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Abstract

Two simple polyhedra P and QQ (not necessarily con-
vex) are said to be parallel if they share the same
edge graph G and each face of P has the same nor-
mal as the corresponding face in (). Parallel polyhe-
dra P and () admit a parallel morph if the vertices
can be moved in a continuous manner taking us
from P to (), such that at all times the intermediate
polyhedron determined by the vertex configuration
and graph G is both simple, and parallel with P
(and @). In this note, we describe a pair of parallel
orthogonal genus-0 polyhedra that do not admit a
parallel morph.

1 Introduction

Assume we are given two straight-line drawings P
and @ in R? that are combinatorially equivalent
(i.e., they represent the same graph). We say that P
and @ are parallel drawings if corresponding edges
have the same slope. A parallel morph is a continu-
ous transformation between parallel drawings, such
that every intermediate drawing is simple and is
parallel with the original drawing. We extend this
idea to polyhedra. Two polyhedra P and ) are
called parallel if they share the same edge graph
and if for every face in P, the corresponding face
in @ has the same (unit) normal. Then, as is the
case with drawings, a parallel morph between par-
allel polyhedra is a continuous transformation such
that all intermediate polyhedra are both simple and
parallel with P and ().

We have been investigating the existence of par-
allel morphs, and the complexity of finding them for
various classes of graphs and polyhedra [1, 2]. These
questions are about connectivity within a parallel
family of polygons/graphs/polyhedra: Can we go
from one member of the family to any other via
continuous changes that keep us within the family?
Previous results are existence results for the case of
planar cycles: Guibas et al. [9] and independently,
Grenander et al. [8] prove that there is a parallel
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morph between any two parallel simple polygons in
the plane. Before that Thomassen [15] had proved
this result for the special case of orthogonal poly-
gons (where each edge is aligned with one of the
axes).

We have explored algorithmic issues for the case
of more general graphs in the plane. We show [13]
that for any pair of parallel orthogonal drawings of
a graph, a parallel morph always exists and can be
computed in time polynomial in the complexity of
the graph. However, for non-orthogonal drawings
the existence result fails and we show that the de-
cision problem becomes NP-hard.

In three dimensions, even cycles present an in-
teresting challenge. For one thing, cycles may be
“knotted” in different ways, precluding the possi-
bility of a continuous morph altogether. In [1] we
show that restricting to cycles representing the triv-
ial knot is not enough to guarantee a parallel morph
even for the case of orthogonal cycles.

Although cycles in 3D seem complicated, we had
hopes that polyhedra would be simpler. In fact, one
of our conjectures for cycles was that they would
be easy to morph if we could embed them on par-
allel genus-0 polyhedra. Unfortunately, we can use
our NP-hardness result for graph drawings in the
plane to prove the NP-hardness of deciding whether
there exits a parallel morph between parallel genus-
0 polyhedra. We still had hopes for orthogonal
polyhedra—but the purpose of this brief note is to
show a pair of parallel orthogonal genus-0 polyhe-
dra that do not admit a parallel morph. In our
construction we start with unmorphable cycles and
then embed them on polyhedra which are thus un-
morphable, since a parallel morph of the polyhedra
would provide a parallel morph of the cycles.

Transforming one geometric configuration to an-
other while maintaining some geometric structure
is a broad topic with a rich background. It includes
problems of morphing, motion planning, folding,
linkage reconfiguration, rigidity theory, knot theory,
etc. In the remainder of this section we mention
some of the background relevant to our problem.

“Morphing” is a popular topic in graphics, but
we use the term in a narrower sense: we assume



that the correspondence between the source config-
uration and the target configuration is given, and
we wish to maintain simplicity (the property that
the configuration is non-self-intersecting).

Cairns in 1944 [3] showed that there is a non-
intersecting morph from any planar triangulation
to any isomorphic one with the same fixed trian-
gle as a boundary. Thomassen [15] strengthened
this to straight line drawings of planar graphs. He
also considered preserving other geometric proper-
ties: he showed that convexity of faces can be pre-
served during such a morph; and he showed that
edge directions can be preserved for the special case
of orthogonal cycles. Floater and Gotsman [6] gave
an entirely different approach to non-intersecting
morphs of planar straight line drawings based on
Tutte’s graph embedding method. This was fur-
ther explored by Gotsman and Surazhsky [7]. See
also [5].

This paper is about parallel morphing, where we
wish to maintain simplicity and the directions of
the edges. A related topic is that of linkage re-
configuration; a form of morphing where simplicity
and the lengths of the edges must be maintained.
This is possible for limited classes of graphs: be-
tween any two simple chains/cycles in the plane
with corresponding edges of the same length, there
is a transformation that preserves simplicity and
edge lengths [4, 14].

