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Many techniques for reconstructing 3-D shapes from 2-D images use silhouette data.  A problem with this
approach is that, if no a priori information about the 3-D shape is available, we do not know neither the
accuracy of the reconstruction, nor where it is better to locate new viewpoints for improving the accuracy.
We present and demonstrate a new general approach to interactive, object-specific shape-from-silhouette
algorithms. The approach  holds for completely unknown shapes. It is based on a necessary condition for
the reconstruction to have been performed with the best  possible accuracy. From this condition, we
derive: 1) a quantitative measure of reconstruction accuracy; 2) rules for finding new viewpoints if the
accuracy is not satisfactory. The algorithm has been implemented for polyhedra, and demonstrated in a
virtual environment.

.H\ZRUGV�  computer vision, shape from silhouette, visual hull, volume intersection, interactive
algorithms, geometric probing
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Reconstructing 3-D shapes from 2-D images is a
basic research area in computer vision. Many
algorithms are based on occluding contours or
silhouettes (see for instance [Astro99], [Vaill92],
[Zheng94], [Sulli98]). In the latter case, only the
contours which occlude the background are
considered. Reconstruction from silhouettes is as
reconstruction from shadows cast from the object
with point light sources located at the viewpoints.

The information provided by set of
silhouettes and viewpoints is summarized by the
volume 5� shared  by the solid regions of space &i

within which each silhouette Si constrains the
unknown object 2 to lie (Fig.1). 5 approximates 2
more or less closely, depending on the viewpoints
and the shape of 2 itself. Finding this volume is a
popular reconstruction technique ([Matus00],
[Ahuia89], [Nobor88], [Potem87], [Chian89]) called
volume intersection (VI).

The Volume Intersection approach.
Figure 1

Silhouette-based reconstruction algorithms
must face an important problem. If no D� SULRUL
information about the 3-D shape is available, we
have no idea of the accuracy of the reconstruction
obtained, and consequently we do not know whether
halting or not the reconstruction process. It is also
clear that, for a given object, each new VI operation
can  refine the reconstruction to different degrees,
depending on the viewpoint chosen. So another
problem is where to locate new viewpoints. If we
were given the shape of the object, in principle we



could construct some object specific algorithm for
finding the next best viewpoint, but the shape is the
very information we are looking for. So in general
we are reduced to a simple “the more silhouettes the
better” strategy�

Object specific heuristics for finding the
next viewpoint have been suggested in [Shanm91]
and [Lavak89]. However, they do not face the basic
problem of understanding  when a  satisfactory
reconstruction accuracy has been obtained. Some
results have been obtained in 2D in the area known
as JHRPHWULF� SURELQJ (see [Skiena92] for a
comprehensive survey). Optimal strategies for
finding the next viewpoint have been found for
determining  convex polygons from their 2D
silhouettes.

The purpose of this paper is to present and
demonstrate a TXDQWLWDWLYH�approach able to solve, at
least in part, this apparently under-constrained
problem. This approach is based on a QHFHVVDU\
FRQGLWLRQ for the reconstruction obtained to be
optimal. This condition can be verified considering
the reconstructed object 5�only, without any D�SULRUL
knowledge  about 2. We will also show that, when
this necessary condition is not satisfied, we can
compute a measure of the current reconstruction
accuracy, and derive suggestions for locating a new
viewpoint.

Although the necessary condition holds for
any object, verifying if the condition is satisfied, and,
if not, computing the measure of reconstruction
accuracy, are not trivial tasks and depend on the
object’s category.

In this paper we will demonstrate our  active
approach  for polyhedral objects in a virtual
environment. In Section 2  we summarize some
relevant theoretical points. In Section 3 we state the
necessary  condition for a reconstruction to be
optimal, and outline the interactive reconstruction
approach. In Section 4 we describe the algorithm
implemented for reconstructing convex and concave
polyhedra and report the experimental results
obtained.
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����7KH�9LVXDO�+XOO
The�YLVXDO�KXOO 9+(2,9) of an object 2 relative to a
viewing region 9 is the closest approximation of 2
which can be obtained by VI with  viewpoints
belonging to 9. It is also the largest object that
produces the same silhouettes as 2  from viewpoints
belonging to 9�� All the visual hulls relative to
viewing regions which: 1) completely enclose 2; 2)
do not share any point with the FRQYH[�KXOO of 2; are
equal. This is called the H[WHUQDO�YLVXDO�KXOO of O, or
simply the  visual hull 9+(2).

