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Abstract

This paper aims to give an epistemic interpretation to the tensor disjunction in depen-
dence logic, through a rather surprising connection to the so-called weak disjunction in
Medvedev’s early work on intermediate logic under the Brouwer-Heyting-Kolmogorov
(BHK)-interpretation. We expose this connection in the setting of inquisitive logic
with tensor InqB⊗ [7], but from an epistemic perspective. More specifically, we trans-
late the propositional formulas of InqB⊗ into modal formulas in a powerful epistemic
language of knowing how following the proposal by [21,18]. We give a complete ax-
iomatization of the logic of our full language based on Fine’s axiomatization of S5
modal logic with propositional quantifiers. Finally we generalize the tensor operator
with parameters k and n, which intuitively captures the epistemic situation that one
has n potential answers to n questions and knows that at least k of them must be
correct. The original tensor disjunction is the special case when k = 1 and n = 2.
We show that adding the generalized tensor operators do not increase the expressive
power of our logic, inquisitive logic and propositional dependence logic, though most
of these generalized tensors are not uniformly definable in these logics, except in ours.

1 Introduction

As a rapidly growing field of research, Dependence Logic studies reasoning
patterns expressed by logical languages extended with (in)dependence atoms
(cf. e.g., [11] for a survey). The intuitive meaning of the atomic formula is
best fleshed out formally by the team semantics capturing the (in)dependence
between variables, where a team can be viewed as a collection of assignments
or possible worlds. In defining the truth conditions for logical connectives, one
guideline is to keep the property of flatness, i.e., for any formula α without the
(in)dependence atoms, it is true w.r.t. a team X (X ⊨ α) if it is true on each
singleton team {w} such that w ∈ X. To some extent, flatness preserves the
intuition of the classical logical connectives. In particular, the semantics of the
distinct tensor disjunction ⊗ in dependence logic can be viewed as a natural
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lifting of the world-based semantics for classical disjunction to teams, viewed
as sets of possible worlds:

X ⊨ α⊗ β iff there are U, V ⊆ X such that X ⊆ U ∪ V , U ⊨ α and V ⊨ β

Note that a disjunction α∨ β is classically true on each world in a set X of
possible worlds if and only if there are two subsets jointly covering the whole
space of possible worlds such that one subset satisfies α homogeneously and
the other satisfies β homogeneously. This lifting may also give the impression
that ⊗ can be read more or less as a classical disjunction. However, it is not
so straightforward. For example, the truth of the propositional dependence
formula (=(p, q) ⊗ =(p, q)) over a team is not equivalent to =(p, q). In fact,
(=(p, q) ⊗ =(p, q)) is valid technically but =(p, q), which says that the truth
value of q depends on the truth value of p, is clearly not valid. A natural
question arises: how to understand ⊗ intuitively and precisely? 1 Our work
proposes a possible epistemic understanding of ⊗ (and its generalizations) from
a Brouwer-Heyting-Kolmogorov (BHK)-like perspective to be explained below.

The initial idea is based on an unexpected connection between the tensor
disjunction and the so-called weak disjunction in Medvedev’s early work [14] on
the problem semantics of intuitionistic logic, following Kolmogorov’s problem-
solving interpretation [13]. This connection is best exposed in the setting of
inquisitive logic with tensor disjunction discussed in [7], since inquisitive logic
has intimate connections with both the propositional dependence logic [25,4]
and Medvedev’s logic [9]. More specifically, various versions of propositional
dependence logic can be viewed as disguised inquisitive logic, e.g., the depen-
dence atom =(p, q) becomes (p∨¬p) → (q∨¬q) in inquisitive logic [23,25,6]. On
the other hand, Medvedev’s logic is the substitution-closed core of inquisitive
logic InqB that also admits a BHK-like interpretation via resolutions [3,9]. 2

Another advantage of using inquisitive logic as the “medium” is that we can put
classical, intuitionistic, and tensor disjunctions in the same picture to reveal
their differences. The last missing piece for an intuitive reading of tensor is an
epistemic interpretation that can incorporate the BHK-interpretation. Wang
proposed to capture intuitionistic truth using a modality Kh to express knowing
how to prove/solve [21], which reflects Heyting’s often-overlooked early view of
intuitionistic logic as an epistemic logic [12]. This also led to an alternative
epistemic interpretation of inquisitive logic [18], where a state supports a for-
mula α is rendered as it is known how α is resolved when viewing the state as
a set of possible worlds capturing the epistemic uncertainty. This can give us
alternative epistemic readings of inquisitive formulas, e.g., the excluded middle
p∨¬p in inquisitive logic is first rendered as Kh(p∨¬p) (knowing how p∨¬p is
true), then it can be reduced to Khp∨Kh¬p (knowing how p is true or knowing

1 In [17], it is suggested that the (in)dependence formulas can be viewed as types of teams,
i.e., each formula specifies a property of the team. The truth conditions of connectives also
have their roots in the game semantics for classical and IF logic [17].
2 In recent literature, inquisitive logic is also viewed as an extension of classical logic [4].
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how ¬p is true), and finally it is equivalent to the intuitively invalid Kp ∨ K¬p
[18]. We will also see these reductions later in this work.

Now we are ready to give the epistemic interpretation of tensor disjunction.
According to Medvedev’s problem semantics [14], the weak disjunction α ⊔ β
captures a composite problem where the solutions are pairs of potential solu-
tions to the problems of α and β respectively such that at least one solution in
each pair is correct. 3 From our epistemic perspective, Medvedev’s truth con-
cept for a formula γ means it is known how to solve γ. In particular, a weak
disjunction α⊔β is true w.r.t. a set of possible worlds (i.e., a team or a state in
inquisitive logic) iff there are two solutions r1 and r2 such that it is known that
one of r1 and r2 is a correct solution to the corresponding problems. In the
setting of inquisitive logic, instead of problems, we take formulas as statements
or questions, which may have resolutions instead of solutions. We will show
such a truth condition amounts to exactly the team semantics for tensor.

We first summarize what we are going to do in the paper before diving into
the technical details. After introducing inquisitive logic with tensor disjunction
InqB⊗ in Section 2, we first propose in Section 3 a logical language of know-
that and know-how, with extra machinery of announcements and propositional
quantifiers, interpreted over epistemic models that are essentially states/teams
in the literature. The semantics of the know-how operator Kh is given by using
the ∃xK schema as in know-wh logics [20], based on a BHK-like interpretation
following Medvedev’s idea. The intention is to capture the alternative epistemic
meaning of an InqB⊗ formula α as knowing how to resolve α. In Section 4, we
show that valid know-how formulas correspond exactly the theorems in InqB⊗.
Moreover, we also show that the announcements and propositional quantifiers
facilitate a recursive process to “open up” the know-how formulas, in particular
to decode the ⊗, and eventually translate them into classical ones free of the
know-how operator. Based on such a process we give a complete axiomatiza-
tion of our full dynamic epistemic logic in Section 5. Finally, in Section 6 we
generalize the idea of the tensor, from our epistemic interpretation, to obtain
a spectrum of n-ary disjunctions ⊗kn, which captures the interesting epistemic
situation of knowing n potential answers to n questions and being sure at least
k of them must be correct. We show that adding the generalized tensor oper-
ators does not increase the expressive power of our logic, the inquisitive logic
and propositional dependence logic, though most of these generalized tensors
are not uniformly definable in these logics. In contrast, we can uniformly define
the generalize tensors in our epistemic language.

2 Inquisitive logic with tensor

Following [7], we introduce the language and semantics of Inquisitive Logic
with Tensor Disjunction (InqB⊗). In contrast with [7], we use the symbol ∨
for the inquisitive disjunction and adopt the model-based semantics as in [5].
Throughout the paper, we fix a countable set P of proposition letters.

3 See [2], for the corresponding Kripke semantics of weak disjunction.
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Definition 2.1 (Language PL⊗) The language of propositional logic with
tensor disjunction (PL⊗) is defined as follows:

α ::= p | ⊥ | (α ∧ α) | (α ∨ α) | (α→ α) | (α⊗ α)

where p ∈ P. We write ¬α for α→ ⊥, ⊤ and α↔ β are defined as usual.

Definition 2.2 (Model and state) A model is a pair M = ⟨W,V ⟩ where:
• W is a non-empty set of possible worlds; 4

• V : P → ℘(W ) is a valuation function.

A state (or, say, a team) s in M is a subset of W .