Finally we briefly mention the connections of our
work to rigidity theory and parallel redrawings.
More detail can be found in [1]. Preserving edge
directions but not simplicity leads to the problem
of parallel redrawing of graphs [12]. This turns out
to be directly related to questions in rigidity the-
ory where edge lengths but not simplicity are pre-
served. Curiously, the strong duality between par-
allel redrawings and rigidity theory falls apart when
simplicity must be maintained, and the answers to
linkage reconfiguration problems and parallel mor-
phing questions do not appear related.

In the remainder of this section we describe the
connection to knot theory. A knot is defined as a
closed, non-self-intersecting curve embedded in R,
Two knots are equivalent if one knot can be trans-
formed to the other by continuous deformed with-
out self-intersection. Deciding whether two knots
are equivalent is a central problem of knot theory
(see [11] for an introduction).

The complexity of deciding knot equivalence has
not yet been completely determined. The problem
is in PSPACE [10]. A related problem, that of de-

ciding whether a knot can be deformed to lie in a

plane is in NP. There exist algorithms for both of
these problems with running times that are expo-
nential with respect to the number of crossings in
an orthogonal projection of the knot(s) [10].

Suppose that we are given non-self-intersecting
parallel drawings of a cycle graph in R3. Each draw-
ing is a closed non-self-intersecting curve (i.e., a
knot). If the drawings admit a parallel morph then
they correspond to equivalent knots. However, the
converse does not always hold [1].

2 Definitions

Let (V, F) be an undirected graph with vertex set V'
and edge set E. Let p: V — R%where d is a positive
integer. We say that the triple P = (V, E,p) is
a drawing of graph (V, E) in R% where each edge
(u,v) € F is the straight-line segment between p(u)
and p(v). A drawing that is not self-intersecting
is called simple. Two drawings P = (V, E,p) and
Q = (V, E, q) of graph (V, E) are called parallelif for
each edge (u,v) € F, there exists some A > 0 such
that p(u) — p(v) = A(g(u) —q(v)). A parallel morph
between parallel drawings P and @ is a continuously
changing family of drawings R(¢) = (V, E, r*) such
that R(0) = P, R(1) = @, and for all t € [0, 1],
rt 1 V — R? determines a simple drawing R(t) that
is parallel with P and Q).

Let P’ and Q' be polyhedra in R3 with the same
edge-graph (V, F). We say that P’ and Q' are par-
allel if the two drawings of (V, E)—determined by
vertex coordinates in each of P’ and ()'—are par-
allel. Parallel polyhedra have equal unit normals
on corresponding faces. A parallel morph R'(t) be-
tween parallel polyhedra P’ and )’ is a continu-
ously changing family of polyhedra, such that for
all ¢ € [0,1], R(t) is both simple and parallel with
P’ and @'. A drawing/polyhedron is orthogonal if
each edge is parallel with one of the axes. An or-
thodisk is a closed region of the surface of an orthog-
onal polyhedron that is topologically equivalent to
a closed disk, and whose boundary is an orthogonal
drawing.

3 Main Result

In this section, we show that there exist parallel or-
thodisks that do not admit a parallel morph. We
present parallel orthogonal drawings—topologically
equivalent to the trivial knot—that do not admit
a parallel morph. These drawings are augmented
(adding additional vertices, edges and faces) to form
unmorphable parallel orthodisks. From parallel or-



Figure 1: Parallel orthogonal drawings of a cycle
that do not admit a parallel morph.

thodisks, it is trivial to construct parallel orthogo-
nal genus-0 polyhedra.

Lemma 1 The parallel drawings P = (V, E, p) and
Q = (V, E, q) illustrated in Figure 1 do not admit a
parallel morph.

Proof. We introduce new notation. For each v €
V, let p(v) = (pz(v), py(v),p(v)). Likewise for q.
Notice that vertices e,...,[ must lie in a common
z-z plane in any drawing that is parallel with P and
(). We use the notation py(e,...,!) to denote the
y-value of the plane contammg Vertlces €,...,0l1in
mapping p.

In P, py(b,c) < pyle,...,I) while in @, g, (b,c) >
gy(e,...,1). For the sake of contradiction, assume

that there exists a parallel morph R(t) = (V, E, rt)
from P = R(0) to Q = R( ). There must exist
some ¢ € [0, 1] such that ry(b,c) = 7! (e,...,1). Let

tg denote the smallest ¢ for which equahty holds.