Three objects and their visual hulls are
shown in Fig.2. In the figure, P is a curved ruled
patch due to lines tangent at the edges E1, E2, E3. An
intuitive physical construction of the visual hull is
shown for the third object. Suppose filling the
concavity with soft material. The visual hull can be
obtained by scraping off the excess material with a
ruler grazing the hard surface of the object in all
possible ways.

The reader is referred to [Laure94] for any
further details.

Some objects and their visual hulls
Figure 2

Algorithms for computing the visual hulls of
polygons, polyhedra, solids of revolution and smooth
surface objects have been presented in [Laure94],
[Petit98], [Laure99a], [Laure99b].

���� ,QIHUULQJ� WKH� VKDSH� RI� DQ� REMHFW� IURP� LWV
VLOKRXHWWHV��KDUG�DQG�VRIW�SRLQWV
The problem of inferring the shape of 2 from the
boundary volume 5 has been discussed in [Laure95].
Here we summarize the relevant matter of this paper.
The points of the VXUIDFH of 5 can be divided into:
KDUG� � SRLQWV, which belong to any possible object
originating 5; VRIW��SRLQWV, which could belong or not
to 2. In other words, hard points are guaranteed to
belong to (the surface of)2.

The problem of computing the hard points
can be considered in two reconstruction cases.

&DVH� �� - In this case we assume that the
RSWLPDO reconstruction has been performed, i.e. the
visual hull of � 2 has been obtained. This is the
inverse problem of computing the visual hull of a
given object. Let a hard point of a visual hull be a
9+�KDUG�point. A  necessary and sufficient condition
for a point  to be VH-hard is the following:
3URS�����$� SRLQW�3� LV�9+�KDUG� LII� � WKHUH� H[LVWV� RQH
VWUDLJKW�OLQH�VKDULQJ�RQO\�3�ZLWK�9+�2� .

This is a point condition, which requires
further work for finding the hard parts of general
surfaces. For the case of polyhedral visual hulls
however  an algorithm has been presented [Laure95],
which allows to find in polynomial  time the hard



edges of the object (the internal points of planar
faces are always soft).

Examples of  VH-hard points are shown in
Fig.3. The four leftmost objects of each row have the
same visual hull (the first object of the row), and
share its hard edges, marked thick in the rightmost
objects.

Examples of VH-hard edges.
Figure 3

&DVH�� - Let us assume that we do not know
whether the reconstruction is optimal or not.
Obviously, this is the situation to face usually. Let
call 5�KDUG a hard point in this case.

A necessary and sufficient condition exists
for a point to be R-hard. Let the� VWULS ST(2�Vi)
relative to the viewpoint Vi  and the object 2 be the
part of surface (let it be a YLVXDO� FRQH) of the solid
cone &i starting at V �which bounds 5, or, in other
words the part of the visual cone which is left after
the VI operations due to the other silhouettes. Also
let the ZLGWK�of a strip ST(2�Vi) at a point P be the
length of the segment of  the half-line starting at Vi

and passing through P which lies on the strip. The
following statement holds:
3URS�����$�SRLQW�3�LV�5��KDUG�LII�LW�EHORQJV�WR�D�VWULS
RI�ZLGWK�]HUR�DW�3�

This is a constructive condition. The R-hard
points can be obtained as a by-product of the VI
algorithm. In practice, we can find R-hard points or,
at most, R-hard lines ( R-hard surface would require
an infinite number of silhouettes). The idea of R-
hard points� is demonstrated in Fig.4. Two ideal
viewing directions, V1 and V2, shown  together with
the corresponding strips, are insufficient to produce
hard points, since both strips have everywhere non-
zero width. One additional co-planar viewing
direction V3 supplies a couple of R-hard segments.

