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Java offers interesting opportunities for parallel computing. In particular, Java Remote Method
Invocation (RMI) provides a flexible kind of remote procedure call (RPC) that supports polymor-
phism. Sun’s RMI implementation achieves this kind of flexibility at the cost of a major runtime
overhead. The goal of this article is to show that RMI can be implemented efficiently, while still
supporting polymorphism and allowing interoperability with Java Virtual Machines (JVMs). We
study a new approach for implementing RMI, using a compiler-based Java system called Manta.
Manta uses a native (static) compiler instead of a just-in-time compiler. To implement RMI effi-
ciently, Manta exploits compile-time type information for generating specialized serializers. Also,
it uses an efficient RMI protocol and fast low-level communication protocols.

A difficult problem with this approach is how to support polymorphism and interoperability.
One of the consequences of polymorphism is that an RMI implementation must be able to download
remote classes into an application during runtime. Manta solves this problem by using a dynamic
bytecode compiler, which is capable of compiling and linking bytecode into a running application. To
allow interoperability with JVMs, Manta also implements the Sun RMI protocol (i.e., the standard
RMI protocol), in addition to its own protocol.

We evaluate the performance of Manta using benchmarks and applications that run on a
32-node Myrinet cluster. The time for a null-RMI (without parameters or a return value) of Manta
is 35 times lower than for the Sun JDK 1.2, and only slightly higher than for a C-based RPC
protocol. This high performance is accomplished by pushing almost all of the runtime overhead of
RMI to compile time. We study the performance differences between the Manta and the Sun RMI
protocols in detail. The poor performance of the Sun RMI protocol is in part due to an inefficient
implementation of the protocol. To allow a fair comparison, we compiled the applications and the
Sun RMI protocol with the native Manta compiler. The results show that Manta’s null-RMI latency
is still eight times lower than for the compiled Sun RMI protocol and that Manta’s efficient RMI
protocol results in 1.8 to 3.4 times higher speedups for four out of six applications.
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1. INTRODUCTION

There is a growing interest in using Java for high-performance parallel ap-
plications. Java’s clean and type-safe object-oriented programming model and
its support for concurrency make it an attractive environment for writing re-
liable, large-scale parallel programs. For shared memory machines, Java of-
fers a familiar multithreading paradigm. For distributed memory machines,
such as clusters of workstations, Java provides Remote Method Invocation
(RMI), which is an object-oriented version of Remote Procedure Call (RPC). The
RMI model offers many advantages for distributed programming, including a
seamless integration with Java’s object model, heterogeneity, and flexibility
[Waldo 1998].

Unfortunately, many existing Java implementations have inferior perfor-
mance of both sequential code and communication primitives, which is a serious
disadvantage for high-performance computing. Much effort is being invested
in improving sequential code performance by replacing the original bytecode
interpretation scheme with just-in-time compilers, native compilers, and spe-
cialized hardware [Burke et al. 1999; Krall and Grafl 1997; Muller et al. 1997;
Proebsting et al. 1997]. The communication overhead of RMI implementations,
however, remains a major weakness. RMI is designed for client/server pro-
gramming in distributed (Web based) systems, where network latencies on
the order of several milliseconds are typical. On more tightly coupled paral-
lel machines, such latencies are unacceptable. On our Pentium Pro/Myrinet
cluster, for example, Sun’s JDK 1.2 implementation of RMI obtains a null-RMI
latency (i.e., the roundtrip time of an RMI without parameters or a return
value) of 1,316 us, compared to 31 us for a user-level Remote Procedure Call
protocol in C.

Part of this large overhead is caused by inefficiencies in the JDK implemen-
tation of RMI, which is built on a hierarchy of stream classes that copy data
and call virtual methods. Serialization of method arguments (i.e., converting
them to arrays of bytes) is implemented by recursively inspecting object types
until primitive types are reached, and then invoking the primitive serializers.
All of this is performed at runtime for each remote invocation.

Besides inefficiencies in the JDK implementation of RMI, a second reason for
the slowness of RMI is the difference between the RPC and RMI models. Java’s
RMI model is designed for flexibility and interoperability. Unlike RPC, it allows
classes unknown at compile time to be exchanged between a client and a server
and to be downloaded into a running program. In Java, an actual parameter ob-
jectin an RMI can be of a subclass of the class of the method’s formal parameter.
In (polymorphic) object-oriented languages, the dynamic type of the parameter-
object (the subclass) should be used by the method, not the static type of the
formal parameter. When the subclass is not yet known to the receiver, it has
to be fetched from a file or HTTP server and be downloaded into the receiver.
This high level of flexibility is the key distinction between RMI and RPC [Waldo
1998]. RPC systems simply use the static type of the formal parameter (thereby
type-converting the actual parameter), and thus lack support for polymorphism
and break the object-oriented model.
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The key problem is to obtain the efficiency of RPC and the flexibility of
Java’s RMI. This article discusses a compiler-based Java system, called Manta,'
which was designed from scratch to efficiently implement RMI. Manta replaces
Sun’s runtime protocol processing as much as possible by compile-time analysis.
Manta uses a native compiler to generate efficient sequential code and special-
ized serialization routines for serializable argument classes. Also, Manta sends
type descriptors for argument classes only once per destination machine, in-
stead of once for every RMI. In this way, almost all of the protocol overhead
has been pushed to compile time, off the critical path. The problems with this
approach are, however, how to interface with Java Virtual Machines (JVMs)
and how to address dynamic class loading. Both are required to support inter-
operability and polymorphism. To interoperate with JVMs, Manta supports the
Sun RMI and serialization protocol, in addition to its own protocol. Dynamic
class loading is supported by compiling methods and generating serializers
at runtime.

