Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (720)

Search Parameters:
Keywords = nonlinear constraint systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7260 KiB  
Article
Path Tracking for Electric Mining Articulated Vehicles Based on Nonlinear Compensated Multiple Reference Points Linear MPC
by Guoxing Bai, Shaochong Liu, Bining Zhou, Jianxiu Huang, Yan Zheng and Elxat Elham
World Electr. Veh. J. 2024, 15(9), 427; https://doi.org/10.3390/wevj15090427 (registering DOI) - 20 Sep 2024
Abstract
The path tracking control of electric mining articulated vehicles (EMAVs), critical equipment commonly used for mining and transportation in underground mines, is a research topic that has received much attention. The path tracking control of EMAVs is subject to several system constraints, including [...] Read more.
The path tracking control of electric mining articulated vehicles (EMAVs), critical equipment commonly used for mining and transportation in underground mines, is a research topic that has received much attention. The path tracking control of EMAVs is subject to several system constraints, including articulation angle and articulation angular velocity. In light of this, many researchers have initiated studies based on model predictive control (MPC). The principal design schemes for existing MPC methods encompass linear MPC (LMPC) utilizing a single reference point, so named the single reference point LMPC (SRP-LMPC), and nonlinear MPC (NMPC). However, NMPC exhibits suboptimal real-time performance, while SRP-LMPC demonstrates inferior accuracy. To simultaneously improve the accuracy and real-time performance of the path tracking control of EMAV, based on the SRP-LMPC, a path tracking control method for EMAV based on nonlinear compensated multiple reference points LMPC (MRP-LMPC) is proposed. The simulation results demonstrate that MRP-LMPC simultaneously exhibits a commendable degree of accuracy and real-time performance. In all simulation results, the displacement error amplitude and heading error amplitude of MRP-LMPC do not exceed 0.2675 m and 0.1108 rad, respectively. Additionally, the maximum solution time in each control period is 5.9580 ms. The accuracy of MRP-LMPC is comparable to that of NMPC. However, the maximum solution time of MRP-LMPC can be reduced by over 27.81% relative to that of NMPC. Furthermore, the accuracy of MRP-LMPC is significantly superior to that of SRP-LMPC. The maximum displacement and heading error amplitude can be reduced by 0.3075 m and 0.1003 rad, respectively, representing a reduction of 65.51% and 73.59% in the middle speed and above scenario. Full article
(This article belongs to the Special Issue Motion Planning and Control of Autonomous Vehicles)
Show Figures

Figure 1

14 pages, 552 KiB  
Article
Design and Implementation of a Discrete-PDC Controller for Stabilization of an Inverted Pendulum on a Self-Balancing Car Using a Convex Approach
by Yasmani González-Cárdenas, Francisco-Ronay López-Estrada, Víctor Estrada-Manzo, Joaquin Dominguez-Zenteno and Manuel López-Pérez
Math. Comput. Appl. 2024, 29(5), 83; https://doi.org/10.3390/mca29050083 - 18 Sep 2024
Viewed by 423
Abstract
This paper presents a trajectory-tracking controller of an inverted pendulum system on a self-balancing differential drive platform. First, the system modeling is described by considering approximations of the swing angles. Subsequently, a discrete convex representation of the system via the nonlinear sector technique [...] Read more.
This paper presents a trajectory-tracking controller of an inverted pendulum system on a self-balancing differential drive platform. First, the system modeling is described by considering approximations of the swing angles. Subsequently, a discrete convex representation of the system via the nonlinear sector technique is obtained, which considers the nonlinearities associated with the nonholonomic constraint. The design of a discrete parallel distributed compensation controller is achieved through an alternative method due to the presence of uncontrollable points that avoid finding a solution for the entire polytope. Finally, simulations and experimental results using a prototype illustrate the effectiveness of the proposal. Full article
(This article belongs to the Special Issue Numerical and Evolutionary Optimization 2024)
Show Figures