Examples of R-hard edges.
Figure 4
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In this Section we state a necessary condition for the
reconstruction to be optimal, and show that from this
condition we can derive: i) a PHDVXUH� of
reconstruction accuracy and ii) hints for selecting
new viewpoints when the accuracy is not
satisfactory.

����$� QHFHVVDU\� FRQGLWLRQ� IRU� WKH� UHFRQVWUXFWLRQ
WR�EH�WHUPLQDWHG

Suppose that we are given a set of
viewpoints and silhouettes of an unknown object 2,
which produce the object 5. Let VH(5) be the set of
VH-hard points, and R(5) be the  set of R-hard
points.

In general it is VH(5)>R(5) (see for
instance Fig.3 and Fig.4). In fact, by adding new
silhouettes we cannot delete old hard points, but only
add new hard points, and  the visual hull is the
reconstruction made with all possible silhouettes. If
the best possible reconstruction has been obtained,
that is 5=9+(2), no more hard points can be found.
It follows that:
3URS����$�QHFHVVDU\�FRQGLWLRQ�IRU�WKH�UHFRQVWUXFWLRQ
WR�EH�RSWLPDO�LV��VH(5)= R(5)

Let us define  FRPSDWLEOH� a reconstruction
which satisfies this condition, that is, such that all the
points of 5�which FRXOG�EH  hard have been found to
be DFWXDOO\��hard.

The condition is not sufficient for the
reconstruction to be optimal, and in some cases small
details of the object could remain undetected.
However, the necessary condition stated is fruitful.
In fact, not only it can tell us when to halt the VI
process, but  it also allows, if not satisfied, to
understand  how far we are from a compatible
reconstruction. In addition, if we are not satisfied
with the accuracy already obtained,  it suggests  the
location of the next viewpoint.

���� $� JHQHUDO� DSSURDFK� WR� LQWHUDFWLYH
UHFRQVWUXFWLRQ

Let us outline a general interactive
reconstruction approach, which holds for any kind of
object. First, let us introduce some figure of merit
I�HPS�5��depending on a set HPS�of hard points and
the surface of 5. This figure should be defined in
relation with the category of objects considered. For
instance, for smooth-surface object, where only hard
points, and not hard lines, can be found, I�could be
the number of hard points per square inch, possibly
corrected according to the local curvature.

For polyhedra, where both hard points and
hard lines can be found, I could be defined as the
total length of the hard lines, plus the number of hard
points multiplied by some constant weight. Let the
UHODWLYH�UHFRQVWUXFWLRQ�DFFXUDF\ 5$�be defined as:



5$�= I (�R(5)�5)/�I (�VH(5)�5)
Clearly 5$� is one iff the reconstruction is

compatible. An interactive reconstruction algorithm
can be constructed as follows

a) compute 5, VH(5),  R(5) and�5$
b) if  (1-5$) ≤ε , where ε is some
predefined error , stop;
c) otherwise, refine the reconstruction by

testing if the SRWHQWLDOO\�hard points VH(5)-R(5) are
actually hard or not. This can be done for a subset of
the potentially hard points  by selecting a  viewpoint
such that this subset�is projected on the boundary of
the silhouette of 5.

Although this approach is quite general, to
implement a general algorithm is not trivial. One
reason is that it requires algorithms for computing
VH(5) for any kind of object. Since one algorithm is
available for polyhedra, we have implemented the
interactive algorithm for these solids.

��� $1� ,17(5$&7,9(� $/*25,7+0� )25
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In many cases, the visual hull of  a polyhedron is a
polyhedron  in his turn. Obviously, this happens
when the object is exactly reconstructable
(2=9+(2)). Also if this is not the case, the surface
of 9+(2)  could consist of  planar patches only. In
all these cases, we state as goal of the interactive
algorithm to find a compatible reconstruction, where
VH(5)=R(5) so that the reconstruction accuracy is
one.

