ANEW PARALLEL VOLUME RENDERING ALGORITHM

Hyun Chin, R. S. Ramakrishna

Department of Information & Communication
KwangJu Institute of Science and Technology
500-712, 1 Oryong-dong Puk-ku , KwangJu
South Korea
e-mail : avatar93@gequri.kjist.ac.kr , rsr@kjist.ac.kr

ABSTRACT

On screen division of objects for parallel volume rendering is considered in this paper. The suggested
algorithm runs on private-memory based parallel computers. The notable characteristic of the algorithm is
that it effects data transfers only when it is absolutely necessary.

Keywords: parallel volume rendering, computer graphics, parallel algorithm, screen-divided volume

rendering, object-divided volume rendering

1. INTRODUCTION

Volume rendering allows exploration of the inner
structure of complex 3D data. It is a highly
computation intensive job that demands huge storage
space. A number of accelerating techniques have
been reported in the literature [5][6][7].
Parallelization is known to be of great utility in
volume rendering [5][6].

Volume rendering requires that care be exercised on
several counts. Even though volume data are
divided and rendered in parallel, the assembling
process is beset with massive data transfer,
especially on private-memory based parallel systems.
Further, due attention must be paid to questions such
as which part of volume data is related to which parts
of image on the screen. All the nodes in private-
memory based parallel computers [1][2] will have to
communicate with each other in order to transfer
volume data and rendered images if the volume data
is divided and distributed among the local memories.

[3].

A solution to these problems is presented in this
paper. Volume data is divided and rendered
independently at each node, in object-divided
parallel volume rendering style [5][8][11]. Another
approach is to divide the image into a number of
small areas. Divided blocks of volume pertinent to a
divided-screen area [9][10] will be delivered to a
computing node that is assigned to render that area.

By estimating the volume blocks corresponding to a
small area of the screen, the system can send only the
appropriate volume data to the nodes.
Communication cost is incurred only when the final
rendered images are transferred.

2. DIVISION OF VOLUME INTO SCREEN-
DIVIDED AREAS

Voxel gradient computation, resampling and
compositing form the two major phases of volume
rendering algorithms that demand massive
computation. The first phase is independent of the
rendering method — ray casting, splatting, etc. — and
the second changes a little with the rendering method.
A parallel volume rendering technique subdivides
the volume object itself and then distributes the
implied computations among processors. The
suggested algorithm is based on the same premise.

The algorithm estimates the parts of volume data that
correspond to a specific area on the screen through a
sequence of actions. Before dividing the job and
distributing the sub-jobs to all the nodes, the system
must know the projection area (on the screen).

If the projection area of any two blocks has no
overlap, then it is possible to render them
independently. In that case, only the final image
assembly (on the screen) requires significant
communication. The basic idea of the algorithm is

to reduce the communication by paying due attention
to the partitioning of volume data.

The problem arises due to the uncertainty in the
rendered area corresponding to each part of the
volume object. It is difficult to know in advance
where exactly they project.

Two questions may be raised in this regard:

1. Is it possible to estimate which part of
volume object will be rendered to which part
of image screen?

2. Can parts of the volume object be extracted
exactly as the user — or requester — desires?

The proposed method reduces the need for
transferring volume data while rendering, by seeking
affirmative answers to the two questions. Volume
data are divided into a number of small blocks so
that it will be easy to extract them. These “micro-
blocks” form atomic elements in appropriating
volume objects to the nodes of the parallel computer.
Also, the rendering screen is divided into a number
of small rectangular “micro-areas”. Micro-block is
an atomic volume element (for dividing the volume),
and micro-area is an atomic screen element (for
dividing the screen).

