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Abstract
qPlus sensors are widely used to measure forces at the atomic scale, however, confidence in these measurements is limited by

inconsistent reports of the spring constant of the sensor and complications from finite tip heights. Here we combine a numerical

investigation of the force reconstruction with an experimental characterization of the flexural mechanics of the qPlus sensor.

Numerical studies reveal significant errors in reconstructed force for tip heights exceeding 400 μm or one sixth of the cantilever

length. Experimental results with a calibrated nanoindenter reveal excellent agreement with an Euler–Bernoulli beam model for the

sensor. Prior to the attachment of a tip, measured spring constants of 1902 ± 29 N/m are found to be in agreement with theoretical

predictions for the geometry and material properties of the sensor once a peaked ridge in the beam cross section is included. We

further develop a correction necessary to adjust the spring constant for the size and placement of the tip.

1733

Introduction
Non-contact-atomic force microscopy (ncAFM) has paved new

inroads to the measurement of nanometer-scale properties that

were previously inaccessible. By allowing the atomic-scale

imaging of surfaces from insulators to conductors, the tech-

nique opens up a broad materials spectrum to the possibility of

atomic-scale analysis. This new capability has led to imaging

with sub-atomic resolution [1], and chemical identification of

surface atoms [2] and molecules [3], as well as dynamic force

spectroscopy in a wet chemical environment [4]. However, a

direct comparison between theory and experiment requires that

an absolute, quantitative framework for the measurement is

established, as illustrated by a recent work in single dimer

manipulation [5].

In recent years, quartz tuning fork sensors have emerged as an

attractive alternative to traditional silicon microcantilevers for

ncAFM. The stiff spring constant of the tuning fork enables

precise control over the tip–sample separation at short stand-off

http://www.beilstein-journals.org/bjnano/about/openAccess.htm
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distances despite relatively large van der Waals interactions.

Moreover, the mass production of tuning forks for timing appli-

cations has provided highly-stable frequencies with self-sensing

and self-actuating electromechanical properties all at low cost

[6]. Tuning fork sensors were originally used as a traditional,

dual-tine oscillator. This evolved into the more widely used

qPlus configuration where the sensing tine oscillates and the

second tine is immobilized [7,8]. If the tines are well balanced,

the former benefits from high quality factors due to low inertial

coupling with the stage. The later simplifies the modeling and

calibration effort for quantitative force measurements [9]. With

careful design and experimentation it is possible for qPlus

sensors [10], and other sensors with cantilevered geometries

[11], to reach quality factors in excess of 106 without inertial

cancelling.

Several methods have been developed to reconstruct the

tip–sample interaction force from the frequency shift of an

oscillating tip in ncAFM [12-17]. This analysis requires four

separate experimental inputs: the frequency shift Δω as a probe

interacts with a surface relative to the unperturbed resonant

frequency ω0, the sensor oscillation amplitude a, which is held

constant, and z is the distance of nearest approach between a

surface and the oscillating probe tip, and the spring constant k.

The reconstructed tip–sample force  is given by [17]:

(1)

where Ω(z) = Δω(z)/ω0. The reconstruction requires that the

z-separation between the tip and sample is varied while the

frequency shift is monitored. Force reconstruction using other

methods, such as the matrix method [15], also use the same

input parameters. For a more in-depth comparison of force

reconstruction methods see [18].

To extract meaningful forces from Equation 1, the input para-

meters must be calibrated. The accepted method for trust-

worthy calibrations is to establish an unbroken chain of compar-

isons to a internationally recognized standard, that is, to estab-

lish traceability to a primary standard. Traceability ensures that

all measurements are identically scaled, allowing for consistent

comparison between theory and independent measurements.

The largest source of uncertainty in ncAFM measurements

currently comes from the calibration of the spring constant of

the sensor. Several traceable calibration methods have been

developed for micro-fabricated silicon cantilevers [19-24].

However, despite several attempts to determine spring constants

for sensors based on quartz tuning forks [25-29], no comprehen-

sive framework yet exists due to inconsistencies between results

from different methods.

qPlus sensors are stiff compared to traditional microcantilever

sensors and present their own set of spring constant calibration

challenges. A common approach has been to estimate the spring

constant from plane view geometry and the Young’s modulus

of the appropriate crystallographic orientation. In this case, the

qPlus sensor is treated as a uniform, rectangular cantilever

and the spring constant is predicted from Euler–Bernoulli

beam theory [1,7]. However, qPlus sensors violate several

of the assumptions inherent in this approach (see Figure 1).

