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Abstract

We present efficient polynomial time algorithms that place at most [n/2] vertex guards which cover
the surface of an n-vertex polyhedral terrain, and similarly, at most [n/3] edge guards which cover
the surface of an n-vertex polyhedral terrain. The time complexity of both algorithms, dominated by
the cost of finding a maximum matching in a graph, is O(n3/2).

1 Introduction

Victor Klee originally posed the problem of determining the minimum number of guards sufficient to cover
the interior of an n-sided art gallery (polygon) in 1973. Chvatal showed that |n/3] guards are sufficient
and sometimes necessary to cover the interior of an n-sided art gallery using a lengthy combinatorial
argument [4]. Subsequently, Fisk [8] gave a concise and elegant proof using the fact that the vertices of a
triangulated polygon may be three-colored. Since then, this problem has evolved into what is virtually a
new field of study with numerous variations of the original question. The reader is referred to the book
by O’Rourke [12] and the recent survey by Shermer [15] for an overview of the area.

Most of the research has concerned problems set in two dimensions. Very little is known about
guarding or illuminating objects in three dimensions. A step in this direction is the study of polyhedral
terrains. The problem of guarding a polyhedral terrain was first investigated by deFloriani, et al. [6].
They showed that the minimum number of guards could be found using a set covering algorithm. Cole
and Sharir [5] showed that the problem was NP-complete. Goodchild and Lee [9] and Lee [10] presented
some heuristics for placing vertex guards on a terrain.

Bose et al. [3] showed that [n/2] vertex guards are always sufficient and sometimes necessary to
guard an n-vertex terrain. With respect to edge guards, they establish that [(4n — 4)/13] edge guards
are sometimes necessary to guard the surface of an n-vertex terrain. The sufficiency result of [n/3] edge
guards was proved by Everett and Rivera-Campo [7]. Both upper bounds are based on the Four color
theorem, leaving open the question of their efficient realization. In [3], linear time algorithms (based
on the five color theorem) are presented for placing |3n/5] vertex guards which cover the surface of a
polyhedral terrain, and |2n/5] edge guards which cover the surface of a polyhedral terrain.

In this paper, we close this gap by finding efficient polynomial time algorithms (O(n%/2) time) that
place at most |n/2] vertex guards which cover the surface of a polyhedral terrain, and similarly, at most
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|n/3] edge guards which cover the surface of a polyhedral terrain. The key behind these algorithms is
an alternate proof to both upper bounds that avoids the use of the Four color theorem by relying on
matchings. The time complexity of both algorithms is dominated by the time needed to find a maximum
matching in a graph. To date, the most efficient algorithm to find a matching in a general graph takes
O(V|V]|E|) time (Micali and Vazirani [11]). This turns out to be O(n%/?) in our case since the graphs
we deal with have O(n) vertices and edges.

2 Preliminaries

We begin by reviewing some of the terminology used throughout this paper. Most of the geometric and
graph theoretic terminology used is standard, and for additional details, we refer the reader to [13] and
[2].

We define a terrain 7" as a triangulated polyhedral surface with n vertices V' = {vy,vs,...,v,}. Each
vertex v; is specified by three real numbers (z;, ¥;, z;) which are its cartesian coordinates and z; is referred
to as the height of vertex v;. Let P = {p1,p2,...,pn} denote the orthogonal projections of the points
V = {v1,v2,...,v,} on the X-Y plane, i.e., each point p; is specified by the two real numbers (z;,y;). It
is assumed that the set P = {p;,p2,...,pn} is in general position, i.e., no three points are collinear so
that the projections of the edges of the polyhedral surface onto the X-Y plane determine a triangulation
of P (hence the term triangulated polyhedral surface). We refer to the triangulation as the underlying
triangulated planar graph associated with the terrain. Therefore we can view a terrain T as the graph
of a polyhedral function z = F(z,y), defined over CH(P).

A point a on or above T is said to be visible from point p on or above T if the line segment ap does
not intersect any point strictly below 7. More generally, point a is said to be vistble from line segment s
on or above T if there exists a point p on s from which a is visible. Given a point p (respectively, segment
s), the subset of points of T" that are visible from p (respectively s) is called the visible region of 7' from
p (respectively, s) and is denoted by VR(T'|p) (respectively, VR(T[s)).

Throughout this paper, we distinguish certain points and line segments as guards. A vertez guard is
a vertex of T and an edge guard is an edge of T. A set of guards covers or illuminates the surface of a
terrain if every point on the terrain is visible from at least one guard in the set. A set of guards with this
property will be called a guard set. A vertez guard setis a set of vertex guards that covers a polyhedral
terrain. Similarly, an edge guard set is a set of edge guards that covers a polyhedral terrain.