One Micro—block
with (Xmxymxzn) voxels

One Volume object
with (nxnxnz) micro-blocks

Figure 1. Division of Volume Object

aes W\ﬁ

Micro-area
consists of
(aXriva)
pixels

Image screen
divided into (Ax/) micro-areas

Figure 2. Division of Image Screen

Figures 1 and 2 show the division of a volume object
into nyxnyxn, micro-blocks and the division of the
screen into I,xl, micro-areas. Each micro-block has
8 vertices around their boundaries, and there are
(ne+1)x(n+1)x(n+1) vertices in the volume with
nyxnyxn, micro-blocks. Coordinate information
about volume and camera enables the calculation of
the projected positions of vertices on the screen.
Eight projected vertices in a micro-block indicate the
area to which the micro-block has to be projected. It
is very difficult to calculate the exact projection area,
but an approximation can be obtained by adopting
the minimum and maximum x- and y-values on the

screen. This is the rectangular area from (min_x,
min_y) to (max_x, max_y), where min_x, min_y are
the minimum x-, y-values, and max_x, max_y are the
maximum X-, y-values corresponding to the 8
projected points. Figure 3 illustrates the idea.

The projection areas are recorded in a table, the key
item being the “micro-block”. The table indicates
the areas corresponding to each micro-block. Since
this “Micro-block Projection Table” (MPT)
records every micro-block’s rendering range, it is
also possible to infer which micro-blocks are
required to render which micro-area.

The “Micro-Area Table” (MAT) incorporates this
information using micro-area as the primary key
(Figure 4).

Estimated Area
for micro—block
to be projected

Projection
by Matrix
Calculation

Eight Verices in a
Micro-Block

Projection Screen
Figure 3. Estimation of Projection areas of a micro-
block

The rendering system can extract just the required
micro-blocks exactly to render a micro-area by
referring to the MAT. MPT and MAT can be
constructed with the spatial information about
volume, camera and screen (position, direction,
resolution, size, etc). The nodes in the parallel
computer can build the MPT and MAT by receiving
only this information. This is clearly quite
insignificant in comparison with the size of the
volume data.

Algorithm 1 describes the process of constructing the
MPT & MAT.

Micro— Range of Related
Block Micro—Areas Micro-Area Micro—Blocks
MB1 (xi1, y11)~(xiz, yiz) MA (X7, yi) MB1, MBz, ..
MB2 (xz1, yor)~(xez, yez) MA2 (xz, y2) MBs, MB7, ...

MBs (x31, yo1)~(x5z, yez)

Micro—Block Projection Micro—Area Table
Table (MPT) (MAT)

Figure 4. Examples of the form of MPT & MAT

Figure 5 shows the extraction of micro-blocks when
a micro-area is specified. Because of atomicity,
some micro-blocks would be required even if all the
contents in the micro-block are not used for
rendering the micro-area.

Divide the volume into nyxnyxn, micro-blocks
Divide the screen into l,xl, micro-areas
Calculate the position of (nx+1)x(ny+1)x(n,+1) vertices in world
Project vertices to the screen and memorize projected positions
for (0,0,0<X%,y,Z <nyn,n;)do
MPT(X,y, z) ~ corresponding range of micro-area

range of (X,y, z) ~ (x+1, y+1, z+1) vertex

endfor

for (0,0,0<X,y,z <nyn,n;) do
start_x, start_y, end_x, end_y « MPT(Xx,y,2)
for (start_x, start_y <i, j<end_x,end_y) do
add (MAT(i,j), MB(X,y,2))
endfor
endfor

Algorithm 1. Construction of MPT & MAT

Required parts of
volume to render

Micro-blocks to
be extracted
(except exactly

|
|
[required parts)

k Micro-area

to render

View Volume

5.6 <8 0%
\usieslesssee
N

Figure 5. Required parts and extracted micro-blocks
to render micro-area

The image in a MA can be rendered correctly only
with the MBs indicated in the MAT. Any of the
extant volume rendering methods — ray casting,
splatting, etc. — can be employed as the basic
renderer for each MB. The rendering module is
therefore, independent of the screen-division
technique proposed in this paper.

3. PARALLELIZATION USING MPT & MAT

MPT and MAT describe the required micro-blocks
in a volume object to render a micro-area on the
screen. The architecture of the renderer and the
corresponding algorithm that employs the two tables
will be addressed in this section.

