentioned:
no matter how (finitely) many truth-values our ontological vagueness proponent
wishes to invoke as a way of handling higher-order vagueness for a finite number of
truth values, there is a generalization of the Argument that can be turned against it.
A question naturally arises then concerning the interaction of higher-order vague-
ness with the number of truth values. We’ve just seen that to have one iteration
of higher-order vague, we would increase the number of truth values from three to
five. If we had another iteration, and wanted all possible combinations to be repre-
sented, we would need many more. And if we thought it possible to have any level
of iterated higher-order vagueness, then the conclusion would be that we need an
infinite-valued logic to accommodate this. Infinite-valued logics come with their own
share of unusual characteristics, such as that a quantified formula can be assigned
true (JJi(∃xFx)K=1) even without there being any object a in the domain such
that JJi(Fa)K=1. I think that most vagueness-in-reality theorists either hold that
higher-order vagueness of any sort is impossible (as various authors have claimed,
even independently of whether they believed in metaphysical vagueness), or else that
it is bounded by some finite number of iterations. (It is not clear how this latter
possibility might be argued for by our ontological metaphysicians. Most arguments
to this conclusion come from the point of view of it being cognitively impossible to
have infinite iterations. . . and that’s not very relevant to the ontological conception
of vagueness.) Anyway, I’m not going to consider it further.

7 Returning to the argument
In [4], Cowles and White object to the statement of Leibniz’s Law in the form given
in [LL] above, namely
� a = b↔ (∀F )(Fa↔ Fb),

and prefer to see it as (what they call “Classical LL”):
Dt[a = b]↔Dt[∀F (Fa↔ Fb)].

They also deny the full force of the [EQ-rules]: They claim that just having
� ϕ↔ ψ

does not justify
� V [ϕ]↔ V [ψ],

nor
�Df [ϕ]↔Df [ψ].

As they show, their position has the effect of denying both:
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• V [a = b]↔ V [∀F (Fa↔ Fb)]

• Df [∀F (Fa↔ Fb)]→Df [a = b]

(although it does validate Df [a = b]→Df [∀F (Fa↔ Fb)]).
Just how plausible are these denials? Not very, it seems to me. Is it really

plausible to claim that when we have a logical truth that two formulas are equivalent,
we cannot conclude that one of them is vague just in case the other one is? Nor
that one of them is definitely false just in case the other one is? How plausible is it
to claim that even when it is definitely false that two objects share all properties, it
might yet not be definitely false that these are the same object?

On the other hand, I should admit that because of the plausibility of the [EQ-
rules], as well as the other rules, I had originally – when I wrote [13] – thought that
the Argument showed the complete implausibility of the conception of Metaphysical
Vagueness. However, I hadn’t internalized these facts (or maybe I hadn’t even
noticed them):

1. Although the proof given was framed as showing that a contradiction followed
from the assumption of V [a = b], it equally is a proof of

V [a = b]→ ¬V [(∀F (Fa↔ Fb)]
i.e., even if it is vague that a = b, it can’t be vague that they share all the
same properties.

2. And of course: Dt[a = b]→ ¬V [(∀F (Fa↔ Fb)]
i.e., if it is definitely true that a = b, then it isn’t vague that they share all
the same properties: intuitively, it is definitely true that they do share all the
same properties.

3. Furthermore, clearly: Df [a = b]→ ¬V [∀F (Fa↔ Fb)]
i.e., given that it is definitely false that a = b, it can’t be vague that they
share all the same properties: intuitively, it has to be definitely true that
they differ on at least one property.

But [USV] asserts that one of the three cases must hold, so we can conclude

� ¬V [∀F (Fa↔ Fb)].

That is, it is never the case that it is vague that two(?) objects have all properties
in common. (Or, that it is never vague that an object has all the properties it has).
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In conclusion

I used to think that the original argumentation showed:

• The conception of Metaphysical Vagueness is committed to representing its
doctrines with a many-valued logic.

• The conception was committed to various logical principles (listed above), as
a consequence of its metaphysics.

• Part of Metaphysical Vagueness was a commitment to the Evans/van Inwagen
criterion.

• The Argument showed that any many-valued logic which embodied those prin-
ciples led to a contradiction.

• And I concluded that Metaphysical Vagueness – Vagueness in Reality – was
an incoherent notion.

But given that the Argument proves � ¬V [∀F (Fa ↔ Fb)], (which by one of the
[EQ-rules] shows ¬V [a = b]), perhaps we should instead follow a different route:

• Continue to hold to the requirement of a many-valued logic with the specified
logical principles to describe the view, BUT

• Deny the background assumption given to us by Evans [5] and van Inwagen
[25,26] that Metaphysical Vagueness is committed to instances of V [a = b].

• And similarly deny the [25] version of Evans’ assumption to the effect that one
cannot count vague objects – because it is never true or false that such a
thing is one object and it is never true or false that it is two objects.

So, by this line of thought the Argument does not show Metaphysical Vagueness
to be incoherent, it shows instead that the Evans/van Inwagen criterion of meta-
physical vagueness is incorrect. So believers in Vagueness-in-Reality should turn
their attention to finding a different way of stating their basic metaphysical posi-
tion, and not allow their opponents to define the field for them. Since I am not an
advocate of metaphysical vagueness, I cannot therefore offer anything for them.

However, until they do that, Metaphysical Vagueness remains a “deeply dark
and dank conception” that one should avoid.
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Abstract

The note discusses some considerations which speak to the plausibility of
the axiom that all sets are countable. It then shows that there are contradictory
but nontrivial theories of ZF set theory plus this axiom.

In this note, I will make a few comments on a principle concerning sets which I will
call the Axiom of Countability. Like the Axiom of Choice, this comes in a weaker
and a stronger form (local and global). The weaker form is a principle which says
that every set is countable:

WAC ∀z∃f(f is a function with domain ω ∧ ∀x ∈ z∃n ∈ ω f(n) = x).

(The variables range over pure sets—including natural numbers. ω is the set of all
natural numbers.) The stronger form is that the totality of all sets is countable:

SAC ∃f(f is a function with domain ω ∧ ∀x∃n ∈ ω f(n) = x).

The stronger form implies the weaker. Any set, a, is a sub-totality of the totality of
all sets. Hence, if the latter is countable, so is a. So I focus mainly on this.

Let us start by thinking about the so called Skolem Paradox. Take an axioma-
tization of set theory, say first-order classical ZF. This proves that some sets, and a
fortiori the totality of all sets, are uncountable. Standard model theory assures us
that there are models of this theory (in which ‘∈’ really is the membership relation)
where the domain of the model is countable. There is a function which enumerates
the members of the domain. It is just one which has failed to get into the domain
of the interpretation. Why should we not suppose, then, that the universe of sets
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really is countable? From the perspective of the metatheory, ZF+ (ZF + ‘There
is a model of ZF’), the countable model is not the intended “interpretation”. Our
metatheory tells us that the domain of all sets is actually uncountable. But ZF+

itself has a countable model, so the situation is exactly the same with this. We
might suppose that the countable model of this tells us how things actually are.
True, in the metatheory we are now working in, ZF++ (ZF+ + ‘There is a model of
ZF+’), that model will appear not to be the intended model. But we can reply in
the exactly same way. Clearly, the situation repeats indefinitely. And at no stage
are we forced to conclude that the universe of sets is really uncountable. We will
always have a countable model at our disposal.

Indeed, it is not just the case that there is nothing that will force us to conclude
that the universe of sets is really uncountable. There are certain conceptions of
sethood which actually push us to that conclusion. Thus, suppose that one takes
the not implausible view that sets are simply the extensions of predicates (or some
predicates anyway).1 Then, given that the language is countable, so it the universe
of sets.

Now, imagine that the history of set theory had been slightly different. Suppose
that set theory had been investigated for a few years before Cantor, and that those
who investigated it took sets to be simply the extensions of predicates. Suppose also
that the theory had actually been formalised, say by some mathematician, Zedeff.
The (strong) Axiom of Countability, being an a priori truth about sets, was one of
the axioms. Things were bubbling along nicely, until Cantor came along and showed
that within the theory one could prove that some sets are uncountable. The theory
was inconsistent. In this history, Cantor was playing Russell to Zedeff’s Frege.
We can imagine that the community was dismayed by this paradox, and started
to try to amend the axiomatization in such a way as to avoid paradox. Perhaps,
indeed, the hierarchy ZF, ZF+, ZF++, ... emerged—rather as the hierarchy of Tarski
metalanguages emerged in our actual history.

In actual history, set theory was consistentized in response to Russell’s paradox
and related ones. However, as we now know, there is an alternative: maintain the
naive comprehension schema—that is, the schema ∃x∀y(y ∈ x↔ ψ), where ψ does
not contain y—allow the paradoxes, and deploy a paraconsistent logic, which quar-
antines the paradoxes. The same was an option in our hypothetical history; maintain
the Axiom of Countability, the paradoxes it generates, and deploy a paraconsistent
logic.

Now back to reality. Is there such a theory? There is. Using the paraconsistent
logic LP, we can show the existence of such a theory by applying a result called the

1See [2, ch. 10]. See also [1].
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Collapsing Lemma. Take a first-order language (without function symbols) for LP.2
Let M = 〈D, δ〉 be any interpretation for this. Let ∼ be any equivalence relation on
D.3 If d ∈ D, let [d] be its equivalence class under ∼. We define a new interpretation
(the collapsed interpretation), M∼ = 〈D∼, δ∼〉, as follows. D∼ = {[d] : d ∈ D}. For
any constant, c, δ∼(c) = [δ(c)]. For any n-place predicate, P , 〈a1, ..., an〉 is in the
extension of P in M∼ iff there are d1 ∈ a1, ..., dn ∈ an, such that 〈d1, ..., dn〉 is
in the extension of P in M . Similarly for the anti-extension of P. The collapse, in
effect, simply identifies all the members of an equivalence class, producing an object
with the properties of each of its members. The Collapsing Lemma tells us that any
sentence in the language of M (i.e., the language augmented with a name for each
member of D) which is true in M is true in M∼; and any sentence false in M is
false in M∼.4

To apply this: let the language be the language of first-order ZF (without set
abstracts). Take a (classical) interpretation of this, M , which is a model of ZF.
Let k be any countable set in D. (Here, and in what follows, I mean countable—or
uncountable—in the sense of M .) Consider the equivalence relation on D which
identifies all uncountable sets with k, and otherwise leaves everything alone. That
is, x ∼ y iff in M :

• x and y are uncountable

• or (x is uncountable and y is k)

• or (y is uncountable and x is k)

• or (x and y are both k)

• or (x and y are countable sets distinct from k, and x = y).

Now consider the collapsed model obtained with ∼. By the Collapsing Lemma, this
is a model of ZF. But in M∼ every set is countable. For every constant, c, that
denotes a countable set in M :

• ∃f(f is a function with domain ω ∧ ∀x ∈ c∃n ∈ ω f(n) = x)

is true in M , and so by the Collapsing Lemma, in M∼. Since every member of D∼

has such a name in M∼, we have the WAC in M∼:

• ∀z∃f(f is a function with domain ω ∧ ∀x ∈ z∃n ∈ ω f(n) = x).
2For a presentation of the semantics of LP, see [2, sec. 16.3].
3If the language were to contain function symbols, ∼ would also have to be a congruence on

their interpretations.
4For full details, including the proof, see [2, sec. 16.8].
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A slightly different equivalence relation delivers an interpretation which verifies
SAC. Let k now be the object which is Vω (the sets of rank ω) in M . Consider the
equivalence relation which identifies all things of rank greater than ω with Vω, and
leaves everything else alone. That is, x ∼ y iff in M :

• x, y ∈ Vω and x = y

• or x, y /∈ Vω.

Again, this is a model of ZF. k ∪ {k} is countable in M . Let i be the name of the
function that enumerates it, and let e be the name of any member of k ∪ {k}. Then
in M it is true that:

• i is a function with domain ω ∧ ∃n ∈ ω i(n) = e.

Hence this is true in M∼. But since every member of D∼ is named by some e of
this kind, we have in M∼:

• i is a function with domain ω ∧ ∀x∃n ∈ ω i(n) = x.

Hence we have the SAC in M∼:

• ∃f(f is a function with domain ω ∧ ∀x∃n ∈ ω f(n) = x.

For good measure,M∼ is also a model of the naive comprehension schema, ∃z∀x(x ∈
z ≡ A), too.5 If sets just are the extensions of predicates, one would expect this
schema to hold. I note also that both of the models we have constructed are non-
trivial. Thus, if c and d refer to two distinct objects in D that are not involved in
the collapse, c = d is not true in the collapsed model.

What we see, then, is that there are (non-trivial) theories that contain the (strong
or weak) Axiom of Countability, plus ZF (plus, in one case, the naive comprehension
schema). If T is the set of things true in either of the collapsed models we have
constructed, T is one such theory. Within such a theory, every set is countable;
but, because of Cantor’s Theorem, some sets are uncountable as well. It is Cantor’s
Theorem that generates the hierarchy of different sizes of infinity. And as seen from
the perspective of one of these theories, the Theorem is recognizably paradoxical.
The whole hierarchy of infinities is therefore a consequence of the paradox. The
transfinite, then, is generated by the transconsistent.6

In a nutshell: the Axiom of Countability makes perfectly good paraconsistent
sense, even within the context of ZF. And it provides a radically new possible per-
spective on the universe of sets.

5For details see [2, sec. 18.4].
6It was Zach Weber who first suggested to me that one might see the transfinite in this way.

See [3, sec. 8].
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Abstract
In a sheaf-theoretic framework, we describe the process of interpretation

of a text written in some unspecified natural language, say in English. We
consider only texts written for human understanding, those we call admissible.
A meaning of a part of a text is accepted as the communicative content grasped
in a reading process following the reader’s interpretive initiative formalized by
the term sense. For the meaningfulness correlative with an idealized reader’s
linguistic competence, the set of all meaningful parts of an admissible text is
stable under arbitrary unions and finite intersections, and hence it defines a
topology that we call phonocentric. We interpret syntactic notions in terms of
topology and order; it is a kind of topological formal syntax. The connectedness
and the T0-separability of such a phonocentric topology are linguistic univer-
sals. According to a particular sense of reading, we assign to each meaningful
fragment of a given text the set of all its meanings those may be grasped in all
possible readings in this sense. This way, to any sense of reading, we assign
a sheaf of fragmentary meanings. All such sheaves constitute a category, in
terms of which we develop a sheaf-theoretic formal semantics. It allows us to
generalize Frege’s compositionality and contextuality principles related with
the Frege duality between the category of all sheaves of fragmentary meanings
and the category of all bundles of contextual meanings. The acceptance
of one of these principles implies the acceptance of the other. This Frege
duality gives rise to a representation of fragmentary meanings by continuous
functions. Finally, we develop a kind of dynamic semantics that describes how
the interpretation proceeds as a stepwise extension of a meaning representa-
tion function from the initial meaningful fragment to the whole interpreted text.

Keywords: Sense, Meaning, Phonocentric Topology, Linguistic Universals,
Sheaf of Fragmentary Meanings, Compositionality Principle, Contextuality Principle,
Bundle of Contextual Meanings, Frege Duality, Dynamic Semantics.
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1 Introduction and informal outline

In this work, we apply rigorous mathematical methods in studying the process in
which the understanding of a written text or an uttered discourse is reached. Our
aim is to present a formal model for the understanding of a text or a discourse in a
natural language communication process.

Any natural language serves as a means of communication between members of
a community that shares this language. The life of a human society, primitive or
developed, ancient or contemporary would be impossible without linguistic commu-
nication. When we communicate with each other, we are involved in the activity of
exchange with two complementary sides, that is, the production and the understand-
ing of language messages in oral or in written form. Any linguistic communication
presupposes the emitting activity that produces a message and the receiving activ-
ity that produces an understanding. The message is an externalization of thoughts
either by utterance or by writing. As a linguistic message unit, a single stand-alone
sentence (or phrase) does not suffice to express the variety of thoughts and ideas that
people need to communicate. The minimal exchange units that serve as messages in
linguistic communications are written texts and uttered discourses. Linguistics is a
discipline that studies the use of a language; for empirical objects, it has, therefore,
texts and discourses as the units of human interaction, and not stand-alone words or
phrases favoured by traditional grammars and the logic in the wake of Aristotelian
tradition primarily concerned with questions of reference and truth.

The main parts of traditional grammars are syntax and semantics. A traditional
syntax is a study of sentence structures in a given language, specifically in terms of
word order. A semantics, of whatever kind, is the study of relationships between the
linguistic expressions and their meanings. Traditional approaches are very restrictive
or even inadequate to extend grammatical concepts and theories to the level of text
or discourse in order to describe linguistic communication in all its forms.

The present work proposes a mathematical framework that generalizes syntax
and semantics of a natural language from the traditional level of a stand-alone
sentence or phrase to the level of written or spoken discourse. We propose a kind
of a discourse analysis that describes the process of a natural language message
interpretation in a uniform manner at all semantic levels.

The paper is organized as follows:
• In the next Sect. 2, we discuss in details our acceptance of basic semantic notions
meaning, sense, and reference. We study the interpretation of a text in a certain
unspecified natural language, say in English, considered as a means of linguistic
communication (mostly in written form). We consider the class of minimal commu-
nicative units of a language as made up of texts, and thus it is broader than the class
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of all stand-alone sentences studied in traditional logical and grammatical theories.
From the set-theoretic point of view, any text is a sequence of its constituent

sentences.1 But from the theoretic point of view on linguistic communication, do we
need to define somehow what is a genuine text? It seems useless to set some formal
criteria of textuality those, likewise to formal criteria of grammaticality, would decide
that a given sequence of sentences is a well-formed text. Although some particular
sequence of words or sentences does not appear to be well-formed, nobody can
guarantee the contrary for the future, because a natural language is always open
for changes. However, the ethics of linguistic communication presupposes that a
genuine text is written by its author(s) as a message intended to be understood by
a reader. That is why, instead of adopting any criterion of textuality, we restrict
the domain of our study to texts that we assume to be written ‘with good grace’ as
messages intended for human understanding; those we call admissible. All sequences
of words written in order to imitate some human writings are cast aside as irrelevant
to the linguistic communication.

A meaning of a part of text is accepted as the communicative content grasped
in a particular reading of this part following the idealized reader’s attitude, presup-
position and intention put together in the term sense. We adopt this acceptance
of terms ‘sense’ and ‘meaning’ because it is close to the ordinary usage of these
words in everyday English. The advantage of such a choice of terminology is that
we can use words ‘sense’ and ‘meaning’ sometimes as linguistic terms, sometimes
as ordinary words without specifying each time their mode of use. Otherwise, we
were to accept in the use their definitions that we reject in the theory. Thus, we
may ask, e.g., “What does this word (or expression, sentence, text) mean in the lit-
eral (or metaphorical, allegorical, moral, Platonic, Fregean, narrow, wide, common,
etc.) sense?” So, our acceptance of terms sense and meaning differs from Sinn and
Bedeutung of Frege’s famous paper of 1892. We discuss the difference further.
• In Sect. 3, we discuss topology and order structures underlying an admissible
text considered as a means of communication. The linguistic communication may
be adequately modelled by a formalism that takes as its object of study texts and
discourses in their production and interpretation.

Whatever the human language is, the speaker produces an utterance when
putting words one after another in an acoustic string. The listener is forced to
interpret such a chain of sounds without the possibility of suspending its course
with the purpose to return or to make a leap forward. Everyone knows this prop-

1It is clear that any such a sequence is made up of so-called ‘sentence-tokens’, not of so-called
‘sentence-types’. Likewise, a sentence is a sequence of word-tokens, and a word is a sequence of
morpheme-tokens. Nevertheless, in speaking further about a sequence of certain language units, we
shall sometimes omit the word ‘token’, in order to not overload the terminology.
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erty empirically, owing to personal experience of speaker and listener; it should
undoubtedly be taken into account by everyone who writes a text intended for a
human understanding. We argue that such a fundamental feature of linguistic be-
haviour enables us to endow an admissible text X with the structure of a finite T0
topological space where the set of opens O(X) is the set of all meaningful parts of
a given text X. We call phonocentric such a topology defined on the text X.

It is well known that the category FinTOP0 of finite T0 topological spaces with
continuous maps is isomorphic to the category FinORD of finite partial ordered
sets (posets, for short) with order preserving maps.2 We consider two functors L
and Q establishing such an isomorphism between these categories. It allows us
to define on an admissible text topological and order structures, both of deep and
surface kinds. The writing process consists in endowing the text with the surface
structure of so-called linear ‘word order’ (and corresponding topology). The process
of interpretation consists in a backward recovering of the deep structure of the
specialization order (and corresponding phonocentric topology) on the text.

Thereafter, we define a phonocentric topology in a similar manner at each seman-
tic level of an admissible text. The mathematical interpretation of different linguistic
notions in terms of topology and order is a kind of topological formal syntax.
• In Sect. 4, we elaborate in mathematical details the aforesaid topological formal
syntax. We argue that the T0-separability and the connectedness of a phonocentric
topology are two linguistic universals of a topological nature.
• In Sect. 5, we study the process of understanding of an admissible text considered
as a means of communication. To understand a text or a compound expression
is to grasp what it means, i.e., what communicative content it conveys. Thus,
the understanding of a text during its reading is a dynamic process that develops
gradually as the reading progresses over the time.

On the other hand, a speaker (a writer) uses words as a preexisting means to
express thoughts, and one combines them to convey thoughts one wants to commu-
nicate. So the meaning of a compound expression is determined by the meanings of
its (meaningful) constituents, as well as the meaning of the whole text is determined
by the meanings of its (meaningful) parts.

In the traditional hermeneutics, the relationship between the understanding of
(meaningful) parts and the understanding of the whole text was conceived as a
fundamental principle of text interpretation called the hermeneutic circle. As its
counterpart in linguistic theories, there is a need for some principles those describe
how the passage from the meanings of parts to the meaning of the whole and the
passage in the reverse direction are proceeding. In logic, linguistics and philosophy of

2See, for instance, [8, 23].
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language, there exist such two complementary principles both traditionally ascribed
to Frege, namely the compositionality principle and the contextuality principle, those
manifest itself in different terms following a particular theoretical framework.

According to J. F. Pelletier [26, p. 89], R. Carnap was the first to attribute the
compositionality principle explicitly to Frege in Meaning and Necessity [3], where
he stated this principle in terms of a functional dependence. The majority of re-
searchers followed him when formulating their definitions of Frege’s compositionality
principle in the mathematical paradigm of a function. To illustrate this, we cite a
few definitions:

[ . . . ] the meaning (semantical interpretation) of a complex expression is
a function of the meanings (semantical interpretations) of its constituent
expressions. (J. Hintikka [14, p. 31])

Like Frege, we seek to do this [ . . . ] in such a way that [ . . . ] the assignment
to a compound will be a function of the entities assigned to its components.
(R. Montague [24, p. 217])

[ . . . ] The meaning of a whole is a function of the meanings of the parts.
(B. H. Partee [25, p. 313])

In many similar definitions, the meaning of a compound expression is set to be a
function of the meanings of its parts, whereas what the meanings are differs substan-
tially. Also, these definitions remain reticent about the explicit form of a function
concerned. In sharpening her definition, B. H. Partee notices that “the Principle of
Compositionality requires a notion of partwhole structure that is based on syntactic
structure”, and then she modifies the latter definition to the following one:

The meaning of a whole is a function of the meanings of the parts and of the
way they are syntactically combined. (B. H. Partee [25, p. 313])

Nevertheless, the modified definition of the compositionality principle remains im-
plicit with regard to the function it refers to. In fact, the pages subsequent to
definitions of compositionality principle in [25, p. 313] are devoted to the discussion
of how one may explicitly define the input values (arguments) of such a function,
and describe how this function acts on its arguments, and what it returns as output
values. On this way, B. H. Partee leads the reader to the formal definitions given in
the Montague’s seminal paper [24].

To sum up our discussion, we have to note that in agreement with the tradition
going back to Carnap, almost all generally accepted definitions of the composi-
tionality principle convey the mathematical concept of a function in a set-theoretic
paradigm.
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In the contemporary mathematics, there are different formalizations of the con-
cept of a function and functional dependence. In a prevailing set-theoretic paradigm,
a function (map, mapping) is identified with its graph. Formally, a function
f : X → Y is a set of ordered pairs f ⊆ X × Y (a graph) that satisfies the fol-
lowing two Claims:

1◦ For every argument’s value x ∈ X, there exists a function’s value y ∈ Y such
that 〈x, y〉 ∈ f ;

2◦ This function’s value y is unique as such, that is, whenever 〈x, y〉 and 〈x, z〉
are members of f , then y = z. Thus, all functions are single-valued.

Intuitively, for an ordered pair 〈x, y〉 ∈ f , a function f is a ‘rule’ that assigns the
element y to the element x. This y is the value of f for the argument x, that is
denoted usually as y = f(x).

What is a function in the set-theoretic paradigm is understood in an unambigu-
ous manner by all the scientific community, and the rigorous definition of a function
is therefore imposed on any attempt to clarify a vague notion that bears in germ the
idea of functional dependence. This is also true for the notion of compositionality
in natural language semantics. Any attempt to define explicitly the principle of
compositionality as a function f : X → Y in the set-theoretic paradigm meets with
serious technical problems to explain what are these sets X, Y , and how is defined
the functional graph f ⊆ X × Y . This is a difficult task and even a trap for any
attempt to translate literally the set-theoretic notion of a function into the linguistic
notion of a compositionality.

The aim of an adequate semantic theory is to conceptualize how the understand-
ings of parts are integrated during the process of reading to produce the understand-
ing of the whole. However, any semantic theory that combines the compositionality
defined as the functionality (meant in the ‘function as graph’ paradigm) with the
non-postponed understanding (meant as a dynamic process that develops step by
step while the reading progresses over the time) should be obviously inconsistent.

There are two main directions in which the solution of this apparent conflict
might be sought:

◦ either one conserves the compositionality meant as a set-theoretic functionality
but refuses to take into account the process of text understanding over the time,
and then establishes a kind of static semantics;

◦ or otherwise, one renounces of compositionality meant as a set-theoretic func-
tionality, or somehow redefines it, and then studies the process of text under-
standing over the time, in order to establish a kind of dynamic semantics.
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If the semantic compositionality is taken to be the functionality in a set-theoretic
paradigm, then it imposes the almost indubitable conclusion that Frege had never
explicitly stated (in this way) the principle of semantic compositionality generally
ascribed to him, whatever it were, the compositionality of Sinn or the composition-
ality of Bedeutung. In several papers, T. M. V. Janssen had carefully analyzed the
development of Frege’s views on such a semantic compositionality during his long
scientific career, and then concluded, as a result, that Frege “would always be against
compositionality” [15, p. 19]. Another point of view is expressed by F. J. Pelletier
who writes in a solid historical research that “Frege may have believed the principle
of semantic compositionality, although there is no straightforward evidence for it and
in any case it does not play any central role in any writing of his [ . . . ].” [26, p. 111].

However, another theoretical view on the part-whole text structure without prej-
udice to define the compositionality as a kind of the set-theoretic functionality allows
us to interpret Frege’s views on the subject in a different way. We notice that in the
unpublished work Logic in Mathematics of 1914, Frege writes:

As a sentence is generally a complex sign, so the thought expressed by it is
complex too: in fact it is put together in such a way that parts of the thought
correspond to parts of the sentence. So as a general rule when a group of
signs occurs in a sentence it will have a sense which is part of the thought
expressed. (G. Frege [10, pp. 207–208])

In this translation, the expression ‘will have a sense’ concerning a group of signs
should really mean ‘will be understandable’. In fact, it is an implicit expression of
the hermeneutic circle principle in the particular case of a stand-alone sentence. In a
general case, this principle prescribes ‘to understand a part in accordance with
the understanding of the whole’. It means that Frege believed the hermeneutic
circle principle at the semantic level of a stand-alone sentence. As a logician, Frege
was interested primarily in a particular case of sentences, that is, in judgements. It
does not really matter whether Frege was familiar with the philological discipline
of hermeneutics or not. The principle of hermeneutic circle reveals one of key cog-
nitive operations involved in a natural language text (or discourse) understanding
process, and so it is implicitly known by any competent language user. We argue
that the hermeneutic circle principle carries in germ the mathematical concept of a
sheaf, which expresses a passage from a local data to the global one, and which is
very close to the idea of a functional dependence. From the sheaf-theoretic point of
view, one can revise the aforesaid Frege’s quotation like this: ‘a family of compatible
understandings of parts of the sentence are composable into the understanding of
the whole sentence’. However, Frege considered words as being elementary units of a
sentence, and he believed in the contextuality principle, bearing today his name, in
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accordance with which words have no meanings in isolation, “but only in the context
of a sentence” [9]. We hypothesize that the reluctance to be got involved into the
confusion between elements and parts of a whole (between “words [ . . . ] in isolation”
and “parts of the sentence” in his formulations) prevented Frege from stating ex-
plicitly what would be called the compositionality principle. Surely, a meaningful
sentence has some meaningful parts, the meanings of which are constitutive to the
meaning of this sentence as a whole; but not every of word-tokens may be found
among such meaningful parts. This is a kind of the type difference between an
element and a subset of a given set.

For an adopted sense F of reading of a given text X, to each non-empty open
(that is to say, meaningful) part U ⊆ X we assign the set F (U) of all its meanings
that may be grasped in all its possible readings in this sense. In fact, it assigns
naturally a presheaf F of fragmentary meanings to the adopted sense of reading.
In the beginning of Sect. 5, we argue that such a presheaf F should satisfy to both
Claims S and C needed for a presheaf to be a sheaf. Thus, the presheaf F (U) of
fragmentary meanings attached to a sense (mode of reading) of an admissible text
is really a sheaf. This statement is our generalization of Frege’s compositionality
principle in the sheaf-theoretic framework. The issuing sheaf-theoretic formal se-
mantics takes its departure from another formalization of a functional dependence
that is based on the mathematical concept of a sheaf. We use this revised concept
of functional dependence in order to define explicitly what is, or rather what should
be the compositionality of fragmentary meanings. In this generalized concept of
functionality, the arguments and their numbers are not given in advance (one takes
for arguments any family of locally compatible sheaf sections); but due to the Claim
C, for every such a family of arguments, there exists the global sheaf section that is
their composition; and due to the Claim S, this composition is unique as such. In
the Subsect. 5.1 we show that these Claims C and S are analogous to those Claims
1◦ and 2◦ in the aforesaid formal definition of a function in a set-theoretic paradigm.
• So far, we have considered only the meanings of open sets in the phonocentric
topology that we have defined in Sect. 3 at any semantic level. Then, in Sect. 6, we
describe how we have to define the meanings of points in the phonocentric topology
at any semantic level. For this goal, we recast a famous Frege’s contextuality prin-
ciple in order to define the set of contextual meanings of any point x that belongs
to the phonocentric topological space X of some semantic level, whatever this point
x may be, a word, a sentence, a paragraph, etc., when considered as an element of
a syntactic entity of the higher type. For any semantic level, it is the distinction
between the notion of a contextual meaning of a primitive element (a point) at this
level and the notion of a fragmentary meaning of a part (a subset) of the whole at
this level, that is, of the whole space endowed with a phonocentric topology. The
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contextual meaning of a point x is defined to be the inductive limit of fragmen-
tary meanings s of different open neighbourhoods U 3 x those are got identified
on some smaller common open neighbourhood of x. Finally, we generalize Frege’s
contextuality principle in the categorical terms of bundles of contextual meanings.
• In Sect. 7, we show that these generalized Frege’s compositionality and contex-
tuality principles are related by a duality that we formulate in terms of category
theory, and that we name after Frege. This sheaf-theoretic duality sheds new light
on the delicate relation between Frege’s compositionality and contextuality prin-
ciples, in revealing that the acceptance of one of them implies the acceptance of
the other. It resolves Frege’s embarrassing situation with the reconciliation of two
principles those bear now his name. As two sides of the same coin, Frege’s compo-
sitionality and contextuality principles express indeed two complementary parts of
the hermeneutic circle principle. That is why they always come together in philos-
ophy, linguistics, and logic. Grosso modo, the compositionality principle prescribes
to understand a meaningful whole by means of understanding of its meaningful
parts, whereas the contextuality principle prescribes to understand the meaning of
an entity in accordance with the understanding of its meaningful neighbourhoods.
• Once explicitly stated, Frege duality gives rise to a functional representation
of fragmentary meanings. In Sect. 8, this functional representation enables us to
develop a kind of compositional dynamic semantics that describes how the interpre-
tation proceeds over the time as the step-by-step extension of a meaning represen-
tation function, from the initial meaningful fragment to the whole interpreted text.
Defined in the proposed sheaf-theoretic framework, such a dynamic semantics con-
ceptualizes the compositionality in a uniform manner at each semantic level: word,
clause, sentence, paragraph, section, chapter, text as a whole. Moreover, it treats the
polysemy in a realistic manner as one of the essential features of a natural language.
This sheaf-theoretic dynamic semantics provides the mathematical model of a text
interpretation process, while rejecting attempts to codify interpretative practice as
a kind of calculus. We call such a mathematical model of a natural language text
interpretation process as formal hermeneutics (see, e.g., [29, 31,32]).
• Then, in Sect. 9, we compare the compositional dynamic semantics proposed in
our sheaf-theoretic framework with several algebraic compositional semantics. We
notice that an algebraic semantic, of whatever kind, is always static because the
meaning of the whole sentence is calculated just after the calculation of meanings of
all its syntactic components was done. Algebraic semantic theories are appropriate
to study the synonymy, but their irremovable drawback is the inability to describe
the polysemy. Any kind of formal grammar that formalizes the compositionality as
the functionality in a set-theoretic paradigm shares this fallacy with an algebraic
semantics described by T. M. V. Janssen in [15] as “a homomorphism from syntax
to semantics”.
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By contrast, the proposed mathematical framework formalizes the compositional-
ity of fragmentary meanings in a sheaf-theoretic paradigm of functional dependence.
In this formal framework, the dynamic semantics describes how the interpretation is
incrementally built up as a meaning representation function stepwise extension from
the initial meaningful fragment to the whole text. Moreover, in this approach the
process of a natural language text interpretation is modelled in a similar manner at
all semantic levels.
• The present article culminates in the final Sect. 10 devoted to the statement of a
sheaf-theoretic formal hermeneutics that describes a natural language in the category
of textual spaces Logos. Appeared as syntax and semantics of a natural language,
phonocentric topologies and sheaves of fragmentary meanings constitute together
an adequate mathematical framework to formalize different linguistic phenomena
in our works, such as linguistic universals of geometric nature in [29], as dynamic
semantics in [34], as interpretations of one text by the others, as text summarization
and abstracting, as well as many other aspects of intertextuality in [31].

2 Basic semantic concepts

Concerning the linguistic terminology to be used in this work, we have certain diffi-
culties because the sciences of language do not have a unified terminology. According
to F. Rastier [37], two traditions seem dominant in the sciences of language: (1) the
grammatical tradition centered on the issue of the sign, that confines itself to the
word and the sentence; (2) the rhetoric and hermeneutic tradition centered on the
communication, that privileges the text and the discourse. Based on different con-
ceptions, these two traditions differ in problematic and in terminology. When using
the definition of a technical term proper to one doctrine, we have to privilege this
doctrine compared with others, that would not be our goal. The aim of our work is
to discern the mathematical structures underlying the process of reading, with the
purpose to design a semantic theory that formalizes a natural language understand-
ing process in a uniform manner at all semantic levels (word, sentence, text). We
are therefore obliged to accept a terminology based on distinctions that are valid at
all semantic levels of an admissible text. In this perspective, we have to study only
those spoken or written language segments that are admissible as units of linguistic
communication. Therefore, we keep to the hermeneutic tradition in the analysis of
a text understanding process. We recognize that there are different scientific trends
in discourse analysis; that is why we have to clarify basic semantic terms we use in
the present paper. The technical acceptance of terms meaning, sense, and reference
as these are used in the present paper may be explained as follows:
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Meaning. The term fragmentary meaning of some fragment of a given text X is
accepted as the communicative content grasped in some particular situation of read-
ing. In this terminological acceptance, a fragmentary meaning is immanent not in
a given fragment of a text, but in the interpretative process of its reading based on
the linguistic competence, which is rooted in the social practice of communication
with others through the medium of a language. Any reading is really an interpre-
tative process where the historicity of the reader and the historicity of the text are
involved. The understanding of meaning is based not only on the shared language
but also on the shared experience as a common life-world, and it deals so with the
reality. According to Gadamer, this being-with-each-other is a general building prin-
ciple both in life and in language. The understanding of a natural language text
results from being together in a common world. This understanding as a presumed
agreement on ‘what this fragment U ⊆ X wants to say’ becomes for the reader its
fragmentary meaning s. In this acceptance, the meaning of an expression is the
communicative content that a competent reader grasps when s/he understands it;
and such an understanding can be reached regardless of the ontological status of
its reference. The process of coming to some fragmentary meaning s of a fragment
U ⊆ X demonstrates a human communicative ability in action. When we qualify
some fragment as being meaningful, we state that an idealized competent reader can
understand a communicative content that this fragment conveys; the understanding
manifests itself as the ability of the reader to express at once this content in other
words or in another language (e.g., if the reader is bilingual).

