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Abstract

Search in the space of beliefs has been proposed as a con-
venient framework for tackling planning under uncertainty.
Significant improvements have been recently achieved, espe-
cially thanks to the use of symbolic model checking tech-
niques such as Binary Decision Diagrams. However, the
problem is extremely complex, and the heuristics available
so far are unable to provide enough guidance for an informed
search.
In this paper we tackle the problem of defining effective
heuristics for driving the search in belief space. The basic
intuition is that the “degree of knowledge” associated with
the belief states reached by partial plans must be explicitly
taken into account when deciding the search direction. We
propose a way of ranking belief states depending on their de-
gree of knowledge with respect to a given set of boolean func-
tions. This allows us to define a planning algorithm based on
the identification and solution of suitable “knowledge sub-
goals”, that are used as intermediate steps during the search.
The solution of knowledge subgoals is based on the identifi-
cation of “knowledge acquisition conditions”, i.e. subsets of
the state space from where it is possible to perform knowl-
edge acquisition actions. We show the effectiveness of the
proposed ideas by observing substantial improvements in the
conformant planning algorithms of MBP.

Introduction
Planning in nondeterministic domains, i.e. with uncertainty
in the initial condition, partial observability, and uncertain
action effects, is increasingly being recognized as an im-
portant research area. In practical domains, the ability to
deal with contingencies during the planning process is of-
ten required, for instance in order to anticipate unpredictable
events and counter possible failures. Significant relation-
ships are also being recognized with the fields of controller
synthesis, diagnosis (Thiebaux & Cordier 2001), and Auto-
mated Test Pattern Generation (Cimatti, Roveri, & Bertoli
2001). Planning in nondeterministic domains is also one of
the most challenging problems, proved to be significantly
harder than classical planning (De Giacomo & Vardi 1999).
Intuitively, this is due to the fact that a plan can be asso-
ciated with possibly many traces, and in order to guaran-
tee goal achievement they all must be taken into account.

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Several approaches to planning in nondeterministic domains
have been recently tackled (Pryor & Collins 1996; Kabanza,
Barbeau, & St-Denis 1997; Weld, Anderson, & Smith 1998;
Cimatti, Roveri, & Traverso 1998a; 1998b; Rintanen 1999).
One of the most successful research directions recasts plan-
ning in nondeterministic domains as search in the space
of beliefs (Bonet & Geffner 2000). A condition of uncer-
tainty is represented as a belief state, i.e. a set collecting
all possible states in which the domain could be. Since
the belief space is exponential in the number of states in
the domain, the problem turns out to be extremely complex.
The use of symbolic techniques, based on Binary Decision
Diagrams, allows to stretch the scalability in conformant
planning, both for breadth-first search (Cimatti & Roveri
2000) and for heuristic search (Bertoli, Cimatti, & Roveri
2001b), and in conditional planning (Bertoli et al. 2001b;
Bertoli, Cimatti, & Roveri 2001a).

The most evident limitation of these approaches is that,
even in trivial cases, the algorithms may get lost in the search
space. This often results in a blow-up in the computational
resources needed to solve the problem, and in highly sub-
optimal solutions. The main reason for this is in the heuris-
tic functions used to drive the search, that do not provide
enough information. In this paper, we tackle the problem
of defining more effective heuristic functions for searching
the space of beliefs. The basic intuition is that the degree of
knowledge associated with a certain belief state must be ex-
plicitly taken into account. In particular, we propose a way
of ranking belief states depending on their degree of knowl-
edge with respect to a given set of boolean functions. We
define a new conformant planning algorithm, based on the
identification and solution of suitable knowledge subgoals,
used as intermediate steps to drive the search. The solu-
tion of knowledge subgoals is based on the identification of
knowledge acquisition conditions, i.e. subsets of the state
space from where it is possible to perform knowledge acqui-
sition actions. The effectiveness of the proposed approach
is demonstrated by a thorough experimental evaluation. In
some very small instances of the simpler problems, the new
algorithm may be slightly less efficient due to the overhead
of reasoning about knowledge subgoals and knowledge ac-
quisition conditions. However, the significance of such an
overhead decreases with the growth of the dimension of the
problem. Moreover, in any other problems we tackled, the
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new algorithm exhibits improved efficiency, and always pro-
duces plans of high quality.