In particular, the cross-section of the tine is not rectangular, but

rather includes a peaked ridge resulting from anisotropy

in the crystal etching process [30]. The assumption of

axial uniformity is violated by the chamfered edge at the

base of the tine, and the assumption of base rigidity has

been questioned [25]. The attachment of a tip can alter the

length of the cantilever, introduce parasitic tip motion [31],

and, in extreme cases, introduce additional vibratory modes

[32,33].

In what follows, we develop a rigorous mathematical model for

the qPlus sensor with a finite tip. The effect of the parasitic tip

motion on the reconstructed interaction force is examined

quantitatively from the perspective of two-dimensional grid

spectroscopy. In addition, we use a traceable nanoindenter to

accurately characterize the flexural mechanics of the qPlus

sensor. The experimental results provide validation of a theo-

retical model that can be used to predict the spring constant of

the qPlus sensor.

Results
In this section we develop a model for the qPlus sensor with a

finite tip that is subjected to a tip–sample interaction potential.

The effect of the tip height and resulting parasitic tip rotation

are carefully considered in terms of the error in the recon-

structed tip–sample force.

Modeling the qPlus sensor dynamics
Figure 2 provides a model schematic of the qPlus sensor. The

unconstrained tine is treated as a uniform cantilever the cross-

section of which is rectangular with a triangular ridge (see

Figure 1). The 50 μm tungsten wire tip is modeled as a rigid,

slender rod extending from the center of the distal end of the

beam with height H and axial offset B. Numerical values of the

modeling parameters are listed in Table 1.
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Figure 1: Optical images of a commercial qPlus sensor [8]. (a) Plane-view image consisting of an E158 quartz tuning fork (Micro Crystal, Switzerland)
that is glued to a ceramic mount such that one tine is immobilized. A tungsten wire tip is attached to the distal end of the unconstrained tine. The tip
height (measured from the center of the beam) is h = 866 ± 5 μm. The tip also extends the length of the cantilever by 69 ± 1 μm. (b) Optical image of
a cleaved E158 tine showing the non-rectangular cross-section (image is a composite of nine images at slightly different focal lengths). (c) Model
schematic of the tine cross-section.

Figure 2: Model schematic for the qPlus sensor. The tine is a uniform
beam with linear mass density μ, flexural rigidity EI and length L. The
tip is attached to the free-end of the tine at point P corresponding to
the neutral axis of the tine. The tip is modeled as a rigid, slender rod
with a height H and axial offset B. Point G marks the center of mass of
the tip.

Table 1: qPlus model parameters.

beam properties

linear mass density (μ) 2650 kg/m3

Young’s modulus (E) 78.6 GPa
second moment of area (I) 1.17 × 10−16 m4

flexural rigidity (EI) 9.20 μN·m2

length (L) 2.4 mm

tip properties

mass density (ρ) 19 250 kg/m3

diameter (D) 50 μm
height (H) variable
axial offset (B) variable

The schematic in Figure 2 highlights a kinematic property of a

bending cantilever combined with a finite tip length [31]. The

bending of the cantilever results in a transverse deflection of the

free end. Additionally, bending causes the cross section of the

beam to rotate. This rotation, coupled to a finite tip, results in an
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unwanted lateral displacement of the distal end of the tip. The

resulting displacement of the tip occurs at an angle ψ from the

normal, which depends strongly on the length of the tip. Conse-

quently, the z-displacement of the sensor by the scanning stage,

which is assumed to be transverse to the cantilever axis, and the

tip–displacement are no longer collinear.

The dynamics of the qPlus sensor subjected to an interaction

potential V(x,z) can be modeled with classic Euler–Bernoulli

beam theory. Let w(x,t) denote the transverse deflection of the

neutral axis (in this case, the midplane) of the cantilever. The

kinetic and potential energy of the QTF sensor, respectively, are

given by

(2)

where the mass and moment of inertia of the tip are m = ρπD2/4

and JG = m(H2 + B2)/12. Application of Hamilton’s principle to

Equation 2 establishes the governing partial differential equa-

tion (PDE) with the appropriate boundary conditions:

(3)

where JP = m (H2 + B2)/3 is the moment of inertia of the tip

about point P.

