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Critics of automatic causal discovery have claimed that Tetrad-style algorithms are in-
ferior to domain experts at discovering causal structure from real scientific data and
especially poor when applied to data that is highly mixed, either in a physical sense or
in a mixtures of records sense. We compare a domain expert in geological spectroscopy
head-to-head with a variety of machine algorithms on the task of predicting mineral
class composition from visual to near infrared reflectance spectra. A simplified Tetrad
algorithm (“modified PC”) outperforms all other machine algorithms tested and per-
forms comparably to the domain expert. We conclude (1) that Tetrad algorithms can
perform as well as human experts on this task, and (2) that mixtures do not necessarily
undermine the reliability of Tetrad algorithms on this task. This constitutes a counterex-
amples to the claim that machine algorithms are necessarily inferior to domain experts

on tasks involving causal reasoning with real scientific data.
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Chapter 1

Basic Concepts

1.1 Tetrad in “Normal Science” Contexts

According to a recent reviewer in Cell Magazine,' there is a change underway
in how experiments are done in cell biology. On the way out is a reliance on the “one
hypothesis/one experiment” approach. On the way in is a growing reliance on the
“many hypotheses/many experiments” approach—in the following sense. Instead of
designing specific experiments to test specific hypotheses, large programs of experiments
are carried out to collect huge databases of information, that are then subsequently used
to test numerous hypotheses, with followup experiments to fill in missing details. The
order of experiment and hypothesis is effectively reversed; on the former approach, data
are acquired after hypotheses are postulated, whereas on the latter approach, data are
acquired before the relevant hypotheses are even thought of and are used to generate

hypotheses. As a result, data mining techniques are increasingly being used to do basic

!See Vidal (2001).



science. The use of large databases and data mining techniques for this purpose is by
no means limited to cell biology; rather, it’s a practice that is growing in popularity
across the sciences. As databases grow, our understanding of them shrinks, and as our
understanding of data shrinks, data mining techniques become increasingly important
as a way of telling us what our data means.

The method of collecting large databases that we barely understand, in the
hopes that future colleagues will possess the concepts needed to understand them, is still
new enough to be considered alternative, but it is no longer really new. The number of
database-building experimental projects is already impressive across the sciences, and it
is growing. There are stellar examples in cell biology. The project to sequence the yeast
genome (s. cerevisiae) has been completed for some time now, and several databases
are available with the information resulting from this effort. The project to sequence
the human genome has recently been completed as well, after enormous effort by myriad
scientists. Other genome sequencing projects for other organisms are on their way as
well, in addition to data-gathering projects of other sorts, e.g., protein function for the
yeast genome and for other organisms. We find similar efforts in astronomy, medicine,
neuroscience, biology, planetology, geological physics, and many other fields. This is a
way of working in science which is proving to be effective.

Causal information is one of the most important types of information scien-
tists will need to mine from these large data sets. We need to know whether or not
causal connections exist among variables, because this teaches us how to manipulate
the world and therefore aids in our understanding of how the world works. With large

databases, the usual recommendation of statisticians, that we do controlled experiments



to discover causal connections between variables, is unhelpful. The content of these
databases has already been measured—we don’t have the opportunity to manipulate
the relevant variables again for the measured data in an experimental context. Also,
controlled experimentation over the variables in a database is limited by the number of
variables we can consider at once. In a context where we only want to know whether one
gene’s expression affects one protein’s level (say in a yeast cell), it’s plausible that we
could do a controlled experiment of our own (if we knew how) to see whether the causal
relation obtains. However, if what we want to know is the pattern of causal connectivity
over a collection of genes and proteins, we need to devise more sophisticated techniques
for detecting these patterns, based on the kinds of data that are available (or that can
plausibly be obtained). For this kind of inference about causal structure from data, some
kind of automated algorithm is required.

Two types of well-tested causal inference algorithms in the literature are: (a)
Bayesian algorithms, and (b) constraint-based algorithms. Bayesian algorithms (less
well-known among philosophers) use Bayes’ rule? to determine plausible causal con-
nectivity from data. An excellent example of how this might be done is an algorithm
by Cooper and Herskovits (Cooper and Herskovits 1991; Cooper and Herskovits 1992).
Constraint-based algorithms, by contrast, test constraints that true patterns of causal
connectivity (causal graphs) tend to obey with respect to observed data. One constraint-
based approach (quite well known among philosophers) is the approach set forth in Cau-

sation, Prediction, and Search (Spirtes, Glymour, and Scheines 2000).3 This approach

) ___P(Bp)P(A|By)
P(BilA) = s Baorasy-

3This is the second edition, which contains most of the text of the first edition (Spirtes, Glymour,
and Scheines 1993) plus a large additional chapter (Chapter 12) detailing developments since the first



has been implemented in a series of computer programs entitled “Tetrad”; for short-
hand, we will refer to the theory behind the programs, the algorithms, and the programs
themselves* as “Tetrad” (“Tetrad theory,” “Tetrad algorithms” or “Tetrad programs,”
respectively). The Tetrad algorithms (PC, FCI, etc.) perform searches over possible
causal structures guided primarily by information about the conditional independencies
of the variables being searched over; given data that is properly collected from a statis-
tical point of view, the results of these algorithms can be remarkably insightful. There
are, however, numerous causal inference problems from scientific contexts for which the
Tetrad algorithms are known to fail or have difficulty. It is helpful, therefore, to develop
a sense of just how well these algorithms can perform under difficult inference conditions

from normal science.

1.2 Ideal Manipulation and the Causal Markov Condition

Tetrad theory, much to the consternation of critics, does not give any definition
of causality, but it does offer a helpful intuition about what makes causal graphs useful

for causal analysis—viz., a general account of manipulation.’®

When we can change
the value of Y by fixing the value of X, and when we can do this reliably over many
experiments, it is generally safe to conclude that X is a cause of Y. (Whether the cause is

direct or indirect is a further question.) There is some risk in concluding this, since there

may be conceptions of causal metaphysics on which we will be judged to have gotten the

edition.
“For an explanation of the Tetrad II program, see Scheines, Spirtes, Glymour, and Meek (1994).

®For a mathematical account of manipulation from the point of view of Tetrad theory, see the Ma-
nipulation Theorem (below, and Spirtes, Glymour, and Scheines (2000), Chapter 3).



wrong answer. Nevertheless, there exists a long-standing tradition in statistics, applied
in a variety of sciences for many years, that identifies causal relationships in precisely this
way—namely, the tradition of controlled experiments, argued for classically by Fisher
(1951). Tt is a risk, though not a dangerous risk, to see manipulability as a hallmark of
causality: Far more often than not this view will yield the correct answers about causal
relationships, even when we disagree among ourselves about what the metaphysics of
causality is. But Tetrad theory is a data mining theory for causal relations; it is not
typically concerned with finding causal connections between pairs of variables but rather

among networks of many variables.5

How does the notion of manipulation for two
variables extend to a system of many variables with a possibly complex network of
interconnections?

Suppose we have a system of variables that we can manipulate ideally—that
is, we can intervene from outside and alter the state of any subset of these values so that
the system takes on whatever combination of values we please (within the legal ranges
of values for each variable). If we could do this, then we would be able arbitrarily or
randomly to set the values of our chosen variables to any experimental setup we choose,
but otherwise retain any functional relationships that the variables may bear to one
another.

Imagine all of the idealized randomized experiments that might then be done.

With respect to the system of variables of the experiment, an intervention to manipulate

5For two variables alone, Tetrad turns out not to be very helpful, or at least not as helpful as controlled
experiments. If we assume that there are no latent variables and run a Tetrad algorithm on data with
variables X and Y, the most it can tell us is whether a causal connection exists between X and Y it
cannot tell us the nature or direction of that causal connection.



some variable X might, for some values of the intervention, alter the value of some other
variable Y, with values for other variables in the system fixed. If we perform such an
experiment for each pair of variables in the system, we can recover information about
which variables are causes of which other variables in a way that is consistent with the
intuition of manipulation that statisticians rely upon for binary systems of variables.

As an example, assume that we perform experiments like this for three vari-
ables, X, Y, and Z, and we discover that X causes Y, Y causes Z, and X causes Z. We
can assemble this information into a directed acyclic graph (DAG)” as shown in Figure
1.1(a). We may wish, however, to distinguish between the following two possible reasons
for X causing Z. It may be that X’s influence on Z is entirely due to its influence
on Y, in which case the alternative graph in Figure 1.1(b) would be more appropriate.
The alternative graph still represents the fact that X causes Z; the influence of X on
Z, however, is graphically shown to be indirect. On the other hand, it may be that
the influence of Y on Z does not adequately characterize the variation of values of Z
in the data and that values of X must also be considered, as an additional cause of Z.
In this case, the first graph would be the more informative representation. While it is
possible to assemble the information from an ideal randomized experiment into a causal
graph in which all causes between variables Vi and V5 in the graph are represented as
directed edges Vi — Vo, by distinguishing between direct causes and indirect causes we
can produce a graph that is less cluttered and more informative.

Partly as a way of distinguishing direct from indirect causes and partly as a

"By way of definition, a directed graph is a graph containing only directed edges (A — B); a cycle in
a directed graph is a path X1 — X» — ... = X, such that X; = X,,. A directed acyclic graph (DAG)
is a directed graph containing no cycles.



Figure 1.1: Two graphical representations of an idealized manipulation experiment where
X causes Y directly, Y causes Z directly, and X causes Z indirectly, such that the
influence of X on Z is entirely due to its influence on Y. In (a), both direct and indirect
causal relationships are shown. In (b), only direct causal relationships are shown.



way of distinguishing causes from non-causes and of choosing orientations for causal
edges, Tetrad theory takes for granted a general condition (and its converse) that relates
graphical structure to statistical properties of underlying distributions. This condition is
known as the “Causal Markov Condition,” and its converse is known as the “Faithfulness
Assumption.” Both the Causal Markov Condition and the Faithfulness Assumption
restrict the patterns of conditional independence relations that are assumed to hold of
causal graphs with respect to the probability distributions they represent. Conditional
independence is given a standard definition as follows: First, two random variables X
and Y are independent (written hereafter as X 1l Y') if the joint density of the product
space X X Y is the product of the density of X and the density of Y for all measurable
sets of values of X and Y. X and Y are independent conditional on a set of random
variables Z (or “given” Z; written X 1LY | Z)) if the density of X and Y conditional on
any measurable set z of values of Z equals the product of the density of X conditional
on z and the density of Y conditional on z, for all measurable sets of values of X and
Y and for all measurable sets of values z € Z, for which the density of z is not equal to
zero. For sets of random variables X, Y, and Z, X is independent of Y conditional on Z
(written X 1Y | Z)) if z is independent of y given Z for each z € X and y € Y. Using
this notion of conditional independence, the Causal Markov Condition may be stated as

follows:

Definition 1 (Causal Markov Condition) Let G be a causal graph with vertez set
V and P be a probability distribution over the vertices in 'V generated by the causal

structure represented by G. G and P satisfy the Causal Markov Condition if and only



if for every W in 'V, W is independent of V\(Descendants(W) U Parents(W)) given

Parents(W).8

This condition relates the graphical structure of a causal graph to conditional indepen-
dence facts about the probability distribution it represents.

To illustrate the way in which the Causal Markov Condition implies facts about
conditional independence for graphs, consider the graph in Figure 1.2, over the variables
{X1, X9, X3, X4, X5,X6}. Some of the conditional independence facts implied by the
Causal Markov Condition for this graph are shown in Figure 1.2.

The converse of the Causal Markov Condition is the Faithfulness Assumption.
Whereas the Causal Markov Condition asserts of a causal graph and an underlying dis-
tribution that a certain list of conditional independencies implied by the graph must hold
in that underlying distribution, the Faithfulness condition asserts that any conditional
independence fact that holds in the underlying distribution is implied by the Causal
Markov Condition. When both the Causal Markov Condition and the Faithfulness As-
sumption are satisfied, it follows that all of the conditional independence facts implied
by the Causal Markov Condition (and only these) hold in the underlying distribution.

Pearl (1988) defines a property of graphs, known as “d-separation,” that al-
lows the conditional independence facts implied by the Causal Markov Condition to be
calculated quite easily. (D-separation also turns out to be a useful generalization of
the Causal Markov Condition, as it allows Tetrad-style algorithms to be defined over

directed cyclic graphs for which the Causal Markov Condition fails.) The d-separation

8See Spirtes, Glymour, and Scheines (2000), p. 29. For node X in graph G, Y € Descendants(X)
if and only if X =Y or there is a directed path from X to Y. Y € Parents(X) if and only if Y — X.
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WA
/

{X1 X} | {3
{XoHIL{ X5, Xy, Xo} | { X1}

{ X} L{Xo} | { X1, Xu}

{Xa X0, Xo} | {}

{ X5} L { X1, X4, Xo} | { X2, X3}

{ X6} LL{ X1, X9, Xy, X5} | {X3}

Figure 1.2: An example of a causal graph to illustrate the use of the Causal Markov
Condition. Some conditional independencies implied by this graph are listed.
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property may be defined in terms of the notion of a collider, as follows:

Definition 2 (Collider) Let G be a directed acyclic graph and let U = (V1,Va, ..., Vy,)
be an undirected path in G. Then V' is a collider on U just in case there are two distinct

edges on U containing V' and both are into V'.°

Definition 3 (D-Separation) Let G be a directed acyclic graph, X and Y wvertices in
G with X £Y, and W a set of vertices in G not containing X orY. Then X and Y are
d-separated given W if and only if there exists no undirected path U between X and Y
such that: (i) every collider on U has a descendant in W ; and (ii) no other vertex on
Uisin W.'% (X and Y are d-connected given W just in case they are not d-separated

given W.)

D-separation can be used to determine whether particular conditional independence facts
are implied by the Causal Markov Condition. It has been shown that if vertices X and
Y are d-separated given a set of vertices W in a causal graph G, then the Causal Markov
Condition implies that X is independent of Y given W, and vice-versa.

Notice that assuming the Causal Markov Condition holds of causal graphs
allows one to distinguish between the two representations of the causal graph portrayed
in Figure 1.1 (a) and (b). In that figure, on the assumption that X influences Z only
by influencing Y, the Causal Markov Condition will hold of the graph in Figure 1.1(b)
but not of the graph in Figure 1.1(a). The Causal Markov Condition itself is therefore

a way to distinguish direct from indirect causal connections for a given set of variables.

9See Spirtes, Glymour, and Scheines (2000), p. 10.
10See Spirtes, Glymour, and Scheines (2000), p. 14.
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When doing causal analysis over a set of variables, it’s possible that all of the
relevant causes of the variables being analyzed are present in the given set. If this is the
case, then the set of variables is considered to be causally sufficient. Sets of variables
which are not causally sufficient are missing an explicit representation of one or more
latent (or unmeasured) variables—i.e., variables which are relevant to a causal account of
the measured variables in the set but which have not themselves been measured. Among
such latent variables might be latent common causes—i.e., latent variables which are
causal parents of two or more variables in the measured set.'' Algorithms for causal
discovery are faster and simpler when causal sufficiency can be assumed. Under many
conditions of causal insufficiency, however, reliable causal discovery is still possible. Of
the standard Tetrad algorithms, the PC algorithm is designed to operate under the
assumption of causal sufficiency, whereas the FCI algorithm is designed to operate under
the assumption of causal insufficiency.

The results of causal search algorithms such as the PC or FCI algorithms are
typically not single causal graphs but rather sets of causal graphs which share some,
but not necessarily all, features. In particular, the output of the PC algorithm can be
represented as a pattern, and the output of the FCI algorithm can be represented as a

partial ancestrial graph, or PAG. The notion of a pattern may be defined as follows.

Definition 4 (Pattern) II is a pattern representing class A of causal graphs just in

case Il is a graph containing directed and undirected edges only and for G € A:

1. G has the same adjacency relations as in A;

HT,atent variables are generally represented in causal graphs using ovals rather than rectangles.
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2. If A— Bisin A, then A — B is in G for all nodes A,B € A; and

3. Unshielded colliders in G are unshielded colliders in A, where an “unshielded col-
lider” is a node Y along a path (X,Y,Z) in a graph such that X and Z are not

adjacent in the graph.

The notion of a PAG is somewhat more involved; it is fully defined in Spirtes, Glymour,
and Scheines (2000), p. 300.

If we accept the Causal Markov Condition for causally sufficient systems, then it
is possible to give a general account of manipulation using causal graphs, as summarized

in the following theorem:

Theorem 5 (Manipulation Theorem) Given directed acyclic graph Gcompy over ver-
tex set VUW and distribution P(V U W) that satisfies the Causal Markov Condition
for Goomp, if changing the value of W from wq to wa is a manipulation of Gcomp with

respect to V, Gupman 15 the unmanipulated graph, Garan s the manipulated graph, and

PUnman(W) (V) = H PUnman(W) (X | ParentS(GUnmana X))
Xev

for all values of V for which the conditional distributions are defined, then

PMan(W) (V) = HXGManipulated(W) PMan(W) (X | ParentS(GMana X))

x HXGV\Manipulated(W) PUnman(W) (X | Parents(GUnmana X))

for all values of V' for which each of the conditional distributions is defined."

123ee Spirtes, Glymour, and Scheines (2000), p. 51.
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1.3 Failures of the Causal Markov Condition

Tetrad theory makes two basic assumptions, embodied by the Causal Markov
Condition (or, more generally, causal d-separation) and Faithfulness Assumption. First,
it assumes that if variables are constrained to include all common causes directly affect-
ing two or more variables, or that if the population is a collection of causally sufficient
systems with the same graph, then the probability relations among variables in that
system satisfy the d-separation criterion for the causal graph that would be constructed
by the idealized randomized experiment described above. Second, it assumes that as-
sociations do not cancel one another perfectly, which would prevent d-separation from
computing all causal relations among a set of variables. In addition, there may exist
more specific assumptions for particular algorithms—for instance, we may assume that
causal graphs must be acyclic, or that the probability distributions from which distri-
butions frequencies are drawn are from particular families (e.g., normal, multinomial,
etc.), or that dependencies between variables take on particular functional forms (e.g.,
linear, as with structural equation models).

Any of these assumptions could be in error; there is no “transcendental deduc-
tion” that the Tetrad procedures are valid. If these assumptions are in error, problems
in the application of the algorithms will arise.

Problems with the Causal Markov Condition alone are interesting in their own
right. It’s possible, for a given set of data, that the Causal Markov Condition will
not be satisfied for any causally sufficient graph over the variables in that data set.

Interesting problems arise where observed frequencies don’t satisfy the Causal Markov
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X X,
X, [ X,

Figure 1.3: A simple graph with a latent variable to illustrate how a Tetrad search may
find no causal graph satisfying the Causal Markov Condition under conditions of causal
insufficiency.

Condition for any causally sufficient structure. Much algorithmic work in the last decade
has been devoted to determining, on the assumption that data is ultimately derived
from a distribution satisfying the first and second assumptions, how the Causal Markov
Condition might not be satisfied for the observed frequencies, no matter what causal
graph we choose to postulate for the data.

The first and most obvious way in which observed frequencies might not satisfy
the Causal Markov Condition for any causal graph is if there are unrepresented latent
variables in the graph. Consider the graph in Figure 1.3. In this graph, X;, Xo, X3
and X, are measured variables, and U is a latent variable. If we tried to construct a
causal graph over just the measured variables, we would be thwarted, since an edge
would need to be postulated between X5 and Xy, in keeping with the Causal Markov
Condition, but orienting the edge as either Xo — X4 or Xo < X4 would be inconsistent
with the Causal Markov Condition. The underlying problem is that the true graphical
structure contains a latent variable not included among the measured variables. Various
techniques have been devised to detect the presence of latent variables under certain

conditions—the FCI algorithm, for instance, is designed in part to do just this.
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A second way in which observed frequencies might not satisfy the Causal
Markov condition is that the sample data might itself be conditioned on a common
effect. This is known as “sample selection bias,” and it leads to spurious associations.
This is another form of latent variable confounding.

A third way in which observed frequencies might not satisfy the Causal Markov
Condition is if in estimating conditional independence we use the wrong probability dis-
tribution assumptions. For instance, vanishing conditional correlation is standardly used
in structural equation models as an estimate of conditional independence. Conditional

13 and

correlation is equivalent, however, to a form of simultaneous linear regression
therefore assumes, for each variable X and each set of variables Y in a given causal
graph, that there is an appropriate model regression of X onto Y that is linear. If
this assumption fails, then tests for conditional independence using conditional corre-
lation may fail as well. Tetrad algorithms rely on tests of conditional independence:
When these tests produce false result, Tetrad algorithms may be able to find alternative
graphs for data that satisfy the Causal Markov Condition, but it’s at least as likely that
they will be able to find no graph at all for the data that satisfies the Causal Markov
Condition.

A fourth way in which observed frequencies might not satisfy the Causal Markov
Condition is if the frequencies come from multiple systems with differing probability

distributions. In this case, we can add a variable to represent which subpopulation

the system being measured comes from, so the problem can be treated as a latent

130ne typical way of calculating the correlation of X and Y conditional on Z = {Z;, Z, ..., Z,} is to
linearly regress X onto Z and Y onto Z and then to correlate the two columns of residuals that result.
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variable problem. There are well-known examples in the literature of mixed systems that
yield unintuitive results not satisfying the Causal Markov Condition or the Faithfulness
Assumption, such as the so-called “Simpson’s Paradox.” In this (hypothetical) example,
the question is whether treatment leads to survival of a certain disease. Data from
male and female subjects are compiled separately and then afterwards combined into
one table (Table 1.1). For both males and females separately, it appears that treatment
raises the chances of survival, but in the combined population treatment is independent
of survival. On the principle that, if X — Y in each subsystem of a mixed system,
it should the case that X — Y in the combined system, in Simpson’s example the
Faithfulness Assumption is violated in the combined system. Similarly, in the classic
example due to Kendall,' a positive causal effect for males is exactly balanced by a
negative causal effect for females, producing the perhaps unintuitive result that the
causal effect for males and females cancels out in the mixture (Table 1.2). These are
not, however, examples that undermine the usefulness of Tetrad theory. When we look
at the possible ways of parameterizing a linear causal model and consider the subset
of those parameterizations that represent probability distributions unfaithful to their
true causal graphs, it turns out that this subset has Lebesgue measure zero.'> More
recently, results have been established that place hard limitations on the effectiveness of
any causal search method from data, including causal searches by human experts with

access to relevant background knowledge. '

'4See Spirtes, Glymour, and Scheines (2000), p. 38-40.
15See Spirtes, Glymour, and Scheines (2000), pp. 41-42.
163ee Spirtes, Glymour, and Scheines (2000), Chapter 12.
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Table 1.1: Hypothetical data for Simpson’s so-called “paradox,” illustrating for mixed
data how a positive causal effect in two subpopulations can disappear in the mixed

population.