This paper is structured as follows. First we provide some
background on conformant planning as search in the belief
space. Then, we discuss the ideas underlying the definition
of more effective selection functions, and we describe the
algorithm for conformant planning based on such ideas. In
the following section, we discuss the implementation in the
setting of Planning via Symbolic Model Checking, and we
present an extensive experimental evaluation. In the final
section, we draw some conclusions and we discuss some re-
lated and future work.

Conformant Planning as
Search in Belief Space

We consider nondeterministic planning domains represented
as finite state automata. This general model can be used for
providing a semantics to languages such as PDDL and its
nondeterministic extension, and AR (Giunchiglia, Kartha,
& Lifschitz 1997), where parallel/concurrent actions have
preconditions, conditional and uncertain effects.

Definition 1 (Planning Domain) A Planning Domain is a
4-tuple D = (P,S,A,R), where P is the (finite) set of
atomic propositions, S ⊆ Pow(P) is the set of states, A
is the (finite) set of actions, and R ⊆ S × A × S is the
transition relation.

Intuitively, a proposition is in a state if and only if it holds
in that state. In the following we assume that a planning
domain D is given. We use s, s′ and s′′ to denote states
of D, and α to denote actions. R(s, α, s′) holds iff when
executing the action α in the state s the state s′ is a possible
outcome. We say that an action α is applicable in s iff there
is at least one state s′ such that R(s, α, s′) holds. We say that
an action α is deterministic in s iff there is a unique state s′

such that R(s, α, s′) holds. An action α has an uncertain
outcome in s if there are at least two distinct states s′ and s′′

such that R(s, α, s′) and R(s, α, s′′) hold.
Consider for instance the simple navigation domain out-

lined in the rightmost square in Figure 1 where a robot can
move in the four directions a 4x4 square. The example
is very simple, and is used here only for explanatory pur-
poses. The positions in the square can be represented by
means of two fluents x and y, both ranging from 0 to 3. For
this simple domain, the propositions are equalities between
the variables and their possible values (e.g. x = 0). The
black location in (1,2) is a hole that, if entered, will cause
the robot to crash. This means, for instance, the GoWest
action is not applicable in (0,2). When moving toward a
wall, the robot does not move. For instance, if the robot
performs a GoSouth action in location (0,0), it will remain
in (0,0). The location in (2,1) is a slippery spot, that will
make the robot move unpredictably sideways when perform-
ing an action in it. This introduces nondeterministic action
effects. For instance, the effect of performing a GoWest ac-
tion starting from state (2,1) may results in any of the states
in {(3, 0), (3, 1), (3, 2)}.

In this paper we consider plans to be sequences of actions,
i.e. elements of A∗. We use ε for the 0-length plan, π and

ρ to denote plans, and π; ρ for concatenation. Conformant
planning is the problem of finding a plan that, if executed
in any initial state in I ⊆ S, takes the domain into a set of
states G ⊆ S, regardless of nondeterministic action effects.
Following (Bonet & Geffner 2000), we model this problem
as search in the space of belief states. A belief state is a set
of states, intuitively expressing a condition of uncertainty, by
collecting together all the states which are equally possible.
The execution of actions is lifted from states to belief states
by the following definition.

Definition 2 (Plan Applicability, Execution) An action α
is applicable in a belief state ∅ �= Bs ⊆ S iff α is applicable
in every state in Bs. If α is applicable in Bs, its execution
Exec[α](Bs) is the set {s′|R(s, α, s′), with s ∈ Bs}. The
execution of a plan π in a belief state, written Exec[π](Bs),
is defined as follows.

Exec[ε](Bs) =̇ Bs
Exec[π](∅) =̇ ∅
Exec[α;π](Bs) =̇ ∅, if α is not applicable in Bs
Exec[α;π](Bs) =̇ Exec[π](Exec[α](Bs)), otherwise

We say that a plan is applicable in a belief state when its
execution is not empty. For a conformant planning problem,
solutions are applicable plans, for which all the final states
must be goal states. Formally, the problem is defined as fol-
lows.

Definition 3 (Conformant Planning Problem) Let ∅ �=
I ⊆ S and ∅ �= G ⊆ S. The plan π is a conformant so-
lution to the problem 〈I . G〉 iff ∅ �= Exec[π](I) ⊆ G.