Figure 1

21 pages, 4561 KiB  
Article
Optimizing EV Powertrain Performance and Sustainability through Constraint Prioritization in Nonlinear Model Predictive Control of Semi-Active Bidirectional DC-DC Converter with HESS
by P. S. Praveena Krishna, Jayalakshmi N. Sabhahit, Vidya S. Rao, Amit Saraswat, Hannah Chaplin Laugaland and Pramod Bhat Nempu
Sustainability 2024, 16(18), 8123; https://doi.org/10.3390/su16188123 - 18 Sep 2024
Viewed by 370
Abstract
The global transportation sector is rapidly shifting towards electrification, aiming to create more sustainable environments. As a result, there is a significant focus on optimizing performance and increasing the lifespan of batteries in electric vehicles (EVs). To achieve this, the battery pack must [...] Read more.
The global transportation sector is rapidly shifting towards electrification, aiming to create more sustainable environments. As a result, there is a significant focus on optimizing performance and increasing the lifespan of batteries in electric vehicles (EVs). To achieve this, the battery pack must operate with constant current charging and discharging modes of operation. Further, in an EV powertrain, maintaining a constant DC link voltage at the input stage of the inverter is crucial for driving the motor load. To satisfy these two conditions simultaneously during the energy transfer, a hybrid energy storage system (HESS) consisting of a lithium–ion battery and a supercapacitor (SC) connected to the semi-active topology of the bidirectional DC–DC converter (SAT-BDC) in this research work. However, generating the duty cycle for the switches to regulate the operation of SAT-BDC is complex due to the simultaneous interaction of the two mentioned constraints: regulating the DC link voltage by tracking the reference and maintaining the battery current at a constant value. Therefore, this research aims to efficiently resolve the issue by incorporating a highly flexible nonlinear model predictive control (NMPC) to control the switches of SAT-BDC. Furthermore, the converter system design is tested for operational performance using MATLAB 2022B with the battery current and the DC link voltage with different priorities. In the NMPC approach, these constraints are carefully evaluated with varying prioritizations, representing a crucial trade-off in optimizing EV powertrain operation. The results demonstrate that battery current prioritization yields better performance than DC link voltage prioritization, extending the lifespan and efficiency of batteries. Thus, this research work further aligns with the conceptual realization of the sustainability goals by minimizing the environmental impact associated with battery production and disposal. Full article
Show Figures