Males:

‘ H Untreated ‘ Treated ‘
Alive 4 ]
Dead 3 5

Females:

‘ H Untreated ‘ Treated ‘
Alive 2 12
Dead 3 15

Combined:

‘ H Untreated ‘ Treated ‘
Alive 6 20
Dead 6 20

Table 1.2: Hypothetical data for Kendall’s example, illustrating how a positive and
negative causal effect can cancel one another in a mixed population.

Males:

‘ H Untreated ‘ Treated ‘
Recovery 100 80
Nonrecovery 80 40

Females:

‘ H Untreated ‘ Treated ‘
Recovery 100 20
Nonrecovery 20 10

Combined:

‘ H Untreated ‘ Treated ‘
Recovery 200 100
Nonrecovery 100 50
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For these reasons and many others, causal searches over mixed systems present
a challenging technical problem. It should be pointed out, though, that the problem is
not universally insoluble, even analytically, since for some classes of problems analytic so-
lutions exist. If we begin with a collection of linear causal models M = {M;, Mo, ..., M, }
over the same variables V, such that for no X1, Xo € V is it the case that for M; #
M; € M, X; — X3 in My while Xy <— X; in M», then it is reasonable to assert that
the causal graph of the mixture is the union of the edges in the causal graphs of the
subsystems M;. In this case, searching over mixed data from the systems in M does
reliably yield the causal graph of the mixture.

A fifth way in which observed frequencies might not satisfy the Causal Markov
Condition is if we measure not the variables themselves but rather summations over
instances of the variables. Consider a typical situation that arises in cell biology. One
might wish to measure the expression of a certain gene for a particular cell type. It is
usually difficult or even impossible to measure the expression of that gene in a particular
cell. So instead of measuring gene expression in a particular cell, one measures the
aggregate expression of that gene over a collection of cells, such as all the cells on a
particular plate. The variable measured is not then an instance variable, but rather a
summation variable. Causal models in this case might involve the causal effect of one
summation variable on another summation variable. Again, if the causal models can
safely be assumed to be linear, there are analytic reasons to believe that Tetrad searches
should work correctly over such summation variables. If the linearity assumption turns
out to be false, the situation is much more difficult to assess analytically.

In each of these cases it’s plain that given a full reconstruction of the causal
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system generating the data, the Causal Markov Condition will hold in the reconstructed
system. In the case of absent latent variables (i.e., causal insufficiency), once the latent
variables are added back in, the Causal Markov Condition holds in the resulting system.
In the case of sample selection bias, once we add a variable representing sampling, the
Causal Markov Condition holds once again. In the third situation, where our model
of the joint distribution of the system is incorrect, once we correct our method for
calculating conditional independencies from the data, the Causal Markov Condition will
again be satisfied. In the fourth situation, where we are taking measurements over
mixtures of systems, the Causal Markov Condition might fail for a variety of reasons.
If we distinguish the various subsystems from one another, however, the Causal Markov
Condition should hold for each of the subsystems. The same should be true in the
fifth situation, where we are taking measurements over summations of variables, even
if separating out the individual variables may not be realistic (e.g., measuring the gene
expression a single cell). In each of these cases, the Causal Markov Condition appears
not to hold for the variables actually measured, though it does hold of the causal systems
rightly considered.

The question, then, is whether there exist search procedures that, despite these
failures of the Causal Markov condition, still provide some information about underlying
causal structures of observed frequencies. This leads to a broader empirical question:
Even when we’re dealing with systems including complexities such as those outlined
above, how much do these complexities matter for estimating the underlying causal
structure?

There are two views on this issue in the literature. The first view is that such
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complexities almost always matter in real science, that humans have a unique, distinctive
understanding of them, and that inquiry by humans not using search algorithm will
almost always be more fruitful than inquiry by automatic search algorithms. This is a
view urged, for instance, by Freedman and Humphreys,'” who argue that in designing
methods for causal analysis, we should avoid the “Automation Principle”—i.e., the belief
that the only worthwhile knowledge is knowledge that can be taught to a computer. The
implication of this criticism in the context of causal analysis is that humans must have
abilities to discover causal relationships from data that causal discovery algorithms such
as the Tetrad algorithms cannot hope to match. It is also a view urged, in less strident
form, by Nancy Cartwright, who argues that while the use of computer algorithms
to aid in causal discovery is not unreasonable, one should not expect a single type of
algorithm to apply correctly across the various causal discovery contexts one normally
encounters in science.'® Different causal situations have different mathematical forms
and require different statistical tests to establish causal relationships. This means that
different causal discovery problems require different algorithms, and so methods need to
be invented to deal with each type of causal discovery situation one encounters in turn.
Human beings, not computers, are required to determine which types of algorithms will
work in which contexts. On both Freeman and Humphreys’ and Cartwright’s view,
the fact that the Causal Markov Condition can can fail so easily implies that human
intervention is indispensible in the causal discovery process.

The second view of the implications of the Causal Markov complexities listed

1"See Freedman and Humphreys (1999).
'8See Cartwright (1999a), Cartwright (1999b).
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above is that any knowledge relevant to search that humans actually possess can be
entered into a computer as background knowledge and an automated search can then
be conducted that is not only constrained by, but actually takes advantage of, that
background knowledge. Some types of background knowledge can be exploited quite
easily in a computational context, such as information about the time order of variables.
Other types of background knowledge may require more effort to exploit. If we know,
for instance, that partial conditional correlation is not a good estimate of conditional
independence for a model (because, for example, relationships between variables cannot
be modeled as linear), then before we can use Tetrad-style algorithms we must con-
struct a better estimate of conditional independence. Nevertheless, adherents to this
second view typically maintain that any measure of conditional independence that hu-
man experts can take advantage of can be programmed into a computer and used by a
Tetrad-style algorithm and that the same comment could fairly be made of any other
type of background knowledge relevant to causal search.

So the suggestion of this second view is that in “normal science” contexts,
given the background knowledge humans have of a causal system, human experts do
no better at deciphering causal structure than could computers that take advantage of
the same background knowledge automatically, and computers decipher causal structure
faster and more thoroughly. To test this hypothesis, one needs an established science
with a long tradition of expertise, where a great deal of basic information remains to be
discovered, where hypotheses can be independently tested, and where bona-fide experts
in the field are willing to undergo direct comparisons of their own skills with the skills

of computer programs at the task of causal analysis.
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We will consider geological spectroscopy as such as field. The tradition of using
spectroscopy to analyze the composition of substances goes back well into the nineteenth
century, and the tradition of applying these techniques to mineralogy goes back at least
to the 1940’s. So there is certainly a long tradition of expertise in this field to draw on.
Also, we have found a domain expert in the field, Ted Roush of NASA Ames, who has
kindly allowed us to compare his expertise to that of a machine learning algorithm. We
are grateful to Dr. Roush for giving us this opportunity. Finally, geological spectroscopy
is a field in which sizeable amounts of data are available, in the form of spectra, for the
mining of causal relations. There are numerous open problems involving causal analysis
of rock and mineral spectra to which Tetrad-style algorithms can be applied. We will
take advantage of this situation in upcoming chapters to construct a counterexample to
certain claims about the limitations of automatic causal discovery, some of which have
already been touched on briefly. In the next chapter, two problems in particular will
be brought to focus—the role of expertise and the role of mixtures, with respect causal

discovery using Tetrad algorithms.



Chapter 2

Issues and Criticisms

One might have thought that a clear representation of causal relations, together
with a set of search strategies that dominates the most commonly used statistical search
methods (i.e., varieties of regression), would be welcomed by causal reasoning methodol-
ogists. However, Bayes net strategies such as those briefly introduced in Chapter 1 have
met with mixed reception. Some of the criticisms are principled. For instance, it has
been objected that Bayes net search procedures do not allow for standard estimates of
error, since automated search procedures do not output confidence intervals for Bayes
nets. This is no accident; recent work by Robins et al.' has shown that no such error
probabilities are possible, no matter what the search method may be—human or auto-
mated.? It is still true that search methods exist that converge to the partial ancestral
graph of the true structure as the size of the sample increases without bound, as dis-

cussed in the previous chapter. But the Robins et al. results add as new information

!See Robins, Scheines, Spirtes, and Wasserman (1999).
2See Spirtes, Glymour, and Scheines (2000), Chapter 12.
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that at every sample size alternative models exist, not represented by the PAG of the
true model, whose marginal sampling distribution for that sample size over the observed
variables is as close as you like to the marginal sampling distribution of the true Bayes
net.

Other criticisms are less focused, but they are the subject of this essay. Freed-
man and Humphreys in several essays separately and jointly? have insisted that auto-
mated methods must be inferior to causal judgments of skilled scientific experts. They
present no head to head comparisons, and their criticisms of correct predictions ob-
tained from Bayes net search methods are based on misinterpretations of algorithmic
output. For instance, Spirtes et al. use a small observational sample of measures from
plugs of Spartina grass to predict (retrodict, actually) the outcome of a greenhouse ex-
periment showing salinity having no influence on biomass when pH is held constant.*
The Spirtes et al. prediction, incidentally, is contrary to the prediction of the biolo-
gist who conducted the experiment. Freedman and Humphreys object to the Spirtes
et al. analysis that relations among other variables found in the output of the obser-
vational study are incorrect. But these connections involve features (binary effects of
linear variables, complete graphical connections among multiple variables, etc.) that the
manual for the Tetrad IT program® states cannot be trusted to yield reliable information
about causal connections. Nonetheless, while the claim by Freedman and Humphreys

that human expertise always trumps Tetrad and related causal search methods—even

3See, e.g., Freedman and Humphreys (1999).
*See Spirtes, Glymour, and Scheines (2000), pp. 196-200.
®See Scheines, Spirtes, Glymour, and Meek (1994).
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automated search in which explicit human knowledge of the domain has been encoded
in the program—may be unsubstantiated, it is also essentially uncontradicted by any
published data.

Nancy Cartwright has offered other criticisms. She claims, with a critical tone,
that automated Bayes net methods cannot work universally,® which no one in the ma-
chine learning community has claimed of any algorithm, least of all the Bayes net learning
algorithms. She claims, in the same tone, that the Causal Markov Condition is not a
logical truth (i.e., that probability distributions and DAGs of causal graphs not satisfy-
ing the Causal Markov Condition are logically possible”), the contrary of which no one,
to my knowledge, has ever suggested. She also claims that the correctness of the output
of an automated search procedure is insufficient to guarantee the correctness of policy
predictions obtained from the output structure using the Manipulation Theorem.® Her
point is that any causal instruction, for example “Prevent people from smoking” can
be implemented in many, many different ways, and the effects of the intervention will
depend on the causal details of the situation—what she calls the “nomological machine.”
That seems entirely correct. She insists that what is required to obtain a correct pol-
icy prediction from a causal graph or causal Bayes net is the “stability” of the causal
system,” knowledge of which can be had from knowledge of the “nomological machine.”

Her discussion of the Manipulation Theorem misrepresents it in an important way that

6See Cartwright (1999b), p. 104.
"See Cartwright (1999b), p. 107.
8See Cartwright (1999b), p. 104, p. 126.
®See Cartwright (1999b), p. 124.
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need not concern us here,'? but the upshot is that the “stability” she requires for cor-
rect prediction is exactly that the causal structure “downstream” from a manipulated
variable not be altered by the manipulation. This is explicitly assumed in the definition
of an “ideal manipulation” in the Manipulation Theorem, so the point of the objection
becomes, once more, rather obscure.

A more substantive objection involves populations that are mixtures of units
with different probabilities and causal structures. Cartwright argues that such systems
will be mischaracterized by the automated Bayes search algorithms because even if two
causal graphs over the same variables individually satisfy the Causal Markov Condition
with respect to probabilities estimated from sample data, when the two samples are
combined into one data set, the anticipated causal graph for the combined data will
not satisfy the Causal Markov Condition. She illustrates her point using a hypotheti-
cal system of three variables X,Y, Z, over which two different mechanisms (indexed by

' When the first mechanism operates, X causes

the variable NM) operate separately.
both Y and Z, as in Figure 2.1(a). When the second mechanism operates, there are no

causal relations between X, Y, and Z at all, as illustrated in Figure 2.1(b). Cartwright

hypothesizes data collected for these two mechanisms as shown in Table 2.1.'2 For the

0 Cartwright (1999b) claims, on p. 127, that Spirtes, Glymour, and Scheines (1993) assume in the proof
of the Manipulation Theorem that “Gunman = Gman are subgraphs of Geoms.” She takes this to mean
“that changes in the distribution of the externally manipulated ‘switch variable’ W are not associated
with any changes in the underlying causal structure.” However, this assumption is not made in the
Manipulation Theorem; in fact, the point of the Manipulation Theorem is to show how manipulation
of a causal structure via an external variable W can change the causal structure itself. For instance, if
through W the value of a variable X in the causal structure is held fixed, then causal edges from the
parents of X in the unmanipulated structure will be broken in the manipulated structure.

See Cartwright (1999b), pp. 130-135.

12The numbers for these tables is taken from the charts and discussion on p. 132 of Cartwright (1999).
They have been reformatted so that the comparison to Spirtes, Glymour, and Scheines (2000) will be
more evident.
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O\

Y Z

Figure 2.1: Causal graphs for the unmixed and mixed mechanisms Cartwright posits
to illustrate how the Causal Markov Condition fails for mixed distributions. The first
graph (a) represents the first mixed structure; the second graph (b) represents the second
mixed structure; the third graph (c) represents the mixed structure. (An adaptation of
diagrams by Cartwright in Cartwright (1999b), p. 131.)
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Table 2.1: Hypothetical data for the mixed mechanisms Cartwright uses to illustrate
how the Causal Markov Condition may fail in mixed distributions. The first table (a)
is hypothetical data for the first mechanism; the second table (b) is hypothetical data
for the second mechanism; the third table (c) is the data which results from mixing the
records of (a) and (b). The graphs for these machanisms are shown in Figure 2.1 (a-c).
(Adaptation of tables by Cartwright in Cartwright (1999b), p. 132.)

NM=1||Y=1 Y =2

X=1 1200 |0 0 0
X=2 |0 0 0 200
(b)
NM=2|Y=1 Y =2

(Combined) | Y =1 Y =2

X=1 250 50 50 50

X =2 50 50 50 250
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Causal Markov Condition to hold of the first mechanism, Y should be independent of Z
given X. This is certainly true, given the data in Table 2.1(a). For the Causal Markov
Condition to hold of the second mechanism, all possible conditional independence rela-
tions should hold in the data. Again, this is true of the data in Table 2.1(b). However, if
we combine the data from Table 2.1(a-b) the result is shown in Table 2.1(c). The graph
for the mixture should be the union of the graphs for the unmixed data—i.e., the graph
in Figure 2.1(c). This implies that Y should be independent of Z given X, and this is
clearly not true. For example, in order for this independence relation to hold, it would
have to be the case that Y is independent of Z conditional on X = 1. The data for X

and Z conditional on X =1 are as follows:

Z=1\Z=2

Y=1| 250 50

Y=2| 50 50

From this it is quite evident that the conditional independence relation does not hold.
So Cartwright’s contention is valid, that for these hypothetical'®> numbers, the Causal
Markov Condition holds for the causal graphs of the two mechanisms separately (with
respect to probabilities estimated from their respective data) but not for the combined
causal graph (with respect to probabilities estimated from the combined data set).
Note that the output of the FCI and similar search procedures applied to the
probabilities for the combined population would produce a complete PAG, because in

the combined population no independence or conditional independence relations hold at

137t’s important to keep track of which examples of failures of the Causal Markov Condition and/or
Faithfulness Assumption are hypothetical and which are actually measured, because these examples are
easy to construct, and yet the likelihood of such data being measured in the real world is theoretically
insignificant. (See Spirtes, Glymour, and Scheines (2000), Chapter 12.)
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all. Given the prior information that X occurs before Y and Z (and is therefore not
influenced by Y or Z), the output of the FCI algorithm would be the graph shown in
Figure 2.2(a). This PAG represents many alternative causal structures, among which is
the graph shown in Figure 2.2(b), where U may be either an unobserved common cause
or a parameter representing the fact that there are two subpopulations with different
causal structures and/or probabilities. Note that these features, and examples similar to
Cartwright’s such as the Kendall example and Simpson’s paradox,' are discussed fully
in Spirtes, Glymour, and Scheines (1993) and that there is nothing new in Cartwright’s
discussion except a mischaracterization of their significance. When mixtures exist of
the sort she considers, the output of the FCI algorithm will not be incorrect—it will be
uninformative.'

There are other ways not discussed by Cartwright in which mixtures might
be problematic for automatic causal search, e.g., the aggregation of variables, discussed
in the previous chapter. Here, just as with the Cartwright’s mixture example, the
conditional independence relations among measured variables do not give us information
about the conditional independence relations in the unerlying causal structure. Suppose,
for example, that in each unit X causes Y, Y causes Z, and there is no other causal
connection between X and Z. Suppose further that for each unit in a population, if
for any unit one could do repeated measures of X, Y, and Z for that unit, the set of

measurement triples would, in the limit, be distributed so that X 1L Z | Y, for each value

of X, Y, and Z. In short, our supposition is that the Causal Markov Condition holds

1See p. 17.

'5Uninformative since it doesn’t provide information directly about the proper interpretation of the
double-headed arrow (Y < Z).
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Figure 2.2: Results of FCI algorithm on Cartwright’s combined data. The first graph
(a) shows the results of the algorithm; the second graph (b) shows one graph in the
equivalence class of (a).
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for repeated measurements on each unit. Suppose, however, that our measurements are
not actually of X, Y, and Z for individual units, but rather of the sum of X values,
the sum of Y values, and the sum of Z values across all units in the population. Then,
except in special cases, the sum of X and the sum of Z will not be independent of the
sum of Y. (One such special case is when all dependencies are linear.!%) Measurements
of gene expression in most microarray data are, for example, aggregated in this fashion.

Discarding the straw men in Cartwright’s discussion and the more or less de-
liberate misrepresentations in Freedman and Humphrey’s discussion, one substantive,
interesting issue remains: For complex systems, in which the data are likely to be pro-
duced by a mixture of causal processes or by aggregation of variables over many different
units, and where there is a long tradition of human expert causal interpretation of data
from such systems, do automated search procedures do as well or better than human
experts? Of course, the answer may very well be different for different domains, and
no single study can settle the relevant scientific policy questions: Should we, in a new
domain or an old one, trust automated procedures; should automated procedures be our
first recourse for likely hypotheses; should we trust them as much as or more than expert
judgments based on the same data? Humphreys and Freedman in effect say, “never”—to
all three questions. Cartwright’s view on the same questions is less clear cut but at least
clearly skeptical.

There are a great many comparisons of automated procedures with applied

human experts where the goal is simply to recognize a feature or predict a feature of

18In that case aggregation can actually help in search, since the sums of independent random variables
will, by the central limit theorem, approach normally distributed variables, so that > X, > Y, > Z will
look like linearly related, normally distributed variables.
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behavior, without regard to causal constraints. Thus for fifty years it has been known
that in predicting recidivism, for example, simple regression with adequate data does as
well or better than parole boards, psychiatrists, or other experts. There are, however,
few examples of head-to-head contests of human experts and expert systems where the
issue is causal, scientific judgment. The New England Journal of Medicine published
a comparison of the diagnostic accuracy of residents and experts in internal medicine,
versus the Internist program developed at the University of Pittsburgh.!” The program
outperformed residents but not expert internists. The example is not, however, satisfac-
tory for beginning to address the substantive issues about the effectiness of automated
causal inference in complex mixed systems, for several reasons. The Internist algorithm
was intensely specialized, aimed at internal medicine and nothing else, while the Bayes
net search algorithms, like regression, are generic, and nothing about them or their an-
cestry tells us where they will work and where they will not. Further, the Internist
algorithm was essentially an automated version of a person. It was based on rules and
procedures of diagnosis extracted from a single expert physician at the University of
Pittsburgh Medical Center.

The following chapters consider the substantive issue of how reliable a simple
machine learning algorithm can be, compared to human expertise, in an area of physics
where there is a long, well established tradition of expert practice, where the goal is
recognition of components that play a causal role in generating the data, and the causal
processes that produce the data are complex and may very well involve mixing, ag-

gregation, and significant non-linearities. The domain is the identification of mineral

17See Miller (1982).
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composition from visible/near infrared reflectance spectra, a technique that has been
used in geophysics for 70 years. We will construct a simple Tetrad-style algorithm to
solve this problem and treat it as a simple classifier alongside many other types of clas-
sifiers; this will allow us to take advantage, in a classification problem, of the sensitivity
of Tetrad-style algorithms to causal structure. Discovering, as we shall, that given com-
parable data, simple, generic machine learning techniques perform this task as well or
better than human experts will not, of course, establish that such techniques work ev-
erywhere, nor will it remove the demonstrations that the automated search procedures
lose information in mixed, aggregated nonlinear systems. But it will at least raise the
suspicion that in such contexts human experts lose information too, and perhaps more

of it, than do their automated counterparts.



Chapter 3

The Spectrographic Investigation

of Rocks and Minerals

3.1 Introduction

The identification of surface composition from reflectance spectra has tradition-
ally relied on two methods. The older of the two is a direct examination of spectra by
experts, seeking lines or bands characteristic of particular substances, sometimes taking
account of overall luminosity of the spectrum, and sometimes, with computational aids,
taking account of the shapes of bands. The standard alternative is simultaneous linear
regression of an unknown spectrum against a library of known spectra for candidate
materials. A number of spectral libraries have been compiled which can be used for this
purpose. Some neural net procedures—notably Kohonen maps—have also been used
to analyze spectral data, typically not for identifying surface composition directly, but

rather for finding bounded regions of similar composition in an array of point spectra

36
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from a “visual” field.! Other automated techniques have been used explicitly to iden-
tify surface composition of minerals and rocks, including a Bayesian technique described
below. Despite, however, its numerous applications for planetary and terrestrial explo-
ration and for various military purposes, we have found no published systematic (or even
unsystematic) study comparing automated examination of reflectance spectra to human
expert examination of reflectance spectra.

