Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (545)

Search Parameters:
Keywords = quadratic programming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7242 KiB  
Article
Machine Learning Structure for Controlling the Speed of Variable Reluctance Motor via Transitioning Policy Iteration Algorithm
by Hamad Alharkan
World Electr. Veh. J. 2024, 15(9), 421; https://doi.org/10.3390/wevj15090421 - 14 Sep 2024
Viewed by 222
Abstract
This paper investigated a new speed regulator using an adaptive transitioning policy iteration learning technique for the variable reluctance motor (VRM) drive. A transitioning strategy is used in this unique scheme to handle the nonlinear behavior of the VRM by using a series [...] Read more.
This paper investigated a new speed regulator using an adaptive transitioning policy iteration learning technique for the variable reluctance motor (VRM) drive. A transitioning strategy is used in this unique scheme to handle the nonlinear behavior of the VRM by using a series of learning centers, each of which is an individual local learning controller at linear operational location that grows throughout the system’s nonlinear domain. This improved control technique based on an adaptive dynamic programming algorithm is developed to derive the prime solution of the infinite horizon linear quadratic tracker (LQT) issue for an unidentified dynamical configuration with a VRM drive. By formulating a policy iteration algorithm for VRM applications, the speed of the motor shows inside the machine model, and therefore the local centers are directly affected by the speed. Hence, when the speed of the rotor changes, the parameters of the local centers grid would be updated and tuned. Additionally, a multivariate transition algorithm has been adopted to provide a seamless transition between the Q-centers. Finally, simulation and experimental results are presented to confirm the suggested control scheme’s efficacy. Full article
(This article belongs to the Topic Advanced Electrical Machine Design and Optimization Ⅱ)
Show Figures

Figure 1

9 pages, 242 KiB  
Article
Improving Quantum Optimization Algorithms by Constraint Relaxation
by Tomasz Pecyna and Rafał Różycki
Appl. Sci. 2024, 14(18), 8099; https://doi.org/10.3390/app14188099 - 10 Sep 2024
Viewed by 466
Abstract
Quantum optimization is a significant area of quantum computing research with anticipated near-term quantum advantages. Current quantum optimization algorithms, most of which are hybrid variational-Hamiltonian-based algorithms, struggle to present quantum devices due to noise and decoherence. Existing techniques attempt to mitigate these issues [...] Read more.
Quantum optimization is a significant area of quantum computing research with anticipated near-term quantum advantages. Current quantum optimization algorithms, most of which are hybrid variational-Hamiltonian-based algorithms, struggle to present quantum devices due to noise and decoherence. Existing techniques attempt to mitigate these issues through employing different Hamiltonian encodings or Hamiltonian clause pruning, but they often rely on optimistic assumptions rather than a deep analysis of the problem structure. We demonstrate how to formulate the problem Hamiltonian for a quantum approximate optimization algorithm that satisfies all the requirements to correctly describe the considered tactical aircraft deconfliction problem, achieving higher probabilities for finding solutions compared to previous works. Our results indicate that constructing Hamiltonians from an unconventional, quantum-specific perspective with a high degree of entanglement results in a linear instead of exponential number of entanglement gates instead and superior performance compared to standard formulations. Specifically, we achieve a higher probability of finding feasible solutions: finding solutions in nine out of nine instances compared to standard Hamiltonian formulations and quadratic programming formulations known from quantum annealers, which only found solutions in seven out of nine instances. These findings suggest that there is substantial potential for further research in quantum Hamiltonian design and that gate-based approaches may offer superior optimization performance over quantum annealers in the future. Full article
(This article belongs to the Section Quantum Science and Technology)
Show Figures

