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ABSTRACT 
Reconstructing 3D shapes from 2D silhouettes is a common technique in computer vision. It requires knowing the position of 
the viewpoints with respect to the object. But what can we say when this information is not available? This paper provides a 
first insight into the problem, introducing the problem of understanding 3D shapes from silhouettes when the relative 
positions of the viewpoints are unknown. In particular, the case of orthographic silhouettes with viewing directions parallel 
to the same plane is thoroughly discussed. Also we introduce sets of inequalities, which describe all the possible solution sets 
and a paving technique to calculate the feasible solution space of each set. 
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1. INTRODUCTION 
Understanding the shape of 3D objects from image features is 
a central problem in computer vision. Many algorithms have 
been presented in literature, based on occluding contours or 
silhouettes (see for instance [Ast89a], [Zhe94a]). Let Ci be the 
solid regions obtained by back-projecting a silhouette Si from 
the corresponding viewpoint. The volume R shared by the 
regions Ci (Fig. 1) summarizes the information provided by a 
set of silhouettes and viewpoints. Finding this volume is a 
popular reconstruction technique called Volume Intersection 
(VI) (see [Ahu89a], [Pot87a]). This approach requires 
knowing the 3D positions of silhouettes and viewpoints in 
order to position the cones produced by back-projecting each 
silhouette from its viewpoint and to intersect them. But what 
can we say when this information is not available?  
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Fig. 1 - 3D shape reconstruction from silhouettes  

Before entering the problem, we briefly review some relevant 
definitions. First, the concept of visual hull of an object 
[Lau95a] which is the object that can be obtained by VI using 
all the viewpoints that belong to a viewing region completely 
enclosing the original object without entering its convex hull. 
It is also the largest object that produces the same silhouettes 
as the given object. The definition of visual hull allows to 
state that an object can be reconstructed from its silhouettes iff 
it is coincident with its visual hull. Another tool for the shape-
from-silhouette approach is the concept of hard point 
[Lau95a]. A point of the surface of the reconstructed object R 
is hard if it belongs to any object that produces the same 
silhouettes from these viewpoints. In the following, for 
brevity, we will use the expression “set of silhouettes” to 

specify a set of silhouettes together with the position of the 
corresponding viewpoint with respect to each silhouette. 
These data allow constructing a solid cone for each silhouette, 
but not positioning the cones in the 3D space. The main 
question that will be considered is therefore: given a set of 
silhouettes, does an object exist able to produce them? We 
will call compatible a set of silhouettes if the same object can 
generate them. An object able to produce a compatible set of 
silhouettes will be said to be compatible with the set. Clearly, 
the main practical issue is to find one or more compatible 
objects given a compatible set of silhouettes, as that produced 
by a real object. Let us recall that VI at most allows 
constructing the visual hull of an object. Infinite objects can 
have the same visual hull. Although we have not been able to 
find answers to the previous questions in the general case, we 
will present a set of results able to provide a first insight into 
the problem.  

2. COMPATIBILITY OF ORTHOGRAPHIC 
SILHOUETTES 
In the rest of this paper we will restrict ourselves to consider 
simply connected 3D objects and their orthographic 
projections. This approximates the practical case of objects 
small with respect to their distance from the camera. 

 
Fig. 2 - The 1D silhouette L(S,αααα) of a 2D silhouette  

First, we will investigate the compatibility of two silhouettes. 
Let S be a 2D orthographic silhouette of a 3D object, and let 
us project orthographically S along a direction making in the 
plane of S the angle α with the x axis of a reference system 
fixed with respect to S (Fig. 2). Let L(S,α) be the length of the 
1D silhouette of S. By rotating the projection direction from 0 
to π we obtain all possible values of L(S,α). The following 
statement holds (see [Bot02a] for a proof). 



Proposition 1. A necessary and sufficient condition for two 
orthographic silhouettes S1 and S2 to be compatible is that 
two angles α1 and α2 exist such that L(S1,α1)=L(S2,α2). 
When we have more silhouettes, clearly, we have that:  
Proposition 2. A necessary condition for a set of silhouettes to 
be compatible is that all pairs of silhouettes of the set are 
compatible. 