The general strategy of Manta is to make the frequent case fast. Since
Manta is designed for parallel processing, we assume that the frequent case
is communication between Manta processes, running, for example, on different
nodes within a cluster. Manta supports the infrequent case (communication
with JVMs) using a slower approach. Hence the Manta RMI system logically
consists of two parts:

— A fast communication protocol that is used only between Manta processes. We
call this protocol Manta RMI, to emphasize that it delivers the standard RMI
programming model to the user; but it can only be used for communication
between Manta processes.

— Additional software that makes the Manta RMI system as a whole compatible
with standard RMI, so Manta processes can communicate with JVMs.

We refer to the combination of these two parts as the Manta RMI system.
We use the term Sun RMI to refer to the standard RMI protocol as defined
in the RMI specification [Sun Microsystems 1997]. Note that both Manta RMI
and Sun RMI provide the same programming model, but their wire formats
are incompatible.

The Manta RMI system thus combines high performance with the flexibil-
ity and interoperability of RMI. In a grid computing application [Foster and
Kesselman 1998], for example, some clusters can run our Manta software
and communicate internally using the Manta RMI protocol. Other machines
may run JVMs, containing, for example, a graphical user interface program.
Manta communicates with such machines using the Sun RMI protocol, allow-
ing method invocations between Manta and JVMs. Manta implements almost
all other functionality required by the RMI specification, including heterogene-
ity, multithreading, synchronized methods, and distributed garbage collection.
Manta currently does not implement Java’s security model, as the system is
primarily intended for parallel cluster computing.

1A fast, flexible, black-and-white, tropical fish that can be found in the Indonesian archipelago.
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The main contributions of this article are as follows.

— We show that RMI can be implemented efficiently and can obtain a perfor-
mance close to that of RPC systems. The null-RMI latency of Manta RMI
over Myrinet is 37 us, only 6 us slower than a C-based RPC protocol.

— We show that this high performance can be achieved while still supporting
polymorphism and interoperability with JVMs by using dynamic bytecode
compilation and multiple RMI protocols.

— We give a detailed performance comparison between the Manta and Sun
RMI protocols, using benchmarks as well as a collection of six parallel ap-
plications. To allow a fair comparison, we compiled the applications and the
Sun RMI protocol with the native Manta compiler. The results show that
the Manta protocol results in 1.8 to 3.4 times higher speedups for four out of
six applications.

The remainder of the article is structured as follows. Design and imple-
mentation of the Manta system are discussed in Section 2. In Section 3, we
give a detailed analysis of the communication performance of our system. In
Section 4, we discuss the performance of several parallel applications. In
Section 5, we look at related work. Section 6 presents conclusions.

2. DESIGN AND IMPLEMENTATION OF MANTA

This section will discuss the design and implementation of the Manta RMI
system, which includes the Manta RMI protocol and the software extensions
that make Manta compatible with Sun RMI.

2.1 Manta Structure

Since Manta is designed for high-performance parallel computing, it uses a
native compiler rather than a JIT. The most important advantage of a native
compiler is that it can perform more time consuming optimizations, and there-
fore (potentially) generate better code.

The Manta system is illustrated in Figure 1. The box in the middle de-
scribes the structure of a Manta process, which contains the executable code
for the application and (de)serialization routines, both of which are generated
by Manta’s native compiler. Manta processes can communicate with each other
through the Manta RMI protocol, which has its own wire format. A Manta pro-
cess can communicate with any JVM (the box on the right) through the Sun
RMI protocol, using the standard RMI format (i.e., the format defined in Sun’s
RMI specification).

A Manta-to-Manta RMI is performed with the Manta protocol, which is
described in detail in the next section. Manta-to-Manta communication is
the common case for high-performance parallel programming, for which our
system is optimized. Manta’s serialization and deserialization protocols sup-
port heterogeneity (RMIs between machines with different byte-orderings or
alignment properties).

A Manta-to-JVM RMI is performed with a slower protocol that is compatible
with the RMI specification and the standard RMI wire format. Manta uses
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Fig. 1. Manta/JVM interoperability.

generic routines to (de)serialize the objects to or from the standard format.
These routines use reflection, similar to Sun’s implementation. The routines are
written in C, as is all of Manta’s runtime system, and execute more efficiently
than Sun’s implementation, which is partly written in Java.

To support polymorphism for RMIs between Manta and JVMs, a Manta ap-
plication must be able to handle bytecode from other processes. When a Manta
application requests bytecode from a remote process, Manta will invoke its
bytecode compiler to generate the metaclasses, the (de)serialization routines,
and the object code for the methods as if they were generated by the Manta
source code compiler. Dynamic bytecode compilation is described in more detail
in Section 2.4. The dynamically generated object code is linked into the applica-
tion with the operating system’s dynamic linking interface. If a remote process
requests bytecode from a Manta application, the JVM bytecode loader retrieves
the bytecode for the requested class in the usual way through a shared filesys-
tem or through an HTTP daemon. Sun’s javac compiler is used to generate the
bytecode at compile time.

The structure of the Manta system is more complicated than that of a JVM.
Much of the complexity of implementing Manta efficiently is due to the need to
interface a system based on a native-code compiler with a bytecode-based sys-
tem. The fast communication path in our system, however, is straightforward:
the Manta protocol just calls the compiler-generated serialization routines and
uses a simple scheme to communicate with other Manta processes. This fast
communication path is described below.

2.2 Serialization and Communication

RMI systems can be split into three major components: low-level communica-
tion, the RMI protocol (stream management and method dispatch), and serial-
ization. Below, we discuss how the Manta protocol implements each component.

Low-level communication. RMI implementations are typically built on top
of TCP/IP, which was not designed for parallel processing. Manta uses the Panda
communication library [Bal et al. 1998], which has efficient implementations
on a variety of networks. Panda uses a scatter/gather interface to minimize the
number of memory copies, resulting in high throughput.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 6, November 2001.



752 o J. Maassen et al.

Java Application
Java RMI
ObjectStream
DataStream
FileStream Java Application
Serialization
SocketStream el DRgmatah
Native socket layer Panda
TCP/IP LFC UDP/IP LFC
FastEthernet| Myrinet FastEthernet Myrinet
JDK RMI structure Manta RMI structure

Fig. 2. Structure of Sun and Manta RMI protocols; shaded layers run compiled code.