The unperturbed eigenmodes and eigenfrequencies of the qPlus

sensor are solved for in the traditional manner by setting V(x,z)

= 0 and substituting w(x,t) = Φ(x)eiωt into Equation 3, where

Φ(x) is the eigenfunction (See Appendix section). Here we limit

our discussion to the fundamental eigenmode of the beam as it

is most relevant to ncAFM. For convenience, let X = x/L. The

tip-displacement angle is given by

(4)

Figure 3 shows ψ vs H/L for B = 0. Results are calculated for

the 50 μm tungsten wire tip and a hypothetical massless tip. ψ is

shown to have strong geometric dependence on H/L in

Equation 4, a weak dependence on B/L, and a weak implicit

dependence on the mass and rotational inertia of the tip.

Figure 3: Tip displacement angle ψ vs tip height H calculated for the
tungsten wire tip described in Table 1 and a hypothetical massless tip.
B = 0 for both cases. The agreement between the two curves shows
that ψ primarily depends on the tip height.

The governing PDE (Equation 3) can be reduced to an ordinary

differential equation (ODE) with a single degree of freedom by

approximating the motion of the beam with a single eigenmode

Φ(x). The reduction of Equation 3 can be accomplished with a

Galerkin discretization process (see Appendix section). Alter-

natively, one can follow the approach outlined in [34] and set

U = kq2/2 + V and , where k and ω0 are

the spring constant and unperturbed resonant frequency of the

oscillator, respectively, and q is the coordinate for the tip dis-

placement (See Figure 2). Following either approach, it is

possible to show

(5)

where F(x,z) is the derivative of V(x,z) in the direction of the tip

displacement:
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(6)

The spring constant is k = kz cos2ψ, where:

(7)

is the effective spring constant in the z-direction. Note that

Equation 7 represents the exact solution for the spring constant

of the fundamental eigenmode according to Euler–Bernoulli

theory [34]. A static approximation for kz, which relates the

transverse tip deflection to a static point load applied at the tip,

is given by

(8)

Figure 4 shows the exact expression for spring constant kz

according to Euler–Bernoulli theory (Equation 7) alongside the

approximation  (Equation 8). The spring constant is calcu-

lated for both a massless tip and a 50 μm tungsten wire tip with

H = 400 μm. For the massless tip, the true spring constant is

about 3% stiffer than the approximation. The addition of the tip

mass actually shifts the true spring constant closer to the ap-

proximate value. For a 400 μm tip height, kz is only 1.5% stiffer

than  and for tip heights greater than 632 μm, the approxima-

tion deviates by less than 1%. In the following section, we

neglect the error in the approximation, however, the small

correction factor can be estimated from the theoretical model if

desired.

Modeling dynamic force spectroscopy
Ultimately, the goal of the modeling and calibration effort in

ncAFM is to provide a quantitative measurement of the

tip–sample force and/or potential. Here we will assume that the

parasitic tip motion is neglected in the model and study the

resulting error in the reconstructed force. It is instructive to

formulate the problem from the perspective of grid spec-

troscopy [35], where the tip–sample force is reconstructed for a

grid of points in the xz-plane. We study the effect of the para-

sitic tip motion first computing the frequency shift according to

the model, and second, reconstructing the force from the

Sader–Jarvis formula.

Figure 4: Theoretical prediction of the spring constant kz. (a) kz vs
axial tip offset B. The spring constant is calculated with the exact
expression (Equation 7) for a massless tip and for the 50 μm tungsten
wire tip with H = 400 μm and compared to the approximate expression

 (Equation 8). (b) Approximation error  vs H for
B = 0.

First, let us consider frequency shift, which is calculated

by applying a standard perturbation approach [14,17] to

Equation 5:

(9)

where a is full amplitude of the tip displacement q(t). A widely

accepted method [31] for determining the oscillation amplitude

in ncAFM employs a calibrated z-scanner and takes advantage

of the large-amplitude frequency shift approximation [14].

However, this method measures only the z-component of the

amplitude az = acosψ. Rearranging Equation 9, we find

(10)

where qz = qcosψ is the z-component of the tip displacement.

Thus, if only the z-component of the tip-displacement is
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Figure 5: Reconstructed grid spectroscopy images for Si–Si Morse potential with varying tip heights. Red arrows are drawn to scale to indicate the
direction of the tip motion. The extrema of the scale bar show the error in the reconstructed force.

measured, force measurements require knowledge of kz.