 
Fig. 3 - The annular strip ST(V) and the curve Cv 

However, in general, to be compatible in pairs is not sufficient 
for a set of silhouettes to be compatible (see [Bot02a]). To 
derive a necessary and sufficient condition for the 
compatibility of more than two silhouettes we can exploit one 
property of the reconstructed object R. Let us consider one of 
the silhouettes involved in the process, the corresponding 
viewing direction V and the cylinder circumscribed to the 
object O, which is made of lines parallel to this direction (Fig. 
3). Each line of this cylindrical surface must share with the 
surface of O at least one point. These points form a curve CV 
belonging to a closed annular surface, a strip ST(V) of 
variable width (measured along a line of the cylinder), which 
is what is left of the original circumscribed cylinder after the 
various intersections. During the reconstruction process, this 
annular strip cannot be interrupted: at most it can reduce to a 
curve with zero width. In this case, the curve consists of hard 
points. Therefore, we can formulate the following condition 
for the VI algorithm to be feasible:  
Proposition 3.  A necessary and sufficient condition for a set 
of silhouettes to be compatible is that it be possible to find 
viewpoints such that no annular strip of the reconstructed 
object is interrupted. 
In the next sections this condition will be used for 
constructing algorithms both to verify the compatibility of a 
set of silhouettes and to reconstruct compatible 3D objects. 

3. SILHOUETTES WITH VIEWING 
DIRECTIONS PARALLEL TO A PLANE 
In this section we deal with a particular case of the general 
problem, where all viewing directions are parallel to the same 
plane (Fig. 4). This case idealizes some practical situations, as 
observing a vehicle on a planar surface. Clearly, all silhouettes 
have the same height and the same plane must support all 
cylinders obtained by back-projection (see [Bot02a]).  

 
Fig. 4 - Viewing directions parallel to the same plane 

Let’s start by considering the compatibility of three silhouettes 
(S0, S1 and S2). Let us introduce some notations (see Fig. 5). 
Each planar silhouette Si is defined, for 0≤y≤ymax by two 
curves Sil(y) and Sir(y). For simplicity, let us consider mono-
valued functions. Also let Si(y)=Sir(y)-Sil(y). Given a set of 

silhouettes, we will apply the condition of Proposition 3 and 
derive various sets of inequalities. 

 
Fig. 5 - Notations used for a silhouette. 

Let us consider a horizontal plane corresponding to a value of 
y between 0 and ymax, and its intersection with the three 
cylinders obtained by back-projecting the silhouettes.   
The values of S0(y), S1(y), S2(y) and their relative position in 
Fig. 6(a) satisfy in this plane the condition of Proposition 3. It 
is not difficult to see that this condition requires that the two 
lines that project the endpoints of S2(y) along the direction V2 
must lie inside the two areas highlighted in Fig. 6(a), 
otherwise a silhouette smaller that S0(y) would be obtained 
from V0. For the whole silhouettes to be compatible, this 
condition must hold for all y. Fig. 6(b) shows the orthogonal 
projection for all y of the vertices of the parallelogram marked 
as 1, 2, 3 and 4 in Fig. 6(a) onto the plane of S2. For the 
reconstruction to be feasible, S2l(y) must lie between the two 
curves projections of the vertices 3 and 4, and S2r(y) must lie 
between the two curves projections of the vertices 1 and 2.  

 
Fig. 6 - The condition for the compatibility of S2(y) 

The set of inequalities that define feasible intersection 
parameters can be derived inspecting in more detail the 
intersection in a horizontal plane Fig. 7.  