In the example navigation domain, the problem is for the
robot to go from the initial belief state {(0, 1), (0, 2)} to the
goal belief state {(3, 1), (3, 2)}. A possible solution to this
problem is the plan (GoSouth; three times GoEast; GoSouth;
GoNorth): the associated traces are depicted in the middle
row in Figure 1. (The hole and the slippery spot are reported
only in the first square, while in the following ones only the
belief state is reported.) The reader can check that the as-
sociated plan is conformant: for all the possible associated
traces, the plan never violates the applicability conditions
of the attempted actions, and ends in a goal state. Notice
that the first action is GoSouth in order to make sure that
the preconditions of the following GoWest are met in all the
states of the belief state. Notice also the last GoEast action:
intuitively, the uncertainty in the position of the robot is in-
creased by the nondeterministic effect of the action. The
following GoSouth action is needed to regain some knowl-
edge: the robot will result in (3,3) if it executes GoSouth
both in (3,2) and in (3,3).

The problem of finding a conformant plan in this setting
amounts to searching the belief space, and looking for a path
from the initial belief state to the goal belief state. Figure 1
outlines (a subset of) the search space for the example, con-
structed forward, starting from the initial set of states toward
the goal. An expansion step consists in trying all the applica-
ble movement actions. Notice that different plans can result
in the same belief state, and that cycles are possible. No-
tice also that, ever for this simple example, several different
plans are possible, since the three leftmost belief states are
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Figure 1: A simple navigation domain

all goal states. Their characteristics are also quite different:
for instance, after the plan associated with the upper row
(GoNorth twice; GoEast three times; GoSouth) the uncer-
tainty in the robot location is eliminated. It is also possible
to traverse the belief space backward, from the goal toward
the initial belief state. Being a belief state a subset of S, con-
formant planning amounts to searching all possible paths in
the space of beliefs states, that is the power-set of the set of
states of the domain Pow(S). (In this simple case, 16 states
induce 216 belief states, although not all of them are reach-
able.) It is therefore clear that both the efficient storage of
the traversed state space and the branching rate of the search
space are significant issues. Symbolic representation tech-
niques deal well with the first issue; thus, the current bot-
tleneck appears to be more in the ability to detect the more
promising search directions.

Heuristics in Belief Space
Let us consider an even simpler problem. In the empty
room depicted in Figure 2 (left), the problem is reaching
{(3, 4), (4, 4)} from {(1, 1), (1, 2), (2, 1), (2, 2)}. If we ap-
ply all the possible actions, and we score the each of the
resulting belief state based on the distances to the goal of
the states contained in it, we would direct the search toward
either north or east. If we iterate, as depicted in the mid-
dle, we basically proceed north-east, toward the goal. Once
there, however, there is no way of achieving the goal: in-
tuitively, there is not enough information on the y coordi-
nate, and there is no way to improve it nearby the goal. The
heuristics function defined in (Bonet & Geffner 2000), and
implemented in the GPT conformant planner, is very simi-
lar to what described above. As pointed out in the experi-
mental analysis in (Cimatti & Roveri 2000), in some cases
of the empty navigation domains GPT ends up performing
a breadth-first search, with significant degrades in perfor-
mance. A more informed search would consider moving

against the south wall in order to limit the uncertainty on
the y coordinate, and point toward the goal only afterward
(see Figure 2 on the right).

This simple example shows the basic difference between
searching the space of states and searching the space of be-
liefs. Clearly, in both cases an estimate of the distance of a
state to the goal can be very useful. However, the amount of
available knowledge is also a fundamental factor that must
be taken into account in order to control the exploration of
the belief space. We now provide the basic notions for the
construction of more effective selection functions. We do
not require the selection functions to be admissible, thus giv-
ing up the guarantee of optimality of the returned plans. Our
approach is similar in spirit to FF (Hoffmann & Nebel 2001),
that is often able to construct plans of reasonable length,
though suboptimal, in the deterministic setting. The pro-
posed approach is based on the notion of degree of certainty
of a boolean function in a belief state.

Definition 4 (Known value/range) A boolean function φ is
known to have value true [false, respectively] in a belief
state S, written K�(φ, S) [K⊥(φ, S), resp.], iff, for all
s ∈ S, s |= φ [s |= ¬φ, resp.]

A variable x is known to have value v in a belief state S,
written Kv(x, S), iff K�(x = v, S).

The known range of x in S is the set
{vi | ∃s ∈ S.s |= (x = vi)}.