We will also view these models as epistemic models for our dynamic epistemic
language to be introduced in Section 3.

Given M, we refer to its components as WM and VM. We write w ∈ M in
case that w ∈ WM, and M′ ⊆ M in case that W ′

M ⊆ WM. The semantics is
defined through the support relation between states (in models) and formulas.

Definition 2.3 (Support [7]) The support relation ⊩ is defined inductively:
M, s ⊩ p iff ∀w ∈ s, w ∈ V (p)
M, s ⊩ ⊥ iff s = ∅
M, s ⊩ (α ∧ β) iff M, s ⊩ α and M, s ⊩ β
M, s ⊩ (α ∨ β) iff M, s ⊩ α or M, s ⊩ β
M, s ⊩ (α→ β) iff ∀t ⊆ s : if M, t ⊩ α then M, t ⊩ β
M, s ⊩ (α⊗ β) iff there exist two sets t ⊆ s and t′ ⊆ s such that

M, t ⊩ α, M, t′ ⊩ β, and t ∪ t′ = s.
A formula α is valid if it is supported by any state in any model.

Here are some simple properties.

Proposition 2.4 (Downward closure) For any α ∈ PL⊗, if M, s ⊩ α then
M, t ⊩ α for any t ⊆ s. Moreover, M,∅ ⊩ α for all α ∈ PL⊗.

Proposition 2.5 For any α ∈ PL⊗, M, s ⊩ α implies M′, s ⊩ α for any
M′ ⊆ M such that s ⊆ M′. Conversely, if M′, s ⊩ α then M, s ⊩ α given
M′ ⊆ M. Namely, the support relation only depends on the state.

Definition 2.6 Inquisitive Logic with Tensor Disjunction (InqB⊗) is the set
of valid PL⊗ formulas under the support relation.

3 A dynamic epistemic language

Definition 3.1 (Language PALKhΠ) The language of Public Announce-
ment Logic with Know-how Operator and Propositional Quantifier is: 5

φ ::= p | ⊥ | (φ ∧ φ) | (φ ∨ φ) | (φ⊗ φ) | (φ→ φ) | Kφ | Khα | ∀pφ | [φ]φ

where p ∈ P and α ∈ PL⊗. We write ¬φ for φ→ ⊥, K̂ for ¬K¬, ∃p for ¬∀p¬
for all p ∈ P and ⟨φ⟩ for ¬[φ]¬ for all φ ∈ PALKhΠ.

4 In [8], the world set W could be empty. The distinction is not technically significant.
5 Π in the name PALKhΠ denotes propositional quantifiers as in the literature [10].



Wang, Wang, Wang 723

Intuitively, Kφ expresses “the agent knows that φ”, Khα says that “the agent
knows how to resolve α” or simply “the agent knows how α is true”, ∀pφ says
that “for any proposition p, φ holds” and [φ]ψ means that “after announcing φ,
ψ holds”. Note that Kh only allows PL⊗-formula α in its scope. For instance,
we can express K¬Khα but not KhKα in PALKhΠ. We write φ[ψ/χ] for any
formula obtained by replacing one or several occurrences of ψ with χ in φ.

We view the models in Definition 2.2 as epistemic models where the implicit
epistemic relation is the total relation. The semantics of PALKhΠ is given on
such models, with the notions of resolution space and resolution as below.

Definition 3.2 (Resolution space) S is a function assigning each α ∈ PL⊗

its (non-empty) set of potential resolutions:

S(p) = {p}, for p ∈ P

S(α ∨ β) = (S(α)× {0}) ∪ (S(β)× {1})
S(α ∧ β) = S(α)× S(β)

S(⊥) = {⊥}
S(α→ β) = S(β)S(α)

S(α⊗ β) = S(α)× S(β)

Resolution spaces reflect the BHK-interpretation, e.g., a possible resolution of
an implication is a function transforming resolutions of the antecedent into
resolutions of the consequent. 6 Note that resolution spaces for atomic propo-
sitions are singletons, based on the assumption in inquisitive semantics that
atomic propositions are statements without inquisitiveness. The set of actual
resolutions of each formula on each world in a given model is a (possibly empty)
subset of the corresponding resolution space, as defined below.

Definition 3.3 (Resolution in model) Given M, R : WM × PL⊗ →⋃
α∈PL⊗ S(α) gives the (actual) resolutions for each formula on each world:

R(w,⊥) = ∅ R(w, p) =

{
{p} if w ∈ VM(p)
∅ otherwise

R(w,α ∨ β) = (R(w,α)× {0}) ∪ (R(w, β)× {1})
R(w,α ∧ β) = R(w,α)×R(w, β)

R(w,α→ β) = {f ∈ S(β)S(α) | f [R(w,α)] ⊆ R(w, β)}
R(w,α⊗ β) = (R(w,α)× S(β)) ∪ (S(α)×R(w, β))

Important notation: For U ⊆WM, we write R(U,α) for
⋂
w∈U R(w,α).

While S(⊥) = {⊥} is non-empty, it never has any actual resolution on specific
worlds. For any p ∈ P, p has itself as its resolution iff it is true on w. For
any implication α → β ∈ PL⊗, each of its resolution on w is a function in
S(α → β) which maps an actual resolution of α to an actual resolution of
β on w. Following the idea of the weak disjunction introduced in [14], each
resolution for α⊗ β ∈ PL⊗ on w is a pair of resolutions in S(α⊗ β), such that
at least one in the pair is actual on w for the corresponding formula.

6 See [18] for a more detailed explaination (without ⊗). The definition of resolutions is based
on Medvedev’s problem semantics [14]. A similar definition can be found in [15].
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Note that by definition, R(w,α) ⊆ S(w,α) ̸= ∅.
Proposition 3.4 For any α ∈ PL⊗, S(α) ̸= ∅ and S(α) is finite.

Below is a useful observation on the resolution of negations (¬α := α→ ⊥).

Proposition 3.5 ([18]) For any M, w, any α, R(w,¬α) is either ∅ or a fixed
singleton set independent from w, and R(w,¬α) = ∅ iff R(w,α) ̸= ∅.

Let P(α) be the set of propositional letters occurring in α and let V αM(w)
be the collection of p ∈ P(α) that are true on w in M. Proposition 3.6 says
that R(w,α) only depends on the relevant valuation on w itself.

Proposition 3.6 For any M, w and N , v, for all α ∈ PL⊗, if V αM(w) =
V αN (v), then R(w,α) = R(v, α).

Now we define the satisfaction relation of PALKhΠ on pointed models, i.e,
a model with a designated world, in contrast with the state-based support-
semantics. Note that the connectives outside the scope of Kh are classical, e.g.,
⊗ just functions as a classical disjunction. K is the standard epistemic modality
of know-that. The semantics for Khα following the ∃xK schema in [20,19] via
resolutions, and is intended to capture the know-how interpretation of InqB⊗.
∀p is a propositional quantifier over the full power set of WM. The semantics
of the dynamic operator [ψ] is as in public announcement logic [16].

Definition 3.7 (Semantics) For φ,ψ ∈ PALKhΠ, α ∈ PL⊗ and M, w
where M = ⟨W,V ⟩, the semantics is defined as below (⃝ ∈ {∨,⊗}):
M, w ⊭ ⊥
M, w ⊨ p ⇐⇒ w ∈ V (p)
M, w ⊨ (φ⃝ ψ) ⇐⇒ M, w ⊨ φ or M, w ⊨ ψ
M, w ⊨ (φ ∧ ψ) ⇐⇒ M, w ⊨ φ and M, w ⊨ ψ
M, w ⊨ (φ→ ψ) ⇐⇒ M, w ⊨ φ implies M, w ⊨ ψ
M, w ⊨ Kφ ⇐⇒ for any v ∈ M,M, v ⊨ φ
M, w ⊨ Khα ⇐⇒ there is an x ∈ S(α) s.t. for any v ∈ M, x ∈ R(v, α)
M, w ⊨ ∀pφ ⇐⇒ for any U ∈ ℘(W ),M[p 7→ U ], w ⊨ φ
M, w ⊨ [ψ]φ ⇐⇒ M, w ⊨ ψ implies M|JψK, w ⊨ φ
where:

• Given U ∈ ℘(WM) and p ∈ P, recall that M[p 7→ U ] = ⟨W,V ′⟩, where the
assignment V ′ assigns U to p and coincides with V on all other atoms; and

• JψKM = {w ∈WM | M, w ⊨ ψ} and M|X is the submodel of M by restrict-
ing to ∅ ̸= X ⊆WM. Thus M|JψKM is the submodel restricted to the worlds
satisfying ψ in M. We also write M|JψKM as M|ψ for brevity.

