## The Homotopy Theory of *n*-Fold Categories

Thomas M. Fiore
Joint Projects with Simona Paoli and Dorette Pronk

http://www.math.uchicago.edu/~fiore/

January 8th, 2009

#### Overview

- Motivation
- Ouble Categories
- Model Structures for Higher Categories in Low Dimensions
- Thomason Model Structure on Cat
- n-fold Categories
- Main Theorem 1: n-fold Grothendieck Construction is Homotopy Inverse to n-fold Nerve
- Main Theorem 2: Thomason Model Structure on nFoldCat.

## Motivation

When do we consider two categories A and B the same?

Two different possibilities:

- If there is a functor  $F: A \longrightarrow B$  such that  $NF: NA \longrightarrow NB$  is a weak homotopy equivalence. (Thomason 1980)
- ② If there is a fully faithful and essentially surjective functor  $F: A \longrightarrow B$ . (Joyal-Tierney 1991)

$$2) \Rightarrow 1)$$

## Motivation: 2-categories vs. Double Categories

 A 2-category is like an ordinary category except a 2-category has Hom-categories.

Example: **Top**.

 A double category is like an ordinary category except a double category has a category of objects and a category of morphisms.

Example: Bimodules.

 Recent examples show 2-categories are not enough, we need double categories.

## Motivation: Why consider model structures on **DblCat** and **nFoldCat**?

Model categories have found great utility in comparing notions of  $(\infty, 1)$ -category.

**Theorem** (Bergner, Joyal–Tierney, Rezk, Toën,...) The following model categories are Quillen equivalent: simplicial categories, Segal categories, complete Segal spaces, and quasicategories.

So we can expect model structures to also be of use in an investigation of iterated internalizations.

## Double Categories

#### Definition (Ehresmann 1963)

A double category  $\mathbb{D}$  is an internal category  $(\mathbb{D}_0, \mathbb{D}_1)$  in **Cat**.

## Double Categories

#### Definition (Ehresmann 1963)

A double category  $\mathbb{D}$  consists of

- a set of objects,
- a set of horizontal morphisms,
- a set of vertical morphisms, and
- a set of squares with source and target as follows

$$\begin{array}{cccc}
A & \xrightarrow{f} & B & & A & & A & \xrightarrow{f} & B \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & \\
C & & C & \xrightarrow{g} & D
\end{array}$$

and compositions and units that satisfy the usual axioms and the interchange law.

## **Examples of Double Categories**

- Any 2-category is a double category with trivial vertical morphisms.
- Compact closed 1-manifolds, 2-cobordisms, diffeomorphisms of 1-manifolds, diffeomorphisms of 2-cobordisms compatible with boundary diffeomorphisms.
- Rings, bimodules, ring maps, and twisted maps.
- Topological spaces, parametrized spectra, continuous maps, and squares like in 3.

## Bisimplicial Nerve of a Double Category

$$N \colon \mathbf{DblCat} \longrightarrow [\Delta^{\mathrm{op}} \times \Delta^{\mathrm{op}}, \mathbf{Set}]$$
 $(N\mathbb{D})_{j,k} = j \times k - \text{matrices of composable squares in } \mathbb{D}$ 
 $\alpha_{11} \quad \alpha_{12} \quad \alpha_{13} \quad \alpha_{14} \quad \alpha_{15} \quad \alpha_{16}$ 
 $\alpha_{21} \quad \alpha_{22} \quad \alpha_{23} \quad \alpha_{24} \quad \alpha_{25} \quad \alpha_{26}$ 
 $\alpha_{31} \quad \alpha_{32} \quad \alpha_{33} \quad \alpha_{34} \quad \alpha_{35} \quad \alpha_{36}$ 

N admits a left adjoint c called double categorification.

Next Topic

Model Structures for Higher Categories in Low Dimensions

## **Model Categories**

A *model category* is a complete and cocomplete category **C** equipped with three subcategories:

- 1. weak equivalences
- 2. fibrations
- 3. cofibrations which satisfy various axioms.

Notably: given a commutative diagram



in which at least one of i or p is a weak equivalence, then there exists a lift h: B-->X.

**Example** The category **Top** with  $\pi_*$ -isomorphisms and Serre fibrations is a model category.

## Model Structures on Cat

#### Theorem (Thomason 1980)

There is a model structure on Cat such that

- F is a weak equivalence if and only if  $Ex^2NF$  is so.
- F is a fibration if and only if  $Ex^2NF$  is so.

#### Theorem (Joyal–Tierney 1991)

There is a model structure on Cat such that

- F is a weak equivalence if and only if F is an equivalence of categories.
- F is a fibration if and only if F is an isofibration.

