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Abstract

We consider the problem of partial shape matching. We propose to transform shapes into sequences and utilize an algorithm that determines
a subsequence of a target sequence that best matches a query. In the proposed algorithm we map the problem of the best matching subsequence
to the problem of a cheapest path in a directed acyclic graph (DAG). The approach allows us to compute the optimal scale and translation of
sequence values, which is a nontrivial problem in the case of subsequence matching. Our experimental results demonstrate that the proposed
algorithm outperforms the commonly used techniques in retrieval accuracy.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Shape matching deals with the problem of describing a shape
and calculating its similarity to others. There are a huge variety
of shape descriptors; most of them require the presence of the
whole shape, only some of them tolerate minor missing or
distorted parts, e.g., due to minor occlusion. In general, the
performance of existing shape matching techniques tends to
drop significantly when too much noise exists in the shape.
Due to occlusion or segmentation errors, it may be the case that
only parts of objects in a given image have correct contours.
Therefore, a shape similarity measure based on parts of objects
is needed.

The cognitive importance of parts of visual form in human
perception has been theoretically and experimentally verified
[1,2]. However, the identification of shapes given their parts
is still an unsolved problem in shape similarity. As a good
example, Fig. 1 clearly demonstrates the difficulties we may
encounter in partial shape matching.

Given a significant part of visual form as a query, e.g., the
fish tail shown in Fig. 1(a), our goal is to find similar shapes
(fishes) containing the query part; this means that we need to
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find this tail as part of some other fish contours, e.g., it could
be as shown in Fig. 1(b) or (c). Three serious problems arise:

1. length problem,
2. scale problem, and
3. distortion problem.

We describe these problems in details in Section 2. None of cur-
rent shape matching techniques provides solutions to all prob-
lems listed above. Even feature-based approaches, although
potentially being based on local features, require the presence
of most of the object to compute the statistics of the features.
This statement applies to all shape descriptors presented in the
special issue of pattern recognition on shape similarity, Late-
cki et al. [3], as well as to the shape descriptors presented in
Belongie et al. [4] and Grigorescu and Petkov [5]. The existing
partial shape similarity measures (e.g., Ref. [6]) require that
the query part is nearly identical to the corresponding part of
the target contour, which is clearly an unrealistic assumption
due to noise distortions and due to (even small) perspective
projection changes. Veltkamp and Tanase [7] proposed to use
an extended dynamic programming approach directly on the
turn angle function (also known as � function) representation
of object contours. Since their matching of a single part is not
elastic, their approach is not scale invariant, e.g., if part of the
target contour that is similar to the query part is twice longer
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Fig. 1. (a) A fish tail contour t1. (b) A contour of partially occluded fish t2. (c) A distortion led to a spike on the fish tail contour t3.

(due to a different scale), it will not be recognized as similar.
Therefore, their approach requires scale normalization, which
is a nontrivial and unsolved problem.

In this paper, we present a novel approach for evaluating
shape similarity. By transforming shapes into sequences of
numbers, we propose a dynamic programming algorithm to find
the best corresponding part of the contour of a target object
to a given query part. The measure of similarity is calculated
simultaneously. Compared to traditional techniques, this new
approach has the following advantages:

• It performs well even in the case that only a small part of the
shape is visible, therefore allowing for significant occlusion.

• It is the first approach (to the best of our knowledge) that can
recognize a given shape when only a small part of its contour
is given and the given part can be noisy. Being different from
existing similarity measures, it does not require the query
part to be nearly identical to the corresponding part on the
target contour, which makes it useful to real life applications.

• In contrast to early AI and CV approaches, it does not require
objects to be composed of primitive parts or a specific shape
vocabulary such as generalized cylinders, superquadrics, or
geons [8–11].

• It has no restriction on shape complexity since the visual
parts it considers are not built of any primitive elements.

• By mapping the problem of the best matching subsequence
to the problem of a cheapest path in a DAG it allows for
the computation of the optimal scale and translation of se-
quences values, which is a nontrivial problem in the case of
subsequence matching.

The rest of the paper is organized as follows. In Section 2
we introduce our motivation and the background of sequence
matching techniques in the community of data mining. Section
3 presents the details about the proposed technique, minimum
variance matching (MVM) [12]. Experimental results are given
in Section 4 and conclusion remarks are given in Section 5.

2. Motivation and background

Given a query part, our goal is to find the corresponding
part in shapes that actually contain this part, though the corre-
spondence may be noisy and therefore the shapes may not be

identical to the query. The three problems listed in the previous
section make shape matching a very complicated and challeng-
ing task. A query and its corresponding part may have different
lengths, which makes the problem hard to address with most
shape descriptors. In addition, the scale and distortion problems
bring even more difficulties in the process of shape matching.