In R(to), b and ¢ lie in the same -z plane as do
e,...,l. However, before all these vertices can be
made coplanar, the edge (b,¢) must be moved to a
position that does not overlap with edges (e, f) and
(k,{) with respect to z and z axes. We will show
that this cannot happen in any R(t), where ¢ < tq.
Therefore, there exists no parallel morph between
P and Q.

Observe, for all drawings R(t) where t € [0, 1],
the following inequality holds:

max(ri(e),ri 1) < rt (a,b, e, d) (1)

Let us restrict our attention to drawings R(t) where
t < tg. By definition, when ¢ < #q

T’Z(b, c) < T'Z(e, Lol < min(rfj(a), ré(d)) (2)

Therefore, for all t < tg edge (a, b) in drawing R()
intersects the z-z plane through ré (€,...,1) at some

point. Let ozt = (at ay,a ¢} denote this point. Ob-
serve that of = r!(a,b,c, d) Thus, by Equation 1,
a! must be larger than 7% (/). Since the path of «

must be continuous, and remains in the same z-z

plane as e, ...,[ for t < tg, we can bound a' by the
following.

ri(l) <ol <ri(jk) (3)
and

ri(j,1) < af < ri(k,1) (4)

Symmetrically, let 5 = (8%, By, B%) where t < to de-
note the point of intersection in R(¢) between edge

(¢,d) and the z-z plane through ré(e, .,1). Then,
ri(e) < B < ri(f,9) (5)

and
ro(e, f) < By <rylg, h) (6)

Notice that o = B¢ = ri(a,b,c,d), where t < #.
Putting this together with Equations 1, 3 and 5 we
have that

ri(a, b, c,d)
k), v (f,9)) (7)

We claim that in R(¢), for all ¢ < o,

re(k, 1) <rile, f) (8)

Suppose that this is not true. Then there must exist
somet < to, such that in R(t) either rt(j, k) < 7% (e)
or ' (f,g) < rt(l). However, by Equation 7 neither
of these can hold. So, by contradiction we have that
Equation 8 holds for all ¢ < #¢.

Now, for t < to, af, = rf(a,b) and 8% = ri(c,d).

Putting these facts together with Equations 4, 6
and 8, we have that for all R(¢) in which ¢ < to,

ry(a,b) <rg(k,0) <rp(e f) <rple,d)  (9)

By Equations 7 and 9, we conclude that for all ¢ < t¢
in R(t) edge (b, ¢) will intersect both (k,!) and (e, f)
with respect to x and z coordinates. Hence, it is not
possible that in R(to) vertices b, c,e,...,! lie in the
same z-z plane. By contradiction we conclude that
P and () do not admit a parallel morph. a

max(r7(e), (1)) <
< min(r (5,

Theorem 2 There exist parallel orthodisks that do
not admit a parallel morph.

Proof. We construct parallel orthodisks P’ and @’
whose boundaries are the drawings P and @) of Fig-
ure 1, respectively. By Lemma 1, P and @ do not
admit a parallel morph. Therefore, the orthodisks
P’ and ) will not admit a parallel morph.
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Figure 2: Parallel orthodisks that do not admit a
parallel morph.

Figure 3: Cross sections of orthodisks P’ and @)'.

We begin by adding new vertices, edges and faces
to each of P and (), as illustrated by the topmost
two drawings in Figure 2. In particular, to both P
and () we add a lower structure that looks like a
box without a top, called the tray. Attached to the
tray is the loop, which consists of three rectangles.
The loop connects the tray to a the ring, which is
simply the boundary of a rectangle. It should be
clear that these parallel structures will not admit
a parallel morph. However, due to the presence of
the ring, the structures are not orthodisks.

To convert these unmorphable structures to or-
thodisks, we incorporate new parallel orthodisks
called gloves. To aid in visualizing our construc-
tion, imagine that in @)’ the glove is a rubber sheet
whose boundary coincides with the ring. To get
from @’ to P’, pass the tray through the ring, ex-
tending the rubber surface around the tray. In P’
the glove encloses the tray, while in @’ the tray is
not enclosed by the glove (see Figure 3).

The lower-most drawings in Figure 2 depict the
glove for each of P/ and @’. The boundary of each
glove is a rectangle. In both P’ and @’ the boundary
of the glove is arranged to coincide with the ring.
With the addition of the glove, the construction is
complete. Note: The edge graph of the gloves is
not connected; it is easy to make it connected by
adding a single edge. O

4 Open Problems

Many interesting open problems remain, including:
What is the complexity of determining whether or
not parallel orthogonal genus-0 polyhedra will ad-
mit a parallel morph? Are there general conditions
under which such polyhedra will always admit a
parallel morph? What is the complexity of deciding
whether or not two parallel orthogonal drawings of
a cycle admit a parallel morph?
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