Validity and entailment are defined as usual.
In [18], to handle the implication in the know-how scope, we have a dynamic

operator 2 such that 2φ says that “given any information updates, φ holds”.
This can be expressed by ∀p[p]φ in our language, given that p is not free in φ.

We write M ⊨ φ iff M, w ⊨ φ for all w ∈ WM. Clearly, M, w ⊨ Khα iff
M ⊨ Khα and M, w ⊨ Kφ iff M ⊨ φ. The rephrased truth condition of Kh
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below says that Khα holds on a (pointed) model as long as there is a uniform
resolution for α on that model, where we define R(U,α) as

⋂
w∈U R(w,α).

M ⊨ Khα ⇐⇒ M, w ⊨ Khα ⇐⇒ R(WM, α) ̸= ∅

As in [18], we can give a uniform alternative truth condition for PL⊗-
formulas via the existence of actual resolutions.

Proposition 3.8 For any α ∈ PL⊗ and M, w, M, w ⊨ α ⇐⇒ R(w,α) ̸= ∅.

Proof. We prove by induction on the structure of α. We only show the cases
for ⊗. The other cases can be found in [18].

M, w ⊨ (α⊗ β) ⇐⇒ M, w ⊨ α or M, w ⊨ β

⇐⇒ R(w,α) ̸= ∅ or R(w, β) ̸= ∅
⇐⇒ there is an x ∈ R(w,α) or there is a y ∈ R(w, β)

⇐⇒ ∃⟨x, y′⟩ ∈ R(w,α⊗ β) s.t. x ∈ R(w,α) ∧ y′ ∈ S(β)

or ∃⟨x′, y⟩ ∈ R(w,α⊗ β) s.t. x′ ∈ S(α) ∧ y ∈ R(w, β)

⇐⇒ R(w,α⊗ β) ̸= ∅

2

From Proposition 3.8, we see that in propositional formulas, both ∨ and ⊗
collapse to the classical disjunction outside the scope of Kh. Yet ⊗ is weaker
than ∨ in the way that we can construct a resolution of α ⊗ β from that of
α ∨ β. It also follows from Proposition 3.8 that for any α ∈ PL⊗, M, w ⊨ Kα
iff for each v ∈ M, there is some resolution for α on v, in the shape of K∃x. In
contrast, M, w ⊨ Khα iff there is a uniform resolution for α on M in the shape
of ∃xK. The following is then immediate.

Proposition 3.9 Khα→ Kα is valid for all α ∈ PL⊗.

Since each p ∈ P only has one possible resolution, when each point has a
resolution for p, the model has a uniform one. Thus we have Proposition 3.10

Proposition 3.10 Khp↔ Kp is valid for all p ∈ P.

Based on the semantics, we can have more intuitive readings of the formulas
in inquisitive logic, e.g., Kh(p ∨ ¬p) is equivalent to Khp ∨ Kh¬p and Kp ∨ K¬p.
This also explains the failure of excluded middle in inquisitive logic (cf. [18] for
more discussions).

The rule of replacement of equals is not valid in general, for instance, al-
though (p ∨ ¬p) ↔ (p → p) is valid, Kh(p ∨ ¬p) ↔ Kh(p → p) is not. However,
if we only allow substitution to happen outside the scope of Kh operators, the
rule becomes valid. It is not hard to verify the following:

Proposition 3.11 For any φ,ψ, χ ∈ PALKhΠ, the validity of φ↔ ψ implies
the validity of χ[φ/ψ] ↔ χ, given that the substitution does not happen in the
scope of Kh.
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4 Expressivity

Let PALΠ be the Kh-free fragment of PALKhΠ, ELΠ be the [φ]-free fragment
of PALΠ and EL be the ∀p-free fragment of ELΠ. In Subsection 4.1, we show
Kh and [φ] can be eliminated, thus making PALKhΠ, PALΠ and ELΠ equally
expressive. In Subsection 4.2, we show that the valid Kh formulas of PALKhΠ
correspond to InqB⊗ precisely.

4.1 Reduction

We introduce the reduction schemata to eliminate the Kh modality, which will
also be used in the proof system to be introduced later. First, we have the
following observation.

Proposition 4.1 For any α1, α2 ∈ PL⊗ where p1 and p2 do not occur free, for
any pointed model M, w, M, w ⊨ ∃p1∃p2K((p1 ⊗ p2) ∧ [p1]Khα1 ∧ [p2]Khα2) iff
there are U1, U2 ⊆WM s.t. U1 ∪U2 =WM and Ui ̸= ∅ implies R(Ui, αi) ̸= ∅
for i = 1, 2.

Proof. Given a U ⊆WM, for any w ∈ M, M[p 7→ U ], w ⊨ p ⇐⇒ w ∈ U (⋆).
For brevity, we write ∃U for there exists U ∈ WM. Recall that M|U denotes
the submodel of M restricted to U , if U is non-empty (otherwise undefined).

M, w ⊨ ∃p1∃p2K((p1 ⊗ p2) ∧ [p1]Khα1 ∧ [p2]Khα2)

⇐⇒ ∃U1∃U2,M[p1, p2 7→ U1, U2], w ⊨ K((p1 ⊗ p2) ∧
∧2
i=1[pi]Khαi)

⇐⇒ ∃U1∃U2,∀v ∈WM,M[p1, p2 7→ U1, U2], v ⊨ (p1 ⊗ p2) ∧
∧2
i=1[pi]Khαi

(by (⋆) and the fact that [φ]ψ holds trivially if φ is false)
⇐⇒ ∃U1∃U2,∀v ∈WM,M[p1, p2 7→ U1, U2], v ⊨ p1 ∨ p2

and v ∈ Ui implies M[p1, p2 7→ U1, U2], v ⊨ [pi]Khαi for i = 1, 2
⇐⇒ ∃U1∃U2, U1 ∪ U2 =WM and ∀v ∈WM, v ∈ Ui implies

M[p1, p2 7→ U1, U2]|pi , v ⊨ Khαi for i = 1, 2
(since p1 and p2 do not occur free in α1 and α2, we have:)

⇐⇒ ∃U1∃U2, U1 ∪ U2 =WM and ∀v ∈WM, v ∈ Ui implies
M|Ui , v ⊨ Khαi for i = 1, 2

⇐⇒ ∃U1∃U2, U1 ∪ U2 =WM and Ui ̸= ∅ implies R(Ui, αi) ̸= ∅ for i = 1, 2
2

Together with Proposition 3.10 and 3.11, Proposition 4.2 helps us to first
eliminate the Kh modality without changing the expressive power, i.e., each
PALKhΠ-formula is equivalent to a PALΠ-formula.

Proposition 4.2 The following formulas and schemata are valid:

KKhp : Kp→ Khp Kh⊥ : Kh⊥ ↔ ⊥
Kh∨ : Kh(α ∨ β) ↔ Khα ∨ Khβ Kh∧ : Kh(α ∧ β) ↔ Khα ∧ Khβ

Kh→ : Kh(α→ β) ↔ K∀p[p](Khα→ Khβ), p does not occur free in α or β

Kh⊗ : Kh(α⊗ β) ↔ ∃p1∃p2K((p1 ⊗ p2) ∧ [p1]Khα ∧ [p2]Khβ),

where p1, p2 do not occur free in α or β

Proof. We only show Kh⊗ and Kh→. The other cases can be found in [18].
For Kh⊗:
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=⇒: Suppose M, w ⊨ Kh(α ⊗ β), then by the semantics, there is some
⟨x, y⟩ ∈ R(WM, α ⊗ β). Let U = {u ∈ WM | x ∈ R(u, α)} and V = {v ∈
WM | x ∈ R(v, β)}. It is not hard to see that U ∪ V = WM, U ̸= ∅ implies
R(U,α) ̸= ∅ and V ̸= ∅ implies R(V, β) ̸= ∅. By Proposition 4.1, M, w ⊨
∃p1∃p2K((p1 ⊗ p2) ∧ [p1]Khα ∧ [p2]Khβ).