To improve the effectiveness of partial shape matching, we
need an elastic matching for shapes that is robust enough to
cancel out the effect of the three problems. Motivated by the ex-
isting techniques in the field of sequence analysis dealing with
similar problems, we propose to represent the object shapes
with sequences of numbers and hence transform the shape
matching problem into a problem of sequence matching. Se-
quences of real numbers are commonly used in all research
fields. Due to their simplicity, a sequence is a ubiquitous and
increasingly prevalent type of data. Therefore, there has been
much research effort devoted to sequence matching or similar-
ity in recent years. Many data mining algorithms have sequence
similarity measurements at their core. Examples include mo-
tif discovery [15], anomaly detection [16], rule discovery [17],
classification [18] and clustering [19].

There exist many methods to transform contours of pla-
nar shapes to sequences. Most methods begin with placing
N equidistant sample points s1, s2, . . . , sN on the given con-
tour, and then map the contour to a sequence of numbers
f (s1), f (s2), . . . , f (sN) that represent some shape feature f .
For example, as illustrated in Fig. 2(a), we can equidistantly
sample the contour and compute for every sample point the dis-
tance to the contour centroid. However, the obtained sequence
values suffer then from the scale problem, e.g., an object twice
closer to the viewer leads to twice larger sequence values. A
different method is to compute the tangent line at every sample
point, and represent the contour with the sequence of directions
of the tangent lines (their angles with x-axis). An example tan-
gent line is shown in Fig. 2(b). The sequence obtained this way
for the contour in 2(b) is shown in 2(c). It is a sequence of
numbers between 0 and 360 that represent the angles of tangent
lines at corresponding contour points with x-axis. The starting
point is the lowest contour point, and we traverse the contour
in the counter clockwise direction. The obtained sequence is a
discrete version of the so-called � function. For an arc length
parameterized contour, �(x) is the tangent angle at each con-
tour point x. We selected this contour representation, since it
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Fig. 2. Different ways to convert contours to sequences of numbers.

is scale invariant; the usage of this representation provides a
solution to the scaling problem. It is also translation invariant,
but it is not rotation invariant since, for example, if we rotate
an object by +60◦, all sequence values will be translated by 60
(modulo 360◦). Thus, object rotation implies shift of sequence
values (modulo 360◦).

However, a more serious problem is robust estimation of
the tangent lines, since due to possible noise that results in
displacement of the contour points, the directions of the tangent
lines may become unstable. To robustly estimate the tangent
lines, we use the process of discrete curve evolution (DCE)
introduced in Refs. [13,14]. DCE is capable of removing noisy
contour points and retaining the shape relevant points.

Now we describe in detail the three problems illustrated in
Fig. 1, and show how they are addressed in the proposed ap-
proach. Let a significant visual part be given as a query t1. For
example, this can be a fish tail shown in Fig. 1(a). Our goal is
to find a fish in a given image, which really means that we need
to find t1 as part of some other part t2 of the fish contour, e.g.,
t2 could be as shown in Fig. 1(b). Let t ′2 be the fish tail part
of contour t2 shown in Fig. 1(b). Our goal is to find out that
t1 and t ′2 are similar. (Observe that t1 and t ′2 are not identical;
they are just similar.) Problems (1) and (2) imply that arcs t1
and t ′2 may have different lengths. In addition, the scale prob-
lem may imply (depending on the shape representation used)
that the values of sequences representing t1 and t ′2 are at dif-
ferent scales. As stated above, we solve the scale problem (2)
by representing each shape as a sequence of tangent directions
at each sample point.

Observe that the length problem (1) can be easily solved
when complete contours are given, by arc length normalization
to one. However, length normalization does not work for par-
tial contours, since normalizing the lengths of arcs t1 and t2
to be equal, does not imply that the lengths of corresponding
arcs t1 and t ′2 are equal. One could think that a sliding window
approach would provide a solution to problem (1). In addition
to the computational cost of enumerating all possible sliding
window sizes, i.e., matching t1 to all subarcs of t2, there is
a more serious issue with this solution. It is problem (3); it
affects sequences representing complete contours as well. Dis-
tortions may arise from segmentation errors (segmentation arti-
facts), change of view angle, or from occlusions. For example,
consider the arc t3 in Fig. 1(c), which can be interpreted as

a distorted version of arc t2. It might have been caused by a
spike occluding part of the fish tail. Due to the spike, there
does not exist a single subarc of t3 that is similar to t1. Contour
part t1 can only correctly match to two disconnected subarcs of
t3 obtained by removing the spike. While sliding windows are
computationally tractable, the fact that a query part may only
correctly match to several subarcs of the target contour makes
it necessary to use many disconnected sliding windows, which
leads to combinatorial explosion.

Since we represent contour parts as sequences of numbers
representing sample points, the length problem (1) leads also
to the problem of determining the number and position of the
sample points. For example, if t1 is represented by more sam-
ple points than its corresponding part of t2, and our matching
function is 1–1, then it is impossible to match t1 to its corre-
sponding part of t2.