In some cases however, the surface of
9+(2)   includes curved ruled patches, as shown in
Fig. 2. For simplicity, we will not deal with this
cases. The algorithm, implemented for virtual
polyhedra, consists of four  parts:

1) ALGVI, which performs the volume
intersection;

2) ALGVH, the algorithm for computing the
hard points VH(5);

3) ALGR, the algorithm for computing  the
hard points R(5);

4) NEXT, which compares VH(5) and R(5)
and, if the sets are not equal, computes the
next viewpoint;
We will not describe here in details the first

three parts. ALGVI, the VI algorithms, works for
any kind of polyedra and both parallel and
perspective projections. ALGR is a rather
straightforward consequence of the volume
intersection, and ALGVH is described in [Laure95],
to which the  reader is referred.

In the following we will present NEXT,
which uses two different sets of rules for convex and
non convex polyhedra, and the experimental results
obtained.

����7KH�FRQYH[�FDVH
In this case running ALGVH is not

necessary, since any reconstructed object 5 is
convex, and thus all the edges are VH-hard.
Therefore, NEXT computes new viewpoints until all
the edges of 5 are R-hard.

As far as the authors know, reconstructing
unknown convex polyhedra from silhouettes has
been only studied by Dobkin, Edelsbrunner and Yap
[Dobki86]. They proposed a silhouette probing
strategy, dual of a finger probing strategy, which
determines  the polyhedron with a bounded number
of silhouettes Ns :

V/2 ≤ Ns ≤ V+5F
where V and F are the numbers of vertices

and faces respectively. The strategy and the bounds
are for ideal viewpoints only.

In our case, it is not difficult to define finite
strategies for any kind of viewpoints based on the
hard points and hard lines already found. Let us
recall first that one edge E is  R-hard if it belongs to
a strip with zero width. This requires WKUHH�surfaces
of visual cones to make contact with 5 at E. In
addition, each face must be verified with a viewpoint
lying in the plane of the face.

Let an edge of 5�be a FDQGLGDWH�edge if it is
not R-hard. The following general strategy requires
at most

Ns ≤ F+3E
silhouettes, since at each step it verifies a

new face or adds a surface  making contact with an
undetected or  candidate edge .

6WUDWHJ\�� Start with three random viewpoints.
Until there are candidate edges, chose a new
viewpoint such that at least one candidate edge E is
on the boundary of the silhouette of the current 5.
According to the type of the faces F1 and F2 of 5
converging into E, it could be necessary for the
viewpoint to satisfy some further condition.

 

Three cases for the candidate edge E
Figure 5

&DVH��� -�There are no hard edges lying on
F1 and F2. In other words, the edges of 2� which
produce F1 and F2 have not yet been detected (see
Fig. 5a, where the undetected edges are shown as



dotted lines). In this case, any viewpoint seeing E on
the boundary of the silhouette is fit. In fact, it will
either verify E as a hard edge, or produce a new face
of 5 making contact with at least one edge yet
undiscovered, inside the solid angle formed by F1

and F2.
&DVH���- There is one R-hard edge on both

F1 and F2(see Fig. 5b, where the hard edges are thick
segments). A viewpoint lying on a line passing
through one point of both the hard edges will either
verify a possible undetected face, or produce one or
more faces making contact with� undetected edges.

&DVH��� - There is one R-hard edge on one
face, let it be F1 (see Fig. 5c). Consider a line starting
at V2 ( the viewpoint  which produces F2)  and lying
on F2. This line will intersect F2 at two points. Let P
by the point closer to V2. Chose a new viewpoint on
a line passing trough P and one point of the R-hard
edge on F1. It is clear from the figure that it will
produce a new face making contact with one or more
undetected edges (possibly E2).

A number of  rules can be applied for
speeding up the algorithm. For instance, if two R-
hard vertices joined by a candidate edge have been
found, the edge can be classified as hard, even if it
does not belongs to a strip of zero width .

It is also clear that the general strategy
described  allows to position the viewpoints in
several different positions. To restrict the choices,
some heuristics can be used.

An example of reconstruction of a convex
polyhedron

Figure 6

The algorithm NEXT actually implemented
for convex polyhedra uses several  heuristics which
we will omit for brevity. An example of the steps
performed by the algorithm is shown in Fig.6, where
the arrows indicate the viewpoints and the hard
edges are thicker.