3.1 Architecture of parallel renderer

Figure 6 shows the block diagram of the parallel
rendering system. The nodes are classified into two
types. The “master-node” plays the role of storing
and distributing the volume data. It divides the
volume object into a number of micro-blocks and
stores them with their indices. Before the start of the
rendering process, the master-node sends the
information about the volume object and micro-
blocks (spatial information, and divided numbers) to
all the nodes. Gathering the rendered micro-areas

from the nodes form part of the master-node’s job.
The “render-node” determines the micro-area to be
rendered, and requests the master-node for the
corresponding micro-blocks.

Volume Data
Divided Micro-blocks
DBs | MPT & MAT

* f Micro—area Flag Table

- Divides volume data into micro—blocks
MASTER - Receives the requests of micro—blocks
NODE - Sends icro-blocks to render-nod

Send MBs

H Request MBs
Send MAFT !

Return rendered MAs

-

- - Y o
Received Micro-blocks
Y Localized MPT & MAT
Micro-area flag table
RENDER RENDER RENDER |
NODE NODE NODE

- Select micro-area to render and request required micro-blocks
- Render the micro-area and return the results to master-node

Figure 6. Block Diagram of Parallel Renderer

Render-node receives the information on volume
object, micro-blocks, micro-areas, and camera before
the start of the rendering process and builds the MPT
and the MAT according to the received information.
After a render-node determines a micro-area, it
refers to the MAT and requests the master-node for
the appropriate micro-blocks. The master-node
receives the request and sends the requested micro-
blocks to the render-node. Rendering of micro-area
proceeds in the render-node after the transfer of
micro-blocks and the rendered image of micro-area
is returned to the master-node.

—
/; Flag | Description
1 Vv void, not rendered
— yet
O not completed, but
being rendered
C rendering is
Micro-area Flag Table completed

with /x/ micro—areas

Figure 7. Micro-area Flag Table (MAFT)

Every node has MPT, MAT, and the flag table
indicating which micro-area is completed and which
is not. Itis called a “micro-area flag table”. There
are three flags, viz., V, O, and C. Flag “V” means
that the micro-area is not rendered yet, “O” indicates
that the micro-area is being rendered by the render-
node, and a micro-area with flag “C” indicates that it
has already been rendered. All the flags in the
micro-area flag table are initialized to “V”. When
the master-node receives a request from a render-
node, it modifies the flag in the micro-area flag table
to “O” and sends the contents of the table with the
requested micro-blocks. Flag “C” is entered into the
micro-area flag table after the rendered micro-area is
received from the render-node. The master-node

directs the render-nodes to update the micro-area
flag table when the render-nodes return the
completed micro-areas to it. This updating may be
done in two ways: (a) the entire micro-area flag table
may be sent to the render-nodes, and (b) only the
updating information may be sent. The first seems to
require more communication, and the second
requires the replication of micro-area flag tables of
all the render-nodes at the master-node. Render-
nodes modify micro-area flag table locally and select
a micro-area and request the required micro-blocs
again until there is no “V” flag in the micro-area flag
table.

Master-Node Render-Node

Select MA to be rendered
Find MBs to be required to MA
Request MBs to Master

™ Receive MBs

Render MA
|l — Sent rendered image of MA

Receive requests 4/
Send requested MBs —
—

Receive rendered image of MA

Concatenate images

Send updating info. of MAFT

I~ Receive update of MAFT
Update MAFT and select MA

Algorithm 2. Execution between master-node
and Render nodes

3.2 Selection policy of micro-area in render-node

Render-nodes select micro-areas on their own before
starting the rendering process. Some selection
policy is clearly necessary in this regard. While
selecting the next micro-area to be rendered, the
following points should be considered:

* Redundant transfer of micro-blocks has to
be avoided;

* The micro-area that can use the micro-
blocks already received and that need not
request the master-node for excessive
micro-blocks should be selected.

* Furthermore, overlapping selection
between render-nodes has to be prevented.