⇐=: Suppose M, w ⊨ ∃p1∃p2K((p1⊗p2)∧[p1]Khα∧[p2]Khβ), by Proposition
4.1, there are U1, U2 satisfying the desired property. If U1 ̸= ∅ and U2 ̸= ∅,
pick ⟨x, y⟩ as the witness for R(WM, α⊗β) s.t. x ∈ R(U1, α) and y ∈ R(U2, β).
If U1 = ∅ then U2 ̸= ∅ since WM is non-empty, then we pick ⟨x, y⟩ such that
y ∈ R(U2, β) and x ∈ S(α). Similar for the case when U2 = ∅. This suffices to
show M, w ⊨ Kh(α⊗ β).

For Kh→: In [18], we showed the validity of Kh(α → β) ↔ K2(Khα → Khβ)
where 2 is the informational update operator such that M, w ⊨ 2φ ⇐⇒ for
any M′ ⊆ M s.t. w ∈ M′, M′, w ⊨ φ. Note that 2φ can be defined by ∀p[p]φ
where p does not occur free in φ. The rest is the same as in [18]. 2

By Proposition 4.3 we can further eliminate the announcement operator in
a formula without Kh. 7

Proposition 4.3 The following formulas and schemata are valid:

[ ]p [χ]p↔ (χ→ p), p ∈ P ∪ {⊥}
[ ]⃝ [χ](φ⃝ ψ) ↔ [χ]φ⃝ [χ]ψ,⃝ ∈ {∧,∨,⊗,→}
[ ]K [χ]Kφ↔ (χ→ K([χ]φ))

[ ]∀ [χ]∀pφ↔ ∀p[χ]φ, p is not in χ

Proof. We only show [ ]∨ and [ ]∀ as examples.
For [ ]∨: M, w ⊨ [χ](φ∨ψ) iff M, w ⊨ χ implies M|χ, w ⊨ φ∨ψ iff M, w ⊨ χ

implies (M|χ, w ⊨ φ or M|χ, w ⊨ ψ) iff (M, w ⊨ χ implies M|χ, w ⊨ φ) or
(M, w ⊨ χ implies M|χ, w ⊨ ψ) iff M, w ⊨ [χ]φ or M, w ⊨ [χ]ψ iff M, w ⊨
[χ]φ ∨ [χ]ψ.

For [ ]∀: M, w ⊨ [χ]∀pφ iff M, w ⊨ χ implies M|χ, w ⊨ ∀pφ iff M, w ⊨
χ implies for all U ′ ⊆ WM|χ , (M|χ)[p 7→ U ′], w ⊨ φ. If U ⊆ WM then
U ′ = U ∩ WM|χ ⊆ WM|χ . Conversely, if U ′ ⊆ WM|χ then for some U ⊆
WM, U ′ = U ∩ WM|χ . Hence, M, w ⊨ [χ]∀pφ iff M, w ⊨ χ implies for all
U ⊆ WM, (M[p 7→ U ])|χ, w ⊨ φ iff for all U ⊆ WM, M, w ⊨ χ implies
(M[p 7→ U ])|χ, w ⊨ φ. Since p is not in χ, it is easy to see that M, w ⊨ χ iff
M[p 7→ U ], w ⊨ χ. Hence, M, w ⊨ [χ]∀pφ iff for all U ⊆WM, M[p 7→ U ], w ⊨ χ
implies (M[p 7→ U ])|χ, w ⊨ φ iff for all U ⊆ WM, M[p 7→ U ], w ⊨ [χ]φ iff
M, w ⊨ ∀p[χ]φ. 2

Without loss of generality, we can always rename the bound variable in
case it occurs in χ. Then for any Kh-free formula φ, by repeatedly applying

7 An alternative set of reduction formulas for the announcement operator is presented in
Lemma 12 of [1] on top of reduction axioms in [16]. See [22] for more detailed discussions on
reduction axioms for PAL.



728 An Epistemic Interpretation of Tensor Disjunction

Proposition 4.3, we can get rid of all [·] operators and find an equivalent ELΠ-
formula for each PALΠ-formula. We will give a formal presentation of this
result in Theorem 5.8 as a natural consequence of Theorem 5.2 (Soundness).

4.2 Inq⊗Kh = InqB⊗

Now we show that Inq⊗Kh = {α ∈ PL⊗ | ⊨ Khα} is exactly InqB⊗.

Lemma 4.4 For any α ∈ PL⊗, M, w ⊨ Khα iff M,WM ⊩ α. As a conse-
quence, for any non-empty state s in M, M, s ⊩ α iff M|s ⊨ Khα.

Proof. Note that M, w ⊨ Khα iff M ⊨ Khα by the semantics, so we simply
show M ⊨ Khα iff M,WM ⊩ α inductively on the structure of α. We only
prove the case of ⊗ since the rest are the same as in [18]. By Proposition
4.1 and 4.2, M ⊨ Kh(α ⊗ β) amounts to ∃U, V s.t. U ∪ V = WM, U ̸= ∅
implies R(U,α) ̸= ∅ and V ̸= ∅ implies R(V, β) ̸= ∅. We show this is exactly
M,WM ⊩ α⊗ β.

=⇒: If both U and V are non-empty, then M ⊨ Kh(α ⊗ β) amounts to
M|U ⊨ Khα and M|V ⊨ Khβ. By IH, it is equivalent to M|U , U ⊩ α and
M|V , V ⊩ β, which implies M,WM ⊩ α ⊗ β since U ∪ V = WM. If one of U
and V is empty, suppose w.l.o.g. U = ∅, then we can also show M, V ⊩ β (as
before), and M, U ⊩ α, for the empty state support all formulas by Proposition
2.4. Thus M,WM ⊩ α⊗ β.

⇐=: Suppose M,WM ⊩ α⊗ β, then there are substates t and t′ such that
t ∪ t′ =WM, M, t ⊩ α and M, t′ ⊩ β. Take U = t and V = t′, by IH, we have
U ∪ V = WM, U ̸= ∅ implies M|U ⊨ Khα and V ̸= ∅ implies M|V ⊨ Khβ.
Hence, U ̸= ∅ implies R(U,α) ̸= ∅ and V ̸= ∅ implies R(V, β) ̸= ∅. By
Proposition 4.1 and 4.2, we have M,WM ⊨ Kh(α⊗ β).

For the consequence, M|s, w ⊨ Khα iff M|s, s ⊩ α iff M, s ⊩ α, and the last
step is due to Proposition 2.5. 2

Remark 4.5 Note that the proof for the ⊗ case above actually established the
equivalence between our semantics inspired by Medvedev’s weak disjunction
and the team/support semantics in dependence/inquisitive logics. As men-
tioned in the introduction, the formula = (p, q) ⊗ = (p, q) in propositional
dependence logic is equivalent to the following formula in inquisitive logic

((p ∨ ¬p) → (q ∨ ¬q))⊗ ((p ∨ ¬p) → (q ∨ ¬q)).

In our setting, it says that there is a pair of dependence functions ⟨f1, f2⟩ s.t.
you know that one of these functions captures how q depends on p actually.
Note that such a pair of functions always exists: every state can be split into
two substates such that one collects all the worlds where q is true, and the
other one collects the rest. Then in the substate where q is homogeneously
true we can define a constant function essentially assigning any resolution of
p ∨ ¬p to the fixed resolution q. Similarly for the other substate where q is
homogeneously false. Therefore this formula is valid.

Based on the lemma above, we can establish the relation between InqB⊗

and Inq⊗Kh, where KhΓ = {Khα | α ∈ Γ}.
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Theorem 4.6 Given any {α} ∪ Γ ⊆ PL⊗, Γ ⊩ α iff KhΓ ⊨ Khα. As a conse-
quence when Γ = ∅, InqB⊗ = Inq⊗Kh.

Proof. Suppose Γ ⊩ α and M, w ⊨ KhΓ. Now we have M,WM ⊩ Γ by
Lemma 4.4 thus M,WM ⊩ α, therefore M, w ⊨ α. For the other way around,
if KhΓ ⊨ Khα and M, s ⊩ Γ, then M|s ⊨ KhΓ by Lemma 4.4, thus M|s ⊨ Khα.
By Lemma 4.4 again, M, s ⊩ α. 2

5 Axiomatization of PALKhΠ

In this section, we introduce the proof system SPALKhΠ+ as below. The axioms
can help us to “open up” the Kh-formulas step by step, and eventually eliminate
all the Kh operator and the announcement operators.