However, this approach does result in a systematic error from

the tanψ term in Equation 10. For large tip heights the error is

significant.

To quantify the error in the reconstructed force caused by the

parasitic tip motion, we introduce a model for the tip–sample

interaction given by the Morse potential for a pair of silicon

atoms:

(11)

where  is distance between the atoms, and

V0 = 3.643 × 10−19 J, r0 = 235.7 pm, λ = 100 pm are taken from

[36]. Using Equation 10 and Equation 11, Ω(x,z) is computed

for a grid of points in the xz-plane for an oscillation amplitude

az = 100 pm. The computation is repeated for tip heights H = 0,

200, 400, 600, 800 and 1000 μm, which correspond to ψ = 0,

6.5°, 13°, 19°, 25° and 30°, respectively. Substituting az for a,

kz for k, into the Sader–Jarvis formula (Equation 1) allows the

tip-sample force to be reconstructed for the two-dimensional

grid Ω(x,z).

Figure 5 shows two-dimensional grid spectroscopy images

reconstructed from the Sader–Jarvis formula. For zero tip

height, the image faithfully reconstructs the interaction force.

However, for non-zero tip heights, the parasitic tip motion

contributes an error to the reconstructed force. Most notably,

the parasitic tip motion causes an overall distortion of the image

by the angle ψ. Additionally, there is an error in the magnitude

of the force, which can be quantified by the force minimum. For

increasing tip heights, the reconstructed force minimum is

−1.65, −1.67, −1.73, −1.84, −1.99, and −2.19 nN, respectively.

Thus, for a tip height of 1000 μm, the error in the reconstructed

force minimum is nearly 35%.

We remark here that it is possible, with accurate knowledge of

ψ, to eliminate the error caused by the parasitic tip motion by

changing the integration of Ω(x,z) in the Sader–Jarvis formula

to be collinear with the tip displacement. However, this ap-

proach would be fairly onerous for most experimental setups

where typically only a single frequency vs z curve is acquired,

rather than an entire grid. Thus, the preferred method is to limit

the tip height to approximately less than 400 μm.

Mechanical characterization of qPlus sensors
with nanoindentation
In this section we characterize the flexural mechanics of qPlus

sensors using a nanoindentation method. The nanoindenter,

which is calibrated with traceability to the International System

of Units (SI) [19,21,37], measures a force vs displacement

curve by pressing a sharp indenter tip into the qPlus sensor

surface at a known axial distance from the distal edge of the

tine. From the indentation curve, a stiffness kI is inferred, taking
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Figure 6: Dependence of the spring constant kz on the effective length
of the cantilever Leff. Two distinct values of Leff and corresponding kz
are observed depending on the mounting of the tine. The flexural
rigidity EI is unaffected by the mounting as expected.

care to remove the machine compliance and contact compli-

ance by performing additional measurements at the base of the

sensor. Applying this method at two or more distinct locations

along the axis of the tine determines the flexural rigidity EI and

effective cantilever length Leff of the qPlus sensor. Moreover,

the indentation data provides validation of Bernoulli–Euler

beam theory with fixed-free boundary conditions to model the

flexural mechanics of qPlus sensors.

Let kI(b) denote the force gradient measured by the nanoin-

denter at an offset b from the distal edge of the tine (positive in

the +x direction pointing away from the base of the cantilever).

For a uniform cantilever beam, the Euler–Bernoulli model

predicts the following relationship:

(12)

Measuring kI for a range of offsets allows EI and Leff to be

determined from a linear least-squares fit regression. Note that

Leff differs slightly from the geometric length due to the non-

ideal boundary conditions at the fixed end of the tine. With

knowledge of EI, Leff and the tip offset B, the spring constant kz

can be determined.

The qPlus sensors tested were custom-built. E158 tuning forks

were attached to ceramic substrates obtained from Oxford

Instruments using Torr Seal epoxy [8]. Two gluing configura-

tions were tested. In the first configuration, only the bottom tine

is glued to the substrate, while in the second the base of the

tuning fork is also glued to the substrate (cf. Figure 6). The

indentations were performed with a pre-load of 1 mN and

maximum load of 1.9 mN. Measurements were acquired along

the axis of the tine and additionally at the base of the sensor in

order to remove the contact stiffness and machine compliance

from the spring constant prediction. To avoid interference with

the indenter tip, tips were not attached to the tine.