We obtain a solution to both the length problem (1) and the
distortion problem (3) by using an elastic sequence matching
approach called MVM, introduced in Section 3. The proposed
approach allows us to match sequences of different lengths, and
to skip the elements of the target sequence (e.g., the spike) that
do not correspond to the query sequence. As discussed earlier,
when we transform shape data into sequences using tangent
angles, the scaling problem (2) is resolved. However, tangent
angles are not rotation invariant; when a shape is rotated, we
obtain a shift in sequence values. Therefore, we need to extend
MVM to allow us to identity the shift in sequences values. The
extension of MVM that solves the shift problem is described
at the end of Section 3.

We now provide a brief overview of sequence distance
measures, before we introduce MVM. As many researchers
have mentioned in their work [17,18,20], the Euclidean dis-
tance, even though most commonly used, is not always the
optimal distance (dissimilarity) measure for sequence similar-
ity searches. For example, in some sequences, different parts
have different levels of significance in their meaning. Also, the
Euclidean distance does not allow shifting in time axis and be-
comes infeasible when the compared sequences have different
lengths.

To solve the problems of time shifting and different length,
dynamic time warping (DTW) [21,22] was proposed to align
the time axis prior to the calculation of the distance. To align
two sequences X = (x1, x2, . . . , xm) and Y = (y1, y2, . . . , yn)
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Fig. 3. Time series alignment with (a) DTW and (b) MVM.

using DTW, we first need to build an m-by-n matrix M with
each element M(i, j) (1� i�m; 1�j �n) being the squared
distance between X(i) and Y (j): M(i, j)=d(X(i), Y (j))2. To
find the optimal correspondence between X and Y , we need to
find a path through the matrix that has the minimum cumulative
distance. The minimum cumulative distance of the path leading
to the entry (i, j) is calculated with dynamic programming
using the following recurrence:

DTW(i, j) = M(i, j) + min(DTW(i − 1, j),

DTW(i, j − 1), DTW(i − 1, j − 1)).

After the optimal path is found, the DTW distance between two
sequences is calculated as the sum of all the M(i, j) entries
included in the path. Fig. 3(a) demonstrates the alignment path
found with DTW for two sequences X = (1, 2, 8, 6, 8) and
Y = (1, 2, 9, 3, 3, 5, 9). The corresponding sequence indices
(not the values) are (1,1), (2,2), (3,3), (4,4), (4, 5), (4, 6), (5,7).

The DTW distance has been shown to be superior to the
Euclidean distance in many cases [19,23–25] (see Ref. [26] for a
detailed discussion of DTW). However, it requires the matched
sequences to be well aligned, and it is particularly sensitive
to outliers, since it is not able to skip any elements of the
target series. DTW always matches the query sequences to the
whole target sequences. This fact not only leads to unintuitive
correspondences of elements, but also influences negatively the
sequence distance. This is illustrated by the index pairs (4, 5),
(4, 6), which mean that the fourth element of X (with value 6)
is forced to match to the fifth and sixth elements of Y (of value
3). Intuitively, the fourth element of X (with value 6) should
only correspond to the fifth element of Y (of value 3), as shown
in Fig. 3(b).

Another distance measure, the longest common subsequence
(LCSS), has been used in sequences [27,28] to deal with the
alignment and outliers problems. Given a query and a target
series, LCSS determines their longest common subsequence,
i.e., LCSS finds subsequences of the query and target (of the
same length) that best correspond to each other. The distance
between two sequences is calculated based on the ratio between
the length of their longest common subsequence and the length
of the whole sequence. Since the problem of longest common
subsequence has the property of optimal substructure, it is of-
ten solved with dynamic programming. Given two sequences

X = (x1, x2, . . . , xm) and Y = (y1, y2, . . . , yn), the length of
their longest common subsequence is calculated as:

LCSS(X1...i , Y1...j )=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if i = 0 or j = 0,

LCSS(X1...i−1, Y1...j−1)+1 if xi = yj ,

max(LCSS(X1...i−1, Y1...j ),

LCSS(X1...i , Y1...j−1)) otherwise.

In the above formula, X1...i = (x1, x2, . . . , xi) (0� i�m),
Y1...j = (y1, y2, . . . , yj ) (0�j �n).

As shown in the formula, the longest common subsequence
found with LCSS does not need to consist of consecutive points,
the order of points is not rearranged, and some points can re-
main unmatched. However, since LCSS was originally pro-
posed for symbolic sequences (i.e., character strings), when one
tries to apply it to sequences of numeric values, a threshold is
required to determine when two close numeric values can be
treated as equal [28]. The actual performance of LCSS heavily
depends on the correct setting of this threshold, which may be
a particularly difficult problem for some applications.