System SPALKhΠ+

Axioms
TAUT Propositional tautologies
Rd⊗ (φ⊗ ψ) ↔ (φ ∨ ψ)
DISTK K(φ→ ψ) → (Kφ→ Kψ)
[ ]p [χ]p↔ (χ→ p), p ∈ P ∪ {⊥}
[ ]⃝ [χ](φ⃝ ψ) ↔ [χ]φ⃝ [χ]ψ
[ ]K [χ]Kφ↔ χ→ K[χ]φ
[ ]∀ [χ]∀pφ↔ ∀p[χ]φ, p is not in χ
DIST∀ ∀p(φ→ ψ) → (∀pφ→ ∀pψ)
SUB∀ ∀pφ→ φ[ψ/p], ψ is free for p in φ
SU ∃p(p ∧ ∀q(q → K(p→ q)))
BC ∀pKφ→ K∀pφ
KhK Khα→ Kα
KKhp Kp→ Khp
Kh⊥ Kh⊥ ↔ ⊥
Kh∨ Kh(α ∨ β) ↔ Khα ∨ Khβ
Kh∧ Kh(α ∧ β) ↔ Khα ∧ Khβ
Kh→ Kh(α→ β) ↔ K∀p[p](Khα→ Khβ)
Kh⊗ Kh(α⊗ β) ↔ ∃p1∃p2K((p1 ⊗ p2)

∧[p1]Khα ∧ [p2]Khβ)

TK Kφ→ φ
4K Kφ→ KKφ
5K ¬Kφ→ K¬Kφ
4Kh Khα→ KKhα
5Kh ¬Khα→ K¬Khα
Rules

MP
φ,φ→ ψ

ψ

NECK
⊢ φ
⊢ Kφ

GEN∀
⊢ φ→ ψ

⊢ φ→ ∀pψ
p not free in φ

rRE
⊢ φ↔ ψ

⊢ χ[φ/ψ] ↔ χ
,

given that the
substitution
does not happen
in the scope of Kh

where p ∈ P, α, β ∈ PL⊗, φ,ψ, χ ∈ PALKhΠ, ⃝ ∈ {∧,∨,⊗,→}; p, p1, p2 do
not occur free in α and β in Kh→ and Kh⊗.

Together with rRE, Rd⊗ states the fact that ⊗ behaves exactly like ∨ when
it occurs outside Kh. S5 axiom schemata/rules for the know-that modality K
together with TAUT, DIST∀, SUB∀, SU and rule GEN∀ form a complete axioma-
tization S5Π+ of S5 logic with propositional quantifiers [10], where SU states
the existence of atoms, crucial to capture the powerset domain for the propo-
sitional quantifier. Axioms [ ]p, [ ]⃝, [ ]K and [ ]∀ are reduction axioms for the
announcement operator [·] [16,1]. 8 KKhp, Kh⊥, Kh∨, Kh∧, Kh→ and Kh⊗ are
the reduction axioms decoding the PL⊗ formulas, whose usages are shown in

8 The original form of [ ]∀ in [1] is [χ]∀pφ ↔ (χ → ∀p[χ]φ) (p is not in χ).
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Lemma 5.3. Barcan formula BC, introspection schemata 4K, 4Kh and 5Kh can
be proved from the rest of the system. In particular, 4Kh requires an inductive
proof on the structure of α. We include them for their intuitive meanings.

Remark 5.1 Compared to the proof system SDELKh in [18] for the standard
propositional inquisitive logic, there are a few notable differences:

• In order to capture tensor, we need a more powerful language PALKhΠ
than the language DELKh in [18]. Since we have the public announcement
operator [·] and propositional quantifier ∀p in PALKhΠ, the informational
update operator 2 in DELKh can be expressed by ∀p[p]. The axioms and
rules of [·] and ∀p can handle 2 implicitly. In Section 6, we will see our
language can uniformly define various generalised versions of tensor as well.

• In the proof system SDELKh of [18], there is a set of axiom schemata {EUk |
k ∈ N}, which captures the idea (roughly) that given a definable finite set
of worlds, we can have an updated submodel with it as the set of possible
worlds. These axioms are also necessary in the process of eliminating 2

in [18] and have an intimate connection with the axioms NDk in inquisitive
logic. However, these axioms are no longer needed here, as the same function
of postulating the existence of certain updated models can be realized by
concrete announcements in our language PALKhΠ.

The next subsection explores reductions of Kh systematically.

5.1 Provable equivalence

In Section 4.1, we showed that PALKhΠ is expressively equivalent to ELΠ.
Now we can show that each PALKhΠ-formula φ is provably equivalent to
an ELΠ-formula φ′ (Lemma 5.7) in SPALKhΠ+. Meanwhile we provide a
translation from φ to φ′.

Theorem 5.2 (Soundness) SPALKhΠ+ is sound over the class of all models.

Proof. The validity of [ ]p, [ ]⃝, [ ]K and [ ]∀ are given in Proposition 4.3. DIST∀,
SUB∀, SU and rule GEN∀ are given in [10]. KKhp, Kh⊥, Kh∨, Kh∧, Kh→, and Kh⊗ are
shown to be valid in Proposition 4.2. The validity of rRE is given in Proposition
3.11. The rest are trivial. 2

To prove the completeness we first prove Lemmata 5.3 and 5.6 with two
sets of reduction axioms for Kh and [·] respectively. Recall that PALΠ is the
Kh-free fragment of PALKhΠ, and ELΠ is the [·]-free fragment of PALΠ.

Lemma 5.3 Each PALKhΠ-formula is provably equivalent to a Kh-free
PALΠ formula in SPALKhΠ+.

Proof. We use rRE and axioms Kh⊥, Kh∧, Kh∨, Kh→, Kh⊗ repeatedly to reduce
Khα to some formula with Khp only. With ⊢ Khp↔ Kp from KhK and KKhp, we
can eliminate all Kh modalities. 2

To eliminate the announcement operator, we need a notion of complexity.

Definition 5.4 (Announcement rank) For each φ ∈ PALΠ, we define its
announcement rank ar(φ) inductively as follows:
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• If φ = p or φ = ⊥, then ar(φ) = 0.

• If φ = ψ1⃝ψ2 where ⃝ = ∧,∨,⊗ or →, then ar(φ) = max{ar(ψ1),ar(ψ2)}.
• If φ = Kψ, then ar(φ) = ar(ψ).

• If φ = ∀pψ, p ∈ P, then ar(φ) = ar(ψ).

• If φ = [χ]ψ, then ar(φ) = ar(ψ) + ar(χ) + 1.

Lemma 5.5 Each PALΠ-formula of the form [χ]ψ is provably equivalent to a
PALΠ-formula φ in SPALKhΠ+ such that ar(φ) < ar([χ]ψ).

Proof. We prove by induction on ψ:

(i) If ψ = p or ψ = ⊥, then by axiom [ ]p, [χ]ψ ↔ (χ→ ψ) and ar(χ→ ψ) =
max{ar(χ),ar(ψ)} < ar([χ]ψ). Hence φ = χ→ ψ is what we need.

(ii) If ψ = ψ1⃝ψ2 where ⃝ = ∧,∨,⊗,→, then by [ ]⃝, [χ]ψ ↔ [χ]ψ1⃝ [χ]ψ2.
By IH, there are φ1 ↔ [χ]ψ1 and φ2 ↔ [χ]ψ2 such that ar(φ1) < ar([χ]ψ1)
and ar(φ1) < ar([χ]ψ1). Hence, φ = φ1 ⃝ φ2 is what we need.

(iii) If ψ = Kψ′, then by [ ]K, [χ]ψ ↔ (χ → K[χ]ψ′). By IH, there is a φ′

such that φ′ ↔ [χ]ψ′ and that ar(φ′) < ar([χ]ψ′). Then ar(χ → Kφ′) =
max{ar(χ),ar(Kφ′)} = max{ar(χ),ar(φ′)} < max{ar(χ),ar([χ]ψ′)} =
ar([χ]Kψ′). Hence, φ = χ→ Kφ′ is what we need.

(iv) If ψ = ∀pψ′ where p ∈ P, we consider two subcases. 1) If p is not in χ, we
use [ ]∀ and the proof is similar to the above cases. 2) If p is in χ, replace p
with the first letter q ∈ P which is not in χ (such relettering can be done
in the system), and then go to case 1).

(v) If ψ = [χ′]ψ′, by IH, there is a φ′ such that φ′ ↔ [χ′]ψ′ and that ar(φ′) <
ar([χ′]ψ′). So [χ][χ′]ψ′ ↔ [χ]φ′ and ar([χ]φ′) < ar([χ][χ′]ψ′). Hence
φ = [χ]φ′ is what we need.