 
Fig. 7 - The intersections in a horizontal plane  

Let O0, O1, and O2 be the intersections of the axis y of each 
silhouette with this plane. Intersecting S0(y) and S1(y) requires 
fixing an angle, let it be α1. Intersecting also S2(y) requires 
choosing two more parameters: the angle α2 and the distance 
d2 between the projection of O1 along V1 and of O2 along V2 
on the line projecting O0 along the direction V0 (see Fig. 7). 
Thus, to find feasible solutions we must search the 3-
dimensional space [α1,α2,d2]. Now, let P1(y), P2(y), P3(y) and 
P4(y) be the distances from O2 of the orthographic projections 
of the vertices of the parallelogram onto the line supporting 



S2(y). The compatibility condition for the three silhouettes is 
expressed by the following inequalities, which can be worked 
out from the figure.  
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Fig. 8 - The four intersection cases  

In (1), the purpose of the fifth inequality is to characterize the 
case just analyzed, let it be Case 1. Seven other cases are 
possible, each producing different sets of inequalities, as 
shown in Fig. 8. For each case, a possible orthographic 
projection onto the plane of S2 of the edges of the object 
produced by the first intersection is shown with thick lines. 
The boundaries of S2 are the thin lines.  

The inequalities for more than three silhouettes 
Let us consider any of the four cases described in the previous 
section, for instance Case 1, and let us add a fourth silhouette 
S3. In each horizontal plane S0(y), S1(y) and S2(y) produce a 
polygon with six vertices and three pairs of parallel edges. The 
new volume intersection is defined by two more parameters, 
the angle α3 between V0 and V3 and the distance d3, measured, 
as d2, along the line that projects O0. Satisfying the condition 
of Proposition 3 requires, in each horizontal plane, to cut 
away two opposite vertices, for instance vertices 7 and 5 in 
Fig. 9, without eliminating completely the edges that meet at 
these vertices. By orthographically projecting the six vertices 
onto the plane of S3 we obtain six curves. For the new 
intersection to be feasible, the boundaries S3l(y) and S3r(y) of 
S3 must lie in the areas bounded by the two leftmost and the 
two rightmost curves respectively. Various sets of inequalities 
result. First, let us distinguish two cases (case (a) and (b) of 
Fig. 9) related to which are the leftmost and rightmost vertices 
(respectively, 5 and 7 for case (a) and 7 and 5 for case (b)). 
For each case, eight distinct sub-cases result (see Fig. 10). The 
inequalities corresponding to each sub-case are easily written. 
For instance, for the first sub-case of case (a) it is: 
P5(y)≤S3l(y)    S3l(y)≤P4(y)    P1(y)≤S3r(y)    S3r(y)≤P7(y)  

P4(y)≤P6(y)     P6(y)≤P8(y)    P8(y)≤P1(y) 

where the Pi(y) are defined on the line supporting S3. 
Summarizing, each set of inequalities contains 12 inequalities, 
the five of Section 4 and seven new also referring to S3. As for 
the number of sets of inequalities, we have 8 cases for three 
silhouettes, 3 pairs of opposite vertices and 16 cases for each 
pair, and thus 384 sets each containing 12 inequalities. 
The previous discussion holds for any further silhouette. In 
fact, we must always cut a pair of opposite vertices without 
deleting completely the edges converging at these edges. It 
follows that each new silhouette adds two parameters, seven 
inequalities for each case and 16 sub-cases for each pair of 
opposite vertices. For the nth silhouette, the pairs of vertices 

are n-1. Let Nc(n) be the number of sets of inequalities for n 
silhouettes. For n>3 it is: Nc(n)=16(n-1)Nc(n-1).  

 
Fig. 9 

 
Fig. 10 – Cases (a) and (b) and the 16 sub-cases 

4. SOLVING THE SETS OF INEQUALITIES 
We have developed an algorithm to write automatically the 
sets of inequalities. The axes of the reference system are 
aligned with the axis of the projection of S0 on the plane. Let’s 
assume, without loss of generality, that V0 is parallel to the y 
axis of the reference system and the line supporting S0 is 
parallel to the x axis. The origin of the reference system 
corresponds with the intersection of the projections of O0 
along V0 and O1 along V1 on the plane. The position of the ith 
silhouette is determined by two parameters, di and αi, 
previously defined. In particular, we assume that αi (the angle 
between Vi and V0) is positive if V0×Vi has the same verse of 
x×y; it is also Vi = (senαi,-cosαi). Let Cj be the vertices of the 
polygon; the equations of the first 4 vertices, as in Fig. 11, are: 