In this paper, we propose to use a new algorithm called MVM
[12] for partial shape matching. MVM combines the strengths
of both DTW and LCSS, while overcoming their constraints.
MVM computes the distance value between two sequences that
are obtained from shape boundaries. It calculates the shape
similarity directly based on the distances of corresponding
elements, just as DTW does, but also allows the query sequence
to match to only a subsequence of the target sequence, just
as LCSS does. Like DTW, MVM also tries to find an optimal
path including all the corresponding pairs. But MVM is able
to skip outliers during the matching process and the path does
not need to be consecutive (as shown in Fig. 3(b)). As Fig. 4
shows, MVM can skip some elements of the target sequence
while DTW demands that every point on both sequences has a
match. The main difference between LCSS and MVM is that
LCSS optimizes over the length of the longest common sub-
sequence (which requires a distance threshold), while MVM
directly optimizes the sum of distances of corresponding ele-
ments (without any distance threshold). LCSS allows skipping
elements of both the query and the target sequence. Therefore,
MVM should be used when one is interested in finding the
best matching part of the target sequence for a given query se-
quence, since it guarantees that the whole query sequence will
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Fig. 4. The correct correspondence established by MVM for a query part matched to the target. (b) DTW was not able to establish a correct correspondence
for the same sequences, since it cannot skip any elements.

be matched. This is, for example, the case, when the query is
a model sequence, one wants to find in a given data set. How-
ever, when the query sequence contains outliers and skipping
them is allowed, then LCSS should be used.

3. Minimal variance matching

Before we can do the actual matching for the shape data, we
first need to extract their descriptors and represent them with
sequences of real numbers. To obtain the sequences represent-
ing object shapes, we selected a simple geometric transforma-
tion that is very suitable for robust shape representation. To be
concise, we will concentrate on 2D objects.

In general we do not know the object orientation, and nor-
malization does not solve the problem if the query corresponds
only to part of the target sequences. Therefore, we need a se-
quences similarity function that estimates the shift of values of
corresponding elements. Ideally, this similarity function should
be able to deal with elastic matching of two sequences a and
b of possibly different lengths m, n, correspondingly, where
m < n. Currently, the most popular method for elastic match-
ing of sequences is DTW, which minimizes the Euclidean
distance of corresponding points. DTW yields an optimal
(order preserving) relation R of all elements of sequence a to
all elements of sequence b. Thus, each ai must correspond to
some bj and vice versa. A potential problem arises when se-
quence a corresponds only to part b′ of sequence b, e.g., b′ is
contained in the first half of sequence b, since the final dissim-
ilarity value between a and b is the sum of dissimilarity values
of pairs (of corresponding elements of a and b) in R. The prob-
lem with DTW is that elements of b that are not in b′, which can
be treaded as outliers, must correspond to some elements of a.

Here we propose a solution to this problem in that we replace
the relation R with an injection (1–1 mapping) from a to b.
Precisely, we require that each ai maps to exactly one bj in an
order preserving manner while not all elements of b are required
to participate in R. This requirement allows us to eliminate the
influence of outliers in b on the dissimilarity value between a

and b, since sequence a matches to a subsequence of b. We
introduce a method to find such an optimal subsequence of b

next. When a query sequence a matches only to part of sequence

b, this method allows us to find the part of b best matching a

while computing a dissimilarity value between a and b, i.e., no
additional computation is needed in this case.

The new algorithm, which is called MVM, works for elas-
tic matching of two sequences of different lengths m and n.
More specifically, for two finite sequences of real numbers
a = (a1, . . . , am) and b = (b1, . . . , bn) with m < n, the goal
is to find a subsequence b′ of b of length m such that a best
matches b′. Thus, we want to find the best possible correspon-
dence of sequence a to a subsequence b′ of b. Formally, we
define a correspondence as a monotonic injection

f : {1, . . . , m} → {1, . . . , n}.
(i.e., a function f such that f (i) < f (i + 1) such that ai is
mapped to bf (i) for all i ∈ {1, . . . , m}). The set of indices
{f (1), . . . , f (m)} defines the subsequence b′ of b. (Recall that
in the case of DTW, the correspondence is a relation on the
set of indices {1, . . . , m} × {1, . . . , n}, i.e., a one-to-many and
many-to-one mapping.) Once the correspondence is known, it
is easy to compute the distance between the two sequences.
We do not have any restrictions on distance functions, i.e., any
distance function is possible. To allow for comparison to the
existing techniques, we use the Euclidean distance in this paper:

d(a, b, f ) =
√√√√

m∑
i=1

(bf (i) − ai)
2. (1)

Our goal is to find a correspondence f so that d(a, b, f ) is
minimal. More precisely, an optimal correspondence f̂ of val-
ues in series a to values in series b is defined as the one that
yields the global minimum of d(a, b, f ) over all possible cor-
respondences f :

f̂ = arg min{d(a, b, f ): f is a correspondence}. (2)

Finally, the optimal distance is obtained as

d(a, b) = d(a, b, f̂ ) =
√√√√

m∑
i=1

(b
f̂ (i)

− ai)
2. (3)

In other words d(a, b) is the global minimum over all possible
correspondences.
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Fig. 5. The difference matrix of two sequences t1 = (1, 2, 8, 6, 8) and
t2 = (1, 2, 9, 3, 3, 5, 9) formed with rows corresponding to elements of t1 and
columns to elements of t2.