So far as planetary exploration is concerned, reflectance spectroscopy tech-
niques have already shown themselves to be useful. Visual to near infrared (VNIR)
reflectance spectroscopy (from approximately 0.4 pum to approximately 2.5 pm) in par-
ticular has offered geologists an important potential source of petrological information
for the exploration of planets, satellites, and other solar system objects. Lightweight,
low-power commercial instrumentation is available, detailed physical models have been
developed (e.g. Hapke (1993)), and data from VNIR instruments is routinely used by

2 Were such instruments

geological spectroscopists in practical mineral classification.
coupled with intelligent software for mineral classification from spectra, the resulting
system could be used either for remote sensing or for surface based studies, reducing
requirements for data storage and information transmission, and aiding autonomous,
rational, scientifically-informed decisions by robot explorers about further directions for
exploration and data acquisition.

The interest in planetary exploration motivates an examination of the prob-

lem of determining whether rock or soil samples contain carbonates and, in particular,

! Careful work on this subject has been carried out by E. Merenyi—e.g., Merenyi (2000).
2See, for example, Chapters 3, 14, 16, 20, and 21 of Pieters and Englert (1993) and references therein.
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whether such samples contain either of the most frequently occurring forms of carbonate
materials—calcites and dolomites. Carbonate identification is particularly interesting for
extraterrestrial exploration, as carbonates are typically formed by processes—such as de-
position from water—which could indicate the presence of a life-supporting environment
at some point in the past. Focusing, therefore, on the task of carbonate identification
and reflecting an interest in comparing human expertise to machine algorithms for iden-
tifying mineral composition from reflectance spectra, we compare the reliabilities of an
expert human spectroscopist, an expert system that models human expert procedures,
and a variety of automated techniques, including linear regression, each with various
resampling and cross-validation techniques, on the task of mineral (mostly carbonate)
identification from visual to near infrared reflectance spectra.

In our tests, an adaptation of the PC algorithm (Spirtes, Glymour, and Scheines
1993; Spirtes, Glymour, and Scheines 2000)) implemented in the TETRAD II program
(Scheines, Spirtes, and Meek 1994) for constructing causal Bayes nets from data, com-
bined with appropriate data selection and data preprocessing, performed more reliably
than any other automated procedure we tested. We will refer to this procedure as the
“modified PC algorithm.” In some tests this procedure was more informative than a
human expert spectroscopist and almost as reliable, and in other tests the procedure
performed almost as well as human experts with access to both physical samples and
measured spectra of physical samples. These claims are made more precise in the Chap-
ters 4 and 5, where we additionally compare various pre-processing and data selection
procedures. In this chapter, we give an introduction to the history and tradition of

expertise of the problem itself of identifying the composition of rocks from their VNIR



39

spectra.

3.2 Statement of the Problem

The task of the experiments described in the following two chapters is to deter-
mine, based on the spectrum of a rock, what its mineral class components are likely to
be. Rocks are composed of amalgamated granules of pure minerals. These pure minerals
themselves, though, often appear in the world in rock-sized chunks, so it is possible to
study the pure minerals outside of the rock mixtures that they form. One way to ex-
amine them is to use a spectrometer—i.e., an instrument that measures light at each of
a range of chosen frequencies. A reflectance spectrometer measures light reflected from
objects. If we use a reflectance spectrometer to measure the light reflected from rocks
and their component minerals, we find interesting relationships. Some of these relation-
ships are hard to see, while others are quite evident. For example, Figure 3.1(a) shows
a reflectance spectrum in the range [0.4um,2.5um] of a particular mineral (calcite), in
the class of carbonates. Figure 3.1(b), on the other hand, shows a reflectance spectrum
for a limestone rock that contains carbonates of this same type.

In the range [2.0 um, 2.5 um], these two spectra are remarkably similar. Based
on this similarity, one might guess, without knowing so in advance, that the limestone
contains some kind of carbonate—in particular, some kind of calcite. One would be
right. This is exactly the kind of analysis which needs to be given, either automatically
or by a human expert, in order to solve the problem of mineral class identification from

spectra. Presented with a spectrum of a given rock, such as limestone, one needs to
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Figure 3.1: Two examples of carbonate spectra. The first (a) is a calcite (a mineral);
the second (b) is a limestone (a rock).
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be able to say what mineral classes the spectrum reveals. In this case, the spectrum of
the rock (i.e., the limestone) shows evidence for the existence of some kind of carbonate
(perhaps the calcite shown, but perhaps some other carbonate).?

The spectra graphed above are in the visual to near infrared range; they in-
clude the visual range ([0.4um, 0.7um]) plus most of the near infrared range ([0.7um,
3.0uml]); these spectra actually extend only to 2.5 um. The range [0.4 pm, 2.5 pum]
includes considerable information for many types of rocks and avoids a region of strong
atmospheric noise beginning at 2.5 ym. It is thus a good range in which to test various

procedures on the task of recovering information about mineral classes from spectra.

3.3 Expert Understanding of Mineral Identification from

Spectra

It’s interesting to note that the tradition of expertise in mineral reflectance
spectroscopy extends back well over half a century and the tradition of expertise for
spectroscopy generally extends even further back than a century. Work on spectroscopy
in general began in the late nineteenth century, with early work concentrating on trans-
mission spectroscopy, i.e., measuring how light is transmitted through substances rather
than reflected from their surfaces. Work on reflectance spectroscopy proper began in the

1920’s, and the practice of applying reflectance spectroscopy to minerals, using infrared

3These examples are chosen to illustrate how spectra in the same category can have similar features.
Of course, spectra in the same category can also have quite different features too, and spectra in different
categories are sometimes comparable in appearance. This is one of the reasons this inference problem is
so difficult, not just for machines, but for human experts as well.
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spectra, began in the 1940’s.* (One might consider Anderson (1950) to be an early ex-
ample of spectral identification of mineralogical substances, even though the objects he
was studying—varieties of glasses—aren’t, strictly speaking, minerals.) Since the 1950’s,
expert knowledge about the identification of rock and mineral composition from infrared
reflectance spectra has developed more or less continuously, with major contributions
being made in the 1970’s. So from the point of view of human expertise, there is a
well-grounded tradition that attempts to solve instances of the problem of mineral class
identification from spectra using expert judgment.

Experts distinguish the background of a spectrum from its features, give ex-
planations for the existence of particular features of rock or mineral spectra in terms
of the quantum mechanical features of their chemistry and crystallograpy, and provide
explanations for how the spectra of mineral mixtures (rocks) relate to the spectra of
those minerals separately. In broad outline, this story has been established for some
time, although in some details (especially in the details of how mineral spectra mix)
experts still disagree about the details.

Experts tell us that a reflectance spectrum generally consist of a background
upon which are imposed various features. Figure 3.1(a) provides an illustration. The
background is a curve which changes relatively slowly; features look like dips or spikes
below this curve.’ Features can be wide or narrow, deep or shallow, skewed or symmet-
rical. They can be well-separated from one another or superimposed. Although one can

get some information about a mineral from the shape of its background curve—one can

*See Wendlandt and Hecht (1966).

°In our analysis, we use a hull differencing algorithm to calculate this slowly changing background.
See Section 5.3.4 for details.
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tell whether it is dark or bright, for instance—the positions and shapes of its features
provide valuable clues as to the chemistry of the rock or mineral. If the chemistry of the
rock or mineral includes certain configurations of iron, for instance, one can generally
get a hint that this is the case by looking for a feature with a certain shape at about 0.9
pm to 1.0 pm.

The features and background shape that one observes for a rock or mineral spec-
trum are, according to established expert knowledge, the result of three general sorts of

6 Reflection occurs when light meets

processes: reflection, transmission, and emission.
the surface of an object and bounces back; transmission occurs when light continues
through the surface. Emission occurs when an object spontaneously generates black-
body EM radiation. In the range [0.4um, 2.5um], emission is not generally a major con-
cern; its effects are much more noticeable in the mid-infrared range ([3.0pm, 30.0mum]).
Reflection and transmission in the visual to near infrared range are, however, in the
expert’s view, diagnostic in this range, since they yield information which helps to dis-
tinguish classes of minerals and even particular minerals from one another. Consider
reflection. Even perfect reflection from surfaces of minerals is not uniform, since the
angles and wavelengths at which reflection occurs are distinctive features of particular
minerals. Reflection by itself, therefore, can yield complicated, diagnostic features in
mineral spectra. The effects generated by transmission are however even more complex
(and therefore more diagnostic); these account for most of the features observed in the

reflectance spectra of rocks or minerals. When light is transmitted through a mineral

or scattered through irregularities or particles on the surface of the mineral, the pat-

®The discussion here follows Clark (1999).
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Figure 3.2: An inosilicate spectrum, illustrating a Fe?* feature at about 0.9um.

tern of absorption can be affected by crystal field effects, charge transfer absorptions,
conduction bands, color centers, and vibrational modes.

Crystal field effects are due to unfilled electron shells of transition elements
(nickel, cobalt, iron, etc.). When these atoms are isolated, their two d-orbitals have
identical energies, but when they are placed into a crystal field, these orbital energies
split. In this split configuration, electrons can be moved from a lower energy to a higher
energy if they absorb photons whose energy accounts for the difference. The exact
amount of energy needed depends on the type of atom, its electronic configuration, and
a variety of other facts. Figure 3.2 shows an example of a crystal field effect for Fe?* at
about 0.9 pm.”

Charge transfer absorptions are due to electrons being transfered from one

"This wavelength, 1.0 pm, lies within the [0.4 pum, 2.5 wm] range of the data to be examined in the
next chapter.
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Figure 3.3: A spectrum of sulphur, an elemental mineral, showing the “step function”
shape.

element to another—e.g., from one ion to another—or from one valence state to another
for the same metal. Here again, the energy needed to make this electronic transfer needs
to be supplied from somewhere, and photons with exactly the right energy are such a
source. These effects are typically centered in the ultraviolet range, with some influence
in the visual range. These kinds of absorptions explain, e.g., why iron oxides are red.
Conduction bands are heightened energy levels in certain minerals in which
electrons may move freely about the mineral without being tied to particular atoms. In
some minerals, such as sulfur, the band gap between the valence band (the lower energy
band in which electrons are tied to particular atoms) and the conduction band (the
higher energy band where electrons can move about freely) corresponds to the energy of
a photon whose wavelength falls in the visible to near-infrared range. In minerals like

this the reflectance spectrum looks more or less like a step function (cf. Figure 3.3).
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Color centers sometimes result when a crystal that has imperfections in it is
irradiated. Defects in the crystal produce discrete jumps in energy levels within the
crystal, and electrons can be drawn into these discrete levels if they absorb photons with
the right energy. This effect is responsible for variations in color of certain minerals due
to impurities—e.g., the yellow, purple, and blue versions of flourite.

Vibrational modes are the various ways in which atoms and molecules vibrate.
Typically, each type of molecule can vibrate in a number of a number of different ways at
once, depending on how many atoms and bonds there are in the molecule. If a molecule
has N atoms, there are 3N — 6 basic modes of vibration called fundamentals. Just as
with a cello string, in addition to the fundamental vibrations, there are also overtones
(i.e., multiples of fundamental vibrations) and combinations (when different modes of
vibration interact). A mineral will absorb photons at a particular wavelength if those
photons provide its components the right amount of energy to vibrate in particular
ways. Carbonates provide good examples. Carbonates are minerals that contain the
group COg; this group has certain identifiable vibrational characteristics that show up
in the visual to near-infrared range as overtones and combinations. It has a symmetric
stretch (v4)at 9.407um, an out-of-plane bend (v5) at 11.4um, an asymmetric stretch
(v3) at 7.067um, and an in-plane bend (v4) at 14.7um. All of these are outside of the
range [0.4pum,2.5um], but two combinations and overtones are prominent within this
range—viz., (a) vy + 2v3 at 2.50um to 2.55um and (b) 3vz at 2.30um to 2.35um.% In
many carbonate reflectance spectra in the visual to near infrared range, these lines are

clearly visible.

8This illustrates how features can shift wavelengths.
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Each of these processes—crystal field transfers, charge transfers, conduction
band transfers, color center transfers, and vibrational mode absorptions—are processes
of absorption, not reflection, but they have vivid effects in reflectance spectra, largely due
to the process of scattering, in which light is bounced around from one mineral granule
to another before finally being sent back out as a reflection from the surface of a rock or
mineral. The ideal mineral would have a completely flat surface with no irregularities,
but real mineral surfaces are not completely flat. Also, minerals may be ground up
into powders, so that their surfaces are uneven for a different reason. Rocks, which are
made up of mineral grains, also have uneven or grainy surfaces. Photons encountering
an uneven surface of any of these types will follow a path that is essentially a complex
random walk? before emerging again from the surface in the form of a reflection. Thus
the reflections observed in reflectance spectra are in actual fact a record of a combination
of absorption and reflection processes.

For rocks, the situation is especially interesting, as while as photons do ran-
dom walks about the surface of a rock, they pass through (and are affected by) mineral
granules of different types. Mineralogists believe that this scattering process for rocks is
what largely accounts for the way in which the absorption effects for different minerals
combine to generate reflectance spectra for rocks that are combinations of those miner-
als. “Scattering,” as Clark puts it, “is the process that makes reflectance spectroscopy
possible”:

In transmission, light passes through a slab of material. There is little or no

scattering (none in the ideal case; but there are always internal reflections
from the surfaces of the medium). Analysis is relatively simple. Reflectance

?See Clark and Roush (1984).
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Figure 3.4: Theoretical blackbody radiation in the range [Oum,30um] at 15 degrees
Celsius (288 Kelvin).

of a particulate surface, however, is much more complex and the optical path
of photons is a random walk. At each grain the photons encounter, a certain
percentage are absorbed. If the grain is bright, like a quartz grain at visible
wavelengths, most photons are scattered and the random walk process can
go on for hundreds of encounters. If the grains are dark, like magnetite, the
majority of photons will be absorbed at each encounter and essentially all
photons will be absorbed in only a few encounters....

The random walk process of photons scattering in a particular surface also
enhances weak features not normally seen in transmittance, further increas-
ing reflectance spectroscopy as a diagnostic tool. Consider two absorption
bands of different strengths, such as a fundamental and an overtone. The
stonger absorption will penetrate less deeply into the surface, encountering
fewer grains because the photons are absorbed. At the wavelengths of the
weaker absorption, few photons are absorbed with each encounter with a
grain, so the random walk process goes further, increasing the average pho-
ton path length. The greater path length will result in more absorption, thus
strengthening the weak absorption in a reflectance spectrum.'®

Finally, even though emission is not a process of great importance in the visual
to near-infrared range, it may be helpful to say something about it. Every object emits
blackbody radiation that depends on its temperature. Figure 3.4 shows how this black-

body radiation is related to wavelength at 288 K (15 C); the curve peaks at about 10um,

10See Rencz (1999), p. 35



49

which is well into the mid-infrared range, and drops essentially to zero at about 3um.!!

In the range [0.4um, 2.5um] at this temperature (and even at much higher temperatures)

blackbody radiation plays no significant role.

3.4 Calculation of Intensity

It is interesting to note how reflection spectra are actually measured. The
device used to do the measurement is called a reflectance spectrometer. This is a device
which shines white light onto a sample, then measures the amount of light reflected at
each of a pre-selected set of wavelengths. Of course there is no device that emits perfectly
white light, i.e., light that has exactly the same intensity at all desired wavelengths. To
compensate for this imperfection, one typical method used is to measure the spectrum
first of a white sample—a piece of material that reflects as perfectly as possible over
the range of wavelengths being tested. Afterwards, the spectrum of the target object is
measured. That way, the reflectance value of the target object can be divided through by
the reflectance value of the white sample for each wavelength of interest. The quotient
that results is called the intensity value. All of the data considered in the upcoming
chapters is either already provided as a set of intensity values or else has been converted

to intensity values for use in the experiments.

"The formula for theoretical blackbody radiation as a function of wavelength and temperature is
2
E\T) = /\5(@2:/7}?”_1), where X is the wavelength (in meters), T is temperature (in Kelvin), h is
Planck’s constant, c is the speed of light, k is Boltzmann’s constant, and E(X,T) is energy density per
unit time per unit wavelength.
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3.5 Preview

In the next two chapters, experiments will be reviewed which compare the per-
formance of an expert to the performances of several machine algorithms on the task
of identifying mineral class composition from spectra. Chapter 4 will review an experi-
mental assessment of expert skill level. Chapter 5 will review experiments assessing the
performance of several machine learning algorithms; the performance of these algorithms
will also be compared to expert skill level. Chapter 6 will respond to arguments from

Chapter 2 in light of this experimental evidence.



Chapter 4

Experiment: Expert Assessment

of Mineral Class Composition

4.1 Introduction

We begin a review of experimental work by examining an experiment performed
in 1998 to assess the skill level of a human expert spectroscopist at judging the mineral
composition of rocks, based on graphs of their visual to near infrared reflectance spec-
tra. The motivation for the experiment was to establish a standard for the design of
automated systems intended to supplement or replace human experts in the analysis of
rock spectra at remote locations. At the time of the experiment, there was no relevant
literature to help establish such a standard, and even at present the only experimental
evidence available is the evidence contained in this chapter. We therefore rely on this
evidence in upcoming chapters to compare directly human performance and machine

performance on this task.

ol
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In this experiment, unlabeled spectral graphs of rocks are presented in random
order to an expert, who classifies them according to his own judgment of their mineral
class composition. The options for mineral classes are set by the experiment. A gold
standard is established separately using sample petrology, against which responses are

compared.

4.2 Data Sources

Two sources of spectral data are used in the experiment: (a) the JPL Spectral
Library and (2) the JHU Spectral Library. The spectra themselves come from the JHU
library; they are formatted, however, using the parameters of the JPL library. This
formatting allows results from the expert experiment to be compared directly to results
from the machine algorithms experiments of the next chapter. Brief descriptions of each

library follow; more elaborate descriptions may be found in Appendices A and B.

4.2.1 The JPL Spectral Library (Minerals)

The JPL Spectral Library consists of spectra for 160 different minerals, with
wavelengths covering the range [0.4um,2.5um] (826 wavelengths altogether). The min-
eral samples for this library were ground into powders of three different grain sizes: small
(< 45pum), medium (45 —125um), and large (125 —500um). Each mineral was measured
at one, two, or three of these grain sizes, and out of the 160 minerals, 135 of them were
measured at the largest grain size. These 135 large grain mineral spectra will be referred

to as the “JPL Large Grain Mineral Library.”
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The minerals in the JPL Spectral Library are divided into 17 mineral classes, as
shown in Table A.1.! These mineral classes are a subset of the mineral classes presented
in the standard reference, Dana’s Mineralogy.? (Alternative classifications of minerals
exist in the literature, but for the most part the 17 JPL classes can be mapped, more or

less unproblematically, onto these alternative classifications.)

4.2.2 The JHU Spectral Library (Rocks)

The JHU Spectral library consists of several hundred spectra with various wave-
length ranges, 192 of which are spectra for rocks in the wavelength range of about
[0.4pm,14.0um].2 These 192 spectra represent 96 different rocks, each of which is pre-
sented in two different forms. The library is also divided into rocks of three very general
sorts—igneous, metamorphic, and sedimentary. Igneous rocks are presented in solid
form as well as in fine-grained powdered (0 — 75um) form. Metamorphic and sedimen-
tary rocks are presented in fine-grained and coarse-grained powdered (500 — 1500um)

form. The number of rocks in each of the six resulting categories is shown in Table B.1.

! Minerals naturally belong to only one mineral class, while rocks may contain a number of minerals,
and hence belong (in a compositional sense) to more than one mineral class.

2See Gaines, Skinner, Foord, Mason, and Rosenzweig (1997).

3The exact set of wavelengths used by rock spectra in the JPL Library tends to be somewhat vari-
able in the upper reaches of the [0.4um, 14.0pum] range, but through interpolation there is no difficulty
producing spectra from these in the range [0.4pum, 2.5um], i.e., the same wavelengths as the JPL mineral
spectra.
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4.3 Data Preparation

4.3.1 Preparation of the JHU Large Grain Rock Library

The 192 JHU rock spectra were interpolated to the set of wavelengths used
in the JPL Mineral Library using the simple linear interpolation algorithm defined in
Section 5.3.4. This results in a set of spectra which cover the range [0.4um,2.5um], so
that the subject in this experiment is present with spectra in the same range as the
machine algorithms reviewed in Chapter 5. This set of 192 spectra interpolated to the

JPL wavelengths will be referred to as the “JHU Rock Library.”

4.3.2 Preparation of JHU Gold Standard

In order to determine the skill level of an expert attempting to classify the
192 spectra of the JHU Rock Library, an objective method for determining the true
classification of the JHU spectra is required—viz., an objective estimate of the 192 JHU
spectra in terms of the mineral classes used in the experiment (the 17 JPL mineral
classes as shown in Table A.1).

The procedure we used was as follows. In the file descriptors of each data file
an expert petrology is provided, containing information which can be used to perform
such a classification. Several weeks before acting as subject in the expert experiment,
Ted Roush, Senior Geologist at NASA Ames, examined each of these file descriptors in
turn (96 in total) and classified each rock in the library using the 17 JPL categories.
For each rock and for each category, Roush specified whether the category was present,

absent, or possibly present in the composition of that rock. In our data analysis, we
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considered two interpretations of “possibly present”: (a) interpreting “possibly present”
as “present,” for the sake of creating a gold standard and (b) interpreting “possibly
present” as “absent” for the sake of creating a gold standard. The inclusive gold standard
resulting from interpreation (a) will be referred to as G; and the exclusive gold standard
resulting from (b) will be referred to as G.

As an example of how this procedure works for establishing a gold standard,

consider the petrology for the sample in the file named “andesilf”:

The sample is about 4 x 3 cm, brown on the weathered surface and dark gray
on fresh surfaces. It is porphyritic with the phenocrysts making up about
25-30% of the rock. The groundmass is gray and microcrystalline. The
phenocrysts are approx. < lmm and counsist of plagioclase laths, pyroxene
and opaques, in that order of abundance, with pyroxenes nearly as abundant
as the feldspars.

Interpreting the petrology, Roush determined that the sample contains components be-

longing to the following three JPL classes:

Inosilicates, Oxides, Tectosilicates.
Roush found no evidence in the petrology that it belonged to any of the other 17 classes.
The gold standard for the sample “andesilf” therefore consists of the assertion that it
contains minerals of these three classes and none of the others. In this case, G; and Go

agree.*

“The gold standard classifications for the Carbonate class are shown in Table B.2.
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4.4 Experiment

4.4.1 Methods

For the experiment itself, unlabeled spectra from the JHU Rock Library were
presented in random order to a subject (an expert in the field of geological spectroscopy),
who predicted, for each spectrum, which types of minerals were present in the rock
measured by that spectrum. The permissible mineral classes to be used for this purpose
were the 17 JPL mineral classes.