The fact of having such an understanding may be labelled with a certain abstract
entity s called fragmentary meaning of U . When someone acknowledges the fact
that a meaning of U has been understood, this situation may be described by saying
that ‘this fragment U has the fragmentary meaning s’; it presumes implicitly that
the understanding of the meaning s of the fragment U is arrived at through some
linguistic communication, direct or mediated. This meaning may be shared in a
dialogue with another native speaker, and such a possibility describes the ontological
status of the meaning s as being some abstract entity subtracted from the linguistic
communication. This situation may be summed up by an external observer as ‘the
understanding of the fragmentary meaning s of a fragment U ’, where the ‘meaning’
may be perceived as a linguistic term in our technical acceptance, and also as an
ordinary word of English language. So, our use of the term fragmentary meaning
corresponds well to the common English usage.

We have noticed above that for any admissible text X, one should distinguish a
fragmentary meaning of a meaningful part U ⊆ X and a contextual meaning of an
element (point) x ∈ X. It expresses the fact that clauses are parts of a sentence, but
idioms and words are its indivisible elements. A fragmentary meaning s is assigned
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to the part U ⊆ X, and this s conveys some part of the communicative content of
the whole X in a concrete situation of linguistic communication. This part U is
a sequence of primitive elements (tokens) x those have contextual meanings in the
context of U .

In the situation of linguistic communication, a unit that is proper to convey
a communicative content may be some text or its fragment, some sentence or its
clause, some elliptic expression, and yet a word or an exclamation in certain cases of
communication. Thus, a meaning is related to the communicative content, regardless
of its possible truth value, whatever it may be: true, false or indefinite.

However, the linguistic communication, either spoken or written, consists of the
use of words in a conventional way. It is quite difficult to trace the history of
how a single word enters the lexicon (vocabulary) of a language. Taken beyond
the situation of linguistic communication, a single word is not a discourse nor a
part of it, and this word says nothing to nobody. But this word had entered the
lexicon in the process of repeated participation in a variety of situations of linguistic
communication, with the result that native speakers of the language have a clear
idea of the situations in which the use of a particular word is appropriate, and
what it then means. These so-called literal meanings of words are recorded in the
dictionaries and thesauruses. Generally, by means of examples, these dictionaries
allow us to understand what meaning is associated with the use of each word in
several standard situations of its use. In this way, dictionaries define the abstract
objects those are called the literal meanings of words. Such definitions carry the
entire history of the language and the experience of the numerous uses of the words
in the specific situations of communication. The dictionaries thereby demonstrate
that the relationship of each word with the set of its possible meanings in specific
contexts had gained a normative value. This usage is normative for native speakers of
a particular linguistic community, in a particular historic period. These descriptions
are aimed to help for a competent reader to adjust better the orientation of his/her
efforts to grasp a meaning. In this terminological acceptance, a word, a fragment, a
text has a specific meaning only in the situation of linguistic communication, direct
or mediated.

However, when using a particular expression in a particular situation of linguistic
communication, each interlocutor establishes his/her own connection between this
expression and its meaning, which is a mental concept (signified), grasped by means
of this expression used in this particular situation of communication. This meaning
is the mental concept concerning either some physical objects of the world, or some
ideas, or some fictional entity, but this meaning is not itself a referred object in
the world (in contrast to Frege’s Bedeutung). As the mental concept, this meaning
is apprehended as a being of intersubjective nature because it may be shared with
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native speakers of the same linguistic community. We equate the ‘meaning’ with the
‘communicative content’ because a message (in spoken or written form) is intended
by its author as a carrier of a certain communicative content to be grasped by the
addressee, that is, as a carrier of a certain meaning to be understood.

Let us take for example the word ‘wolf’. A hunter, a scientist zoologist, an adult
urban dweller who have never seen of living wolves, or a child who is familiar with
them only by fairy tales, they all have different concepts conceived in connection
with the word ‘wolf’. The ostensive definition of the meaning of this word by pointing
out wolves in a zoo, and its definition by dictionaries as a ‘wild, flesh-eating animal
of the dog family’ are conveying different concepts. It implies certainly that an
adequate semantic theory should take into account that a lexicon of a competent
reader counts not only one but several literal meanings of the word ‘wolf’. Every
competent native speaker knows also about the use of this word in one of figurative
senses, for example, in the moral sense of the proverb: “Who lives with the wolves
should howl like a wolf”.

It is, therefore, the intention of the reader that controls the choice of meanings
during the reading. Which of possible meanings of a particular expression is grasped
by the reader depends on the specific situation of reading guided by the reader’s
intention in the interpretative process, presuppositions and preferences, that we
denominate by the term sense (or mode of reading).

Sense. In our acceptance, the term sense (or mode of reading) denotes a kind of
semantic orientation in the interpretative process that relates to the whole text or
its meaningful fragment, to some sentence or its syntagma, and involves the reader’s
subjective premises that what is to be understood constitutes a meaningful whole.
Concerning a word-token of a phrase, one may ask a question “What does this word
mean here in a literal sense?”, and as we have argued above, an answer consists
of the choice of only one meaning from the set of many possible ones. Likewise
for a question, “What could it mean in a metaphoric sense?”, as for many similar
questions in a reading process. In such an acceptance, the term ‘sense’ is correlative
to the intentionality of our interpretative efforts; that is, a sense is not immanent
to the text we read, but in some way, it may even precede the reading process. For
example, one may intend to read a fable in the moral sense yet in advance of its
reading. But when the reading unfolds in time, one still controls own intentions
following the current reading situation. These examples illustrate the acceptance of
the term ‘sense’ as the reader’s interpretative intention, and the acceptance of the
term ‘meaning’ as the content actualized during the process of communication.

To some extent, our acceptance of the term ‘sense’ is close to the exegetic con-
ception of four senses of the Holy Scripture. The traditional presentation of this
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conception of biblical hermeneutics is summarized by the famous distich of Augus-
tine of Dacia: “Littera gesta docet, quid credas allegoria, moralis quid agas, quo
tendas anagogia.”3

According to the biblical hermeneutics, the readings of the Scripture in literal,
allegorical, moral, and anagogical senses are coherent in each of its parts. Suppose
we read the whole text of the Scripture by fragments, where each fragment was
read in one of four senses: literal, allegorical, moral, or anagogical, but the choice
of sense was not the same for all fragments. The composition of these four senses is
a method of interpretation that gives rise to a large number of senses of the whole
text. Indeed, the overall sense F , as the integral intention in the reading process,
is the result of all local intentions taken during these partial readings.

But what guides the subsequent choice of local intentions of an empirical reader?
Following Fathers of Church, it is the presence of the Holy Spirit that guides the
soul of the individual believer who reads the text of the Scripture. But for a secular
text, how can we characterize in linguistic terms the possibility to join these partial
senses? It is the presumed sincerity and a goodwill on the part of the author, whom
we suppose to be of sound mind and perfect memory, while writing this text intended
to communicate something to an alleged reader.

However, the local intentions those were taken in the writing process were got
integrated into an overall intention of an empirical author; so, these partial writings
are consistent to satisfy a certain gluing condition of the type that we discuss further
in Sect. 5.4. Since the empirical author is almost always inaccessible for a dialogue,
how can we understand what does the text mean by virtue of its textual coherence
denoted by U. Eco as the intentio operis? According to U. Eco [7, p. 65], “it is
possible to speak of the text’s intention only as the result of a conjecture on the part
of the reader. The initiative of the reader basically consists in making a conjecture
about the text’s intention.” He asks further, “How to prove a conjecture about the
intentio operis?”, and he responds: “The only way is to check it upon the text as a
coherent whole.” He continues then that this idea comes from De doctrina Christiana
of St. Augustine:

[ . . . ] any interpretation given of a certain portion of a text can be accepted if
it is confirmed by, and must be rejected if it is challenged by, another portion
of the same text. [7, p. 65]

According to St. Augustine, the presumed textual coherence controls the partial
interpretations that are made by an empirical reader. Therefore, in the process of

3Augustine of Dacia, Rotulus pugillaris, I: ed. A. Walz: Angelicum 6 (1929) p. 256. The distich
is translated in English as: “The letter tells us what went down, the allegory what faith is sound,
the moral how to act well – the anagogy where our course is bound.”
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reading, all these local intentions to understand a text have also to verify the gluing
condition of the type that we discuss further in the Sect. 5.4.

In the process of actual communication, a mere consistency of the local interpre-
tations would be insufficient. The inference on the speaker’s intention is essential
here for the understanding; the contact of interlocutors allows them to get into the
coordination between the intention of the sender and the intention of the recipient.

With regard to a text produced not for a single recipient, but for a community of
readers, the strategy of a model author is to lead his model reader to speculate about
the text. Among these leading indexes, the central place is held by the semantic
isotopy that A. J. Greimas defines as “a complex of plural semantic categories which
makes possible the uniform reading of a story.” [12, p. 188]. Concerning the notion
of isotopy, U. Eco notices in [6, pp. 189–190] that “The category would then have
the function of textual or transsentential disambiguation, but on various occasions
Greimas furnishes examples dealing with sentences and outright noun phrases.”

Following B. Pottier, the seme does not exist in isolation but as a part of a
sememe, or as the set of coexisting semes.

Le sémème, l’être de langue (en compétence), s’actualise dans le discours [ . . .] .
Le sémème donne le sens (l’orientation sémantique), et la mise en discours le
transforme en signification.4 [27, pp. 66, 67]

From this definition, we retain the acceptance of the term sense as the seman-
tic orientation of the reader’s intentions provoked by a sememe, and the fact that
a meaning is actualized in the discourse. The reader’s conjecture on the subject
discussed in a text determines the first interpretive intention that will be clarified
in the course of the reading when the recognition of a semantic isotopy becomes
possible owing to the context that is more and more revealed. Following U. Eco,

The first movement toward the recognition of a semantic isotopy is a conjecture
about the topic of a given discourse: once this conjecture has been attempted,
the recognition of a possible constant semantic isotopy is the textual proof of
the ‘aboutness’ of the discourse in question. [7, p. 63]

In Two Problems in Textual Interpretation published in 1980, U. Eco describes
the interpretative process as based on the reader’s interpretive cooperation:

Between the theory that the interpretation is wholly determined by the au-
thor’s intention and the theory that it is wholly determined by the will of the

4Our translation of this quotation is: “The sememe, the entity of language (in competence), is
actualized in the discourse [ . . . ] . The sememe gives the sense (the semantic orientation), and the
putting into discourse transforms it into meaning.”
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interpreter there is undoubtedly a third way. Interpretive cooperation is an
act in the course of which the reader of a text, through successive abductive
inferences, proposes topics, ways of reading, and hypotheses of coherence, on
the basis of suitable encyclopedic competence; but this interpretive initiative of
his is, in a way, determined by the nature of the text. [2, pp. 43–44]

But later in 1992, in the analysis of so-called superinterpretation, U. Eco raises
again the problem of a reader’s conjectures about the empirical author’s intention
during the reading. His updated conception of the interpretation of texts “makes
the notion of the intention of an empirical author radically unnecessary” [7, p. 60].
He defends this thesis with the support of his own experience as a writer who has
discussed with his readers a few different interpretations of his novels.

To summarize now our acceptance of the term sense (or mode of reading), we
have to say that it is close to the latter acceptance described by U. Eco. The term
sense concerns the reader’s initiative in the interpretation of the text; it is wholly
determined by the reader’s intention to understand possible meanings of the text.
In Sect. 5, we identify a particular sense F (in our acceptance) with the assignment
to each meaningful fragment U of a given text X the set of all its meanings F (U)
that may be grasped in all possible readings of U in this sense F . This way, to any
sense (or mode of reading), we assign a sheaf of fragmentary meanings.
Remark. It should be noticed that our terminological acceptance of basic semantic
notions of sense and meaning differs from their acceptance in the theories developed
within the tradition that goes back to Carnap’s semantic theory, sometimes called
the theory of “intension and extension”. In such theories, expressions of different
syntactic kinds refer to entities of different kinds as their extensions, and also refer
to entities of different kinds as their intensions. The terms intension, intensional are
not to be confused with the terms intention, intentional we have discussed above.
The notions ‘intension’, ‘intensional’ primarily concern the domain of logic, whereas
‘intention’, ‘intentional’ concern the philosophy of mind. According to A. R. Lacey,
“Intuitively extensions can be thought of as the extents which certain kinds of terms
range over and intensions as that in virtue of which they do so.” [18, p. 164], whereas
the intentionality is “that feature of certain mental states by which they are directed
at or about objects and states of affairs in the world” [18, p. 50].

Reference. Certainly, the referential function of a language is important in the
linguistic communication, which concerns the world where the interlocutors live. A
natural language has a huge arsenal of denoting expressions to designate real and
imaginary objects during communication. The linguistic competence is characterized
by the know-how in production and comprehension of natural language expressions
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realizing the referential relationship called reference or denotation. In the analytic
philosophy of language, the study of denoting expressions plays a considerable role,
because the reference to objects with an uncertain ontological status is responsible
for some logical paradoxes.

In the present work, we assume a total referential competence of an idealized
reader who knows the lexicon of a language and follows the rules of common usage.
In short, we assume that the reader has a total language skill, combined with a
general knowledge. Such a reader meets no problems to understand the meaning of
denotative expressions and the ontological status of objects so defined.

3 Topologies appeared as syntax

The author of an admissible text doesn’t suppose that the reader’s understanding
will be suspended until the end of reading because everybody knows that the words
already read trigger intellectual mechanisms of interpretation based on the indis-
soluble links between the signifier and the signified. To be understood in linguistic
communication, one must take it into account and organize one’s writing in such
a way that the reader’s understanding at every moment may be arrived at on the
basis of what has been already read. It seems that the primacy of speech over
writing is a cause that implies in writing the subordination of graphic expressions
to acoustic ones. A spoken utterance is a temporal series of sounds produced by
a speaker using a human articulatory apparatus. When written, an acoustic signal
is converted into a series of signs whose positions are linearly ordered following an
adopted convention; in English, it is from left to right within the lines, and from top
to bottom between them. Once a particular sign is taken as the initial, it allows us
to specify the position of the following signs by enumeration. From the mathemat-
ical point of view, the whole segment may be considered as a finite sequence when
the last sign is specified. Thus, we ought to consider a text X as a finite sequence
(x1, x2, x3, . . . , xn) of its constituent sentences xi, and so it is formally identified with
the graph of a function i 7→ xi defined on some interval of natural numbers. When
reading a particular fragment of the text X, we delete mentally the other sentences
but follow the induced order of remaining ones. Important is the induced order of
their reading and not the concrete index numbers of their occupied places. Thus,
any part of the text is a subsequence whose graph is a subset of the whole sequence
graph. Likewise for a sentence considered as a finite sequence of its words.

While reading a text, the understanding is not postponed until the final sen-
tence. So the text should have the meaningful parts, and the meanings of these
parts determine the meaning of the whole as it is postulated by the hermeneutic
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circle principle. For the meaningfulness conveying an idealized reader’s linguistic
competence, a meaning of a meaningful part is the communicative content grasped
in a particular reading of this part guided by the reader’s presuppositions and prefer-
ences in the interpretative process, that is, guided by the sense (or mode) of reading.

Certainly, there are many meaningful fragments in the text. A simple example
of a meaningful fragment is supplied by the interval including all sentences, from the
first x1 till the last xn. Anybody reads the text as if it would be a written transcrip-
tion of the story uttered by the author. When telling or writing a story, an author
should take into account that the understanding can’t be postponed, for “the texts
never know the suspense of interpretation. It is compulsive and uncontrollable”, as
it is noticed by F. Rastier in [36]. If the author don’t want to be misunderstood, s/he
has to organize the text in such a way that any sentence x is preceded by certain
sentences those provide a necessary context for the understanding of x. Thus, any
meaningful part contains each sentence together with some its context, and this is
characteristic of any part to be meaningful. It is clear that this property fails for a
part including, e.g., all sentences xi whose placehold number i is divisible by 100,
and that is why this part is meaningless, and nobody try to read the text in such a
manner. In [28,31–33], we argue that in agreement with our linguistic intuition, the
set of all meaningful parts of any admissible text should satisfy two properties:

(t1) The union of any set of meaningful parts is a meaningful part.

(t2) The non-empty intersection of two meaningful parts is a meaningful part.

The first property (t1) is taken for granted, because it expresses the precept of gener-
ally accepted hermeneutic circle principle, which ensures us to understand the union
of a given set of meaningful parts through the understanding of all its constitutive
members. In the union of any set of meaningful parts, each part contains every its
sentence together with some its context, whence the union itself is a part that has
such a property. To be more accurate, we have to take into account that the mean-
ing s of a meaningful part U isn’t immanent to this part itself, but this meaning is
grasped in the reading process following a sense (mode of reading) F guided by the
reader’s interpretative intentions. Thus, in the statement (t1), some sense (or mode
of reading) F is implicitly presumed to be the same for all members of the union.
In the following Sect. 5–8, we discuss in details how the resulting meaning of the
whole is obtained via the meanings of its constitutive parts.

The second property (t2) expresses the contextuality of understanding. To under-
stand a meaningful part U of the text X is to understand contextually all sentences
x ∈ U , where the context of a particular sentence x is some meaningful part W
such that x ∈ W ⊆ U . In the standard process of reading (i.e., from the beginning
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up to x), this part W should contain a subsequence of sentences those precede x
and provide a necessary context for the understanding of x in the sense F . For
a particular sense F , there should exist a smaller subsequence (xi1 . . . , xim) ⊆ W
whose sentences have been understood during the reading, and then have been taken
into account at the moment when the reader understands a meaning of x grasped
in the sense F . Let us denote Ux = (xi1 , . . . , xim). The tokens xik of Ux may be
consecutive or dispersed among other tokens of W , it does not matter, but they
should be read before the reading of x.

Consider first the case of one session process of reading of X in some sense F .
When the part Ux belongs to any meaningful part W ⊆ X such that x ∈ W . Let
U , V be two meaningful parts such that x ∈ U ∩ V . According to our premises,
x ∈ Ux ⊆ U and x ∈ Ux ⊆ V ; hence x ∈ Ux ⊆ U ∩ V .

Consider now the case when x ∈ U ∩ V , and parts U , V were read in two
different sessions of reading, but in the same sense F . This means that the reader
is self-identical, and the reading is guided by the same intentionality. It implies that
Ux ⊆ U and Ux ⊆ V . Hence x ∈ Ux ⊆ U ∩ V .

Thus in both cases, U ∩V is meaningful because U ∩V = ∪x∈U∩V Ux is the union
of meaningful parts, due to (t1).

Since an admissible text X is supposed to be meaningful as a whole by the very
definition, it remains only to define formally the meaning of its empty part (for
example, as a singleton) in order to satisfy the third property:

(t3) The whole admissible text and the empty part are meaningful.

This enables us to endow an admissible text X with some topology in a strict
mathematical sense, where the set O(X) of open sets is defined to be the set of all
meaningful parts. We call the topology so defined phonocentric topology to indicate
in its name the subordination of graphic expressions to phonetic ones.

An admissible text X gives rise to a finite space; hence an arbitrary intersection
of its open sets is open and so it is an Alexandrov space.

In general, a topology on a set X is defined by specifying the set O(X) of open
subsets of X satisfying axioms similar to ours (t1), (t2), and (t3). But almost always
it is impossible to enumerate all the open subsets. Instead, a topology is usually
defined by specifying a smaller set of open subsets, called a basis, and then generating
all the open subsets from this basis.

Likewise, when studying the process of interpretation of an admissible text X,
many of linguistic concepts may be well expressed in terms of the phonocentric
topology on X that is defined by specifying the set of open subsets O(X) to be
the set of all meaningful parts satisfying properties (t1), (t2), and (t3). However, it
will be more convenient and useful to develop the theory in more concrete, say even
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constructive, terms of empirically given meaningful parts those constitute a basis
for a phonocentric topology.

Fortunately, the set of all meaningful parts O(X) of a given text X may be
described by specifying a class of fairly simple meaningful parts given as an empirical
data related to a reading process. In the reading of a particular text X, the reader is
practically concerned with a smaller class of meaningful parts (Ux)x∈X , where each
part Ux contains a sentence x and provides the smallest context that is necessary
for a reader to grasp a particular meaning of x. Because the phonocentric topology
O(X) is finite, for each x, there exists such a smallest open neighbourhood Ux that
is defined as the intersection of all open neighbourhoods of x.

For a given sentence x, the understanding of a whole Ux requires the grasping
of meanings of all constitutive sentences of Ux; hence, for any sentence y ∈ Ux,
its smallest context Uy should be a part of Ux. Suppose now that we are given
two smallest meaningful parts Ux and Uy such that Ux ∩ Uy 6= ∅. Then for each
z ∈ Ux ∩Uy, we have Uz ⊆ Ux and Uz ⊆ Uy; hence Uz ⊆ Ux ∩Uy. Therefore, the set
B(X) = {Ux : x ∈ X} is the set of meaningful parts of X satisfying two properties:

(b1) For each x ∈ X, there exists Ux ∈ B(X) such that x ∈ Ux.

(b2) For every two Ux, Uy ∈ B(X) such that Ux ∩ Uy 6= ∅, and for each sentence
z ∈ Ux ∩ Uy, there exists Uz ∈ B(X) such that z ∈ Uz and Uz ⊆ Ux ∩ Uy.

So, the set B(X) is a basis for a phonocentric topology on X, because any
meaningful part (i.e., open) V ⊆ X is the union V = ∪x∈V Ux of the members of
some subset of B(X). Recall that a set B of open sets of a topological space X is
called a basis for its topology if and only if every open set U of X is the union of
the members of a subset of B. Thus, the class of open sets O(X) in a phonocentric
topology on X is defined by the subclass B(X) of all open sets of the type Ux, that
is, a phonocentric topology on X is defined by the empirical data B(X).

Any explicitly stated concept of meaning or a criterion of meaningfulness sat-
isfying conditions (t1), (t2), and (t3) allows us to define some type of discursive
topology on texts, and then to interpret several problems of discourse analysis in
topological terms [31]. In what follows, we consider only admissible texts endowed
with a phonocentric topology that is a particular type of discursive topology corre-
sponding to the criterion of meaningfulness conveying the linguistic competence of
an idealized reader, meant as the ability to grasp a communicative content.

3.1 Phonocentric topology and partial order

In the ordinary process of reading, any sentence x of a text X should be understood
on the basis of the part already read because the interpretation of a natural language
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text cannot be postponed, although it may be made more precise and corrected in
further reading and rereading. In [36], F. Rastier describes this fundamental feature
of a competent reader’s linguistic behaviour as the following:

Alors que le régime herméneutique des langages formels est celui du suspens,
car leur interprétation peut se déployer après le calcul, les textes ne connaissent
jamais le suspens de l’interprétation. Elle est compulsive et incoercible. Par
exemple, les mots inconnus, les noms propres, voire les non-mots sont interpré-
tés, validement ou non, peu importe.5 [36, pp. 165, 166]

Thus, for every pair of distinct sentences x, y of X, there exists an open part U
containing one of them (to be read first in the natural order ≤ of sentences reading)
but not the other. This means explicitly that the phonocentric topology satisfies
the separation axiom T0 of Kolmogorov.

For a sentence x ∈ X, we have defined the open neighbourhood Ux to be the
intersection of all the meaningful parts those contain x, that is the smallest open
neighbourhood of x. The specialization relation x � y (read as ‘x is more special
than y’) on a topological space X is defined by setting x � y if and only if x ∈ Uy
or, equivalently, Ux ⊆ Uy. It is clear that x ∈ Uy if and only if y ∈ cl({x}), where
cl({x}) denotes the topological closure of a one-point set {x}.

Key properties of these notions are summarized in the Propositions 1, 2 those
are linguistic versions of general mathematical results concerning the interplay of
topological and order structures defined on a finite set. The proofs may be found in
many sources, as for example, in [23].

Proposition 1. For an admissible text X, the set of all smallest opens {Ux : x ∈ X}
is a basis for a phonocentric topology on X. Since the phonocentric topology on X
satisfies the separation axiom T0, it defines a partial order � on X by means of the
specialization relation. The initial phonocentric topology can be recovered from this
partial order � in a unique way as the topology with the basis made up of all sets of
the kind Ux = {z : z � x}.

Proposition 2. Let X, Y be admissible texts endowed with phonocentric topologies.
Then the following statements are equivalent:
1. The function f : X → Y is continuous.
2. For each x ∈ X, the function f maps a basis set into a basis set: f(Ux) ⊆ Uf(x).
3. The function f preserves the specialization order: x � y implies f(x) � f(y).

5Our translation of this quotation is: “While the hermeneutic regime of formal languages is
that of suspense, because their interpretation can be deployed after the calculation, the texts never
know the suspense of interpretation. It is compulsive and uncontrollable. For example, unknown
words, proper names, even non-words are interpreted, valid or not, whatever.”

1377



O. Prosorov

Example. A continuous function f1 : X2 → X1 arises in writing process when an
author goes from a first plan X1 of some future text to its more detailed plan X2,
where a sentence xd of X1 is substituted by some passage (xd1 , . . . , xdm). And so
on, in going to more and more detailed texts X3, . . . , Xn, one gets a sequence of
continuous functions

Xn
fn−1−→ Xn−1

fn−2−→ . . .
f3−→ X3

f2−→ X2
f1−→ X1.

3.2 Deep structures and surface structures

Let FinTOP0 be the category of finite T0-topological spaces and continuous maps,
and let FinORD be the category of finite partially ordered sets (posets) and their
monotone maps.

Given a finite partially ordered set (X,≤), one defines a T0-topology τ on X
by means of the basis for τ made up of all low sets {z : z ≤ x}. Thus, one obtains
a functor L : FinORD → FinTOP0 acting identically on the maps of underlying
set. Conversely, one defines the specialization functor Q : FinTOP0 → FinORD,
assigning to each finite T0-topological space (X, τ) a poset (X,�) with the special-
ization order �, and acting identically on the maps of underlying set. Thus, the
functors L and Q establish the isomorphism between the category FinTOP0 and
the category FinORD. From the mathematical point of view, the study of one of
these two categories is equivalent to the study of the other.

Now we generalize and summarize the considerations of the mathematical struc-
tures of topology and order underlying an admissible text:

The considerations in the beginning of Sect. 3 may be slightly modified in order to
define a phonocentric topology at the semantic level of sentence and even word [31].
Thus, at each semantic level, there exist two topological structures:

(i) the natural phonocentric topology at a considered semantic level;

(ii) the topology defined by applying the functor L to the linear order x ≤ y of
reading.

At an arbitrary semantic level (where the whole is a sequence of primitive ele-
ments), the difference between topologies can be summed up so that in the phono-
centric topology the least neighbourhood Ux of a primitive element x contains only
such primitive elements that precede x in the linear order of writing and provide the
context necessary to understand the meaning of x in the adopted sense F ; whereas
in the topology defined by the functor L applied to (X,≤), the least neighbourhood
Ux of a primitive element x contains all primitive elements that precede x in the
linear order of writing.
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Note that the explicit definition of the phonocentric topology at the semantic
level of sentence requires more delicate work in treatment of different grammatical
types of sentences due to the lack of space, so to speak. Here there is a certain
analogy with the topological classification of varieties that turns out to be more
difficult in dimensions 3 and 4 than in lower and in higher dimensions.

On the other hand, at each semantic level, there exist two order structures:

(i′) the specialization order x � y defined by applying the specialization functor Q
to the natural phonocentric topology of a considered semantic level;

(ii′) the linear order x ≤ y of ordinary text reading.

Similar to a generative grammar, we will qualify the equivalent structures of (i)
and (i′) as deep structures compared to the equivalent structures of (ii) and (ii′)
qualified as surface structures. We notice that this denomination has nothing to do
with the acceptance of these terms in a generative grammar.
Remark. The relation x � y implies obviously the relation x ≤ y, for all the primitive
units x, y of the same semantic level. In particular, at the level of text, where the
sentences are primitive units, the map id : L(X,�)→ L(X,≤), which acts as identity
x 7→ x of the underlying set, is a continuous map of topological spaces. Thus, the
necessary linearization during the writing process, that is the passage from (X,�) to
(X,≤), results in weakening of the phonocentric topology by transition from L(X,�)
to L(X,≤). The process of interpretation consists in a backward recovering of the
phonocentric topology (or equally, of the specialization order) on the text.

3.3 Phonocentric topology at the level of text

There is a simple intuitive tool for graphical representation of a finite poset, called
Hasse diagram. For a poset (X,�), the cover relation x ≺ y (read as ‘x is covered
by y’) is defined by setting x ≺ y if and only if x � y and there is no other z such
that x � z � y. For a given poset (X,�), its Hasse diagram is defined as the graph
whose vertices are the elements of X and whose edges are those pairs 〈x, y〉 for which
x ≺ y. In the picture, the vertices of Hasse diagram are labeled by the elements of
X and the edge 〈x, y〉 is drawn by an arrow going from x to y (or sometimes by an
indirected line connecting x and y, but in this case the vertex y is displayed lower
than the vertex x); moreover, the vertices are displayed in such a way that each line
meets only two vertices.

The usage of some kind of Hasse diagram named Leitfaden is widely spread in
the mathematical textbooks to facilitate the understanding of logical dependence
of its chapters or paragraphs. Mostly, the poset is constituted of all chapters of
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the book. So, in Local Fields by J.-P. Serre [39] and in A Mathematical Logic by
Yu. I. Manin [21], there are such diagrams.

These diagrams may surely be ‘split’ in order to draw the corresponding ones
whose vertices are all the paragraphs, like it is done directly in Differential Forms
in Algebraic Topology by R. Bott and L. W. Tu [1], where authors suppose indeed
the linear reading of paragraphs 1-6, 8-11, 13-16 and 20-22, but it may be drawn
explicitly. These three Hasse diagrams are shown in the Fig. 1.

1
��
2
��
3
��

7
�� ��

4
��

10

��

8
��

5
�� ��

9
��

6 12
��

11
��

13
�� ��

14 15

J.-P. Serre [39]

1 5

2 6

4 3 7 8

Yu. I. Manin [21]

1-6

yy ��
7 8-11

yy �� ''
12 13-16

��

20-22

��
17 //

��

23

18

��
19

R. Bott & L.W. Tu [1]

Figure 1: Leitfiden of J.-P. Serre [39], Yu. I. Manin [21], R. Bott & L.W. Tu [1].

This way, one may go further and do the next step. For every sentence x of
a given admissible text X, one can find a basis open set of the kind Ux in order
to define the phonocentric topology at the semantic level of text (where points are
sentences), and then to draw the Hasse diagram of the corresponding poset.

In [31], we describe how one may interpret this way the most of diagrams from
the Rhetorical Structure Theory (RST) conceived in the 1980s the by W.C. Mann
and S.A. Thompson [22]. Since then, RST has seen a great development, especially
in the computational linguistics, where it is often used for the automatic generation
of coherent texts, as well as for the automatic analysis of the structure of texts. The
RST aims to describe an arbitrary coherent text, which is not the random sequence
of sentences. The textual coherence demands that for every part of a coherent text
there exists a reason for its presence, which is obvious to a competent reader. It
seems that RST notion of a coherent text is similar to our notion of an admissible
text. In [31], we show that the RST analysis of contextual dependencies between
sentences of certain small textual fragments represented as RST diagram may be

1380



Topologies and Sheaves Appeared as Syntax and Semantics

redrawn as the Hasse diagram for the partial order structure of the corresponding
specialization relationship. But the RST diagram may be drawn only for certain
small textual fragments such that their sentences are nucleus and satellite in the
sense of the RST. On the other hand, it is not the case when such a fragment is a
part of a larger text. Then, according to the RST, there will be no link between a
sentence x belonging to such a fragment and any other sentence y that is far enough
in the text, because rhetorical relations can only bind adjacent segments. While in
our approach, such a link is possible in the specialization relation (of deep order).
This link is seen on the corresponding Hasse diagram as a direct edge 〈x, y〉 or as
a sequence of edges that link these two sentences x and y. Thus, our approach is
more general than this one of the RST.

3.4 Phonocentric topology at the level of sentence

In order to define a phonocentric topology at the semantic level of sentence, we must
distinguish there the meaningful fragments that are similar to meaningful fragments
at the level of text. Let x, y be any two word-tokens such that x � y in the
specialization order at the level of sentence that is similar to the specialization order
coming from the ‘logical relations among the different chapters’ in a text. This
relation x � y means that the word-token x should necessary be an element of the
set of word-tokens Uy required to understand the meaning of the word-token y in
the interpreted sentence. So we have x ≤ y in the order of writing and there should
be some syntactic dependence between them. It means that a grammar in which the
notion of dependence between pairs of words plays an essential role will be closer to
our topological theory than a grammar of Chomsky’s type.

There are many formal grammars focused on links between words. The history
of this stream of ideas is described by S. Kahane in a detailed review [16]. We
think that the theoretical approach of the special link grammar of D. Sleator and
D. Temperley is most appropriate to define a phonocentric topology at the level
of sentence, because in whose formalism “[t]he grammar is distributed among the
words” [40, p. 3], and “the links are not allowed to form cycles” [40, p. 13] comparing
with dependency grammars that draw syntactic structure of sentence as a planar
tree with one distinguished root word.

For a given sentence s, the link grammar assigns to it a syntactic structure (called
linkage diagram) that consists of a set of labeled links connecting pairs of words.
We use these diagrams to define all phonocentric topologies on this sentence s.

Example. To explain how to define phonocentric topologies on a particular sen-
tence, let us borrow from [42] the following example of an ambiguous sentence:
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(1) John saw the girl with a telescope.

We had yet considered this sentence in [29] by using Chomsky’s generative grammar,
and also in [31] by using link grammar. The analysis of this sentence by means of the
Link Parser 4.0 of D. Temperley, D. Sleator, and J. Lafferty [41] gives two linkage
diagrams shown in the Fig. 2.

John saw
Ss

the girl
Ds

Os

with

MV p

a telescope
Ds

Js

John saw
Ss

the girl
Ds

Os

with
Mp

a telescope
Ds

Js

Figure 2: Two linkage diagrams with connector names.

These two diagrams rewritten with arrows that indicate the direction in which
the connectors match (instead of connector name) have the appearance shown in
the Fig. 3.

John saw
<

the girl
<

<

with

<

a telescope
<

<

John saw
<

the girl
<

<

with
<

a telescope
<

<

Figure 3: Two linkage diagrams with arrows instead of connector names.

It is clear that the transitive closure x � y of this relation < between pairs of
words defines two partial order structures on the sentence (1). By applying the
functor L defined in Sect. 3.2, we can endow the sentence (1) with a phonocentric
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topology in two different ways. The Hasse diagrams of corresponding posets are
shown in the Fig. 4.

John

the saw

girl with a

telescope

John

saw the

girl

with a

telescope

Figure 4: Two Hasse diagrams of the sentence (1) as displayed in [29,31].

To understand the sentence (1), the reader has to do the ambiguity resolution
when arriving to the word-token x =“with” by choosing only one of two possible
basis sets:

Ux = {〈1, John〉, 〈2, saw〉, 〈5,with〉};
Ux = {〈1, John〉, 〈2, saw〉, 〈3, the〉, 〈4, girl〉, 〈5,with〉}.

In the general case, the step by step choice of an appropriate context Ux =
{z : z � x} for each word x results in endowing the interpreted sentence with a
particular phonocentric topology among many possible.

In [31], we have shown how to define a phonocentric topology at the level of word
considered as a sequence of morphemes.