We can also state the correspondence problem in a statistical
framework. Let us assume that there is a subsequence b′ of b

that is a noisy version of a such that

a ∼ b′ − N(0, v),

where N(0, v) denotes a zero-mean Gaussian noise variable
with variance v, and b′ = (bf (i))i for i ∈ {1, . . . , m}. Since
the mean of the differences (ai − bf (i))i is zero, i.e., a − b′ ∼
N(0, v), the variance �2 of difference sequence (ai − bf (i))i is
given by

�2(a, b, f ) = 1

m

m∑
i=1

(bf (i) − ai)
2. (4)

Clearly, �2(a, b, f ) = v (the variance of the Gaussian noise).
Observe that in this case the variance corresponds to the
Euclidean distance (1). Thus, the variance of the difference
sequence is minimal when mapping f establishes a correct
correspondence of elements of both sequences.

Now we describe the method used to minimize Eq. (4). We
first form the difference matrix of two sequences a and b as:

r = (rij ) = (bj − ai).

It is a matrix with m rows and n columns with m < n, with rij
being the difference between the values of ai and bj . For exam-
ple, the difference matrix for two sequences t1 = (1, 2, 8, 6, 8)

and t2 = (1, 2, 9, 3, 3, 5, 9) is shown in Fig. 5. Observe that
t1 and t2 are similar if we ignore the two elements in t2 with
value 3.

Clearly, rij can be viewed as a surface over a rectangle of
size m by n, where the height at point (i, j) is the value rij . We
obtain the correspondence with minimal variance by solving
the least-value path problem on the difference matrix. To obtain
the solution, we treat rij as a directed graph with the following
links:

rij is directly linked to rkl

⇔ k − i = 1 and j + 1� l�j + n − m.

When traversing the obtained directed graph, the meaning of
both conditions is as follows: for any two consecutive points
rij and rkl in each path, k − i = 1 means that we always go to
the next row, while j + 1� l�j + n − m means that we can
skip some columns with certain elasticity (maximum n − m),
but cannot go backwards. Fig. 6 shows the constructed DAG.

We want to have a least-value path with respect to the fol-
lowing cost function for each pair of nodes:

linkcost(rij , rkl) =

⎧⎪⎨
⎪⎩

(rkl)
2 = (bk − ai)

2 if k = i + 1

and j+1� l�j+1+(n−m)−(j − i),

∞ otherwise.

The conditions (1) and (2) imply that we can obtain a DAG (di-
rected acyclic graph) G whose nodes are the elements of (rij )ij
and weights are defined by the function linkcost. Denoting a
path leading to rij as SP(i, j) and its cost as pathcost(i, j), we
want to find a path with minimized pathcost(i, j) that satisfies
two conditions:

• Starting in the first row, between columns 1 and n − m + 1,
i.e., at r1j for j = 1, . . . , n − m + 1

• Ending at some node in the last row rmj for j = m, . . . , n.

It is well known that we can solve the least-value path prob-
lem using a shortest path algorithm on G. The obtained least-
value path defines exactly correspondencef̂ , which minimizes
Eq. (4) in accordance with Eq. (2). We propose a dynamic pro-
gramming algorithm to solve this optimization problem. Dy-
namic programming is a method efficient in solving problems
exhibiting the properties of overlapping sub-problems and opti-
mal substructure. In our case, the shortest path SP can be found
based on the pathcost of every pair of reachable nodes in G.
Taking pathcost(rij ) as the sub-problem, the optimal structure
of our problem can be formally defined as:

pathcost(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(rij )
2 if i = 1, 1�j �n;

min(pathcost(i, j), pathcost(i − 1, k)

+linkcost(r(i−1)k, rij ))

if 2� i�m, i�k� i + n − m,

k + 1�j �k + 1 + (n − m);
∞ otherwise.

The details of the algorithm are given in Table 1.
The inputs of the MVM algorithm include the lengths of the

two sequences, m and n, and the difference matrix. There is
also an optional input winWidth setting the width of a corre-
spondence window which constraints the elasticity in the path
finding process. The cost of the shortest path between each pair
of nodes, (pathcostij )ij , is returned as output, together with
another matrix pathij , based on which we can backtrack the
shortest path leading to rij . The actual algorithm starts with an
initialization process (steps 1–10). The pathcost is set to the
square of its own value for every node in the first row and in-
finity for all the other nodes. In the main loop (steps 11–22),
i goes over each row while k and j go over columns in the
(i − 1)th row and ith row, respectively. The pathcost for each
node is updated only when there is a shorter path coming from
a connected node in the previous row. The optimal structure
condition guarantees that the returned matrix pathcost contains
the cost of the shortest path leading to every node. Since we are
looking for a shortest path ending at some node in the last row
rmj (j = m, . . . , n), we just need to check the corresponding
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 .   .  .  