Figure 1

20 pages, 3549 KiB  
Article
Dynamic Vaccine Allocation for Control of Human-Transmissible Disease
by Mingdong Lyu, Chang Chang, Kuofu Liu and Randolph Hall
Viewed by 407
Abstract
During pandemics, such as COVID-19, supplies of vaccines can be insufficient for meeting all needs, particularly when vaccines first become available. Our study develops a dynamic methodology for vaccine allocation, segmented by region, age, and timeframe, using a time-sensitive, age-structured compartmental model. Based [...] Read more.
During pandemics, such as COVID-19, supplies of vaccines can be insufficient for meeting all needs, particularly when vaccines first become available. Our study develops a dynamic methodology for vaccine allocation, segmented by region, age, and timeframe, using a time-sensitive, age-structured compartmental model. Based on the objective of minimizing a weighted sum of deaths and cases, we used the Sequential Least Squares Quadratic Programming method to search for a locally optimal COVID-19 vaccine allocation for the United States, for the period from 16 December 2020 to 30 June 2021, where regions corresponded to the 50 states in the United States (U.S.). We also compared our solution to actual allocations of vaccines. From our model, we estimate that approximately 1.8 million cases and 9 thousand deaths could have been averted in the U.S. with an improved allocation. When case reduction is prioritized over death reduction, we found that young people (17 and younger) should receive priority over old people due to their potential to expose others. However, if death reduction is prioritized over case reduction, we found that more vaccines should be allocated to older people, due to their propensity for severe disease. While we have applied our methodology to COVID-19, our approach generalizes to other human-transmissible diseases, with potential application to future epidemics. Full article
Show Figures

Figure 1

25 pages, 7064 KiB  
Article
Research on Trajectory Planning of Autonomous Vehicles in Constrained Spaces
by Yunlong Li, Gang Li and Xizheng Wang
Sensors 2024, 24(17), 5746; https://doi.org/10.3390/s24175746 - 4 Sep 2024
Viewed by 453
Abstract
This paper addresses the challenge of trajectory planning for autonomous vehicles operating in complex, constrained environments. The proposed method enhances the hybrid A-star algorithm through back-end optimization. An adaptive node expansion strategy is introduced to handle varying environmental complexities. By integrating Dijkstra’s shortest [...] Read more.
This paper addresses the challenge of trajectory planning for autonomous vehicles operating in complex, constrained environments. The proposed method enhances the hybrid A-star algorithm through back-end optimization. An adaptive node expansion strategy is introduced to handle varying environmental complexities. By integrating Dijkstra’s shortest path search, the method improves direction selection and refines the estimated cost function. Utilizing the characteristics of hybrid A-star path planning, a quadratic programming approach with designed constraints smooths discrete path points. This results in a smoothed trajectory that supports speed planning using S-curve profiles. Both simulation and experimental results demonstrate that the improved hybrid A-star search significantly boosts efficiency. The trajectory shows continuous and smooth transitions in heading angle and speed, leading to notable improvements in trajectory planning efficiency and overall comfort for autonomous vehicles in challenging environments. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

24 pages, 2484 KiB  
Article
Unified Modeling and Multi-Objective Optimization for Disassembly Line Balancing with Distinct Station Configurations
by Tao Yin, Yuanzhi Wang, Shixi Cai, Yuxun Zhang and Jianyu Long
Mathematics 2024, 12(17), 2734; https://doi.org/10.3390/math12172734 - 1 Sep 2024
Viewed by 403
Abstract
Disassembly line balancing (DLB) is a crucial optimization item in the recycling and remanufacturing of waste products. Considering the variations in the number of operators assigned to each station, this study investigates DLBs with six distinct station configurations: single-manned, multi-manned, single-robotic, multi-robotic, single-manned–robotic, [...] Read more.
Disassembly line balancing (DLB) is a crucial optimization item in the recycling and remanufacturing of waste products. Considering the variations in the number of operators assigned to each station, this study investigates DLBs with six distinct station configurations: single-manned, multi-manned, single-robotic, multi-robotic, single-manned–robotic, and multi-manned–robotic setups. First, a unified mixed-integer programming (MIP) model is established for Type-I DLBs with each configuration to minimize four objectives: the number of stations, the number of operators, the total disassembly time, and the idle balancing index. To obtain more solutions, a novel bi-metric is proposed to replace the quadratic idle balancing index and is used in lexicographic optimization. Subsequently, based on the unified Type-I models, a unified MIP model for Type-II DLBs is established to minimize the cycle time, the number of operators, the total disassembly time, and the idle balancing index. Finally, the correctness of the established unified models and the effectiveness of the proposed bi-metric are verified by solving two disassembly cases of lighters and hairdryers, which further shows that the mathematical integration method of unified modeling has significant theoretical value for the multi-objective optimization of the DLBs with six distinct station configurations. Full article
(This article belongs to the Section Engineering Mathematics)
Show Figures