We provide an explicit treatment of non-boolean variables
(such as robot coordinates). Although non-boolean variables
can be encoded using sets of boolean variables, it is im-
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Figure 2: Different ways of searching the belief space

portant to be able to express the heuristic functions in non-
boolean terms, in order not to lose the structure of the prob-
lem. A variable is known to have a value in a belief state if
this is the case in all the states in the belief state. Boolean
functions are treated similarly. The known range is the set of
all possible values of a variable in a belief state. Notice how
the cardinality of the known range gives a rough but valu-
able information on how uncertain we are on the variable.
For instance, in the above case, the cardinality of the known
range of the y variable in the initial belief state is 2, while in
the goal belief state it is 1.

A more informed view of a boolean function in a belief
state is the following.

Definition 5 (Truth Percentage) The truth percentage of
φ in S, written |K|�(φ, S), is defined as |{s∈S|s|=φ}|

|S|

The notion of truth percentage gives an idea of how close a
belief state is to the truth of a boolean function. Again, this
is clearly an abstract view, since there may be correlations
that are lost. For instance, the two boolean functions x = 0,
and y = 0 have the same truth percentage in the belief states
{(0, 0), (0, 1), (1, 0), (1, 1)} and {(0, 1), (1, 0)}. In some
cases, truth percentage can be effectively used to reach a
certain belief state, such as the goal, by “hill-climbing”, i.e.
trying to greedily explore belief states of increasing truth
percentage.

However, simple hill climbing on truth percentage is not
enough in problems with more complicate structure. There-
fore, we exploit the idea that a certain knowledge is nec-
essary to reach the goal. Similar conditions, that we call
“knowledge subgoals”, can be identified by taking an ab-
stract view of the belief space. For instance, in the case of
navigation in the empty room, it is possible to detect that
there is no way in which the goal could be reached with-
out passing through a belief state where the known range
of y has cardinality 1. This kind of information, resulting
in knowledge subgoals such as “the known range of x must
have cardinality 1”, can be acquired by simple comparison
of the known range of domain variables in the initial and
goal belief states.

Our approach exploits this idea, and tries to acquire the
necessary knowledge before trying to reach the goal. In or-
der to solve knowledge subgoals, we preprocess the domain
and identify “knowledge acquisition conditions”, i.e. belief

states where it is possible to execute an action that guaran-
tees the solution of the knowledge subgoal. The motivation
is that a knowledge acquisition condition may be easier to
reach by greedy search than the associated knowledge sub-
goal. Formally, a knowledge acquisition condition is defined
as follows.

Definition 6 (Knowledge acquisition condition) The be-
lief state Bs is a knowledge acquisition condition for the
boolean function φ iff there exists an action such that
K�(φ, Exec[α](Bs)).

For instance, the belief state defined by x ∈ {0, 1} and
y ∈ {0..7} (corresponding to the width-two rectangle close
to the left wall) is a knowledge acquisition condition for the
function x = 0, since the application of a GoWest action in
it guarantees that x = 0 is known in the resulting belief state.
These notions introduce a way to partition the search in the
belief space. Clearly, in this framework we have to face the
problem of guessing the right knowledge subgoals, and of
identifying whether reasonable knowledge acquisition con-
ditions exits. In practice, we restrict knowledge subgoals
to boolean functions of the form x = v. We discover the
knowledge acquisition conditions associated with a knowl-
edge subgoal by means of the conformant preimage primi-
tive. The conformant preimage is a backward computation
that, given a belief state Bs, returns all pairs 〈αi . Bsi〉
such that Exec[αi](Bsi) ⊆ Bs. From this analysis, suffi-
cient conditions for detecting the unsolvability of a problem
based on knowledge degree considerations can be derived.
For instance, if we get rid of the walls to create a “circular”
navigation domain, the problem of Figure 2 is clearly un-
solvable. There is no way to reduce the cardinality of the
known range of the variables, and it is therefore impossible
to reach a more “informed” portion of the search space.

The Conformant Planning Algorithm
We devised an algorithm for conformant planning based on
the ideas outlined in previous section. Figure 3 outlines the
Finite State Machine of the control flow of the algorithm.
The algorithm is entered by initializing the target knowl-
edge, i.e. a set of knowledge goals that are estimated to
be convenient intermediate steps to solve the given problem
〈I . G〉. If the initial belief state I is such K�(φi, I) for
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Figure 3: The high-level control flow of the algorithm