On Myrinet, Panda uses the LFC communication system [Bhoedjang et al.
2000], which provides reliable communication. LFC is a network interface
protocol for Myrinet that is both efficient and provides the right functionality
for parallel programming systems. LFC itself is implemented partly by embed-
ded software that runs on the Myrinet Network Interface processor and partly
by a library that runs on the host. To avoid the overhead of operating system
calls, the Myrinet Network Interface is mapped into user space, so LFC and
Panda run entirely in user space. The current LFC implementation does not
offer protection, so the Myrinet network can be used by a single process only.
On Fast Ethernet, Panda is implemented on top of UDP, using a 2-way slid-
ing window protocol to obtain reliable communication. The Ethernet network
interface is managed by the kernel (in a protected way), but the Panda RPC
protocol runs in user space.

The Panda RPC interface is based on an upcall model: conceptually, a new
thread of control is created when a message arrives which will execute a han-
dler for the message. The interface was designed to avoid thread switches in
simple cases. Unlike active message handlers [von Eicken et al. 1992], upcall
handlers in Panda are allowed to block to enter a critical section, but a handler
is not allowed to wait for another message to arrive. This restriction allows the
implementation to handle all messages using a single thread, so handlers that
execute without blocking do not need any context switches.

The RMI protocol. The runtime system for the Manta RMI protocol is
written in C. It was designed to minimize serialization and dispatch over-
head such as copying, buffer management, fragmentation, thread switching,
and indirect method calls. Figure 2 gives an overview of the layers in the
Manta RMI protocol and compares it with the layering of the Sun RMI system.
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The shaded layers denote statically compiled code, while the white layers are
mainly JIT-compiled Java (although they contain some native calls). Manta
avoids the stream layers of Sun RMI. Instead, RMI parameters are serialized
directly into an LFC buffer. Moreover, in the JDK, these stream layers are
written in Java, and therefore their overhead depends on the quality of the
Java implementation. In Manta, all layers are either implemented as compiled
C code or compiler-generated native code. Also, the native code generated by
the Manta compiler calls RMI serializers directly, instead of using the slow
Java Native Interface. Heterogeneity between little-end and big-end machines
is handled by sending data in the native byte order of the sender, and having
the receiver do the conversion, if necessary.

Another optimization in the Manta RMI protocol is avoiding thread switching
overhead at the receiving node. In the general case, an invocation is serviced
at the receiving node by a newly allocated thread, which runs concurrently
with the application threads. With this approach, however, the allocation of
the new thread and the context switch to this thread will be on the critical
path of the RMI. To reduce the allocation overhead, the Manta runtime system
maintains a pool of preallocated threads, so the thread can be taken from this
pool instead of being allocated. In addition, Manta avoids the context-switching
overhead for simple cases. The Manta compiler determines whether a remote
method may block. If the compiler can guarantee that a given method will
never block, the receiver executes the method without doing a context switch
to a separate thread. In this case, the current application thread will service
the request and then continue. The compiler currently makes a conservative
estimation, and only guarantees the nonblocking property for methods that do
not call other methods and do not create objects (since that might invoke the
garbage collector, which may cause the method to block). This analysis has to
be conservative, since a deadlock situation might occur if an application thread
services a method that blocks.

The Manta RMI protocol cooperates with the garbage collector to keep track
of references across machine boundaries. Manta uses a local garbage collector
based on a mark-and-sweep algorithm. Each machine runs this local collector,
using a dedicated thread that is activated by the runtime system or the user.
The distributed garbage collector is implemented on top of the local collectors,
using a reference-counting mechanism for remote objects (distributed cycles
remain undetected). If a Manta process communicates with a JVM, it uses the
distributed garbage collection algorithm of the Sun RMI implementation, which
is based on leasing.

The serialization protocol. The serialization of method arguments is an
important source of overhead in existing RMI implementations. Serialization
takes a Java object and converts (serializes) it into an array of bytes, making
a deep copy that includes the referenced subobjects. The Sun serialization pro-
tocol is written in Java and uses reflection to determine the type of each object
during runtime. The Sun RMI implementation uses the serialization protocol
for converting data that are sent over the network. The process of serializing
all arguments of a method is called marshalling.
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With the Manta protocol, all serialization code is generated by the compiler,
avoiding most of the overhead of reflection. Serialization code for most classes
is generated at compile time. Only serialization code for classes which are not
locally available is generated at runtime, by the bytecode compiler. The over-
head of this runtime code generation is incurred only once—the first time the
new class is used as an argument to some method invocation. For subsequent
uses, the efficient serializer code is then available for reuse.

The Manta compiler also generates the marshalling code for methods. The
compiler generates method-specific marshall and unmarshall functions, which
(among others) call the generated routines to serialize or deserialize all ar-
guments of the method. For every method in the method table, two pointers
are maintained to dispatch to the right marshaller or unmarshaller, depend-
ing on the dynamic type of the given object. A similar optimization is used for
serialization: every object has two pointers in its method table to the serial-
izer and deserializer for that object. When a particular object is to be serial-
ized, the method pointer is extracted from the method table of the object’s dy-
namic type and the serializer is invoked. On deserialization, the same procedure
is applied.

Manta’s serialization protocol performs optimizations for simple objects. An
array whose elements are of a primitive type is serialized by doing a direct
memory copy into the LFC buffer, so the array need not be traversed, as is done
by the JDK. In order to detect duplicate objects, the marshalling code uses a
table containing objects that have already been serialized. If the method does
not contain any parameters that are objects, however, the table is not built up,
which again makes simple methods faster.