Figure 1

19 pages, 847 KiB  
Article
Hispanic Thrifty Food Plan (H-TFP): Healthy, Affordable, and Culturally Relevant
by Romane Poinsot, Matthieu Maillot and Adam Drewnowski
Nutrients 2024, 16(17), 2915; https://doi.org/10.3390/nu16172915 - 1 Sep 2024
Viewed by 1113
Abstract
The USDA Thrifty Food Plan (TFP) is a federal estimate of a healthy diet at lowest cost for US population groups defined by gender and age. The present goal was to develop a version of the TFP that was more tailored to the [...] Read more.
The USDA Thrifty Food Plan (TFP) is a federal estimate of a healthy diet at lowest cost for US population groups defined by gender and age. The present goal was to develop a version of the TFP that was more tailored to the observed dietary patterns of self-identified Hispanic participants in NHANES 2013–16. Analyses used the same national food prices and nutrient composition data as the TFP 2021. Diet quality was measured using the Healthy Eating Index 2015. The new Hispanic TFP (H-TFP) was cost-neutral with respect to TFP 2021 and fixed at $186/week for a family of four. Two H-TFP models were created using a quadratic programming (QP) algorithm. Fresh pork was modeled separately from other red meats. Hispanic NHANES participants were younger, had lower education and incomes, but had similar or higher HEI 2015 scores than non-Hispanics. Their diet included more pulses, beans, fruit, 100% juice, grain-based dishes, and soups, but less pizza, coffee, candy, and desserts. The H-TFP market basket featured more pork, whole grains, 100% fruit juice, and cheese. The second TFP model showed that pork could replace both poultry and red meat, while satisfying all nutrient needs. A vegetarian H-TFP proved infeasible for most age–gender groups. Healthy, affordable, and culturally relevant food plans can be developed for US population subgroups. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

22 pages, 383 KiB  
Article
Quadratic p-Median Problem: A Bender’s Decomposition and a Meta-Heuristic Local-Based Approach
by Pablo Adasme, Andrés Viveros and Ali Dehghan Firoozabadi
Symmetry 2024, 16(9), 1114; https://doi.org/10.3390/sym16091114 - 27 Aug 2024
Viewed by 341
Abstract
In this paper, the quadratic p-median optimization problem is discussed, where the goal is to connect users to a selected group of facilities (emergency services, telecommunications servers, healthcare facilities) at the lowest possible cost. The problem is aimed at minimizing the cost of [...] Read more.
In this paper, the quadratic p-median optimization problem is discussed, where the goal is to connect users to a selected group of facilities (emergency services, telecommunications servers, healthcare facilities) at the lowest possible cost. The problem is aimed at minimizing the cost of connecting these selected facilities. The costs are symmetric, meaning connecting two different points is the same in both directions. This problem extends the traditional p-median problem, a combinatorial problem used in various fields like facility location, network design, transportation, supply chain networks, emergency services, healthcare, and education planning. Surprisingly, the quadratic version has not been thoroughly considered in the literature. The paper highlights the formulation of two mixed-integer quadratic programming models to find optimal solutions to this problem. One model is a classic formulation, and the other is based on set cover theory. Linear versions and Bender’s decomposition formulations for each model are also derived. A Bender’s decomposition is solved using an algorithm that adds constraints during each iteration to improve the solution. Lazy constraints in the Gurobi solver’s branch and cut algorithm are dynamically added whenever a mixed-integer programming solution is found. Additionally, an efficient local search meta-heuristic is proposed that usually finds optimal solutions for tested instances. Challenging instances with up to 60 facilities and 2000 users are successfully solved. Our results show that Bender’s models with lazy constraints are the most effective for Euclidean and random test cases, achieving optimal solutions in less CPU time. The meta-heuristic also finds near-optimal solutions rapidly for these cases. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