each knowledge subgoal φi in the target knowledge, then
the algorithm enters the Ground Search mode, and greedily
searches toward the final goal G. Otherwise, the algorithm
enters the Knowledge Acquisition mode, where it tries to
reach the knowledge subgoals. In order to do so, the search
considers a set of active knowledge subgoals, maintained in
a subgoal agenda. The search greedily directs toward the
knowledge acquisition conditions associated with the sub-
goals in the agenda, and then applies the suitable actions to
achieve those subgoals. Once the Knowledge Acquisition
mode terminates, the algorithm enters in the Ground Search
mode, and tries to reach G. Upon failure in the Ground
Search mode, the target knowledge is refined, thus requir-
ing the dynamic update of the knowledge subgoal agenda.
When it is impossible to refine the target knowledge, and
the list of open belief states is empty (i.e. all the state space
has been covered), then the algorithm returns with failure.
As other algorithms based on search in the beliefs space,
the algorithm described above always terminates, returning
a conformant plan if the problem is solvable, and failure oth-
erwise. The conformance of plans is guaranteed by con-
struction, while the termination follows from the complete
storage of the traversed portion of search space, and on the
finiteness of the belief space. To the best of our knowledge,
the explicit identification of a dynamic knowledge agenda,
and the revision of a target knowledge, are unique to this
algorithm.

The greedy search strategy, applied in the Ground Search
mode (while trying to reach the final goal) and in the Knowl-
edge Acquisition mode (while trying to reach the knowl-
edge acquisition conditions), is a forward expansion of the
search space, similar to that described in (Bertoli, Cimatti, &
Roveri 2001b). Basically, the currently selected belief state
Bs is expanded by applying every action αi that is applica-
ble in it. The expansion returns the belief states of the form
Exec[α](Bs), from which the belief states that have been
previously generated are eliminated. Each belief state is also
associated with a conformant plan for reaching it from I.
The newly generated belief states are merged into the open

list of belief states that deserve further expansion. The list
of open belief states is ordered according to the following
criteria (applied in decreasing priority):

• maintain previously reached knowledge subgoals;

• minimize the estimated distance to the local goal cur-
rently being pursued (i.e. the final goal in Ground Search
mode, or a knowledge subgoal in Knowledge Acquisition
mode);

• maximize the truth percentage of the local goal currently
being pursued;

• in Knowledge Acquisition mode, try not to increase the
distance from the final goal.

In order to reduce the cost of frontier analysis, but also to
give more penetration to the search, more recent belief states
are privileged: “old” sections of the frontier are considered
only if the newly generated belief states all decrease current
scoring function.

The implementation of the algorithm is based on this
high-level control flow, together with a suitable definition
of distances and intersections. In order to achieve efficiency,
a number of additional refinements have been realized.

(a) In order to reduce the cost of identifying knowledge sub-
goals, we only consider a fixed set of simple knowledge
subgoals, corresponding to the values for fluent variables
of the problem. Though simple, for many domains this
seems to be a reasonable choice.

(b) In order to reduce the cost of identifying knowledge ac-
quisition conditions we adopt a lazy approach. Knowl-
edge acquisition conditions are only searched for when a
search at the knowledge level has been triggered. More-
over, we perform an approximation by associating each
knowledge subgoal with the union of the knowledge ac-
quisition conditions associated with it (rather than to each
knowledge acquisition condition related to an action).
Again, this simplification yields to significant speed ups
without significantly worsening the level of information
of the search.

(c) In order to reduce the cost of computing the estimate of
distances (from a belief state to either the ground goal,
or a knowledge acquisition condition), we adopted three
ideas. First , we defined the distance D(Bs,Bs′) as the
sum of distances Di(Bs,Bs′), each based on the projec-
tion of the domain over the i-th fluent. Second, we de-
fined Di(Bs, Bs′) as the maximal distance between any
state in Bs and any state in Bs′. Statewise distance is
computed by approximated reachability. Third, we en-
forced laziness: distances are only computed if no imme-
diate increasing of the truth percentage of the current lo-
cal subgoal is possible. The first two ideas, coupled with
the choice of knowledge subgoals presented in (a), allow
to independently handle more than one knowledge sub-
goals at once, and to handle a simplified knowledge sub-
goal agenda representation. The third idea significantly
reduces overheads in several cases.
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Implementation and Experimental Results
We implemented the algorithm described in previous section
in MBP (Bertoli et al. 2001a). MBP (Model Based Plan-
ner) is a general system for planning in nondeterministic do-
mains, able to tackle conditional planning problems under
the hypotheses of full and partial observability, conformant
planning, and planning for extended goals. MBP is built
on top of the NuSMV model checker (Cimatti et al. 1998),
and is based on symbolic model checking techniques, Bi-
nary Decision Diagrams (Bryant 1992) in particular, to com-
pactly represent and efficiently explore the domain descrip-
tion in form of a Finite State Automaton. Binary decision
diagrams (BDDs) are a canonical form for the representation
of boolean formulae, and can be used to represent sets of
states and their transformations. The implementation of the
conformant planning algorithms is based on the main con-
tribution of (Bertoli, Cimatti, & Roveri 2001b), i.e. the in-
tegration of BDD-based techniques within a heuristic search
framework. Basically, each belief state is represented by a
BDD. Visited BDDs are stored in a hash table, and the ap-
proach takes full advantage of the ability of the CUDD (So-
menzi 1997) package to compactly represent large numbers
of BDDs. Furthermore, the expansion and pruning of be-
lief states is carried out by means of logical transforma-
tions (corresponding to the application of boolean connec-
tives and quantifications) that avoids the explicit enumera-
tion of possible actions.