We summarize the results of our analysis presented in Sect. 3 as the following:

Slogan (Phonocentric Topologies as Syntax). Once the phonocentric topol-
ogy and the corresponding specialization order are determined at a given semantic
level, the systematic interpretation of linguistic phenomena in terms of topology and
specialization order, and their mathematical study is a formal syntax at this level.

4 Linguistic universals of a topological nature
Throughout the history of scientific study of human languages, researchers are in-
terested in discovering linguistic universals, that is, particular traits common to all
languages. Because it is impossible to recognize everything about all languages, it is
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necessary to first decide where and how to look for linguistic universals. It appears
that our sheaf-theoretic approach makes here a small contribution.

By its very origin, a human language is used for linguistic communication; for
that reason, written texts and uttered discourses should be considered as commu-
nicative units. We must therefore look for linguistic universals, not only in terms of
word as it is done by J. H. Greenberg [11] and his successors, but especially in terms
of text. A true linguistic universals at the level of text (or discourse) must have a
corresponding counterpart at the level of sentence.

By linguistic universals, we understand the characteristic properties of texts
those are admissible as messages having communicative purposes, regardless of the
language in which they are written. The question is, therefore, reduced to this:
What criteria should we accept to be sure that a particular characteristic is truly
shared by all admissible texts in any natural language? One can adopt a statistical
criterion ensuring, to a certain extent, that if some property is shared by hundreds
of natural languages, it is likely that it is shared by all. Such an approach is taken
up in the classical works of J. H. Greenberg. But there are no guarantees that a
particular trait of the languages already studied is also shared by the language of a
lost Indian tribe that escaped the statistical body of research.

To our deep conviction, the way to avoid counter-examples is to adopt a crite-
rion based not only on statistical considerations, but mainly on the analysis of the
communicative function of languages. In our talk [30] at the 39th Annual Meeting
of SLE, we argued that the properties of a phonocentric topology to satisfy the
separation axiom T0 of Kolmogorov and to be connected are linguistic universals.
These properties should be required of the underlying phonocentric topology on any
text written for the purpose to be understood in the linguistic communication.

A correct translation of an admissible text from one language into another is done
by successive translation of each sentence in a manner to conserve their contextual
relations. It results in a bijection between the original text and its translation, and
also in a homeomorphism between corresponding topological spaces.

It is clear that a phonocentric topology on an admissible text written in one
language (as well as the corresponding Hasse diagram) is invariant under transla-
tion into another language. Hence, a phonocentric topology on a text X and its
properties and geometric invariants (say T0-separability, connectedness, homology
groups, etc.) are stable under translation from one language into another (i.e., under
homeomorphism), and so they are formal invariants of the text X.

The properties those are shared by all texts in all natural languages are absolute
linguistic universals. In [30–32], we argue that the T0-separability, the connectedness
of a phonocentric topology, and the acyclicity of corresponding Hasse diagram are
features shared by the majority of languages.
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4.1 Kolmogorov’s axiom T0 as a linguistic universal

One important example of a topological linguistic universal seems to be the sepa-
ration axiom T0 of Kolmogorov. In the Sect. 3, we argued for the relevance of the
separation axiom T0 to all semantic levels of an admissible text on the base of a lu-
cid formulation by F. Rastier [36]. Anyway, there is an essential difference between
the hermeneutic regime of formal languages and that one of natural languages; it is
important for us that texts written in a natural language “never know the suspense
of interpretation” [36, p. 166]. It’s still the same idea that Origen expresses in the
biblical hermeneutics regarding the non-understanding. According to Origen, yet
for an imbulatum, there is a meaning as a sign of divine presence in the text.

Such an empirical truth known to everyone from his/her own experience of reader
still deserves a more nuanced discussion. Firstly, this property of understanding of
texts in natural language is obviously taken into account by everyone who writes a
text intended for human understanding, whether he/she is a professional writer or
not; the rule is accepted as that one of a ‘writing game’, so to speak.

If we do not want to be misunderstood, we do not propose the reader to suspend
understanding until the end of writing because we know that the words already read
trigger intellectual interpretation mechanisms based on indissoluble links between
signifier and signified. This is well expressed by the colourful Russian saying: A word
is not a sparrow; you can’t catch it when it flies away! In order to be understood,
we must organize our writing in such a way that the reader’s understanding would
always be based on the part of text already read, in total ignorance of its future
development.

The second reading (as all subsequent readings) is governed by the same rule,
despite the fact that we already know the whole text. The repetitive reading respects
the unpredictability of the future; while reading at the time being, we are being in the
‘here and now’, that leads us to identify the physical real time with the time of the
narrative. What lies in the pages that follow makes no context for the understanding
of what has been read. In particular, this rule is just applicable to scientific texts.

A question arises: What is the reason for this indisputable empirical phe-
nomenon? It seems to us that it is the primacy of speech over writing, which
causes the subordination of graphic expressions to phonetic ones.

Preliterate civilizations existed thousands of years before the advent of writing
and even still exist somewhere else. Even today there are thousands of people who
cannot read. The cultural history of the human species is repeated in the personal
history of each individual because we learn to speak before we learn to read and
write. But as a physical phenomenon, a phonetic expression exists in the dimension
of time, and here the physiological properties of our speech organs are just involved.
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In a conversation, the interlocutors have access only to whatever is already said,
because the future remains unpredictable. Once said, the spoken word is flying away
and the only chance to get by in such a situation is to understand on the spot all
that is said by the others.

For anybody speaking, this attitude quickly becomes a habit and even a condi-
tioned reflex on the situation of linguistic communication. As functional and even
physiological in origin, this property of the oral communication is inherited by the
written communication. So it becomes a linguistic universal because it is specific to
understanding in linguistic communication, regardless of the natural language con-
cerned. In our formalism, this linguistic universal is expressed by the statement that
the topological space underlying any semantic level of an admissible text satisfies
the separation axiom T0 of Kolmogorov.

4.2 Topological connectedness as a linguistic universal

In Sect. 3, we have considered some examples of phonocentric topologies at various
levels of semantic description of an admissible text. In all these examples, we see
that their underlying topological spaces are connected. This shows empirically an
important topological property of all genuine natural language texts, namely the
connectedness, in the mathematical sense, of their phonocentric topology. The rea-
sons for it aren’t accidental, but it reveals a very important topological property
of genuine natural language texts. At the conference [30], we presented arguments
that the topological connectedness is one of the linguistic universals.

Any literary work has a property to be the communicative unity of meaning.
So, for any two novels X and Y yet of the same kind, say historical, detective or
biographical, their concatenation Z under one and the same cover doesn’t constitute
a new one. What does it mean, topologically speaking? We see that for any x ∈ X
there exists an open neighbourhood U of x that doesn’t meet Y , and for any y ∈ Y
there exists an open neighbourhood V of y that doesn’t meet X. Thus, Z = X

⊔
Y

(i.e., Z is a disjoint union of two non-empty open subsets X and Y ); hence, Z isn’t
connected. Thus, a property of a literary work to be the communicative unity of
meaning may be expressed as a connectedness of a topological space related to text.

Recall that a space X is said to be connected if it is not the disjoint union of two
non-empty open subsets. It is the same to say that X and ∅ are the only subsets
opened and closed at a time. Such a property is called the connectedness of the
space X. In any topological space X, a connected part U is defined as a subset U
of X that is a connected space for the induced topology. It is clear that the union
of connected parts having one point in common is also a connected part.

Define on a topological space X the relation ∼ by setting x ∼ y if and only if
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x and y belong to a connected subset of X. It is immediate that this relation is an
equivalence; the equivalence class containing a point x is a connected part that is
called connected component of x. It is clear that a topological space X is the disjoint
union of its connected components, and any connected part is contained in exactly
one component. If f : X → Y is a continuous mapping of topological spaces where
the space X is connected, then f(X) is a connected subset of Y .

Let X be an Alexandrov topological space. It is clear that for all x ∈ X,
the smallest open Ux is connected. So, each open set Ux of the basis B(X) of a
phonocentric topology is connected.

For all x, y ∈ X such that x 6= y, the subspace {x, y} is connected if and only
if x ∈ Uy or y ∈ Ux; in terms of the specialization order, this amounts to saying
that x � y or y � x. The following well-known proposition (see, e.g., [23, p. 8])
characterizes connected Alexandrov topological spaces:

Proposition 3. Let X be a connected Alexandrov topological space. Then for every
pair of points x, y of X, there exists a finite sequence (z1, . . . , zs) of points in X such
that z1 = x, zs = y and each {zi, zi+1} is connected (i.e., zi � zi+1 or zi � zi+1) for
all i = 1, . . . , s− 1.

Indeed, let Z be a set of points accessible by a finite sequence (z1, . . . , zs) of
points in X starting from x = z1, such that each set {zi, zi+1} is connected for
i = 1, . . . , s − 1. For each z ∈ Z, we have Uz ⊆ Z because any element y ∈ Uz is
itself also accessible by a chain (z1, . . . , z, y). We have Z ⊆

⋃
z∈Z Uz ⊆ Z; hence

Z is open. For each z ∈ Z, we have also cl({z}) ⊆ Z because, for all y ∈ cl({z}),
any neighbourhood of y, including Uy, contains z. This implies z � y and y ∈ Z.
We have Z ⊆

⋃
z∈Z cl({z}) ⊆ Z; therefore Z is closed because X is an Alexandrov

space. Now, the set Z is non-empty because x ∈ Z, opened and closed subset of the
connected space X. Hence, Z = X.

It should be noticed that the formulation and the proof of the Proposition 3 are
valid regardless of the (finite or infinite) number of points in the space X.

Since the relation x � y is transitive, we can, in the assertion of Proposition 3,
exclude unnecessary elements of the finite sequence (z1, . . . , zs). Namely, after ex-
cluding repetitive elements, we can reduce each subsequence zi ≺ zi+1 ≺ zi+2 to
zi ≺ zi+2 if any exists, and we can reduce each subsequence zj � zj+1 � zj+2 to
subsequence zj � zj+2 if any exists.

After a finite number of such steps of reduction, we have a sequence (z1, . . . , zr),
such that in this sequence, the relations ≺ and � follow one after the other, namely:

if zi ≺ zi+1, then zi−1 � zi ≺ zi+1 for all i such that 1 < i < s;
if zi � zi+1, then zi−1 ≺ zi � zi+1 for all i such that 1 < i < s.
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Example. In the Hasse diagram of the book [21], one immediately sees such a
sequence (4 � 2 ≺ 7 � 6 ≺ 8), which connects the Chapter 4 with the Chapter 8,
that is shown in the Fig. 5.

2 6

4 7 8

Figure 5: A Khalimsky arc traced in the Leitfaden of [21] shown in the Fig. 1.

The Hasse diagram of the type shown in the Fig. 5 is called Khalimsky arc.
We define now theKhalimsky topology by means of a structure that differs slightly

from the original definition of [17]. Let us first define the partition R =
⋃
m∈Z Pm of

Euclidean line of real numbers R by setting:

Pm = [m− 1
2 ,m+ 1

2 ], closed interval of real numbers {t : m− 1
2 6 x 6 m+ 1

2},
for each even integer m ∈ Z;

Pm =]m− 1
2 ,m+ 1

2 [, open interval of real numbers {t : m− 1
2 < x < m+ 1

2},
for each odd integer m ∈ Z.

Recall the notion of a quotient topology. Let X be a topological space, and let
P be an equivalence relation on X. The quotient topology on the quotient set X/P
is the finest topology making continuous the canonical projection X → X/P that
associates to each element of X its equivalence class. That is, the set of equivalence
classes of X/P is open in the quotient topology if and only if its inverse image is
open in X.

Let P be an equivalence relation on R associated with the partition R =⋃
m∈Z Pm. We then define a quotient topology on X/P. By identifying Pm ∈ X/P

with m ∈ Z, we define the Khalimsky topology on Z. The set of integers Z endowed
with the Khalimsky topology is called the Khalimsky line. Since R is connected, the
Khalimsky line is connected as well.

It is immediate that an even point is closed, and that an odd point is open.
Concerning the smallest neighbourhoods, we have Um = {m} if m is odd, and we
have Um = {m−1,m,m+1} ifm is even. For integersm 6 n, we define a Khalimsky
interval to be the interval [m,n]∩Z with the topology induced from Khalimsky line,
and we denote it by [m,n]Z. We call a Khalimsky arc any topological space that
is homeomorphic to a Khalimsky interval [m,n]Z. We say that the points that are
images of m and n are connected by a Khalimsky arc. Now it is clear that the
Proposition 3 is equivalent to the following:
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Proposition 4. An Alexandrov topological space X is connected if and only if for
every pair of points x, y of X, there exists a Khalimsky arc that connects them.

In other words, for an Alexandrov space, the connectedness and the connected-
ness by a Khalimsky arc are equal.

It is obvious that all topological spaces whose Hasse diagrams are shown in the
Fig. 1 are connected. It is difficult to imagine a book in which there is a single
chapter that has no contextual links to other chapters. The same holds not only at
the semantic level where primitive elements are chapters, but also at the semantic
level where primitive elements are sentences of the text (such a level is called the
semantic level of text). If at the end of the reading, we realize that a sentence x has
nothing to do with the reminder of the text, we have a feeling that ‘a noise crept into
the message’ because the reading of the text is finished, but the sentence x remains
to be its completely strange ingredient.

On the contrary, if during the reading we meet a sentence that does not have
direct contextual links with the sentences already read (like the item 7 in the Hasse
diagram of the textbook [39] as shown in the Fig. 1), we have a feeling to be on a
turning point in the narrative, and that the author prepares the reader for the future
development, where the suspended sentence will be necessary for the understanding.
For an admissible text, these considerations confirm that the connectedness of the
underlying topological space expresses mathematically the necessary requirement of
a textuality in the sense one understands this concept in the semiotics of text.

This explains why a basic unit that is pertinent as a message in the situation
of linguistic communication should be an admissible text (or discourse) whose un-
derlying topological space is connected! It is a connected unit because, after having
communicated such a message, the transmitter (author, sender) may become silent
to give the floor to its receptor (reader, receiver).

At the level of text, the connectedness of message is also a requirement specific
to the kind of linguistic communication qualified as a dialogue, that is, to a bi-
directional communication with others. If somebody produces, as a message, a
series of phrases that disintegrates into pieces that have no links between, it reveals
the disregard for the interlocutor, or the absence of the desire to communicate, or the
use of a language for purely expressive purposes without a desire to communicate.

It is the same at the semantic level of sentence with regard to connectedness,
although the formal definition of a phonocentric topology at the level of sentence
needs more delicate work.
Remark. It should be noticed that for an admissible text, the corresponding Hasse
diagram with directed edges is acyclic at any semantic level. It is clear that this
property of a phonocentric topology is stable under homeomorphism. This means
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that the acyclicity of the Hasse diagram corresponding to the phonocentric topology
is yet another linguistic universal of a topological nature.

5 Sheaves of meanings appeared as semantics
Let X be an admissible text endowed with a phonocentric topology, and let F be
an adopted sense of reading. In a Platonic manner, for each non-empty open (that
is meaningful) part U ⊆ X, we collect in the set F (U) all fragmentary meanings of
this part U read in the sense F ; also we define F (∅) to be a singleton pt. Thus,
we are given a map

U 7→ F (U) (1)
defined on the set O(X) of all open sets in a phonocentric topology on X.

Following the precept of hermeneutic circle ‘to understand a part in ac-
cordance with the understanding of the whole’, for each inclusion U ⊆ V
of non-empty opens, the adopted sense of reading F gives rise to restriction map
resV, U : F (V )→ F (U). We will consider the inclusion of sets U ⊆ V as being the

canonical injection map U �
� inj
// V . Thus, we are also given a map

{ U �
� inj
// V } 7→ { F (V )

resV, U
// F (U) } (2)

with the properties:

(i) idV 7→ idF (V ) for all opens V of X;

(ii) resV, U ◦ resW,V = resW,U for all nested opens U ⊆ V ⊆W of X.

The first property means that the restriction resV, U respects identity inclusions. The
second property means that two consecutive restrictions may be done by one step.

As for the empty part ∅ of X, the restriction maps res∅,∅ and resV,∅ with the
same properties are obviously defined.

Let (X,O(X)) be a topological space. We can consider its topology O(X) as
the category OpenX whose objects are open sets of X, and where for two open sets
U, V ∈ O(X), the class of morphisms Mor(U, V ) is empty if U  V , and Mor(U, V )

is the set reduced to the canonical injection U �
� inj
// V if U ⊆ V . The composition

of morphisms is defined as the composition of canonical injections.
From the mathematical point of view, the assignments (1) and (2) give rise to

a presheaf F defined as a contravariant functor from the category OpenX to the
category Set of sets and maps

F : OpenX → Set, (3)
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acting on objects as defined by (1), and acting on morphisms as defined by (2).
In sheaf theory, an element s ∈ F (V ) is called section (over V ); sections over

the whole space X are said to be global.
We consider the reading process of an open fragment U as its covering by some

family of open subfragments (Uj)j∈J already read, that is U =
⋃
j∈J Uj .

Following Quine, “There is no entity without identity” [35]. We argue that
two fragmentary meanings should be equal globally if and only if they are equal
locally. It motivates the following identity criterion:

Claim S (Separability). Let X be an admissible text, and let U be an open frag-
ment of X. Suppose that s, t ∈ F (U) are two fragmentary meanings of U and there
is an open covering U =

⋃
j∈J Uj such that resU,Uj (s) = resU,Uj (t) for all fragments

Uj. Then s = t.

According to the precept of hermeneutic circle, ‘to understand the whole by
means of understandings of its parts’, a presheaf F of fragmentary meanings
satisfies the following:

Claim C (Compositionality). Let X be an admissible text, and let U be an open
fragment of X. Suppose that U =

⋃
j∈J Uj is an open covering of U ; suppose we are

given a family (sj)j∈J of fragmentary meanings, sj ∈ F (Uj) for all fragments Uj,
such that resUi, Ui∩Uj (si) = resUj , Ui∩Uj (sj). Then there exists some meaning s of the
whole fragment U such that resU,Uj (s) = sj for all fragments Uj.

Thus, any presheaf of fragmentary meanings defined as above should satisfy
both Claims S and C, and so it is a sheaf by the very definition. This motivates
the following definition:

Frege’s Generalized Compositionality Principle. A presheaf of fragmentary
meanings naturally attached to any sense (mode of reading) of an admissible text is
really a sheaf; its sections over a meaningful fragment of the text are its fragmentary
meanings; its global sections are the meanings of the text as a whole.

Traditionally attributed to Frege, the compositionality principle arises in logic,
linguistics and philosophy of language in many different formulations, which all
however convey the concept of functionality.

We note that the Claim S guarantees the meaning s (whose existence is stated by
the Claim C) to be unique as such. It is not so hard to see that these two conditions
C and S needed for a presheaf to be a sheaf are analogous to those two conditions
1◦ and 2◦ needed for a binary relation to be a function.
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5.1 Sheaf-theoretic conception of a functional dependence

Formally, for a function f of n variables, it is set that: 1◦ for any family of variables’
values (s1, . . . , sn), there exists a function’s value f(s1, . . . , sn) being dependent on
them, and 2◦ this function’s value is unique. Likewise, for a sheaf F , it is set that:
(due to C) for any family of sections (si)i∈I those are locally compatible on an open
U , there exists a section s being their composition dependent on them, and (due to S)
this composition s is unique as such. In this generalized (sheaf-theoretic) conception
of a functional dependence, the variables and their number are not fixed in advance
(we consider an arbitrary family of pairwise compatible sections as variables), but
for any such a family of variables, there exists the glued section considered as their
composition (analogous to the function’s value in a given family of variables) and
such a section is unique. So the true formulation of Frege’s compositionality prin-
ciple does not demand a set-theoretic functionality, but demands its sheaf-theoretic
generalization stating that any presheaf of fragmentary meanings naturally attached
to an admissible text ought de facto to be a sheaf. The sheaves arise whenever some
consistent local data glues into a global one.

5.2 Schleiermacher category of sheaves of fragmentary meanings

The reader should become at home with the senses treated as functors although we
call them sometimes as ‘modes of readings’ instead of ‘senses’ not only to emphasize
the character of intentionality of each actual process of reading but rather to avoid a
possible confusion that may be caused by another technical acceptance of the term
‘sense’. So one can think, for example, about the historical sense F and the moral
sense G of some biographical text.

Let us consider now any two senses (modes of reading) F , G of a given text
X, and let U ⊆ V be two arbitrary meaningful fragments of the text X. It seems
to be very natural to consider that any meaning s of fragment V understood in
the historical sense F gives a certain well-defined meaning φ(V )(s) of the same
fragment V understood in the moral sense G . Hence, for each V ⊆ X, we are given
a map φ(V ) : F (V )→ G (V ). To transfer from the meaning s of V in the historical
sense to its meaning φ(V )(s) in the moral sense and then to restrict the latter to
a subfragment U ⊆ V is the same operation as to make first the restriction from
V to U of the meaning s in the historical sense, and to make then a change of the
historical sense to the moral one. This kind of transfer from the understanding in
one sense F to the understanding in another sense G is a usual matter of linguistic
communication. In the Christian theology, the possibility of such a transfer from
one of four senses of any biblical verse to some another its sense is considered as the
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cornerstone method of exegesis.
Formally, this idea is well expressed by the notion ofmorphism of the correspond-

ing sheaves φ : F 7→ F ′ defined as a family of maps φ(V ) : F (V )→ F ′(V ) those
commute with restrictions for all opens U ⊆ V , that is, res′V, U ◦φ(V ) = φ(U)◦resV, U .
This can be expressed in a simple way by saying that the following diagram

F (V ) φ(V )−−−−→ G (V )
resV, U

y yres′V, U

F (U) −−−−→
φ(U)

G (U)

commutes for all opens U ⊆ V of X.
This notion of morphism is very near to that of incorporeal transformation of

G. Deleuze and F. Guattari illustrated by several examples, one of which we quote:

In an airplane hijacking, the threat of a hijacker brandishing a revolver is ob-
viously an action; so is the execution of the hostages, if it occurs. But the
transformation of the passengers into hostages, and of the plane-body into a
prison-body, is an instantaneous incorporeal transformation, a “mass media
act” in the sense in which the English speak of “speech acts.” [5, p. 102]

To adapt this example, we need only to transform it into some written story about
a hijacking. Hence, the family of maps (φ(V ))V ∈O(X) defines a change of mode of
reading of a given text X, or simply a morphism φ : F 7→ G . It is obvious that a
family of identical maps idF (V ) : F (V )→ F (V ) given for each open V ⊆ X defines
the identical morphism of the sheaf F that will be denoted as idF . The composition
of morphisms is defined in an obvious manner: For two arbitrary morphisms φ : F 7→
G , ψ : G 7→H , we define (ψ ◦φ)(V ) = ψ(V )◦φ(V ). It is clear that this composition
is associative every time it may be defined.

Thus, given an admissible text X, the data of all sheaves F of fragmentary
meanings together with all its morphisms constitutes some category in a strict math-
ematical sense of the term. We name this category of particular sheaves describing
the exegesis of the text X as category of Schleiermacher and denote it as Schl(X)
because he is generally considered to be the author of the cornerstone principle of
a natural language text understanding, called later by Dilthey as the hermeneutic
circle. The parts are understood in terms of the whole, and the whole is understood
in terms of the parts. This part-whole structure in the understanding, he claimed,
is principal in the matter of interpretation of any text in natural language.

The theoretical principle of hermeneutic circle is a precursor to Frege’s principles
of compositionality and contextuality formulated later. The succeeded development
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of hermeneutics has confirmed the importance of Schleiermacher’s concept of cir-
cularity in text understanding. From our point of view, the concept of part-whole
structure expressed by Schleiermacher in 1829 as the hermeneutic circle principle
reveals, in the linguistic form, the fundamental mathematical concept of a sheaf
formulated by Leray in 1945, more than a hundred years later. This justifies us to
name the particular category of sheaves Schl(X) after Schleiermacher.

5.3 Building a sheaf of fragmentary meanings from local data

An admissible text X is endowed with a phonocentric topology in such a way that
the set O(X) of all open sets of this topology is made up of all meaningful parts of
X. The Hasse diagram presents a perfect visualization of this topological structure
but its construction requires a lot of analytical work. It seems that the author
has such a representation about his/her proper text, as well as the structure of
text may be rebuild after philological considerations. But for a reader, how this
topological structure is obtained during the reading? Obviously, the understanding
is manifested in the reader’s conscience as an empirical fact of having grasped the
meaning of a sentence read in the present moment. Thus, the meaningful parts
that are most clearly manifested during the reading process are the opens Ux of the
phonocentric topology basis B(X) that is defined in the Sect. 3. These meaningful
parts Ux provide the set of contexts for the understanding of the whole text.

The Proposition 1 states that the set of all these fragments Ux constitutes the
minimal basis for a phonocentric topology. Formally, this means that any arbitrary
open set is the union of a family of these basis sets Ux. The liberty in choice of basis
sets whose union gives an open set U ⊆ X makes us doubtful whether it would be
too strong to impose the satisfaction of Claims S and C for all opens of the topology
O(X). Would it be more convenient and more useful to develop the very theory in
more concrete terms, say even in constructive terms of opens Ux of the minimal basis
B(X) of a phonocentric topology on X? The answer is plain and simple: From the
psychological point of view, yes, perhaps; but from the mathematical point of view,
this approach will be formally equivalent but less technically convenient! Moreover,
a general truth is sometimes more understandable that a mass of concrete data. In
what follows, we will present formal arguments to justify this point of view.

A topological space (X,O(X)) may be considered as the category OpenX with

open sets U ∈ O(X) as objects, and injection maps U �
� inj
// V as morphisms.

Let B(X) be a basis for the topology O(X) of X. It is obvious that the basis
B(X) gives rise to a category defined in the same way that we consider the topology
O(X) as being the category OpenX . By a slight abuse of notations, we will also
denote such a category as B(X). In the same manner as above, we define a presheaf
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F of sets on the topology basis B as a contravariant functor on the category B
with values in the category of sets Set.

Namely, for every basis open U ∈ B(X), the presheaf F attaches a set F (U),
and so we are given a map

U 7→ F (U) (4)

defined on the basis B(X) for a topology on X. Also, for every pair of opens U, V ∈
B(X) such that U ⊆ V , the presheaf F attaches a map resV, U : F (V ) → F (U),
and so we are given a map

{U ⊆ V } 7→ {resV, U : F (V )→ F (U)} (5)

with the properties of identity preserving and transitivity:

(i) idV 7→ idF (V ) for all opens V ∈ B(X);

(ii) resV, U ◦ resW,V = resW,U for all nested basis opens U ⊆ V ⊆W of B(X).

Given a basis B(X) for a topology on X, the data of (F (V ), resV, U )V,U∈B(X) satis-
fying these properties is called presheaf of sets over the basis B(X) for the topology
on X. In the case of an admissible text X, the topological basis B(X) consists of
all fragments of the kind Ux, that may be considered as empirical data.

Let F be a presheaf of sets over a basis B(X) for the topology O(X) on X. This
presheaf F is said to be a sheaf over the topological basis B(X) if the following
Claims Sb and Cb are satisfied:

Claim Sb. Let U be any open of the basis B(X) for the topology on X, and let
s, t ∈ F (U) be two elements of U . If there exists an open covering U =

⋃
j∈J Uj

by basis open sets Uj ∈ B(X) such that for each Uj of this covering, we have
resU,Uj (s) = resU,Uj (t). Then s = t.

Claim Cb. Let U be any open of the basis B(X) for the topology on X, and let
U =

⋃
j∈J Uj be a covering of U by basis open sets Uj ∈ B(X). Suppose we are given

a family (sj)j∈J of elements sj ∈ F (Uj) such that resUi, Ui∩Uj (si) = resUj , Ui∩Uj (sj).
Then there exists an element s ∈ F (U) such that resU,Uj (s) = sj for each open Uj.

It is obvious that the Claims Sb and Cb are similar to the Claims S and C in
the definition of a sheaf over a topological space.

Let F be a presheaf of sets over the basis B(X) for a topological space X. For
any open U ∈ O(X), the sets (F (V ))B3V⊆U together with maps resW,V (where
W ∈ B(X), V ∈ B(X) such that V ⊆ W ⊆ U) form a projective system. We can
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associate with F a presheaf of sets F ′ over X in the ordinary sense by assigning to
any open U ∈ O(X), the projective limit

F ′(U) = lim←−
B3V⊆U

F (V ), (6)

where V are running the set (ordered by ⊆) of all opens V ∈ B(X) such that V ⊆ U .
In the EGA of A. Grothendieck and J. A. Dieudonné [13, p. 75], there is a general

proposition that, for a presheaf with values in the category of sets, is interpreted as
the following result.

Proposition 5. For the presheaf F ′ defined over topology O(X) by (6) to be a
sheaf, that is, to verify the Claims S and C, it is necessary and sufficient that the
presheaf F defined over the basis B(X) for O(X) verifies the Claims Sb and Cb.

Let F , G be two presheaves of fragmentary meanings defined over the topo-
logical basis B(X). We define a morphism θ : F → G as a family (θ(V ))V ∈B of
maps θ(V ) : F (V ) → G (V ) satisfying the conditions of compatibility with the cor-
responding restriction morphisms. With the notation of Proposition 5, we deduce a
morphism θ′ : F ′ → G ′ of presheaves of fragmentary meanings defined on all opens
U ∈ O(X) by taking θ′(U) to be the projective limit of θ(V ) for V ∈ B(X) and
V ⊆ U ∈ O(X).

Let F be a sheaf of fragmentary meanings over O(X), and let F1 be a sheaf over
B(X) defined by the restriction of F to B(X). Then, the sheaf F1

′ over OpenX
that we obtained from F1 according to the Proposition 5 is canonically isomorphic
to F , because of the claims S and C, and by the uniqueness of the projective limit.
Usually, we identify F and F1

′.
For two sheaves F , G defined over O(X) and a morphism θ : F → G , one can

show that the data of θ(V ) : F (V ) → G (V ) given only for V ∈ B(X) determines
completely the morphism θ. For more details, see EGA of A. Grothendieck and
J. A. Dieudonné [13, p. 76].

Theoretically speaking, this means that we have a good reason to move the
considerations from the level of empirical data, where a phonocentric topology is
revealed by the minimal basis (Ux)x∈X , to the general level, more abstract but
more simple, where a phonocentric topology is defined by the set O(X) of all opens
according to the classical Hausdorff axioms (t1), (t2), and (t3) of a topological space.
In mathematics, the axiomatic view on a topology is particularly useful in all sorts
of reasonings where topological structures are concerned. Once we have defined a
topological space in terms of its basis, we may continue the reasoning in terms of all
open sets of this topology.
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5.4 Compositionality of locally defined modes of reading

Note that the class of objects in the category Schl(X) is not limited to a modest
list of sheaves corresponding to literal, allegoric, moral, psychoanalytical and other
senses mentioned above. In the process of text interpretation, the reader’s semantic
intentionality changes from time to time, with the result that there is some com-
positionality (or gluing) of these locally defined sheaves of fragmentary meanings,
which we consider in details in [31]. There is a standard way to name the result of
such a gluing as, for example, this is the case of Freudo-Marxist sense.

As the reader’s intentionality to interpret an arbitrary text in a certain sense F ,
this particular sense F yet precedes a reading; for example, one may intend to read
a story in a moral sense. But for a given text X, the intentional object ‘sense F ’ is
represented by the sheaf of sets (F (V ), resV, U )V,U∈O(X) of fragmentary meanings.

To analyze the compositionality of senses (or modes of reading) in our sheaf-
theoretic formalism, we recall firstly the notion of induced sheaf. Let X be a topo-
logical space, let U be an open set of X, and let i : U �

�
// X be the canonical

injection of the open U in X. Then, for any sheaf F of sets over X, one can define a
sheaf of sets over U , which is called sheaf induced by F on U , and which is denoted
as F |U , by setting:

(F |U )(V ) = F (i(V )) for any open V ⊆ U ;
(res|U )W,V = resi(W ), i(V ) for all opens V,W ⊆ U such that V ⊆W.

For any morphism θ : F → G of sheaves of sets over X, we note by θ|U the
morphism F |U → G |U consisting of maps θ(i(V )) for opens V ⊆ U .

We have a reason to assume that the reading of the whole text X in a sense F
is represented by an open covering (Uλ)λ∈L of the text X, where each fragment Uλ
is read in a sense Fλ that is defined as Fλ = F |Uλ .

The obvious concordance of these senses Fλ means that for all pairs of open
fragments Uλ, Uµ ⊆ X, we have an isomorphism

θλµ : Fµ|(Uλ∩Uµ)
∼→ Fλ|(Uλ∩Uµ). (7)

In other words, in the interpretation of the common part Uλ ∩ Uµ, we can change
the sense Fλ to the sense Fµ and vice versa.

It is useful to denote Uλµ = Uλ ∩ Uµ and Uλµν = Uλ ∩ Uµ ∩ Uν . Then, in this
notation, the family of isomorphisms

θλµ : Fµ|Uλµ
∼→ Fλ|Uλµ (8)
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satisfies the condition:

(for all Uλ, Uµ, Uν) θλµ ◦ θµν = θλν on Uλµν . (9)

In the theory of sheaves, there is a theorem stating that a family of isomorphisms
satisfying the condition (9) allows us to rebuild the sheaf F uniquely. The following
proposition is a linguistic version of this general mathematical result:

Proposition 6. Let (Uλ)λ∈L be an open covering of the text X, where each fragment
Uλ is read in a sense Fλ. Let for each pair of fragments Uλ, Uµ of (Uλ)λ∈L be
given an isomorphism θλµ : Fµ|Uλµ

∼→ Fλ|Uλµ of sheaves over Uλµ. Assume these
isomorphisms are satisfying the condition that for all Uλ, Uµ, Uν of the covering:

θλµ ◦ θµν = θλν on Uλµν . (10)

Then, there exists a sheaf F over X, and for each Uλ of the covering (Uλ)λ∈L there
exists an isomorphism θλ : F |Uλ

∼→ Fλ such that θµ = θµλ ◦ θλ for Uλ, Uµ of the
covering (Uλ)λ∈L. Moreover, (F , (θλ)λ∈L) is unique up to unique isomorphism.

For the proof, see EGA of A. Grothendieck and J. A. Dieudonné [13, p. 77].
The family of isomorphisms (θλµ) satisfying the gluing condition (10) is called a

1-cocycle. One says that the sheaf F is obtained by gluing of sheaves (Fλ)λ∈L by
means of θλµ, and usually one identifies Fλ and F |Uλ by means of θλ.

For a finite family of sheaves (Fλ)λ∈L and their isomorphisms θλµ satisfying the
condition of gluing (10), the sheaf F is called to be their composition obtained by
the gluing of sheaves (Fλ)λ∈L by means of the θλµ; this describes how we define the
compositionality of locally defined modes of reading (senses) understood as sheaves
of fragmentary meanings.

The gluing of sheaves is a compositionality method that enables us to obtain a
large number of globally defined sheaves from a small number of locally defined ones.
In fact, the sense F as a global mode of reading (or an integral intention during
the interpretation of the whole text) is composed of all local modes of reading taken
during interpretations of parts.

Example. According to the biblical hermeneutics, the readings of the Scripture in
the literal, allegorical, moral, and anagogical senses are consistent over each frag-
ment of the type Ux. Suppose that we have read the whole text of the Scripture
by fragments, where each fragment was read in one of these four senses (literal,
allegorical, moral, anagogical). These partial readings satisfy the gluing condition
(10) above. There exists therefore a sense F of reading of the whole text of the
Scripture such that for each of its sentence, there are a neighbourhood and one of
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these four senses (literal, allegorical, moral, anagogical) that is consistent with the
reading of this neighbourhood in the sense F . The sense F is a composition of these
four senses (literal, allegorical, moral, anagogical), but globally it differs from each
of these four senses being applied to the whole text. Hence, for the text E of the
Scripture, the class of objects of the category of Schleiermacher Schl(E) contains
not only these four senses (literal, allegorical, moral, and anagogical) but much more
their compound senses, where each compound sense F is defined by gluing a family
of these four senses according to a particular covering of the text by fragments, such
that each fragment is read in only one sense of these four.