Figure 7 shows the indentation measurements for a single

sensor (qPlus A). Plotting  vs b reveals excellent linearity

as indicated by the coefficient of determination R2 = 0.9997.

The goodness of fit and uncorrelated residuals serve to validate

the use of Euler–Bernoulli beam theory to model the flexural

mechanics of the tine. A least-squares regression to indentation

data determines the flexural rigidity and effective cantilever

length.

Figure 7: Nanoindenter measurements from a tunning fork tine. 
vs b is plotted where kI is the spring constant measured at an offset b
from the distal edge of the tine. A linear least-squares regression
determines EI and L of the tine.

The effective length, flexural rigidity, and nominal spring

constant for several sensors are provided in Table 2. The

combined standard uncertainty in the parameters includes Type

A (statistical) uncertainty, which we estimate from the regres-

sion, and Type B (non-statistical) uncertainty, which includes

(i) 1% uncertainty in the calibration of both force and indention

of the nanoindenter and (ii) ±5 μm uncertainty in the posi-

tioning the indenter tip with respect to the distal edge of the

tine. The details of the analysis are provided in the Appendix.

Figure 6 shows the spring constant kz vs the effective length

with a color bar for the flexural rigidity. There are two distinct
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Table 2: Mechanical characterization of qPlus sensors with nanoin-
dentation.

sensor mounting kz (B = 0)
(N/m)

Leff (μm) EI (μN·m2)

qPlus A tine 1897 ± 29 2442 ± 16 9.20 ± 0.13
qPlus B tine 1912 ± 29 2440 ± 17 9.27 ± 0.14
qPlus C tine 1912 ± 29 2470 ± 18 9.60 ± 0.16
qPlus D tine 1888 ± 29 2419 ± 17 8.91 ± 0.14
qPlus E base 2143 ± 33 2339 ± 17 9.14 ± 0.15
qPlus F base 2153 ± 34 2327 ± 19 9.04 ± 0.18

values of the effective length directly corresponding to the two

mounting configurations. The additional constraint provided by

the glue at the base effectively shortens the tine leading to a

stiffer spring constant. The flexural rigidity of the tine,

however, is unaffected by the mounting configuration, as

expected.

Assuming the reported values for the effective length and spring

constant at zero tip offset, it is possible to determine the spring

constant of the qPlus sensor from only the plane-view geom-

etry and infer kz(B) simply by

(13)

where k0 = kz(0) is the spring constant at zero offset. We esti-

mate from Equation 13 that the spring constant of the qPlus

sensor can be determined with less than 2% relative standard

uncertainty for moderate tip offsets (less than ±100 μm with this

method, see Appendix section).

Finally, the agreement between experiment and theory suggests

that the spring constant of the tuning fork can be predicted

reasonably well from the geometry and Young’s modulus of the

tine, being careful to include the contribution of the peaked

ridge. The cross-section geometry can be determined by

cleaving a tine as shown in Figure 1. Adopting this approach for

the E158 tuning fork, we predict EI = 9.20 × 10−6 N·m2 and

kz = 2000 ± 130 N/m, where the dominant uncertainty is an esti-

mated ±50 μm in the effective length due to the non-ideal

boundary condition. This approach could be used for tuning

forks other than the E158 with an estimated uncertainty of 10%.

Discussion
Because of their development for consumer timing applications,

we can expect very little variation in the mechanical properties

of a given commercial tuning fork. Some additional variables

are introduced, however, by the attachment of a tip and the

mounting of the sensor. Provided the tip height is sufficiently

small (approximately less than 400 μm) and the mounting of the

sensor is consistent, the additional variables can be determined

from the plane-view geometry. We estimate that the nominal

spring constant of the E158 qPlus sensor is 1902 ± 29 N/m,

with an effective length of 2443 ± 21 μm. This spring constant,

however, can be significantly higher if the base of the tuning

fork is also constrained by the glue, also reducing the effective

length of the beam. We note that while this value is signifi-

cantly higher than the commonly-assumed spring constant of

1800 N/m [1], an estimate that gets significantly worse if the tip

is inset from the end of the beam; the estimate is accurate for

tips offset by about 50 μm from the end of the tine. Our values

are not consistent with the range of 1480–1708 N/m estimated

by Falter et al. [29]. We expect that complications from the

gluing of tips between the tuning fork tine and load cell may

have contributed to the poor agreement between theory and

experiment found in [29]. On the other hand, the nanoindenta-

tion experiments presented here are highly reproducible and

demonstrate excellent agreement with the theoretical model.