This approach provides an effective set of primitives that
we also use in the implementation of the algorithm described
in this paper. Further details, not reported here for lack
of space, can be found in (Cimatti & Roveri 2000) and
in (Bertoli, Cimatti, & Roveri 2001b). Here we focus only
on the computation primitives that are more closely related
to the algorithm described in this paper. In particular, the
computation of the heuristic functions is based on BDD-
based transformation. It is possible to evaluate K�(φ, Bs)
simply by checking whether the BDD representing Bs en-
tails the BDD representing φ. Since the BDD for φ is the set
of states satisfying φ, we are checking if the set of states in
Bs is included in the set of states that satisfies φ. The truth
percentage |K|�(φ, Bs) is also computed by means of BDD
manipulations. Bs ∩ φ is computed as the conjunction of
two BDDs. To compute |Bs| and |Bs∩φ|, we use the primi-
tive that counts the models of (the propositional formula rep-
resented by) a given BDD, the so-called “CountMinterms”.
Although this operation may appear to be complex, the com-
putation is efficiently carried out by means of a traversal
on the structure of the BDD, and is quite feasible in prac-
tice. Finally, we estimate of the distance of a belief state Bs
from a target belief state by means of a backward reachabil-
ity analysis, that proceeds breadth-first from the target and
computes the sets of states (layers) at increasing distance
until Bs is completely included. Since this approach is in
general inefficient, it is approximated by means of a relaxed
reachability, where the transition relation of the domain is
considered variable-wise, abstracting away the interactions
among variables. The set of approximate transition relations
is also obtained by means of projection operations.

In the following we call KACMBP (Knowledge Acquisi-

tion CMBP) the implementation of the algorithm described
in this paper. We evaluated our approach by comparing it
with the approach presented in (Bertoli, Cimatti, & Roveri
2001b), in the following referred to as HSCP (Heuristic
Conformant MBP). Basically, HSCP performs a backward
search, from the goal to the initial state, with a pure heuris-
tic (where the cost of reaching the belief state under analy-
sis is disregarded) that drives the exploration toward belief
states of higher cardinality. We limit the comparison to these
two systems, that share the same (efficient) symbolic ma-
chinery to isolate the differences in the heuristic component.
A somewhat indirect comparison of KACMBP with other
relevant systems such as GPT, CGP (Smith & Weld 1998),
QBFPLAN (Rintanen 1999), and the breadth-first confor-
mant planning algorithm of MBP (Cimatti & Roveri 2000),
can be derived from (Cimatti & Roveri 2000) and (Bertoli,
Cimatti, & Roveri 2001b), where such systems are tested
against (and outperformed by) HSCP.

We carried out an extensive experimental evaluation, by
covering the standard problems presented so far in the lit-
erature to evaluate conformant planners (i.e. BT, RING,
SQUARE and CUBE), and by defining some new ones. (For
lack of space, we refer to (Cimatti & Roveri 2000) for the
description of the standard problems.) All the experiments
were run on an Pentium II 300MHz with 512Mb of memory
running Linux, fixing a memory limit of 128Mb and a CPU
time limit of 1 hour. For each problem instances, we report
both the CPU time (in seconds) required to find a solution
for the given planning problem, and the length of the gener-
ated plan. Notice that the time scale is logarithmic. The au-
tomaton construction times are not reported, being exactly
the same in the two approaches. For all the examples re-
ported in this paper, however, they never require more than
0.5 seconds.