We summarize the results of our analysis presented in Sect. 5 as the following:

Slogan (Sheaves of Fragmentary Meanings as Semantics). The mathematical
study of a natural language texts interpretation in terms of the category of sheaves
of fragmentary meanings and their morphisms is a sheaf-theoretic formal semantics.

6 Bundles of contextual meanings

So far, we have considered only the meanings of open sets in the phonocentric
topology at any semantic level. In this section, we describe how we have to define
the meanings of points in the phonocentric topology at a given semantic level. It
should be noticed that in general, not every singleton x is open in T0-topology, and
if this is the case, the meaning of such a point x has not yet been defined.

In 1884, Frege wrote in the Die Grundlagen der Arithmetik [9, p. X]: “nach der
Bedeutung der Wörter muss im Satzzusammenhange, nicht in ihrer Vereinzelung
gefragt werden;” This declaration is traditionally named as Frege’s principle of con-
textuality. Frege stated it eight years before he pointed out his theoretic distinction
between Sinn and Bedeutung; that is why the word ‘Bedeutung’ here is usually
translated in English as ‘meaning’: “Never ask for the meaning of a word in isola-
tion, but only in the context of a sentence”. As we have yet seen in the Sect. 3.4,
the context of a whole sentence is the greatest possible at the semantic level of sen-
tence. We may also ask for the meaning of a word x in the context of a clause to
which it belongs, or in the context of some lesser part of this clause as, e.g., of the
smallest part Ux. This restatement makes Frege’s definition more precise. If we try
to recast such a contextuality principle to the level of text, then we would have to
say: “Never ask for the meaning of a sentence in isolation, but only in
the context of some meaningful fragment of a text”. Such a fragment may
be chosen in many ways to induce the same contextual meaning of the sentence.

To formalize this definition, let us consider the phonocentric topology at the
level of text. Let a sentence x belongs to meaningful fragments (opens) U and V .
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Then fragmentary meanings s ∈ F (U), t ∈ F (V ) are said to induce the same con-
textual meaning of a sentence x ∈ U ∩ V if there exists some open neighbourhood
W of x, such that W ⊆ U ∩ V and resU,W (s) = resV,W (t) ∈ F (W ). The identity of
fragmentary meanings is understood here accordingly to the criterion claimed by S.

This relation ‘fragmentary meanings s, t induce the same contextual meaning of
the sentence x’ is clearly an equivalence relation. The equivalence class so defined by
a fragmentary meaning s is called a germ at x of this s, and is denoted by germx(s).
The equivalence class of fragmentary meanings agreeing in some open neighbourhood
of a sentence x is natural to define as a contextual meaning of x. Let Fx be the set of
all contextual meanings of x. Following S. Mac Lane and I. Moerdijk [20, pp. 83,84],
this Fx is nothing else but the inductive limit Fx = lim−→(F (V ), resV, U )V,U∈O(x),
where O(x) is the set of all open neighbourhoods of x.

In the bundle-theoretic terms, we summarize the aforesaid as the following:

Frege’s Generalized Contextuality Principle. Let F be an adopted sense of
reading of a fragment U of an admissible text X. For a sentence x ∈ U ⊆ X, its
contextual meaning is defined as a germx(s) at x of some fragmentary meaning
s ∈ F (U). The set Fx of all contextual meanings of a sentence x ∈ X is defined
as the inductive limit Fx = lim−→(F (V ), resV, U )V,U∈O(x), where O(x) is the set of all
open neighbourhoods of x, that is the set of all meaningful fragments containing x.

Remark. Note that for an open singleton {x}, we may canonically identify
Fx = F ({x}).

For the coproduct F =
⊔
x∈X Fx, we define now a projection map p : F → X by

setting p(germxs) = x. Every fragmentary meaning s ∈ F (U) determines a genuine
function ṡ : x 7→ germxs to be well-defined on U .

We define the topology on F by taking as a basis for this topology all the image
sets ṡ(U) ⊆ F . For an open U ⊆ X, a continuous function t : U → F such that
t(x) ∈ p−1(x) for all x ∈ U is called a cross-section. The topology defined on F
makes p and every cross-section of the kind of ṡ to be continuous.

For a given topological space X, we have so defined a topological spaces F and
a continuous surjection p : F → X. In topology, this data (F, p) is called a bundle
over the base space X. A morphism of bundles from p : F → X to q : G → X is a
continuous map h : F → G such that the diagram

F
h //

p
%%

G

q
yy

X

commutes, that is, q ◦ h = p.
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Thus, we have defined a category of bundles over X. A bundle (F, p) over X
is called étale if p : F → X is a local homeomorphism. It is immediately seen that
a bundle of contextual meanings (

⊔
x∈X Fx, p) constructed as above from a given

sheaf F of fragmentary meanings is étale. Thus, for an admissible text X, we have
defined the category Context(X) of étale bundles (of contextual meanings) over X
as a framework for the generalized contextuality principle at the level of text.

The similar definition may be formulated at each semantic level. The definition
formulated at the level of sentence returns Frege’s classic contextuality principle.
Once a semantic level is given, the definition of a contextual meaning for a point
x of the corresponding topological space X is stated as germxs, where s is some
fragmentary meaning defined on some neighbourhood U of x.

7 Frege duality

For a given admissible text X, we have defined two categories formalizing the in-
terpretation process, that is, the Schleiermacher category Schl(X) of sheaves of
fragmentary meanings and the category Context(X) of étale bundles of contextual
meanings. Our intention now is to relate them to each other.

We will firstly define a so-called germ-functor

Λ: Schl(X)→ Context(X).

For each sheaf F , it assigns an étale bundle Λ(F ) = (
⊔
x∈X Fx, p), where the

projection p is defined as above. For a morphism of sheaves φ : F → F ′, the induced
map of fibers φx : Fx → F ′x gives rise to a continuous map Λ(φ) :

⊔
x∈X Fx →⊔

x∈X F ′x such that p′ ◦Λ(φ) = p; hence Λ(φ) defines a morphism of bundles. Given
another morphism of sheaves ψ, one sees easily that Λ(ψ ◦ φ) = Λ(ψ) ◦ Λ(φ) and
Λ(idF ) = idF . Thus, we have constructed a desired germ-functor Λ: Schl(X) →
Context(X).

We will now define a so-called section-functor

Γ: Context(X)→ Schl(X).

We denote a bundle (F, p) over X simply by F . For a bundle F , we denote the set of
all its cross-sections over U by Γ(U,F ). If U ⊆ V are open sets, one has a restriction
map resV, U : Γ(V, F ) → Γ(U,F ) that operates as s 7→ s|U , where s|U (x) = s(x) for
all x ∈ U . It is clear that resU,U = idΓ(U,F ) for any open U , and that the transitivity
resV, U ◦ resW,V = resW,U holds for all nested opens U ⊆ V ⊆ W . So we have
constructed obviously a sheaf (Γ(V, F ), resV, U ).
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Then for any given morphism of bundles h : E −→ F , we have a map
Γ(h)(U) : Γ(U,E) → Γ(U,F ) defined as Γ(h)(U) : s 7→ h ◦ s, which is obviously
a morphism of sheaves. Thus, we have constructed a desired section-functor
Γ: Context(X)→ Schl(X).

The fundamental theorem of topology states that the section-functor Γ and the
germ-functor Λ establish a dual adjunction between the category of presheaves and
the category of bundles (over the same topological space); this dual adjunction
restricts to a dual equivalence of categories (or duality) between corresponding full
subcategories of sheaves and of étale bundles (see, e.g., [19, p. 179] or [20, p. 89]).
Transferred to linguistics in our [28], it yields at the level of text the following:

Theorem (Frege Duality). The generalized compositionality and contextuality
principles are formulated in terms of categories those are in natural duality

Schl(X)
Λ // Context(X)
Γ

oo

established by the section-functor Γ and the germ-functor Λ, the pair of adjoint
functors.

Each fragmentary meaning s ∈ F (U) determines a function ṡ : x 7→ germxs to
be well-defined on U ; for each x ∈ U , its value ṡ(x) is taken in the stalk Fx. This
gives rise to a functional representation

η(U) : s 7→ ṡ (11)

defined for all fragmentary meanings s ∈ F (U). This representation of a frag-
mentary meaning s as a genuine function ṡ provides an insight into the nature of
fragmentary meanings. Each fragmentary meaning s ∈ F (U), which has been de-
scribed in Sect. 5 as an abstract entity, may now be thought of as a genuine function
ṡ defined on the fragment U of a given text. At the argument (sentence) x ∈ U , this
function ṡ (representing s) takes its value ṡ(x) to be the contextual meaning germxs
of this sentence x

x 7→ ṡ(x) = germxs (12)

Remark. Due to the functional representation (11), the Frege duality is of a great
theoretical importance because it allows us to consider any fragmentary meaning
s as a genuine function ṡ : xi 7→ germxis that assigns to each sentence xi ∈ U its
contextual meaning germxis, and which is continuous on U . It allows us to de-
velop a kind of dynamic theory of meaning [28, 31, 34] describing how, during the
reading of the text X = (x1, x2, x3, . . . , xn), the understanding proceeds through
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the discrete time i = 1, 2, 3, . . . , n as a sequence of grasped contextual meanings
(ṡ(x1), ṡ(x2), ṡ(x3), . . . , ṡ(xn)). That gives rise to a genuine function ṡ on X rep-
resenting some s ∈ F (X); this s is one of possible meanings of the whole text X
interpreted in the sense F .

Moreover, this duality gives a solution to an old problem concerning delicate
relations between Frege’s compositionality and contextuality principles, in revealing
that the acceptance of one of them implies the acceptance of the other (see, e.g., [31]).

8 Sheaf-theoretic dynamic semantics

We sketch now a formal model of a natural language text understanding, which is
a kind of dynamic semantics we proposed in [29, 31, 34]. Our approach describes
the dynamics of interpretation process that results in the understanding of a certain
meaning of the whole text in its integrity. With the notations used above, for a given
text X = (x1, . . . , xn) interpreted in a sense F , we have to describe how a reader
finally grasps some global section s ∈ F (X) of a sheaf F of fragmentary meanings.

We consider first a particular case of reading from the very beginning of an
admissible text X = (x1, x2, x3, . . . , xn) whose size is short enough to allow a reading
at one sitting. The general case will be reduced to this particular case by means of
the generalized Frege’s compositionality principle.

The first sentence x1 in the order ≤ of writing must obviously be understood
in the context that consists of its own data. This means that a first sentence x1
constitutes an open one-point set {x1}. Thus Ux1 = {x1}, and hence the sentence x1
should be a minimal element in the specialization order; therefore Fx1 = F ({x1}).

This means that the grasping of a contextual meaning of x1 is equivalent to the
grasping of a fragmentary meaning of the fragment {x1} reduced to this sentence x1.
It is obviously equivalent to the grasping of a global meaning of this sentence x1 at the
semantic level of a sentence considered as a sequence of words. We understand first
the theme (topic) of this sentence x1, and then we understand the rheme (comment)
as what is being said in the sense F concerning this theme. Thus, we have done
a descent from the level of text to the level of sentence. In our reasoning, it is the
basis of induction.

Let us now do the induction step. Let us suppose that we have read and un-
derstood the text X in the sense F from the beginning x1 up to the sentence xk,
1 < k < n. That is, we suppose that we have already endowed X = (x1, . . . , xk)
with a phonocentric topology and we have built a suite (ṡx1 , . . . , ṡxk) of con-
textual meanings of sentences of the open set U = (x1, . . . , xk) of a given text
X = (x1, . . . , xk, . . . , xn). The suite (ṡx1 , . . . , ṡxk) of contextual meanings is a con-
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tinuous function that represents some fragmentary meaning s ∈ F (U).
We consider the interpretation process at its (k + 1)-th step as the choice of an

appropriate context Uxk+1 for xk+1 that endows the initial segment (x1, . . . xk+1)
with a particular phonocentric topology among many possible, and allows us to
extend the function s defined on the open (x1, . . . , xk) to a function defined on the
open (x1, . . . , xk+1).

The phrase xk+1 is read in the context of the fragment (x1, . . . , xk+1) of the text
X. This neighbourhood is the most large context among possible ones we dispose to
understand the contextual meaning of xk+1. To grasp the same contextual meaning
of xk+1, it suffices to understand only its minimal neighbourhood Uxk+1 . It may be
two cases:

Case 1◦. It may happen that the understanding of the sentence xk+1 is inde-
pendent of the understanding of U = (x1, . . . , xk), for it constitutes alone its own
context {xk+1} = Uxk+1 because there is here a turning point in the narrative, what
may be confirmed by various morphologic markers such as the beginning of a new
chapter, etc. The contextual meaning ṡxk+1 is defined at a point xk+1, and as such
it is a continuous function because {xk+1} constitutes an open set.

The process of understanding of xk+1 is therefore conducted in the same way as
that one of the first sentence x1 whose case we have considered above as the basis
of induction.

Note that the interval U = (x1, . . . , xk) is open. We can therefore extend the
suite (ṡx1 , . . . , ṡxk) we supposed to be a continuous function on U = (x1, . . . , xk) to
the suite (ṡx1 , . . . , ṡxk+1) that is a continuous function on (x1, . . . , xk+1).

Case 2◦. The understanding of xk+1 is reached with the support of the under-
standing of the preceding sentences of the interval U = (x1, . . . , xk). Not all the
sentences in U = (x1, . . . , xk) are required to determine the understanding of xk+1,
but only some subsequence of U . Let V be a subsequence of U , such that V con-
tains only sentences those are required for the understanding of xk+1. We define a
phonocentric topology on (x1, . . . , xk+1) by defining Uxk+1 = V ∪ {xk+1}.

Now we transform the subsequence V into one sentence in such a way that each
sentence of V , except the first in the order ≤ of writing, begins with “and then” that
assembles it to the preceding sentence in order to get a compound sentence. This
single lengthy sentence x is made up of all sentences of V in order to get the thematic
context that allows the sentence xk+1 to express its communicative content. Finally,
we join xk+1 to x by means of “and then” inserted at the beginning of the sentence
xk+1, that transforms xk+1 into another sentence x′k+1.

In the text (x1, . . . , xk, x
′
k+1) so defined, the sentence x′k+1 constitutes an open

one-point set {x′k+1} that is understandable in the context of its own data. A
contextual meaning of x′k+1 is grasped when we understand the rheme of xk+1 as
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being what is said in the sense F concerning the theme of xk+1 in the context
defined by the sentences of V . But obviously the contextual meaning of x′k+1 is
the same as the contextual meaning of xk+1. So we have extended the sequence of
contextual meanings (ṡx1 , . . . , ṡxk) to the sequence (ṡx1 , . . . , ṡxk+1).

Thus, we have done a descent from the level of text to the level of sentence.
This trick is inspired by Russell’s work How I write [38], where he discuss advises
he received at the beginning of his career of a writer.

We consider now a general case of reading of an admissible text X whose size
does not allow us to finish reading at one sitting. In this case, we consider the
reading process of a text X as its covering by some family of meaningful fragments
(Uj)j∈J already read, that is X =

⋃
j∈J Uj is an open covering.

Let us suppose given a family (sj)j∈J , where sj ∈ F (Uj) such that all genuine
functions ṡj : x 7→ germxsj of the corresponding family (ṡj)j∈J are pairwise compat-
ible, that is ṡi

∣∣
Ui∩Uj

(x) = ṡj
∣∣
Ui∩Uj

(x) for all x ∈ Ui ∩ Uj .
Let us define the function t on X =

⋃
j∈J Uj as t(x) = ṡj(x) if x ∈ Uj for some j.

The Frege duality theorem states that t = ṡ where s ∈ F (X) is a composition of the
family (sj)j∈J , whose existence is ensured by the generalized Frege’s compositionality
principle.

The formalization of the interpretation process as an extension of a function
introduces a dynamic view of semantics, and its theory deserves the term inductive
because the domain of a considered function is naturally endowed with two order
structures, that is, the linear order of writing ≤ and the specialization order �
of context-dependence. We have outlined so a sheaf-theoretic framework for the
dynamic semantics of a natural language, where the understanding of a text X in
some sense F is described as a process of step-by-step grasping for each sentence xi
of only one contextual meaning ṡ(xi) from the fiber Fxi lying over xi in the étale
bundle Context(X) of contextual meanings.

9 Algebraic semantics versus sheaf-theoretic semantics

According to T. M. V. Janssen, the compositionality principle is a basis for Mon-
tague grammar, Generalized phrase structure grammar, Categorial grammar and
Lexicalized tree adjoining grammar. These theories propose the different notions of
meaning, but follow the compositionality principle in its standard interpretation:

A technical description of the standard interpretation is that syntax and se-
mantics are algebras, and meaning assignment is a homomorphism from syntax
to semantics. (T. M. V. Janssen [15, p. 116])
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Let us consider this conception of standard interpretation as an algebraic homo-
morphism f : A → B, where the algebra A is representing Syntax, and the algebra
B is representing Semantics.

Whatever the algebras A and B would be, the homomorphism f is a function in
a set-theoretic paradigm. Given the function f , we define the relation q on A so that
〈x, y〉 ∈ q, if and only if f(x) = f(y). Clearly, this q is an equivalence relation on A.
Any given element a ∈ A lies in precisely one equivalence class; if f(a) = b ∈ B, then
the equivalence class of a is f−1(b). The set of equivalence classes is denoted by A/q
and called the quotient set of A by q. Let the equivalence classes of a be denoted by
aq. If with each x ∈ A we associate xq, we obtain a function ε : A→ A/q, called the
identification associated with q. Clearly the function ε is surjective, by definition.
Following the Theorem 3.1 of [4, p. 15], there is a decomposition of f :

A
f−−−−→ B

ε

y xµ
A/q

f ′−−−−→ f(A),

where ε : A→ A/q is a surjection, f ′ : A/q→ f(A) is a bijection, and µ : f(A)→ B
is an injection.

In the category of algebras, an injective homomorphism is called a monomor-
phism; a surjective homomorphism is called an epimorphism; every bijective ho-
momorphism should be an isomorphism (usually defined as an invertible homomor-
phism). The above decomposition theorem remains valid in the category of algebras;
moreover, A/q and f(A) may be endowed with the structures of algebras in such a
way that ε, f ′, µ become homomorphisms.

Linguistically speaking, the Syntax and the Semantics should not be one and
the same theory. Thus, the meaning assignment homomorphism f : A → B should
not be an isomorphism. Nor should this homomorphism f be a monomorphism;
otherwise the Syntax A would be isomorph with a proper part of the Semantics B.
Hence, f should be an epimorphism with a non-trivial kernel that is defined to be
the congruence relation q described above. Two different elements of an algebra A
representing Syntax are congruent if and only if they are mapped to the same element
of an algebra B representing Semantics. Thus, the different syntactical objects
will have one and the same meaning as their value under such a homomorphism
f : A→ B. Thus, an algebraic approach is pertinent in the study of synonymy, but
the problems of polysemy do resist to algebraic semantic theories. Moreover, an
algebraic semantic, of whatever kind, is always static because the meaning f(x) ∈ B
of a syntactic element x ∈ A under the homomorphism f is calculated in the algebra
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B just after the calculation of meanings of all syntactic components of x was done.

However, when studying the process of interpretation of a natural language text,
we are confronted with a quite another situation. Any admissible text is really a great
universe of meanings to be disclosed or reconstructed in the process of reading and
interpretation. But these multiple meanings are offered to a reader as got identified
in a single text. Thus, in the process of interpretation of a natural language text,
the reader is confronted with a surjection: Semantics→ Syntax. Note that we have
turned the arrow round, and this is a paradigmatic turn.

From a sheaf-theoretic point of view, a discourse interpretation activity proceeds
as the following: The text X under interpretation is a given sequence of its sentences
x1, x2, x3, . . . , xn; this is a finite combinatorial object from the universe of Syntax.
Over these sentences, there is another sequence of stalks of their contextual meanings
Fx1 ,Fx2 ,Fx3 , . . . ,Fxn ; this is a potentially infinite and, in some degree, a virtual
object from the universe of Semantics. The total disjoint union of all these stalks,
that is, the coproduct F =

⊔
x∈X Fx is projected by a local homeomorphism p on

the text X. Thus, we have the surjective projection p : F → X from Semantics to
Syntax. The challenge of text interpretation is to create a global cross-section s of the
projection p; this s is constructed as a sequence of grasped step-by-step contextual
sentences’ meanings (ṡ(x1), ṡ(x2), ṡ(x3), . . . , ṡ(xn)); it gives rise to a genuine function
ṡ on X representing some global cross-section s ∈ F (X); this s is one of all possible
meanings of the whole text X interpreted in the sense F .

The proposed sheaf-theoretic semantics answers to crucial questions about what
the fragmentary meanings are and how they are formally composed. That is, we con-
sider the reading process of a fragment U in a sense F as its covering by some family
of subfragments (Uj)j∈J , each read in a unique session. Any family (sj)j∈J of pair-
wise compatible fragmentary meanings sj ∈ F (Uj) under a functional representation
(11) gives rise to a family (ṡj)j∈J of genuine functions (where each ṡj is defined on Uj
by (12)), those are pairwise compatible in the sense that ṡi

∣∣
Ui∩Uj

(x) = ṡj
∣∣
Ui∩Uj

(x)
for all x ∈ Ui ∩ Uj . Let a cross-section s be defined on U =

⋃
j∈J Uj as s(x) = ṡj(x)

if x ∈ Uj for some j. Then this cross-section s over U is clearly a composition of the
family (ṡj)j∈J as it is claimed by the generalized Frege’s compositionality principle.

The sheaf-theoretic conception of compositionality serves as the basis for the
dynamic semantics we discussed in the Sect. 8. This approach has an advantage
because 1◦ it extends the area of semantics from the level of sentence or phrase to the
level of text or discourse, and it gives a uniform treatment of discourse interpretation
at each semantic level (word, sentence, paragraph, text); 2◦ it takes into theoretical
consideration the polysemy of words, sentences and texts.
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10 Sheaf-theoretic formal hermeneutics

Our approach provides a mathematical model of a text interpretation process while
rejecting attempts to codify interpretative practice as a kind of calculus. In a series of
previous papers [28, 29, 31–33], we named this text interpretation theory as formal
hermeneutics. It presents a formal framework for syntax and semantics of texts
written in some unspecified natural language, say for us English, French, German,
Russian considered as a means of communication. The object of study in this formal
hermeneutics are couples (X,F ) made up of an admissible text X and a sheaf
F of its fragmentary meanings; we call any such a couple textual space. But this
representation is possible only in the realm of a language following the famous slogan
of Wittgenstein, “to understand a text is to understand a language”. Rigorously,
this claim may be formulated in the frame of category theory. Likewise, the present
sheaf-theoretic formal semantics describes a natural language in the category of
textual spaces Logos. The objects of this category are couples (X,F ), where X
is a topological space naturally attached to an admissible text and F is a sheaf of
fragmentary meanings defined on X; the morphisms are couples (f, θ) : (X,F ) →
(Y,G ) made up of a continuous map f : X → Y and a f -morphism of sheaves θ
that respects the concerned sheaves; such an f -morphism is formally defined as
θ : G → f∗F , where f∗ is a well-known direct image functor (see, e.g., [31]).

Given any admissible text E considered to be fixed forever as, for instance, the
Scripture, it yields a full subcategory Schl(E) in the category Logos of all textual
spaces. Named after Schleiermacher, the category Schl(E) describes the exegesis of
this particular text.

The topological syntax and the dynamic sheaf-theoretic semantics based on Frege
duality, as well as different categories and functors related to discourse and text
interpretation process are the principal objects of study in the sheaf-theoretic formal
hermeneutics as we understand it.
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Abstract

For a provably recursive function f : N → N of PA one can consider the
notion of f -consistency for PA, Conf (PA) := ∀xCon(PA �f(x)), where PA �k
denotes the fragment of PA with induction restricted to Σk formulae. It was
shown in [8] that for a certain slow growing function f the strength of PA +
Conf (PA) lies strictly between PA and PA + Con(PA). Letting τBH be the
Bachmann-Howard ordinal, this paper exhibits for every α < τBH, a hierarchy
of ever slower functions (fξ)ξ<α of length α such that for ζ < ξ < α one has
PA C PA + Confξ

(PA) C PA + Confζ
(PA) C PA + Con(PA), where T1 C T2

conveys that T2 interprets T1 but T1 does not interpret T2. This confirms a
conjecture stated in [8, 3.2.2].

It is also observed that the axioms of Gödel-Löb logic, GL, hold for any
provability interpretation embodying slow provability. As a result, one obtains
the equivalent of Solovay’s completeness theorem for GL for all of these slow
provability notions.

Keywords: Peano Arithmetic, Bachmann-Howard Ordinal, Consistency Strength,
Interpretation, Fast Growing Function, Slow Consistency, Slow Provability Interpre-
tations.
2000 MSC: Primary: 03F25, 03F30, Secondary: 03C62, 03F05, 03F15, 03H15.

1 Introduction

The question whether there are “natural" theories lying strictly between Peano arith-
metic, PA, and PA augmented by the standard consistency statement Con(PA)
informed the paper [8] and led to a notion of slow consistency. It was also shown
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( [8, 4.2]) that iterating slow consistency n-times gives rise to string of n theories of
increasing strength lying between PA and PA + Con(PA). In the meantime, it has
been shown by A. Freund [6] as well as P. Henk and F. Pakhomov [11] that iterating
this operation through all the ordinals < ε0 yields a hierarchy of theories strictly
residing between PA and PA + Con(PA), confirming a conjecture stated in [8, 4.4].
The hierarchy also reaches Con(PA) at level ε0 (see e.g. [6, 3.6]) and thus cannot be
extended below PA + Con(PA). The current paper will show that there are much
longer descending sequences of theories between PA + Con(PA) and PA.

For a provably recursive function f : N→ N of PA one can consider the notion
of f -consistency for PA, Conf (PA) := ∀xCon(PA �f(x)), where PA �k denotes
the fragment of PA with induction restricted to Σk formulae. It was shown in [8]
that for a certain slow growing function f the strength of PA + Conf (PA) lies
strictly between PA and PA + Con(PA). Letting τBH be the Bachmann-Howard
ordinal, this paper exhibits for every α < τBH, a hierarchy of ever slower functions
(fξ)ξ<α of length α such that for ζ < ξ < α one has PA C PA + Confξ(PA) C
PA + Confζ (PA) C PA + Con(PA), where T1 C T2 conveys that T2 interprets T1
but T1 does not interpret T2.1 This confirms ruminations stated in 3.2.2 in [8].

The paper is organized as follows. Section 2 introduces an ordinal represen-
tation system for the Bachmann-Howard ordinal together with an assignment of
fundamental sequences. This gives rise to the hierarchies of slow and fast growing
functions along this ordinal. Some properties about these hierarchies that can be
proved in PA are considered in section 3. Section 4 presents the heart of the pa-
per as described above. The final section 5 contains the miscellaneous observation
that the axioms of Gödel-Löb logic, GL, hold for any provability interpretation em-
bodying slow provability. As a consequence, one obtains the equivalent of Solovay’s
completeness theorem for GL for all of these slow provability notions.

2 An ordinal representation system for the Bachmann-
Howard ordinal

There are many articles featuring ordinal representation systems for the Bachmann-
Howard ordinal. Here we shall use a syntactic approach that suits our purposes.

1 Let S and S′ be arbitrary theories. S′ is interpretable in S or S interprets S′ (in symbols
S′ E S) “if roughly speaking, the primitive concepts and the range of the variables of S′ are defined
in such a way as to turn every theorem of S′ into a theorem of S" (quoted from [15, p. 96]; for
details see [15, section 6]).
For theories S and S′ such that PA ⊆ S, S′ having the same language as PA, S′ E S is actually

equivalent to saying that every Π1 statement provable in S is also provable in S′. This is due to
Guaspari [10] and Lindström [14] (see also [15, Theorem 6]).
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We first define a set of terms T and a linear ordering ≺ on T . The desired ordinal
representation system T (Ω) will then arise as a proper subset of T . T (Ω) will also
be equipped with an assignment of fundamental sequences, giving rise to hierarchies
of fast and slow growing functions.

Definition 2.1. The set of terms T , its principal terms, and the relation ≺ are
defined inductively by the following clauses. Below a 4 b stands for a ≺ b ∨ a = b.

1. 0 ∈ T and 1 ∈ T . 1 is a principal term.

2. If a ∈ T , then ψa ∈ T and ψa is a principal term.

3. If a0, . . . , an ∈ T are principal terms, n ≥ 1, and an 4 . . . 4 a0, then
(a0, . . . , an) ∈ T .

4. If a, b ∈ T , 0 ≺ a and b is a principal term of either form 1 or ψc, then Ωab ∈ T
is a principal term.

5. If a ∈ T and a 6= 0 then 0 ≺ a.

6. 1 ≺ a for any a ∈ T such that a 6= 0 and a 6= 1.

7. If b ≺ a then ψb ≺ ψa.

8. ψa ≺ Ωcb whenever ψa,Ωcb ∈ T .

9. If Ωab,Ωcd ∈ T , then Ωab ≺ Ωcd whenever a ≺ c or a = c and b ≺ d.

10. If a = (a0, . . . , an), b ∈ T , a0 ≺ b and b is a principal term, then a ≺ b.

11. If a = (a0, . . . , an), b ∈ T and b is a principal term 4 a0 then b ≺ a.

12. If a = (a0, . . . , an), b = (b0, . . . , bm), a, b ∈ T , and there exists i ≤ min(m,n)
such that ai ≺ bi and ∀j < i aj = bj , then a ≺ b.

13. If a = (a0, . . . , an), a′ = (a0, . . . , an, an+1, . . . , am) and a, a′ ∈ T , then a ≺ a′.

>From now on, we will use the shorthand Ω for Ω11.

Corollary 2.2. ≺ furnishes T with a linear ordering. However, it is not a well-
ordering since e.g. ψΩ � ψ(ψΩ) � ψ(ψψ(Ω)) � ψ(ψ(ψ(ψΩ))) � . . ..

Definition 2.3. The terms 0, 1, (1, 1), (1, 1, 1), . . . will be identified with the natural
numbers.

We define ω := ψ0. One then has a ≺ ω iff a is a natural number in this sense.
A term (a0, . . . , an) of T can be viewed as a sum of a0, . . . , an (in the ordinal

sense). We extend this to all terms of T as follows.

1413



M. Rathjen

1. a+ 0 := 0 + a := a.

2. Identifying a principal term b with (b), we can write any non-zero term a ∈ T
as (a0, . . . , an), where a0, . . . , an are principal terms and an 4 . . . a0, of course
allowing the case n = 0. We then define

(a0, . . . , an) + (b0, . . . , bm) := (a0, . . . , ak−1, b0, . . . , bm)

where k := max{l ≤ n+ 1 | ∀i < l b0 4 ai}.

The operation + is obviously associative on T . Clearly for (a0, . . . , an) ∈ T , we then
have (a0, . . . , an) = a0 + . . .+ an.

For principal terms a put a · 0 := 0 and a · (n + 1) := (a · n) + a, where n is a
natural number.

We also define Ωac for arbitrary a ∈ T and c ≺ Ω. Let Ω0c := c and Ωa0 := 0.
For c = (c0, . . . , cn) put Ωac := Ωac0 + . . .+ Ωacn.

Henceforth we shall often write Ωa for Ωa1.

Next we define for each c ∈ T a distinguished fundamental sequence (c[x])x≺tp(c).

Definition 2.4. 1. tp(0) := 0, tp(1) := 1 and 1[0] := 0.

2. If (a0, . . . , an) ∈ T with n > 0, then tp(a0, . . . , an) = tp(an) and
(a0, . . . , an)[x] := a0 + . . .+ an−1 + (an[x]) for x ≺ tp(an).

3. If Ωab ∈ T and b is a principal term other than 1, then tp(Ωab) := tp(b) and
(Ωab)[x] := Ωab[x] for x ≺ tp(b).

4. If Ωa ∈ T , a 6= 0 and tp(a) 6= 1, then tp(Ωa) = tp(a) and Ωa[x] := Ωa[x] for
x ≺ tp(a).

5. If Ωa ∈ T and tp(a) = 1, then tp(Ωa) = Ω and Ωa[x] := Ωa[0]x for x ≺ Ω.

6. Recall that ω = ψ0. tp(ω) = ω and ω[n] := n+ 1 for n ≺ ω.

7. If ψa ∈ T and tp(a) = ω, then tp(ψa) = ω and (ψa)[n] := ψa[n] for n ≺ ω.

8. If ψa ∈ T and tp(a) = Ω, then tp(ψa) = ω and (ψa)[0] := ψa[0] and (ψa)[n+
1] := ψa[(ψa)[n]].

9. If ψa ∈ T and tp(a) = 1, then tp(ψa) := ω, (ψa)[n] := ψa[0] · (n+ 1).

Note that clause 5 above entails that tp(Ω) = Ω and Ω[x] = x for x ≺ Ω.
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Corollary 2.5. (i) For a ∈ T , tp(a) is either 0,1, ω or Ω.

(ii) For a ∈ T with a ≺ Ω, tp(a) is either 0,1, or ω.

Lemma 2.6. 1. tp(a) = 0 iff a = 0.

2. tp(a) = 1 iff a = a[0] + 1.

3. If a is not a term of either form 0, 1, ω,Ω, then tp(a) ≺ a.

4. If x ≺ tp(a) then a[x] ≺ a.

5. If x ≺ y ≺ tp(a) then a[x] ≺ a[y].

Definition 2.7. The norm of a term a ∈ T , N (a) measures its syntactic complexity.

1. N (0) := 0, N (1) := 1.

2. N (ψa) := N (a) + 1.

3. N (a0, . . . , an) := N (a0) + · · ·+ N (an).

4. N (Ωab) := N (a) + N (b).

As T is not well-ordered we need to single out a subsystem that is. This will be
achieved by collecting the subterms c of a that appear in the shape ψc in a.

Definition 2.8. 1. K 0 := K 1 := ∅.

2. K (a0, . . . , an) := K a0 ∪ . . . ∪ K an.

3. Kψa := {a} ∪ K a.

4. K Ωab := K a ∪ K b.

Definition 2.9. We give an inductive definition of the subset T (Ω) of T . We write
K a ≺ b to convey that for all x ∈ K a, x ≺ b.

1. 0, 1,Ω ∈ T (Ω).

2. If (a0, . . . , an) ∈ T and a0, . . . , an ∈ T (Ω), then (a0, . . . , an) ∈ T (Ω).

3. a ∈ T (Ω) and K a ≺ a then ψa ∈ T (Ω).

4. If Ωab ∈ T and a, b ∈ T (Ω) then Ωab ∈ T (Ω).

Lemma 2.10. 1. If a ∈ T (Ω), then tp(a) ∈ T (Ω).
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2. If a, x ∈ T (Ω) and x ≺ tp(a), then a[x] ∈ T (Ω).

Proof : These results can be proved by induction on N (α)+N (x) within a weak
fragment of PA (e.g. in the fragment with just Σ1 induction). ut

T (Ω) is well-ordered by ≺, however, transfinite induction on ≺ cannot be proved
in PA.

Convention. For the reminder of this article, lower case Greek letters α, β, γ, . . .
are always supposed to range over elements of T (Ω). In the representation system
T (Ω), the role of the first fixed point of the ordinal function ξ 7→ ωξ, known as ε0,
is played by ψΩ.

The Bachmann-Howard ordinal, τBH, is the first ordinal which is larger than any
ordinal in T (Ω) ∩ Ω := {α ∈ T (Ω) | α ≺ Ω}. We shall often write α ≺ τBH rather
than α ∈ T (Ω) ∩ Ω.

Definition 2.11. For functions f : N → N we use exponential notation f0(x) = x
and fk+1(x) = f(fk(x)) to denote repeated compositions of f .

We define two hierarchies of functions Gα, Fα : N→ N for α ∈ T (Ω) ∩ Ω.

G0(n) := 0 F0(n) := n+ 1

Gα+1(n) := Gα(n) + 1 Fα+1(n) := Fn+1
α (n)

Gα(n) := Gα[n](n) Fα(n) := Fα[n](n)

where tp(α) is assumed to be ω in the last line.

It is well known result (due to Girard [9]) that every function Fα in the fast
growing hierarchy with α ≺ ε0 is eventually majorized by a function Gβ in the
slow growing hierarchy for some β ≺ τBH. Moreover, the “catching-up" doesn’t
happen earlier than τBH. Proofs of this hierarchy comparison theorem can be found
in [1, 32, 33]. For the particular assignment of fundamental sequences used in the
current paper, this is done in [1].