By way of implementation, a Java applet was designed with a simple servlet
backend, that allowed the subject to work at the experiment at his own pace. The
applet presented an interface to the subject which permitted him to carefully examine
each spectrum in turn, predict the mineral classes of its components, and submit his
answer. The servlet backend collected the data submitted and appended it appropriately
to a data file. The subject was permitted as much time as he liked to work on the
experiment, was allowed to stop and start as often as he liked, was allowed to work at
different locations if he chose, and was allowed to consult any reference works he deemed
helpful. When all the data was collected from the experiment, it was compared to the
gold standard described above; the results are shown in tables at the end of this chapter.
Altogether, the subject spent approximately 12 hours on the task over a period of seven
days.?

Figure 4.1 shows an image of the applet from the subject’s point of view. The

upper left hand portion of the applet exhibited an unlabeled spectral graph. (A counter

"The subject began on Friday, 12/11/1998, and finished on Friday, 12/18/1998.
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Figure 4.1: A screen shot of the applet used to collect expert mineral class identification

data.
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was included in the image so that the subject would know how far he’d progressed.) On
the right were Present/Absent radio buttons for each of the 17 JPL mineral classes. On
the bottom of the screen was a text field in which the subject could make whatever notes
he wished. When the subject had inspected a particular graph to his satisfaction, made
his classification, and recorded any desired notes, he pressed the SUBMIT button, after
which all of the checkboxes were reset, the area for notes cleared, and a new unlabeled
spectral graph displayed.

Each time the SUBMIT button was pressed, a record was sent to the backend
servlet for the applet containing the time of submission, the name of the sample, the
classification, and the notes from the textfield. These records were then appended to a
file. In order to ensure that all of the records were submitted by the same person during
the course of the experiment, the subject was required to sign in with a username and
password each time he returned to the applet.

Using this mechanism, the 192 spectral graphs of rocks from the JHU Rock
Library were presented in random order and without any labeling to the subject, who
classified each of them but one (“qrtzit6f”) in the prescribed manner. 191 records
were therefore collected. The final collected set of data was then compared to the gold

standards G and Gs.

4.4.2 Results

For each of the 17 JPL mineral classes C, and for each of the two interpretations

of the gold standards G and G, two quantities were calculated:

1. The frequency with which the subject estimated rocks to belong to C' given that
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they belong to C' according to the gold standard (“accuracy”), and

2. The frequency with which rocks belong to C' according to the gold standard given

that the subject estimated them to belong to C (“coverage”).

Accuracy results for Gy are shown in Table 4.1; for Go accuracy results are shown in
Table 4.3. Coverage results for G; are shown in Table 4.2; for G5 are shown in Table
4.4. Setting aside JPL mineral classes which are poorly represented among the JHU rock
spectra (according to each gold standard, respectively), what the data show is that the
subject is a particularly accurate classifier for certain mineral classes—viz., tectosilicates,
carbonates, nesosilicates, and phyllosilicates—with slightly higher accuracies reported in
connection with the inclusive gold standard. However, when one looks at the coverage for
these same mineral categories, one finds that, except for phyllosilicates and inosilicates,
the results fall off dramatically. Consider the carbonate class: When the subject classifies
a spectrum as representing a rock with a carbonate component, it is fairly certain that
the rock actually does have a carbonate component, according to the gold standard.
However, out of all of the rocks that have carbonate components according to the gold
standard, only some of them are correctly identified by the subject as having carbonate

components. The subject is therefore accurate but conservative.
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Table 4.1: Probability that the subject of the expert experiment identifies a rock as
belonging to a mineral category given that the inclusive gold standard G; identifies it
as belonging to that category.

p := # cases for which expert classification from spectra = present or uncertain.
q := # cases for which expert classification from petrology = present.

Category (p&q)/q | p&q | ¢
arsenates * 0 0
borates * 0 0
carbonates 0.96 24 | 25
cyclosilicates 0.00 0 1
elements 0.28 91 32
halides 0.00 0 4
hydroxides 0.00 0 20
inosilicates 0.59 52 | 88
nesosilicates 0.77 10| 13
oxides 0.61 37| 61
phosphates * 0 0
phyllosilicates 0.76 83 | 109
sorosilicates * 0 0
sulfides 0.24 81 33
sulphates 0.00 0 1
tectosilicates 1.00 29 | 29
tungstates * 0 0
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Table 4.2: Probability that inclusive gold standard G identifies a rock as belonging to
a category given that the subject of the expert experiment identifies it as belonging to
that category.

p := # cases for which expert classification from spectra = present.
q := # cases for which expert classification from petrology = present or uncertain.

Category (p&q)/q | p&q | g
arsenates * 0 0
borates 0.00 0 2
carbonates 0.26 24 | 92
cyclosilicates 0.00 0 14
elements 0.41 9| 22
halides 0.00 0 2
hydroxides 0.00 0 4
inosilicates 0.62 52 | 84
nesosilicates 0.19 10 | 54
oxides 0.37 37 | 100
phosphates 0.00 0] 22
phyllosilicates 0.68 83 | 122
sorosilicates 0.00 0] 10
sulfides 0.33 8| 24
sulphates 0.00 0 2
tectosilicates 0.17 29 | 166
tungstates 0.00 0 2
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Table 4.3: Probability that the subject of the expert experiment identifies a rock as
belonging to a mineral category given that the exclusive gold standard G identifies it
as belonging to that category.

p := # cases for which expert classification from petrology = present
q := # cases for which Expert classification from spectra = present.

Category (p&q)/q | p&q | ¢
arsenates * 0 0
borates * 0 0
carbonates 0.96 24 | 25
cyclosilicates 0.00 0 1
elements 0.12 4| 32
halides 0.00 0 4
hydroxides 0.00 0 20
inosilicates 0.59 52 | 88
nesosilicates 0.77 10| 13
oxides 0.49 30 | 61
phosphates * 0 0
phyllosilicates 0.72 79 | 109
sorosilicates * 0 0
sulfides 0.12 41 33
sulphates 0.00 0 1
tectosilicates 1.00 29 | 29
tungstates * 0 0
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Table 4.4: Probability that the exclusive gold standard G2 identifies a rock as belonging
to a category given that the subject of the expert experiment identifies it as belonging
to that category.

p := # cases for which expert classification from spectra = present
q := # cases for which expert classification from petrology = present

Category (p&q)/q | p&q | g
arsenates * 0 0
borates 0.00 0 0
carbonates 0.39 24 | 62
cyclosilicates 0.00 0| 10
elements 0.50 4 8
halides * 0 0
hydroxides 0.00 0 2
inosilicates 0.63 52 | 82
nesosilicates 0.19 10 | 52
oxides 0.38 30 | 78
phosphates 0.00 0] 20
phyllosilicates 0.69 73 | 114
sorosilicates 0.00 0 8
sulfides 0.22 4| 18
sulphates * 0 0
tectosilicates 0.18 29 | 162
tungstates * 0 0




Chapter 5

Algorithmic Mineral Class

Identification Experiments

5.1 Introduction

In this chapter, a number of algorithms are compared to one another and
to the human expert experiment of Chapter 4 on the task of judging mineral class
composition from visual to near infrared spectra of rocks. The algorithms fall into two
categories: those which judge mineral class composition by comparing the spectra of
a rock to a background library of pure mineral spectra and those which do not. For
algorithms of the first sort, we used the large grain spectra from the Jet Propulsion
Laboratory (JPL) Spectral Library as our background library of pure minerals. For all
of the experiments in this chapter, we used target spectra from two different sets: (a) the
rock spectra from the Johns Hopkins University (JHU) Spectral Library; and (b) a set of

field data collected at Silver Lake near Baker, California. The algorithms tested include

64



65

simultaneous linear regression, stepwise linear regression, the modified PC algorithm (a
Bayes net model search), logistic regression, classification and regression trees (CART),
naive Bayes classifiers, probabilistic decision trees, and several varieties of neural nets.

This chapter will explain how the data used in these experiments were pro-
duced, how the algorithms compared in the experiments were designed, how the ex-
periments themselves were carried out, and what the results of the experiments were.
Where appropriate, comparisons will be made to the human expert data presented in
the previous chapter.

The conclusion drawn from all of these experiments taken together is that
the modified PC algorithm performed at least as well as any of the other algorithms
compared and that it performed comparably to a human expert at the same task. This is
interesting because the modified PC algorithm was designed using principles of automatic
causal discovery described in Spirtes et al. (1993). This invites a causal interpretation as

to why the algorithm is so successful. Such an interpretation will be given in Chapter 6.

5.2 Data Sources

Three sources of data are used: (a) the Jet Propulsion Laboratories Spectral
Library, (b) the Johns Hopkins University Spectral Library, and (c) a set of field samples
measured near Silver Lake, California. Descriptions for (a) and (b) are given in Chapter

4; a technical description for the Silver Lake field samples follows.
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5.2.1 The Silver Lake Field Samples

In the Winter of 1999, NASA scientists conducted field tests of a robot and
various instruments in and about Silver Lake, California, a dry lake bed in the Mojave
desert (Stoker et al. 1999). Spectral data for field rocks was collected by a spectrometer
mounted on a field robot, controlled remotely. The instruments included a near-infrared
spectrometer (Johnson et al. 1999), described below. Spectra were taken, usually in
situ, of rocks and soils; the spectra were identified as carbonates or non-carbonates both
by the field geologists, from physical observations of the specimens and their spectra,
and by a group of geologists located remotely at NASA Ames, who used both the
spectra and the descriptions of the field experts (Gazis and Roush 1999). Paul Gazis at
NASA Ames provided software to correct instrumental artifacts and to filter out spectra
that, typically because of atmospheric effects, were too noisy to process. After pre-
processing, 21 spectra remained; 13 samples were identified as carbonates and 8 samples
identified as non-carbonates by the field geologists. Subsequently, eight of the 21 samples
were analyzed by standard petrographic techniques. All eight analyses agreed with the
judgments of the field geologists and the remote geologists. The expert judgments are
shown in Table C.1.

Prior to receipt of the set of 21 field spectra measured at Silver Lake, we
received a single field sample, measured by Roush and Glymour on an earlier excursion
at the same site, which was used for a separate study (see Section 5.5.2). Details of the

instrumentation, data collection, and artifacts are given in Appendix C.
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Table 5.1: Schema for the tab-delimited file format used for all algorithmic experiments.
Included are variables for wavelength and (prepared) spectral intensities for individual
spectra at those wavelengths.

[wave] fileq files files wo  filey
[0.400] 41 (0.400) i5(0.400) 43(0.400) ... 4, (0.400)
0.401] i1(0.401) i5(0.401) i5(0.401) ... i,(0.401)

0.402] §1(0.402) i2(0.402) i3(0.402) ... i,(0.402)

[2.500] i1(2.500) i2(2.500) i3(2.500) ... ipn(2.500)

5.3 Data Preparation

Data from all sources were prepared as tab-delimited text files in the format
of Table 5.1. The set of wavelengths used in these files was typically a subset of the set
of wavelengths used in the JPL Spectral Library. (Usually, all of the wavelengths of the
JPL Spectral Library were used, though sometimes intervals of these wavelengths were
removed due to atmospheric noise.) For data sets other than the JPL Spectral Library,
spectra were interpolated to this set of wavelengths using a simple linear interpolator.
After interpolation, two other preparations were often used. Hull differences of data
were calculated, and wavelength intervals of spectral data were removed. Details of

preparation for separate libraries follow.

5.3.1 JPL Large Grain Mineral Library

File headers aside, data from the JPL Spectral Library is organized into one,

two, or three columns of percent spectral intensities, with wavelengths in a separate file
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(‘beck.dat’). (No interpolation of this library was necessary.) The wave function for the
JPL mineral library includes the wavelengths in the interval [0.400pum,0.800um] with a
regular spacing of 0.001um and the wavelengths in the interval [0.800pum, 2.500pm] with
a regular spacing of 0.004um, for a total of 826 channels. To produce a tab delimited
file of the format in Table 5.1, individual data files were examined to determine whether
they contain a large grain spectrum. All large grain spectra from these files were then
combined into a single data file in the format of Table 5.1. Spectra were optionally
hull-differenced, and in cases where wavelength intervals needed to be removed from the
target, the same wavelength intervals were removed from the JPL Large Grain Mineral
Library file. The result of the procedure was a library ocontaining 135 spectra, sometimes
hull differenced, sometimes with water lines removed.!

The 17 mineral classes used throughout all of the experiments described in this
chapter are the mineral categories from the JPL Large Grain Spectral Library, given in

Table A.1.

5.3.2 JHU Rock Library

File headers aside, data in the JHU Spectral Library are formatted as one file
per spectrum, with two columns in each file—one for wavelengths and the other for
spectral intensities. The range of the data is [0.4um, 14.0um]. At the lower ranges, the
wavelengths of the JHU rock spectra are evenly spaced at regular intervals of 0.001um;
at higher wavelengths, the exact wavelengths measured are not as evenly spaced and

show slight discrepancies from one file to the next. To produce tab delimited files in the

'The range of lines removed due to water lines was [1.198um, 2.004um)].
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Table 5.2: Number of samples in the JHU Rock Library judged by a human expert to
contain minerals of each given JPL mineral class.

‘ Mineral Class ‘ Count

Arsenates 0
Borates 2
Carbonates 92
Cyclosilicates 14
Elements 21
Halides 2
Hydroxides 4
Inosilicates 84
Nesosilicates 54
Oxides 100
Phosphates 22
Phyllosilicates 121
Sorosilicates 10
Sulfides 24
Sulphates 2
Tectosilicates 165
Tungstates 2

format of Table 5.1, the spectral data in each file was interpolated to the JPL Spectral
Library wave function, optionally hull differenced, and assembled into six separate file,
one each for the subcategories of JHU spectra shown in Table B.1. For some experiments,
these six files are combined into one file.

In order to determine whether an algorithm has correctly classified a particular
spectrum from the JHU Rock Library using the mineral categories of the JPL Mineral
Library, a gold standard classification of the JHU rocks using the JPL mineral categories
must be constructed. This gold standard, supplied to us by Ted Roush of NASA Ames,
is described in Chapter 4. Table 5.2 shows the number of samples which were judged by

this gold standard to belong to each JPL class.
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5.3.3 Silver Lake Field Data

Data from the Silver Lake Field Study were formatted as 21 separate files which
(headers aside) contained two columns each—wavelength and spectral intensity. The
wave function for these samples covers the range [0.350pm, 2.500pum|, with wavelengths
evenly spaced at intervals of 0.001yum. To produce tab-delimited files of the form shown
in Table 5.1, the spectral intensity data in these files was interpolated and arranged in
that format.

Preprocessing of spectra was as follows. First, the spectra were interpolated
to the JPL wave function, using the algorithm described in the following subsection.
Second, since the spectra were measured under field conditions, noise caused by water
absorption lines in the atmosphere at about 1.9um was pronounced. A wavelength
interval around this line was removed from the spectra (and from the corresponding
background library files which were used). Third, hull differences (or first differences) of
the spectra were optionally calculated. (By way of comparison, the effects of different
preprocessing procedures are illustrated by analyses of the spectrum of a rock taken near

Silver Lake, CA; the results are shown in Table 5.4.)

5.3.4 Auxiliary Algorithms

Interpolation

It was necessary to interpolate the spectra of the target library (i.e., the 192
JHU rock spectra) so that they used the same set of wavelengths (i.e., the same wave

function) as the background mineral library for algorithms which required the use of



71

both. The wave function for the JPL mineral library included the wavelengths in the
interval [0.400m,0.800um] with a regular spacing of 0.001um and the wavelengths in
the interval [0.800um,2.500um] with a regular spacing of 0.004um, for a total of 826
channels. The wave functions for the JHU rocks cover the interval [0.400um, 14.000um),
with some variation from spectrum to spectrum at the higher end of this range. At
the lower ranges, the wavelengths of the JHU rock spectra are evenly spaced at regular
intervals of 0.001um; at higher wavelengths, the exact wavelengths measured are not as
evenly spaced and show slight discrepancies from one file to another. These discrepan-
cies can be compensated for by a linear interpolation, which at the same time allows
the wavelengths of the JHU spectra to be converted into the wavelengths for the JPL

spectra.2

Algorithm 6 (Simple Linear Interpolation Algorithm) Given finite sets of wave-
lengths W1, Ws (where the range of Wy is included in the range of Wi) and a spec-
tral measurement my : Wy — [0.0,1.0]. Construct a second, interpolated measure
mg : Wi — [0.0,1.0] as follows. For each wy € Wy, find the largest wy < wy in Wy
and the smallest wo > woy in W1 (w1 may equal wo). Form the (perhaps degenerate) line
segment connection (wy, my(wy)) and (wq, my(ws)). (If w1 = wo = wa, this will just be
a point.) Find the value along this line segment at wy. Set ma(wp) to this value. Return

mo.

2For most channels, no interpolation is necessary, since the JHU channels are included in the set of
JPL channels.
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Hull Differencing

A standard strategy in econometrics for transforming a time series into a better
approximation of i.i.d.? data is to form a series of the differences of data points and their
neighbors. An analogous strategy can be applied to spectra. There are algorithms that
fit a curve, called a hull, around any given spectrum. Depending on a parameter in the
algorithm (window size), the hull may be chosen to fit the spectrum loosely or tightly,
with few inflection points or many. Given a hull, a spectral series of hull differences can
be calculated by taking the difference at each frequency of the hull value and the raw
spectral value.

There are two advantages to using the hull differences (with a constant param-
eter for all spectra) of library and field spectra as data. The spectra of many different
minerals may show the same overall shape; taking hull differences discounts this correla-
tion. The hull differences are furthermore a better approximation to i.i.d data because
the autocorrelation of neighboring frequencies is reduced.

The hull differencing algorithm used for these experiments was provided for us

by Paul Gazis of NASA Ames:

Algorithm 7 (Hull Difference Algorithm) Given a set of wavelengths W € [wq, w1 ]
(including the endpoints), a set of measurements m : W — [0.0,1.0], and a mazimum

window size r € (0,w; — wy],

1. Set w' = w;.

3 “Identically and independently distributed.” A distribution is i.i.d. if the distribution that points
are drawn from are not are not statistically different from one another (except for a shift in mean)—e.g.,
they are all normal with statistically indistinguishable standard deviations.
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DOLOMITE (C-54)

0.4 05 0.6 0.7 08 0.9 10 1.1 1.2 1.3 1.4 15 1.6 17 1.8 1.9 20 21 22 23 24 25

Figure 5.1: A dolomite spectrum in the range [0.4um, 2.5um], showing the construction

of background

hull.

2. Search to the left of w' for the first wavelength w" € W N [w' — r,wy] such that

all points on the graph of the spectrum in the range [w' — r,w1] lie below the line

through (w", m(w")) and (w',m(w')).

3. Add the line segment connecting (w",m(w")) and (w',m(w")) to the hull.

4. Repeat steps (2) and (3) until w' = wo.

5. Return the hull that was constructed.

An example of

a hull difference calculated using this algorithm is shown in Figure 5.1.

First Differencing

An alternative preparation considered for data (which didn’t work out very

well) was first

differencing. Again, there was concern that spectral data in general
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might not be i.i.d.. One way to compensate for data which is not i.i.d. is to apply a
first differencing procedure to it—that is, to replace the data itself with the difference

between each data point and its predecessor—viz.,

Algorithm 8 (First Differencing Algorithm) Given a spectral measurement m :
W — [0.0, 1.0], where W is a sequence of wavelengths wg, w1, ..., Wy, form a new function
m': W' — [0.0,1.0], where W' results by removing the highest wavelength from W. Set

m'(w;) = m(wiy1) — m(w;) fori=0,1,....n —1. Return w'.

5.4 Algorithms

5.4.1 Simultaneous Regression

Simultaneous linear regression fits a plane to a set of data using a least squares
fitting algorithm. That is, given a set S of n data points (i1, ...,im,d) € [[1" I; x D
where variables Iy, Io, ..., I,;, are continuous independent variables and D is a continuous
dependent variable, simultaneous linear regression finds the m-plane in [[/~, I; x D
(a linear function r : [[7”, I; — D) which minimizes the sum of the squares of the
distances in the D dimension from each point in S to the plane. As it turns out, a fast
algorithm for this least squares search is available, since it can be formulated as a linear
transformation of the data points themselves. Once the regression plane for a set of data
has been found, it can be used for prediction. Given a point (a1, as,...,am) € [[j2, L,
the predicted value is r({(a1, as,..., am)).

Simultaneous linear regression was carried out in our experiments in different

ways. In many cases, we used the REGRESS command in Minitab v. 10. In some
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cases, we performed the regression transformation ourselves using our own code. In
other cases, we included regression among the algorithms to search over in the Model 1
package. We expect that these algorithms did not differ from one another in performance

in any significant way.

Algorithm 9 (Simultaneous Linear Regression) Let n be the number of sample
points for K — 1 wvariables, Y be an n X 1 vector of estimated Y wvalues, X an n x K
matriz of data (X ) values (with initial column of 1’s), and e an n x 1 vector of sample
residuals. Calculate B = (X'X)~'X"Y, which will be the K x 1 vector of estimated coef-
ficients. Calculate the p-value of each estimated coefficient. Determine which coefficients

are within the specified significance. Return the corresponding minerals.*

We applied simultaneous linear regression to the prediction of mineral class
composition of rock spectra as follows: Taking wavelengths as units and rocks and
minerals as variables, we constructed a background library by calculating a hull difference
for each of the JPL mineral spectra. We next constructed a set of target spectra by
interpolating each of the JHU rock spectra to the wavelength set of the JPL spectra
and then calculating the hull difference for each of these interpolated spectra using the
same method as for the JPL spectra. We then regressed each JHU rock against the JPL
minerals and determined which JPL minerals had p-values less than 0.05 for each rock.
We then determined which JPL mineral categories were represented among this set of
JPL minerals with p-values less than 0.05 and returned this list of mineral categories.

For instance, if the set {c03a,c03d,ts01a} of JPL minerals had p-values less than 0.05,

“See Hamilton (1992).
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then the following set of mineral categories was returned: {carbonates,tectosilicates}.
(This same reporting scheme was used for several of the algorithms we tested.)
Simultaneous linear regression was also used by the Model 1 program in a
different way. In the case of Model 1, wavelengths were taken to be variables and the
various rock and mineral spectra were taken to be units. Additional variables were
added for prediction—viz., variables reflecting the mineral classification of rock and
mineral spectra according to the 17 JPL mineral categories. A simultaneous linear
regression model was then calculated, regressing particular mineral content variables for
the JPL large grain mineral data onto the 826 wavelength variables for that library. This
model was then used to predict mineral class content for the JHU rock spectral data.
The predicted results were then compared to the gold standard compiled by examining
petrology in file descriptors for the JHU rock library. This same general schema was
used for all of the Model 1 test procedures: Tests were carried out for all of the 17 JPL

mineral categories, though only summary results for carbonates are reported below.