The results of the comparison on the classical domains
are depicted in Figure 4. Each plot refers to a problem class.
The darker track corresponds to (the computation times and
plan lengths for) HSCP, while the lighter to KACMBP (resp.
Bwd and H-Fwd in the figures). We see that KACMBP
either behaves very much alike that of HSCP, or it scales
much better. In particular, the algorithms behave very simi-
larly for highly constrained problems, such as the RING and
the corner and face version of the CUBE domain. In such
cases, the simple best-first, greedy approach of HSCP re-
sults in a well-driven search which produces an optimal plan.
However, already for those slightly more complex problems
where knowledge acquisition must be either interleaved with
or followed by some kind of ground-level search, such as
BMTC or the center version of the CUBE, KACMBP shows
a better scale up in time.

We also considered several variations of a “circular” nav-
igation domain (i.e. a cube with no walls), where no trivial
way of refining the knowledge is available. First, we consid-
ered a simple repositioning problem where no knowledge
acquisition is needed. The difference in performance results
from the more directed ground level search of KACMBP.
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Figure 4: Experimental results on the BT, SQUARE, CUBE and RING domains
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The table below reports the performance of the systems
on a more difficult repositioning problem (Space with Ob-
stacle), where only a column is available in the domain for
repositioning the robot. For this problem, both knowledge
acquisition and ground-level search turn out to be necessary.
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Finally, in the Treasure Finding problem, the goal is to get
hold of a treasure when incomplete information is available
on the position. Notice how the simple structural heuristic
of HSCP is unable to drive the search in the right direction.
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To summarize, in the new examples KACMBP greatly
outperforms HSCP in terms of search time. Moreover, in all
the cases, the plans produced by KACMBP closely approx-
imate optimal plans, whereas HSCP may end up producing
very dumb plans.

This experimental evaluation is somewhat preliminary.
Furthermore, much work has still to be done for tackling
even more complex problems, since some of the abstractions
used in the identification of the knowledge subgoals may not
be as effective for more complex problems. In particular,
KACMBP limits the choice of a possible knowledge sub-
goal to the the cardinality of the known range of every fluent
of the problem. This might not always be a good choice
— as previously pointed out, the cardinality of the known
range may not always be a sufficient index of knowledge
upon a fluent. For instance, knowing that x is in {2, 3, 4} is
not the same as knowing that it is in {2, 4, 6}, if the prob-
lem is moving to an odd or even location. Furthermore, the
approximate computation of distances (by component-wise
projection upon fluents) may be too coarse in many cases.
An example is that of navigation domains where obstacles
have irregular shapes. In these cases, the low-level search
may get close to the (knowledge or ground) goals without
reaching them, thus giving up when success is actually near.
A possible solution to this could consist of adding enforced-
hill climbing techniques to the low-level search.

Further Related Work
Conformant planning has been recently devoted a significant
amount of attention. The first efficient conformant plan-
ner was CGP (Smith & Weld 1998). CGP is based on the
construction of a planning graph for each initial state, and
tries to propagate constraints among these planning graphs
to show the conformance of the plan. The main strength of

CGP is the ability to exploit the parallelism of the domain,
when available. The main weakness appears to be the enu-
merative nature of the algorithms (for instance, in the CUBE
domain of size 10, CGP would try to generate 103 planning
graphs). QBFPLAN (Rintanen 1999) generalizes the SAT
planning approach to deal with nondeterministic domains.
QBFPLAN reduces the problem of finding a conformant so-
lution of length k to the satisfiability of a Quantified Boolean
Formula (QBF), and iteratively increases k until a solution
is found. The strength of QBFPLAN is the logical flavor of
the approach, that does not suffer from the enumerative na-
ture of CGP. However, it is difficult for QBFPLAN to scale
up to large problems, possibly for the limited maturity of
the technology for QBF satisfiability. In (Cimatti & Roveri
2000), these two approaches and GPT (Bonet & Geffner
2000) are compared with (and outperformed by) the first
symbolic model checking approach to conformant planning,
that is bound to a breadth-first search style. More recent ap-
proaches to conformant planning are Open World planning,
presented in (Filzi, Pirri, & Reiter 2000), that is based on
the computation of prime implicates, and the DLVk system,
described in (Eiter et al. 2001), based on disjunctive Data-
log. Though interesting, these approaches appear to be far in
performance from the first, less advanced implementations
of conformant planning based on symbolic model checking
techniques.