Figure 1

22 pages, 918 KiB  
Article
Autonomous Underwater Vehicle (AUV) Motion Design: Integrated Path Planning and Trajectory Tracking Based on Model Predictive Control (MPC)
by Si-Yi Deng, Li-Ying Hao and Chao Shen
J. Mar. Sci. Eng. 2024, 12(9), 1655; https://doi.org/10.3390/jmse12091655 - 16 Sep 2024
Viewed by 287
Abstract
This paper attempts to develop a unified model predictive control (MPC) method for integrated path planning and trajectory tracking of autonomous underwater vehicles (AUVs). To deal with the computational burden of online path planning, an event-triggered model predictive control (EMPC) method is introduced [...] Read more.
This paper attempts to develop a unified model predictive control (MPC) method for integrated path planning and trajectory tracking of autonomous underwater vehicles (AUVs). To deal with the computational burden of online path planning, an event-triggered model predictive control (EMPC) method is introduced by using the environmental change as a triggering mechanism. A collision hazard function utilizing the changing rate of hazard as a triggering threshold is proposed to guarantee safety. We further give an illustration of how to calculate this threshold. Then, a Lyapunov-based model predictive control (LMPC) framework is developed for the AUV to solve the trajectory tracking problem. Leveraging a nonlinear integral sliding mode control strategy, we construct the contraction constraint within the formulated LMPC framework, thereby theoretically ensuring closed-loop stability. We derive the necessary and sufficient conditions for recursive feasibility, which are subsequently used to prove the closed-loop stability of the system. In the simulations, the proposed path planning and tracking control are verified separately and integrated and combined with static and dynamic obstacles. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 5021 KiB  
Article
A Robust Tri-Electromagnet-Based 6-DoF Pose Tracking System Using an Error-State Kalman Filter
by Shuda Dong and Heng Wang
Sensors 2024, 24(18), 5956; https://doi.org/10.3390/s24185956 - 13 Sep 2024
Viewed by 272
Abstract
Magnetic pose tracking is a non-contact, accurate, and occlusion-free method that has been increasingly employed to track intra-corporeal medical devices such as endoscopes in computer-assisted medical interventions. In magnetic pose-tracking systems, a nonlinear estimation algorithm is needed to recover the pose information from [...] Read more.
Magnetic pose tracking is a non-contact, accurate, and occlusion-free method that has been increasingly employed to track intra-corporeal medical devices such as endoscopes in computer-assisted medical interventions. In magnetic pose-tracking systems, a nonlinear estimation algorithm is needed to recover the pose information from magnetic measurements. In existing pose estimation algorithms such as the extended Kalman filter (EKF), the 3-DoF orientation in the S3 manifold is normally parametrized as unit quaternions and simply treated as a vector in the Euclidean space, which causes a violation of the unity constraint of quaternions and reduces pose tracking accuracy. In this paper, a pose estimation algorithm based on the error-state Kalman filter (ESKF) is proposed to improve the accuracy and robustness of electromagnetic tracking systems. The proposed system consists of three electromagnetic coils for magnetic field generation and a tri-axial magnetic sensor attached to the target object for field measurement. A strategy of sequential coil excitation is developed to separate the magnetic fields from different coils and reject magnetic disturbances. Simulation and experiments are conducted to evaluate the pose tracking performance of the proposed ESKF algorithm, which is also compared with standard EKF and constrained EKF. It is shown that the ESKF can effectively maintain the quaternion unity and thus achieve a better tracking accuracy, i.e., a Euclidean position error of 2.23 mm and an average orientation angle error of 0.45°. The disturbance rejection performance of the electromagnetic tracking system is also experimentally validated. Full article
Show Figures

Graphical abstract

19 pages, 5913 KiB  
Article
Advancing Biomechanical Simulations: A Novel Pseudo-Rigid-Body Model for Flexible Beam Analysis
by Yannis Hahnemann, Manuel Weiss, Markus Bernek, Ivo Boblan and Sebastian Götz
Biomechanics 2024, 4(3), 566-584; https://doi.org/10.3390/biomechanics4030040 - 11 Sep 2024
Viewed by 423
Abstract
This paper explores the adaptation of pseudo-rigid-body models (PRBMs) for simulating large geometric nonlinear deflections in passive exoskeletons, expanding upon their traditional application in small compliant systems. Utilizing the AnyBody modeling system, this study employs force-dependent kinematics to reverse the conventional simulation process, [...] Read more.
This paper explores the adaptation of pseudo-rigid-body models (PRBMs) for simulating large geometric nonlinear deflections in passive exoskeletons, expanding upon their traditional application in small compliant systems. Utilizing the AnyBody modeling system, this study employs force-dependent kinematics to reverse the conventional simulation process, enabling the calculation of forces from the deformation of PRBMs. A novel approach, termed “Constraint Force”, is introduced to facilitate this computation. The approach is thoroughly validated through comparative analysis with laboratory trials involving a beam under bending loads. To demonstrate the functionality, the final segment of this study conducts a biomechanical simulation incorporating motion capture data from a lifting test, employing a novel passive exoskeleton equipped with flexible spring elements. The approach is meticulously described to enable easy adaptation, with an example code for practical application. The findings present a user-friendly and visually appealing simulation solution capable of effectively modeling complex mechanical load cases. However, the validation process highlights significant systematic errors in the direction and amplitude of the calculated forces (20% and 35%, respectively, in the worst loading case) compared to the laboratory results. These discrepancies emphasize the inherent accuracy challenges of the “Constraint Force” approach, pointing to areas for ongoing research and enhancement of PRBM methods. Full article
(This article belongs to the Section Injury Biomechanics and Rehabilitation)
Show Figures