3 Capturing the Fα’s and Gα’s in PA

The definition of the functions Fα employs transfinite recursion on α. It is therefore
not immediately clear how we can speak about these functions in arithmetic. Later
on we shall need to refer to a definition of Fα(x) = y which works in an arbitrary
model of PA. In [12] many facts about the functions Fα for α ≤ ε0, as befits their
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definition, are proved by transfinite induction on the ordinals ≤ ε0. In [12] there
is no attempt to determine whether they are provable in PA (let alone in weaker
theories). In what follows we will have to assume that some of the properties of the
Fα’s even for α ≺ τBH hold in all models of PA. As a consequence, we will have to
establish these results in PA. As it turns out, this can be done via a formula of low
complexity.

Lemma 3.1. There is a ∆0-formula expressing Fα(x) = y (as a predicate of α, x, y).

Proof : This is shown in [29, 5.2] for the hierarchy up to ε0 but by basically the
same proofs it can be extended up to τBH. The main idea is that the computation of
Fα(x) can be described as a rewrite systems, that is, as a sequence of manipulations
of expressions of the form

Fn1
α1 (Fn2

α2 (. . . (Fnkαk (n)) . . .)),

where n1, . . . , nk ∈ ω − {0} and α1 > . . . > αk ≥ 0. ut

Definition 3.2. The computation of Gα(x) is closely connected with the step-down
relations of [12] and [24]. For convenience we define (α+ 1)[n] := α and 0[n] := for
all n ≺ ω.

For α < β we write β −→
n
α if for some sequence of ordinals γ0, . . . , γr we have

γ0 = β, γi+1 = γi[n], for 0 ≤ i < r, and γr = α. If we also want to record the
number of steps r, we shall write α r−→

n
β.

Note that if r is the smallest number such that α r−→
n

0 then r ≥ Gα(n). With a
bit more effort one can also prove that

Gα(n+ 1) ≥ r ≥ Gα(n).

Lemma 3.3. (i) Let α −→
n
β, α −→

n
γ, β > γ. Then β −→

n
γ.

(ii) Let α −→
n
β, β −→

n
γ. Then α −→

n
γ.

Proof : This is evident from the definition. ut

It is well known that for α ≺ ε0, PA ` ∀x ∃y Fα(x) = y. Owing to Gentzen,
PA proves transfinite induction up to α. As a result, it is easy to prove in PA that
∀ξ 4 α ∀x ∃y Fξ(x) = y by induction on ξ.

The main technical tool for proving properties about the Gα’s and Fα’s for larger
α is the following.
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Theorem 3.4. (i) For all α ∈ T (Ω), if α ≺ Ω, then PA ` ∀x ∃y α y−→
x

0.

(ii) For β ≺ τBH, PA ` ∀x ∃y Gβ(x) = y.

It is well-known that Gβ is majorized by some Fα with α ≺ ε0, however, most
proofs (e.g. [4,9,32]) make use of transfinite induction up to τBH, a principle that is
not available in PA. A proof of (i) can be obtained from the results in [33]. But
very explicitly (i) is stated in Ulf Schmerl’s paper [23, Theorem 18].

(ii) is an immediate consequence of (i). ut

Lemma 3.5. Let α ≺ τBH be a limit. Then PA proves the following statements:

1. If x < y then α[y] −→
1
α[x].

2. For all β ≺ α, if x < y and α −→
x
β, then α −→

y
β.

3. For all β ≺ α there exists x such that α −→
x
β.

Proof : These results are usually proved by transfinite induction on α (e.g. [12]).
However, a careful analysis shows that it is enough to know that for all x and
all β 4 α there exists r such that β r−→

x
0, which is guaranteed by Theorem 3.4.

Transfinite induction can then be replaced by ordinary induction on r. ut

Lemma 3.6. We use Fα(x) ↓ to denote ∃y Fα(x) = y. Fα ↓ stands for ∀xFα(x) ↓.
Fix α ≺ τBH. The following are provable in PA:

(i) For any β and x, if α −→
x
β and Fα(x) ↓, then Fβ(x) ↓ and Fα(x) ≥ Fβ(x).

(ii) For any β ≺ α and x > 3, if α −→
x
β and Fα(x) ↓, then Fβ(x + 1) ↓ and

Fα(x) > Fβ(x+ 1).

(iii) For any β 4 α, if Fβ(x) ↓ and x > y, then Fβ(y) ↓ and Fβ(x) ≥ Fβ(y).

(iv) If β 4 α and Fα ↓, then Fβ ↓.

(v) If i > 0 and F iα(x) ↓ then x < F iα(x).

Proof : Similar properties are stated in [29, Proposition 5.4].
(i): Use induction on r, where α r−→

x
β.

(ii): Similar to (i).
(iii) follows from (i) and Lemma 3.5 since β[x] −→

1
β[y].
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(iv) is a consequence of (ii) and Lemma 3.5.
(v): See [29, Proposition 5.4(i)] for a similar result. ut

There is an additional piece of information that is provided by the particular
coding and ∆0 formula denoting Fα(x) = y used in [29, 5.2], namely that there is a
fixed polynomial P in one variable such that for all α ≺ τBH, the number of steps it
takes to compute Fα(x) is always bounded by P (Fα(x)).

4 The hierarchy

Definition 4.1. For each α ≺ τBH we shall define a hierarchy of functions (F ∗β )β≺α.
First let α∗ := max(Kα ∪ {0})+Ωα. note that Kα∗ ∪ Kα ≺ α∗, thus K (α∗+Ω·α) ≺
α∗. Moreover, for 0 ≺ β ≺ α one shows by induction on the buildup of β that
max(Kβ ∪ {0}) 4 max(Kα ∪ {0}) and hence K (α∗+ Ωβ) ≺ α∗. As a result, for all
0 ≺ β ≺ α, ψ(α∗ + Ωβ) ∈ T (Ω) and whenever 0 ≺ ζ ≺ ξ ≺ α, then

ψ(α∗ + Ωζ) ≺ ψ(α∗ + Ωξ) .

Now put
F ∗β := Fψ(α∗+Ω1+β)

for β ≺ α.
We define fβ to be the ‘logarithm’ of F ∗β , i.e.,

fβ(n) := max({k < n | ∃y ≤ nF ∗β (k) = y} ∪ {0}) .

Note that fβ is a provably recursive function of PA. Also note that Confβ (PA) is
equivalent (in PA) to the statement

∀x (F ∗β (x)↓→ Con(PA�x)) .

Let Tαβ be the theory PA + Confβ (PA).

A result we shall draw on is that the ordinals ψ(α∗+Ω1+β) are ε-numbers, i.e. a
fixed point of the enumeration function of the additive principal numbers, ξ 7→ ωξ.

Lemma 4.2. Let α, α∗, β be as in Definition 4.1. For δ ≺ ψ(α∗ + Ω1+β) define
h(δ) := max(Kδ ∪ {0}) + 1. Now h(δ) ≺ α∗ or there exists a unique δ′ ≺ Ω1+β

such that h(δ) = α∗ + δ′. Set δ0 := 0 in the former case and δ0 := δ′ in the latter
case. Now define `(δ) := ψ(α∗+ δ0 + δ). Since K (α∗+ δ0 + δ) ≺ α∗+ δ0 + δ we have
ψ(α∗ + δ0 + δ) ∈ T (Ω) and δ ≺ ψ(α∗ + δ0 + δ). Moreover, if η ≺ δ ≺ ψ(α∗ + Ω1+β),
then

`(η) ≺ `(δ) ≺ ψ(α∗ + Ω1+β) .
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Since `(δ) is an additive principal number, this entails that ψ(α∗ + Ω1+β) is an
ε-number.

Definition 4.3. Let E denote the “stack of two’s" function, i.e. E(0) = 0 and
E(n+ 1) = 2E(n).

Given two elements a and b of a non-standard model M of PA, we say that ‘ b
is much larger than a’ if for every standard integer k we have Ek(a) < b.

If M is a model of PA and I is a substructure of M we say that I is an initial
segment of M, if for all a ∈ |I| and x ∈ |M|, M |= x < a implies x ∈ |I|. We will
write I < b to mean b ∈ |M| \ |I|. Sometimes we write a < I to indicate a ∈ |I|.

Theorem 4.4. Fix α ≺ τBH. For all 0 ≺ γ ≺ β ≺ α,

PA � Tαβ � Tαγ � PA + Con(PA).

Proof : First we want to show that Tαβ � Tαγ . We know that there exists a
number n such that β −→

n
γ. Provably in PA we therefore have that F ∗β (x)↓ implies

F ∗γ (x)↓, and hence Confγ (PA) yields Confβ (PA).
It remains to find a model of Tαγ that is not a model of Tαβ .

We shall employ the method of injecting inconsistency from [8, Theorem 4.10].
Let M be a countable non-standard model of PA + F ∗β is total. Let M be the

domain of M and a ∈M be non-standard. Moreover, let e = (F ∗β )M(a). As a result
of the standing assumption, M |= Con(PA �a). Owing to a result of Solovay’s [27,
Theorem 1.1] (or similar results in [13]), there exists a countable model N of PA
such that:

(i) M and N agree up to e (in the sense of [8, Definition 3.9]).

(ii) N thinks that PA�a is consistent.

(iii) N thinks that PA �a+1 is inconsistent. In fact there is a proof of 0 = 1 from
PA�a+1 whose Gödel number is less than 22e (as computed in N).

In actuality, to be able to apply [27, Theorem 1.1] we have to ensure that e is much
larger than a, i.e., Ek(a) < e for every standard number k (recall that E denotes the
It is a standard fact (provable in PA) that E(x) ≤ F3(x) holds for all sufficiently
large x (cf. [12, p. 269]). In particular this holds for all non-standard elements s of
M and hence

Ek(s) ≤ F k3 (s) ≤ F s3 (s) ≤ F4(s) < F ∗β (s),

so that Ek(a) < e holds for all standard k, yielding that e is much larger than a.
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We will now distinguish two cases.
Case 1: N |= F ∗β (a+ 1) ↑. Then also N |= F ∗β (d) ↑ for all d > a by Lemma 3.6, (iii).
Hence, in light of (ii), N |= PA + ConFβ (PA).

Now we use the fact (Lemma 3.6,(ii)) that one can show in PA that for sufficiently
large x,

F ∗β (x) ↓ → F ∗γ (x+ 1) ↓ ∧F ∗γ (x+ 1) < F ∗β (x)

where sufficiently large means bigger than a (standard) number computable from
the (representation) α. Since a is non-standard we certainly have (F ∗γ )N(a + 1) ↓
and

(F ∗γ )N(a+ 1) ≤ (F ∗β )N(a).

But since ¬Con(PA�a+1) holds in N, N is not a model of Tαγ .

Case 2: N |= F ∗β (a+ 1) ↓. We then also have e = (F ∗β )N(a), for M and N agree up
to e and the formula ‘F ∗β (x) = y’ is ∆0 by Lemma 3.1. Let c := (F ∗β )N(a+ 1). Now
an ordinal ψ(α∗+ Ω1+β) is an epsilon number by Lemma 4.2. Thus by [8, Corollary
3.8], for every standard n there is an initial segment I of N such e < I < c and I is
a model of Πn+1-induction. Moreover, it follows from the properties of N and the
fact that 22e < I, that

1. I thinks that PA�a is consistent.

2. I thinks that PA�a+1 is inconsistent.

3. I thinks that F ∗β (a+ 1) is not defined.

Consequently, I |= Confβ + Πn+1-induction. Moreover, by the same arguments
as in case 1, I does not model Confγ . Since n was arbitrary, this shows that
PA + Confβ + ¬Confγ is a consistent theory. ut

Remark 4.5. Schmerl [22] showed that PA + Con(PA) can be reached from PRA
by a consistency progression (Sα)α along ε0 ·2. It is clear from the above that “most"
of the theories Tαβ do not correspond to theories in this progression.

4.1 A bit of speculation

One might ponder whether the assumption “α less than the Bachmann-Howard
ordinal" could be replaced by “α less than the first non recursive ordinal" in Theorem
4.4. An (anonymous) referee of this paper believes that a more general result than 4.4
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could be shown and suggests the following approach.2 To define a decent hierarchy
(Fα)α<τ of functions, the Bachmann property is usually not needed in full for an
assignment of fundamental sequences to ordinals < τ as long as one defines

Fλ(n) := max{Fλ[y](n) | y ≤ n}.

Lemma 3.5 could presumably be shown for a segment of ordinals τ which exceeds
the Bachmann-Howard ordinal by using slowed down fundamental sequences. For
epsilon numbers λ one could define

λ[n] = max{β < λ : N(β) ≤ n}

whereN : τ → ω is some suitable norm function. Such an assignment of fundamental
sequences would not be canonical but might (perhaps after some additional fine
tuning) be good enough for strengthening Theorem 4.4.

These are interesting ideas for which we thank the referee.

5 Slowness models Gödel-Löb provability logic GL

The language of modal logic has infinitely many propositional variables and the
modal operator �. Formulas are built from propositional variables via the usual
propositional connectives (e.g. →,¬,∧,∨) and the stipulation that �A is a formula
if A is. The logic of provability, GL, is formulated in this language and has the
following axioms and inference rules:

A0. All propositional tautologies are axioms.

A1. �(A→ B) ∧ �A→ �B.

A2. �A→ ��A.

A3. �(�A→ A)→ �A.

R1. If ` A→ B and ` A, then ` B.

R2. If ` A, then ` �A.

A provability interpretation of modal logic in PA is determined by an assignment
of a sentence p∗ of PA to each propositional variable p of GL. The interpretation
A∗ of a modal formula A commutes with the propositional connectives in the usual

2For unexplained notions see [2, 21].
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way (e.g., (B → C)∗ is B∗ → C∗) and (�B)∗ is PrPA(pB∗q) where PrPA(pCq)
arithmetizes provability of C in PA with pCq denoting the Gödel number of C.

The main result about these interpretations is Solovay’s completeness theorem
( [26]).

Theorem 5.1. GL ` A if and only if PA ` A∗ holds for all provability interpreta-
tions ∗.

Below it is shown that completeness also obtains for a notion of slow provability.
Let S be a provably recursive function of PA with a fixed Σ1 definition ϕS(x, y) in
the language of PA, i.e. ϕS(x, y) defines the graph of S and PA ` ∀x∃!y ϕS(x, y).
Below we shall write S(x) = y when we actually mean ϕS(x, y).

Moreover, the following further standing assumption will be adopted throughout:

1. PA proves that S(x) ≥ 1 for all x.

2. The range of S is unbounded, i.e., for all k there exists n such that k < S(n).

However, we shall not assume that PA can prove the latter fact. Indeed, the whole
thing is only interesting when PA doesn’t ‘know’ this fact, as in the case of slow
growing functions fαβ .

Definition 5.2. Define

�sA := ∃xPrPA�S(x)
(pAq)] (1)

where PrT (pAq) arithmetizes provability of A in a theory T and pAq denotes the
Gödel number of A.

Lemma 5.3. (i) If PA ` A then PA ` �sA.

(ii) PA ` �sA→ �s(�sA).

(iii) PA ` �s(A→ B) ∧ �sA→ �sB.

(iv) PA ` �s(�sA→ A) → �sA.

Proof : (i) PA ` A implies that PA� k ` A for some k > 0. There exists n such
that S(n) ≥ k. Thus PrPA�S(n)

(pAq) is a true Σ1 statement, and hence PA ` �sA.

(ii) We argue in PA. Suppose �sA. Then ∃xPrPA�S(x)
(pAq)). The latter being a

Σ1 statement, formalized Σ1 completeness yields

PrPA�1
(pPrPA�S(x)

(pAq)q)
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whence �s(�sA) since S(n) ≥ 1 for some n.
(iii) We argue in PA. Suppose �s(A → B) ∧ �sA. Spelling this out there exist
x, y such that PrPA�S(x)

(pA → Bq) and PrPA�S(y)(pAq). Picking z ∈ {x, y} such
that S(x), S(y) ≤ S(z) we have PrPA�S(z)

(pA → Bq) and PrPA�S(z)
(pAq), yielding

PrPA�S(z)
(pBq), and hence �sB.

(iv) We argue in PA. Assume that �s(�sA → A) holds. Then there exists x such
that PrPA�S(x)

(p�sA→ Aq). Spelling the latter out we have

PrPA�S(x)
(p∃yPrPA�S(y)

(pAq)) → Aq). (2)

With ẋ denoting the xth numeral, (2) implies

PrPA�S(x)
(pPrPA�S(ẋ)

(pAq) → Aq). (3)

By the formalized Löb’s theorem for PA�S(x) it follows from (3) that
PrPA�S(x)

(pAq), whence �sA. ut

Theorem 5.4. Let ∗ be an assignment of a sentence p∗ to every propositional vari-
able of GL. ∗ gives rise to an interpretation ∗s that commutes with the propositional
connectives and satisfies also:

(�A)∗s = �sA
∗s .

Then we have

GL ` B ⇒ PA ` B∗s .

Proof : Obvious by Lemma 5.3. ut
The converse also holds and thus we arrive at the following.

Theorem 5.5. GL ` B if and only if PA ` B∗s holds for all assignments ∗.
Proof : In view of Theorem 5.4, it remains to prove the direction from right to

left. It can be handled by inspection of what happens in §4 of [26]. If one replaces
the provability predicate Bew there by slow provability and the consistency notion
by slow consistency then the same constructions work as slow provability shares
crucial properties (described in Lemma 5.3) with its standard cousin. ut

The observations of this section were written down in 2012 (prompted by a
question raised by Joost Joosten). In the meantime much more elaborate results
have been obtained by Henk and Pakhomov in section 9 of [11]. They study the
bimodal provability logic of ordinary and slow provability and show that it coincides
with Lindström’s logic which was introduced as the bimodal provability logic of
ordinary PA-provability and PA-provability with Parikh’s rule.
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Abstract
The identity concept developed in the Homotopy Type theory (HoTT) sup-

ports an analysis of Frege’s famous Venus example, which explains how empiri-
cal evidences justify judgements about identities. In the context of this analysis
we consider the traditional distinction between the extension and the intension
of concepts as it appears in HoTT, discuss an ontological significance of this dis-
tinction and, finally, provide a homotopical reconstruction of a basic kinematic
scheme, which is used in the Classical Mechanics, and discuss its relevance in
the Quantum Mechanics.

Keywords: Identity, Homotopy type theory, Intension, Kinematics.

1 Introduction
According to Frege

Identity is a relation given to us in such a specific form that it is incon-
ceivable that various kinds of it should occur [7, p. 254].1

In the second half of the 20th century this view was challenged by Peter Geach
[11] who developed a theory of what he called the relative identity. Contrary to
Frege, Geach holds that the identity concept allows for specifications, which depend
on certain associated sortals.2

Talk at the conference “Philosophy, Mathematics, Linguistics: Aspects of Interaction 2012”
(PhML-2012), held on May 22–25, 2012 at the Euler International Mathematical Institute. I thank
Danielle Macbeth for very useful comments and discussion.

1 “Die Identitaet ist eine so bestimmt gegebene Beziehung, dass nicht abzusehen ist, wie bei ihr
verschiedene Arten vorkommen können.”

2Let a, b be parallel lines on Euclidean plane, in symbols a//b. Given that // is an equivalence
relation, Frege suggests to “take this relation as identity” (in symbols a = b) and thus obtain a new
abstract object called direction [8, p. 74e]; (for a more detailed reconstruction of Frege’s abstraction
see [25]). Geach’s analysis of the same example is different: according to Geach a = b reads “a and
b are the same as direction” even if a and b are different as lines.

Vol. 4 No. 4 2017
IfCoLog Journal of Logics and their Applications



A. Rodin

Geach’s unorthodox view on identity has been never developed into an indepen-
dent formal logical system and remain today rather marginal [2]. However the idea
that, contrary to Frege’s view, the identity concept can and should be diversified
more recently reappeared in a different form in Martin-Löf’s Constructive Type the-
ory (MLTT) [15] and in the yet more recent geometrical interpretation of MLTT
called Homotopy Type theory (HoTT) [17]. Unlike Geach’s original proposal, which
has hardly had any influence outside the philosophical logic, HoTT is a piece of
new interesting mathematics and mathematical logic closely relevant to Computer
Sciences.

The aim of this paper is to analyze some of Frege’s ideas about identity in terms
of the identity concept as it appears in MLTT and HoTT. In this way I hope to
make the technical MLTT-HoTT identity concept more philosophically meaningful
and apt to possible applications in science.

The rest of the paper is organized as follows. In the next Section I present
Frege’s Venus example and overview its analysis by the author. In the following
three Sections I introduce a basic fragment of MLTT and HoTT and discuss the
difference between extensional and intensional versions of these theories. Then I
present a reconstruction of Frege’s Venus with HoTT and discuss in this context
an ontological impact of the distinction between extensions and intensions. Finally,
I extend my reconstruction of Venus to what I call the Basic Kinematic Scheme
used in the Classical Mechanics and briefly discuss its relevance in the Quantum
Mechanics.

2 How identity statements are known?

Some identity statements are trivial and non-informative while some other are highly
informative and in some cases very hard to prove. For example “2 = 2” (in words
“two is two”) is trivial, “2 is the only even prime number” is somewhat more in-
formative but easy (since it follows immediately from the definitions of “even” and
“prime”), while “2 is the biggest power n such that the equation xn + yn = zn has
a solution in natural numbers” is both informative and highly non-trivial (it is a
famous theorem conjectured by Pièrre Fermat in 1637 and proved by Andrew Wiles
in 1994).

A non-mathematical example of the same kind is given by Frege in his classical
On Sense and Reference [5] (English translation [6]). Frege considers three different
names - Venus, Morning Star and Evening Star - which all refer to the same planet.
Frege wonders how it is possible that while the identity statement
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Morning Star is Morning Star (1)

and the identity statement,

Morning Star is Venus (2)

(which expresses a mere linguistic convention according to which “Venus” is an
alternative name of Morning Star) are trivial the statement

Evening Star is Morning Star (3)

is a non-obvious astronomical fact that needs an accurate justification, which in-
volves both a solid theoretical background and appropriate observational data.3

Where does the difference between informative and non-informative identity
statements come from? Frege does not provide a full answer to this question but
does provide a theoretical framework for answering it. For this end he distinguishes
between the sense and the reference of any given linguistic expression.4

Whether an identity statement is informative or not depends on its sense (and
hence on the sense of its constituents5) but not on its reference. Thus there is no
mystery in the fact that statements of the form a = a are always trivial (assuming
that both the sense and the reference of “a” is fixed), while statements of the form
a = b can be either trivial (when terms a, b have the same sense) or non-trivial
(when terms a, b have different senses). In expressions (1) and (2) both terms have
the same meaning (even if in (2) these terms differ linguistically) but in (3) the
senses of two terms are different. This is why (1) and (2) are trivial but (3) is not.

Obviously this is not a complete explanation. Frege’s system of symbolic logic
aka Begriffsschrift [3] does not do full justice to his own distinction between the sense
and the reference of a linguistic expression [14]. It provides rules for operating with
references of propositions (i.e., with their truth-values) but does not provide rules
for operating with their senses. So Frege points to a problem but leaves it largely
open. More recently a number of so-called intensional logical systems have been

3Instead of talking about trivial and non-trivial statements Frege uses here a Kantian distinction
between synthetic and analytic judgements and talk about the “cognitive value” of the corresponding
“thoughts”. I shall not use Frege’s original way of expressing these ideas in my presentation.

4Some writers who want to stress the originality of Frege’s logical ideas leave Frege’s German
terms for sense and reference (Sinn und Bedeutung) without translation even if they write in
English. I use standard English translations instead.

5This follows from a general principle known as the compositionality of meaning. Frege is
sometimes credited for the alleged invention of this principle but the true history is more complicated
[16].
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developed, some of which have been explicitly motivated by the idea of formalizing
certain aspects of Frege’s sense. The distinction between extensions and intensions
of linguistic expressions and logical terms is closely related to Frege’s distinction
between sense and reference [1]. It has a long history in logic and its philosophy
and turns out to be instrumental in MLTT-HoTT, as we shall now see. In the next
section I explain the technical meaning of this distinction in MLTT and then discuss
its philosophical underpinning.

3 Extension and intension
MLTT [15] comprises two different forms of identity concept.6 These two forms of
identity should look familiar to anyone who has at least a rudimentary experience
in programming. It’s one thing to assign to a certain symbol or symbolic expression
its semantic value (which can be a number, a character, a string of characters and
many other things) and it is quite a different thing to state that certain things
are equal. (Hereafter I use words “equal” and “identical” interchangeably.) Only
in the latter case one forms a proposition, which typically has precisely one of the
two Boolean values: True and False. Outside the context of programming a similar
distinction can be made between naming or making some more elaborated linguistic
convention, on the one hand, and making a judgement to the effect that certain
things are equal, on the other hand. It is one thing to adopt and use the convention
according to which the goddess’ name Venus is an alias for what is also known as
the Morning Star, and it is, of course, quite a different thing to judge and state
that two apparently different celestial objects known as the Morning Star and the
Evening Star are, in fact, one and the same. In the latter case it is appropriate to
ask for a proof. Such a demand is obviously pointless in the former case.

The first kind of identity (one related to conventions) Martin-Löf calls definitional
or judgmental; the second kind of identity he calls propositional. Following [17]
I shall use sign “≡” for the definitional identity and the usual sign “=” for the
propositional identity. Further, we should take typing into account. In MLTT both
kinds of identity apply only to terms of the same type.7 Typing is expressed in the
notation as follows:

s, t : A (4)
6The original version of this theory involves four different kinds of identity [15, p. 59]. I simplify

the original account by deliberately confusing some syntactic and semantical aspects. Then we are
left with the two forms of identity described below in the main text.

7I leave now aside how identity is applied in MLTT to types on the formal level. It is sufficient
for my present purpose to talk about the “same type” and “different types” in MLTT informally.
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is a judgment that states that terms s, t are of type A. Formula

s ≡A t (5)

stands for a judgement, which is tantamount to a convention (aka definition) ac-
cording to which terms s, t of the same type A have the same meaning. Given (5)
one says that s, t are definitionally equal. The expression

s =A t (6)

in its turn, stands for a proposition saying that terms s, t of type A are equal.
Unlike (5) formula (6) by itself does not express a judgment but only represents
a type. Under the intended proof-theoretic semantic of MLTT any term p of this
type is thought of as a proof of the corresponding proposition; in the proof-theoretic
jargon proofs are also called witnesses and sometimes evidences. So the following
judgement

p : s =A t (7)

states that terms s, t are (propositionally) equal as this is evidenced by proof p.
Let us now see what kind of thing such a proof p can possibly be. In MLTT

definitionally equal terms are interchangeable salva veritate as usual. Under the
intended semantic of this theory this means that definitionally equal terms are in-
terchangeable as proofs. This property of ≡ and the reflexivity of = justify the
following rule

s ≡A t

p : s =A t
(8)

where p ≡ refls is built canonically [17, p. 46]. In words: the definitional identity
(equality) implies the propositional identity (equality).

The converse rule is called the equality reflection rule or ER for short:

p : s =A t

s ≡A t
(ER)

In words: the propositional identity implies the definitional identity.
ER does not follow from other principles of MLTT but may be assumed as an

independent principle. In this case one obtains a version of MLTT, which is called
(definitionally) extensional. MLTT without ER is called intensional. It can be
shown that in the extensional MLTT any (propositional) identity type s =A t is
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either empty or has a single term, namely refls, which is the canonical proof of this
identity “by definition”.

We see that ER makes the distinction between the definitional and the propo-
sitional identity purely formal and epistemologically insignificant. This feature of
extensional MLTT can be viewed as a desirable conceptual simplification but it
comes with a price. A significant part of this price concerns computational proper-
ties in MLTT and is important for applications of this theory in programming: while
the intensional MLTT is decidable but the extensional MLTT is not. I shall not dis-
cuss this technical feature in this paper. Instead I shall argue that the intensional
MLTT has also important epistemic advantages over its extensional cousin.

4 Fixing identities or leaving them evolving?
As we have seen in the extensional MLTT every identity is grounded in a definition.
In order to apply this formal theory in reasoning one needs to fix in advance, via
appropriate definitions, exact identity conditions for all objects involved in a given
reasoning. This logical and epistemic requirement is known in the form of slogan
“no entity without identity” due to Quine. It is interesting to notice that Quine
himself does not accept this slogan without reservations. In Quine’s view the slogan
applies only in scientific reasoning and, moreover, only in the contemporary form of
scientific reasoning. Bulk terms (aka mass terms) like “water”, according to Quine,
are remnants of an archaic logical scheme, which does not involve the individuation
in its today’s form. Quine further speculates that the contemporary “individuative,
object-oriented conceptual scheme” can be replaced in a future by a different scheme,
that will provide a “yet unimagined pattern beyond individuation” [18, p. 24].8 In
what follows I argue that the intensional MLTT along with HoTT provides such
a pattern “beyond individuation” or at least a pattern of individuation beyond its
usual extensional mode. But beforehand I would like to stress once again that
the standard extensional mode of individuation is not sufficient for certain well-
recognized and important scientific purposes. Frege’s Venus example, if one takes it
seriously, demonstrates this clearly. Fixing the identity ofMorning Star and Evening
Star and Venus via a definition is a prerequisite for applying a standard extensional

8Here is the full quote:
“[W]e may have in the bulk term a relic, half vestigial and half adapted, of a pre-individuative
phase in the evolution of our conceptual scheme. And some day, correspondingly, something of our
present individuative talk may in turn end up, half vestigial and half adapted, within a new and as
yet unimagined pattern beyond individuation. Transition to some such radically new pattern could
occur either through a conscious philosophical enterprise or by slow and unreasoned development
along lines of least resistance. A combination of both factors is likeliest [ . . . ].” [18, p. 24]
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logical scheme in any reasoning about this celestial object. This condition makes it
impossible to support with such a scheme a reasoning, in which the identity of the
Morning Star and the Evening Star is established on the basis of certain sufficient
evidences.

Frege’s example shows that “half-entities inaccessible to identity” [18, p. 23] may
look more familiar than Quine’s colorful language suggests. In the Venus case we
deal with a relatively innocent violation of “no entity without identity” requirement.
We start with certain well-defined objects such as the Morning Star and the Evening
Star but do not exclude the possibility that these objects can be eventually proved to
be the same - even if we know that this fact does not follow from the corresponding
definitions. Following Quine one may think of further deviations from the standard
extensional individuating scheme and speculate about a possible conceptual scheme,
which does not use the definitional form of identity at all. I do not pursue this
further project in this paper. Instead I show how the innocent-looking modification
of the extensional individuating scheme, which has been just explained, results into
a remarkable diversification of the standard identity concept.

5 Higher identity types

Recall that the intensional version of MLTT has been introduced above via a negative
characteristic: it is the core version of MLTT without the additional reflexion rule
ER.

The absence of ER allows for constructing further identity types as follows.
Suppose we have a propositional identity type and a pair of terms of this type:

s′, t′ : s =A t

Terms s′, t′ witness here the identity of terms s, t. It may now happen that these
two witnesses are, in fact, one and the same - as witnessed by two further terms
s′′, t′′:

s′′, t′′ : s′ =s=At t′

Thus we get a tower-like construction, which comprises identity types of two dif-
ferent “levels”. It can be further continued indefinitely. In the general case such a
construction may have, of course, more than just two elements on each level.

Until the late 1990-ies structural properties of this formal syntactic construction
remained opaque. Since the intentionality in MLTT is a mere lack of extensionality,
any model of the extensional MLTT also qualifies as a model of the intensional
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version of this theory. In 1994-1998 Hofmann and Streicher [12,13] published the first
non-extensional model of MLTT where the first-level identity types were modeled
by abstract groupoids. This model allows the first-level identity types (i.e., types of
the form s =A t where A is a type other than identity) to have multiple non-trivial
terms (proofs) but does not allow the same for higher identity types. In other words,
this model verifies the condition called “extensionality one dimension up”. A deeper
insight into the structure of higher identity types has been obtained around 2006
when Awodey and Voevodsky independently observed that the abstract groupoids
of Hofman and Streicher’s model can be thought of as fundamental groupoids (i.e.,
groupoids of all continuous paths) of topological spaces and be further extended to
homotopy- and higher-homotopy groupoids of the same spaces, which model higher-
order identity types of MLTT. Thus the Homotopy theory allows for building models
of MLTT, which are “intensional all the way up”. In such models the identity types
of all levels are modeled uniformly. This discovery marked the emergence of a new
theory known today under the name of Homotopy Type theory and of a closely
related foundational project called the Univalent Foundations of mathematics. For
a systematic exposition of HoTT I refer the reader to [17].9

Unlike Russell’s type theories HoTT does not form its hierarchy of types by
considering, first, classes of individuals, second, classes of such classes, and so on.
The hierarchy of types in HoTT is of a geometric or, more precisely, homotopic
nature. Sets are taken to be types of zero level. Terms of 0-types are points having
no non-trivial paths between them. Terms of 1-types are points provided with non-
trivial paths between them, but not allowing for non-trivial homotopies between
these paths. Terms of 2-types allow for paths and non-trivial homotopies but not
for non-trivial higher homotopies. And so on.10

Notice the cumulative character of the homotopical hierarchy of types described
above. Considered in isolation, the identity types s =A t and s′ =s=At t′ have exactly
the same formal properties; correspondingly, there is no intrinsic difference between
spaces of points, spaces of paths (aka path spaces) and homotopy spaces of all levels.
As usual in the 20-th century geometry one is allowed in HoTT to imagine elements
of spaces however one may find it useful - say, as beer mugs after Hilbert’s legendary
suggestion. However the fact that every path s′ is not simply an individual of certain

9Since this area of research is rapidly developing, the 2013 book [17] does not include certain
new results and developments. However it provides an systematic introduction, which is more than
sufficient for my present purpose.

10Here I follow [17, p. 99–100]. On an alternative count the 0-type is a single point, 1-types are
propositional types while sets are 2-types. The count adopted in [17] appears more natural from a
logical point view (given the usual understanding of logic) while the latter count used by Voevodsky
in his lectures appears more natural from a geometric point of view.
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sort but an object with a pair of endpoints s, t, allows for the two-level construction
described above. Similarly one obtains n-level constructions by using homotopies
and higher homotopies. In order to describe the resulting hierarchy more formally
and more precisely we need to complement the bottom-up description used so far
but a top-down one. For this end we assume from the outset that every type is a
space provided with its infinite-dimensional fundamental groupoid. Then we specify
the case of 0-types such that all its paths, homotopies and higher homotopies are
trivial; then the case of 1-types such that all its homotopies and higher homotopies
(but not paths!) are trivial, and so on.

A given n-type can be transformed into its underlying m-type with m < n by
forgetting (or, more precisely, by trivializing) its higher-order structure of all levels
> m. Such an operation is called in HoTT truncation. It will play an important
role in what follows.

The logical significance and the possible epistemic function of higher identity
types in MLTT are not yet well understood. The present work is an attempt of
filling a part of this gap. In what follows I consider only 0- and 1-types and leave a
study of higher identity types for a future work.

6 Is Frege’s Venus example linguistic?
Apparently Frege treats his Venus example as purely linguistic on equal footing
with his other examples, which involve Alexander the Great, Columbus, Napoleon,
Kepler dying in misery, Bucephalus and what not. Accordingly, the main result of
his classical paper [5,6], namely the distinction between the sense and the reference of
a given linguistic expression, belongs primarily to the philosophy of language. Frege
scholarship mostly follows Frege in this respect: a linguistic leaning aka linguistic
turn became a brand mark of the influential Analytic branch of the 20th century and
today’s philosophy. It is quite remarkable, however, that when Frege first introduces
and explains the Venus problem he does this not only in linguistic terms:

The discovery that the rising Sun is not new every morning, but always
the same, was one of the most fertile astronomical discoveries. Even
today the identification of a small planet [i.e., an asteroid - A.R.] or a
comet is not always a matter of course. [6, p. 56]

The idea that a logical analysis of ordinary language can be helpful for solving
problems of object identification in science in general and in astronomy in particular
is based on Frege’s strong assumption according to which the identity concept is the
same in all these cases, so that “it is inconceivable that various kinds of it should
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occur” (see the full quote and the reference in the above Introduction). Without
trying to challenge this approach on the methodological level I shall provide here
an alternative analysis of the same example, which takes its physical content and,
even more importantly, its related mathematical form more seriously and applies
some basic elements of HoTT introduced in the previous Section. As a matter of
course this reconstruction is not intended to be a piece of mathematical physics.
Nevertheless it provides a novel formal approach to traditional metaphysical issues
concerning the identity through time and motion, which may be possibly helpful for
dealing with identity-related problems of modern physics [9, 10].