Another optimization concerns the type descriptors for the parameters of an
RMI call. When a serialized object is sent over the network, a descriptor of its
type must also be sent. The Sun RMI protocol sends a complete type descriptor
for every class used in the remote method, including the name and package of
the class, a version number, and a description of the fields in this class. All this
information is sent for every RMI call; information about a class is only reused
within a single RMI call. With the Manta RMI protocol, each machine sends
the type descriptor only once to any other machine. The first time a type is
sent to a certain machine, a type descriptor is sent and the type is given a new
type-id that is specific to the receiver. When more objects of this type are sent
to the same destination machine, the type-id is reused. When the destination
machine receives a type descriptor, it checks if it already knows this type. If not,
it loads it from the local disk or an HTTP server. Next, it inserts the type-id and
a pointer to the metaclass in a table, for future references. This scheme thus
ensures that type information is sent only once to each remote node.

2.3 Generated Marshalling Code

Figures 3, 4, and 5 illustrate the generated marshalling code. Consider the
RemoteExample class in Figure 3. The square () method can be called from an-
other machine, so the compiler generates marshalling and unmarshalling code
for it.
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import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class RemoteExample extends UnicastRemoteObject
implements RemoteExamplelInterface {
int value;
String name;

synchronized int square(int i, String s1, String s2) throws RemoteException {

value = ij;
name = sl + s2;
System.out.println("i = " + i);

return ix*i;

Fig. 3. A simple remote class.

marshall__square(class__RemoteExample *this, int i, class__String *sl, class__String *s2) {
MarshallStruct *m = allocMarshallStruct();
ObjectTable = createObjectTable();

writeHeader (m->outBuffer, this, OPCODE_CALL, CREATE_THREAD);
writeInt (m->outBuffer, i);

writeObject (m->outBuffer, s1, ObjectTable);

writeObject (m->outBuffer, s2, ObjectTable);

// Request message is created, now write it to the network.
flushMessage (m->outBuffer) ;

fillMessage(m->inBuffer); // Receive reply.
opcode = readInt(m->inBuffer);
if (opcode == OPCODE_EXCEPTION) {
class__Exception *exception = readObject(m->inBuffer, ObjectTable);
freeMarshallStruct (m) ;
THROW_EXCEPTION (exception);
} else {
result = readInt(m->inBuffer);
freeMarshallStruct (m) ;
RETURN (result) ;

Fig. 4. The generated marshaller (pseudocode) for the square method.

unmarshall__square(class__RemoteExample *this, MarshallStruct *m) {
ObjectTable = createObjectTable();

int i = readInt(m->inBuffer);
class__String *sl1 = readObject(m->inBuffer, ObjectTable);
class__String *s2 = readObject(m->inBuffer, ObjectTable);

result = CALL_JAVA_FUNCTION(square, this, i, sl1, s2, &exception);
if (exception) {

writeInt (m->outBuffer, OPCODE_EXCEPTION);

writeObject (m->outBuffer, exception, ObjectTable);
} else {

writeInt (m—>outBuffer, OPCODE_RESULT_CALL);

writeInt (m->outBuffer, result);

}

// Reply message is created, now write it to the network.
flushMessage (m->outBuffer) ;

Fig. 5. The generated unmarshaller (pseudocode) for the square method.
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The generated marshaller for the square() method is shown in Figure 4
in pseudocode. Because square() has Strings as parameters (which are ob-
jects in Java), a table is built to detect duplicates. A special create_thread
flag is set in the header data structure because square potentially blocks: it
contains a method call that may block (e.g., in a wait ()) and it creates objects,
which may trigger garbage collection and thus may also block. The writeObject
calls serialize the string objects to the buffer. flushMessage does the actual
writing out to the network buffer. The function fillMessage initiates reading
the reply.

Pseudocode for the generated unmarshaller is shown in Figure 5. The
header is already unpacked when this unmarshaller is called. Because the
create_thread flag in the header was set, this unmarshaller will run in a sep-
arate thread obtained from a thread pool. The marshaller itself does not know
about this. Note that the this parameter is already unpacked and is a valid
reference for the machine on which the unmarshaller will run.

2.4 Dynamic Bytecode Compilation

To support polymorphism, a Manta program must be able to handle classes
that are exported by a JVM, but that have not been statically compiled into
the Manta program. To accomplish this, the Manta RMI system contains a
bytecode compiler to translate classes to object code at runtime. We describe
this bytecode compiler below. Manta uses the standard dynamic linker to link
the object code into the running application.

As with the JDK, the compiler reads the bytecode from a file or an HTTP
server. Next, it generates a Manta metaclass with dummy function entries in
its method table. Since the new class may reference or even subclass other
unknown classes, the bytecode compiler is invoked recursively for all refer-
enced unknown classes. Subsequently, the instruction stream for each byte-
code method is compiled into a C function. For each method, the used stack
space on the Virtual Machine stack is determined at compile time, and a lo-
cal stack area is declared in the C function. Operations on local variables are
compiled in a straightforward way. Virtual function calls and field references
can be resolved from the running application, including the newly generated
metaclasses. Jumps and exception blocks are implemented with labels, gotos,
and nonlocal gotos (setjmp/longjmp). The resulting C file is compiled with the
system C compiler, and linked into the running application with the system
dynamic linker (called dlopen() in many Unix implementations). The dummy
entries in the created metaclass method tables are resolved into function point-
ers in the dynamically loaded library.

One of the optimizations we implemented had a large impact on the speed
of the generated code: keeping the method stack in registers. The trivial im-
plementation of the method stack would be to maintain an array of N 32-bit
words, where N is the size of the used stack area of the current method. Since
bytecode verification requires that all stack offsets can be computed statically,
it is, however, possible to replace the array with a series of N register variables,
so the calls to increment or decrement the stack pointer are avoided and the
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Fig. 6. Example of Manta’s interoperability.