Micro— Range of Unfinished
Block Micro—Areas MAs .
Ve Cip 1)~ 1) n The number of micro-areas

that are related to the micro—
block and not rendered yet

MB2 (X Vo)~ (X V) n,
MBs oy Vs) K3 Vi) Ny

Micro—Block Projection
Table (MPT)

Figure 8. MPT in each render-nodes

Figure 8 and 9 show the MPT and MAT of each
render-node. Additional items are inserted into the
MPT and MAT to cope with these issues. “MBs not
in” in MAT refers to the number of micro-blocks
that have not been received by the master-node as
yet. At the time of initialization (of render-nodes),

the values of all the “MBs not in’ are set equal to the
number of required micro-blocks (in MAT). When
the master-node sends the requested micro-blocks to
a render-node, the latter refers to the MPT and finds
the micro-areas corresponding to the received micro-
blocks. The values of ‘MBs not in’ in MAT are
modified at the reception of micro-blocks, because
those micro-blocks are not ‘not in local’ in the
render-node any more.

Related MBs
Micro-Area : N
Micro-Blocks not in
MAL (X1, yr) MB1, MBe, . n [\ The number of micro-blocks
MA2 (xz, y2) MBs, MB7, ... n, which is required to render the

micro—area and which is not
in local storage yet

Micro—Area Table
(MAT)

Figure 9. MAT in each render-nodes

Master- Master—
Node Node

@ o

Change

d MA

Render- eTeren Local M8 I0s

Node : MALJ ender F— k:;:'
telated

dmB

Local Modify MAFT D5

in local storage MA IDs

Storage

e oswmen | Local

Record MBs into
" "Uncompleted MPT local storage Local
ove MAS" value is

MBs Action Loca MAT

zero diminish
Uncompleted Storage Action : diminish ' MBs

MAs" values not in local’ values

Figure 10. Modification of MPT and MAT when
receiving MBs and MAFT

When the occupied micro-area is rendered, it is also
required to remove the micro-blocks from local
memory if the micro-blocks are not required any
more. The item “Unfinished MASs” in MPT is used
for the purpose. As with the “MBs not in”, the value
of “Unfinished MAs” in MPT is the number of
micro-areas in MPT at the time of initialization.
Render-node modifies the value of ‘Unfinished
MAs’ in MPT when it receives MAFT from the
master-node. A micro-block whose “Related MAs”
in MPT becomes zero is removed from local
memory of the render-node because it will not be
required any more.

The next micro-area selection is determined by
referring to MAT. The value of “MBs not in” is the
number of micro-blocks to be imported from the
master-node. The micro-area that has the smallest
“MBs not in” value in MAT is selected as the next
micro-area; this requires the transfer of the smallest
number of micro-blocks for rendering. Micro-blocks
in the render-node and the newly received ones are
used for rendering the occupied micro-areas:
unnecessary micro-blocks are trashed.

Algorithm 3 implements these policies.

MBs received :

; Updating MAT

for mb_id in received MBs do
ma_ids « MPT(mb_id)
for ma_id in ma_ids do

diminish (MAT(ma_id).MBs_not_in)

endfor

end for

MAFT update received :
; Updating MPT
for ma_id in MAs updated to C or O do
mb_ids —« MAT(ma_id)
for mb_id in mb_ids do
diminish (MPT(mb_id).Unfinished_MAs)
if (MPT(mb_id).Unfinished_MAs =0) then
remove MPT(mb_id)
endif
endfor
end for

Selection of next MA to be rendered
; after receiving MAFT updating info.
min_val « oo, min_id ~-1;
for ma_id in all MAs which MAFT(ma_id) is void
if min_val > MAT(ma_id).MBs_not_in then
min_val = MAT(ma_id).MBs_not_in
min_id = ma_id
endif
endfor

Select ma_id to next MA

Algorithm 3. Basic Policies for render-nodes for
selection of micro-areas

4. CONSIDERATIONS

Each render-node executes independently with the
same policy of selection, but the selected micro-
areas have to be distinct. The factor that enables
distinct selections lies in the first selected micro-
areas in each render-node. The first selection in
render-nodes should be influenced by factors such as
spatial position of micro-areas on the screen. Also,
the selection policy after that should be influenced a
little by spatial factors to reduce coincident
selections.

Selection policy must consider another problem:
conflicting (selected) micro-areas. This is under
investigation.