5.4.2 Stepwise Linear Regression

In stepwise linear regression, a set of predictors is given, and an automatic
search is performed over these predictors for a locally optimal subset. The strategy is
a “forwards and backwards” strategy: From an initial subset of predictors, predictors
are either added to the specified set or removed from the current model based on an
F-statistic. (A minimum and maximum F-statistic value are specified.) These steps are

repeated until no variables can be added or removed. The specific stepwise regression
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algorithm used is the one from Minitab v. 10, which goes as follows:’

Algorithm 10 (Stepwise Algorithm) Given set C of background variables a target
variable Y, an initial set of predictor variables M, and two values Fy and Fy for the

F-statistic (with Fy < F).

1. Calculate the set Sy = {P € M : F(P) < Fo}. If Sy # 0, remove from M the

predictor with the lowest F-statistic.

2. Calculate the set Sy = {P' € C — M : F(P") > Fi}. If S1 # 0, add to M the

predictor with the highest F'-statistic.

3. Repeat steps (a) and (b) until no more predictors can be added or removed.

Applied to the prediction of mineral class composition, we used JHU rock spectra as
targets and JPL large grain mineral spectra as background library, properly interpo-
lated and hull-differenced, in the same fashion as for the simultaneous linear regression
algorithm above. We used the same reporting scheme as well, reporting as classification
for each JHU target rock the list of minerals represented in the JPL mineral spectra
returned by the Stepwise algorithm.

A stepwise linear regression method was also used in the Model 1 analysis,
though, as with simultaneous linear regression, variables and units were interchanged
and prediction variables representing JPL mineral class composition for each rock or

mineral were added to the model.

°In preliminary tests, we tried forwards stepwise regression and backwards stepwise regression in
Minitab as well as the forwards-and-backwards combination procedure described below and found that
the combination procedure worked the best.
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5.4.3 Modified PC

The modified PC algorithm is an algorithm of our own design, motivated by
the automatic causal discovery theory in Spirtes et al. (1993). A causal interpretation of
the algorithm will be given in the next chapter; here the goal will be merely to motivate
it as a response to regression.

There are three difficulties, one structural and two statistical, which make re-
gression an inferior procedure in many applications—and in particular, in one of the
applications of interest, where JHU rock samples are compared to JPL large grain min-

erals using regression:

1. Consider any two regression variables, X, X5 among a set C of candidate causes
of an outcome variable Y. Suppose X; and X5 are correlated due to factors that
influence both X; and X» values but are not themselves in C'. Suppose, finally,
that another factor U, not included in C, influences both X7 and Xs. Then, even
if X1 has no influence on Y, even if there is no correlated error between X and Y,
and even if all common influences on X; and Y are included among the variables
in C, for sufficiently large sample sizes the partial regression coefficient for X;
will (almost certainly) have a significant value. The phenomenon is sometimes
called conditional correlated error. In the present application, it can result in the

identification of minerals that are not, in fact, components of the source.

2. Simultaneous linear regression computes the partial regression coeflicient of a vari-
able X effectively by conditioning (assuming a Normal distribution) on all other

regressors in the regressor set C—in our application, conditioning on all of the
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other 134 minerals in the JPL library. While any one of these variables may be
only loosely correlated with X, together they may be highly correlated with Xj.
In that case, the covariation of X; and Y after partialing out the variation in
Y due to other factors in C' may be effectively zero. In the present application,

multicollinearity can result in failing to identify a true component of the source.

3. The variance of the estimates of a simple regression coefficient is a function of the
sample size. The variance of the estimates of a partial regression coefficient is a
function of sample size and the number of other candidate causes, or regressors—
that is, a function of the cardinality of C'. The bigger the sample size and the
smaller the number of other regressors, the smaller the variance. Assuming a Nor-
mal distribution, the trade off is one for one: adding an extra regressor variable
is equivalent in its effect on the variance to reducing the sample size by one unit.
In the present application, reducing the number of channels used for data analysis
increases the variance of the estimates of regression coefficients. In the extreme
case in which the number of variables is greater than the sample size, regression
is ill-defined, and standard regression packages will not run at all. In our appli-
cation, regression procedures will not run using the JPL library as the regressor
set C and restricting the data to the channels with wavelengths in the interval

[2.0pm, 2.5um], since there are 135 variables but only 120 channels.

Several remedies to this last difficulty can be considered. The wavelength interval
[2.0um, 2.5um], in this case, is chosen because previous work on carbonate spectra shows

that this region has distinctive spectral features for carbonates. We could search for a
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larger range of wavelengths optimal for regression procedures in this application, but
taken as a general rule, this would add a further search problem in every new applica-
tion and might not improve accuracy of component identification. We could eliminate
some of the minerals in the JPL library from the set of possible components of the
source, but that would decrease the reliability of the procedure when those components
or spectrally similar components are actually present in the source. We could use a
stepwise regression procedure, but other experiments with small samples have found
stepwise regression less reliable than the procedure used here (Spirtes, Glymour, and
Scheines (1993)). A better solution to this problem is available.

Note that all three of the problems cited above with linear regression stem from
a single structural feature of the regression procedure. In estimating the influence of a
variable X on the outcome Y, regression conditions simultaneously on all other candidate
variables—i.e., all of the other members of C'. That is, in our (rather conventional, but
not textbook) use of regression, we test the null hypothesis that X has no influence
on Y (or is not a component of Y') by using the distribution of a test statistic that is
conditioned on all other members of C.

There is an alternative procedure that minimizes the number of variables
on which we must condition. It takes as input a set of background variables C' =
{X1, X9, ..., X, } together with a target variable Y not in C' and dynamically eliminates
variables from C' using conditional independence facts, calculated from data. Variables
are eliminated if they are independent of Y conditional on subsets of other remaining
variables in C, where the cardinality m of the subsets increases in size (m = 0,1,2,...)

until no more variables can be eliminated from C. More formally:
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Algorithm 11 (Modified PC Algorithm) Given set C of background variables and

target variable Y :

1. For each X; in C, test the hypothesis that the correlation of X; with Y is zero®; if

the correlation of X; with'Y is zero, C':= C — {Xi};

2. For each X; in C, and for each Xj # X; in C, test the hypothesis that the cor-
relation X; with Y, controlling for X; , is zero; if the correlation of X; with Y

controlling for X; is zero, C := C — {X;};

3. For each X; in C and each X, X}, # X; in C test the hypothesis that the correlation
X; with Y, controlling for X;, Xy, is zero; if the correlation of X; with'Y controlling

for X;, Xy, is zero C := C — {X;};

...and so on, until no more members of C' can be removed. Return C.

Applied to the prediction of mineral class composition in particular, we used
the same procedure as for simultaneous regression and stepwise regression, above. We
used JHU rock spectra as targets, JPL large grain mineral spectra as background library
(all appropriately interpolated and hull-differenced), and we returned as classification for
each JHU rock the list of mineral classes represented in the list of JPL spectra returned

by the above algorithm.

6This test may be carried out in different ways; the method we used was to numerically integrate
under the p.d.f. for conditional correlation as a function of sample size n and the number of compared

n—k+1 e dee
variables k, f(n, k) = % . Fl(“(niﬁk))(l —z?%) 5 2, (-1 <z < 1). (The number of “compared variables”
2

is equal to the two plus the number of conditioning varaibles.) This formula is given in Cramer (1951),
p.- 412. The shape of this p.d.f. is a sharp spike about z = 0, the width of which changes depending
on the value of n and k. A sample conditional correlation r may be judged to be nonzero just in case
|r| > d, where d is chosen so that the area under the p.d.f. f(n,k) for |x| > d is equal to the chosen
significance level «, usually 0.05.
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5.4.4 Logistic Regression

The general idea of the logistic regression algorithm used by Model 1 is to map

input to output variables as expressed by the following equation:

N,
inputs
7(w0+2i:1p ’LUi:Di)

y= (5.1)

1+e

where y is the output of the logistic function, the z;’s are the inputs, and the w;’s are
the free parameters or coefficients. The cross-entropy cost function is used to fit the

logistic function to a data set:
Ey = di - In(1/yy) + (1 — di) - In(1/(1 = y)) (5.2)

where F}, is the error for the k-th data record, y; is the output produced with the input
vector of the k-th data record, and dj, is the desired output for the k-th data record.

Cross entropy over the whole training set is
E =y By (5.3)

which is to be minimized using a gradient descent procedure. The algorithm itself is

divided into a training phase and a testing phase.

Algorithm 12 (Logistic Regression) For testing, for each pattern xy in the train-
ing set, computing the logistic output according to the above formula, the compute the
gradient of the entropy error with respect to each weight w; due to xy, then compute
the change in weights and update the weights accordingly. Repeat until convergence is

reached. For testing, compute the logistic output for each pattern xjy in the test set.



83

Applied to the problem of predicting mineral class composition of spectra, wavelengths
were taken to be variables, with the various rock or mineral spectra as units, and pre-
diction variables were added to the model to reflect the JPL mineral class composition
of the various rock or mineral spectra. A logistic regression model was constructed ac-
cording to the training portion of the above algorithm using the spectra in the JPL large
grain mineral library. Predictions were then generated using this model for the spectra
in the JHU rock library, and these predictions were then compared to the gold standard

constructed by examining petrology in the JHU rock library file descriptors.

5.4.5 Classification and Regression Trees (CART)

As implemented in Model 1, these are binary decision trees which split on a
single value of a single variable at each node (e.g., if V' < x then first branch, else second

branch, for some z). Optimal splitting criteria at any specific node are found as follows:
O(slt) = Max;(P(si/t)) (5.4)
O(slt) = 2PLPRIF|P(j/tL) — P(j/tr)| (5.5)
After the full tree is grown, branches that reduce the overall effectiveness of the tree

are pruned away by computing a strength g(¢) for each non-terminal node ¢, taking into

account the misclassification rate and the statistical significance of the node.

Algorithm 13 (CART) A binary decision tree is constructed with rules of the form

“If V< x then first branch, else second branch,” where the “r” in each rule is selected
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to mazimize ®(s|t), defined as follows:

®(slt) = 2P PRE{y |P(j/tr) — P(j/tr)|
tr, = left offspring of node t
tr = right offspring of node t

total # of patterns at tr,

P —
L total # of patterns in training set
P — total # of patterns at tp
BT Yotal # of patterns in training set
Plltn) = total # of class j patterns at iy,
I = total # of patterns at t
. total # of class j patterns ot tg
P(jltr) =

total # of patterns at t
Once the full tree is constructed, branches are pruned at nodes t that have the smallest
score g(t) defined as follows:

R(t) — R(T;
=1

R(t) = r(t)p(t)

g(t) =

# of class j patterns at t
total # of patterns at t
# of patterns at t
total # of patterns in the training set

R(T) = Y R()

veT]

r(t) = 1—Ma$i[

where |T}| is the number of leaves in the subtree headed by node t.

CART models implementing this algorithm were applied to the prediction of mineral
class composition of spectra using the same training and testing regime as for the the
other Model 1 tests. With the 826 wavelengths of the JPL library taken as variables, the

various mineral and rock spectra taken as units, and with prediction variables added to
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the model to represent mineral class composition according to the 17 JPL mineral cate-
gories, a CART model was constructed using the JPL mineral spectral data. This model
was then used to predict mineral class composition for each of the 192 JHU samples,
and these predictions were compared to the gold standard constructed by examining

petrology in file headers.

5.4.6 Naive Bayes Classifiers

The naive Bayes algorithm used by Model 1 assumes that the inputs are inde-
pendent and then estimates the conditional probability density function for each output
class. Since independence is assumed, the marginal densities for the inputs P(xz[i]|y) are
multiplied together to produce the density estimate P(z|y). For a very simple example,

the naive Bayes output for a binary classifier would be:

P(Y =1)P(zly =1)
Ply=0)P(zly =0)+ P(y = 1)P(z]y = 1)

(5.6)

This approach is applied to the prediction of mineral class composition for rock spectra
in a similar way to the other Model 1 tests above. Wavelengths were taken as variables,
spectra for rocks and mineral as units, and additional variables were added to represent
mineral class composition according to the 17 JPL mineral categories. A naive Bayes
model was then constructed using the JPL mineral spectral data, and this model was
then used to predict mineral class composition for the JHU rock spectral data, with
results compared to the gold standard constructed by examining petrology of JHU rocks

in file headers.
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5.4.7 Backpropagation

Backpropagation is a technique for training neural networks to perform clas-
sifications. In a typical backpropagation scheme, one sets up a feedforward network of
nodes in three layers—the input layer, the hidden layer, and the output layer. Patterns
of activation are applied to the nodes in the input layer, and if they exceed a certain
threshold, a signal is sent on from each of the nodes in the input layer to each of the
nodes in the hidden layer. Each node in the hidden layer, therefore, receives input from
each node in the input layer. A weighted sum of these inputs is then sent to a filter func-
tion, and if the output of the filter function exceeds a certain threshold, a signal is sent
on to all of the nodes in the output layer. Each node in the output layer thus receives
a pattern of activation from nodes in the hidden layer, just as nodes in the hidden layer
received a pattern of activation from nodes in the input layer. Activation is propagated
from the hidden layer to the hidden layer to the output layer, and depending on exactly
how inputs at each stage are weighted, patterns at the input layer are transformed into
other, specific patterns at the output layer.

Model 1 implements a backpropagation neural net of this sort using the follow-

ing algorithm, divided into training and testing phases:

Algorithm 14 (Backpropagation) In the training phase, for each pattern in the train-

ing set, and for each node j of layer k (except the output layer), compute its output

1787n6tjk

Yik = e

Np_1+1
where netj, = l:kl """ Compute the average root-mean-square error

E; = %ijl J(dij — yij)®. Change the weight w;; between node j and input node | as

follows: dwj; = —ngf?l + a(dwy, — dwj)), where n is the step size of the steepest descent
J
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and o 1s the momentum term to which the minimization is “smoothed” over successive

descents. In the testing phase, for each pattern in the test set, for each node j of layer

—netjk. Np_1+1

k (except the output layer), compute its output yji = 178 where netjr = ) ;7

For the output layer, compute yj = ﬁ where netj, = » ;] Wy

This algorithm was used to predict mineral class composition in the same way as the
other Model 1 tests. Wavelengths were taken to be variables, mineral and rocks units,
with additional variables added for prediction to represent mineral class composition for
the 17 JPL mineral categories. A backpropagation neural net model was constructed
using the mineral spectra of the JPL library; the rock spectra of the JHU library were
then used in the testing phase to generate predictions of mineral class composition,
which were then compared to the gold standard classifications generated by examining

petrologies of the JHU samples in file descriptors.

5.5 Experiments

Five experiments are reported. In the first, the expert classification from Chap-
ter 4 is compared directly to classification by the modified PC algorithm on all 17 JPL
mineral classes. In the second, various preparations and identification schemes are com-
pared to each other for a single limestone sample measured in the field. In the third,
various algorithms, preparations methods, and identification schemes are compared to
one another on the task of identifying carbonates from among the JHU rocks. In the
fourth, various algorithms, preparation methods, and identification schemes are com-

pared to one another on the task of identifying carbonates from among the Silver Lake
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field samples. In the fifth, the Model 1 data mining program is used to quickly compare

hundreds of other models to the models tested on carbonate identification.

5.5.1 17 Class Comparison of Expert to Modified PC, JHU Rock Sam-

ples

In the previous chapter, an expert spectroscopist judged, for each of 191 JHU
rock samples and for each of the 17 JPL mineral classes, which classes were present
in the composition of which targets. The modified PC algorithm was then run on the
same spectra, using the entire [0.4um — 2.5um| range and outputting a JPL class if any
representative of that class was found for the sample. For eight of the seventeen JPL
mineral classes, no representative, or no more than two representatives, were present in
the JHU library; for those classes the experiment is of no significance. For tectosilicates,
carbonates, and nesosilicates (i.e., the three most accurate categories for the expert),
there was a tradeoff between expert performance and modified PC performance; expert
performance was more accurate, whereas modified PC performance had better coverage.
For phyllosilicates, inosilicates, and oxides, the expert outperformed the modified PC
algorithm in both accuracy and coverage. For elements and sulfides, there was no sig-
nificant difference between expert and modified PC perormance. The most interesting
comparisons are for the three hightest accuracy categories for the expert; for these, the
positive identifications of the human expert have significant reliability and can be ap-
proximated (somewhat less reliably) by the modified PC algorithm. Numerical results

are given in Table 5.3 and shown graphically in Figures 5.2 and 5.3.
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Table 5.3: Calculated values presented in Figures 5.2 and 5.3. (“Tr” = truth, according

to the exclusive gold standard Go; “Exp” = subject from expert experiment; “mPC”

modified PC.)

| P(Tr | Exp) | P(Exp | Tr) | P(Tr [ mPC) | P(mPC | Tr) |

tectosilicates 1.00 0.18 0.83 0.56
carbonates 0.96 0.39 0.63 0.46
nesosilicates 0.77 0.19 0.57 0.53
phyllosilicates 0.72 0.69 0.52 0.51
inosilicates 0.59 0.63 0.43 0.29
oxides 0.49 0.38 0.23 0.15
elements 0.12 0.5 0.07 0.05
sulfides 0.12 0.22 0.07 0.22
cyclosilicates 0.00 0.00 0.00 *
halides 0.00 * 0.00 0.00
hydroxides 0.00 0.00 0.00 0.00
sulphates 0.00 * 0.00 *
arsenates * * 0.00 0.00
borates * * 0.00 0.00
phosphates * 0.00 0.00 *
sorosilicates * 0.00 0.00 *
tungstates * * * *
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Figure 5.2: A comparison of carbonate identification by an expert examining unlabeled,
uniformly formatted graphs presented in random order (“Expert”) to true carbonate
identification as judged by an expert examining petrological information included in

headers of JHU data files (“Truth”).
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Figure 5.3: A comparison of carbonate identification by the modified PC algorithm
(“Tetrad”) to true carbonate identification as judged by an expert examining petrological

information included in headers of JHU data files (“Truth”).
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Table 5.4: Analyses of the spectrum of a sample taken near Silver Lake, CA, known
to contain dolomite and calcite and described as “dolomite with calcite veins.” Only
minerals with positive regression coefficients are shown. The mineral ‘co3’ is dolomite;
‘cob’ is calcite (a and c suffixed denote different varieties of calcite); ‘c10’ is a carbonate
that is neither calcite nor dolomite; identifiers beginning with‘cs’ refer to cyclosilicates;
‘al0’ is an arsenate.

‘ Water lines removed ‘ Data Treatment ‘ Water Lines Included ‘

modified PC | Stepwise Stepwise | modified PC
c03d c03d codd c05d
c05a cs02a None cs02a
cs04a cobc
codd cobc coda cobc
codc codd cs02a csOla
coda Hull Difference | coba cs02a
cs02a cs04a
alla alla
cooC codd code None
codc First Difference
c10a

5.5.2 Single Sample Limestone Analysis

Prior to receipt of the Silver Lake field data, a single limestone spectrum mea-
sured by Roush and Glymour near Silver Lake, California was sent to us for examination.
We used this single limestone sample to get a rough estimate of the performance of step-
wise regression and the modified PC algorithm as applied to spectra measured in the
field. We used the JPL Large Grain Mineral Library as a background library for each
algorithm, in three different preparations: (a) as raw spectral intensities, (b) as hull
differences of intensities, and (c) as first differences of intensities. As the sample was
measured in the field, noise was present in the vicinity of 1.9um due to atmospheric
moisture (“water lines”). Therefore, we examined the effect of including water lines in
the analysis as well as the effect of excluding water lines. Predictions on each method

of the mineral composition of the single sample spectrum are shown in Table 5.4.
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These experiments, it should be pointed out, were performed “blind.” That
is, when the experiments were performed, a scientific analysis of the composition of the
sample was not available. As Table 5.4 shows, the modified PC algorithm estimates
the composition of the sample to contain calcite and dolomite, when water lines are
removed, both for data with no preparation and for data which was hull-differenced.
We therefore judged, based on this observation, that the sample contained calcite and
dolomite. Independent analysis (by acid test) at Washington University showed the
specimen to be dolomite with calcite veins. If, however, first differences of spectral
intensities were used, no output was obtained (because the correlations with the spectra

of the true components, calcite and dolomite, then fall to zero).

5.5.3 Carbonate Identification, Silver Lake Samples

In an experiment designed to broaden the range of procedures compared, we
considered a variety of methods for predicting carbonate content in the Silver Lake field

samples. The following combinations of procedures were used to analyze the data:

1. The modified PC algorithm, seeking to recognize any carbonates, using a restricted

interval of wavelengths with intensity patterns characteristic of carbonates.

2. The modified PC algorithm, seeking to identify carbonates from calcites and
dolomites only, using a restricted interval of wavelengths with intensity patterns

characteristic of carbonates.

3. The modified PC algorithm, seeking to recognize any carbonates, using all wave-

lengths available from the instrument.
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Table 5.5: Performance of modified PC (with variations) and simultaneous linear regres-
sion (with variations) against the 21 Silver Lake field samples, testing the identification
of carbonates. Modified PC results are shown in (a); regression results are shown in (b).
Results obtained from an expert system experiment examining the same data are also
shown in (b).

(a)

mPC mPC mPC mPC

all Carbs | all Carbs Calcite | Calcite &

[0.4,2.5] | [2.0,2.5] | & Dolomite | Dolomite

[0.4,2.5] [2.0,2.5]

# Carbs Attempted 19 13 16 12

# Carbs Correct 13 12 13 12

# Non-carbs MisID’d 6 1 3 0

# Carbs MisID’d 0 1 0 1

Total # Errors 6 2 3 1

P(Carb | Carb ID) 0.68 0.92 0.75 1.00

P(Carb ID | Carb) 1.00 0.92 1.00 0.92

(b)
Regr Regr Regr Regr | Expert
all Carbs | all Carbs Calcite | Calc & Dol | System
[0.4,2.5] [0.4,2.5] | & Dolomite [0.4,2.5],
Pos. Coef. [0.4,2.5] | Pos. Coef.

# Carbs Attempted 21 20 20 15 9
# Carbs Correct 13 13 13 11 9
# Non-carbs MisID’d 8 7 7 4 0
# Carbs MisID’d 0 0 0 2 4
Total # Errors 8 7 7 6 4
P(Carb | Carb ID) 0.62 0.65 0.65 0.73 1.00
P(Carb ID | Carb) 1.00 1.00 1.00 0.85 0.69
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4. The modified PC algorithm, seeking to recognize only calcites and dolomites, using

all wavelengths available from the instrument.