C compiler can keep stack references in registers. A problem is that in the JVM,
64-bit variables are spread over two contiguous stack locations. We solve this by
maintaining two parallel stacks, one for 32-bit and one for 64-bit words. Almost
all bytecode instructions are typed, so they need to operate only on the relevant
stack. Some infrequently used instructions (the dup2 family) copy either two
32-bit words or one 64-bit word, and therefore operate on both stacks. The
memory waste of a duplicate stack is moderate, since the C compiler will re-
move any unreferenced local variables. With this optimization, the application
speed of compiled bytecode is generally within 30% of compiled Manta code.

2.5 Example Application

Manta’s RMI interoperability and dynamic class loading are useful to interop-
erate with software that runs on a JVM and uses the Sun RMI protocol. For
example, consider a parallel program that generates output that must be visu-
alized. The parallel program is compiled with Manta and uses the Manta RMI
protocol. The software for the visualization system to be used, however, may
run on the Sun JDK and use the Sun RMI protocol. To illustrate this type of
interoperability, we implemented a simple example, using a graphical version
of one of our parallel applications (successive overrelaxation; see Section 4).

The computation is performed by a parallel program that is compiled with
Manta and runs on a cluster computer (see Figure 6). The output is visualized on
the display of a workstation, using a graphical user interface (GUI) application
written in Java. The parallel application repeatedly performs one iteration of
the SOR algorithm and collects its data (a 2-dimensional array) at one node of
the cluster, called the coordinator. The coordinator passes the array via the Sun
RMI protocol to a remote viewer object, which is part of the GUI application
on the workstation. The viewer object creates a window and displays the data.
Since the GUI application is running on a Sun JDK, communication between
the coordinator and the GUI uses the Sun RMI protocol. The Manta nodes
internally use the Manta RMI protocol.

The RMI from the coordinator to the GUI is implemented using a re-
mote viewer interface, for which an RMI stub is needed. This stub is not
present in the compiled Manta executable, so the coordinator node dynamically
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retrieves the bytecode for the stub from the code base of the GUI, com-
piles it using Manta’s dynamic bytecode compiler, and then links it into the
application.

3. COMMUNICATION PERFORMANCE

In this section, the communication performance of Manta RMI is compared
against several implementations of Sun RMI. Experiments are run on a ho-
mogeneous cluster of Pentium Pro processors, each containing a 200 MHz
Pentium Pro and 128 MByte of main memory. All boards are connected by
two different networks: 1.2 Gbit/sec Myrinet [Boden et al. 1995] and Fast
Ethernet (100 Mbit/s Ethernet). The system runs RedHat Linux 6.2 (kernel
version 2.2.16). Both Manta and Sun RMI run over Myrinet and Fast Ethernet.

For the comparison, we used three systems that use Sun RMI: the Sun
(Blackdown) JDK 1.2 with JIT, the IBM JDK 1.1.8 also with JIT, and a Sun
RMI system (based on the JDK 1.1) compiled with our native Manta com-
piler. For all three systems, we built an interface to run over Myrinet. We de-
scribe these systems in detail in Section 3.1, including important optimizations.
Since the Sun system compiled with Manta turned out to be the fastest of the
three RMI systems, we use this system in the following sections to represent
Sun’s RMI protocol. Next, we discuss the latency (Section 3.2) and throughput
(Section 3.3) obtained by Manta RMI and Sun RMI. Finally, we analyze the
impact of several optimizations in the protocols (Section 3.4).

3.1 Implementation of Sun RMI over Myrinet

A difference between Manta and the Sun JDK is that Manta uses a native com-
piler, whereas the JDK uses a JIT. The sequential speed of the code generated
by the Manta compiler is much better than that of the Sun JDK/JIT system,
and comparable to the IBM JDK/JIT. The overhead of the Java Native Inter-
face and differences in sequential code speed obscures the comparison between
the Manta and Sun RMI protocols. To allow a fair comparison, we built a third
system, which uses Sun RMI, but with the Java RMI code compiled by the na-
tive Manta compiler. This system is called Sun compiled. Below, we discuss the
latter system and the optimizations we implemented for the Sun RMI protocol
on Myrinet.

The Sun compiled system. We built a Sun RMI system by compiling the
Sun RMI code with Manta. Sun’s native code had to be replaced by new Manta
native C code. This native code is used for object serialization and interfacing
to the network layer. The new object serialization code is similar to the Sun
implementation, using reflection to convert objects to bytes. To improve perfor-
mance, we reimplemented a larger part of the serialization code in C. In the new
native code, we can exploit knowledge about the memory layout of objects: we
directly use the class information and data fields present in the object, instead
of calling the reflection mechanism in Java as the Sun JDK does. Also, in the
Sun JDK, expensive Java Native Interface calls are required to convert scalar

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 6, November 2001.



Efficient Java RMI o 759

types like long and double to bytes before writing them to the output stream.
In the new code, these values can be written directly into the stream buffer,
converting them on the fly.

Interfacing to Myrinet. 'To run the Sun JDK, IBM JDK, and the Sun com-
piled system over Myrinet, we use a socket interface on top of Panda/Myrinet.
The socket interface is called FastSockets, and is a reimplementation of
Berkeley FastSockets [Rodrigues et al. 1997]. Its main virtues are zero-copy
streams, a one-to-one mapping of socket messages and Panda messages, and a
performance quite close to Panda’s. The Sun API currently does not allow re-
placement of its sockets with an alternative implementation like FastSockets,
so a marginal change to the API was necessary. It was sufficient to declare the
constructor of class java.net.InetAddress as public. (This API problem has
been registered in Sun’s bug database.)

Performance optimizations for Sun RMI. Below, we describe several per-
formance problems we addressed with the FastSockets layer, to allow a fairer
comparison with Manta. In general, we tried to eliminate the most important
sources of overhead for Sun RMI, as far as these optimizations could be done
in the FastSockets layer. In particular, we optimized the interaction with the
thread package and with the garbage collector.