We have experimentally evaluated the
performance of the algorithm with respect to our
upper bound  F+3E, and the bounds of the algorithm
of Dobkin, Edelsbrunner and Yap. For this purpose,
the algorithm has been applied to fifty randomly
generated convex polyhedra. Some of them are
shown in Fig.7.

A subset of the fifty convex polyhedra reconstructed
Figure 7

The average numbers  of vertices, edges and
faces of the fifty polyhedra are 17.8, 26.7 and 10.9
respectively. We have found that the average number
of silhouettes required for the reconstruction is 13.
This number should be  compared with 91, our
average upper bound, with 99.9, the average upper
bound of Dobkin, Edelsbrunner and Yap and with
8.9, their average lower bound. The last comparison
shows that the average behaviour of our algorithm is
close to optimality.

����7KH��FDVH�RI�FRQFDYH�SRO\KHGUD
To reconstruct the visual hull of concave

polyhedra is much more difficult. We have already
recalled that there are curved visual hulls, which in
principle require an infinite number of polygonal
silhouettes. Even polyhedra with polyhedral visual
hull could require an unbounded number of
silhouettes for their reconstruction [Laure97].

Both  these cases could be approached with
approximations which neglect small details. Anyway,
to develop an algorithm working for any concave
polygons is outside the scope of this work.



The algorithm we have implemented has
been able to reconstruct  concave  polyhedra such
that:

1) the hard edges lies all on the convex
hull

2) the concave parts of the visual hull can
be reconstructed with a bounded
number of intersections.

As far as we know, this is the only
interactive algorithm presented for reconstructing
concave polyhedra from silhouettes. In more details,
the algorithm first reconstructs the visual hull of the
convex parts and the rim (always on the convex hull)
of the concavities. In a second step it attempts to
reconstruct the concavities. We omit for brevity the
details of the various rules used, which can be found
in [Caval00].

In Fig. 8 we show an example of
reconstruction of a concavity. In this case, the
complete reconstruction of the visual hull required
16 silhouettes.

The reconstruction of a concavity
Figure 8

The algorithm has been applied for
reconstructing the visual hull of several other
concave polyhedra. In Fig. 9 we show some
polyhedra coincident with their visual hulls and thus,
in principle, exactly  reconstructable. Our algorithm
was able to reconstruct objects (a),(b), (d) and (e)
with 16, 19, 43, 19  silhouettes respectively. The
concavity of object (c) requires an infinite number of
silhouettes. However, its hard edges, including the
rim of the concavity, have been determined with 25
volume intersections.

In Fig. 10 we show several polyhedra ((a)-
(e)) not coincident with their visual hulls. In this
case, the reconstruction of the visual hulls (a’), (b’),
(c’), (e’) required  16, 40, 15, 15 silhouettes

respectively. To reconstruct completely the visual
hull (d’) requires infinite steps, but its hard edges
and the faces lying  on the convex hull took 15
intersections.

Concave polyhedra coincident with their visual hull
Figure 9

Polyhedra not coincident with their visual hulls
Figure 10

��� 6800$5<

We have presented a new a new general approach to
interactive, object-specific shape-from-silhouette
algorithms. This approach, which holds for
completely unknown shapes, is based on a



necessary condition for the reconstruction to have
been performed with the best  possible accuracy.

We have shown that from this condition it is
possible to derive a quantitative measure of
reconstruction accuracy and rules for finding new
viewpoints if the accuracy is not satisfactory.

For demonstrating the effectiveness of  our
approach, an interactive algorithm has been
implemented for polyhedra and applied in a virtual
environment.

In the case of convex polyhedra, the
average behaviour of the algorithm has been
experimentally shown to be close to optimality. The
case of concave polyhedra is more complex, and the
rules for finding new viewpoints of the algorithm
implemented are able to deal with a restricted class
of object.

Future work will deal with extending the
capabilities of the algorithm NEXT to general non-
convex polyhedra, and applying the interactive
approach to other categories of objects.
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