5. Linear regression, seeking to recognize the presence of any carbonates using all

wavelengths available from the instrument.

6. Linear regression, seeking to recognize the presence of any carbonates using all
wavelengths available from the instrument, but reporting only components with

positive regression coefficients.

7. Linear regression, seeking to recognize carbonates from calcites or dolomites only,

using all wavelengths available from the instrument.

8. Linear regression, seeking to recognize carbonates from calcites or dolomites only,
using all wavelengths available from the instrument, but reporting only components

with positive regression coefficients.

9. An expert system seeking to recognize the presence of any carbonates.”

The data, with sample names in the leftmost column, are given in Appendix B. Note
that the number of samples correctly estimated to contain carbonates, given at the bot-
tom of each column, is based on the assumption that the expert field identifications
(shown also in Table C.1) represent the truth. This is a reasonable assumption, since

expert field identifications rely on both examination of physical samples and examination

"The expert system in question used the following procedure: (a) Apply a hull fit to the spectrum
to subtract the background; (b) Use first and second derivative heuristics to obtain a list of spectral
features; (c) Use a simple noise test to obtain a measurement of noise in the relevant wavelength range;
(d) Use the facts from steps (b) and (c) as input to a simple forward-chaining expert system, consisting
of a pattern matcher operating in association with a rudimentary math parser. Rules for identifying
carbonates included looking for properly shaped features in the 2.0-2.5 pm range.



95

of measured spectra and, where tested, agree with laboratory analysis of the samples.
Assuming instead that remote expert classifications represent the truth would change
values only for samples ‘jawa’ and ‘R2D2,” increasing the scores of two regression pro-
cedures by one and the score of the expert system by two. Note also that all data were

hull-differenced for all procedures.

5.5.4 Carbonate Identification, JHU Rock Samples

The same collection of procedures from the Silver Lake carbonate identification
experiment (with the exception of the expert system) was applied to the JHU large grain
rock library. The results are shown in Table 5.6, in a format parallel to the comparative
Silver Lake results of Table 5.5. The results from the human expert are included in the
same table for comparison, since they were targeted at the same set of spectra.

These results, taken together, suggest that the modified PC procedure, in com-
bination with the use of a restricted set of wavelengths as data preparation, and the
identification of carbonates through recognition of calcites and dolomites, outperforms
all of the other eight procedures considered and is nearly as good as expert identification
in the field using physical examination and spectra. Three of the four regression pro-
cedures are essentially useless overfittings which guess that almost all samples contain
carbonates and so are correct at about the relative frequency of carbonates in the data
set (= 0.62). The fourth regression procedure is little better. The results also suggest
that restricting wavelengths and identifying carbonates through calcites and dolomites
are important to the reliability of the procedure—without these features, the modified

PC procedure overfits almost as badly as regression and is inferior to an expert system
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Table 5.6: Performance of modified PC (with variations) and simultaneous linear re-
gression (with variations) against the 192 JHU large grain rock samples, testing the
identification of carbonates. Modified PC results are shown in (a); regression results are
shown in (b). Relevant data from the Model 1 experiment are also shown in (a), and
relevant data from the expert experiment of Chapter 4 are shown in (b).

()

mPC mPC mPC mPC | Model
all Carbs | all Carbs Calcite | Calcite & 1
[0.4,2.5] | [2.0,2.5] | & Dolomite | Dolomite
[0.4,2.5] [2.0,2.5]

# Carbs Attempted 58 63 42 41 73

# Carbs Correct 38 47 36 38 36

# Non-carbs MisID’d 20 16 6 3 37

# Carbs MisID’d 54 45 56 54 56

Total # Errors 74 61 62 57 93

P(Carb | Carb ID) 0.66 0.60 0.90 0.93 0.49

P(Carb ID | Carb) 0.41 0.51 0.39 0.41 0.39

(b)
Regr Regr Regr Regr | Human
all Carbs | all Carbs Calcite | Calc & Dol | Expert
[0.4,2.5] [0.4,2.5] | & Dolomite [0.4,2.5],
Pos. Coef. [0.4,2.5] | Pos. Coef.

# Carbs Attempted 192 191 154 176 25
# Carbs Correct 92 91 79 70 24
# Non-carbs MisID’d 100 100 75 86 1
# Carbs MisID’d 0 1 13 2 68
Total # Errors 100 101 88 88 69
P(Carb | Carb ID) 0.48 0.48 0.51 0.51 0.96
P(Carb ID | Carb) 1.00 0.99 0.86 0.98 0.26
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modeling an expert spectroscopist.

In the laboratory test, the human expert correctly identified 24 carbonates,
and of these, 20 were limestone or marble samples, principally composed of calcite and
dolomite. In effect, the human expert was a calcite or dolomite detector. The modified
PC algorithm using truncated spectra but attempting to identify any JPL carbonates
in the JHU library, rather than just calcites or dolomites, correctly identified all 28 of
the limestone and marble samples in the JHU library. Of the 35 other JHU samples
the modified PC algorithm identified as carbonates, 19 were carbonates and 16 were
not—in other words, outside of limestones and marbles, the estimated chance that an
identification of a carbonate was correct was only a little better than chance. When the
modified PC algorithm using truncated data reported carbonate presence only when it
first output calcite or dolomite, outside of limestones and marbles the probability that
an identification of a carbonate was correct was about 0.82. Put another way, the version
of the program outputting carbonate only if calcite or dolomite were identified found 14
of the 19 carbonates found by the unrestricted modified PC algorithm using the same
wavelengths, and avoided 13 of the errors of the latter procedure. Two explanations
are possible: many of the carbonate samples besides marbles and limestones may have
contained calcite or dolomite; alternatively, the calcite and dolomite spectra in the region
[2.0 mm, 2.5 mm] may be so highly correlated with the spectra (in that region) of certain
other carbonates that a calcite or dolomite detector will detect them as well. The second
explanation is certainly true, and the first may also be true.

The correlations among the hull difference truncated to [2.0 mm, 2.5 mm] for

the 15 JPL carbonates show that one or another of the calcites (c03a, c03d, c03e) are
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Table 5.7: Correlation matrix of the 15 JPL carbonate spectra truncated to the interval
[2.0pm, 2.5um).

cOla c02a c03a c03d c03e cO4a c0ba
c02a 0.671
c03a 0.922 0.439
c03d 0.943 0.533 0.970
c03e 0.959 0.499 0.986 0.957
c04a -0.260 -0.286 -0.202 -0.105 -0.251
c0ba 0.736 0.206 0.908 0.799 0.867 -0.227
c05¢c 0.686 0.140 0.857 0.721 0.828 -0.280 0.985
c06a -0.136 -0.251 0.034 0.112 -0.084 0.787 0.073
c07a 0.465 0.309 0.461 0.427 0.448 -0.059 0.582
c08a 0.977 0.746 0.870 0.925 0.907 -0.228 0.641
c09a 0.948 0.513 0.983 0.948 0.985 -0.265 0.907
c10a -0.291 0.134 -0.332 -0.196 -0.394 0.064 -0.413
clla 0.941 0.712 0.867 0.936 0.879 -0.059 0.654
cl2a 0.528 0.338 0.542 0.572 0.500 0.200 0.576
c05¢c c06a c07a c08a c09a c10a clia
c06a -0.007
c07a 0.605 0.159
c08a 0.574 -0.079 0.403
c09a 0.870 -0.028 0.552 0.899
cl0a -0.470 0.336 -0.006 -0.158 -0.340
clia 0.571 0.133 0.454 0.976 0.888 -0.086
cl2a 0.540 0.459 0.915 0.507 0.593 0.093 0.616

strongly correlated with cOla (strontianite) (r = 0.943), c09a (siderite) (r = 0.985) and
clla (smithsonite) (r = 0.936), while one of the dolomites (c05a, cO5c) was strongly
correlated with c09a (siderite) (r = 0.907). Some of the seven remaining carbonate
spectra (e.g., trona) look quite different in the relevant region. The correlation matrix
of the truncated spectra is given in Table 5.7, and graphs of the hull-differenced spectra

(untruncated) are given in Appendix A.
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5.5.56 Carbonate Identification, JHU Rock Samples, Model 1

Model 1 is a commercial data mining program which automatically searches
through a bank of models for the model which best predicts data in a training set.
The best predictors from this search can then be used to perform classifications on a
test set. We presented our JHU data to Model 1 and configured the program so that it
would automatically build and compare hundreds of different models, ranking the models
in the process. The types of models compared were simultaneous linear regression,
stepwise linear regression, logistic regression, classification and regression trees (CART),
naive Bayes classifiers, probabilistic decision trees, and backpropagation neural nets.®
Variations of these models were attempted, some of which used cross-validation and
some of which did not.

Model 1 found that a cross-validated linear regression procedure performed best
on the JPL library (a simple linear regression procedure performed worst). We applied
this best-performing procedure to a the samples of the JHU rock library to predict
carbonate composition. Model 1 listed the samples of the JHU rock library in order
from those most likely to contain carbonate (according to the algorithm tested) to those
least likely to contain carbonate (according to the algorithm tested) and reported how
far down in the ordering one must go for any specific number of correct identifications
to be obtained. The result for 36 correct carbonate identifications is shown in the next

to right-most column of Table 5.6. Results for other selections are similarly poor.

8See Section 5.4 for descriptions of these algorithms.
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5.6 Summary

We found that the modified PC algorithm outperformed all of the other ma-
chine algorithms tested and performed comparably to the human expert on the task of
identifying carbonates from spectral data. In the 17-class experiment we found that the
modified PC algorithms performed comparably to a human expert in the field when com-
pared to a suitably chosen gold standard. In the single-sample experiment, we found
that the modified PC algorithm could be an excellent blind predictor of at least one
type of mineral class component—rviz., carbonates. We therefore followed up with two
experiments in which prediction of carbonate content was carried out using a variety
of different algorithms. In the carbonate study using Silver Lake data, we found that
one particular variation of the modified PC algorithm outperformed all other variations
of the modified PC algorithm, as well as all variations of regression tested, when com-
pared to a gold standard of expert classifications in the field. This particular variation
also outperformed an expert system. In the carbonate study using JHU data, we found
similar results; the same variation of the modified PC algorithm outperformed all other
variations of the modified PC algorithms and all variations of regression tested when
compared to a suitable gold standard. It performed comparably to the humen expert
from Chapter 4. Finally, using the commercial Model 1 package, we showed that the
modified PC algorithm outperformed several other types of algorithms as well (multiple
variations each of simultaneous linear regression, stepwise linear regression, logistic re-
gression, classification and regression trees, naive Bayes classifiers, probabilistic decision

trees, and three-layer feedforward backpropagation nets).



Chapter 6

Conclusions and Prospects

6.1 Discussion of Experiments

The modified PC algorithm was treated in Chapter 5 as one classification al-
gorithm method among many. One possible reason for its success in the mineral clas-
sification from spectra problem is its sensitivity to causal structure. This suggests a
response to the skeptical worries from Chapter 2 that were addressed experimentally in
Chapters 4 and 5—viz., whether human expertise is needed to do causal discovery with
real scientific data, and whether Tetrad-style algorithms perform well under conditions
of mixing. The experimental results of Chapters 4 and 5 speak directly to these issues,
so aside from pointing out the results themselves and casting them in causal terms where
appropriate, very little else needs to be said by way of response.

To Freedman and Humphrey’s complaint that not all knowledge relevant to
causal search can be programmed into a computer (the “Automation Principle”), one

need only say that the need never arose for us to program extraordinary amounts of
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background knowledge into the modified PC algorithm in order for it to be as successful
at solving a very difficult causal discovery problem as a domain expert. It is true that
for some mineral categories the domain expert outperformed the algorithm, but for
other categories the algorithm outperformed the domain expert, so the performances
were comparable. Even if there happened to be relevant background knowledge for this
problem which could not be programmed into a computer (the existence of which has
not be demonstrated), it turned out to be irrelevant for this particular task.
Cartwright’s worry that new algorithms have to be invented for each new causal
discovery problem requires a slightly more cautious response. On the one hand, we did
not use the standard PC and FCI algorithms in our experiments to tackle the mineral
class identification from spectra problem, so in that sense we invented a new algorithm
to solve a specific problem. We also built important background knowledge into the
modified PC model which is not true of every causal discovery problem. However, it
would be an overstatement to insist that an algorithm completely different in character
from the PC or FCI algorithms was invented. The same theory used in the PC and
FCI algorithms was simply applied against a specific set of background assumptions; the
modified PC algorithm is essentially just a simplification of the first part of the PC or
FCI algorithm, not a new invention. In theory, there is no need to use the modified PC
algorithm in place of, say, the FCI algorithm. The FCI algorithm was tested on subsets of
the same data (20 to 30 variables) and produced similar results to those produced by the
modified PC algorithm. The problem was that the FCI algorithm became too unwieldy
when applied to larger variable sets (the number of variables compared simultaneously

in the modified PC experiments was well in excess of 100). So the motivation for using
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the more streamlined algorithm was primarily one of scale.

As for the issue of mixtures, two types of mixtures were referred to in Chapter
2—physical mixtures and mixtures of records. With regard to physical mixtures, the
earlier discussion of expert knowledge in the domain of mineral and rock spectroscopy!
illustrate how the various processes involved in absorption and reflection combine to-
gether in a physical sense. The fact that the object of spectroscopic measurement is
such a complex physical mixture of processes, so many of which are nonlinear, might
lead one to believe that spectral measurements resulting from such heavy mixtures might
not generate the kind of data that would allow a Tetrad-style algorithm to produce re-
liable causal inferences. Yet if we look at the data from Chapters 4 and 5 we see that
the results of the algorithmic analysis are just as reliable as the results of the expert
analysis. The modified PC algorithm therefore performs well under conditions of heavy
physical mixing on this problem.

To see how the modified PC algorithm presents us with a mixture of records
of the sort Cartwright points to (and of the sort pointed to in the Kendall and Simpson
examples), it helps to draw a causal diagram for the mineral composition from spectra
problem. Figure 6.1 illustrates the basic idea. For each of a series of background mineral
intensities Iy, Io, ..., I,, we assume initially that there is a common cause between that
intensity and the intensity of some target rock I;. The goal of the modified PC algorithm
in this context is to eliminate as many of these common cause assertions as possible
through considerations of conditional independence. We assume that if a rock contains

some mineral as a component, then it’s much more likely that minerals of the same

!See Chapter 3.
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Figure 6.1: A causal interpretation of the initial state of the modified PC algorithm as
applied to spectral data before removing any edges. The algorithm removes as many
common cause assertions («+) as possible based on conditional independence consider-
ations. The I; variables represent measured spectral intensities of background minerals
at specific wavelengths. (Wavelengths are taken to be units in the analysis.) The I,
variable represents spectral intensity of the target rock at the same wavelengths.

type as that component will have common cause connections with the target rock. By
eliminating as many of the common cause connections as possible through the modified
PC procedure, background minerals which have strong connections with the target rock
(and are therefore very likely to be related to its mineral components) will be discovered.

Notice that the existence of possible common cause connections among the I;’s
themselves is irrelevant to the modified PC algorithm. For instance, if there happens to
be a common cause connection between I; and I> and if we discover that I; is independent
of I, it still follows that the common cause connection from I; to I5 should be removed

from the graph, because the path I < I <+ I; contains a collider.?

When we tested small subsets of the spectral intensity variables against the FCI algorithm, we
discovered that the results typically contained common cause arrows not just between the background
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The simple graph in Figure 6.1 can be expanded somewhat, though the degree
to which we can incorporate new variables is limited by our understanding of the quan-
tum processes involved and how they react to incident radiation across mineral types.
It’s tempting to include latent variables that represent the general surface reactivity
of particular minerals or rocks to incident light at particular wavelengths, as shown in
Figure 6.2. In this diagram, each of the surface reactivity variables, together with in-
cident light (L),? is causally responsible for the intensities we measure for each of the
background minerals and the target rock. We might think of each L — F; — I; path (as
well as the path L — F; — I;) as a very simple model for a spectrometer at a particular
wavelength. When we measure the intensity of a rock at a particular wavelength, we
shine light on the rock at that wavelength and expect a certain intensity of light at the
same wavelength to be reflected back.* The actual processes by which light is absorbed
and reflected at particular wavelengths for rocks and mineral are still largely mysterious.
Moreover (and more to the point), what we know about the absorption and reflection
of light for certain minerals does not easily transfer to other minerals, so it’s unclear
how to draw a general causal graph (general across rocks and minerals) in which more
specific variables than the ones in Figure 6.2 are included.

Notice that the expanded graph supports the modified PC algorithm as well. If

minerals and the target but also between the background minerals themselves. This appears to confirm
the general analysis being given here of how the PC algorithm applies to the mineral spectroscopy data.

3The representation of light as a single casual parent for all of the F' variables is unrealistic, since
different spectra were measured using different light sources, but it doesn’t in fact matter from the
point of view of the modified PC algorithm whether light is represented as one latent parent of all of
the F variables (where we condition on this variable) or as a separate latent parent of each F' variable
separately.

“There are wavelength-shifting effects in spectroscopy as well which are ignored for purposes of this
analysis.
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Figure 6.2: The [ variables are as in Figure 6.1; surface reactivity for particular minerals
or rocks are represented using the F' variables. L represents intensity of incident light
(values of which we may ideally condition on for spectral measurement).

I WL It | I, for example, the edge Fy <> Fpr must not be in the graph. In fact, it doesn’t
matter whether there are any common causal connections among the I;’s or among the
F;’s; the algorithm is still supported. For instance, if there is a common cause I; < I,
and we discover that I L I}, it still follows that the edge F; <> F} should not be in the
graph, because of the collider along the path I} < I « F5 <> F; — I;. Common causes
or not, the modified PC algorithm for this diagram can be expected to eliminate edges
F; <> F; that represent a lack of common causal connection between background library
minerals and target rocks.

If we start with the assumption that there are common causal connections to
be discovered between intensity data for background minerals and some target rock, it

becomes evident fairly quickly that the causal analysis we are engaged in is an extremely
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complicated mixture in Cartwright’s sense. Processes of reflection for minerals and rocks,
so far as spectrographic measurement is concerned, act at particular wavelengths—that
is, the causal processes acting to produce observed intensities at the given wavelengths
measured are wavelength-specific. 'We could produce a graph like the one in Figure
6.1 at a particular wavelength rather than considering how the graph reacts across
wavelengths. Even though we don’t have enough data at any particular wavelength to
determine with confidence what such a graph would look like (since we typically only
have one data point at each wavelength), the observed intensity at each wavelength is
certainly the result of a causal process acting at that wavelength, for which many more
measurements could in principle be taken. The data we have though is not restricted to
a particular wavelength; instead, it spans the range of wavelengths under consideration
and is organized (through interpolation and machine design) so that a particular set
of wavelengths is used throughout for a variety of different minerals and rocks. These
wavelengths themselves are treated as units when applying the modified PC algorithm—

5 The causal

a perfectly reasonable way to treat the data under the circumstances.
graphs which result are therefore not causal graphs for particular wavelengths but rather
causal graphs for data from different wavelengths taken together—a mixture, in exactly
Cartwright’s sense.

The relevant question, therefore, is whether the causal graphs constructed for

each of the target rocks for the modified PC experiment summarized in Chapter 5

constitute good evidence that the modified PC algorithm is a reliable predictor of causal

5Given a rectangular array of data of the format shown in Table 5.1, one has to choose in a data
analysis whether to take wavelengths as units or minerals/rocks as units. In the modified PC analysis
we chose wavelengths; in other analysis, we chose minerals/rocks.
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structure under conditions of heavy mixing, in this second sense (mixture of records).
There is no question that spectral data used in the experiments are heavily mixed. There
is also no question that the modified PC algorithm performs comparably to a human
expert on exactly the same task of inferring mineral composition of target rocks. By
the criterion that Freedman and Humphreys suggest, this should count as success; the
modified PC algorithm performs comparably to a human expert on an extraordinarily
difficult causal inference problem. Given that expert performance is the only criterion
available against which to compare the results of the modified PC algorithm—for this
kind of data, on this problem—there is very little more that can be said by way of
objective analysis than this.

The domain expert experiment also constitutes a counterexample to Freedman
and Humphreys’ position that machine algorithms are inferior to analysis by domain
experts for complex and nuanced causal discovery problems taken from normal science.
The number of variables involved in the experiments of Chapters 4 and 5 is large, and
the data sets contain a sizable number of records. Because of this and because of the
nature of the variables involved, the problem is extraordinarily difficult to solve from
a causal point of view. The aspect of difficulty is underscored by the amount of time
required in Chapter 4 by the domain expert to analyze spectral graphs. The aspect
of nuance is underscored by the attitude generally taken by domain experts who give
explanations of how to read spectral graphs. Finally, the aspect of grounding of the
mineral composition from spectra problem in normal science is underscored by the fact
that spectra are measured and spectral graphs interpreted on a regular basis in geology

and other disciplines. Our own interest in the problem was driven by a research project
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through NASA Ames, the goal of which is to develop new methods for data collection
and analysis for future Mars Rover missions. By all accounts, this is exactly the kind
of problem which Freedman and Humphreys claim cannot be solved effectively through
machine methods and which require instead the intervention of domain expertise. And
yet the results of Chapters 4 and 5 show that a fairly general machine learning algorithm

was capable of solving the problem as well as was a domain expert.

6.2 Prospects

This work is currently being extended in a number of directions, several of
which are directly related to the issue of mixtures. As the hull-differenced spectra of
carbonates from the JPL library in Appendix A show, certain regions of the spectrum
from 0.4 pum to 2.5 um are more indicative of whether a mineral is a carbonate than
other regions. For example, the region [2.0pm,2.5um] is much more informative than
the region [0.4um,0.8um].

One research project has attempted to find the best subset regions (Moody,
Silva, and Vanderwaart 2000) of the interval [0.4um, 2.5um] over which the modified PC
algorithm best predicts mineral class components of rocks. Two approaches were tested.
The first divides up the spectrum in the range [0.4um,2.5um] into regular subintervals
and calculates the entropy of spectra within these subranges for particular types of
spectra (carbonates, inosilicates, oxides, and phyllosilicates). The second uses a genetic
algorithm to find subintervals and unions of subintervals which are especially helpful for

predicting carbonate content of rocks. These algorithms did not improve significantly
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over the expert results for carbonates reported in Chapter 4; however, there was a
marked improvement of modified PC results when using optimal subintervals over using
the entire [0.4um, 2.5um] range.