Similarly to QBFPLAN, CPLAN (Castellini, Giunchiglia,
& Tacchella 2001) extends the planning via SAT approach
to the case of conformant planning. Rather than generating
QBF encodings, however, CPLAN is based on standard SAT
procedures. For a given plan length k, CPLAN iteratively
finds a possible plan by solving a SAT problem, and tests
whether it is conformant by solving another SAT problem,
until a plan is found or all plans of that length have been
proved not to be conformant. If no solution has been found,
the length of the plan is then increased. In a sense, CPLAN
implements a specialized QBF solver, tightly constrained by
the features of the conformant planning problem. Compared
to our approach, CPLAN is unable to decide the existence of
a conformant solution of arbitrary length. We were unable to
carry out an experimental comparison, since no CPLAN exe-
cutable is available for this purpose. In (Castellini, Giunchi-
glia, & Tacchella 2001), CPLAN is reported to outperform
the breadth-first version of CMBP. The analysis in previ-
ous section shows that the algorithm presented in this pa-
per solves such problems orders of magnitude fasted. Fur-
thermore, the experimental analysis reported in (Castellini,
Giunchiglia, & Tacchella 2001) disregards a large subset of
the test set presented in (Cimatti & Roveri 2000). In our
opinion, the examples that are not considered are likely to
be extremely hard for CPLAN. For instance, in the empty
room example, there is a very large number of plans that
would be generated (and then would have to be excluded in
the validation phase), before the minimal k allowing for a
conformant plan is reached.

In (Kurien, Nayak, & Smith 2001), the new, fragment-
based approach to conformant planning is presented. Ba-
sically, the idea is to find a plan that works for one world
(an initial state), and then extending it to a full conformant
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plan. The technology used is based on SAT, and the reported
results, though preliminary, are very promising. A very in-
teresting aspect of (Kurien, Nayak, & Smith 2001) is the re-
lation of the approach with the issues of planning with faulty
and partially observable systems.

Similarities between conformant planning and other fields
are also being recognized. For instance, a typical problem
in the field of Automated Test Pattern Generation for hard-
ware circuits is finding a synchronization sequence, i.e. a
sequence of input that takes a sequential circuit into a known
state from a condition of total uncertainty (Pixley, Jeong, &
Hachtel 1992; Rho, Somenzi, & Pixley 1993). Basically,
this is the problem of finding a conformant plan for a set of
possible goal belief states of cardinality one. A preliminary
analysis of how such problems can be effectively tackled as
search in the belief space is reported in (Cimatti, Roveri, &
Bertoli 2001).

Conclusions and Future Work

In this paper, we have addressed the problem of heuristic
search in belief space. This problems is relevant for confor-
mant planning (Bonet & Geffner 2000), and also for plan-
ning under partial observability (Bertoli et al. 2001b). We
show that the heuristics driving search in the space of beliefs
can not be a simple combination of the standard heuristics
used in classical planning, but need to take into account the
fact that search is carried out in the space of beliefs. We
provide the basic notion of “degree of knowledge”, and we
show how such notions can be taken into account to drive
the search and dynamically devise the need of knowledge
acquisition. Furthermore, we show how to solve “knowl-
edge subgoals” by defining the notion of “knowledge acqui-
sition condition”. We implemented a conformant planning
algorithm based on these ideas. The implementation in MBP
shows that it improves significantly the quality of the solu-
tions found. At the same time, it often reduces the portion
state-space that is explored, leading in certain cases to dra-
matic speed-ups.

We will continue this research along the following lines.
First, we will try to identify admissibility criteria for the
heuristic functions, and conditions on the available knowl-
edge to conclude the solvability of a problem. Then, we
will integrate the planning algorithm with a front-end able to
process PDDL (and its nondeterministic extensions, that are
currently being standardized), and extend the efficient com-
putations mechanisms for the heuristic estimates to the non-
deterministic case. We will also explore the middle ground
between the heuristic-symbolic search presented in this pa-
per, and the breadth-first techniques of (Cimatti & Roveri
2000), to implement enforced hill-climbing techniques. Fi-
nally, the notions presented in this paper appear to be generic
enough to be liftable to the case of partial observability, by
including the structure of observation in addition to the ac-
tions in the treatment of knowledge acquisition conditions.
Thus, we will apply the ideas to the case of planning under
partial observability, where attempts at information sensing
must be carefully planned in order to tackle the explosion of
the search.
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