The first problem is that many socket calls (e.g., send, receive, accept,
connect) are blocking, in the sense that they suspend the calling process until
the system call is completely serviced. Java applications are multithreaded, and
the semantics of blocking calls must be that the caller thread is suspended, and
any other runnable thread in the process is scheduled: otherwise, deadlock may
occur. Virtual machine implementations handle blocking system calls in their
thread package: all sockets are set to nonblocking mode, and blocking calls are
intercepted, so threads that would block are suspended. The thread scheduler
polls any sockets on which a call has been posted (e.g., with select), and wakes
up a suspended thread if some action can be performed on its socket. This func-
tionality to block a thread and schedule another one is not exported by virtual
machine implementations. Therefore, we must emulate it in our interface layer.

All sockets are set to nonblocking mode by our interface layer. A naive emu-
lation of blocking would have a thread invoke Thread.yield() until its socket
call has completed. However, for performance reasons it is important that the
blocking mechanism does not involve unnecessary thread switches, even though
multiple threads can usually be scheduled (e.g., a thread in the server that lis-
tens to the registry). For the JDKs, the penalty is hundreds of microseconds per
RMI, since the kernel is involved in each thread switch. So our implementa-
tion uses condition variables for condition synchronization. For the JDKs, these
were implemented in Java. Manta’s thread package exports condition variables
to native functions. A thread that would block enters the wait state instead. It
is signaled when a poller thread notices that the socket is ready. The role of
poller thread is taken by one of the blocked threads: a separate poller thread
always involves thread switches. Usually, no thread switches are incurred on
the critical path of the RMI latency test.
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Table I. Null-RMI Latency and Throughput on Myrinet and Fast Ethernet

Latency  Throughput

System Version Network (us) (Mbyte/s)
Sun JIT (Blackdown) 1.2 Myrinet 1316 3.8
IBM JIT 1.1.8 550 7.9
Sun compiled 1.14 301 15
Manta RMI 37 54
Panda RPC 31 60
Sun JIT (Blackdown) 1.2 Fast Ethernet 1500 3.1
IBM JIT 1.1.8 720 6.0
Sun compiled 1.1.4 515 7.2
Manta RMI 207 10.5
Panda RPC 173 11.1

The second optimization we performed concerns garbage collection. The prob-
lem is that RMIs create many objects that become garbage at the end of the
invocation. The Manta compiler provides support for the server side: it deter-
mines whether the objects that are an argument or result of the invocation
may escape (i.e., whether a reference to the object is retained outside the RMI
invocation). If not, Manta allows such objects to be immediately returned to the
heap. For the Sun compiled system, we modified Sun’s skeleton compiler rmic,
so the generated skeletons use this compiler information. This substantially
improved latency and throughput for RMIs that use objects as arguments or
return value (see Section 3.4). There is no mechanism in the JDK to explicitly
free objects, so we could not apply this technique for the Sun or IBM JDK. The
garbage collector is responsible for the low throughput achieved even by the
fast IBM JDK system.

Performance. Table I shows the null-RMI latency and throughput of various
RMI implementations on Myrinet and Fast Ethernet. On Myrinet, Manta RMI
obtains a null-RMI latency of 37 us, while the Sun JDK 1.2 (with just-in-time
compilation enabled) obtains a latency of 1316 s, which is 35 times higher. Sun
compiled obtains a null-RMI latency of 301 us, which is still eight times slower
than Manta RMI. In comparison, the IBM JIT 1.1.8 obtains a latency of 550 us
(measured on RedHat Linux 6.1). The Sun compiled system uses more efficient
locking than the Sun and IBM JITs (using Manta’s user space thread package)
and a much faster native interface. It also reduces the garbage collection over-
head for objects passed to RMI calls. Finally, its sequential code speed is much
better than that of the Sun JDK JIT, and is comparable to the IBM JIT. The
table also gives the performance of a conventional Remote Procedure Call proto-
col (of the Panda library [Bal et al. 1998]), which is implemented in C. As can be
seen, the performance of the Manta protocol comes close to that of Panda RPC.

The throughput obtained by Manta RMI (for sending a large array of in-
tegers) is also much better than that of the Sun JDK: 54 MByte/s versus
3.8 MByte/s (over Myrinet). The throughput of Sun compiled is 15 MByte/s,
3.6 times less than for Manta RMI, but better than that for the Sun JDK. The
table also gives performance results on Fast Ethernet. Here, the relative differ-
ences are smaller because the communication costs are higher.
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Table II. Breakdown of Manta and Sun Compiled RMI on Pentium Pro and Myrinet
(times are in us)

Manta Sun Compiled
empty 1 object 2 objects 3 objects | empty 1 object 2 objects 3 objects
Serialization 0 6 10 13 0 195 210 225
RMI overhead 5 10 10 10 180 182 182 184
Communication 32 34 34 35 121 122 124 125
Method call 0 1 1 1 0 1 1 1
Total 37 51 55 59 301 500 517 535

As the Sun compiled system is by far the most efficient implementation of
the Sun RMI protocol, we use this system in the following sections to represent
Sun’s protocol.

3.2 Latency

We first present a breakdown of the time that Manta and Sun compiled spend in
remote method invocations. We use a benchmark that has zero to three empty
objects (i.e. objects with no data fields) as parameters, while having no return
value. The benchmarks are written in such a way that they do not trigger
garbage collection. The results are shown in Table II. The measurements were
done by inserting timing calls, using the Pentium Pro performance counters,
which have a granularity of 5 nanoseconds. The serialization overhead includes
the costs to serialize the arguments at the client side and deserialize them
at the server side. The RMI overhead includes the time to initiate the RMI
call at the client, handle the upcall at the server, and process the reply (at
the client), but excludes the time for (de)serialization and method invocation.
The communication overhead is the time from initiating the I/O transfer until
receiving the reply, minus the time spent at the server side. For Manta, the
measurements do not include the costs for sending type descriptors (as these
are sent only once).