 .   .  .  

 .   .  .  

…
.
.
.

.

    . 

       . 

 .   .  .  r11 r12 r1(n-m+1) r1n

r21 r22 r2(n-m+1) r2nr2(n-m+2)

r31 r32 r3(n-m+1) r3nr3(n-m+2) r3(n-m+3)

r(m-1)1 r(m-1)nr(m-1)(n-1)

rm1 rmn

 .   .  .  

 .   .  .  

Fig. 6. DAG constructed for two sequences with length m and n.

Table 1
Minimum variance matching (MVM) algorithm

Algorithm: Mininum Variance Matching (MVM)

Input: m, n, (rij )ij , winWidth (optional)
Output: (pathcostij )ij , (pathij )ij
1: elasticity = min(n − m, winWidth);
2: for i = 1 : m

3: for j = 1 : n

4: pathcost(i, j) = ∞;
5: path(i, j) = 0;
6: end
7: end
8: for j = 1 : elasticity + 1
9: pathcost(1, j) = r2

1j ;
10: end
11: for i = 2 : m

12: stopk = min(i − 1 + elasticity, n);
13: for k = i : stopk
14: stopj = min(k + 1 + elasticity, n);
15: for j = k + 1 : stopj
16: if pathcost(i, j) > pathcost(i − 1, k) + r2

ij

17: pathcost(i, j) = pathcost(i − 1, k) + r2
ij ;

18: path(i, j) = k;
19: end
20: end
21: end
22: end

values in pathcost; the minimum value is the distance (dis-
similarity) between the two compared sequences.

The shortest path for the example matrix in Fig. 5 is marked
with parentheses. Following the parentheses, the optimal cor-
respondence f̂ is given by

f̂ (1) = 1, f̂ (2) = 2, f̂ (3) = 3, f̂ (4) = 6, f̂ (5) = 7.

Finally, from Eq. (3) we obtain the distance d(t1, t2) = √
3 ≈

1.732.

The path computed this way gives us correspondence f̂ with
the smallest variance of the differences of the corresponding
pairs. We recall that this is true, since we assumed that the mean
of the differences of the corresponding pairs is zero. Observe
that without this assumption, it would not be possible to use
the shortest path algorithm on a DAG. The obtained optimal
correspondence f̂ automatically determines a subsequence b′=
f̂ (a) of a target sequence b that best matches a query sequence
a. In particular, two intuitive interpretations are possible:

• Whole sequence matching: subsequence b′ is dense in b,
which indicates a similarity of a to b.

• Subsequence matching: subsequence b′ is not dense in b but
is dense in some parts of b which indicates a similarity of a

to those parts of b.

The distinction between whole and subsequence matching is
not required for the proposed approach. Therefore, we do not
attempt to provide formal definitions. In practice, there are cases
in which sharp distinction is not possible.

Under the assumption that the query sequence is shorter than
the corresponding sequence of the target sequence, MVM sub-
sequence matching provides a solution to problems (1) and (2).
This is a realistic assumption for practical applications, since
it only depends on the sampling rate of the query and target
contour parts.

3.1. MVM and shift estimation

The definition of the MVM algorithm presented above al-
lows us to estimate the linear transformation that best maps a
query sequence a to a subsequence of a target sequence b. This
gives a serious advantage with respect to existing sequences
matching methods. The estimation is done while computing
the correspondence f̂ , and it does not increase the computa-
tional complexity of the algorithm. To focus our attention, we
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present here the estimation of the translation (shift) of values
of sequences b. For sequences representing the tangent angle
at the contour sample points, the shift estimation corresponds
to rotation estimation.

Now for two finite sequences of real numbers a =
(a1, . . . , am) and b = (b1, . . . , bn) with m < n, the goal is to
find a subsequence b′ of b of length m (i.e., correspondence
f̂ ) and a translation tr such that a best matches b′ + tr. This
means that we want to minimize:

d(a, b, f ) =
√√√√

m∑
i=1

(bf (i) + tr − ai)
2. (5)

Observe that if a matches to the whole sequence b, a simple
normalization of values of both sequences solves the translation
problem. However, this is not the case when a matches only
to part of b as we described in the introduction. Let fk be any
correspondence from a = (a1, . . . , ak) to b= (b1, . . . , bm) with
k < m. Then we can estimate the translation for fk as

tr(a, b, f, k) =
k∑

i=1

bf (i) − ai . (6)

The main idea of the solution to Eq. (5) is the fact that we can
update tr(a, b, f, k) incrementally as

tr(a, b, f, k + 1) = k

k + 1
tr(a, b, f, k)

+ 1

k + 1
(bf (k+1) − ak+1). (7)

By integrating this incremental update in the process of com-
putation of the cheapest path on DAG, we obtain an optimal
solution to Eq. (5).