There is, however, some potential for further work examining

the effect of the mounting on the qPlus spring constant. We

have observed a small variation (less than 3%) in stiffness by

testing at a lateral offset from the beam axis.

Finally, we note that for sufficiently long tips, the compliance

of the tip contributes to the parasitic tip motion [32,33]. This, in

turn, influences the spring constant and force spectroscopy

results presented here. To quantify the effect of the tip compli-

ance, we construct a finite element model corresponding to our

beam model and 50 μm diameter tungsten wire tip. The tip was

first modelled as a rigid domain; the inertial loading of the

beam gives results consistent with our analytical model. The

rigid constraint was then removed, allowing the tungsten tip to

deform elastically. Comparing the results for elastic and rigid

tip models, we find the effect of tip compliance is negligible for

tip heights below 400 μm, contributing about 1% to total para-

sitic tip motion and less than 0.05% to kz. This effect becomes

more pronounced for tips exceeding 750 μm, contributing over

25% to the overall parasitic tip motion and over 1% to kz. As

such, the use of shorter tips allows the parasitic tip motion to be

related to the bending of the tine with negligible contribution

from tip compliance.

Conclusion
In summary, we have developed a mathematically rigorous

model of the qPlus sensor that includes the effect of finite tip

lengths on the reconstructed tip–sample force in ncAFM. A grid

spectroscopy simulation with a Morse potential shows that

significant errors in the force reconstruction occur for tip
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heights greater than 400 μm. A quasi-static nanoindentation

method is used to validate Bernoulli–Euler beam theory with

fixed-free boundary conditions for modeling the flexure of the

tuning fork tine. Indentation data provides the effective length,

flexural rigidity, and nominal spring constant of the tine with an

estimated uncertainty of 2%. Finally, we have proposed two

methods for estimating the spring constants of qPlus sensors

with finite tips. The first is to extrapolate the nominal value

provided for the E158 for a given measured tip offset. This

method has an estimated uncertainty in the neighborhood of

2%. The second is simply to estimate the spring constant from

the Young’s modulus and geometry of the tuning fork, taking

care to measure the dimensions of the cross section. We esti-

mate the uncertainty in this method is closer to 10%, which

comes primarily from limited knowledge of the effective

cantilever length.

Appendix
Discretization of the Euler–Bernoulli Equation
The process by which the partial differential equation governing

the continuous tuning fork tine is reduced into a set of ordinary

differential equations is referred to as discretization and is

briefly described here. The process involves first solving for the

normal eigenmodes of the cantilever for the case of V = 0 and

second, using the unperturbed normal modes as a basis for the

discretization.

The normal modes of the cantilever are determined by substi-

tuting V = 0 and w(X,t) = Φ(X)exp(iωt) into Equation 3. The

nontrivial solutions correspond to the roots of the characteristic

equation

(14)

where  and , and the dispersion

relation is

(15)

The eigenfunctions are given by

(16)

There are countably-infinite solutions to Equation 14, which

form an admissible basis for a Galerkin discretization [38] of

Equation 3. Equation 5 follows from a single-term truncation.

Uncertainty Estimates
In this section we provide an analysis of the uncertainty in

indentation measurements. The nanoindenter measures force FI

vs indentation δ at a specified displacement for the distal edge

of the tuning fork tine. Let  and  where CF

and Cδ are calibration constants, both of which are estimated to

have 1% relative standard uncertainties, denoted  and ,

respectively. Finally, we estimate a ±5 μm uncertainty in the

positioning of the indenter tip with respect to the distal edge,

which we denote UE. Relative uncertainty estimates are

summarised in Table 3.

Table 3: Relative uncertainty contributions. Type A estimates corres-
pond to the indentation data from the qPlus A sensor.

source uEI

indenter calibration 0.014 0.014 0.0067
distal edge position 0.0061 0 0.0020
type A 0.0011 0.0031 0.0011

Let u refer to the standard relative uncertainty of a specified

parameter. The relative standard uncertainty  in kz is esti-

mated by

(17)

where  represents the type-A (statistical) uncertainty esti-

mated from the regression. The uncertainty in the flexural

rigidity is estimated by

(18)

where, uEI,A represents the type-A uncertainty in EI, and the

uncertainty in the effective length is estimated by

(19)
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