Plans are in the works to extend the algorithmic analysis in Chapter 5 into
the infrared range ([3.0um,30um]). For many types of minerals, the infrared range
is much more diagnostic than the visual to near infrared range ([0.4um,3.0pum]). In
silicates, for instance, the strongest spectral features are between 8um and 12um,° well
into the infrared range. These stronger features allow silicates to be distinguished more
easily from nonsilicates and from one another. A substantial amount of spectral data is
available for rocks and minerals in the infrared range, and more data is in the process
of being assembled.

Finally, there are obvious ways to extend the modified PC algorithm (and
other algorithms discussed in Chapter 5) to other spectral techniques—e.g., gamma ray
spectroscopy, Raman spectroscopy, etc. The modified PC algorithm, especially, is a
general technique with very few special assumptions built in about the type of spectra
being classified.” There is every reason to believe that the modified PC algorithm and
other similarly general algorithms would work equally well for other kinds of spectral

data.

6See Salisbury, Walter, Vergo, and D’Aria, (1991, p. xiv).

"The measure of conditional independence—conditional correlation—assumes that the data can be
modeled linearly, but other measures of conditional independence can be constructed.



Appendix A

JPL Mineral Library

A.1 Introduction

This appendix contains ancillary information about the Jet Propulsion Labo-
ratories (JPL) Mineral Spectral Library. The library itself is published in Grove, Hook,
and IT (1992). As explained in the text, each data file in the library is measured at
one, two, or three different grain sizes. The options are Oum — 4bum, 45um — 125um,
and 125um — 500pm (“small”, “medium”, and “large”). There are 160 minerals in the
library as a whole, and out of these, 135 are measured at the large grain size. These
135 large grain spectra are used as the background library for relevant experiments in
Chapters 5.

The material in the following section provides background information for
preparation of the JPL Mineral Library. Table A.1 lists the mineral categories used
in the JPL library along with the number of minerals represented in each category. Ta-

ble A.2 gives a categorized list of the minerals in the library, together with an indication
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as to whether each mineral was measured at the large grain size. The filenames given
are the filenames used in the library; the mineral names are the mineral names included
in the data files. Figure A.1 gives a set of hull-differenced graphs of the carbonates in

the JPL library.

A.2 Preparation

The following technical description of the JPL Spectral Library is excerpted
from C.I. Grove, S.J. Hook, and E.D. Paylor II, “Laboratory Reflectance Spectra of 160

Minerals, 0.4 to 2.5 Micrometers”:!

1.0 INTRODUCTION

This JPL Spectral Library includes laboratory reflectance spectra of 160
minerals in digital form. No attempt has been made to investigate the causes
of the spectral features observed. Excellent theoretical studies dealing with
the causes of these features are available in the open literature. One of the
most comprehensive studies was published by Hunt and his coworkers in a
series of papers between 1970 and 1979. Since then, several catalogues of
reflectance spectra have been published, including Clark et al., 1990; Lang
et al., 1990; and Urai et al., 1989.

Data for 135 of the minerals are presented at three different grain sizes: 125—
500um, 45 — 125um, and < 45um. This study was undertaken to illustrate
the effect of particle size on the shape of the mineral spectra. Ancillary
information is provided with each mineral spectrum, including the mineral
name, mineralogy, supplier, sampling locality, and our designated sample
number. Generalized chemical formulae were obtained from Fleischer (1983)
or electron microprobe analysis, when available. The purity of each mineral
sample was evaluated by X-ray diffraction (XRD), and identifiable accessory
minerals, if present, are noted with the ancillary information.

In the original publication the spectra were separated into classes according
to the dominant anion or anionic group present, which is the classification
scheme traditionally used in mineralogy. This format has been followed with
the organization of the ftp site and each mineral class is a separate sub-
directory. Classes include arsenates, borates, carbonates, elements, halides,

!The report refers to the measurements made with the Beckman spectrometer. The same sample
preparation and measurement procedure was used with the Nicolet spectrometer.



hydroxides, oxides, phosphates, silicates, sulphates, sulphides and tungstates.
The silicate class has been subdivided further into subclasses based on the
degree of polymerization of the silicon tetrahedra. These subclasses include
cyclosilicates, inosilicates, nesosilicates, phyllosilicates, sorosilicates and tec-
tosilicates.

2.0 METHODOLOGY
2.1 Sample Origin

The majority of non-clay minerals used in this report were obtained from
Ward’s Natural Science Establishment, Rochester, New York; the Burnham
Mineral Company (Burminco), Monrovia, California; or from an in-house
collection. Most of the clay minerals were obtained from the Source Clay
Mineral Repository, University of Missouri, Columbia, Missouri. In all cases,
the supplier of the sample is listed in the ancillary information describing
each sample.

It was not possible to obtain sufficiently large quantities of all natural min-
erals, particularly oxides and some clays. In these cases, synthetic minerals
were used. In all cases, XRD data for the synthetic mineral agreed with the
data reported for the natural mineral in the Mineral Powder Diffraction File
Data Book (Joint Committee Powder Diffraction Standards, 1980).

2.2 Sample Preparation

Mineral samples were pulverized with a steel percussion mortar. A magnet
was used to remove metallic impurities introduced during this procedure.
The pulverized sample was then ground with mortar and pestle and separated
into different size fractions by wet-sieving with distilled water or 2-propanol
(for water-soluble minerals) in nested sieves. The size fractions selected for
reflectance measurements were 125 — 500um, 45 — 125um, and < 45um,
which correspond to fine-to-medium sand, coarse silt to very fine sand, and
medium silt to clay, respectively. In certain instances, only one grain size was
analyzed due to the nature and/or paucity of the sample (e.g., cristobalite,
clay minerals).

2.3 X-ray Diffraction

The purity of each mineral sample was evaluated by using standard XRD
methods described in Klug and Alexander (1954). A Norelco water-cooled
X-ray diffractometer, equipped with a vertical scan goniometer and focusing
monochromater was used for the analysis. All samples were analyzed by
Ni-filtered, CuK radiation. Diffraction lines were recorded on a strip chart
recorder at a scan rate of 1° (2 ) per minute over the angular range of 4° to
65° (2).

The Mineral Powder Diffraction File Search Manual and Data Book (Joint
Committee on Powder Diffraction Standards, 1980) was used to identify crys-
talline phases. Additional XRD data were obtained from Borg and Smith
(1969) and Berry and Thompson (1962). Identification of clay mineral phases
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was facilitated by techniques and diffraction data presented by Carroll (1970)
and Brindley and Brown (1980).

The XRD criteria used to determine the purity of our samples were based on
the number and intensity of diagnostic peaks. If impurities were identified in
a sample, a semiquantitative estimate of their abundance was made by XRD.
Several limitations of XRD analysis are applicable to our results. Many crys-
talline substances are strong diffractors of X-rays and can be detected when
present in concentrations as small as 1-2 percent. Other materials diffract
X-rays less efficiently and yield diffraction patterns of measurable intensity
only when they constitute a major portion of the sample. As a result, certain
minor constituents cannot be identified by XRD alone. For example, many
of the feldspars have suffered minor incipient alteration, which manifests as
small features in the Beckman spectra (for example, the sharp feature around
2.2pm in Sanidine TS-14A). No alteration products were identified by XRD
in the Sanidine sample. The problems associated with the detection limits
of XRD analyses are discussed in detail in Klug and Alexander (1954).

2.4 Electron Microprobe

Chemical composition data were acquired by electron microprobe analysis
for some of our minerals known to deviate significantly from idealized end-
member compositions. These analyses were undertaken with the Cameca
CAMEBAX electron microprobe at U.C.L.A. Chemical compositions were
obtained from polished grain mounts in the wavelength dispersive mode by
using 15 keV accelerating potential, 1.5 nAo absorbed current and 20s count-
ing intervals. Compositionally well-characterized silicate minerals from the
U.C.L.A. collection were employed as standards. Raw data were reduced
according to the ZAF correction scheme (Henog et al., 1982). Results for
major elements are believed to be accurate to +1%. ...

2.5 Spectrophotometer

Hemispherical reflectance measurements in the visible and short-wavelength
region of the electromagnetic spectrum (0.4 to 2.5um) were made by using a
Beckman UV5240 spectrophotometer (Price, 1977). The Beckman UV5240
incorporates a single-pass monochromator and utilizes a diffraction grating as
its dispersing element. The sampling interval is .001pm, from 0.4 to 0.8um,
and .004pum, from 0.8 to 2.5um. Our instrument has been modified with
an integrating sphere rotated 90 degrees, which facilitates measurement of
powdered samples and soils by allowing the materials to remain in the sample
holder in a horizontal position.

For reflectance measurements, the size-sorted samples were poured into alu-
minum sample holders that measured 3.2 cm in diameter and 0.5 cm in
depth. The upper surface was carefully smoothed with the edge of a stain-
less steel spatula. Smoothing with a spatula may compact the sample and
introduce some preferred orientation of grains. However, every effort was
made to minimize these effects. The sample was then placed in the sample
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compartment where it and a Halon reference standard were illuminated al-
ternately by monochromatic radiation from a high-intensity halogen source
lamp. Halon, a trade name for polytetrafluoroethylene powder, has been
shown to be a good diffuser of incident radiation over the spectral range of
the 0.2 - 2.5 m region (Weidner and Hsia, 1981). However, Halon does have
a small absorption feature near 2.2pm. This feature is manifest in spectra
with a high reflectance in the 2.0 — 2.5um region. In order to correct this
Halon artifact, the spectra were multiplied by the reflectance of Halon vs a
perfect diffuser given in Weidner and Hsia (1981). The correction largely
removed the influence of the Halon absorption feature in our spectra.
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Table A.1: The 17 mineral class used in the Jet Propulsion Labs Mineral Spectral Library

together with the number of minerals in each class at the largest grain size.

JPL Mineral Class ‘ Count ‘

Arsenates 2
Borates 6
Carbonates 15
Cyclosilicates 4
Elements 2
Halides )
Inosilicates 12
Nesosilicates 7
Hydroxides 1
Oxides 9
Phosphates 4
Phyllosilicates 20
Sulphides 11
Sulphates 13
Sorosilicates )
Tectosilicates 18
Tungstates 1

135 |
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Table A.2. List of rocks in the JPL library. The filename of each sample is given together
with the name of the mineral and the mineral class to which the mineral belongs. There

are 17 mineral classes altogether.

‘ Index ‘ Filename ‘

Mineral Name

‘ Mineral Class ‘

1| alla Mimetite Arsenate

2 | a02a Scorodite Arsenate

3 | b0la Colemanite Borate

4 | b02a Kernite Borate

5 | b03a Ulexite Borate

6 | b04a Tincalconite Borate

7 | b0ba Howlite Borate

8 | b06a Borax Borate

9 | cOla Strontianite Carbonate
10 | c02a Witherite Carbonate
11 | c03a Calcite Carbonate
12 | c03d Calcite Carbonate
13 | c03e Calcite Carbonate
14 | cO4a Trona Carbonate
15 | c05a Dolomite Carbonate
16 | c05c Dolomite Carbonate
17 | cO6a Magnesite Carbonate
18 | c07a Malachite Carbonate
19 | cO8a Rhodochrosite Carbonate
20 | c09a Siderite Carbonate
21 | cl0a Cerussite Carbonate
22 | clla Smithsonite Carbonate
23 | cl2a Azurite Carbonate
24 | cs0la Tourmaline, Dravite-S Cyclosilicate
25 | cs02a Beryl Cyclosilicate
26 | cs03a Cordierite Cyclosilicate
27 | cs04a Ferroaxinite Cyclosilicate
28 | e0la Graphite Element
29 | e02a Sulfur Element
30 | h0la Cryolite Halide
31 | h02a Fluorite, Purple Halide
32 | h02b Fluorite Halide
33 | h03a Halite Halide
34 | h04a, Atacamite Halide
35 | in0la Rhodonite Inosilicate
36 | in02a, Wollastoniate Inosilicate
37 | in03a Glaucophane Inosilicate
38 | in04a, Actinolite Inosilicate
39 | in05a Tremolite Inosilicate
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‘ Index ‘ Filename ‘ Mineral Name

Mineral Class ‘

40 | in06a Cummingtonite Inosilicate

41 | in07a Riebeckite Inosilicate

42 | in08a Anthophyllite Inosilicate

43 | in09a Diopside Inosilicate

44 | inl0a Enstatite Inosilicate

45 | inl2a Johannsenite Inosilicate

46 | inl3a Spodumene Inosilicate
47 | inl4a Hypersthene Inosilicate

48 | inlba Augite Inosilicate

49 | nsOla Fayalite Nesosilicate
50 | ns02a Forsterite, Synthetic Nesosilicate
51 | ns03b Grossular Garnet Nesosilicate
52 | nsO4a Almandine Garnet Nesosilicate
53 | ns06a Topaz Nesosilicate
54 | ns07a Titanite Nesosilicate
55 | ns08a Sillimanite Nesosilicate
56 | ns09a Zircon Nesosilicate
57 | o0la Hematite Oxide

58 | 001b Hematite, Synthetic Oxide

59 | 002a Rutile Oxide

60 | 003a Cassiterite Oxide

61 | o04a Magnetite Oxide

62 | o06a Pyrolusite Oxide

63 | o07a Columbite Oxide

64 | o08a Magnesiochromite Oxide

65 | olla Gahnite Oxide

66 | 0l2a Anatase, Synthetic Oxide

67 | ol3a Zincite, Synthetic Oxide

68 | olda (Unnamed) Oxide

69 | olba Corundum, Synthetic Oxide

70 | ohOla Brucite Hydroxide
71 | oh02a Goethite Hydroxide
72 | oh03a Gibbsite Hydroxide
73 | pOla Apatite Phosphate
74 | p02a Montebrasite Phosphate
75 | p03a Amblygonite Phosphate
76 | pO4a Triphylite Phosphate
77 | psOla Kaolinite, Well Ordered | Phyllosilicate
78 | psO1b Kaolinite, Disordered Phyllosilicate
79 | ps02b Montmorillonite, Cal Phyllosilicate
80 | ps02d Montmorillonite, Sod Phyllosilicate
81 | psO3a Dickite Phyllosilicate




‘ Index ‘ Filename ‘ Mineral Name

Mineral Class

82 | psO4a Palygorskite Phyllosilicate
83 | ps0ba Sepiolite Phyllosilicate
84 | psO6a Nontronite Phyllosilicate
85 | ps06b Nontronite Phyllosilicate
86 | ps06d Nontronite Phyllosilicate
87 | psO7a Pyrophyllite Phyllosilicate
88 | ps09a Cookeite Phyllosilicate
89 | psl0a Corrensite Phyllosilicate
90 | pslla Illite Phyllosilicate
91 | psl2a Chlorite (Ripidolite) Phyllosilicate
92 | psl2c Chlorite Phyllosilicate
93 | psl2e Chlorite (Pyrochlorite) | Phyllosilicate
94 | psl2f Chlorite (Thuringite) Phyllosilicate
95 | psl3a Lepidolite, Yellow Phyllosilicate
96 | psl3b Lepidolite, Lavender Phyllosilicate
97 | pslda Talc Phyllosilicate
98 | pslb6a Muscovite Phyllosilicate
99 | psl8a Vermiculite Phyllosilicate

100 | psl8b Vermuculite Phyllosilicate

101 | psl9a Glauconite Phyllosilicate

102 | ps20a Serpentine Phyllosilicate

103 | ps2la Prehnite Phyllosilicate

104 | ps22a Hydroxyapophyllite Phyllosilicate

105 | ps23a Biotite Phyllosilicate

106 | ps24a Saponite Phyllosilicate

107 | s01a Sphalerite Sulfide

108 | s0la Pyrite Sulfide

109 | s03a Realgar Sulfide

110 | s04a Chalcopyrite Sulfide

111 | s0ba Arsenopyrite Sulfide

112 | s06a Stibnite Sulfide

113 | s07a Galena Sulfide

114 | s08a Chalcocite Sulfide

115 | s09a Bornite Sulfide

116 | s10a Marcasite Sulfide

117 | slla Molybdenite Sulfide

118 | s12a Pyrrhotite Sulfide

119 | so0la Anhydrite Sulfate

120 | so02b Gypsum Sulfate

121 | so03a Barite Sulfate

122 | so04a Alunite Sulfate

123 | so05a Celestite Sulfate
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‘ Index ‘ Filename ‘ Mineral Name

‘ Mineral Class ‘

124 | so06a Tschermigite Sulfate

125 | so07a Jarosite Sulfate

126 | so07b Plumbojarosite Sulfate

127 | so07c Natrojarosite Sulfate

128 | so08a Glauberite Sulfate

129 | so09a Aphthitalite Sulfate

130 | sol0a Anglesite Sulfate

131 | solla Antlerite Sulfate

132 | ssOla Epidote Sorosilicate
133 | ssOlc Epidote Sorosilicate
134 | ss02a Hemimorphite Sorosilicate
135 | ss03a Vesuvianite Sorosilicate
136 | ssO4a Clinozoisite Sorosilicate
137 | t0la Scheelite Tunstate

138 | tsOla Quartz, Rock Crystal Phyllosilicate
139 | tsO1b Quartz, Smoky Phyllosilicate
140 | tsO1lc Quartz, Rose Phyllosilicate
141 | ts01d Quartz, Milky Phyllosilicate
142 | tsOle Quartz, Chrosoprase Phyllosilicate
143 | ts02a Labradorite Phyllosilicate
144 | ts02b Labradorite Phyllosilicate
145 | ts03a Oligoclase Phyllosilicate
146 | tsO4a Andesine Phyllosilicate
147 | ts05a Anorthite Phyllosilicate
148 | ts06a Albite Phyllosilicate
149 | ts07a Cristobalite Phyllosilicate
150 | ts08a Natrolite Phyllosilicate
151 | ts09a Stilbite Phyllosilicate
152 | tsl0a Sodalite Phyllosilicate
153 | tslla Buddingtonite, Feldspar | Phyllosilicate
154 | tsl2a Orthoclase Phyllosilicate
155 | tsl3a Bytownite Phyllosilicate
156 | tsl4a Sanidine Phyllosilicate
157 | tslba Chabazite Phyllosilicate
158 | tslba Nepheline Phyllosilicate
159 | tsl7a Microcline Phyllosilicate
160 | ts18a Analcime Phyllosilicate
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Figure A.1: Hull-difference graphs of 15 JPL Mineral Library carbonates.
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Appendix B

JHU Mineral Library

B.1 Introduction

This appendix contains a list of rock samples from the Johns Hopkins University
(JHU) Spectral Library. This library is currently available as part of the Aster Spectral
Library at http://speclib.jpl.nasa.gov; the rock names for the spectra used in Chapters
4 and 5 are listed below in Table B.2. We will refer to the spectra for the 192 rocks in
this list as the “JHU Rock Library.”

Six types of samples are represented in the JHU Rock Library, as shown in Table
B.1; there are three general categories of rocks (igneous, metamorphic, and sedimentary),
and each of these is presented in two forms. Igneous rocks are presented in either finely
powdered form or solid form; metamorphic and sedimentary rocks are presented in either
coarsely or finely powdered form. Table B.2 gives a list of all of the rock samples in the
library (all 192 of them), together with their type and form. An additional column is

included in the table to show the gold standard classification of these rocks as carbonates
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Rock Type ‘ Sample Type ‘ # Samples
Igneous Solid 35
Igneous Coarsely Powdered 35
Metamorphic | Coarsely Powdered 37
Metamorphic | Finely Powdered 37
Sedimentary | Coarsely Powdered 24
Sedimentary | Finely Powdered 24
\ | Total \ 192 |

Table B.1: Types of spectra contained in the Johns Hopkins University Spectral Library.

or not carbonates.

B.2 Preparation

As is noted in the technical description included with the Johns Hopkins Uni-
versity Spectral Library, all of the rock samples contained in the library “were measured
under the direction of John W. (Jack) Salisbury,” with most measurements being made
“by Dana M. D’Aria, either at Johns Hopkins University in Baltimore, MD, or at the
U.S. Geological Survey in Reston, VA.” The following is an excerpt from this technical

description relevant to the JHU Rock Library:

MEASUREMENT TECHNIQUE

...The apparently seamless reflectance spectra from 0.4 to 14 micrometers of
rocks and soils were generated using two different instruments, both equipped
with integrating spheres for measurement of directional hemispherical re-
flectance, with source radiation impinging on the sample from a centerline
angle 10 degrees from the vertical.

Unless specified otherwise (see relevant introductory texts for generic snow
and vegetation spectra, and spectra of man-made materials), all visible/near-
infrared (VNIR) spectra were recorded using a Beckman Instruments model
UV 5240 dual-beam, grating spectrophotometer at the U.S. Geological Sur-
vey, Reston, VA. The data were obtained digitally and corrected for both
instrument function and the reflectance of the Halon reference using stan-
dards traceable to the U. S. National Institute of Science and Technology.



Measurements of such standards indicate an absolute reflectance accuracy of
plus or minus 3 percent. Wavelength accuracy was checked using a holmium
oxide reference filter and is reproducible and accurate to within plus or mi-
nus 0.004 micrometers, or 4 nm (one digitization step). Spectral resolution
is variable because the Beckman uses an automatic slit program to keep the
energy on the detector constant. The result is a spectral bandwidth typically
less than 0.008 micrometers over the 0.4 to 2.5 micrometers spectral range
measured, but slightly larger at the two extremes of the range of the lead
sulfide detector (0.8-0.9 micrometers and 2.4- 2.5 micrometers). This instru-
ment has a grating change at 0.8 micrometers, which sometimes results in a
spectral artifact (either a small, sharp absorption band, or a slight offset of
the spectral curve) at that wavelength.

Two similar instruments were used to record reflectance in the infrared range
(2.08 to 15 micrometers). Briefly, both are Nicolet FTIR spectrophotome-
ters and both have a reproducibility and absolute accuracy better than plus
or minus 1 percent over most of the spectral range. Early measurements of
igneous rocks with an older detector were noisy in the 13.5-14 micrometers
range and do not quite meet this standard in that region. Because FTIR in-
struments record spectral data in frequency space, both wavelength accuracy
and spectral resolution are given in wave numbers (reciprocal centimeters).
Wavelength accuracy of an interferometer type of instrument is limited by
the spectral resolution, which yields a data point every 2 wave numbers for
these measurements. The X-axis was changed from wave numbers to mi-
crometers for all of these data before the infrared segment was joined to the
VNIR data from the Beckman.