3.2. Time complexity of MVM

Let m be the length of the query sequence and n the length
of the target sequence. The complexity of the shortest path al-
gorithm on a DAG is O(V + E), where V is the number of
vertices and E is the number of edges. For efficient implemen-
tation, we only need to have a subset of at most n − m ele-
ments of each row of (rij )ij as vertices of G. Since there are
m rows, we obtain that the number of vertices V is bounded
by m × (n − m). Every vertex rij in row i is linked to at most
n − m − j + 1 vertices in row i + 1. Since

n−m+1∑
j=1

(n − m − j + 1) =
n−m∑
j=1

j = (n − m)(n − m + 1)

2

and there are m rows, we obtain that G has at most

m × (n − m)(n − m + 1)

2

edges. Hence there are O(mn2) edges, and consequently the
complexity of our algorithm is O(mn2). However, this com-
plexity can be reduced if a restriction on the index difference c

of corresponding elements is set. We will call constant c (win-
Width in Table 1) the correspondence window bound (CWB) if
for each i = 1, . . . , m f (i) = j implies f (i + 1)�j + c.

The bound c directly corresponds to the warping window
size restriction in DTW. As stated in Ref. [26], restricting the
warping window not only reduces the computational complex-
ity, but also leads to better matching results for DTW. In all our
experiments, the usage of CWB did not reduce the retrieval ac-
curacy. Given the CWD, the number of edges for each vertex rij
of G in row i linking it to vertices in row i +1 is bounded by c.
Since there are at most n−m vertices in row i and there are m

rows, the total number of edges is bounded by cm(n−m). Thus,
the computational complexity of our algorithm is bounded by
cm(n − m), and consequently, our algorithm with CWB is of
order O(mn). This is the best possible complexity if the query
string matches a limited part of the target string and we want
to find this substring.

When the query string happens to match the whole target,
the complexity reduces to linear (without reducing the match-
ing accuracy). Thus, when the task is to match only whole se-
quences, MVM can be computed in linear time. In this case,
we can limit the length of the difference of both sequences
n−m�K , where K is a constant. Consequently, we obtain an
algorithm of order O(m), where m is the length of the query se-
quence. We believe that we can further mitigate the (amortized)
time complexity of our approach by introducing an admissible
lower bounding test in the spirit of Ref. [18]. However, in this
work we focus on demonstrating the utility of our approach;
we will address speedup and indexability of this approach in
future work.

4. Experimental results

We compared the performance of the proposed MVM method
to DTW and to LCSS measure. The particular strength of the
proposed sequences matching method is the fact that the query
may be only similar to part of the target sequences, since it can
identify the best matching subsequence of the target sequence.
This property is really desirable for partial shape matching.

When LCSS is applied to sequences of numeric values, one
needs to set a threshold, �, that determines when values of cor-
responding points are treated as equal [28]. LCSS performance
heavily depends on the threshold that is a function of the se-
quence values. To judge the equivalence of two real values, we
define this threshold � as follows:

|bj − ai |
| min(ai, bj )| ��,

where ai and bj are considered points of two matched se-
quences a and b. In our experiments, the value of � that yields
the best results was 0.1. Therefore, we used this value. We
stress that optimal threshold settings may vary significantly for
different data sets.

We performed partial shape matching experiments on a
database of 350 shapes represented by their contours. These
shapes are grouped into 70 classes with 5 shapes in each class.
This database is part of the original MPEG-7 Core Experiment
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bird:05.17

bone:06.01

cellphone:14.15

crown:20.16

glas:42.13

bird:05.17 bird:05.15 bird:05.18 lizzard:52.02 bird:05.14

bone:06.01 bone:06.05 bone:06.04 bone:06.02 bone:06.03

cellphone:14.15 cellphone:14.16 cellphone:14.17cellphone:14.14 device0:23.02

crown:20.16 crown:20.17 teddy:66.01 crown:20.15 crown:20.18

glas:42.13 glas:42.16 glas:42.14 glas:42.17 glas:42.15

fish:36.09

rat:59.16

fountain:40.17

watch:70.16

st

fish:36.09 flatfish:37.05 fish:36.12 fish:36.11 truck:68.01

rat:59.16 rat:59.18 rat:59.17 rat:59.20 rat:59.19

fountain:40.17 fountain:40.16 fountain:40.19 rat:59.18 fountain:40.18

watch:70.16 watch:70.18 watch:70.17 watch:70.20 personalcar:57.05

stef:65.01 stef:65.02 stef:65.05 camel:10.05 lizzard:52.05ef:65.01

Fig. 7. Query parts and their best five matches found with MVM.