5. PROGRESS IN IMPLEMENTATION

The parallel volume rendering system that adopts the
suggested method is being implemented on a
platform of network-connected cluster of work-
stations. The core routines that play a role in
dividing the volume into MBs, building MPT and
MAT, and rendering thereafter have already been
developed. Figure 10 shows a sample image that has
been rendered by this system.

The rendering software is written in C for portability
across UNIX based computers.

Figure 10.
Example image
rendered by
core routines

The other components (to be developed) are: job-
division module, communication modules, and load
balancing control modules. MPI-based API
functions will be employed for clustering. Data and
control instructions will be formatted as messages in
the system. MA-selection module in every render
node will play a role in job-division and load
balancing. They are presently being implemented
along with the communication module. Fully
integrated rendering system is expected to be in
place soon.

6. CONCLUSION

This paper has suggested a screen-division based
volume rendering algorithm that reduces communic-
ation overheads as much as possible. It incurs a
lower communication cost than other existing
parallel volume rendering algorithms. A volume
rendering system is being developed presently with a
view to adopt this method to run on multi-computer
based cluster machines. The system communicates
via TCP/IP protocol using PVM [4] or MPI. The
suggested technique transfers only the required
volume data to the other nodes by dividing the
volume object into micro-blocks and by dividing
image screen into micro-areas.

The main advantage of the proposed method lies in
the fact that each node transfers only the volume data
and parts of rendered image. For example, the well-
known parallel volume renderer suggested by Greg
Johnson [11] requires the exchange of pre-
composited images among rendering nodes in order
to finalize the overall image. The method elaborated
in this paper completes all the rendering processes of
one MA in the local render node, and only the
rendered MAs (as final results) are sent to the
master-node. This policy reduces the
communication overheads by a significant measure.

Massive volume data characterises some of the
applications such as MRI imaging. Parallel volume
rendering techniques are expected to offer feasible
solutions to such problems. A technique with a
reasonable communications overhead will be clearly

a winner. It is hoped that the suggested algorithm
will be among the winners.

REFERENCES

[1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

A. Kaufman, R. Bakalash, D. Cohen and
R.Yagel. A survey of architectures for volume
rendering. IEEE Engineering In Medicine
And Biology, pages 18-23, Dec. 1990
Christopher Giertsen, Johnny Peterson,
Parallel VVolume Rendering on a Network of
Workstations, = November, 1993, IEEE
Computer Graphics and Applications, pp. 16-
13

Michael E. Palmer, Stephen Taylor, Brian
Totty, Exploiting Deep Parallel Memory
Hierarchies for Ray Casting Volume
Rendering, October, 1997, Proceedings of the
IEEE symposium on Parallel Computing, pp.
15-22

Clemens H. Cap, Volker Strumpen, Efficient
Parallel Computing in Distributed Workstation
Environments, Parallel Computing, 19(1993),
pp. 1221-1234

Craig M. Wittenbrink, Survey of Parallel
Volume Rendering Algorithms, Parallel and
Distributed Processing Techniques and
Applications, July, 1998, pp. 1329-1336

T. T. Elvins, A survey of algorithms for
volume visualization, Computer Graphics,
26(3), pp- 194-201

A. Van Gelder and K. Kim, Direct Volume
Rendering with Shading via 3D Textures,
ACM/IEEE Symposium on Volume
Visualization, October 1996, pp. 23-30

Craig M. Wittenbrink, M. Harrington, A
Scalable MIMD Volume Rendering Algorithm,
Eighth International Parallel Processing
Symposium, April, 1994, pp. 916-920

Corrie B., Mackerras, Data Coherences in
Volume Rendering Algorithm”, Proceddings
of 1993 Parallel Rendering Symposium, San
Jose, CA, 1993, pp. 23-26

Schroder. P, and Krueger, Data Parallel
Volume Rendering Algorithm for Interactiove
Visualization, The Visual Computer, 9, 1993,
pp. 405-416

Greg Johnson, Volume Rendering of Large
Datasets on the Cray T3D, 1996 Spring
Proceedings of Cray User Group, 1996, pp
155-159