Figure 1

15 pages, 500 KiB  
Article
Reduction in Optimal Time in Systems with Input Redundancy
by Zhongxing Peng, Gengzhong Zheng and Wei Huang
Mathematics 2024, 12(17), 2793; https://doi.org/10.3390/math12172793 - 9 Sep 2024
Viewed by 374
Abstract
This paper discusses a reduction in the optimal time due to the presence of input redundancy in time-optimal control problems. By introducing a non-idle channel to represent an active input channel, we establish the necessary and sufficient conditions that ensure a strict reduction [...] Read more.
This paper discusses a reduction in the optimal time due to the presence of input redundancy in time-optimal control problems. By introducing a non-idle channel to represent an active input channel, we establish the necessary and sufficient conditions that ensure a strict reduction in the optimal time for affine nonlinear systems. In cases of identical input redundancy, its impact varies according to the type of input constraint, and certain types may not lead to a reduction in the optimal time. Ultimately, in linear time-invariant (LTI) systems, the extent of the optimal time reduction depends on the system’s controllability. Full article
Show Figures

Figure 1

13 pages, 7338 KiB  
Article
A Combined Sensor Design Applied to Large-Scale Measurement Systems
by Xiao Pan, Huashuai Ren, Fei Liu, Jiapei Li, Pengfei Cheng and Zhongwen Deng
Sensors 2024, 24(17), 5848; https://doi.org/10.3390/s24175848 - 9 Sep 2024
Viewed by 285
Abstract
The photoelectric sensing unit in a large-space measurement system primarily determines the measurement accuracy of the system. Aiming to resolve the problem whereby existing sensing units have difficulty accurately measuring the hidden points and free-form surfaces in large components, in this study, we [...] Read more.
The photoelectric sensing unit in a large-space measurement system primarily determines the measurement accuracy of the system. Aiming to resolve the problem whereby existing sensing units have difficulty accurately measuring the hidden points and free-form surfaces in large components, in this study, we designed a multi-node fusion of a combined sensor. Firstly, a multi-node fusion hidden-point measurement model and a solution model are established, and the measurement results converge after the number of nodes is simulated to be nine. Secondly, an adaptive front-end photoelectric conditioning circuit, including signal amplification, filtering, and adjustable level is designed, and the accuracy of the circuit function is verified. Then, a nonlinear least-squares calibration method is proposed by combining the constraints of the multi-position vector cones, and the internal parameters of the probe, in relation to the various detection nodes, are calibrated. Finally, a distributed system and laser tracking system are introduced to establish a fusion experimental validation platform, and the results show that the standard deviation and accuracy of the three-axis measurement of the test point of the combined sensor in the measurement area of 7000 mm × 7000 mm × 3000 mm are better than 0.026 mm and 0.24 mm, respectively, and the accuracy of the length measurement is within 0.28 mm. Further, the measurement accuracy of the hidden point of the aircraft hood and the free-form surface is better than 0.26 mm, which can meet most of the industrial measurement needs and expand the application field of large-space measurement systems. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