24 pages, 1955 KiB  
Article
Energy Consumption Minimization with SNR Constraint for Wireless Powered Communication Networks
by Kuei-Ping Shih, Yu-Sheng Tsai, Yen-Da Chen and San-Yuan Wang
Sensors 2024, 24(17), 5535; https://doi.org/10.3390/s24175535 - 27 Aug 2024
Viewed by 332
Abstract
The article addresses the energy consumption minimization problem in wireless powered communication networks (WPCNs) and proposes a time allocation scheme, named DaTA, which is based on the Different Target Simultaneous Wireless Information and Power Transfer (DT-SWIPT) scheme such that the wireless station can [...] Read more.
The article addresses the energy consumption minimization problem in wireless powered communication networks (WPCNs) and proposes a time allocation scheme, named DaTA, which is based on the Different Target Simultaneous Wireless Information and Power Transfer (DT-SWIPT) scheme such that the wireless station can share the remaining energy after transmission to the Hybrid Access Point (HAP) to those who have not transmitted to the HAP to minimize the energy consumption of the WPCN. In addition to proposing a new frame structure, the article also considers the Signal-to-Noise (SNR) constraint to guarantee that the HAP can successfully receive data from wireless stations. In the article, the problem of minimization of energy consumption is formulated as a nonlinear programming model. We employ the SQP (Sequential Quadratic Programming) algorithm to figure out the optimal solution. Moreover, a heuristic method is proposed as well to obtain a near-optimal solution in a shorter time. The simulation results showed that the proposed scheme outperforms the related work in terms of energy consumption and energy efficiency. Full article
(This article belongs to the Special Issue Feature Papers in the 'Sensor Networks' Section 2024)
Show Figures

Figure 1

25 pages, 6088 KiB  
Article
Optimized Longitudinal and Lateral Control Strategy of Intelligent Vehicles Based on Adaptive Sliding Mode Control
by Yun Wang, Zhanpeng Wang, Dapai Shi, Fulin Chu, Junjie Guo and Jiaheng Wang
World Electr. Veh. J. 2024, 15(9), 387; https://doi.org/10.3390/wevj15090387 - 27 Aug 2024
Viewed by 452
Abstract
To improve the tracking accuracy and robustness of the path-tracking control model for intelligent vehicles under longitudinal and lateral coupling constraints, this paper utilizes the Kalman filter algorithm to design a longitudinal and lateral coordinated control (LLCC) strategy optimized by adaptive sliding mode [...] Read more.
To improve the tracking accuracy and robustness of the path-tracking control model for intelligent vehicles under longitudinal and lateral coupling constraints, this paper utilizes the Kalman filter algorithm to design a longitudinal and lateral coordinated control (LLCC) strategy optimized by adaptive sliding mode control (ASMC). First, a three-degree-of-freedom (3-DOF) vehicle dynamics model was established. Next, under the fuzzy adaptive Unscented Kalman filter (UKF) theory, the vehicle state parameter estimation and road adhesion coefficient (RAC) observer were designed to estimate vehicle speed (VS), yaw rate (YR), sideslip angle (SA), and RAC. Then, a layered control concept was adopted to design the path-tracking controller, with a target VS, YR, and SA as control objectives. An upper-level adaptive sliding mode controller was designed using RBF neural networks, while a lower-level tire force distribution controller was designed using distributed sequential quadratic programming (DSQP) to obtain an optimal tire driving force. Finally, the control strategy was validated using Carsim and Matlab/Simulink software under different road adhesion coefficients and speeds. The findings indicate that the optimized control strategy is capable of adaptively adjusting control parameters to accommodate various complex conditions, enhancing the tracking precision and robustness of vehicles even further. Full article
(This article belongs to the Special Issue Advanced Vehicle System Dynamics and Control)
Show Figures