2

Given the above lemma, we can eliminate the announcement operators even-
tually. The idea is that each formula in the shape of [χ]φ has a finite announce-
ment rank, and can be reduced to an equivalent formula φ′ with a lower rank.
In case φ′ still has subformulas with the announcement operators, we can re-
place each of these subformulas with a provably equivalent one with a lower
rank. Note that by definition, a subformula’s rank is no greater than the whole
formula. Eventually, by repeating this process, we can decrease the rank to
zero and obtain an equivalent formula without the announcement operators.

Lemma 5.6 Each PALΠ-formula is provably equivalent to an ELΠ-formula
in SPALKhΠ+.

Combining Lemmata 5.3 and 5.6 we immediately have.

Lemma 5.7 Each PALKhΠ-formula is provably equivalent to an ELΠ-
formula in SPALKhΠ+.

Theorem 5.8 follows naturally from Lemma 5.7 and Theorem 5.2.
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Theorem 5.8 PALKhΠ is equally expressive as ELΠ over all models.

Note that ELΠ is more expressive than EL [10].

5.2 Completeness

With Lemma 5.7 and Theorem 5.8, the completeness of System SPALKhΠ+

can be reduced to that of S5Π+, which is given in [10]. S5Π+ is a variation
of second-order modal logic, containing all the axiom schemata/rules of S5 as
well as those concerning propositional quantifiers in SPALKhΠ+.

Theorem 5.9 (Completeness of S5Π+ [10]) S5Π+ is a complete axiomati-
zation with regard to the class of models.

Theorem 5.10 (Completeness) System SPALKhΠ+ is complete over the
class of all models.

Proof. We first use Lemma 5.3 and Lemma 5.6 to translate each PALKhΠ-
formula φ into an equivalent ELΠ-formula φ′ and then use the completeness
of S5Π+. Note that ⊢ φ below means φ is in SPALKhΠ+.

⊨ φ
expressive equivalence⇐⇒

Theorem 5.8
⊨ φ′ completeness of S5Π+

⇐⇒
Theorem 5.9

⊢S5Π+ φ′

S5Π+⊆SPALKhΠ+

=⇒ ⊢ φ′ provable equivalence⇐⇒
Lemma 5.7

⊢ φ

2

6 Generalization of Tensor Disjunction

Inspired by our epistemic interpretation, we generalize the binary ⊗ to n-ary
operators for any n ≥ 2 with another parameter k ≤ n. Due to the lack of
space, most of the proofs are omitted, except for a few crucial ones.

6.1 Generalizing the tensor operator

Consider the following scenario: You completed an exam with n questions, for
which you need at least k correct answers to pass. Now you only know you
have passed the exam. What is your epistemic state about your answers? For
any n ≥ 2 and 1 ≤ k ≤ n, we now define an n-ary connective ⊗kn capturing
that you are sure at least k of your n answers must be correct, but may not
know which ones are correct. The original tensor actually captures the special
case when k = 1 and n = 2.

Definition 6.1 (Language PL⊗k
n) The propositional language with general

tensor (PL⊗k
n) is defined as follows:

α ::= p | ⊥ | (α ∧ α) | (α ∨ α) | (α→ α) | ⊗kn(α, · · · , α︸ ︷︷ ︸
n

)

where p ∈ P and n ≥ 2, 1 ≤ k ≤ n.
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Definition 6.2 (Language PALKhΠG) The Public Announcement Logic
with Know-how and General Tensor (PALKhΠG) is as follows:

φ ::= p | ⊥ | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | ⊗kn(φ, · · · , φ︸ ︷︷ ︸
n

) | Kφ | Khα | ∀pφ | [φ]φ

where p ∈ P and α ∈ PL⊗k
n .

Now, we introduce the semantics of new connectives ⊗kn via resolutions.

Definition 6.3 For any positive integer n ≥ 2 and 1 ≤ k ≤ n, we define the
resolution space and resolution of ⊗kn as follow:

S(⊗kn(α1, · · · , αn)) = S(α1)× · · · × S(αn)

R(w,⊗kn(α1, · · · , αn)) = {(r1, · · · , rn) | k ≤ |{i ∈ [1, n] | ri ∈ R(w,αi)}|}

The truth condition for Kh is as before in Definition 3.7. In particular,
M, w ⊨ Kh⊗kn (α1, · · · , αn) iff R(WM,⊗kn(α1, · · · , αn)) ̸= ∅.

By Definition 3.7 and 6.3, it is not hard to see the following.

Proposition 6.4 M, w ⊨ Kh⊗kn (α1, · · · , αn) if and only if there is an n-tuple
⟨r1, · · · , rn⟩ such that for any v ∈WM, |{i | ri ∈ R(v, αi)}| ≥ k, i.e., there are
at least k indexes i ∈ [1, n] such that ri ∈ R(v, αi).

Based on the above proposition, the truth condition for ⊗1
2 is exactly as the

one for the standard ⊗ defined earlier. Note that ⊗kn can also appear outside
the scope of Kh in our language PALKhΠG and we define its semantics below.

Definition 6.5 (Semantics)

M, w ⊨ ⊗kn(φ1, · · · , φn) ⇐⇒ M, w ⊨
∨

I⊆{1,2,··· ,n}
|I|=k

∧
i∈I

φi

The semantics is guided by Proposition 3.8, with the desired property below.

Proposition 6.6 For any α ∈ PL⊗k
n and M, w, M, w ⊨ α iff R(w,α) ̸= ∅.

Next, we show how to reduce the general tensors in PALKhΠG.

Proposition 6.7 The following schemata are valid:

Rd⊗k
n ⊗kn (φ1, · · · , φn) ↔

∨
I⊆{1,2,··· ,n}

|I|=k

∧
i∈I

φi

Kh⊗k
n

Kh⊗kn (α1, · · · , αn) ↔ ∃p1 · · · ∃pnK(⊗kn(p1, · · · , pn) ∧
n∧
i=1

[pi]Khαi)

(where all the pi do not occur free in all the αi)

Proof. Rd⊗k
n is valid by the truth condition of ⊗kn in Definition 6.5.

For Kh⊗k
n
:
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=⇒: By Proposition 6.4 M, w ⊨ Kh ⊗kn (α1, · · · , αn) iff there is an n-tuple
⟨r1, · · · , rn⟩ s.t. for any v ∈WM, there are at least k indexes i ∈ [1, n] such that
ri ∈ R(v, αi). Let Ui = {v ∈ WM | ri ∈ R(v, αi)}, then consider M[p̄ 7→ Ū ] =
⟨W,V ′⟩ such that V ′ assigns Ui to pi for i ∈ {1, . . . , n} and coincides with V on
all other atoms. Then, for any v ∈WM, there are at least k indexes i ∈ [1, n] s.t.
M[p̄ 7→ Ū ], v ⊨ pi, so M[p̄ 7→ Ū ], v ⊨ ⊗kn(p1, · · · , pn). And since for any v ∈ Ui
we have ri ∈ R(v, αi), so R(Ui, αi) ̸= ∅. Hence, for any v ∈ WM, M[p̄ 7→
Ū ], v ⊨ [pi]Khαi. In sum, M[p̄ 7→ Ū ], w ⊨ K(⊗kn(p1, · · · , pn) ∧

∧n
i=1[pi]Khαi),

which is equivalent to M, w ⊨ ∃p1 · · · ∃pnK(⊗kn(p1, · · · , pn) ∧
∧n
i=1[pi]Khαi).

⇐=: Suppose M, w ⊨ ∃p1 · · · ∃pnK(⊗kn(p1, · · · , pn) ∧
∧n
i=1[pi]Khαi), then

there are Ui ⊆ WM such that M[p̄ 7→ Ū ], w ⊨ K(⊗kn(p1, · · · , pn) ∧∧n
i=1[pi]Khαi), which is equivalent to M[p̄ 7→ Ū ], w ⊨ (K ⊗kn (p1, · · · , pn)) ∧∧n
i=1 K[pi]Khαi.
For the first conjunct: M[p̄ 7→ Ū ], w ⊨ K ⊗kn (p1, · · · , pn) means that for

any v ∈ WM we have M[p̄ 7→ Ū ], v ⊨ ⊗kn(p1, · · · , pn). So at least k of pi is
true in v, which means v belongs to at least k of the corresponding Ui. For the
second conjunct: M[p̄ 7→ Ū ], w ⊨

∧n
i=1 K[pi]Khαi means that for any v ∈ WM

and i ∈ [1, n], v ∈ Ui implies that R(Ui, αi) ̸= ∅. So, if Ui ̸= ∅, pick a ri from
R(Ui, αi). If Ui = ∅, pick an arbitrary ri from S(αi). Hence, we have for any
i ∈ [1, n], Ui ̸= ∅ implies ri ∈ R(Ui, αi).