Frege’s remark about the rising Sun quoted above applies both to the Morning
Star (MS for short) and to the Evening Star (ES). These two putative objects
are posited as invariants of certain sets of observations made in different places
at different times by different people with different astronomical instruments and
with the naked eye. However for the sake of the example I leave now this complex
underlying structure aside and boldly assume that MS and ES are provided with
some appropriate definitions, which allow all observers to identify these objects
unambiguously. How a proof of identity MS = ES may look like in a realistic
astronomical context? Classical Celestial Mechanics (CM), or more precisely a very
basic fragment of CM that I shall call Basic Kinematic Scheme (BKS) and discuss
in more detail in Section 8, provides a definite answer to this question. In order
to prove that MS = ES it is necessary and sufficient to present a continuous path
aka trajectory p, which connects MS and ES and thereby shows that these “two”
objects are in fact one and the same. The wanted trajectory p is itself a typical
physical object: it is obviously theoretically-laden, it has a canonical mathematical
representation, and it is accessible for observations which allow for empirical checks
of its theoretically predicted properties. Providing such a proof p amounts to a
combination of theoretical work and observation, which is typical in astronomy and
any other mature science.11

Since proof p has empirical contents it can not be called formal. However it has a
mathematical form, which is expressed within HoTT straightforwardly. As we shall
briefly see, this form qualifies both as logical and geometrical. The fact that in HoTT

11The identity conditions of p depend on those of MS, ES, which are left here without a precise
specification. If we assume that MS and ES are enduring spatial objects repeatedly appearing
on the sky then we should think of p as a fragment of the planet’s orbit. Alternatively (and less
realistically), if we think of MS and ES as particular spatio-temporal events which occur in a
particular morning and a particular evening, then we should think of p as a continuous process that
begins with MS and ends with ES. The HoTT-based reconstruction of Frege’s Venus example given
in this Section does not depend on one’s specific assumptions about space, time and motion. The
idea of identification of spatial objects or spatio-temporal events via continuous paths, which makes
part of BKS, is compatible with many different physical theories and many different ontologies.
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Figure 1: Morning Star and Evening Star are the same

logical and geometrical forms go together, makes HoTT quite unlike other popular
formal systems such as the Classical First-Order Logic (FOL), see my [19, ch. 7, 10],
for a further discussion on this general issue. Remarkably, the geometrical form of
p provided by HoTT (namely, a path) and the standard geometrical representation
of the same object provided by CM and BKS (namely, a continuous curve) turn out
to be alike.12

First, we need to specify a type (which under the homotopical interpretation is
thought of as a space) where MS and ES belong. Since MS, ES and other celestial
bodies are conceived in CM as point-like objects I call the corresponding type/space
Pt and think of it as a collection of points:

MS, ES : Pt

Then we form a new type/space MS =P t ES, which is a space of continuous paths
between MS and ES. Finally, we specify a particular path p in this space and form
a judgment:

p : MS =P t ES

12In the standard Homotopy theory a path is not simply a curve but a parameterized curve.
More formally path p with endpoints A, B is a continuous map [0, 1] → S from the unit interval to
space S where points A, B belong, such that p(0) = A and p(1) = B. “Paths” about which usually
talk HoTT-theorists (as in [17]), cannot be straightforwardly identified with paths of the standard
Homotopy theory [22]. But for our purposes the concept of path in the sense of HoTT will suffice:
it combines the formalism of HoTT with a mixture of pre-theoretical spatio-temporal intuitions
about paths and more elaborated geometrical intuitions (rather than precise concepts) borrowed
from the standard Homotopy theory and some other branches of mathematics. By interpreting
Frege’s Venus in terms of HoTT I extend this intuitive part of HoTT with certain additional pre-
theoretical intuitions concerning space, time and motion. Conversely, HoTT serves me as a formal
tool allowing for putting these pre-theoretical intuitions into an order.
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that says that MS and ES are the same as evidenced by p. However little of HoTT’s
resources we use here, this reconstruction of Frege’s example provides some useful
lessons as we shall now see.13

7 Are intensions real?
Recall Frege’s question: What is the difference between the sense of proposition
(1) (MS = MS) and the sense of proposition (3) (MS = ES)? It appears to be in
accord with Frege to assume that senses of propositions depend functionally on their
corresponding proofs (even if proofs and senses are not exactly the same). Then our
reconstruction of Venus allows for a precise mathematical answer to Frege’s question:
while the (unique) proof of (1) is trivial loop reflMS , the proof of (3) is a non-trivial
path p. In both cases a given proposition has a single proof. However these two
proofs essentially differ not only in their intuitive “sense” but also in their geometric
representation.

Let us now turn to some ontological issues. Albeit the concept of proof is epis-
temic par excellence, the HoTT-based reconstruction of Venus makes it clear that
proofs in the standard proof-theoretic semantic of MLTT should not be necessary
thought of as purely mental constructions. Thinking about such proofs as truthmak-
ers opens a way to various forms of truthmaker realism [24]. Whether or not one
takes Venus and/or its trajectory p to be real entities depends, of course, on a par-
ticular ontology that one may associate with CM or another theory supporting the
relevant astronomical observations. In particular, CM allows for a 4-dimensional
ontology where atomic entities are points of Classical aka Neo-Newtonian space-

13The proposed HoTT-based reconstruction of Frege’s V enus example may not capture some
aspects of Frege’s volatile notion of sense. This notion may comprise more than HoTT in its existing
form is able to detect. For example, arithmetical propositions

2 + 2 = 4 (9)
and

4 = 4 (10)
arguably have different senses. However the standard Peano-style formalization of arithmetic used
in HoTT treats both equalities (9) and (10) as definitional and thus doesn’t allow for non-trivial
proofs of (9), see [17, p. 36 ff]. At the same time, given Frege’s specific view on arithmetic as a part
of logic developed in his [4], it is not obvious to me that the view that (9) and (10) have one and
the same sense is indeed untenable in a Fregean conceptual framework. Under this view (9) is a
logical truth but MS = ES is a fact of the matter, so the apparent analogy between the two cases
should be judged as merely linguistic and superficial. This controversial issue has no bearing on my
following argument. I thank an anonymous referee for pointing to this arithmetical example.
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time [23, p. 202 ff]. In this ontological framework p, seen as a world-line, qualifies
as a full-fledged entity while the moving object Venus is its momentary slice. I shall
not discuss here details of this and rival ontologies but rely on the fact that p of our
example allows for natural realistic interpretations.

According to Frege, senses should not be thought of as psychological entities
belonging to individual minds [6, p. 38–39]. However he suggests that senses wholly
belong to human collective memories stored in existing natural languages. The only
way in which a given sense can be possibly related to the non-human parts of our
world, according to Frege’s account as I understand it, is via the reference (if any)
of the corresponding linguistic expression. For example English word “apple” has
a sense, which belongs to this language (and arguably is shared by other natural
languages) and a reference, which is a real thing that may exist independently of
any linguistic and other human activities. English word “unicorn” equally has a
sense but has no reference; so this particular sense is detached from any non-human
reality.

The above is a rough interpretation of Frege’s view but it points to a common
idea about linguistic meaning, which is worth being considered here. Since Frege’s
concept of sense and the logical concept of intension are closely related (see the
end of Section 2 above), the standard examples of so-called intensional contexts
apparently provide a further linguistic support to this idea. Such examples always
have to do with intentions, beliefs, knowledge and other human-related issues. So
these examples square well with Frege’s view according to which propositions (1)
and (3) have “different cognitive values” because their senses are different - in spite
of the fact that their reference (truth-value) is the same.

Our analysis of Venus suggests a revision of this view. Since proofs are con-
stituents of senses (of propositions), and since these proofs admit realistic interpre-
tations, such realistic interpretations may extend to senses. What I have in mind is
not a justification of some form of Meinongian existence of unicorns but rather the
view that the distinction between the sense and the reference of a given linguistic
expression must be freed from all ontological commitments altogether. The idea
that the reference is the only linguistic anchor that links human languages and the
human cognition to non-human realities is hardly justified. Sense and reference and
their logical counterparts such as intensions and extensions of concepts all make part
of (various versions of) our conceptual apparatus. How this apparatus connects us,
humans, to non-human realities is a question, which cannot be answered only by
means of logical and conceptual analysis.

I submit that behind the view on meaning, which I purport now to criticize, is
the following strong ontological assumption:
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All real entities are individuals. (OE)

For further references I shall call this assumption the ontic extensionality or OE
for short. The reason why I call this assumption extensionality becomes clear from a
homotopical reconstruction of Frege’s distinction between sense and reference, which
generalizes upon the above reconstruction of Venus as follows. References are point-
like individuals belonging to classes of alike individuals, which constitute extensions
of their corresponding concepts. Senses are higher-order homotopical structures,
which involve spaces of paths and their homotopies (including higher-order homo-
topies), and constitute intensions of the same concepts. As we have already seen, in
the extensional version of HoTT the higher-order part of the structure is truncated.
Hence the name for OE, which allows the truncated higher-order part of the struc-
ture to have an epistemic and cognitive value but includes in the ontology only its
basic 0-level part.

From this point view it appears reasonable to claim that talks of apples, of
unicorns, of Bucephalus and of Alexander the Great have the same logical form, so
the words “apple” and “unicorn” both have a sense and a reference. By the reference
of “unicorn” I understand here a fictional individual. Propositions about apples and
unicorns may well allow for the same forms of truth-evaluation. The difference
between merely fictional, legendary and real entities concerns material (contentful)
rather than formal features of truth-evaluation. There is no way to distinguish
between a fiction, a legend, and a historical fact on purely formal grounds.14

I can see no a priori reason for assuming that a part of the homotopic structure
is more apt to represent reality than any other. For that reason I don’t take OE
for granted. Moreover that our reconstruction of Venus suggests that terms of 1-
types (paths) allow for a realistic interpretation as well as terms of 0-types (points).
However in the next Section we shall see that the situation is not so simple, and
that BKS is compatible with OE after all.

Concluding this Section I would like to remark that OE goes along the view
according to which the Classical first-order logic (FOL) should be seen and used
as the basic logical tool for scientific reasoning. In this context the suggestion to
drop OE and allow for higher-order entities sounds a part of an argument in favor
of a higher-order system of logic with a standard class-based semantics. MLTT and

14The Bucephalus example demonstrates this particularly clearly. Bucephalus is a legendary
horse belonging to Alexander the Great. According to the legend Bucephalus was born the same
day as Alexander and, according to a particular version of the same legend, he also died the same
day as Alexander. I don’t know about a verdict of today’s historical science as to how much of this
story (if any) is a historical fact and how much of it is a fiction. I don’t believe that any advance
in formal logic may help for answering this question.
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HoTT indeed qualify as higher-order systems in a relevant sense but the homotopical
semantic used in HoTT is not standard. In HoTT higher types are formed not by the
reiteration of the powerset construction (i.e. not by considering classes of classes
of . . . of individuals) but in the geometric way, which has been briefly explained
in Section 5 above. Our homotopical reconstruction of Venus given in Section 6
demonstrates how the geometric semantic of HoTT helps one to use this theory as
a tool for mathematical modeling in science, not only as a tool for a logical analysis
of science. I believe that this dummy example points to interesting theoretical
possibilities in mathematical physics. For serious attempts to use HoTT and its
logical structure in physics see [20,21].

8 Basic kinematic scheme
Here I supplement the homotopical reconstruction of Venus from Section 6 with a
similar reconstruction of the Basic Kinematic Scheme (BKS), which captures the
usual idea of moving particle. The kinematic space K, in which MS and ES live,
allows for multiple paths (trajectories) sharing their ending points. I think about K
not as a vehicle of moving particles but rather as a collection Pt of such particles
provided with appropriate criteria of identity and an additional structure, which
represents their relative motions. The motions are represented by paths between
the particles as in the Venus example. The additional structure is that of groupoid
of paths over Pt. I do not include into K homotopies of paths beyond the trivial ones
because such things play no role in BKS. Paths in K are assumed to be reversible
and composable by concatenation; the composition is associative.15 In terms of
HoTT K qualifies as a 1-type; Pt is the underlying 0-type of K obtained from K
via the (0-)truncation.

Let me now briefly reproduce the above homotopical reconstruction of Venus in
this slightly extended context. We take two points MS, ES in Pt (and hence in K)
and consider the path space MS =P t ES. Then we find in MS =P t ES a particular
path p, which serves us as a proof of identity MS = ES. The extended context
allows us now to notice an interesting feature of BKS, which so far remained out of
the scope of our analysis. Consider the following additional principle, which I’ll call
the uniqueness of actual path:

15In the usual Homotopy theory the composition of paths in a given space S is defined only up to
homotopy; in order to define such an operation one is obliged to provide an appropriate homotopy
aka reparameterization by hand. Since in HoTT homotopy types are primitive objects this issue is
treated a bit differently. We stipulate an abstract groupoid K without assuming any ambient space
S in advance, and then see how much of BKS can be recovered in this way. This approach allows
us to describe the composition of paths in K as concatenation without mentioning homotopies.
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Figure 2: Multiple Paths of Venus

There is at most one path between any two given points. (UAP)

Prima facie Venus does not verify this principle. Indeed, Venus’s orbit, which is
a topological circle, admits two different paths p, q between MS and ES and further,
via composition, two non-trivial loops qp and pq for MS and ES correspondingly:

The above picture represents MS and ES as apparently different but in fact
the same body, which moves along its circular orbit. But neither this picture nor
K construed as above reflects the usual idea that one and the same particle cannot
follow two different paths simultaneously. This is not particularly surprising since
time did not feature in our construction of K so far. I am not going now to fill this
gap by providing K with an explicit representation of time. Instead, let us consider
a model of UAP in the given framework. UAP can be satisfied if we think of MS
as “Venus at time t1” and of ES as “Venus at (later) time t2”. Then during the
time period ∆ = [t1, t2] Venus follows a unique path p, which can be described as
a segment of ‘Venus’s worldline in an appropriate spacetime.16 This shows that we
may use UAP for accounting for a time-related feature of BSK without introducing
time explicitly. It is quite remarkable because UAP involves only very basic concepts
of HoTT and has a purely formal character; it can be itself easily expressed in HoTT.

If we now add a natural assumption that the propositional identity is an equiv-
alence (which excludes “split” or “branching” identities) then UAP reduces possible
forms of K to a trivial spaghetti-like form. In this case each particular connected
component or “noodle” of K can be called a worldline of its corresponding particle
(point). Since every noodle is contractible into a point, in this case K and Pt are

16Since we are talking about the Classical Mechanics but not about the Relativistic Mechanics,
the relevant notion of spacetime is that of the Neo-Newtonian spacetime, see [23, p. 202 ff].
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Figure 3: Quantum Paths

homotopically equivalent. They represent the same 0-level homotopy type K ' Pt
making redundant the very distinction between them. However the distinction be-
tween K and Pt becomes useful again when one distinguishes between actual and
possible paths. Indeed, it is plausible to assume that given actual path p with end-
points MS, ES BKS allows for other possible paths with the same endpoints. In
other words, BKS allow bodies to follow trajectories, which differ from their actual
trajectories. Now we can think of K as groupoid of possible paths where UAP
does not hold and distinguish its subgroupoid A ⊂ K which comprises only actual
paths and for which UAP holds. In this case 0-truncation K → Pt ' A becomes
non-trivial and represents a realization of certain possible paths.

The above analysis of BKS appears to be an appropriate starting point for build-
ing a Quantum counterpart of this conceptual scheme. From the homotopical point
of view there is nothing impossible or unnatural in the idea that a given particle
may follow multiple trajectories simultaneously as this is assumed in the Feynman
path integral formulation of Quantum Mechanics:

In the present conceptual framework one may rather inquire into the nature of
UAP. What is behind the traditional notion according to which the actual trajectory
of a given particle during its lifetime is necessary unique?

In order to provide a tentative answer let us return to the issue discussed in the
last Section. The above analysis of BKS apparently provides an additional evidence
in favor of ontic extensionality (OE). The intensional groupoid structure of K rep-
resents possible trajectories of particles. But since in the real world each particle
has its unique worldline the groupoid K is reduced (truncated) to the extensional
set A ' Pt. Conversely, OE in the given context implies UAP. However OE is
compatible with BKS only if one understands the modal property of being possible
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(for paths) in purely epistemic terms - say, as a lack of knowledge about the actual
trajectories. Alternatively, one may think about possible paths in K as physically
real. This latter view violates OE but it is not wholly unreasonable. Quantum
Mechanics where UAP does not apply, provides additional reasons for taking it seri-
ously. I stop here and leave an attempt to develop a HoTT-based theory of identity
for Quantum Mechanics for a different occasion.
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Abstract

I will give a short exposition of Independence-Friendly logic (IF logic), a
system of logic which extends ordinary first-order logic with arbitrary patterns
of dependent and independent quantifiers. Truth and falsity of IF sentences is
defined in terms of the existence of winning strategies in a 2-player win-lose
games of imperfect information. One consequence of imperfect information is
the existence of indeterminate IF sentences (on finite models). I sketch how
indeterminacy may be overcome using von Neumann’s Minimax Theorem. My
exposition draws on ideas in [6].

Keywords: IF Logic, IF Games.

Introduction
In a seminal paper [2], Goldfarb points out that “The connection between quantifiers
and choice functions or, more precisely, between quantifier-dependence and choice
functions, is the heart of how classical logicians in the twenties viewed the nature of
quantification.” [2, p. 357]. For a less historical but more systematic point of view
[8], Terence Tao, notices that we know how to render in first-order logic statements
like:

1. For every x, there exists a y depending on x such that B(x, y) is true

and
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2. For every x, there exists a y independent of x such that B(x, y) is true.

The first one can be rendered by

∀x∃yB(x, y)

and the second one by

∃y∀xB(x, y).

(Here B(x, y) is a binary relation holding of two objects x, y). Things become more
complicated when four quantifiers and a 4-place relation Q(x, x′, y, y′) are involved.
We can express in first-order logic statements like:

3. For every x and x′, there exists a y depending only on x and a y′ depending on
x and x′ such that Q(x, x′, y, y′) is true

and

4. For every x and x′, there exists a y depending on x and x′ and a y′ depending
only on x′ such that Q(x, x′, y, y′) is true

by

∀x∃y∀x′∃y′Q(x, x′, y, y′)

and

∀x′∃y′∀x∃yQ(x, x′, y, y′)

respectively. However, Tao continues, one cannot always express the statement

5. For every x and x′, there exists a y depending only on x and a y′ depending only
on x′ such that Q(x, x′, y, y′) is true.

His conclusion is that

It seems to me that first order logic is limited by the linear (and thus
totally ordered) nature of its sentences; every new variable that is intro-
duced must be allowed to depend on all the previous variables introduced
to the left of that variable. This does not fully capture all of the depen-
dency trees of variables which one deals with in mathematics. (Idem)
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1 Independence-friendly logic
Independence-friendly logic (IF logic) introduced by Hintikka and Sandu in [4], is
intended to represent patterns of dependence and independence of quantifiers like
those exemplified by 5 which go beyond those expressible in ordinary first-order
logic. More exactly, IF logic contains quantifiers of the form

(∃x/W ) (∀x/W )

where W is a finite set of variables. The intended interpretation of (∃x/W ) is: the
existential quantifier ∃x is independent of the quantifiers which bind the variables
in W. The notion of independence involved here is a game-theoretical one and cor-
responds to the mathematical notion of uniformity. The example 5 above will be
rendered in the new formalism by:

∀x∀x′(∃y/{x′})(∃y′/{x, y})Q(x, x′, y, y′).

The original interpretation of IF formulas is given by semantical games of imperfect
information. An alternative, equivalent interpretation is by skolemization. We shall
adopt the latter.

2 Truth in IF logic
Let ϕ be a formula of IF logic in a given vocabulary L and U a finite set of variables
which contains the free variables of ϕ. We expand the vocabulary L of ϕ to L∗ =
L ∪ {fψ : ψ is a subformula of ϕ}. The skolemized form or skolemization of ϕ with
variables in U is defined by the following clauses, as detailed in [6]:

SkU (ψ) = ψ, for ψ an atomic subformula of ϕ or its negation
SkU (ψ ◦ θ) = SkU (ψ) ◦ SkU (θ), for ◦ ∈ {∨,∧}
SkU ((∀x/W )ψ) = ∀xSkU∪{x}(ψ)
SkU ((∃x/W )ψ) = Subst(SkU∪{x}(ψ), x, f∃x(y1, ..., yn))

where y1, ..., ynenumerate all the variables in U −W. We notice that if W = ∅ the
last clause becomes

SkU ((∃x)ψ) = Subst(SkU∪{x}(ψ), x, f∃x(y1, ..., yn))

where y1, ..., ynenumerate all the variables in U . That is, we recover the notion of
skolemization for the standard quantifiers. We abbreviate Sk∅(ϕ) by Sk(ϕ). An
interpretation of f∃x(y1, ..., yn) is called a Skolem function.
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Example. We skolemize the sentence ϕ

∀x∀x′(∃y/{x′})(∃y′/{x, y})Q(x, x′, y, y′).

We denote (∃y′/{x, y})Q(x, x′, y, y′) by ψ. Sk(ϕ) is obtained through the following
steps:

Sk{x,x′,y,y′}(Q(x, x′, y, y′)) = Q(x, x′, y, y′)
Sk{x,x′,y}(ψ) = Q(x, x′, y, fy′(x′))

Sk{x,x′}((∃y/{x′})ψ) = Q(x, x′, fy(x), fy′(x′))
Sk{x}(∀x′(∃y/{x′})ψ) = ∀x′Q(x, x′, fy(x), fy′(x′))
Sk∅(∀x∀x′(∃y/{x′})ψ) = ∀x∀x′Q(x, x′, fy(x), fy′(x′)).

The original vocabulary L receives an interpretation through an L-structure M
in the usual way. We are now ready for the truth-definition.

Definition 1. Let ϕ be an L-sentence of IF logic andM an L-structure. We say that
ϕ is true in M, M �+ ϕ, if and only if there exist functions g1, ..., gn of appropriate
arity inM to be the interpretations of the new function symbols fx1 , ..., fxn in Sk(ϕ)
such that

M, g1, ..., gn � Sk(ϕ).

3 Falsity in IF logic
In order to deal with falsity, we shall define another translation procedure, KrU (ϕ)
(we continue to follow [6]):

KrU (ψ) = ¬ψ, for ψ an atomic subformula or its negation
KrU (ψ ∨ θ) = KrU (ψ) ∧KrU (θ),
KrU (ψ ∧ θ) = KrU (ψ) ∨KrU (θ)
KrU ((∃x/W )ψ) = ∀xKrU∪{x}(ψ)
KrU ((∀x/W )ψ) =Subst(KrU∪{x}(ψ), x, f∀x(y1, ..., ym)

where y1, ..., ym are all the variables in U −W . We call the value of interpretation
of f∀x(y1, ..., ym)) a Kreisel counter-example.

By analogy with the truth definition, we stipulate that an IF sentence ϕ is false in
a structure M, M �− ϕ, if and only if there exist functions h1, ..., hm of appropriate
arity inM to be the interpretations of the new function symbols fx1 , ..., fxm in Kr(ϕ)
such that

M, h1, ..., hm � Kr(ϕ).
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4 Indeterminacy and signaling

Here is an example of an IF sentence which is neither true nor false in any structure
M which contains at least two elements:

ϕ = ∀x(∃y/{x})x = y.

It may be checked that Sk(ϕ) = ∀xx = c, where c is a new 0-place function (in-
dividual constant); and Kr(ϕ) = ∀y¬d = y. Then by the definitions above, we
have:

M �+ ϕ iff there is a ∈M such that M, a � ∀xx = c

M �− ϕ iff there is b ∈M such that M, b � ∀y¬d = y.
As the structure M contains at least two elements, none of the assertions on the

right side is true. Thus we have both M 2+ ϕ and M 2− ϕ.
It is interesting to compare the previous example with ψ

∀x∃z(∃y/{x})x = y

whose skolemization is
∀xx = g(f(x)).

It may be checked that this sentence is a logical truth. Unlike in ordinary first-
order logic, the example shows that inserting a dummy existential quantifier in an
IF sentence changes its semantical value. Hodges has discussed this example in [5],
and the phenomenon of signaling in IF logic.

5 Expressive power

Example of sentences of the form

∀x∀x′(∃y/{x′})(∃y′/{x, y})Q(x, x′, y, y′)

which are mentioned by Tao and which are not first-order definable are not difficult
to find. We prefer to use a different example, which will turn up to be useful for other
purposes too. There is an IF sentence which expresses the (Dedekind) infinity of the
universe M . M is said to be (Dedekind) infinite iff there is a function h : M → M
which is an injection and in addition there is an element inM which is not the image
under h of any element of M . The sentence we look for is ϕinf

∃w∀x(∃y/{w})(∃z/{w, x})(x = z ∧ w 6= y).
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The Skolem form of ϕinf is

∀x(x = g(f(x)) ∧ c 6= f(x)).

It can be checked that ϕinf is true in a model iff the function f is an injection which
range is not the entire universe. On the other side if M is finite, it may be shown
that we have both M 2+ ϕinf and M 2− ϕinf . Thus we have produced another
example of an indeterminate IF sentence.

6 Strategic games
Consider our earlier IF sentence ϕ = ∀x(∃y/{x})x = y and a finite model M. The
set S∃ of Skolem functions of Eloise in this game reduces to the set of all individuals
in M which can be the values of the new function symbols in Sk(ϕ) = ∀xx = c. In
this case S∃ = M. And the set S∀ of Kreisel counter-examples of Abelard in this
game reduces to the set of all individuals in M which can be the values of the new
function symbols in Kr(ϕ) = ∀y¬d = y. Thus S∀ = M. We can now formulate
a two-player strategic game in which we let S∃ be the set of (pure) strategies of
Eloise, and S∀ the set of (pure) strategies of Abelard. The two players choose
simultaneously s ∈ S∃ and t ∈ S∀, respectively. The payoff of the outcome is
determined in a very simple way: if s and t satisfy the equation x = y, Eloise wins
(1 euro). Otherwise Abelard wins. Here is the complete matrix of the game for the
case in which S∃ = {1, 2, 3}=S∀ = M:

1 2 3
1 (1, 0) (0, 1) (0, 1)
2 (0, 1) (1, 0) (0, 1)
3 (0, 1) (0, 1) (1, 0)

The rows represent the strategies of Eloise and the columns the strategies of Abelard.
In (m,n), m ∈ {0, 1} is the payoff of Eloise, i.e. u∃(m,n) = m, and n is the payoff
for Abelard for the corresponding pair of strategies.

It is interesting to compare this game to the one associated with the IF sentence
ψ = ∀x(∃y/{x})x 6= y and M = {1, 2, 3}:

1 2 3
1 (0, 1) (1, 0) (1, 0)
2 (1, 0) (0, 1) (1, 0)
3 (1, 0) (1, 0) (0, 1)

We shall call these games strategic IF games, and denote them by Γ(M,ϕ) =
(S∃, S∀, u∃, u∀). Obviously these games are
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• win-lose: Every game has exactly two payoffs, 0 and 1.

• 1 sum: For every s ∈ S∃ and t ∈ S∀ we have: u∃(s, t) + u∀(s, t) = 1.

Let Γ = (S∃, S∀, u∃, u∀) be a finite strategic IF game. For s∗ ∈ S∃ and t∗ ∈ S∀,
the pair (s∗, t∗) is an equilibrium in Γ iff the following two conditions are jointly
satisfied:

(i) u∃(s∗, t∗) ≥ u∃(s, τt∗) for every strategy s in S∃. In other words

u∃(s∗, t∗) = maxsu∃(s, t∗)

(ii) u∀(s∗, t∗) ≥ u∀(s∗, t) for every strategy t in S∀. In other words

u∀(s∗, t∗) = maxtu∀(s∗, t).

We can check that in our earlier strategic IF games Γ(M, ∀x(∃y/{x})x = y) and
Γ(M, ∀x(∃y/{x})x 6= y) where M = {1, 2, 3}, there are no equilibria. Obviously this
is a reflection of the fact that these games are undetermined.

6.1 Mixed strategies equilibria in IF games

There is an equilibrium in every IF game if, instead of pure strategies, we switch to
mixed strategies. Let Γ = (S∃, S∀, u∃, u∀) be a finite IF strategic game. A mixed
strategy ν for player i in this strategic game is a probability distribution over Si,
that is, a function ν : Si → [0, 1] such that

∑
τ∈Si

ν(τ) = 1. ν is uniform over S′i ⊆ Si
if it assigns equal probability to all strategies in S′i and zero probability to all the
strategies in Si − S′i. Obviously we can simulate a pure strategy s with a mixed
strategy ν such that ν assigns s probability 1. Given a mixed strategy µ for player
∃ and a mixed strategy ν for player ∀, the expected utility for player i is given by:

Ui(µ, ν) =
∑
s∈S∃

∑
t∈S∀

µ(s)ν(t)ui(s, t).

When s ∈ S∃ and ν is a mixed strategy for player ∀, we let

Ui(s, ν) =
∑
t∈S∀

ν(t)ui(s, t).

Similarly if t ∈ S∀ and µ is a mixed strategy for player ∃, we let

Ui(µ, t) =
∑
s∈S∃

µ(s)ui(s, t).
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Von Neumann’s well known Minimax Theorem shows that every finite, constant
sum, two player game has an equilibrium in mixed strategies. It is also well known
that every two equilibria in such a game returns the same expected utility to the
two players. Thus we can talk about the expected utility returned to player ∃ by an
IF strategic game. This justifies the next definition:

Definition 2. Let ϕ be an IF sentence and M a finite model. When 0 ≤ ε ≤ 1 we
define: M �eqε ϕ iff the expected utility returned to player ∃ by the strategic game
Γ(M, ϕ) is ε.

The above definition gives us the (probabilistic) value of an IF sentence ϕ on
a given finite model M. It can be shown that this interpretation is a conservative
interpretation of the earlier interpretation, in the following sense.

Proposition 1. For every IF sentence ϕ and finite model M we have: M �+ ϕ iff
M �eq1 ϕ; and M �− ϕ iff M �eq0 ϕ.

The next proposition is often useful for checking that a pair of mixed strategies
is an equilibrium.

Proposition 2. Let µ∗be a is a mixed strategy for player ∃ and ν∗is a mixed strategy
for player ∀ in the strategic IF game Γ. The pair (µ∗, ν∗) is an equilibrium in Γ if
and only if the following conditions hold:

1. U∃(µ∗, ν∗) = U∃(σ, ν∗) for every σ ∈ S∃ in the support of µ∗;

2. U∀(µ∗, ν∗) = U∀(µ∗, τ) for every τ ∈ S∀ in the support of ν∗;

3. U∃(µ∗, ν∗) ≥ U∃(σ, ν∗) for every σ ∈ S∃ outside the support of µ∗;

4. U∀(µ∗, ν∗) ≥ U∀(µ∗, τ) for every τ ∈ S∀ outside the support of ν∗.

Recall our earlier examples Γ(M, ∀x(∃y/{x})x = y) and Γ(M, ∀x(∃y/{x})x 6= y)
where M = {1, 2, 3}. In both cases the uniform strategies µ∗(1) = µ∗(2) = µ∗(3) =
1
3 and ν∗(1) = ν∗(2) = ν∗(3) = 1

3 form an equilibrium. The value of the first

game is 1
3 and that of the second game is 2

3 . Thus M �eq1
3
∀x(∃y/{x})x = y and

M �eq2
3
∀x(∃y/{x})x 6= y.

A more complex argument shows that for M a finite model with n elements we
have M |=eq

n−1
n

ϕinf . Thus when n grows to infinity the value of ϕinf approaches 1,
as expected.
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Notes
IF logic has been introduced by Hintikka and Sandu in [4]. In [3], Hintikka discusses
the foundational role of IF logic in the philosophy of mathematics. The basic model
theoretical properties of IF logic from a game-theoretical perspective are described
by Mann, Sandu, and Sevenster in [6]. In that work the probababilistic interpre-
tation of IF logic, which is the source of our exposition in section 6, is thoroughly
studied. The idea to use von Neumann’s Minimax Theorem in the context of par-
tially ordered quantifiers is due to Ajtai as mentioned in [1]. The first systematic
investigation of strategic IF games is provided by [7]. Recently, an alternative ap-
proach to IF logic has been developed which replaces the independence of quantifiers
by the dependence between terms. In this new setting, (5) is rendered by

∀x∀x′∃y∃y′(= (x, y)∧ = (x′, y′) ∧Q(x, x′, y, y′)).
The intended meaning of ′ = (x, y)′ is: y functionally depends on x. The semantical
interpretation of this language is based on Hodges’ compositional interpretation,
introduced in [5]. A self-contained introduction to this logic is [9].
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Abstract

The paper discusses how one can try to analyze computations, and maybe
computational problems from the point of view of information evolution. The
considerations presented here are very preliminary. The long-standing goal is
twofold: on the one hand, to find other vision of computations that may help to
design and analyze algorithms, and on the other hand, to understand what is
realistic computation and what is real practical problem. The concepts of mod-
ern computer science, that came from classical mathematics of pre-computer
era, are overgeneralized, and for this reason are often misleading and counter-
productive from the point of view of applications. The present text discusses
mainly what classical notions of entropy might give for analysis of computa-
tions. In order to better understand the problem, a philosophical discussion of
the essence and relation of knowledge/information/uncertainty in algorithmic
processes might be useful.

Keywords: Computation, Problem, Partition, Entropy, Metric.

1 Introduction
The goal of this paper is to discuss along what lines one can look for ways to de-
scribe the quantity of information transformed by computations. This may permit
to better understand the computations themselves and, possibly, what is practical
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computation and what is practical algorithmic problem. The considerations pre-
sented here are very preliminary, more of philosophical than of mathematical flavor.
We consider rather straightforward geometrical and information ideas that come to
mind. Usually they are not sufficient taken directly. Making explicit the obstacles
may help to devise more productive approaches.1

In Introduction we give some arguments that illustrate that the mathematical
formulations of computational problems we usually consider, are overgeneralized,
and sometimes this hinders the development of practical algorithms or the under-
standing why certain algorithms for theoretically hard problems work well in prac-
tice. In Section 2 we outline some approaches to measuring information in compu-
tations, and discuss their weak and strong points. Section 3 is about the structure
of problems for which we can presumably develop measures of information along the
lines described in the previous section. It contains also a short discussion of the role
of linguistic considerations in describing practical problems.

Why traditional mathematical settings look too general for practical computer
science? And when it is inevitable and when maybe not?

Most notions used in theoretical computer science either come from mathematics
of pre-computer era or are developed along mathematical lines of that epoch. From
mathematics of pre-computer era the computational theory borrows logics, logical
style algorithms (lambda-calculus, recursive function, Turing machine), general de-
ductive systems (grammars), Boolean functions, graphs. More specific notions like
finite automata, Boolean circuits, random access machines etc., though motivated
by modeling of computations, are of traditional mathematical flavor. All these con-
cepts played and continue to play fundamental role in theoretical computer science,
however other, more adequate concepts are clearly needed.

I can illustrate this thesis by Boolean functions and their realization by circuits.
Almost all Boolean functions of n variables have exponential circuit complexity
(2n/n) [9], and there is an algorithmic method to find such an optimal realization
for a given ‘random’ function [6]. But it is clear that even for n = 64, that is not so
big from practical viewpoint, one cannot construct a circuit with 2n/n gates. So one
can state that almost all Boolean functions will never appear in applications. The
notion of Boolean function is of evident practical value, but not in its generality. All
this does not say that the general notion and the mentioned result on the complexity
of realization are useless in theory (moreover, they are known to be useful). But an
optimal circuit construction for almost all Boolean functions is not of great value
for practical Boolean functions.