The simplest case is an empty method without any parameters, the null-RMI.
On Myrinet, a null-RMI takes about 37 us with Manta. Only 6 us are added to
the roundtrip latency of the Panda RPC, which is 31 us. The large difference
between passing zero or one object parameters can be explained as follows.
First, the runtime system has to build a table used to detect possible cycles
and duplicates in the objects. Second, RMIs containing object parameters are
serviced by a dedicated thread from a thread pool, since such RMIs may block
by triggering garbage collection. The thread-switching overhead in that case
is about 5 us. Finally, the creation of the parameter object also increases the
latency.

For the Sun compiled system, a null-RMI over Myrinet takes 301 us,
which is 8 times slower than Manta, even with all the optimizations we
applied. Manta RMI obtains major performance improvements in all layers:
compiler-generated serializers win by a factor 17 or more; the RMI overhead
is 18 times lower; and the communication protocols are 4 times faster.

Next, we study the latency for Manta RMI and the Sun compiled protocol for
various combinations of input parameters and return values. We use similar
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Table III. RMI Latency on Myrinet for Manta, Sun Compiled, and KaRMI for Different
Parameters and Return Values (in us). (The KaRMI latencies were measured on a 500 MHz
Digital Alpha with a slow JIT.)

Benchmark Manta Sun-compiled KaRMI
void (void) 37 301 117
void (int, int) 39 309 194
int32 77 1500 328
tree-1 66 763 279
tree-15 264 1610 1338
float[50] 88 522 483
float[5000] 1430 4215 8664

benchmarks as described in Nester et al. [1999] for the Karlsruhe RMI (KaRMI)
system. The results are shown in Table III. For comparison, we also include
the latency over Myrinet obtained by KaRMI, taken from Nester et al. [1999].
These measurements were done on a 500 MHz Digital Alpha and obtained with
the JDK 1.1.6 (which used a low-quality JIT). KaRMI (like Manta RMI) is not
compatible with Sun RMI because it uses its own, more compact, serialization
format rather than the format specified by the RMI standard. The first two
benchmarks use RMIs with an empty return value; the remaining benchmarks
return the value passed as input parameter. The int32 benchmark sends and
receives an object containing 32 integers. The tree benchmarks send and receive
balanced trees with 1 and 15 nodes, each containing four integers. The last two
benchmarks transfer arrays of floating point numbers. As can be seen from this
table, Manta RMI obtains much lower latencies on all benchmarks than the Sun
compiled system. Manta RMI also obtains better performance than KaRMI.

3.3 Throughput

Next, we study the RMI throughput of Manta and Sun compiled. We use a
benchmark that measures the throughput for a remote method invocation with
various types of arguments and no return value. (As RMIs are synchronous,
however, the sender does wait for the remote method to return.) The benchmark
performs 10,000 RMIs, with about 100,000 bytes of arguments each. The reply
message is empty. The results are shown in Table IV.

Manta achieves a throughput of 54 MByte/s for arrays of integers, com-
pared to 60 MByte/s for the underlying Panda RPC protocol (see Table I). In
comparison, the throughput of Sun compiled is only 15 MByte/s.

The throughput for Sun compiled for arrays of integers is substantially
higher than for the Sun JIT (15 MByte/s versus 3.8 MByte/s, see Table I),
due to our optimizations described in Section 3.1. Still, the throughput for Sun
compiled is much lower than for Manta RMI. The Sun serialization protocol in-
ternally buffers messages and sends large messages in chunks of 1 KByte, which
decreases throughput. Even more important, Sun RMI (and Sun compiled) per-
forms unnecessary byte-swapping. The sender and the receiver use the same
format for integers, but this format differs from the standard RMI format.
Sun compiled then uses serialization to convert the data to the standard for-
mat. Manta RMI, on the other hand, always sends the data in the format of
the sender, and lets the receiver do byte-swapping only when necessary. The
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Table IV. RMI Throughput (in MByte/s) on Myrinet of Manta
and Sun Compiled for Different Parameters

Manta Sun-compiled
Array of bytes 54 37
Array of integers 54 15
Array of floats 54 15
Array of doubles 54 15
Binary tree 2.4 0.6
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throughput obtained by the Sun compiled system for an array of bytes, for
which no byte swapping is needed, is 37 MByte/s (see Table IV). This through-
put is high because all I/O layers in the Sun system have short-cuts for long
messages. When writing a large buffer, each I/0 layer passes the buffer directly
to the layer below it, without copying. Similarly, when a large read request
is done, it is passed on to the bottom layer, and the result is passed back up,
without copying.

For KaRMI, only one throughput test is available [Philippsen et al. 2000].
The throughput for an array of 200 KByte over Myrinet is 23 MByte/s, which is
less than half the throughput of Manta RMI. This low throughput is attributed
to the overhead of thread scheduling and the interaction between Java threads
and system threads [Philippsen et al. 2000].

The binary tree throughput benchmark is based on the KaRMI latency bench-
mark described in Nester et al. [1999], but using input parameters and no
return values. The benchmark sends balanced trees with 1,000 nodes, each con-
taining four integers. The reported throughput is that for the user “payload”
(i.e., the four integers), although more information is sent over the network to
rebuild the tree structure. The throughput for this benchmark is very low in
comparison with the throughput achieved for arrays. The overhead can be at-
tributed to the small size of the nodes and the dynamic nature of this data type,
which makes especially (de)serialization expensive: the tree is written to and
read from the network buffer a tree node at a time, and for Sun compiled even a
byte at a time; therefore the overhead of network access is incurred much more
often than for arrays.

3.4 Impact of Specific Performance Optimizations

Below, we analyze the impact of specific optimizations in more detail.