Figure 1

17 pages, 2079 KiB  
Article
Optimization Method of Mine Ventilation Network Regulation Based on Mixed-Integer Nonlinear Programming
by Lixue Wen, Deyun Zhong, Lin Bi, Liguan Wang and Yulong Liu
Mathematics 2024, 12(17), 2632; https://doi.org/10.3390/math12172632 - 24 Aug 2024
Viewed by 564
Abstract
Mine ventilation is crucial for ensuring safe production in mines, as it is integral to the entire underground mining process. This study addresses the issues of high energy consumption, regulation difficulties, and unreasonable regulation schemes in mine ventilation systems. To this end, we [...] Read more.
Mine ventilation is crucial for ensuring safe production in mines, as it is integral to the entire underground mining process. This study addresses the issues of high energy consumption, regulation difficulties, and unreasonable regulation schemes in mine ventilation systems. To this end, we construct an optimization model for mine ventilation network regulation using mixed-integer nonlinear programming (MINLP), focusing on objectives such as minimizing energy consumption, optimal regulation locations and modes, and minimizing the number of regulators. We analyze the construction methods of the mathematical optimization model for both selected and unselected fans. To handle high-order terms in the MINLP model, we propose a variable discretization strategy that introduces 0-1 binary variables to discretize fan branches’ air quantity and frequency regulation ratios. This transformation converts high-order terms in the constraints of fan frequency regulation into quadratic terms, making the model suitable for solvers based on globally accurate algorithms. Example analysis demonstrate that the proposed method can find the optimal solution in all cases, confirming its effectiveness. Finally, we apply the optimization method of ventilation network regulation based on MINLP to a coal mine ventilation network. The results indicate that the power of the main fan after frequency regulation is 71.84 kW, achieving a significant energy savings rate of 65.60% compared to before optimization power levels. Notably, ventilation network can be regulated without adding new regulators, thereby reducing management and maintenance costs. This optimization method provides a solid foundation for the implementation of intelligent ventilation systems. Full article
Show Figures

Figure 1

14 pages, 2190 KiB  
Article
Evaluation of Increasing Levels of Acacia mearnsii Tannins on Growth Performance and Intestinal Morphometrics of Broiler Chickens Undergoing a Salmonella Heidelberg Challenge
by Greicy Sofia Maysonnave, Danielle Dias Brutti, Vitória Mendonça da Silva and Catarina Stefanello
Poultry 2024, 3(3), 284-297; https://doi.org/10.3390/poultry3030021 - 23 Aug 2024
Viewed by 447
Abstract
Phytogenic additives such as tannins are characterized as polyphenolic compounds known for their antimicrobial, anti-inflammatory, antioxidant, and immunostimulatory properties that have been used to enhance the performance, intestinal health, and meat quality of broiler chickens. The objective of this experiment was to evaluate [...] Read more.
Phytogenic additives such as tannins are characterized as polyphenolic compounds known for their antimicrobial, anti-inflammatory, antioxidant, and immunostimulatory properties that have been used to enhance the performance, intestinal health, and meat quality of broiler chickens. The objective of this experiment was to evaluate the effects of increasing dietary supplementation of tannins from Acacia mearnsii on the intestinal morphometrics, litter moisture, and growth performance of broiler chickens. A total of 1400 Cobb 500 one-day-old male chicks were randomly distributed into five dietary treatments with eight replicates (35 birds/pen) until 42 days of age. The treatments consisted of Salmonella Heidelberg-challenged groups supplemented with 0, 300, 500, 700, or 900 mg/kg tannin from Acacia mearnsii. A four-phase feeding program was used with pre-starter, starter, grower, and finisher feeds. At 3 days of age, birds were orally gavaged with an S. Heidelberg culture. Feed intake, body weight gain (BWG), and feed conversion ratio (FCR) were evaluated until day 42. The morphometry of duodenum, jejunum, and ileum was measured at 7 and 42 days of age. From 1 to 28, 1 to 35, and 1 to 42 days of age, tannin supplementation for broilers under S. Heidelberg challenge led to quadratic increases (p < 0.05) in BWG, with optimal responses at 265, 412, and 456 mg/kg, respectively. No effects of tannin were observed on FCR in all periods. Villus height was similar in all segments on day 7 (p > 0.05); however, on day 42, tannin supplementation that improved villus height of the ileum was 600 mg/kg (p = 0.0100). In conclusion, tannins from Acacia mearnsii were able to improve body weight gain and intestinal morphometry of broiler chickens under an imposed challenge of S. Heidelberg. Full article
(This article belongs to the Special Issue Feature Papers of Poultry)
Show Figures