23 pages, 1590 KiB  
Article
Optimal Battery Storage Configuration for High-Proportion Renewable Power Systems Considering Minimum Inertia Requirements
by Xu Guo, Yang Li, Feng Wu, Linjun Shi, Yuzhe Chen and Hailun Wang
Sustainability 2024, 16(17), 7830; https://doi.org/10.3390/su16177830 - 8 Sep 2024
Viewed by 569
Abstract
With the continuous development of renewable energy worldwide, the issue of frequency stability in power systems has become increasingly serious. Enhancing the inertia level of power systems by configuring battery storage to provide virtual inertia has garnered significant research attention in academia. However, [...] Read more.
With the continuous development of renewable energy worldwide, the issue of frequency stability in power systems has become increasingly serious. Enhancing the inertia level of power systems by configuring battery storage to provide virtual inertia has garnered significant research attention in academia. However, addressing the non-linear characteristics of frequency stability constraints, which complicate model solving, and managing the uncertainties associated with renewable energy and load, are the main challenges in planning energy storage for high-proportion renewable power systems. In this context, this paper proposes a battery storage configuration model for high-proportion renewable power systems that considers minimum inertia requirements and the uncertainties of wind and solar power. First, frequency stability constraints are transformed into minimum inertia constraints, primarily considering the rate of change of frequency (ROCOF) and nadir frequency (NF) indicators during the transformation process. Second, using historical wind and solar data, a time-series probability scenario set is constructed through clustering methods to model the uncertainties of wind and solar power. A stochastic optimization method is then adopted to establish a mixed-integer linear programming (MILP) model for the battery storage configuration of high-proportion renewable power systems, considering minimum inertia requirements and wind-solar uncertainties. Finally, through a modified IEEE-39 bus system, it was verified that the proposed method is more economical in addressing frequency stability issues in power systems with a high proportion of renewable energy compared to traditional scheduling methods. Full article
Show Figures

Figure 1

21 pages, 1100 KiB  
Article
Consensus of T-S Fuzzy Fractional-Order, Singular Perturbation, Multi-Agent Systems
by Xiyi Wang, Xuefeng Zhang, Witold Pedrycz, Shuang-Hua Yang and Driss Boutat
Fractal Fract. 2024, 8(9), 523; https://doi.org/10.3390/fractalfract8090523 - 5 Sep 2024
Viewed by 269
Abstract
Due to system complexity, research on fuzzy fractional-order, singular perturbation, multi-agent systems (FOSPMASs) remains limited in control theory. This article focuses on the leader-following consensus of fuzzy FOSPMASs with orders in the range of 0, 2. By employing the T-S [...] Read more.
Due to system complexity, research on fuzzy fractional-order, singular perturbation, multi-agent systems (FOSPMASs) remains limited in control theory. This article focuses on the leader-following consensus of fuzzy FOSPMASs with orders in the range of 0, 2. By employing the T-S fuzzy modeling approach, a fuzzy FOSPMAS is constructed. In order to achieve the consensus of a FOSPMAS with multiple time-scale characteristics, a fuzzy observer-based controller is designed, and the error system corresponding to each agent is derived. Through a series of equivalent transformations, the error system is decomposed into fuzzy singular fractional-order systems (SFOSs). The consensus conditions of the fuzzy FOSPMASs are obtained based on linear matrix inequalities (LMIs) without an equality constraint. The theorems provide a way to tackle the uncertainty and nonlinearity in FOSPMASs with orders in the range of 0, 2. Finally, the effectiveness of the theorems is verified through an RLC circuit model and a numerical example. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

27 pages, 24204 KiB  
Article
Modeling, Simulation and Control of the Double Delta Surgical Robot
by George Moustris and Costas Tzafestas
Viewed by 310
Abstract
Robotic surgery has been steadily growing, with many new platforms entering the field. Research platforms, however, are limited in number, require a sizable capital expenditure or are difficult to access. This paper presents the analysis and development of a novel surgical manipulator based [...] Read more.
Robotic surgery has been steadily growing, with many new platforms entering the field. Research platforms, however, are limited in number, require a sizable capital expenditure or are difficult to access. This paper presents the analysis and development of a novel surgical manipulator based on parallel kinematics, utilizing the Delta robot as a foundational element. We investigate various aspects including kinematics, statics, workspace and constraints of the manipulator. Additionally, a physics-based model is constructed to validate the analysis and facilitate the creation of a control algorithm aimed at input tracking, particularly for teleoperation purposes. Two experiments are conducted to evaluate the manipulator’s performance: one focusing on circle tracking and a second one employing real kinematic data from a suturing task. The results indicate a maximum tracking error under 1 mm and an RMS error below 0.6 mm for the first trial and 0.3 mm by 2 mm for the suturing tracking task, respectively. Furthermore, through non-linear Bode analysis we demonstrate that the closed-loop system effectively decouples input–output cross-gain terms while maintaining minimal amplification in the diagonal terms. This suggests that the system is well-suited for the intricate and precise motions required in surgical procedures. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