Combining the meaning of the two conjuncts, we know that for any v ∈WM,
there are at least k indexes i ∈ [1, n] such that v ∈ Ui and Ui ̸= ∅ implies
ri ∈ R(Ui, αi) for any i ∈ [1, n]. Hence, ⟨r1, · · · , rn⟩ is a n-tuple satisfying the
desired property, by Proposition 6.4, we have M, w ⊨ Kh⊗kn (α1, · · · , αn). 2

By using the reduction axioms above, all the general tensors can be elimi-
nated semantically, and thusPALKhΠG andPALKhΠ are equally expressive.

Let SPALKhΠ+
G be SPALKhΠ+ extended with Rd⊗k

n and Kh⊗k
n
for any n ≥ 2

and 1 ≤ k ≤ n. Similar to Theorem 5.10, it is straightforward to show:

Theorem 6.8 (Soundness and completeness) Proof system SPALKhΠ+
G

is sound and complete over the class of all models.

6.2 Support semantics for ⊗kn
We can now go back to define the support semantics for ⊗kn.
Definition 6.9 (Support for ⊗kn) M, s ⊩ ⊗kn(α1, · · · , αn) iff there exist n
subsets t1, · · · , tn of s such that for any i ∈ [1, n], M, ti ⊩ αi and for any
w ∈ s, there are at least k indexes i ∈ [1, n] such that w ∈ ti.

The support semantics for other connectives stays the same as in Definition

2.3. Let InqB⊗k
n be the set of valid PL⊗k

n formulas by the support semantics.

We can show Inq⊗k
nKh = {α ∈ PL⊗k

n | ⊨ Khα} is exactly InqB⊗k
n , based on

the following generalization of Lemma 4.4.

Proposition 6.10 For any α ∈ PL⊗k
n , M, w ⊨ Khα ⇐⇒ M,WM ⊩ α.

Proof. Based on Lemma 4.4, we only consider the case of ⊗kn(α1, · · · , αn) and
write ∃U for ∃U ⊆WM for brevity, similarly for ∃t.
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M, w ⊨ Kh(⊗kn(α1, · · · , αn))

⇐⇒ M, w ⊨ ∃p1 · · · ∃pnK(⊗kn(p1, · · · , pn) ∧
n∧
i=1

[pi]Khαi) (by Proposition 6.7).

⇐⇒ ∃U1, · · · , Un,∀v ∈WM, there are at least k indexes i ∈ [1, n] s.t. v ∈ Ui

and for any i, Ui ̸= ∅ implies R(Ui, αi) ̸= ∅.(similar to Proposition 4.1)

⇐⇒ ∃t1, · · · , tn,∀i ∈ [1, n], ti ⊩ αi and ∀v ∈WM, k ≤ |{i ∈ [1, n] | v ∈ Ui}|
⇐⇒ M,WM ⊩ ⊗kn(α1, · · · , αn).

2

As shown in [24], adding tensor does not increase the expressive power of
inquisitive logic. In fact, adding all the general tensors also does not increase
the expressive power of inquisitive logic.

First, we extend the definition of realization in [6] to our new connectives.

Definition 6.11 (Realizations)

• RL(p) = {p} for p ∈ P

• RL(⊥) = {⊥}
• RL(α ∨ β) = RL(α) ∪ RL(β)

• RL(α ∧ β) = {ρ ∧ σ | ρ ∈ RL(α) and σ ∈ RL(β)}
• RL(α→ β) = {

∧
ρ∈RL(α)(ρ→ f(ρ)) | f : RL(α) → RL(β)}

• RL(⊗kn(α1, · · · , αn)) = {¬
∧
I⊆{1,2,··· ,n}

|I|=k
¬
∧
i∈I ρi | for all i, ρi ∈ RL(αi)}

Then we can generalize the inquisitive normal form in [6,9].

Proposition 6.12 For any α ∈ PL⊗k
n , s ⊩ α iff s ⊩

∨
ρ∈RL(α) ρ.

Theorem 6.13 PL and PL⊗k
n are equally expressive w.r.t. the support se-

mantics.

Proof. By Proposition 6.12, for any α ∈ PL⊗k
n , α is equivalent to a disjunction

of some ρ without general tensors. 2

In [25], it is shown that the variants of propositional dependence logics PD,
PD∨, PID, InqB are all equally expressive. Similarly, adding general tensors
to the languages of these logics will also not increase the expressive power.

Corollary 6.14 Adding general tensors to the langugaes of PD, PD∨, PID
or InqB does not increase their expressive power.

6.3 Interdefinability

In [7], it is proved that although adding ⊗ to PL does not increase the expres-
sive power, ⊗ is not uniformly definable in PL, i.e., φ⊗ψ cannot be expressed
by a uniform formula “template” with φ and ψ as its only parameters. It is also
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natural to ask whether general tensors are uniformly definable by the standard
binary tensor ⊗.

First, on the positive side, we show that ⊗nn is a trivial conjunction and
⊗1
n can be uniformly defined by ⊗1

2. Moreover, by fixing some components as
⊤ or ⊥, some general tensors can be uniformly defined by others with smaller
parameters.

Proposition 6.15 For any α1, · · · , αn ∈ PL⊗k
n , the following hold:

• For any n ≥ 2 and any state s, s ⊩ ⊗nn(α1, · · · , αn) ⇐⇒ s ⊩
∧n
i=1 αi.

• For any n ≥ 3, s ⊩ ⊗1
n(α1, · · · , αn) ⇐⇒ s ⊩ ⊗1

2(⊗1
n−1(α1, · · · , αn−1), αn).

• For any n ≥ 3, 1 ≤ k ≤ n and any state s, s ⊩ ⊗kn(α1, · · · , αn−1,⊤) ⇐⇒
s ⊩ ⊗k−1

n−1(α1, · · · , αn−1).

• For any n ≥ 3, 1 ≤ k ≤ n−1 and any state s, s ⊩ ⊗kn(α1, · · · , αn−1,⊥) ⇐⇒
s ⊩ ⊗kn−1(α1, · · · , αn−1).

Inspired by the proof in [7], we can show that ⊗2
3 is not uniformly definable

by the connectives {⊥,∧,→,∨,⊗1
2} in PL⊗.

To show the negative results, we need the following definitions about uni-
form definability from [24].

Definition 6.16 (Context) A context for a propositional logic L is an L-
formula φ(p1, · · · , pn) with distinguished atoms p1, · · · , pn, and it is also
allowed to contain other atoms besides p1, · · · , pn. For any L-formulas
ψ1, · · · , ψn, we write φ(ψ1, · · · , ψn) for the formula φ(ψ1/p1, · · · , ψn/pn).
Definition 6.17 (Uniform definability) In a language L, we say that an n-
ary connective ⊙ is uniformly definable if there exists a context ζ(p1, · · · , pn)
such that for all χ1, · · · , χn ∈ L: ⊙(χ1, · · · , χn) is equivalent to ζ(χ1, · · · , χn).
As the first negative result, we show ⊗2

3 is not uniformly definable in PL⊗. We
consider relative equivalence with respect to a state s.

Definition 6.18 (Relative equivalence [7]) Let s be a state in M and

φ,ψ ∈ PL⊗k
n . We say that φ and ψ are relatively equivalent in s, φ ≡s ψ

iff for all states t ⊆ s, t ⊩ φ ⇐⇒ t ⊩ ψ.

It is easy to see that if φ and ψ are equivalent then they are relatively
equivalent in any state s.

Consider ψ = p1 ∨ p2 ∨ p3 ∨ p4 and s = {w12, w13, w14, w23, w24, w34} where
only pi, pj are true in wij and all the other propositional letters are false. Now,
we show that with respect to this state s, ⊗2

3 cannot be uniformly defined by
any context in PL⊗.