Figure 1

22 pages, 5655 KiB  
Article
Control Barrier Function-Based Collision Avoidance Guidance Strategy for Multi-Fixed-Wing UAV Pursuit-Evasion Environment
by Xinyuan Lv, Chi Peng and Jianjun Ma
Viewed by 529
Abstract
In order to address the potential collision issue arising from multiple fixed-wing unmanned aerial vehicles (UAVs) intercepting targets in n-on-n and n-on-1 pursuit-evasion scenarios, we propose a collision-avoidance guidance strategy for UAVs based on high-order control barrier functions (HOCBFs). Initially, [...] Read more.
In order to address the potential collision issue arising from multiple fixed-wing unmanned aerial vehicles (UAVs) intercepting targets in n-on-n and n-on-1 pursuit-evasion scenarios, we propose a collision-avoidance guidance strategy for UAVs based on high-order control barrier functions (HOCBFs). Initially, a two-dimensional model of multiple UAVs and targets is established, and the interaction between UAVs is determined. Subsequently, the collision-avoidance problem within a UAV swarm is formulated as a mathematical problem involving multiple constraints in the form of higher-order control obstacle functions. Multiple HOCBF constraints are then simplified into a single linear constraint for computational convenience. By integrating HOCBF constraints with quadratic programming problems, we obtain a closed-form solution for UAVs that incorporates collision-avoidance guidance terms alongside nominal guidance terms. Simulations with different numbers of pursuers and different target motion states are conducted. The results demonstrate an excellent experimental effect, ensuring that the multi-UAVs consistently remain above the minimum safe distance and ultimately hit the targets accurately. Full article
Show Figures

Figure 1

24 pages, 10962 KiB  
Article
A Multi-Waypoint Motion Planning Framework for Quadrotor Drones in Cluttered Environments
by Delong Shi, Jinrong Shen, Mingsheng Gao and Xiaodong Yang
Viewed by 603
Abstract
In practical missions, quadrotor drones frequently face the challenge of navigating through multiple predetermined waypoints in cluttered environments where the sequence of the waypoints is not specified. This study presents a comprehensive multi-waypoint motion planning framework for quadrotor drones, comprising multi-waypoint trajectory planning [...] Read more.
In practical missions, quadrotor drones frequently face the challenge of navigating through multiple predetermined waypoints in cluttered environments where the sequence of the waypoints is not specified. This study presents a comprehensive multi-waypoint motion planning framework for quadrotor drones, comprising multi-waypoint trajectory planning and waypoint sequencing. To generate a trajectory that follows a specified sequence of waypoints, we integrate uniform B-spline curves with a bidirectional A* search to produce a safe, kinodynamically feasible initial trajectory. Subsequently, we model the optimization problem as a quadratically constrained quadratic program (QCQP) to enhance the trackability of the trajectory. Throughout this process, a replanning strategy is designed to ensure the traversal of multiple waypoints. To accurately determine the shortest flight time waypoint sequence, the fast marching (FM) method is utilized to efficiently establish the cost matrix between waypoints, ensuring consistency with the constraints and objectives of the planning method. Ant colony optimization (ACO) is then employed to solve this variant of the traveling salesman problem (TSP), yielding the sequence with the lowest temporal cost. The framework’s performance was validated in various complex simulated environments, demonstrating its efficacy as a robust solution for autonomous quadrotor drone navigation. Full article
(This article belongs to the Special Issue Path Planning, Trajectory Tracking and Guidance for UAVs)
Show Figures