Fig. 11 Fig. 12 
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The sets of inequalities previously introduced can be rewritten 
in terms of the distances from the origin along the y axis of the 
projections of the vertices of the parallelogram and of Sil and 
Sir along the viewing direction of the ith silhouette. For each 
projection, the lines passing through the vertices of the 
polygons have equations Cj + Vit and their intersections (Pij) 
with the y axis of the reference system are: 
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Now, let dil, dis be the projections on the y axis of Sil and Sir. It 
follows that: 
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Projecting the vertices and Si onto the y axis, the verse of the 
inequalities also depends on the value of αi. For instance, in 
the example shown in Fig. 12, we have: 
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In order to be able to write the inequalities in an automatic 
way, the general form of the inequalities can be rewritten 
multiplying each term by sin(αi). 
We also have to express the co-ordinates of the vertices Cj, 
j>4, as function of the VI parameters (see Fig. 13, where Cj 
and Ck are the couple of opposite vertices affected by the ith 
silhouette). Each new vertex is the intersection of the line 
every edge lies on and the specific projection line relative to 
Vi. All these lines are projection lines, and can be written as: 
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Fig. 13 
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Writing the equations as A + Br = D + Vit and given a vector 
W=(cosαi,senαi) perpendicular to Vi, the co-ordinates of the 
new vertex can be found as: 
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As an example, the equations for case 1 of Fig. 8 are: 

0))/tanS/tanS-/sin(S-/sinS(sin
0))/sinS(-/tanS/tanS-/sin(Ssin

0 ))/tanS-S()/tanS-S()/sinS-((Ssin
0))/tanS/tanS- /sin(S-/sinS(sin

 0))/sinS( - /tanS  tan/S - /sin(Ssin

20r10r11r22r22

22r220l10l11r2

20l0r10r0l11r1l2

20r10r11l22l22

22l220l10l11l2

≤++
≤++

≤++
≤++
≤++

ααααα
ααααα

αααα
ααααα
ααααα

d
d

d
d

 

A set inversion technique ([Jau01a]) has been applied for 
finding the feasible solution set S of the set of non-linear 
inequalities that characterizes each sub-case. This technique 
performs a paving of the parameter space with boxes. If the 
current box [p] is proved to be inside S, then the box is kept 
as part of the solution space or discarded if it has an empty 
intersection with S then it is discarded. Otherwise, [p] is 
bisected except if its width is smaller than a defined threshold. 
Bisection occurs in the middle of the box, perpendicularly to 
the side of the largest length. The dimensionality of the initial 
box is equal to the number of variables involved in the set of 
inequalities, and each dimension has initial size [0,2π] for 
angular variables αi and [-∞,∞] for linear variables di. To 
prove that a given box [p] is inside S, interval computation 
([Moo79a]) has been used. This technique can be used to find 
feasible parameter sets for one value of y between 0 and ymax. 
If one of the parameter sets is empty, the corresponding group 
of inequalities can be discarded. Otherwise, we could perform 
an incremental computation, adding each time a small ∆y, 
related to the shape of the silhouettes, to the previous y. For 

each group of inequalities, the new feasible parameter set at 
y+∆y must be a subset of the set at y. 

 
Fig. 14 - The silhouette S0, S1 and S2 

 
Fig. 15 – The eight solution spaces 

In Fig. 14 three silhouettes S0, S1 and S2 of a parallelepipedon 
are shown. The boxes defining the paving of the solution set 
of each of the eight sub-cases obtained are depicted in Fig. 15, 
where the axis of the reference system are α1 and α2 on the 
plane and d2 as vertical axis.  

5. CONCLUSION AND OPEN PROBLEMS 
In this paper we have presented an approach to the new 
problem of understanding the shape of 3D objects from 
silhouettes when the relative position of the viewpoints is not 
known. We have presented a compatibility condition, which 
has been applied to the particular case of orthographic 
projections with viewing directions parallel to a plane.  For 
this case, we have been able to work out sets of inequalities, 
involving the volume intersection parameters, which allow 
computing feasible solution sets, if they exist. An algorithm 
for automatically writing the inequalities has been developed, 
and some preliminary results have been presented. Several 
problems are open. Among them, the case of orthographic 
projection with unrestricted viewing directions, and the case 
of perspective projections.  
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