Lemma 6.19 For any context φ(p0), with φ ∈ PL⊗ not containing
p1, p2, p3, p4, φ(ψ/p0) would be equivalent to ⊥, ψ,⊗1

2(ψ,ψ) or ⊤ in s.

Proof. First we notice for any state t, t ⊩ ⊥ ⇒ t ⊩ ψ ⇒ t ⊩ ⊗1
2(ψ,ψ) ⇒ t ⊩ ⊤

(⋆). Then we prove by induction on φ. For short, we write φ∗ for φ(ψ/p0):

• For φ = ⊥ or φ = p with p ̸= p0: Since we assume that p1, p2, p3, p4 are not
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in φ, so p is different from them. Hence, it is obvious that φ∗ ≡s ⊥.

• For φ = p0: It is obvious that φ
∗ ≡s ψ.

• For φ = φ1 ∧ φ2: so φ
∗ = φ∗

1 ∧ φ∗
2. By IH, φ∗

1 and φ∗
2 are both equivalent to

⊥, ψ,⊗1
2(ψ,ψ) or ⊤ in s. Since (t ⊩ χ1 ⇒ t ⊩ χ2) implies (t ⊩ χ1 ∧ χ2 ⇐⇒

t ⊩ χ1), by (⋆), obviously φ∗ is also equivalent to ⊥, ψ,⊗1
2(ψ,ψ) or ⊤ in s.

• For φ = φ1 ∨ φ2: similar to the case of conjunction.

• For φ = φ1 → φ2: so φ
∗ = φ∗

1 → φ∗
2, and for any state t, t ⊩ φ∗

1 → φ∗
2 iff for

any t′ ⊆ t, t′ ⊩ φ∗
1 implies t′ ⊩ φ∗

2. By (⋆), we could know that:
· ⊥ → ⊥, ⊥ → ψ, ⊥ → ⊗1

2(ψ,ψ), ⊥ → ⊤, ψ → ψ, ψ → ⊗1
2(ψ,ψ), ψ → ⊤,

⊗1
2(ψ,ψ) → ⊗1

2(ψ,ψ), ⊗1
2(ψ,ψ) → ⊤, ⊤ → ⊤ are all equivalent to ⊤ in s.

· ψ → ⊥, ⊗1
2(ψ,ψ) → ⊥ and ⊤ → ⊥ are all equivalent to ⊥ in s.

· ⊗1
2(ψ,ψ) → ψ and ⊤ → ψ are equivalent to ψ in s.

· ⊤ → ⊗1
2(ψ,ψ) is equivalent to ⊗1

2(ψ,ψ) in s.
Hence, φ∗ is equivalent to ⊥, ψ,⊗1

2(ψ,ψ) or ⊤ in s.

• For φ = ⊗1
2(φ1, φ2): so φ

∗ = ⊗1
2(φ

∗
1, φ

∗
2). We consider the following cases:

· φ∗
1 ≡s ⊤. Then ⊗1

2(φ
∗
1, φ

∗
2) ≡s ⊤.

· φ∗
1 ≡s ⊥. Then ⊗1

2(φ
∗
1, φ

∗
2) ≡s φ∗

2.
· φ∗

1 ≡s ψ. If φ∗
2 ≡s ⊤ or φ∗

2 ≡s ⊥, it would be the same as former cases.
Then we need to discuss two sub-cases:

∗ φ∗
2 ≡s ψ. Then ⊗1

2(φ
∗
1, φ

∗
2) ≡s ⊗1

2(ψ,ψ).
∗ φ∗

2 ≡s ⊗1
2(ψ,ψ). Then t ⊩ φ∗ ⇐⇒ there are t1, t2 ⊆ t and t1 ∪ t2 = t

such that t1 ⊩ ψ and t2 ⊩ ⊗1
2(ψ,ψ) ⇐⇒ there are t1, t2 ⊆ t, t1 ∪ t2 = t

and pi1 , pi2 , pi3 such that pi1 is true in any w ∈ t1 and for any w ∈ t2, pi2
or pi3 is true in w ⇐⇒ there are pi1 , pi2 , pi3 such that for any w ∈ t, pi1 ,
pi2 or pi3 is true in w. However, there are only four propositional letters
p1, p2, p3, p4 and in each w ∈ s, two of these propositional letters are true.
So consider p1, p2 and p3, we will know that for any w ∈ t ⊆ s, at least
one of p1, p2 and p3 is true in w. Hence, ⊗1

2(ψ,⊗1
2(ψ,ψ)) ≡s ⊤.

· φ∗
1 ≡s ⊗1

2(ψ,ψ). Then if φ∗
2 ≡s ⊤, φ∗

2 ≡s ⊥ or φ∗
2 ≡s ψ, it would be the

same as former cases. And if φ∗
2 ≡s ⊗1

2(ψ,ψ), the proof is similar to the
previous case and the result is that ⊗1

2(⊗1
2(ψ,ψ),⊗1

2(ψ,ψ)) ≡s ⊤.
2

Lemma 6.20 ⊗2
3 is not uniformly definable in PL⊗.

Proof. If ⊗2
3 is uniformly definable in PL⊗, there will be a context φ(p) such

that for any χ ∈ PL⊗: φ(χ) is equivalent to ⊗2
3(χ, χ, χ).

However, as we proved in Lemma 6.19, for any context φ(p0) ∈ PL⊗,
φ(ψ/p0) would be relatively equivalent to ⊥, ψ, ⊗1

2(ψ,ψ) or ⊤ in s. But it is
obvious that ⊗2

3(ψ,ψ, ψ) is not relatively equivalent to ⊥, ψ, ⊗1
2(ψ,ψ) or ⊤ in

s. Hence, ⊗2
3(ψ,ψ, ψ) and φ(ψ/p0) are not relatively equivalent in s, and hence

not equivalent in general, which gives rise to a contradiction. 2

Theorem 6.21 All the ⊗kn are not uniformly definable in PL⊗ except ⊗1
n and

⊗nn, i.e., for any 2 ≤ k ≤ n− 1, ⊗kn is not uniformly definable.

Proof. Note that n ≥ 2 by definition. When 2 ≤ k ≤ n − 1 (thus n ≥ 3), by
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Proposition 6.15, ⊗2
3 can be uniformly defined by ⊗kn, so ⊗2

3 is not uniformly
definable in PL⊗ implies that ⊗kn is not uniformly definable in PL⊗. Based
on the first two items of Proposition 6.15, we have the desired result. 2

7 Conclusions and future work

In this paper, we proposed an epistemic interpretation of the tensor disjunction
in dependence logic. The interpretation is inspired by the notion of weak
disjunction in Medvedev’s early work in terms of the BHK-like semantics. The
connection between the two disjunctions is exposed in inquisitive logic with
tensor disjunction (InqB⊗) studied in the literature. We introduce a powerful
dynamic epistemic language which can turn each formula in the language of
InqB⊗ into a know-how formula, which can be further reduced into a know-
how-free formula. Along the way we need to use announcement operators and
the propositional quantifiers to capture the epistemic meaning of the tensor
disjunction. We give the axiomatization of our full logic, and generalize the
tensor disjunction to a family of n-ary operators parameterized by a k ≤ n,
which capture the intuitive epistemic situations that knowing a list of n possible
answers to n questions such that one knows at least k of them are correct.

We have seen that the propositional quantifiers are playing an important
role in our framework, i.e., in defining the tensor and its generalizations. How-
ever, technically speaking, it might be an overkill since the expressive power of
InqB and InqB⊗ are the same. It remains to see whether we can use a simpler
machinery to capture the epistemic meaning of tensor discussion without using
the full power of the propositional quantifiers.

Besides further technical questions regarding our logic, the generalized ten-
sor clearly has a life of its own, and invites further investigations. Its obvious
combinatorial features may find applications in cryptographic protocols and
game theory. To see the connection with the latter, we end the paper with
the following interesting scenario where ⊗2

3 makes perfect sense. Consider a
badminton match between two teams. Each team has one good player with
two other less capable ones. We can measure the abilities of the players by
numbers which will determine the result of the matches in the most natural
way. For team A, it is 6, 2, 2 for the three players, and for team B it is 5, 3, 3.
The battle between the two teams consists of three single matches, and the
rule of the game does not prevent one player from playing two matches if not
in a row, although the second time the player will lose 1/3 of his or her ability
due to tiredness. Now, with some reflection, we can see team B has a unique
arrangement of the playing players to make sure they can win at least two out
of the three matches no matter how team A will do. Do you know which one?
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