Consider another example. We know that the worst-case complexity of the de-

1Some of them were developed later to become quite mathematical.
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cidability of the theory of real addition is exponential [2]. This theory is a set of valid
closed formulas that are constructed from linear inequalities with integer coefficients
with the help of logical connectives, including quantifiers over real numbers (in fact,
only rational numbers are representable by such formulas, as the only admissible
constants are integers). In particular, one can express in this theory the existence
of a solution of a system of linear inequalities, and various parametric versions of
this problem, e.g., whether such a solution exists for any value of some variable in
some interval. The complexity of recognition of validity of the formulas grows up
with the number of quantifier alternations.

The mentioned exponential lower bound on the computational complexity of the
theory of real addition is proven along the following lines. Denote B=df {0, 1} and
denote by B∗ the set of all strings over B. Under some technical constraints for
any algorithm f from B∗ to B, whose complexity is bounded by some exponential
function ϕ, and for any its input x ∈ B∗ one can construct a formula Φ(f, x) of
sufficiently small size (polynomial in the size of f and x) that is valid if and only if
f(x) = 0.

Within a reasonable algorithmic framework (e.g., for some random access ma-
chines, like LRAM from [10]) one can construct a predicate f : B∗ → B whose upper
bound on computational complexity is ϕ, and any algorithm that computes this
predicate has lower bound θ ·ϕ, for some 0 < θ < 1. This f is a diagonal algorithm,
I do not know other kind of algorithms for this context. Such a diagonal algorithms
works like follows. Assume that the complexity of computing ϕ(|x|), where |x| is the
length of x ∈ B∗, is bounded by its value ϕ(|x|). The algorithm f computes ϕ(|x|)
and makes roughly ϕ(|x|) steps of simulation of algorithm with the code x applied
to input x. If the process ends within less that ϕ(|x|) steps then f outputs the value
different from the value computed by the algorithm with the code x, otherwise it
outputs say, 0 (in the latter case the value is not important).

Thus, the recognition of the validity of formulas Φ(f, x) has a high complexity.
But they are not formulas that appear in practice. Moreover, practical formulas, that
may have a good amount of quantifier alternations, are semantically much simpler,
they never speak about diagonal algorithms, though may speak about practical
algorithms, e.g., about execution and properties of hard real-time controllers.

The just presented argument is valid for all negative complexity results (un-
decidability, high lower bounds, relative hardness) with the existing proofs. And
here one arrives at another ‘incoherence’ between theory and practice that can be
illustrated by the TAUT problem, i.e., by the problem of recognition of the valid-
ity of propositional formulas. This problem is considered as relatively hard (more
precisely, coNP-complete) in theory, but existing algorithms solve very efficiently
practical instances of this problem, and the problem is considered as an easy one by
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people working in applications. This is not the only example.
There are similar examples of another flavor, like the practical efficiency of linear

programming algorithms. Here one finds mathematically interesting results of their
average behavior. However, traditional evaluation of the average or Teng-Spielman
smooth analysis [13] deal with sets of inputs almost none of which appears in prac-
tice. If one accepts Kolmorogov algorithmic vision of randomness, i.e., a string (or
other combinatorial construct) is random if its Kolmogorov complexity is close to
the maximal value, then one gets another argument that random constructs cannot
appear from physical or human activity.

Many people believe that physical processes may produce truly random data.
Many years ago, it was somewhere in the 70th, G. M. Adelson-Velsky2 told me that
M. M. Bongard3 showed, using not very complicated learnability algorithm, that
Geiger counter data, that were considered as truly random, can be predicted with
a probability definitely higher that 1/2. Who else analyzed physical ‘random data’
in this way? Notice that standard statistical tests that are used to prove random-
ness can be easily fooled by simple deterministic sequences, e.g., Champernowne’s
sequence. Happily, in practice ‘sufficiently random’ sequences suffice.

The practical inputs are always described in a natural language whose constructs
are numerous but incomparably less numerous than arbitrary constructs, so they are
not so random.

One may refer to the ideology of modern mathematics. Modern mathematics
does not study arbitrary functions, nor arbitrary continuous functions, nor even
arbitrary smooth functions. It studies particular, often rather smooth, manifolds
on which often, though not always, acts a group with some properties modeling
properties inspired by applications in mind.

It is not so evident how to find a structure to study in algorithmic problems,
but it is much simpler to see a structure in computations, namely, in sets of runs
(executions). One can try to find geometry in these sets. An intuitive sentiment
is that any algorithm transforms information, so we can try to find geometry in
computations using this or that concept of information.

It is improbable that one approach will work for all types of algorithms that
appear in practice. The frameworks we use to study different types of algorithms
are different. For example, reactive real-time systems are studied not as data base
queries, computer algebra algorithms are studied not in the same way as combinato-
rial algorithms etc. In this paper I try to look at off-line ‘combinatorial’ algorithms
without defining this class rigorously. Roughly speaking such an algorithm processes

2Georgy Maximovich Adelson-Velsky (1922–2014) was a well-known Soviet and Israeli mathe-
matician and computer scientist.

3Mikhail Moiseevich Bongard (1924–1971) was a well-known Soviet computer scientist.
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a finite ‘combinatorial’ input accessible from the very beginning, where each bit is
‘visible’ except maybe some integers that are treated as abstract atoms or ‘short’
integers with addition and comparison. Examples are string matching, binary con-
volution, TAUT, shortest path in graphs with integer weights etc.

But algorithms of this vaguely defined class may be very different from the point
of view of their analysis. For example, take diagonal algorithms and compare such
an algorithm with an algorithm like just mentioned above. One can see that runs of
diagonal algorithms are highly diverse, within the same length of inputs we may see
a run that corresponds to an execution of a string-matching algorithm, another run
that correspond to solving a linear system etc. In the algorithms mentioned above
the runs are more or less ‘similar’. My first idea was to say that this distinguishes
practical algorithms from non-practical ones. However, E. Asarin immediately drew
my attention to interpreters that are quite practical and whose sets of runs are of
the same nature that the set of runs of diagonal algorithms. It is interesting that
compilers (to which N. Dershowitz drew my attention in the context of a discussion
on practical and impractical algorithms some time ago) are in the same class that the
mentioned combinatorial algorithms because they do not execute the programs that
they transform. But interpreters are not in the same class as the combinatorial al-
gorithms that are under study here. We do not demand that an interpreter diminish
the computational complexity of the interpreted algorithm. And the interpretation
itself slows down the interpreted algorithm by a small multiplicative constant that
we can try to diminish. In some way, the output of the interpreter is a trace of the
interpreted algorithm, so their diversity is intrinsic, and the length of their outputs
is compared with their time complexity. We consider algorithms whose outputs are
‘much shorter’ than their time complexity.

2 How to evaluate similarity of computations?

Some syntactic precisions on the representation of runs of algorithms are needed.
Suppose that F is an algorithm of bounded computational complexity that has as
its inputs some structures (strings, graphs etc.) and whose outputs are also some
structures.

By the size of an input we mean not necessarily the length of its bit code but
some value that is more intuitive and ‘not far’ from its bit size. E.g., the number of
vertices for a weighted graph, the length of vectors in binary convolution etc. In any
case the bit size is polynomially bounded by our size. Thus, for a weighted graph
we assume that weights are integers whose size is of the order of logarithm of the
number of vertices if the weights are treated as binary numbers or whose size is O(1)
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if they are treated abstractly.
We mention two very simple examples, namely palindrome recognition and sum

of elements of a string over B.
Assume that for the structures under consideration a reasonable notion of size

is defined, and the set of all inputs of size n, that are in the domain of F , is denoted
by dmn(F ) or dm if F and n are clear from the context. The set of corresponding
values of F is denoted rnn(F ) or rn. We assume that n is a part of inputs. Below
n is fixed and often omitted in the notations.

We look at algorithms from the viewpoint of logic. Though in programming, as
well as in logic, any program may be seen as an abstract state machine, there is
no terminology that is commonly accepted in logic and programming. For example,
what is called variable in programming is not variable in logic; from the point of view
of logic it is a function without arguments but that may have different values during
the execution of the program. In order to avoid such discrepancy we use logical
terminology that was developed by Yu. Gurevich for his Abstract State Machines
[3], and may be applicable to any kind of programs. Our framework is not that of
Yu. Gurevich machines, we deal with executions of low-level programs seen as some
kind of abstract state machines.

An algorithm computes the values of outputs using pre-interpreted constants like
integers, rational numbers, Boolean values, characters of a fixed alphabet, and pre-
interpreted functions like addition, order relations over numbers and other values,
Boolean operations. These functions are static, i.e., they do not change during the
executions of F . The other functions are abstract and dynamic. The inputs are given
by the values of functions (that constitute the respective structure) that F can only
read; they are external (as well as pre-interpreted functions). The functions that can
be changed by F are its internal functions, they are subdivided into output functions
and proper internal functions. We assume for simplicity that the output functions
are updated only once. Dynamic functions may have arguments, like, e.g., arrays,
and we limit ourselves to such functions that have one natural argument. When
the argument i in such a function f is fixed, this f(i) can be considered as nullary
function, i.e. as a function without arguments. All these functions constitute a
vocabulary of the algorithm.

We consider computations only for inputs from a finite set dmn(F ). These
computations are represented as sets of traces that we describe below. We can
treat such sets abstractly without precise notion of algorithm. However, for better
intuitive vision, we describe a simple algorithmic language that gives a general notion
of algorithm and that suffices for our examples.

Term is defined as usual, and without loss of generality, we consider non nested
terms, i.e., terms whose arguments are only variables if any. Guard is a literal.
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Update (assignment) is an expression g := θ, where g is an internal function, and θ is
a term. Constructors of a program (algorithm) are: update, sequential composition
(denoted ;), branching if guard then P else P ′ , where P and P ′ are programs,
goto, halt. As delimiters we use brackets.

A state is an interpretation of the vocabulary of the algorithm. A state is changed
by updates in the evident way. The initial state is common for all inputs, we assume
that the initial value of any internal function f is symbol \ that represents undefined,
is never used in updates, and that f−1(\) = ∅. A run is usually defined as a sequence
of states, but we use an equivalent representation of executions as traces.

Given an input X ∈ dmn(F ) a trace tr(X) is constructed as follows according
to the executed operators: update is written as it is in the program; in the case
of conditional branching if guard then-else we put in the trace either guard or its
negation depending on what is true in this trace. For simplicity the initial state
and halt are not explicitly mentioned in traces, neither goto. Thus, a trace is a
sequence of updates and guards that are called events. The tth event in a trace
tr(X) is denoted tr(X, t). These events are symbolic. An execution gives values to
the internal functions, and thus, an interpretation of any event.

Denote by t∗F (X) the time complexity of F for input X, and by tF (n) the max-
imum of these values, i.e., the worst-case time complexity of F over dmn(F ).

For an input X ∈ dmn(F ) and a time instant t, 1 ≤ t ≤ t∗(X), we denote
by f [X, t] the value of a internal function f in tr(X) at t, the value is defined
recursively together with the recursive definition of trace given just above. If f is
not undated at t then f [X, t] = f [X, t− 1]. If tr(X, t) is of the form f := g(η) then
f [X, t] = g(η[X, t− 1])[X, t− 1].

Consider two examples.

Palindrome recognition. Inputs are non empty strings of length n over an alpha-
bet A with α ≥ 2 characters. For simplicity assume that n is even and set ν=df

n
2 .

We denote the input by w, and the character in the ith position by w(i). We take
a straightforward algorithm ϕ that compares characters starting from the ends and
going to the middle of the input. We use % to mark comments, and we omit halt
that is evident.
Algorithm ϕ:
% i is a loop counter, r is the output (0 means non palindrome, 1 palindrome)
1: i := 0;
2: if i < ν then

(
i := i+ 1;

if w(i) = w(n− i+ 1) then goto 2 else r:=0
)

else r:=1
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Algorithm ϕ has two types of traces (one with output 0 and the other with
output 1):

i := 0, i < ν, i := i+ 1, w(i) = w(n− i+ 1), . . . , i < ν, i := i+ 1,
w(i) = w(n− i+ 1), i < ν, i := i+ 1, w(i) 6= w(n− i+ 1), r:=0

i := 0, i < ν, i := i+ 1, w(i) = w(n− i+ 1), . . . , i < ν, i := i+ 1,
w(i) = w(n− i+ 1), i ≥ ν, r:=1

A trace of the first type may have different lengths starting from 5, but the
length of the trace of the second type is always the same.

For a string aabaaa with a 6= b, if in the respective trace we replace the internal
functions, as well as n, by their values we can write:

i := 0, 0 < 3, i := 0 + 1, w(1) = w(6), 1 < 3, i := 1 + 1, w(2) = w(5),
2 < 3, i := 2 + 1, w(3) 6= w(4), r:=0

Sum modulo 2 of bits of a string. Inputs are strings of the set Bn.
Algorithm σ:

% x is input, r is output, i is a loop counter, s is an intermediate value
1: i := 0; s := 0; %Initialization
2: if i < n then i := i+ 1; s := s+ x(i); goto 2
3: else r := s % case i ≥ n

All traces of σ are ’symbolically’ the same (the algorithm is oblivious), for clarity
we put in an event the value of i acquired before this event:

i := 0, s := 0, 0 < n, i := 0 + 1, s := s+ x(1), 1 < n, i := 2,
s := s+ x(2), . . . , n− 1 < n, i := n, s := s+ x(n), n ≥ n, r := s

Remark. For Boolean circuits we can also produce traces that are even simpler,
as a Boolean circuit is a non branching oblivious algorithm. Such a trace consists
of updates, each one being an application of the Boolean function attributed to a
vertex of the circuit, to the values attributed to its predecessors.

Denote by Trn the set of all traces for inputs from dmn. The length |tr(X)| of
a trace tr(X), X ∈ dmn, is the number of occurrences of events in it, i.e., the time
complexity t∗F (X).

2.1 A syntactic similarity of traces

A straightforward way to compare two traces is the following one. We look in
tr(X) and tr(Y ) for a longest common subsequence (we tacitly assume that some
equivalence between events is defined), and take as a measure of similarity the size
of the rest. More precisely, if S is the longest common subsequence then we take
as measure the value |tr(X)|+ |tr(Y )| − 2|S|, where |S| is the size (the number of
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elements) of a sequence S. This measure is something like the size of symmetric
difference of two sequences.

We can go further, and to take into account only causal order in what concerns
the order of events, and to permit a renaming of proper internal functions and their
values. The causal order is defined as follows. If the function updated or used (in
the case of guard verification) in an event e depends on a function updated earlier in
an event e′ then e′ causally precedes e. Taking a transitive closure of this relation we
get causal order between events in a given trace. This generalization is too technical
(details can be found in [12]), and as I cannot give examples of realistic applications,
it is just mentioned as a theoretical possibility.

The measure introduced above gives a pseudo-metric (it is like metric except that
two different traces may have zero distance; in our case the zero distance relation is
an equivalence) over traces. As the trace space Trn is clearly compact, this metric
permits to define epsilon-entropy [5] on it. This entropy is defined as follows. For
a given ε (in our case it is a natural number) take an ε-net of minimal size such
that the ε-balls centered at the points of the net cover all the space. Then log s,
where s is the size of this net, is the ε-entropy. It gives the size complexity of the
ε-approximation of the space, or to say it differently, how much information one
needs to have, in order to describe an element of the space with accuracy ε.

Consider our examples.
Trace space of ϕ. We define similarity as follows (it is a rather general way to
define it). First, in the right-hand side of each update f := θ replace all proper
internal functions of θ by their values. In guards replace all internal functions by
their values. We get as transformed events the expressions: i := m, where m ∈ N
and m = (. . . ((0 + 1) + 1) + · · · + 1), m < ν, m ≥ ν, w(m) = w(n − m + 1),
w(m) 6= w(n−m+1), r = 0, r = 1. As similarity (we refer to it as ‘weak similarity’)
we take the syntactic equality of these transformed events.

With this similarity we have
(
ν+1

)
different (classes of similar) traces (ν classes

with r = 0 at the end, and 1 class with r = 1): denote by Pk traces with (k − 1)
equalities and one inequality in the k comparison, 1 ≤ k ≤ ν, and by P the only
trace with r = 1. The distance between Pk and Pl is 3|k − l|, and between Pk and
P is 3(ν − k) + 2. If we take ε = 2 then ε-net should include all the traces but,
however, it is of size (logn +O (1)). If we take ε = 3p, p ∈ N, then as an ε-net we
can take each pth trace ordered according to their lengths; hence, 3p-entropy is of
size d n2pe = dνpe (maybe plus 1).

The situation changes if we take stronger similarity. We say that w(m) = w(n−
m + 1) and w(m′) = w(n − m′ + 1) are similar if m = m′ (as before) and the
respective values of inputs are the same w(m) = w(m′) (for 6= we demand also
w(n−m+ 1) = w(n−m′+ 1)). In this case the trace space becomes of exponential
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size. We illustrate this kind of similarity for algorithm σ.
Trace space of σ. We define similarity of event of the form i := i + 1 and of the
form i < n as in the previous case: values of (i + 1) in similar events of the form
i := i + 1 and the value of i in similar events of the form i < n should be equal.
Two events of the form s := s + x(i) are similar if the values of i, as well as of the
acquired values of s, are equal. Any string from Bn may be a string of consecutive
values s starting from s := 0 + x(1) that equals to x(1). Thus the set of traces of
σ with this similarity and our metric divided by 2 is isometric to the Boolean cube
Bn with Hamming metric. This space is studied in the coding theory, and I cannot
say more than can be found there.

Unfortunately, the metric spaces in the examples above do not say much about
the advancement of the algorithm towards the result. If we take spaces of traces up
to some time instant and their dynamics with growing time, it does not help much
neither. Moreover, the size of the space Trn is bounded by |dmn|, and does not
depend on the complexity of F , and this is also a shortcoming of this approach.

2.2 Remark on Kolmogorov complexity approach

Why not to measure distance between traces on the basis of Kolmogorov complexity?
This question was put by some of my colleagues.

A direct application of Kolmorogov algorithmic entropy [4] to measure similarity
of traces does not give results corresponding to our intuition. Indeed, in [4] Kol-
mogorov defines entropy as conditional complexity K(α|β). Similarity of structures
α and β may be measured as K(α, β) = K(α|β) + K(β|α). This is not a met-
ric, strictly speaking, however, we call this function K-distance as it has a flavor of
intuitive distance-like measure.

Denoting by |F | and |X| binary lengths of respectively F and X we get
K(tr(X)/tr(Y )) ≤ |F |+K(X/Y ) +O(1) ≤ |F |+ |X|+O(1).

This formula follows from an observation that X and F are sufficient to calculate the
trace tr(X). Thus, whatever be an algorithm F and whatever be its computational
complexity, the K-distance between traces from Trn is not greater than O(|X|) that
we assume, for simplicity, to be O(n). On the other hand, given a minimal length
program G that computes tr(X) from tr(Y ) (thus, |G| = K(tr(X)/tr(Y ))) one
can get X from Y as follows: from Y one computes tr(Y ) using F (whose size is
a constant), then using G one computes tr(X) and finally extracts X from tr(X)
with the help of a simple fixed program, say E, whose length is a constant (without
loss of generality, we can assume that the input is reproduced at the beginning of
each trace). All this gives (we put ‘absolute’ constants |F |, |E| in the last O(1))

K(X|Y ) ≤ |F |+ |G|+ |E|+O(1) ≤K(tr(X)/tr(Y )) +O(1).
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We assume that the cardinality of binary codes of dmn(F ) is at least 2n (hence,
almost all inputs have Kolmogorov complexity n − o(n)), then the chain rule for
Kolmogorov complexity (e.g., see [4]) for almost all X, Y gives

K(X|Y ) = K(X,Y )−K(Y )−O(logK(X,Y )) ≥ n− c logn
for some constant c > 0.
Together with the previous formula this gives a lower bound for K(tr(X)/tr(Y ))
that shows that K-distance is almost always of order of n that can hardly be seem
as satisfactory for evaluation of similarity of traces from Trn.

What is said above, does not exclude that other types of Kolmogorov style com-
plexity could work better (e.g., a more general notion of entropy [11] is based on
inference complexity.). In particular, resource bounded complexity approaches may
prove to be productive if we find a ‘good’ description of information extracted by
algorithm as datum (structure); however, this remains an open question.

2.3 Similarity via entropy of partitions

In this subsection we outline another approach to measure similarity of traces. It
refers to the classical entropy of partitions. We use partitions of the inputs. For
this reason a probabilistic measure over the inputs is needed. Such a measure is a
technical means, so there is no evident way to introduce it. We do it taking into
account an intuition related to the evolution of the ‘knowledge’ of the algorithm.
When an algorithm F starts its work it ‘knows’ nothing about its output. So all
values from rnn are equiprobable.

Let M = |rnn(F )|. As any of these M values is equiprobable (imagine that an
input is given by an adversary who plays against F ), we set P n(F−1(Y )) = 1

M
for

all Y ∈ rnn(F ), and inside F−1(Y ) the measure is uniform as the algorithm a priori
has no preferences. In particular, if F is a 2-valued function, say rn(F ) = B, then
its domain is partitioned into two sets F−1(0) and F−1(1) with the same measure
1/2 of each set. E.g., for palindromes we the measure of a palindrome is 1

2αν and
that of a non palindrome is 1

2(αn−αν) . There is nothing random in the situation
we consider, we wish only to model the evolution of the knowledge of an algorithm
during its work. So this way to introduce a measure may be not the best one.

Suppose that f is updated at t and f [X, t] = v. How to describe the knowledge
acquired by F via this event at t that gives v = f [X, t]? This value v may be acquired
by f in different traces, even several times in the same trace, and at different time
instants. The traces are not ‘synchronized’ in time, however, we can compare events,
as in subsection 2.1, due to this or that similarity relation, that is determined by our
goal and our vision of the situation. Notice that formally speaking similarity is a
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relation between pairs (X, t), where X ∈ dm(F ) and 1 ≤ t ≤ t∗F (X). Similarity can
be defined not only along the lines described in subsection 2.1. One may think about
quite different ways. Just to give an idea, one can, for example, consider as similar
events corresponding to the kth execution of the same command of the program with
or without demanding equality of these or that values. Or one can permit renaming
of internal function as it was mentioned at the beginning of subsection 2.1.

Suppose that some similarity relation ∼ is fixed.
To compare traces we attribute to each event of a trace a partition of inputs.

Thus, to each trace there will be attributed a sequence of partitions. Taking into
account that the set of inputs is a space with probabilistic measure we can define
a distance between partitions and furthermore a distance between sequences or sets
of partitions.

For any input X and an instant t, 1 ≤ t ≤ t∗(X), denote by sm(X, t) all the
inputs X ′ such that (X, t) ∼ (X ′, t′) for some t′. Clearly, X ∈ sm(X, t). Denote
by pt(X, t) the partition of dmn into sm(X, t) and its complement that we denote
sm(X, t)c=df dmn \ sm(X, t).

Thus, each input X determines a sequence (pt(X, t))t or a set {pt(X, t)}t of
partitions of dmn(F ). These constructions, namely sequence or set, provide different
opportunities for further analysis, e.g., we can define distance between metric spaces,
e.g., see [1, ch. 7].

For measurable partitions of a probabilistic space P = (Ω,Σ, P ) one can define
entropy (no particular technical constraints are needed in our case of finite sets), see
[8] or books like [7].

Let A and B be measurable partitions of P (in our situation all the sets are
measurable).
Entropy H(A) and conditional entropy H(A/B) are defined as

H(A) = −
∑
A∈A

P (A) logP (A), H(A/B) = −
∑

B∈B,A∈A
P (A ∩B) log P (A ∩B)

P (B) . (1)

The conditional entropy permits to introduce Rokhlin metric [8] between partitions:
ρ(A,B) = H(A/B) +H(B/A) = 2H(A ∨ B)−H(A)−H(B),

(here A∨B is common refinement of partitions A and B, that is the partition formed
by all pairwise intersection of sets of A and B).

There are other ways to introduce distance between partitions, e.g., see [7, 4.4],
so one can take or invent maybe more productive metrics or entropy-like measures.

Unfortunately, the combinatorial difficulties of estimating such distancies are
discouraging, they do not justify what we get form them. We illustrate this for the
palindrome recognition algorithm ϕ.
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Denote w=(1..k)=df {w :
∧

1≤i≤k w(i) = w(n − i + 1)} (the set of words whose
prefix of length k permits to extend it to a palindrome), denote by w 6=(1..k) the
complement of w=(1..k); in particular, w=(k..k) = {w : w(k) = w(n − k + 1)} and
w 6=(k..k) = {w : w(k) 6= w(n − k + 1)}. Probabilities are easy to calculate (we use
them in the next subsection), here 1 ≤ k < m ≤ ν:

P (w=(1..k) ∩ w 6=(k + 1..m)) = αν−m(αm−k − 1)
2(αν − 1) , (2)

P (w=(1..k)) = 1
2 + αν−k − 1

2(αν − 1) , P (w 6=(1..k)) = αν−k(αk − 1)
2(αν − 1) . (3)

(We omit technical details, the role of the formulas is illustrative.)
However, when we try to calculate the distance between partitions, take for ex-

ample ρ(π=(k), π=(m)), where π=(s) = (w=(1..s), w 6=(1..s)), we arrive at a formula
that is a sum of several expressions like

(
1
2 + αν−s−1

2(αν−1)

)
log

(
1
2 + αν−s−1

2(αν−1)

)
, that is hard

to evaluate. And what is worse the result is not very instructive, e.g.,

ρ(π=(1), π=(ν)) ≈


0.9 if α = 2
0.67 if α = 3
0.6 if α = 4

Technical combinatorial difficulties do not discard the idea of geometry of spaces
of events or traces, the point is to find a geometry and its interpretation that really
deepens our understanding of algorithms and problems.

2.4 The question of information convergence

Now we discuss how similarity of events may serve to evaluate the rate of convergence
of a given algorithm towards the result.

Among the first ideas that come to mind is the following one. The result F (X)
for an input X is represented in terms of a partition of dmn(F ) into F−1(F (X))
and its complement F−1(F (X))c. The current knowledge of F at an instant t is in
its current event that also defines a partition denoted above pt(X, t).

How this local knowledge represented by pt(X, t), is related to the partition
(F−1(F (X)), F−1(F (X))c) mentioned just above? A possible answer is: compare
pt(X, t) (the local knowledge at an instant t in terms of partitions) with the partition
(F−1(F (X)), F−1(F (X))c). This idea can be a priori implemented differently, for
example, in terms of conditional probabilities or in terms of conditional entropies.

If we try to apply this idea to any of our examples, we find that the commands
that control the loops give trivial partition (dm, ∅) because they are in all traces,
and these events give nothing useful. So we take only events that process inputs.
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Consider ϕ (the example of palindromes). Using (2), (3) we get, omitting tech-
nicalities and taking sufficient approximations:

P (r = 1
∣∣w=(1..k)) ≈ 1

1 +A(k) , P (r = 0
∣∣w=(1..k)) ≈ A(k)

1 +A(k) , (4)

where A(k) = α−k − α−ν . The probabilities (4) do not reflect our information
intuition that ϕ converges to the result when k → ν as one goes to 1, and the other
to 0. But if we take the respective entropy

− 1
1 +A(k) log 1

1 +A(k) −
A(k)

1 +A(k) log A(k)
1 +A(k) , (5)

we see that it goes to 0, thus, to total certainty.
Consider σ (sum modulo 2). The similarity that we used for the trace space of

σ in subsection 2.1 we call here weak similarity. Denote σ−1(a) by σ = a. Clearly,
|σ = 0| = |σ = 1| = 2n−1, P (σ = a) = 1

2 , and P is a uniform distribution over Bn.
Denote by Sk(a), where a ∈ B, the set {x : s + x(k) = a}; it is a set of type

sm(X, t). For k < n and all a, b ∈ B we have

P (Sk(a)) = |Sk(a)|
2n = 2n−1

2n = 1
2 , P (Sn(a) ∩ Sk(b)) = 1

4 (6)

P (σ = a
∣∣Sk(b)) = P (Sn(a) ∩ Sk(b))

P (Sk(b))
= 1

2 (7)

We see that nothing changes with advancing of time, i.e., with k → n. If we apply
formula (1) for conditional entropy, it gives a constant. Hence, with this similarity,
we do not see any convergence of σ to the result.

Let us try a stronger similarity: we say that a event s := s + x(k) is (strongly)
similar to s := s + x′(k) if x(i) = x′(i) for all 1 ≤ i ≤ k. Denote by Z(χ), where
χ ∈ Bk, 1 ≤ k < n, the set of inputs x such that for event s := s+ x(k) there holds
x(i) = χ(i) for 1 ≤ i ≤ k; this set describes the set of inputs of strongly similar
events. We have |Z(χ)| = 2n−k, and |(σ = a)∩Z(χ)| = 2n−k−1, thus, P (Z(χ)) = 2−k
and P ((σ = a) ∩ Z(χ)) = 2−k−1. So the measure of the space of continuations of
the known part of the input diminishes. The respective term in conditional entropy
(1) gives −2−k−1 log 1

2 = 2−k−1 that is encouraging but the term related to Z(χ)c
(notice that P (Z(χ)c) = 1−2−k and P ((σ = a)∩Z(χ)c) = 1

2−2−k−1) bring us back
to values that practically do not diminish. All this means only that the classical
entropy does not work, and we are to seek for entropy-like measures that truly reflect
our intuition.
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The partition based measures of convergence look promising. However, one can
say that the number of partitions is limited by an exponential function of |dm|. So
if the complexity is very high, e.g., hyper-exponential, then there is ‘not enough’
of partitions to represent the variety computations. In fact, we think about certain
class of problems that are outlined in the next section for which there seems to be
‘enough’ of partitions. As for high complexity problems, another interpretation of
input data is needed. Some hints are given in the next section 3.

3 On the structure of problems

Here are presented examples of problems together with a reference to their inner
structure that may be useful for further study of information structure of computa-
tions and that of problems themselves along the lines discussed in the paper. The
examples below concern only simple ‘combinatorial problems’. The instances of these
problems are finite graphs (in particular, strings, lists, trees etc.) whose edges and
vertices may be supplied with additional objects that are either abstract atoms with
some properties or strings. As examples of problems that are not in this class one
can take problems with exponential complexity like theory of real addition or Pres-
burger arithmetics. The problems in the examples below are divided into ‘direct’
and the respective ‘inverse’ ones.
Direct Problems

(A1) Substring verification. Given two strings U , W over an alphabet with at
least two characters and a position k in W , to recognize whether U = W (k, k +
1, . . . , k + |U | − 1), i.e., whether U is a substring of W from position k.

(A2) Path weight calculation. Given a weighted (undirected) graph and a path,
calculate the weight of the path.

(A3) Evaluation of a Boolean formula for a given value of variables. Given a
Boolean formula Φ and a list X of values of its variables, calculate the value Φ(X)
for these values of variables.

(A4) Permutation. Given a list of elements and a permutation, apply the per-
mutation to the list.

(A5) Binary convolution (or binary multiplication). For simplicity we consider
binary convolution that represents also the essential difficulties of multiplication.
Given 2 binary vectors or strings x = x(0) . . . x(n − 1) and y = y(0) . . . y(n − 1)
calculate

z(k) =
i=k∑
i=0

x(i)y(k − i), 0 ≤ k ≤ (2n− 2),

assuming that x(i) = y(i) = 0 for n− 1 < i ≤ (2n− 2).
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Inverse Problems
(B1) String matching. Given two strings W and U over an alphabet with at

least two characters, to recognize whether U is a substring of W .
(B2) Shortest path. Given a weighted (undirected) graph G and its vertices u

and v, find a shortest path (a path of minimal weight) from u to v.
(B3) Propositional tautology TAUT Given a propositional formula Φ, to recog-

nize whether it is valid, i.e., is true for all assignment of values to its variables. A
variant that is more interesting in out context is MAX-SAT: given a CNF (con-
junctive normal form), to find the longest satisfying assignment of variables, i.e. an
assignment that satisfies the maximal number of clauses.

(B4) Sorting. Given a list of elements of a linearly ordered set, to find a permu-
tation that transforms it into an ordered list.

(B5) Factorization. Given z, to find x and y whose convolution or product (in
the case of multiplication) is z.

Examples (A1)–(A4) give algorithmic problems whose solution, based directly
on their definitions, is practically and theoretically the most efficient. Each solution
consists in a one-directional walk through a simple data structure making, again
rather simple, calculations – something that is similar to scalar product calculation.

In (A1) the structure is a list (k, k+ 1, . . . , k+ |U | − 1), and while walking along
it, we calculate conjunction of U(i) = W (i) for k ≤ i < (k + |U |) until i reaches the
last value or false appears.

Example (A2) is similar, where the list of vertices constituting the linear struc-
ture is explicitly given, and the role of conjunction of (A1) is played by addition.

The structures used in (A3) depend on the representation of Φ and of the dis-
tribution of values of its variables. In any case one simple linear structure does
not suffice here. Suppose Φ is represented in DNF (Disjunctive Normal Form), i.e.,
as a disjunction of conjunctions. This can be seen as a list of lists of literals, and
a given distribution of values is represented as an array corresponding to a fixed
order of variables. So given a variable, its value is immediately available. Thus, the
representation of values is a linear structure, and DNF is a linear structure of linear
structures. It is more interesting to suppose that Φ is a tree. Then we deal with
the representation of values and with a walk, again without return, through a tree
with calculating the respective Boolean functions at the vertices of the tree. So we
see another simple basic structure, namely a tree.

In example (A4), while walking through two given lists, namely a list of elements
and a permutation, a third list (a list of permuted elements) is constructed.

Example (A5) is more complicated, and the definition of problem does not give an
algorithm that may be considered as the best; it is known that the direct algorithm
for convolution is not the fastest one. Here there is no search, and for this reason
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this problem is put in the class of direct ones, but there is a non-trivial intermixing
of data. One may see the description of the problem as a code of data structures
to extract, and then to calculate the resulting values by simple walks through these
data structures. The number of the data structures to extract is quadratic. In order
to find a faster algorithm, one should ensure the same intermixing but using different
data structures and operations.

Examples (B1)–(B5) give algorithmic problems of search among substructures
coded in inputs. The number of these substructures, taken directly from the def-
inition, is quadratic for (B1), and exponential for (B2)–(B5). The substructures
under search should satisfy conditions that characterize the corresponding direct
problem. More complicated problems code substructures not so explicitly as in ex-
amples (B1)–(B5). To illustrate this, take e.g., quantifier elimination algorithm for
the formulas of the theory of real addition, not necessarily closed formulas. Here it is
not evident how to define the substructures to consider. The quantifier elimination
by any known algorithm produces a good amount of linear inequalities that are not
in the formula. So the formula codes its expansion that is more than exponentially
bigger as compared with the initial formula itself.

Whatever be the mentioned difficulties, intuitively the substructures and con-
straints generated by a problem may be viewed as an extension of the set of inputs.
And in this extended set one can introduce not only measure but also metrics that
give new opportunities to analyze the information contents and the information
evolution. One can see that the cardinality constraints on the number of partitions
that was mentioned in subsections 2.3 and 2.4 is relaxed. This track has not been
yet studied, though one observation can give some hint to how to proceed. When
comparing substructures it seems productive to take into account its context, i.e.,
how it occurs in the entire structure. For example, we can try to understand the
context of an assignment A of values to variables of a propositional formula Φ in the
following manner. Pick up a variable x1 and its value v1 from A and calculate the
result Φ(x1, v1) of the standard simplification of Φ where x1 is replaced by Boolean
value v1. This resulting residue formula gives some context of (x1, v1). We can take
several variables and look at the respective residue as at a description of context.
This or that set of residues may be considered as a context of A. It is just an
illustration of what I mean here by ‘context’.

A metric over substructures may distinguish ‘smooth’ inputs from ‘non-smooth’
ones, and along this line we may try to distinguish practical inputs from non practical
ones. Though it is not so evident.

For some ‘simple’ problems such a distinction is often impossible. It looks hard
to do for numerical values. The set of such values often constitutes a variety with
specific properties that may represent realistic features but almost all elements of
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such varieties will never appear in practical computations. An evident example
is binary multiplication. Among 2128 possible inputs of multiplication of 64-bit
numbers most of them will never be met in practice.