The combinatorial counterparts of these terrain guarding problems can be expressed as guarding
problems on the planar triangulated graph underlying the terrain. A vertex guard on the graph can
only guard the faces adjacent to that vertex, and an edge guard on the graph can only guard the faces
adjacent to the endpoints of the edge. It seems difficult to show that the problem of guarding a polyhedral
terrain is equivalent to the combinatorial problem of guarding the underlying planar triangulated graph.
The difficulty stems from the fact that not all plane triangulations can be realized as convex terrains.
However, a valid placement of vertex (respectively, edge) guards on the underlying triangulated graph is
also a valid placement of vertex (respectively, edge) guards on the polyhedral terrain since a guard on
the terrain can always see the faces adjacent to it. Therefore, an upper bound on the number of guards
used to guard a triangulated planar graph is also an upper bound for polyhedral terrains.

Traditionally in graph theory, a k-vertez coloring of a graph G is defined to be an assignment of
one of k colors to each vertex of G such that no two distinct adjacent vertices have the same color.
We break from tradition and call such a coloring a K,-free k-coloring since no edge (clique of size 2) is
monochromatic. A Ky-free k-coloring of a graph G is an assignment of one of k colors to each vertex
of G such that no clique of size d in G is monochromatic. In this paper, we will concentrate on K3-free
2-colorings of planar triangulated graphs.
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Given a plane graph G, the dual of G, denoted G*, is defined as follows: corresponding to each face
f of G there is a vertex f* of G*, and corresponding to each edge e of G is an edge e* of G*; two vertices
f* and g* of G* are joined by an edge e* if and only if the faces f and g of G are separated by (i.e. share)
the edge e in G

3 Kj-free 2-coloring

Ks-free 2-colorings form the basis of the placement algorithms to follow. We first investigate these
colorings on planar graphs and then address the issue of guard placement.

Definition 1 A mazimal planar graph is a connected planar graph in which every face is a triangle.

Notice that if every maximal planar graph is Ks-free 2-colorable, then so is every planar graph.
Therefore, in the remainder of this section we assume that our graphs are maximal planar graphs.

The Four color theorem [1] states that every planar graph is 4-vertex colorable. The Four color
theorem implies (by arbitrarily pairing colors) that every planar graph admits a K3-free 2-coloring.
Unfortunately, this implication is not computationally satisfying since no simple algorithm to 4-vertex
color a planar graph exists. We provide below an alternate proof (that does not depend on the Four color
theorem) that every planar graph admits a K3-free 2-coloring. We begin by investigating some properties
of K3-free 2-colorings of planar graphs.

Theorem 3.1 A K3-free 2-coloring of a mazimal planar graph G determines a perfect matching on its
dual graph G*.

Proof: Given a K3-free 2-coloring of G, let R (red) and B (blue) represent the two color classes. Define
a set of edges M™ in G* as follows: if the end vertices of an edge e of G are assigned the same color, then
the corresponding dual edge e* of G™ is placed in set M™.

We now show that the set M* represents a perfect matching in G*. First, we show that no vertex
in G* is adjacent to two edges in M*. Suppose such a vertex f* existed, this would imply that the
corresponding face f in G would be monochromatic which is a contradiction.

Second, we show that every vertex in G* is adjacent to at least one edge in M*. Suppose vertex f~
in G* is not adjacent to any edge in M*. Let f be the corresponding face in G. Let a,b,c be the three
vertices of face f in G. Face f is not monochromatic by assumption, however, two of the three vertices
must be assigned the same color. Without loss of generality, assume a and b are assigned color red. By
construction of M*, the dual of the edge ab must be in M*, contradicting the fact that f* is not adjacent
to any edge in M™. [ ]

Lemma 3.1 The dual G* of a mazimal planar graph G is 3-reqular and bridgeless (i.e. contains no cut
edge).

Proof: Since every face in G is a triangle, every vertex in G* has degree three.

Suppose that G* had a cut edge e*. Note that the faces adjacent to a vertex v in G form a cycle in
G*. Let edge e with end points @ and b in G be the dual of edge e*. The faces adjacent to a form a cycle
C in G*. However, e is in cycle C contradicting the fact it is a cut edge. [ |

Theorem 3.2 ([14], a proof also appears in [2]) Every bridgeless 3-regular graph has a perfect match-
ng.
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Theorem 3.3 FEvery planar graph admits a K3-free 2-coloring.

Proof: Let P be a planar graph. If P is not maximal, insert edges until it is maximal. Let G be this
maximal planar graph and G* its dual. By Lemma 3.1, G* has a perfect matching. Let M~ represent a
set of edges forming this perfect matching in G*. Let M be the edges in G that are dual to the edges
in M*. Let G’ be the graph G with the edges M removed. Since G is a maximal planar graph, G’ is a
planar graph where every face is a quadrilateral. It follows that every cycle in G’ is even, and hence G’
is bipartite.