Figure 1

16 pages, 759 KiB  
Article
Multi-Objective Constrained Optimization Model and Molten Iron Allocation Application Based on Hybrid Archimedes Optimization Algorithm
by Huijuan Hu, Shichao Shi and He Xu
Mathematics 2024, 12(16), 2437; https://doi.org/10.3390/math12162437 - 6 Aug 2024
Viewed by 534
Abstract
The challenge of distributing molten iron involves the optimal allocation of blast furnace output to various steelmaking furnaces, considering the blast furnace’s production capacity and the steelmaking converter’s consumption capacity. The primary objective is to prioritize the distribution from the blast furnace to [...] Read more.
The challenge of distributing molten iron involves the optimal allocation of blast furnace output to various steelmaking furnaces, considering the blast furnace’s production capacity and the steelmaking converter’s consumption capacity. The primary objective is to prioritize the distribution from the blast furnace to achieve a balance between iron and steel production while ensuring that the volume of hot metal within the system remains within a safe range. To address this, a constrained multi-objective nonlinear programming model is abstracted. A linear weighting method combines multiple objectives into a single objective function, while the Lagrange multiplier method addresses constraints. The proposed hybrid Archimedes optimization algorithm effectively solves this problem, demonstrating significant improvements in time efficiency and precision compared to existing methods. Full article
Show Figures

Figure 1

14 pages, 4561 KiB  
Article
Comparison between Genetic Algorithms of Proportional–Integral–Derivative and Linear Quadratic Regulator Controllers, and Fuzzy Logic Controllers for Cruise Control System
by Ali Mahmood, Karrar Y.A. Al-bayati and Róbert Szabolcsi
World Electr. Veh. J. 2024, 15(8), 351; https://doi.org/10.3390/wevj15080351 - 5 Aug 2024
Viewed by 773
Abstract
One of the most significant and widely used features currently in autonomous vehicles is the cruise control system that not only deals with constant vehicle velocities but also aims to optimize the safety and comfortability of drivers and passengers. The accuracy and precision [...] Read more.
One of the most significant and widely used features currently in autonomous vehicles is the cruise control system that not only deals with constant vehicle velocities but also aims to optimize the safety and comfortability of drivers and passengers. The accuracy and precision of system responses are responsible for cruise control system efficiency via control techniques and algorithms. This study presents the dynamic cruise control system model, then investigates a genetic algorithm of the proportional–integral–derivative (PID) controller with the linear quadratic regulator (LQR) based on four fitness functions, the mean squared error (MSE), the integral squared error (ISE), the integral time squared error (ITSE) and the integral time absolute error (ITAE). Then, the response of the two controllers, PID and LQR, with the genetic algorithm was compared to the response performance of the fuzzy and fuzzy integral (Fuzzy-I) controllers. The MATLAB 2024a program simulation was employed to represent the system time response of each proposed controller. The output simulation of these controllers shows that the type of system stability response was related to the type of controller implemented. The results show that the Fuzzy-I controller outperforms the other proposed controllers according to the least Jmin function, which represents the minimum summation of the overshoot, settling time, and steady-state error of the cruise control system. This study demonstrates the effectiveness of driving accuracy, safety, and comfortability during acceleration and deceleration due to the smoothness and stability of the Fuzzy-I controller with a settling time of 5.232 s and when converging the steady-state error to zero. Full article
Show Figures

Figure 1

Back to TopTop