CE-Shape-1 database composed of 70 classes with 20 shapes
in each class [13]. Each contour in the database is represented
as a sequence of 100 tangent directions ranging between 0 and
360. We used as queries sequences that represent 10 manually
selected visual parts of objects. They are represented as se-
quences of highly varying lengths of 20, 30, 25, 47, 46, 21, 45,
32, 30, and 33 points. We show the corresponding 10 query
parts in the first column of Fig. 7. The query parts are marked
with black dots on the contours of the shapes from which they
are selected. High length variance of selected query sequences
reflects the fact that parts of visual form may have different
sizes.

Following Ref. [26], we use 1–NN classification accuracy,
where the query sequence is assigned to the class of its first
nearest neighbor (excluding the query sequence). To compute
the classification accuracy, we find for each query part the most
similar object excluding the object from which it was chosen.
As a result, even though the query parts were selected from ob-
jects in the experimental data set, they are not identical to their
best matching parts. The results for three different approaches
are shown in Table 2.

To demonstrate the experimental results visually, we also
show in Fig. 7 (columns 2–6) the five most similar shapes found
with MVM for all query parts, with mismatches marked in red.
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For most queries, all the best five matches come from the same
class. Observe that those mismatches, although they belong to
different object categories, actually have a contour part that
is very similar to the query part. This is the case for objects
shown in the following (row, column): (1,5), (3, 6), (4, 4), (6, 3),
(6, 6), (9, 6), (10, 5), (10, 6). The only mismatch, where the
query part seems not to be similar to the matching part is (8, 5).

With the same data set, we also performed experiments
following the MPEG-7 Bulls-Eye test [30]. We measured the
retrieval rate as the number of objects from the same class that
are contained in the first K most similar objects to the query
object. The value of K is set to be double the number of objects
in the same class. In our experiment, we used K = 10. Table 3
gives the actual numbers of returned objects from the same
class as the queries and the overall retrieval accuracy for the
three approaches. Note that while MVM and DTW have sim-
ilar performance as in the 1–NN experiment, the performance

Table 2
Results of 1–NN classification experiments

MVM LCSS DTW

90% 70% 30%

Table 3
Results of the retrieval experiments

Query no. MVM LCSS DTW

1 5 1 4
2 5 1 2
3 5 4 2
4 5 4 0
5 5 5 2
6 4 2 0
7 5 1 3
8 5 3 1
9 4 1 0
10 3 1 1

Overall accuracy 90% 46% 30%

Fig. 8. Improved results of MVM with extended query parts.

of LCSS drops dramatically in retrieval experiments showing
the inability of LCSS to find the next-nearest neighbors. This
results from the fact that LCSS requires a hard threshold that de-
termines when two sequence elements are regarded as similar.

In both experiments, the proposed MVM method delivers
significantly better rates than LCSS and DTW. Observe that
the retrieval rates obtained by DTW are extremely low. This
is expected because DTW must put all elements in correspon-
dence, while the query parts correspond only to parts of the
whole shapes. This fact is illustrated in Fig. 4(b). The width
of the correspondence window winWidth which constraints the
elasticity of MVM was set to five in all our experiments.

One important reason for MVM to achieve its superior per-
formance is its ability to automatically figure out the starting
and ending points of the path in the graph, which corresponds
to the starting and ending points of a query part on the tar-
get sequence. Even though not necessary, a carefully selected
query part can surely further improve MVM’s performance. As
demonstrated in Fig. 7, there are mismatches for query parts 1,
3, and 4. However, after extending these three parts and making
them more discriminative for their own class, we obtain per-
fect results for them, as Fig. 8 shows. The lengths of the query
parts in Fig. 8 are 70, 35, 57 points, respectively.

We performed all the experiments on a PC with a 2.2 GHZ
64bit CPU and 1 GB RAM. The running time of MVM is ac-
ceptable. It took less than 1 minute to finish the similarity re-
trieval with 10 query parts against 350 targets. Note that the
programming language we used is Matlab, which is notoriously
slow with loop operations, the calculation efficiency should be
improved dramatically if we choose some other high perfor-
mance language such as C or C++.

5. Conclusions

The proposed new method for partial shape matching, called
MVM, performs the following tasks:

1. automatically determines a subsequence of the target se-
quence best matching the query sequence;
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2. automatically skips outliers that are present in the target
sequence;

3. computes the translation or scale of corresponding values
that minimizes the statistical variance of dissimilarities of
corresponding elements.

Our experimental results demonstrate the benefits of MVM
subsequence matching applied to partial shape matching.
The reported experiments show that this method is able
to perform partial shape matching effectively and signif-
icantly outperforms DTW and LCSS in terms of retrieval
accuracy. By mapping the problem of elastic matching of
sequences to the problem of finding a cheapest path in a
DAG, we provide an efficient algorithm to compute the shape
similarity.
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