14 pages, 292 KiB  
Article
A Non-Linear Optimization Model for the Multi-Depot Multi-Supplier Vehicle Routing Problem with Relaxed Time Windows
by Herman Mawengkang, Muhammad Romi Syahputra, Sutarman Sutarman and Abdellah Salhi
Vehicles 2024, 6(3), 1482-1495; https://doi.org/10.3390/vehicles6030070 - 29 Aug 2024
Viewed by 417
Abstract
In the realm of supply chain logistics, the Multi-Depot Multi-Supplier Vehicle Routing Problem (MDMSVRP) poses a significant challenge in optimizing the transportation process to minimize costs and enhance operational efficiency. This problem involves determining the most cost-effective routes for a fleet of vehicles [...] Read more.
In the realm of supply chain logistics, the Multi-Depot Multi-Supplier Vehicle Routing Problem (MDMSVRP) poses a significant challenge in optimizing the transportation process to minimize costs and enhance operational efficiency. This problem involves determining the most cost-effective routes for a fleet of vehicles to deliver goods from multiple suppliers to multiple depots, considering various constraints and non-linear relationships. The routing problem (RP) is a critical element of many logistics systems that involve the routing and scheduling of vehicles from a depot to a set of customer nodes. One of the most studied versions of the RP is the Vehicle Routing Problem with Time Windows (VRPTW), in which each customer must be visited at certain time intervals, called time windows. In this paper, it is considered that there are multiple depots (supply centers) and multiple suppliers, along with a fleet of vehicles. The goal is to efficiently plan routes for these vehicles to deliver goods from the suppliers to various customers while considering relaxed time windows. This research is intended to establish a new relaxation scheme that relaxes the time window constraints in order to lead to feasible and good solutions. In addition, this study develops a discrete optimization model as an alternative model for the time-dependent VRPTW involving multi-suppliers. This research also develops a metaheuristic algorithm with an initial solution that is determined through time window relaxation. Full article
17 pages, 2079 KiB  
Article
Optimization Method of Mine Ventilation Network Regulation Based on Mixed-Integer Nonlinear Programming
by Lixue Wen, Deyun Zhong, Lin Bi, Liguan Wang and Yulong Liu
Mathematics 2024, 12(17), 2632; https://doi.org/10.3390/math12172632 - 24 Aug 2024
Viewed by 564
Abstract
Mine ventilation is crucial for ensuring safe production in mines, as it is integral to the entire underground mining process. This study addresses the issues of high energy consumption, regulation difficulties, and unreasonable regulation schemes in mine ventilation systems. To this end, we [...] Read more.
Mine ventilation is crucial for ensuring safe production in mines, as it is integral to the entire underground mining process. This study addresses the issues of high energy consumption, regulation difficulties, and unreasonable regulation schemes in mine ventilation systems. To this end, we construct an optimization model for mine ventilation network regulation using mixed-integer nonlinear programming (MINLP), focusing on objectives such as minimizing energy consumption, optimal regulation locations and modes, and minimizing the number of regulators. We analyze the construction methods of the mathematical optimization model for both selected and unselected fans. To handle high-order terms in the MINLP model, we propose a variable discretization strategy that introduces 0-1 binary variables to discretize fan branches’ air quantity and frequency regulation ratios. This transformation converts high-order terms in the constraints of fan frequency regulation into quadratic terms, making the model suitable for solvers based on globally accurate algorithms. Example analysis demonstrate that the proposed method can find the optimal solution in all cases, confirming its effectiveness. Finally, we apply the optimization method of ventilation network regulation based on MINLP to a coal mine ventilation network. The results indicate that the power of the main fan after frequency regulation is 71.84 kW, achieving a significant energy savings rate of 65.60% compared to before optimization power levels. Notably, ventilation network can be regulated without adding new regulators, thereby reducing management and maintenance costs. This optimization method provides a solid foundation for the implementation of intelligent ventilation systems. Full article
Show Figures