Let R and B represent the two sets of vertices which form the bipartition of G’. Since the vertex set
of G and G’ is the same, this forms a partition of the vertices of G. Assign the color red to the vertices
in R and blue to the vertices in B. We have defined a coloring of the vertices of GG, such that any two
vertices adjacent via an edge not in M must have distinct colors. Since every face of G' has two such
edges, we conclude that no face of G is monochromatic. Therefore, the sets R and B form a Kj-free
2-coloring of G and P. |

4 Algorithms for Guard Placement

As noted in the preliminaries section, a valid placement of vertex (respectively, edge) guards on the un-
derlying triangulated graph is also a valid placement of vertex (respectively, edge) guards on a polyhedral
terrain since a guard on the terrain can always see the faces adjacent to it. Therefore, we will concentrate
on the combinatorial problem.

Note that the underlying graph G of a polyhedral terrain need not be a maximal planar graph,
since the outer face is not necessarily a triangle. However, we simply add the missing edges in order
to transform the underlying graph into a maximal planar graph G’ since the guard placement on this
augmented graph G’ is also a valid placement on the original graph G. Thus in the remainder of this
section we assume that the underlying graph is a maximal planar graph.

4.1 Vertex Guard Placement

Observation 4.1 Let R and B be the two color classes of a Ks-free 2-coloring of the underlying trian-
gulated graph of a polyhedral terrain. Both R and B form a valid vertex guard set.

Based on this observation, we see that there always exists a guard set of size at most [n/2] and to
compute such a valid vertex guard set, one simply needs to compute a K3-free 2-coloring of the underlying
graph. The proof of Theorem 3.3 implies the following algorithm. Note that we assume that G is maximal
planar.

Algorithm: Vertex Guard Placement
Input: Underlying n vertex graph G.
Output: Vertex guard set of size at most [n/2].

1. Compute the dual G* of G.

2. Compute a perfect matching M~ in G~.

(VS

. Form graph G’ by removing from G edges dual to those in M™.

4. Compute the two sets R and B forming the bipartition of graph G'.
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5. Output the smaller of R and B.

All of the steps, except step 2, can be computed in O(n) time. Step 2 can be performed in O(n%/?)
time [11], since the number of vertices and edges in G* is O(n). Therefore, the complexity of the algorithm
is O(n?/?), dominated by the time taken to find the perfect matching.

Theorem 4.1 In O(n®/?) time, one can find a vertez set of size at most |n/2) that covers or illuminates
the surface of an n vertex polyhedral terrain.

4.2 Edge Guard Placement

We present an algorithm for placing [n/3] edge guards to cover the surface of an n vertex polyhedral
terrain. Let G represent the underlying graph.

Our edge guard algorithm proceeds as follows. The first step in the algorithm is to compute a K’3-free
2-coloring of the vertices of G. Let the two color classes be: R and B.

Let Matching(z) denote a mazimal matching (which is not necessarily a mazimum matching) on the
graph induced by the vertices in the color class . Although Matching(z) does not provide a set of edges
that guards the whole terrain, if we take all the edges in Matching(z) as well as one edge from each of
the remaining unmatched vertices of color z then we guard the whole terrain by Observation 4.1. Let
Guard(z) represent a set of edge guards obtained in this way. Also, let |S| represent the number of
elements in a set 5.

We have the following relation: |Guard(z)| = |z| — |[Matching(z)|. This relation holds because for
each edge of the matching, we reduce the number of unmatched vertices by 2 which results in a reduction
of the size of Guard by 1. We have two color classes R and B. Note that |R|+ |B| = n. Let GS =
Matching(R) U Matching(B).

Lemma 4.2 The set of edges in GS covers G.

Proof: Let f be a face of G which is not covered by an edge in GS. This implies that none of the
three vertices of f are adjacent to any edge in Matching(R) or Matching(B). Without loss of generality,
let f have two vertices colored red. This contradicts the fact that Matching(R) is maximal. [

Notice that the above lemma implies that we have three valid edge guard sets for graph G: Guard(R),
Guard(B), and GS. In the next theorem we show that one of these three sets has size at most |n/3].

Theorem 4.2 Given a polyhedral terrain on n vertices, there ezists a set of size at most |n/3]| edges
that guards the terrain.

Proof: If the size of GS is at most |n/3], then we’re done. Suppose that the size of GS is greater than
|n/3]. Then we have the following.

|Guard(R)| + |Guard(B))| |R| + | B| — (|[Matching(R)| + |Matching(B)|)

< n-|GS
< n—|n/3] by assumption
< [2n/3]
Since the size of Guard(R) + Guard(B) is at most [2n/3], one of the two must have size at most
|n/3]. [ ]
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Once again, the time complexity is dominated by the time taken to find a maximum matching.
Therefore, we conclude with the following theorem.

Theorem 4.3 Given a polyhedral terrain on n vertices, O(n3/2) time is sufficient to find a set S of edges
to guard the terrain, where |S| < [n/3].
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