A remark on the usage of linguistical frameworks

One more way to narrow the sets of inputs to take into account, is a language
based one. Inputs describing human constructions, physical phenomena, and their
properties, when they are not intended to be hidden, have descriptions in a natural
language. Encrypted data are not of this nature. So for input data with non hidden
information, we have a grammar that generates these inputs. Such a grammar
dramatically reduces the number of possible inputs and, what is more important,
defines a specific structure of inputs. The diminishing of the number of generated
inputs is evident. For example, the number of ‘lexical atoms’ of the English is not
more than 250 thousands, i.e., not more than 218. On the other hand, the number
of strings with at most, say, 6 letters is at least 262 = 26·log 26 > 26·4.7 > 228 (here 26
is the number of letters in English alphabet). The set of cardinality 218 is tiny with
respect to the set of cardinality 228. If one tries to evaluate the number of phrases,
the difference becomes much higher.

But this low density of ‘realistic’ inputs does not help much without deeper anal-
ysis. The particular structure of inputs may help to devise algorithms more efficient
over these inputs than the known algorithms over all inputs; there are examples,
however not numerous and mainly of more theoretical value. So if one wishes to
describe practical inputs in a way that may help to devise efficient algorithms, one
should find grammars well aimed at the representation of particular structures of
inputs. This point of view does not go along traditional mathematical lines when we
look for simple and general descriptions, that are usually too general to be adequate
to the computational reality.

The grammar based view of practical inputs may influence theoretical vision of
a problem. For example, consider the question of quality of encryption. The main
property of any encryption is to be resistant to cryptanalysis. Notice that linguistic
arguments play an essential role in practical cryptanalysis. In reality the encryption
is not applied to all strings, it mostly deals only with strings produced by this or that
natural language, often rather primitive. Thus, there are relations defined over plain
texts. E.g., some substrings are related as subject-predicate-direct compliment, etc.
A good encryption should not leave traces of these relations in the encrypted text.
What does it mean? Different precisions come to mind. A simple example: let P
be a predicate of arity 2 defined over plain texts, and its arguments be of small
bounded size. Take concrete values A and B of arguments of P . Assume that we
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introduced a probabilistic measure on all inputs (plain texts), and hence we have
a measure of the set S+ of inputs where P (A,B) holds and of its complement S−.
Now suppose that we have chosen a predicate Q over ‘substructures’ of encrypted
texts (I speak about ‘substructures’ to underline that the arguments of Q are not
necessarily substrings, as for P ), again simple to understand. Denote by E+ the
set of encrypted texts for which Q is true for at least one argument and by E−

its complement. The encryption well hides P (A,B) if the measures of all 4 sets
(Sα ∩ Eβ), where α, β ∈ {+,−}, are very ‘close’. This example gives only an idea
but not a productive definition.

However, in order to find grammars that help to solve efficiently practical prob-
lems ‘semantical’ nature of sets of practical inputs should be studied.

Conclusion

The considerations presented above are very preliminary. The crucial question is to
define information convergence of algorithms, not necessarily of general algorithms,
but at least of practical ones.

One can imagine also other ways of measuring similarity of traces. We can
hardly avoid syntactical considerations when keeping in mind the computational
complexity. However semantical issues are crucial, and may be described not only
in the terms chosen in this paper.

The analysis of philosophical question of relation of determinism versus uncer-
tainty in algorithmic processes could clarify the methodology to choose. Here algo-
rithmic process is understood at large, not necessarily as executed by a computer.
Though the process is often deterministic, and if we adhere to determinism then it
is always deterministic, at a given time instant, when it is not yet accomplished, we
do not know with certainty the result, though some knowledge has been acquired.
The question is: what is or how to formalize the knowledge (information) that the
algorithm acquires after each step of its execution?
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Abstract

Discussions on the scientific pluralism typically involve the unity of science
thesis, which has been first advanced by Neo-Positivists in the 1930-ies and
later widely criticized in the late 1970-ies. In the present paper the problem
of scientific pluralism is examined in the context of modern logic, where it
became particularly pertinent after the emergence of non-Classical logics.
Usual arguments in favor of a unique choice of “the” logical system are of an
extralogical nature. The conception of Universal Logic as a theory of mutual
translatability and combination of alternative logical systems allows for a more
constructive approach to the issue. Logical pluralism gives rise not only to the
ontological pluralism but also to non-Classical mathematics based on various
non-Classical logics. Our analysis of ontological pluralism rises the following
question: is our mathematics globally Classical and locally non-Classical
(i.e. having non-Classical parts) or rather, the other way round, is globally
non-Classical and only locally Classical? We conclude that in the context of
post-non-Classical science the logical pluralism justifies one’s freedom to chose
logical tools in conformity with one’s aims, norms and values.

Keywords: Unity of Science, Scientific Pluralism, Logical Pluralism, Universal
Logic, Ontological Pluralism, Non-Classical Mathematics.

1 An issue of the unity of science
Presently many philosophers and scientists are inclined to take a pluralistic position
regarding scientific theories or methods. It is a common wisdom that the totality
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of natural phenomena cannot be possibly explained with a single theory or a single
approach. (cf. [14]). Current debates on the scientific pluralism usually involve the
‘Unity of Science’ thesis first advanced by Neo-Positivists in the 1930-ies. According
to this thesis

Laws and concepts of particular sciences have to belong to the one system and be
reciprocally related. They have to form certain unified science with a common
system of concepts (common language), separate sciences are just the members
of it and their languages are parts of the common language. [15, p. 147–148]

In 1978 Patrick Suppes [27] in his presidential address to the Philosophy of
Science Association claimed that the time for defending science against metaphysics
(which he took to be the original rationale for the unity of science movement) had
passed. Suppes argued that neither the languages of scientific disciplines nor their
subject matters were reducible to one language and one subject matter. Nor was
there any unity of method beyond the trivially obvious such as use of elementary
mathematics.

The majority of philosophers of science were not particularly enthusiastic about
Suppes’s ideas. A noticeable exception was Nancy Cartwright and her collabora-
tors who stressed the irreducible variety of scientific disciplines involved in solving
concrete scientific problems. Later Cartwright [7] elaborated a pluralistic account
of a ‘dappled world’ composed of a number of separate areas. Each particular area
of this world is ruled by its own laws, so that this system laws form a loose patch-
work, which does not reduce to a single compact system of fundamental laws. A
similar view has been put forward by John Dupré [11] who also supports a pluralist
metaphysical position called the “promiscuous realism”.

One has to distinguish between the pluralism in science and the pluralism about
science. At any stage of their development sciences typically use a variety of dif-
ferent approaches corresponding to different aspects of studied phenomena. They
use various representational or classificatory schemes, various explanatory strategies,
various models and theories, etc. This is a pluralism in science. The pluralism about
science is a view according to which such a plurality of approaches in science is ine-
liminable as a matter of principle, and that it does not constitute any deficiency in
knowledge. According to this view, an analysis of meta-scientific concepts (such as
theory, explanation, evidence) should take into consideration the possibility that in
the long run the explanatory and investigative aims of science can be best achieved
with a pluralistic science.

Modern scientific monism can be described as follows [14, p. x]:
• the ultimate aim of a science is to establish a single, complete, and compre-

hensive account of the natural world (or the part of the world investigated by
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the science) based on a single set of fundamental principles;

• the nature of the world is such that it can, at least in principle, be completely
described or explained by such an account;

• there exist, at least in principle, methods of inquiry that if correctly pursued
will yield such an account;

• methods of inquiry are to be accepted on the basis of whether they can yield
such an account;

• individual theories and models in science are to be evaluated in large part on
the basis of whether they provide (or come close to providing) a comprehensive
and complete account based on fundamental principles.

Notice that the above description does not imply that the wanted complete the-
ory of everything is necessarily unique. Nevertheless such the uniqueness assumption
is often taken for granted.

The Vienna’s Circle’s thesis of the Unity of Science describes this unity in onto-
logical terms. As Alan Richardson notes, when Rudolf Carnap claims to establish
the unity of ‘the object domain of science’ he

does this by presenting a language in which all significant scientific discourse can
be formulated. Putative metaphysical things such as essences, however, cannot
be constructed — that is, they cannot be defined in the language — and this is
the fact that Carnap uses to expunge metaphysical talk. Metaphysics does not
speak of things in the object domain of science; there is only one such domain,
and it contains all the objects that can be referred to, so metaphysics strictly
does not speak of anything at all. [23, p. 6]

Carnap adds that

we can, of course, still differentiate various types of objects if they belong to
different levels of the constructional system, or, in case they are on the same
level, if their form of construction is different. [6, p. 9]

He gives an example of synthetic geometry where complex constructions are built
from basic elements such as points, straight lines, and planes. Such constructions
may involve several different layers but all statements about these constructions are
ultimately the statements about their basic elements. So we have here different
types of objects and yet a unified domain of objects from which they all arise.

The question arises: how big and how independent can be such complexes? It
turns out that the “global” monism in the sense of the above definition allows, after
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all, for a pluralistic picture if one splits it into a number of “local” monisms based
on independent complexes. A good example is a situation in today’s non-Classical
logics to which we now turn.

2 Logical pluralism and logical monism

The Tower of Babel is a cultural pattern, which recurs again and again. The first
attempt of its erection, as it is well known, ended up with a catastrophe and pro-
duced multiple languages and the lack of understanding between the builders of this
monster. However this was not the end of the story. A new Babel Tower dating back
to Aristotle and the Stoics was the project of developing a unique and uniform logic
supposed to provide rules of correct reasoning for all. This attempt seemed success-
ful throughout the last two thousand years but eventually it failed as a result of the
development and proliferation of the so-called non-Classical logics. Some thinkers
including Aristotle himself considered certain deviations from the Classical logic
earlier but only in the beginning of the 20-th century researches began to explore
this new territory systematically. As a result many today’s logicians hold a view
according to which there exist many alternative systems of logic rather than a single
“right” logic. This view is known under the name of logical formalism. Although
the philosophical analysis of logical pluralism is still in its infancy the soundness of
this view is hardly any longer questionable. It is possible that the logical pluralism
will point to ways out of some deadend of modern logic and determine a strategy for
developing logic in the 21st century. Implications of logical pluralism for the mod-
ern also still wait to be studied. In what follows we shall consider some problems
of logical and metalogical pluralism and explore their implications for ontology and
foundations of mathematics.

It may appear that the logical monism does not need an argumentative defense
because it is supported by more then two thousand years of the history of logic.
However the situation is not so is simple. Does the Classical logic in some sense
imply the logical monism? Or perhaps some non-Classical logic can play the same
role of the only “right” logic common for all? The Intuitionistic logic at certain
point of history was considered as a candidate for this role. Later were considered
some other candidates such as the Relevant logic, which allows one to avoid certain
paradoxes appearing in the Classical logic. According to Stephen Read [21], the only
purpose of logic is to distinguish between valid and invalid inferences. Hence, the
argument goes, there is only one “true” logic, which can be nothing but the Relevant
logic.

However if one takes into account how the concept of relevance has been modified
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in the course of the 20-th century, one can hardly accept this and similar arguments
of logical monists. All such arguments are ultimately ethical or aesthetic arguments
rather than properly logical. They call for the “lost paradise”, from where logics
and logicians have been earlier expelled. The existing experience of metalogical
researches indicates that there is no logical system satisfying all wanted metalogical
properties and free from all paradoxes. As a matter of fact, it is difficult to single
out even a short list of universal meta-properties which the ideal logical system of
logical monists should necessarily possess.

Earlier R. Carnap [5] put forward the Principle of Tolerance in logic according
to which logic should justify conclusions rather than establish some bans. There is
no moral in logic and everyone has a liberty of building his or her own system of
logic. As a matter of fact Carnap talks about the choice of formal language rather
than the choice of logic. As it has been shown by G. Restall [22] one and the same
language may admit for different logical consequence relations. So the distinction
between language and logic is essential in this context.

Beall and Restall point to the following problem of logical pluralism:

Which of these many logics governs your reasoning about how many logics there
really are? In other words, which logic ought to govern your reasoning about the
nature of logic itself? And indeed, which logic ought to govern your reasoning
about the nature of logic itself? [1, p. 6]

Indeed, a goal of logical pluralist is to study mutual relationships between the
known logical systems. These logical systems can be seen either as a list of candidates
for the same role of “the” unique “true” logic or as a friendly “logic community”
providing different answers to the same questions. The builders of the Babel Tower
eventually lost a common language and a mutual understanding. Does the existing
logical community await the same fate?

A basic problem of logical pluralism is the problem of relationships between
different systems of logic. How such systems can be compared and evaluated? If we
recall that a logical theory is always a theory of some individual domain then the
logical pluralism can be understood as the thesis according to which the one and
the same domain, generally, admits for several alternative logics. Logical rules do
not depend on empirical reliability, they cannot be cancelled because of empirical
observations: logic is aprioristic by its very nature. Hartry Field argues [12] that a
system of logic accepted a priori can be eventually replaced by an alternative logical
system, equally designed a priori, under the pressure of facts. This view qualifies as
a sort of fallibilistic apriorism (borrowing the term from the philosophy of science).
However such a revision of logic can be possibly viewed as a mere recognition of the
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fact that the old logic simply did not correspond to the studied individual domain.
As notices Ottavio Bueno [4] this possibility cannot be ruled out a priori.

3 Logical eclecticism and logical relativism

The logical monism is a dogmatic position. The logical eclecticism, in its turn, is a
variety of logical pluralism, which makes a choice of the best logical system from a
list of such systems and aims at harmonizing competing approaches. On the other
hand it operates like logical monism when it rejects certain moments of known logical
systems as “erroneous”.

A problem of logic eclecticism, as well as of any other sort of eclecticism, is
the arbitrariness of choices: one chooses and uses certain principles without having
any general theory justifying the choice. However the choice between logical sys-
tems becomes interesting when one translates problems formulated in some given
logical framework into a different logical framework. This allows one to look at the
given problem from a different viewpoint and sometimes helps to find an unexpected
solution.

The same feature belongs to the position called logical relativism. Roy Cook
describes it as follows: one qualifies as a relativist about a particular phenomenon if
and only if one thinks that the correct account of it is a function of some distinct set
of facts [9, p. 493]. How many similar correct accounts of the same set of facts can
exist in principle? If the answer is that such accounts are multiple then this position
reduces to a version of pluralism; of one assumes that there is only one such account
then it reduces to monism. In this context Cook distinguishes between the dependent
and simple varieties of pluralism. While former variety of pluralism is based on the
relativism the latter is not. It may appear that an obvious example of the dependent
pluralism is given by the Tarskian Relativism [29] according to which every term
in a formal language can be equally treated either as logical or non-logical. But,
as Varzi rightly notices, the Tarskian Relativism implies a stronger form of logical
relativism according to which different ways of specifying the semantics of terms are
equally admissible. It is possible, for example, that you and I agree that identity is
a logical constant but you may think that it stands for a transitive relation whereas
I may not accept this assumption.
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4 Metalogical relativism as the consequence of logical
pluralism

Varzi’s paper referred to above makes it clear that Tarskian Relativism adds to the
logical pluralism a new dimension related to the choice of logical semantics. Each
variant of logical semantics comes with its own conception of logical consequence.
Indeed, the usual definition of logical consequence – the conclusion follows from the
given premises when in every case where the premises are true the consequence is
also true – only looks neutral. In fact it involves the concept of truthfulness which
depends on the chosen semantics of logical terms. Alternatively one may use in this
definition a metaimplication opening thus yet a further dimension of pluralism.

Should be one’s metalogic necessarily Classical? Graham Priest, considering
Tarski’s theory of truth and his T-construction, writes that

sometimes it is said that Tarskian theory must be based on Classical logics:
this logic is required for the construction to be performed. Such a claim is just
plain false. It can be carried out in intuitionistic logics, paraconsistent logics,
and, in fact, most logics. [20, p. 45]

Thus the Tarskian Relativism turns into the metalogical relativism and the met-
alogical pluralism. It allows for considering various alternative definitions of logical
consequence such as: “the conclusion follows from premises if and only if any case
in which each premise is true is also a case in which conclusion is relevantly true”
(a case of Relevant metalogic), “the conclusion follows from premises if and only if
any case in which each premise is true is also a case in which conclusion is intu-
itionistically true” (a case of Intuitionistic metalogics), “the conclusion follows from
premises if and only if any case in which each premise is true is also a case in which
conclusion is paraconsistently true” (a case of Paraconsistent metalogic), “the con-
clusion follows from premises if and only if any case in which each premise is true
is also a case in which conclusion is quantum logically true” (a case of quantum
metalogic), etc.

Moreover, apparently nothing prevents one from correlating one’s concept of
logical consequence with a non-Classical logic. Then the above definition can be
modified as follows: “the conclusion intuitionistically follows from premises if and
only if any case in which each premise is intuitionistically true is also a case in which
conclusion is intuitionistically true” (the case of Intuitionistic logic and metalogic),
“the conclusion relevantly follows from premises if and only if any case in which
each premise is relevantly true is also a case in which conclusion is relevantly true”
(the case of Relevant logic and metalogic), “the conclusion intuitionistically follows
from premises if and only if any case in which each premise is relevantly true is
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also a case in which conclusion is relevantly true” (the case of Relevant metalogic
for Intuitionistic logic), “the conclusion relevantly follows from premises if and only
if any case in which each premise is intuitionistically true is also a case in which
conclusion is intuitionistically true” (the case of Relevant metalogic for Intuitionistic
logic), etc. Here the choice may be limited by certain specific properties of these
‘cases’ [24, p. 396].

Thus we can formulate a “metalogical” definition of logical consequence as fol-
lows:

A conclusion is valid in the given logic if in the corresponding metalogic the
validity of premises implies the validity of the conclusion.

On this basis it is possible to construe two further different versions of the above
metalogical definition:

(i) a conclusion is valid in some logic if in some metalogic the validity of premises
implies the validity of the conclusion.

(ii) a conclusion is valid in some logic if in all metalogics the validity of premises
implies the validity of the conclusion.

The second version is hardly realistic since all possible metalogics can be hardly
taken into account. One may also suspect that the choice of metalogic may depend
on the existence of ‘translation’ from certain logic to the given logic. Indeed, all
“mixed” principles arise via a meddling or substituting semantics of one logic to
another. These semantic operations may provide grounds for further arguments pro
or contra the monistic (when logic always coincides with the metalogic) and (when
logic and metalogic may differ conceptually) points of view.

A non-Classical metaimplication gives rise to a meta-metalogical definition of
logical consequence as follows:

• A conclusion follows from premises iff the truth of the conclusion follows from
the truth of premises iff in all cases the truth of premises implies the truth of
the conclusion.

On the one hand, this is a bad infinity. But on the other hand, this situation
can be described in terms of S. Kripke’s theory of truth [16]:

• A conclusion logically follows from premises if and only if the truth of the
conclusion follows from the truth of premises if and only if the truth of the
truth of the conclusion follows from the truth of the truth of premises.

• Mutatis mutandis in case of the ‘mixed’ principle. In this case in addition to
Kripke’s considerations of cases of the truth or falsity at corresponding meta-
levels we need also to construe the truth on pluralistic variants of meta-levels.
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5 Logical pluralism and universal logics
How statements of the form ‘A follows from B iff B is true implies A is true in
metalogic M’ can be compared in the case of different metalogics? Some authors
suggest that this can be done with a theory of Universal Logic that would provided
criteria for such a comparison (see [32, 33]).The Universal Logic (UL) is a theory
of translatability and combination of logical systems. The above statements can be
compared with UL as follows. First one constructs a translation F from (meta)logic
Y1 to (meta)logic Y2. Then

‘A follows from B iff B is true implies in Y1 A is true’
translates under F into
‘A follows from B iff F (B is true) implies in Y2 F (A is true)’.
If such translations between different metalogics exist then we can speak about a

local metalogical monism: the translatability gives us an invariant kernel preserved
through translations.

Instead of linking by means of translation we would consider, using methods of
universal logic, the combinations of two formulations, e.g. join of two formulations.
In this case join of two logics gives us the uniform logic possessing properties of both
initial logics. In particular, in union Y1⊕ Y2 of two metalogics Y1 and Y2 “joint”
consequence relation is defined by means of a condition:

if from A is true in one metalogic (Y1 or Y2) follows B is true in the same
metalogic then B jointly follows from A (i.e. within the framework of the metalogic
Y1⊕ Y2).

To put it more precisely “jointly follows” gives us that

• A follows from B iff A is true implies in Y1⊕ Y2 B is true.

Instead of unions of metalogics one can also use their product (taking pairs of
metaformulas as new metaformulas), so the definition becomes

if B multiplicatively follows from A (i.e. within the framework of the metalogic
Y1⊗ Y2) then from A is true in both metalogics (Y1 and Y2) follows B is true.

“Multiplicativeness” gives us that

• if A is true follows in metalogic Y1⊗ Y2 from B is true then A follows from
B.

Similarly one can consider the exponential and co-exponential local metalogical
monism combining metasystemsY1, Y2 into Y1 ⇒ Y2 and Y1 ⇐ Y2 respectively and
then use the “implications” of these combined metasystems in the definition of logical
consequence of the same form (provided such combinations as allowed in UL).

1485



V. L. Vasyukov

An obstacle for this project is the omniscience problem: we cannot explicitly
describe all possible logics in advance and hence cannot accomplish all possible
combinations of logics. The above types of combinations of (meta)logical systems
do not exhaust all possible combinations being only the most common ones.

6 From logical to ontological pluralism

According to J. Bocheński, the modern logic is “a most abstract theory of objects
whatsoever” or a “physics of the object in general”. Thus “logic, as it is now consti-
tuted, has a subject matter similar to that of ontology” [3, p. 288].

In effect, ontology is a prolegomenon to logic. While ontology is an informal,
intuitive inquiry into the basic properties and basic aspects of entities in general,
logic is the systematic, formal, axiomatic elaboration of these ontological intuition.
While ontology as it is usually practiced is the most abstract theory of real entities,
logic in its present state is the general ontology of both real and ideal entities [3,
p. 290].

Thereby logical pluralism is ‘dangerous’ because it implies the ontological plural-
ism. Since any logical theory is always a theory of some domain of individuals, the
acceptance of this or that logic compels to certain assumptions, hypotheses about
the cognizable objects inhabiting this area and described by our theory. It is a good
thing if we are in a position to control these assumptions; too often such assumptions
remain tacit.

Ontological assumptions are specific to languages – artificial or natural. The
term “ontological commitment” that denotes this phenomenon can be understood
either as an ontological assumption, or an ontological obligation or as an ontological
hypothesis. Scientific artificial languages, which are always designed for a definite
purpose, may enforce certain ontological commitments not intended by their design-
ers.

Such troubles are rooted in the fact that formal languages designed for the sci-
entific purposes should cope with two different ontologies, one of which represents
the domain of scientific inquiry while the other belongs to the language itself and
depends on its formal properties. The history of science of the 20-th century makes
it clear that interactions between these two ontological layers cannot be ignored.

How ontological assumptions of a given formal language can be identified? An
answer is given by A. Church’s criterion: a language carries an ontological com-
mitment associated with every sentence, which is analytic in this language, i.e., of
every true sentence whose truth is granted by the semantics of this language. The
distinction between analytical and synthetic sentences is made here as follows:
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One can single out two types of propositions: propositions, whose truth or fal-
sity should be established on the basis of semantic rules of the system, and
propositions, whose truth or falsity cannot not be seen from them. Such di-
vision of statements of language in respect to fixed semantic system, division
on analytical and synthetic in this sense, in our opinion, is indisputable. The
question consists in their exact definition and interpretation. [25, p. 88]

The usual semantics of the first-order Classical logic is given in terms of its
Tarskian models. The universe of all sets and the related set theory provide in
this case the proper ontology for this language. Thus in the case of this particular
language the ‘theory of objects in general’ coincides with some version of set theory
(possibly with urelements and empirical predicates, see [8]).

However the set theory is itself an elementary theory, i.e., a set of formal state-
ments deduced from a conservative axiomatic extension of predicate logic with cer-
tain non-logical axioms, which describe formal properties of predicate ∈. By modi-
fying the logical part of this theory one can obtain a new theory based on some non-
Classical logic: Paraconsistent, Relevant, Quantum, Fuzzy etc. Thus one obtains
a class of non-Classical set-theoretic universes associated with their non-Classical
underlying logics.

There is another simple argument supporting the claim that logical pluralism
implies the pluralism of universes. Consider usual definitions of operations of join
∪, meet ∩ and complement / on sets

x ∪ y =def {a : a ∈ x ∨ a ∈ y},
x ∩ y =def {a : a ∈ x ∧ a ∈ y},
x/y =def {a : a ∈ x ∧ ¬(a ∈ y)}.
A pluralist may ask: what type of connectives ∨ (or), ∧ (and), ¬ (it is incorrect,

that) are used in these definitions? If these are Classical connectives then the algebra
of subsets of a given set is Boolean.

But what happens, if one modifies the operations on sets using non-Classical logic
connectives ∨, ∧, ¬ and then construes an algebra for the obtained new operations?
Since in Tarskian models set-theoretic operations are responsible for truth values
of formulas this provides us with an interpretation of a non-Classical logic in the
Classical universe. In this way one can interpret in the given Classical universe as
many non-Classical logics as one wants. One can also use a non-Classical universe
and introduce in it Classical set-theoretic operations. So one gets an interpretation
of Classical logic (along with non-Classical ones) in a non-Classical universe.

Is there a way to check whether “our” universe is Classical or non-Classical?
Logical pluralism gives an answer in negative. One can assume the existence of a
global underlying logic for a given universe but this global logic does not determine
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any set of local logics, which this universe may admit. Of course, we talk about
global and local logics in this context only metaphorically as markers fixing a state
of affairs.

7 Non-Classical mathematics: as many logics as math-
ematics

The 20-th century has witnessed how the original intuitionist and constructivist
renderings of set theory, arithmetic, analysis, etc. were later accompanied by those
based on relevant, paraconsistent, non-contractive, modal, and other non-Classical
logical frameworks. This development led to the ongoing scientific program of “Non-
Classical Mathematics”. At the conference “Non-Classical Mathematics 2009” (June
2009, Hejnice, Czech Republic) the non-Classical Mathematics 2009 has been defined
as a study of mathematics which is formalized by means of non-Classical logics. The
Program of this conference included the following sections:

• Intuitionistic mathematics: Heyting arithmetic, Intuitionistic set theory,
topos-theoretic foundations of mathematics;

• Constructive mathematics: constructive set or type theories, pointless topol-
ogy;

• Substructural mathematics: Relevant arithmetic, non-contractive naive set
theories, axiomatic fuzzy set theories;

• Inconsistent mathematics: calculi of infinitesimals, inconsistent set theories;

• Modal mathematics: arithmetic or set theory with epistemic, alethic, or other
modalities, modal comprehension principles, modal treatment of vague objects,
modal structuralism.

It is obvious, that there is not one but many true mathematics. But it remains
unclear how these different mathematics interact. Are they complementary or mu-
tually exclusive? This situation resembles that with non-Euclidean geometries. This
analogy suggests questions like this: is our mathematics globally Classical, and only
locally non-Classical or, on the contrary, it is globally non-Classical and locally
Classical?

Gaisi Takeuti develops a quantum set theory, which involves a quantum-valued
universe. It remains however unclear whether the
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mathematics based on quantum logic has a very rich mathematical content.
This is clearly shown by the fact that there are many complete Boolean algebras
inside quantum logic. For each complete Boolean algebra B, mathematics based
on B has been shown by our work on Boolean valued analysis to have rich
mathematical meaning. Since mathematics based on B can be considered as
a sub-theory of mathematics based on quantum logic, there is no doubt about
the fact that mathematics based on quantum logic is very rich. The situation
seems to be the following. Mathematics based on quantum logic is too gigantic
to see through clearly. [28, p. 303]

Robert Meyer proposes a construction of Relevant arithmetic built along the
same ‘pluralistic’ line on a basis of Relevant logic [18]. Recall that Peano Arithmetic
(PA) is based on the first-order Classical logic (FOL) and involves a number of non-
logical axioms. Relevant Peano arithmetic R# according to Meyer is obtained from
PA via a replacement of FOL by a system of Relevant logic R, leaving the non-logical
axioms unchanged.

One more instance of a non-Classical mathematical theory is given by
K. Mortensen in his book Inconsistent Mathematics [19]. Claiming that “philoso-
phers have hitherto attempted to understand the nature of contradiction, the point
however is to change it” , Mortensen describes the mathematics based on the Para-
consistent logic.

In a more sophisticated way a non-Classical logical basis is used in theories of
formal topology. A topological structure is usually specified via a specification of set
of opens closed under the set-theoretical intersection. By modifying the concept of
intersection one obtains a family of new topologies. In particular the set-theoretic
intersection can be replaced by the operation of monoidal multiplication. Such
constructions can be made with a non-Classical set theory interpreted in a Classical
universe.

When one accepts logical pluralism and allows for various logical foundations for-
mal topological properties can be equally taken into account. An example of such an
account can be found in the Quantum theory (QT). Garrett Birkhoff and John von
Neumann demonstrated an equivalence between experimental statements of QT and
subspaces of Hilbert spaces. The set-theoretic intersection of two given experimental
statements (represented as the closed vector subspaces of Hilbert space) is also an
experimental statement (i.e., a closed vector subspace of Hilbert space). Whence
one easily defines a topological structure using the standard definition of boundary.

However when one takes into account the fact that the negation of an experi-
mental statement is its orthogonal complementation, one obtains a formal topology,
which differs from its Classical counterpart.

1489



V. L. Vasyukov

Today’s mathematics is going through a paradigm shift in its foundations from
the set-theoretic paradigm to the category-theoretic one. From a logical point of
view Category theory like Set theory is an elementary theory based on the Classical
first-order calculus with equality.

Following N. C. A. da Costa, O. Bueno and A. Volkov [10] one can build Para-
consistent elementary theory of categories using the paraconsistent logic C=

1 . The
axioms of the Paraconsistent category theory include all usual axioms with the Clas-
sical negation and some new axioms with the paraconsistent negation. One can also
construct a Paraconsistent category theory [33] using axioms for category theory
proposed by G. Blanc and M.-R. Donnadieu [2].

Recall that topos is a category of a special kind in which there exists a special
object bearing a structure of Heyting algebra. The above algorithm for developing
non-Classical mathematical theories allows one to build various ‘quasi-toposes’ by
replacing Heyting algebra with some other algebras of logics. For example, the
replacement of Heyting algebra by the paraconsistent da Costa algebra brings a
‘potos’ (aka da Costa topos). A potos is a paraconsistent universe in which one can
develop paraconsistent mathematical theories just as in the case of the Intuitionistic
mathematics. While in the usual topos the paraconsistency features only in special
constructions and in this sense remain local artefacts, in a potos the paraconsistency
is organic and underlies all further constructions. In the paraconsistent universe the
Classical mathematics features as an artefact, i.e. as a local deviation from the
paraconsistent regularities.

Similarly one can replace Heyting algebra with the Relevant one and thus obtain
a category called ‘reltos’ which interprets the Relevant logic and allows for developing
the Relevant mathematics [34]. This short list does not exhaust all possibilities for
developing the non-Classical mathematics.

Toposes, generally, are non-Classical constructions, namely, constructive intu-
itionistic universes.

By imposing natural conditions on a topos (extensionality, sections for epics,
natural numbers object), we can make it correspond precisely to a model of
Classical set theory. Thus, to the extent that set theory provides a foundation
for mathematics, so too does topos theory. [13, p. 344]

What a “natural condition” means precisely in this context?
In a topos-theoretic context a Classical universe is a local construction (being a

special case of general topos) while the nature of general topos is purely intuitionistic,
i.e., essentially non-Classical. Thus the general topos serves as a global non-Classical
foundation of mathematics, which can be Classical locally.
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Other kinds of non-Classical mathematics can be similarly obtained locally in
the same global intuitionistic context. This can be achieved with Lawvere’s ‘variable
sets’ aka intensional sets aka “set-theoretical concepts” (R. Goldblatt’s terminology).
According to Goldblatt, the intension or meaning of a given expression, is an “indi-
vidual concept expressed by it”. For example, if ϕ(x) is the statement ‘x is a finite
ordinal’ then the intension of ϕ is the concept of a finite ordinal. In the categorical
language this concept is represented by a functor that assigns to each p ∈ P a set
of things known “at stage p” to be finite ordinals [13, p. 212].

By varying p, one can impose different “natural restrictions” on given sets of
individuals and thus obtain set-theoretic concepts, which describe non-Classical sets.
In particular, such a variation can be used for interpreting quantum logics in toposes;
in this case the obtained set-theoretic concepts characterize quantum sets.

Likewise it is possible to use functor category SetA from the so-called CN -
category (which is a category-theoretic equivalent of da Costa algebra) to category
Set. This category is a topos. Notice that the completeness of da Costa C1 para-
consistent system has been proved with respect to a similar topos [30]. A similar
approach can be used in the case of Relevant logic R [31].

Presently only a small minority of mathematicians expresses an interest in
the non-Classical mathematics (beyond its intuitionistic and constructive varieties,
which are related to the theory of computability). There are two reasons for this.
First, the non-Classical mathematics so far did not bring anything interesting for the
viewpoint of mathematical novelty. Researches in this field still focus on mathemat-
ical characteristics of non-Classical logics and their models. This common tendency
is evident in spite of some noticeable exceptions (e.g. Kris Mortensen’s book ’Incon-
sistent Mathematics’, an attempt by K. Piron to reformulate quantum mechanics on
quantum logic foundations). Perhaps the development of interactive non-Classical
provers and decision-making systems will be able to make this research filled more
vivid. The effectiveness and the convenience of the human-machine interaction may
serve as a strong argument in favour of this or that non-Classical mathematics.

Second, there is a danger for non-Classical mathematician to become a ‘hero
of deserted landscapes’. Polish science-fiction writer Stanisław Lem distinguished
between three kinds of genius [17, p. 89]. A genius of the third kind is an ordinary
genius who is beyond the intellectual scope of his age. A genius of the second kind
is a hard nut, which his contemporaries cannot crack. Such a genius usually gets a
postmortem recognition. Geniuses of the first and the highest kind remain wholly
unknown – both during their lifetimes and after their deaths. Their intellectual
impact is so revolutionary that no one can evaluate it. Lem provides a fictitious
historical example of a manuscript by an anonymous Florentian mathematician of
18-th century, which prima facie appeared to be a work in Alchemy but at a closer
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examination turned out to be a project of alternative mathematics, which differed
drastically from our mathematics as we know it. Checking whether this alternative
mathematics is better or worse than the usual one would require a lifetime work
of hundreds of scientists working on the manuscript by the Florence Anonymous in
a way similar to which Bolyai, Lobachevsky and Riemann worked on Euclid. In
reality most mathematicians simply avoid developing any ‘parallel’ mathematics.

8 Conclusion

Recent developments in logic support a pluralistic logical picture of the world. Be-
sides, it should not be expected that such situation is true only for logics. The
emergence of non-Classical mathematics should not be seen as a supporting evi-
dence for logicism. It should be rather understood as a natural consequence of the
internal pluralism of logic which has been made explicit in recent developments.
Having in mind D. Hilbert’s view according to which logic is a metamathematics
one can see that logical pluralism implies the plurality of mathematics, i.e., the
plurality of mathematical pictures of the world.

Describing the Classical science Kant famously remarked that “each science is
as much a science as much there is mathematics in it”. Can one really expect a
‘pluralization’ of such scientific disciplines as physics and biology along with the
pluralization of mathematics? From the Classical point of view the answer should
be affirmative. However, we are living in the epoch of post-non-Classical rather
than Classical science. For this reason scientific pluralism is limited with a variety
of systems of social values and goals, which dictate choices of our research strategies.
According to V. S. Stepin

The post-non-classical type of scientific rationality broadens the field of reflec-
tion over activity. It takes into account correlation of obtained knowledge of
the object not only with specificity of means and operations of activity, but
also with value-goal structures. Here we explicate the connection between in-
trascience goals and extra-scientific, social values and goals. [26, p. 634]

So the pluralism of the modern logic is rather a precondition of freedom in our
choices of logical toolkits, which determines directions of our researches.

The development of logic in the 20-th century made clear that certain metalogical
characteristics which were earlier believed to be universal were actually not univer-
sal. This concerns, in particular, the completeness and the consistency of logical
systems, which make no sense in the case of paraconsistent logical systems (albeit
they have such properties as paraconsistency and paracompleteness). Notice that
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Relevant logics can be paraconsistent and at the same time consistent and complete.
Such facts provide an additional evidence in favour of the post-non-Classical view
according to which a logician or a mathematician should select his or her formal
toolkit on the basis of certain goals, values and norms.
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