## Model Structures on 2-Cat

## Theorem (Worytkiewicz–Hess–Parent–Tonks 2007)

There is a model structure on 2-Cat such that

- F is a weak equivalence if and only if  $Ex^2N_2F$  is so.
- F is a fibration if and only if  $Ex^2N_2F$  is so.

#### Theorem (Lack 2004)

There is a model structure on 2-Cat such that

- F is a weak equivalence if and only if F is a biequivalence of 2-categories.
- F is a fibration if and only if F is an equivfibration.

## Model Structures on **DblCat**

## Theorem (Fiore–Paoli–Pronk, AGT, 2008)

There exist model structures on **DblCat** for each of the following types of weak equivalences.

- F is a weak equivalence if and only if F is fully faithful and "essentially surjective."
- F is a weak equivalence if and only if F is a weak equivalence of double categories as algebras in Cat(Graph).
- F is a weak equivalence if and only if  $N_hF$  is a weak equivalence in  $[\Delta^{op}, \mathbf{Cat}]$ .

## Thomason Structure on Cat

#### **Adjunction:**



cX is the free category on the graph  $(X_0, X_1)$  modulo the relation below.

 $g \circ f \sim h$  whenever X has a 2-simplex



The unit component  $\partial \Delta[3] \longrightarrow Nc(\partial \Delta[3])$  is **not** a weak equivalence.

## Thomason Structure on Cat continued

The unit and counit of the adjunction



**are** weak equivalences (Fritsch–Latch 1979, Thomason). So the Thomason model structure on **Cat** is Quillen equivalent to **SSet** and also **Top**.

## *n*-fold Categories

#### Definition

An n-fold category is an internal category in (n-1)FoldCat.

#### Example

A double category is a 2-fold category.

We have a fully faithful n-fold nerve.

$$N: nFoldCat \longrightarrow SSet^n$$

$$(N\mathbb{D})_{j_1,\ldots,j_n} = \mathsf{nFoldCat}([j_1] \boxtimes \cdots \boxtimes [j_n], \mathbb{D}).$$

#### **Adjunction:**



## The *n*-fold Grothendieck Construction

If  $Y: (\Delta^{op})^{\times n} \longrightarrow \mathbf{Set}$ , then the *n-fold Grothendieck* construction on Y is the *n-fold* category  $\Delta^{\boxtimes n}/Y$  with

Objects 
$$= \{(y, \overline{k}) | \overline{k} \in \Delta^{\times n}, y \in Y_{\overline{k}} \}$$

and *n*-cubes  $(y, \overline{k}) \longrightarrow (z, \overline{\ell})$  are morphisms  $\overline{f}: \overline{k} \longrightarrow \overline{\ell}$  in  $\Delta^{\times n}$  such that

$$\overline{f}^*(z)=y.$$

This is the n-fold category of multisimplices of Y.

# Main Theorem 1: The n-fold Grothendieck Construction is Homotopy Inverse to the n-fold Nerve

(n=1 case was Quillen, Illusie, Waldhausen, Joyal-Tierney) **Theorem** (Fiore-Paoli 2008)

The n-fold Grothendieck construction is a homotopy inverse to n-fold nerve. In other words, there are natural weak equivalences

$$N(\Delta^{\boxtimes n}/Y) \longrightarrow Y$$

$$\Delta^{\boxtimes n}/N(\mathbb{D}) \longrightarrow \mathbb{D}$$
.

## Diagonal

$$\begin{aligned} \mathbf{SSet} &= [\Delta^{\mathrm{op}}, \mathbf{Set}] \\ = & \mathrm{simplicial\ sets} \\ \mathbf{SSet^n} &= [(\Delta^{\mathrm{op}})^{\times n}, \mathbf{Set}] \\ = & \mathrm{multisimplicial\ sets} \\ \end{aligned}$$
 The diagonal functor

$$\delta \colon \Delta \longrightarrow \Delta^n$$

$$[m] \longmapsto ([m], \dots, [m])$$

induces  $\delta^*$ : **SSet**<sup>n</sup> by precomposition.

## **Adjunction:**



## Main Theorem 2: Thomason Structure on nFoldCat

#### Theorem (Fiore-Paoli 2008)

There is a cofibrantly generated model structure on **nFoldCat** such that

- F is a weak equivalence if and only if  $Ex^2\delta^*NF$  is so.
- F is a fibration if and only if  $Ex^2\delta^*NF$  is so.

Further, the adjunction



is a Quillen equivalence.