Spectra from the Beckman and the FTIR instruments were compared in the
overlap range of 2.08-2.5 micrometers. If the difference was greater than 3
percent, measurements were repeated. Typically, however, the agreement
was within the 3 percent limit. In view of the greater accuracy of the FTIR
measurements, any small discrepancy between the two spectral segments
was resolved by adjusting the Beckman data to fit the reflectance level of the
segment measured by the FTIR instruments.
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Table B.2. List of rocks in the JHU library. The final column shows the gold standard
classification for the class ’carbonate,” obtained by examining the file descriptors of each
sample. For this column, “A” = absent, “P” = present, “PP” = possibly present, and
“N” = not classified.

‘ ‘ Filename | Mineral Name Type ‘ Form ‘ Carbonate
1 | andesilf | Augite-hypersthene Andesite | Igneous Fine A
2 | andesils | Augite-hypersthene Andesite | Igneous Solid A
3 | andesi2f | Augite-hypersthene Andesite | Igneous Fine PP
4 | andesi2s | Augite-hypersthene Andesite | Igneous Solid PP
5 | andesi4f | Basaltic Andesite Igneous Fine A
6 | andesi4s | Basaltic Andesite Igneous Solid A
7 | anorthlf | Anorthosite Igneous Fine PP
8 | anorthls | Anorthosite Igneous Solid PP
9 | aplitelf Aplite Igneous Fine PP

10 | aplitels Aplite Igneous Solid PP
11 | basall0f | Basalt Igneous Fine A
12 | basallOs | Basalt Igneous Solid A
13 | basallf Basalt Igneous Fine A
14 | basalls Basalt Igneous Solid A
15 | basal2f Basalt Igneous Fine A
16 | basal2s Basalt Igneous Solid A
17 | basalbf Basalt Igneous Fine A
18 | basalbs Basalt Igneous Solid A
19 | basal7f Basalt Igneous Fine A
20 | basal7s Basalt Igneous Solid A
21 | basal9f Basalt Igneous Fine A
22 | basal9s Basalt Igneous Solid A
23 | diabaslf | Diabase Igneous Fine A
24 | diabasls | Diabase Igneous Solid A
25 | diabas2f | Diabase Igneous Fine A
26 | diabas2s | Diabase Igneous Solid A
27 | diorit1lf Diorite Igneous Fine A
28 | dioritls Diorite Igneous Solid A
29 | dunitlf Dunite Igneous Fine A
30 | dunitls Dunite Igneous Solid A
31 | gabbrolf | Gabbro Igneous Fine A
32 | gabbrols | Gabbro Igneous Solid A
33 | gneisslc Chloritic Gneiss Metamorphic | Coarse | A
34 | gneisslf Chloritic Gneiss Metamorphic | Fine A
35 | gneiss2c Garnet Gneiss Metamorphic | Coarse | A
36 | gneiss2f Garnet Gneiss Metamorphic | Fine A
37 | gneiss3c Felsitic Gneiss Metamorphic | Coarse | A
38 | gneiss3f Felsitic Gneiss Metamorphic | Fine A
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‘ Filename ‘ Mineral Name Type ‘ Form ‘ Carbonate ‘
39 | gneissdc Syenite Gneiss Metamorphic | Coarse | A
40 | gneissdf Syenite Gneiss Metamorphic | Fine A
41 | gneissbc Albite Gneiss Metamorphic | Coarse | A
42 | gneissdf Albite Gneiss Metamorphic | Fine A
43 | gneiss6e Hornblende Gneiss Metamorphic | Coarse | A
44 | gneiss6f Hornblende Gneiss Metamorphic | Fine A
45 | gneiss7c Diorite Gneiss Metamorphic | Coarse | PP
46 | gneiss7f Diorite Gneiss Metamorphic | Fine PP
47 | gneiss8c Augen Gneiss Metamorphic | Coarse | A
48 | gneiss8f Augen Gneiss Metamorphic | Fine A
49 | granitlf Alkalic Granite Igneous Fine A
50 | granitls Alkalic Granite Igneous Solid A
51 | granit2f Granite Igneous Fine PP
52 | granit2s Granite Igneous Solid PP
53 | granit3f Granite Igneous Fine PP
54 | granit3s Granite Igneous Solid PP
55 | granithbf Granite Igneous Fine PP
56 | graniths Granite Igneous Solid PP
57 | granod1lf | Granodiorite Igneous Fine A
58 | granodls | Granodiorite Igneous Solid A
59 | granod2f | Granodiorite Igneous Fine PP
60 | granod2s | Granodiorite Igneous Solid PP
61 | greywalc | Greywacke Sandstone Sedimentary | Coarse | A
62 | greywalf | Greywacke Sandstone Sedimentary | Fine A
63 | hornfelc | Banded Hornfels Metamorphic | Coarse | P
64 | hornfelf | Banded Hornfels Metamorphic | Fine P
65 | hornfe2c | Hornfels Metamorphic | Coarse | PP
66 | hornfe2f | Hornfels Metamorphic | Fine PP
67 | hornfe3c | Spotted Hornfels Metamorphic | Coarse | A
68 | hornfe3f | Spotted Hornfels Metamorphic | Fine A
69 | ijolit1f Tjolite Igneous Fine PP
70 | ijolitls Tjolite Igneous Solid PP
71 | lamprolf | Lamprophyre Igneous Fine A
72 | lamprols | Lamprophyre Igneous Solid A
73 | limestlc | Fossiliferous Limestone Sedimentary | Coarse | P
74 | limest1f Fossiliferous Limestone Sedimentary | Fine P
75 | limest2c | Dolomitic Limestone Sedimentary | Coarse | P
76 | limest2f Dolomitic Limestone Sedimentary | Fine P
77 | limest3c Limestone Sedimentary | Coarse | P
78 | limest3f Limestone Sedimentary | Fine P
79 | limestdc Oolitic Limestone Sedimentary | Coarse | P
80 | limest4f Oolitic Limestone Sedimentary | Fine P
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‘ Filename ‘ Mineral Name ‘ Type ‘ Form ‘ Carbonate ‘
81 | limestbc | Lithographic Limestone Sedimentary | Coarse | P
82 | limestbf Lithographic Limestone Sedimentary | Fine P
83 | limestbc | Argillaceous Limestone Sedimentary | Coarse | P
84 | limest6f Argillaceous Limestone Sedimentary | Fine P
85 | limest7c Oolitic Limestone Sedimentary | Coarse | P
86 | limest7f Oolitic Limestone Sedimentary | Fine P
87 | marblelc | Dolomitic Marble Metamorphic | Coarse | P
88 | marblelf | Dolomitic Marble Metamorphic | Fine P
89 | marble2c | Serpentine Marble Metamorphic | Coarse | P
90 | marble2f | Serpentine Marble Metamorphic | Fine P
91 | marble3c | Marble Metamorphic | Coarse | P
92 | marble3f | Marble Metamorphic | Fine P
93 | marbledc | Dolomitic Marble Metamorphic | Coarse | P
94 | marble4f | Dolomitic Marble Metamorphic | Fine P
95 | marblebc | Serpentine Marble Metamorphic | Coarse | P
96 | marblebf | Serpentine Marble Metamorphic | Fine P
97 | marble6c | White Marble Metamorphic | Coarse | P
98 | marble6f | White Marble Metamorphic | Fine P
99 | marble7c | Pink Marble Metamorphic | Coarse | P
100 | marble7f | Pink Marble Metamorphic | Fine P
101 | monzonlf | Monzonite Igneous Fine PP
102 | monzonls | Monzonite Igneous Solid PP
103 | noritelf Norite Igneous Fine A
104 | noritels Norite Igneous Solid A
105 | norite2f Norite Igneous Fine A
106 | norite2s Norite Igneous Solid A
107 | obsidilf Rhyolitic Obsidian Igneous Fine A
108 | obsidils Rhyolitic Obsidian Igneous Solid A
109 | phillile Phyllite Metamorphic | Coarse | A
110 | phyllilf Phyllite Metamorphic | Fine A
111 | picrit1f Picrite Igneous Fine A
112 | picritls Picrite Igneous Solid A
113 | picrit2f Picrite Igneous Fine A
114 | picrit2s Picrite Igneous Solid A
115 | gmonzolf | Quartz Monzonite Igneous Fine PP
116 | gmonzols | Quartz Monzonite Igneous Solid PP
117 | grtzitlc Red Quartzite Metamorphic | Coarse | P
118 | qrtzitlf Red Quartzite Metamorphic | Fine P
119 | grtzit2c Green Quartzite Metamorphic | Coarse | A
120 | qrtzit2f Green Quartzite Metamorphic | Fine A
121 | grtzit3c Pink Quartzite Metamorphic | Coarse | A
122 | qrtzit3f Pink Quartzite Metamorphic | Fine A
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‘ Filename ‘ Mineral Name Type ‘ Form ‘ Carbonate ‘
123 | grtzitdc Purple Quartzite Metamorphic | Coarse | A
124 | qrtzitdf Purple Quartzite Metamorphic | Fine A
125 | grtzitbc Gray Quartzite Metamorphic | Coarse | A
126 | qrtzitbf Gray Quartzite Metamorphic | Fine A
127 | qrtzit6f Green Quartzite Metamorphic | Fine N
128 | rhyolilf Rhyolite Igneous Fine A
129 | rhyolils Rhyolite Igneous Solid A
130 | sandstlc | Arkosic Sandstone Sedimentary | Coarse | P
131 | sandstlf | Arkosic Sandstone Sedimentary | Fine P
132 | sandst2¢ | Glauconitic Sandstone Sedimentary | Coarse | P
133 | sandst2f | Glauconitic Sandstone Sedimentary | Fine P
134 | sandst3c | Sandstone (Micacious Red) Sedimentary | Coarse | P
135 | sandst3f | Sandstone (Micacious Red) | Sedimentary | Fine p
136 | sandstdc | Ferruginous Sandstone Sedimentary | Coarse | P
137 | sandst4f | Ferruginous Sandstone Sedimentary | Fine P
138 | sandst6c | Purple-banded Sandstone Sedimentary | Coarse | A
139 | sandst6f | Purple-banded Sandstone Sedimentary | Fine A
140 | sandst7c | Sandstone (Red) Sedimentary | Coarse | A
141 | sandst7f | Sandstone (Red) Sedimentary | Fine A
142 | schis10c Graphite Schist Metamorphic | Coarse | P
143 | schis10f Graphite Schist Metamorphic | Fine P
144 | schistlc Green Schist Metamorphic | Coarse | P
145 | schist1f Green Schist Metamorphic | Fine P
146 | schist2c Hornblende Schist Metamorphic | Coarse | A
147 | schist2f Hornblende Schist Metamorphic | Fine A
148 | schist3c Mica Schist Metamorphic | Coarse | A
149 | schist3f Mica Schist Metamorphic | Fine A
150 | schistdc Tourmaline Schist Metamorphic | Coarse | A
151 | schist4f Tourmaline Schist Metamorphic | Fine A
152 | schistbc Graphite Schist Metamorphic | Coarse | A
153 | schist6e Tremolite Schist Metamorphic | Coarse | A
154 | schist6f Tremolite Schist Metamorphic | Coarse | A
155 | schist7c Chlorite Schist Metamorphic | Coarse | A
156 | schist7f Chlorite Schist Metamorphic | Fine A
157 | schist8c Anthophyllite Mica Schist Metamorphic | Course | A
158 | schist8f Anthophyllite Mica Schist Metamorphic | Fine A
159 | schist9c Hornblende Schist Metamorphic | Coarse | P
160 | schist9f Hornblende Schist Metamorphic | Fine P
161 | shalelc Shale (Arenacious) Sedimentary | Coarse | A
162 | shalelf Shale (Arenacious) Sedimentary | Fine A
163 | shale2c Shale (Phosphatic) Sedimentary | Coarse | A
164 | shale2f Shale (Phosphatic) Sedimentary | Fine A
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‘ Filename ‘ Mineral Name ‘ Type ‘ Form ‘ Carbonate ‘
165 | shale3c Shale (Calcareous) Sedimentary | Coarse | P
166 | shale3f Shale (Calcareous) Sedimentary | Fine P
167 | shaledc Black Shale Sedimentary | Coarse | P
168 | shaledf Black Shale Sedimentary | Fine P
169 | shalebc Illite-bearing Shale Sedimentary | Coarse | A
170 | shalebf Illite-bearing Shale Sedimentary | Fine A
171 | shale6e Carbonaceous Shale Sedimentary | Coarse | P
172 | shale6f Carbonaceous Shale Sedimentary | Fine P
173 | shale7c Argillaceous Shale Sedimentary | Coarse | P
174 | shale7f Argillacious Shale Sedimentary | Fine P
175 | siltstlc Siltstone Sedimentary | Coarse | A
176 | siltst1f Siltstone Sedimentary | Fine A
177 | siltst2c Limestone Siltstone Sedimentary | Coarse | P
178 | siltst2f Limestone Siltstone Sedimentary | Fine P
179 | slatelc Gray Slate Metamorphic | Coarse | P
180 | slatelf Gray Slate Metamorphic | Fine P
181 | slate2c Green Slate Metamorphic | Coarse | P
182 | slate2f Green Slate Metamorphic | Fine P
183 | slate3c Chiastolic Slate Metamorphic | Coarse | A
184 | slatedf Chiastolic Slate Metamorphic | Fine A
185 | syenitlf Alkalic Syenite Igneous Fine PP
186 | syenitls Alkalic Syenite Igneous Solid PP
187 | syenit2f Nepheline Syenite Igneous Fine PP
188 | syenit2s Nepheline Syenite Igneous Solid PP
189 | tonalilf Tonalite Igneous Fine PP
190 | tonalils Tonalite Igneous Solid PP
191 | traverlc Travertine Sedimentary | Coarse | P
192 | traverlf Travertine Sedimentary | Fine P




Appendix C

Silver Lake Samples

C.1 Introduction

The Silver Lake samples consist of 21 spectra measured in the field at Silver
Lake near Baker, CA. Table C.1 lists the names of these spectra and shows expert
judgments of carbonate content for them. Tables C.2 and C.3 show the raw data from the
experiment, along with the results of analyzing it using the modified PC, simultaneous

linear regression, and an expert system.

C.2 Preparation

The following technical description of the preparation of the Silver Lake field

samples was provided by Ted Roush, Senior Geologist at NASA Ames:

1. Spectrometer Description.

The FieldSpecFR& (Analytical Spectral Devices, Inc., ASD) is a fiber optic
spectrometer operating over the 350-2500 nm wavelength range. This de-
vice uses 3 detectors operating over 3 wavelength domains. In the 350-1000
nm region (VIS) a fixed grating is used to disperse the wavelengths across a
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Si-Photodiode detector array. In the 1000-1800 nm (SWIR1) and 1800-2500
nm (SWIR2) regions rotatable gratings are used to disperse the wavelengths
onto single point InGaAs detectors. Instrument preparation consists of opti-
mization, which sets the gain and integration time of the VIS region and the
gain and DC offset of the SWIR1 and SWIR2 regions. After optimization a
dark current measurement is made for subsequent processing, and additional
dark current measurements may be made at various times throughout the
data collection processes. A typical data collection sequence consists of mea-
suring the reflectance of a bright, spectrally neutral reference target followed
by measurements of the sample of interest. The spectrometer was operated
in an automated mode such that the dark current is subtracted from both
measurements and the ratio of the sample to reference was calculated for
immediate display.

2. Data Collection Approach.

The reflectance measurements obtained at the Silver Lake site were a com-
bination of data collected using the fiber optic cable mounted in a hand-held
pointing device and with the fiber optic cable attached to a 1-degree field
of view foreoptic telescope. In both cases, a typical data collection sequence
consists of measuring the reflectance reference target followed by measure-
ments of the sample of interest.!

3. Spectral Artifacts.

Instrumental. Obvious in many spectra is a distinctive reflectance difference
between the end of the VIS and beginning of the SWIR1 wavelength regions.
Upon closer inspection one may find a similar difference between the end of
the SWIR1 and beginning of the SWIR2 wavelength regions. These are due
to changing detector sensitivities when they are used under different ambient
conditions, both internal and external to the spectrometer. Literature from
ASD suggests that the SWIR1 region does not suffer from such variable sen-
sitivities, providing a potential mechanism of correcting the VIS and SWIR2
regions if desired. No corrections have been applied to the Silver Lake data.

Atmospheric. Telluric water vapor has several strong absorptions in the 350-
2500 nm wavelength region. The two strongest are centered near 1350-1450
and 1800-1950 nm regions and are readily apparent in the spectra obtained
at Silver Lake. In addition, there are weaker features located near 800, 900,
and 1150 nm that are occasionally present in the Silver Lake data.

Albedo. Although reflectances are recorded in the data files, one must be
very careful regarding the absolute values reported. This is due to a variety
of potential sources of error that include differences in viewing geometry,
distances, and environmental effects between the time that the reference

'To compensate for the varying power function of sunlight, digitalized spectra, taken in the field,
were automatically divided by the spectrum of a white reference surface placed near the target, and
these ratios are recorded.



139

and sample measurements were obtained. For example, while the reference
may be located in the vicinity of the sample, it may be oriented relative to
the illumination source quite differently than the portion of the subsequent
sample that is being measured. An example of changing environmental effects
would be the presence of clouds or shade during collection of reference data
that are absent when the sample data is acquired, or vice versa.

C.3 Expert Identifications

Expert judgments of carbonate content for 21 field spectra collected near Silver
Lake, CA. “Sample name” refers to the code name given to each sample used (for blind
testing). “Field Expert ID” refers to the judgment of carbonate content (“C” = contains
carbonate, “NC” = does not contain carbonate) by experts in the field with access to
fields samples and spectra. “Laboratory ID” refers to the results of chemical testing for
carbonate content for selected samples (“C” and “NC” are as above; “NA” = the sample

was not tested)



Table C.1: Expert carbonate identifications of Silver Lake field samples.

Sample Name

Field Expert ID |

Laboratory ID

Emperor #1 C C (90%) NC(10%)
Emperor #1 C C (90%) NC(10%)
T 103 NC NA

T 105 NC NA

T 106 C NA

Endolith C C (93%) NC (7%)
Tubular-tabular NC NC (100%)

Arroyo disturbed C C (20%) NC (80%)
Arroyo undisturbed | C C (25%) NC (75%)
C3PO C NA

Chewie NC NA

Jabba C NA

Jawa C NA

Lando C C (93%) NC(7%)
Luke C NA

R2D2 C C (78%) NC (22%)
Solo C NA

Tarken NC NA

Vader NC NA

Valentine NC NC (100%)

Yoda NC NA
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Table C.2: Carbonate identifications of field spectra from Silver Lake near Baker, Cali-
fornia using the modified PC algorithm.

Column 1: Nickname given to each sample for purposes of analysis.

Column 2: Carbonate ID of the rock by an expert in the field.

Column 3: Modified PC ID, reporting all carbonates, wavelength range
2.0pum, 2.5um.

Column 4: Modified PC ID, reporting calcites and dolomites only, wavelength
range 2.0um, 2.5um.

Column 5: Modified PC ID, reporting calcites and dolomites only, wavelength
range 0.4um, 2.5um.

Column 6: Modified PC ID, reporting all carbonates, wavelength range
0.4pm, 2.5um.

Column 7: Laboratory ID.

L1 (2 [3 [4 [5 [6 [7 |
Emperor #1 C |[C |C |C |C |C(90%)NC (10%)
Emperor #2 C |[C |C |C |C |C(90%)NC (10%)
T 103 NC | NC | NC | NC | NC | NA
T 105 NC | NC | NC | C C NA
T 106 C C C C C NA
Endolith C [C [C [C [C [C9%) NC (%)
Tubular-tabular | NC | NC | NC | NC | C_ | NC (100%)

Arroyo disturbed C |[NC|NC|C |C |C(20%) NC (80%)
Arroyo undisturbed | C | C |C | C | C | C (25%) NC (75%)
C3PO C C C C C NA

Chewie NC | C NC | NC | C NA

Jabba C C C C C NA

Jawa C C C C C NA

Lando C [C [C [C [C [C9%) NC (%)

Luke C C C C C NA

R2D2 C [C [C [C [C [C(78%) NC (22%)
Solo C C C C C NA

Tarken NC | NC | NC | NC | NC | NA

Vader NC | NC | NC | C C NA

Valentine NC |[NC|NC|C |C | NC(100%)

Yoda NC | NC | NC | NC | C NA

Total Correct: \ 19 [20 [18 |15 |
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Table C.3: Carbonate identifications of field spectra from Silver Lake near Baker, CA
using the simultaneous linear regression algorithm in Minitab v. 10..

Column 1: Nickname given to each sample for purposes of analysis.

Column 2: Carbonate ID of the rock by an expert in the field.

Column 3: Carbonate ID using simultaneous linear regression, using wavelength
range 0.4um, 2.5um.

Column 4: Carbonate ID using simultaneous linear regression, using wavelength
range 0.4um, 2.5um, reporting carbonates with positive regression coefficients only.
Column 5: Carbonate ID using simultaneous linear regression, using wavelength
range 0.4um, 2.5um, reporting calcites and dolomites only.

Column 6. Carbonate ID using simultaneous linear regression, using wavelength
range 0.4um, 2.5um, reporting calcites and dolomites only with positive regression
coefficients.

Column 7. Expert system ID.

Column 8. Laboratory ID.

E (2 [3[4 [5 [6 |7 [8 |
Emperor #1 C |C|]C |C |C |C |C(90%)NC (10%)
Emperor #2 C |C|]C |C |C |C |C(90%)NC (10%)
T 103 NC|C | C C C NC | NA
T 105 NC|C | C C C NC | NA
T 106 C Cc | C C C C NA
FEndolith C [Cc[C [C [C [C [C©93%) NC (7%)
Tubular-tabular NC|C | C C NC | NC | NC (100%)

Arroyo disturbed C [C|C |C |C |NC|C(20%) NC (80%)
Arroyo undisturbed | C | C |C | C | C | C | C(25%) NC (75%)
C3PO C Cc | C C C C NA

Chewie NC|C | C NC | NC | NC | NA

Jabba C Cc | C C NC | NC | NA

Jawa C Cc | C C NC | C NA

Tando C [C|[C [C [C [C [C©93%) NC (7%)
Luke C Cc | C C C C NA

R2D2 C [C[C [C [C [NC|C (78%) NC (22%)
Solo C Cc | C C C NC | NA

Tarken NC|C |NC|C NC | NC | NA

Vader NC|C | C C C NC | NA

Valentine NC|C [C | C |NC|NC|NC (100%)

Yoda NC|C | C C C NC | NA

‘ Total Correct: ‘ ‘ 13 ‘ 14 ‘ 14 ‘ 15 ‘ 17 ‘
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