Figure 1

16 pages, 765 KiB  
Article
Energy Minimization for IRS-Assisted SWIPT-MEC System
by Shuai Zhang, Yujun Zhu, Meng Mei, Xin He and Yong Xu
Sensors 2024, 24(17), 5498; https://doi.org/10.3390/s24175498 - 24 Aug 2024
Viewed by 505
Abstract
With the rapid development of the internet of things (IoT) era, IoT devices may face limitations in battery capacity and computational capability. Simultaneous wireless information and power transfer (SWIPT) and mobile edge computing (MEC) have emerged as promising technologies to address these challenges. [...] Read more.
With the rapid development of the internet of things (IoT) era, IoT devices may face limitations in battery capacity and computational capability. Simultaneous wireless information and power transfer (SWIPT) and mobile edge computing (MEC) have emerged as promising technologies to address these challenges. Due to wireless channel fading and susceptibility to obstacles, this paper introduces intelligent reflecting surfaces (IRS) to enhance the spectral and energy efficiency of wireless networks. We propose a system model for IRS-assisted uplink offloading computation, downlink offloading computation results, and simultaneous energy transfer. Considering constraints such as IRS phase shifts, latency, energy harvesting, and offloading transmit power, we jointly optimize the CPU frequency of IoT devices, offloading transmit power, local computation workload, power splitting (PS) ratio, and IRS phase shifts. This establishes a multi-variate coupled nonlinear problem aimed at minimizing IoT devices energy consumption. We design an effective alternating optimization (AO) iterative algorithm based on block coordinate descent, and utilize closed-form solutions, Dinkelbach-based Lagrange dual method, and semidefinite relaxation (SDR) method to minimize IoT devices energy consumption. Simulation results demonstrate that the proposed scheme achieves lower energy consumption compared to other resource allocation strategies. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

15 pages, 4964 KiB  
Article
Adaptive Finite-Time Constrained Attitude Stabilization for an Unmanned Helicopter System under Input Delay and Saturation
by Yang Li and Ting Yang
Processes 2024, 12(9), 1787; https://doi.org/10.3390/pr12091787 - 23 Aug 2024
Viewed by 362
Abstract
This study focuses on addressing the constrained attitude stabilization problem for an unmanned helicopter (UH) system subject to disturbances, input delay and actuator saturation. A constrained memory sliding mode is first presented to constrain the flight attitude while handling the input delay. On [...] Read more.
This study focuses on addressing the constrained attitude stabilization problem for an unmanned helicopter (UH) system subject to disturbances, input delay and actuator saturation. A constrained memory sliding mode is first presented to constrain the flight attitude while handling the input delay. On this basis, an adaptive finite-time nonlinear observer is proposed to estimate the lumped disturbance with unknown upper bound. Moreover, based on the hyperbolic tangent function, a saturated attitude controller is designed to tackle the input saturation problem via the adaptive laws. The finite-time stability of the closed-loop constrained attitude system is proved by Lyapunov synthesis. Finally, the developed scheme can accomplish attitude stabilization and overcome the influence of disturbances, attitude constraint, input delay and actuator saturation in an easy way. Numerical simulations are carried out to demonstrate the effectiveness of the proposed control scheme. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

Back to TopTop