Type descriptors. As explained in Section 2.2, the Sun protocol always sends
a complete type descriptor for each class used in the RMI. Manta RMI sends
this type information only once for each class; it uses a type-id in subsequent
calls. The amount of data that Manta RMI sends for object and array parameters
thus depends on whether a parameter of the same class has been transmitted
before. Table V shows the amount of data sent for both cases, and for both Manta
RMI and Sun compiled RMI. For each case, the table gives the number of bytes
for RMIs with no arguments, with a 100 element array of integer argument,
and with a single object containing an integer and a double. It also shows the
times on a 200 MHz Pentium Pro to write the type descriptor at the sending
side and read it at the receiving side.
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Table V. Amount of Data Sent by Manta RMI and Sun RMI; Runtime Overhead of
Type Descriptors

Manta RMI Sun compiled RMI
empty int[100] 1 object | empty int[100] 1 object
Bytes (using type descriptor) 44 484 96 63 487 102
Bytes (using type-id) 44 452 64 — — —
Writing type descriptor (us) — 11 12 — 25 27
Reading type descriptor (us) — 15 17 — 55 73

As can be seen, the type-descriptor optimization saves 32 bytes for each
array or object parameter. The runtime costs saved by the optimization for
reading and writing the type descriptors is 26 us for arrays and 29 us for
objects. Moreover, a type descriptor includes the name of its class. We used a
single-letter class name (and no package) in the benchmark, so the optimization
wins even more for classes with longer names.

The Sun RMI protocol sends only moderately more data than the Manta
protocol, yet it spends a considerable amount of time in processing and commu-
nicating the data. The Sun protocol spends 80 us handling the type descriptors
for arrays and 100 us for objects. It pays this price at every invocation, whereas
the Manta protocol incurs the overhead only once.

Using a scatter/gather interface. As explained in Section 2.2, the Panda
library on which Manta is built, uses a scatter/gather interface to minimize the
number of memory copies needed. This optimization increases the throughput
for Manta RMI. To assess the impact of this optimization we also measured the
throughput obtained when the sender makes an extra memory copy. In this case,
the maximum throughput decreases from 54 to 44 MByte/s, since memory copies
are expensive on a Pentium Pro [Brown and Seltzer 1997]. This experiment
clearly shows the importance of the scatter/gather interface. Unfortunately,
dereferencing the scatter/gather vector involves extra processing, so the null-
RMI latency of the current Manta RMI system is slightly higher than that for
an earlier Panda version without the scatter/gather interface (34 versus 37 us)
[Maassen et al. 1999].

Reducing byte swapping. Another optimization that increases the through-
put is to avoid byte swapping between identical machines. As described in
Section 3.3, with Sun RMI the sender always converts the arguments of an
RMI call to the wire format defined by the RMI specification; the receiver con-
verts the format back to what it requires. In Manta, on the other hand, the data
are transmitted in the native byte order of the sender, and the receiver only does
the conversion if necessary. So if the sender and receiver have the same format,
but this format is different from the standard RMI format, Sun RMI will do two
byte-swap conversions while Manta will not do any byte swapping.

We measured the impact of this optimization by adding byte swapping
code to the sender side of Manta RMI. (This code is not present in the normal
Manta system, since the sender never does byte swapping with Manta.) If
byte swapping is performed by the sender and receiver (as Sun RMI does),
the throughput of Manta RMI for arrays of integers or floats decreases by
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almost a factor two. The maximum throughput obtained with byte swapping
enabled is decreased from 54 to 30 MByte/s. This experiment clearly shows
that unnecessary byte swapping adds a large overhead, which is partly due to
the extra memory copies needed.

Escape analysis. As described in Section 3.1, we implemented a simple form
of escape analysis. With this analysis, objects that are argument or result of an
RMI but that do not escape from the method will be immediately returned to
the heap. Without this optimization, such objects would be subject to garbage
collection, which reduces the RMI throughput. Without escape analysis the
throughput for Manta is reduced from 54 to 30 MByte/s. For Sun compiled,
the throughput for byte arrays is reduced from 37 to 25 MByte/s, but the
other throughput numbers are hardly affected (since these cases also suffer
from other forms of overhead, in particular byte swapping).

4. APPLICATION PERFORMANCE

The low-level benchmarks show that Manta obtains a substantially better
latency and throughput than the Sun RMI protocol. For parallel programming,
however, a more relevant metric is the efficiency obtained with applications.
To determine the impact of the RMI protocol on application performance, we
have written six parallel applications with different granularities. We briefly
describe the applications and the input sizes used below, and then we discuss
their performance using Manta and Sun compiled. Each application program
typically first creates the remote objects needed for interprocess communi-
cation and exchanges the references to these objects among the machines.
Therefore, the overhead of distributed garbage collection and reference count-
ing only occurs during initialization, and has hardly any impact on application
performance.

SOR. Red/black SOR (successive overrelaxation) is an iterative method
for solving discretized Laplace equations on a grid. The program distributes
the grid rowwise among the processors. Each processor exchanges one row of
the matrix with its neighbors at the beginning of each iteration. We used a
578 x 578 grid as input.

ASP. The ASP (all-pairs shortest paths) program computes the shortest
path between any two nodes of a given 1,280-node graph. It uses a distance
table that is distributed rowwise among the processors. At the beginning of
each iteration, one processor needs to send a row of the matrix to all other
processors. Since Java lacks broadcasting, we expressed this communication
pattern using a spanning tree. Each processor forwards the message along a
binary spanning tree to two other processors, using RMIs and threads.

Radix is a histogram-based parallel sort program from the SPLASH-2 suite
[Woo et al. 1995]. We have rewritten the program in Java, using RMI. The pro-
gram repeatedly performs a local sort phase (without communication) followed
by a histogram merge phase. The merge phase uses combining-tree communi-
cation to transfer histogram information. After this merge phase the program
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moves some of the keys between processors, which also requires RMIs. The radix
program performs a large number of RMIs. We used an array with 3,000,000
numbers as input.

FFT is a 1-D fast Fourier transform program based on the SPLASH-2 code,
which we rewrote in Java. The matrix is partitioned rowwise among the dif-
ferent processors. The FFT communication pattern is a personalized all-to-all
exchange, implemented using an RMI between every pair of machines. We used
a matrix with 220 elements.

Water is another SPLASH application that we rewrote in Java. This N-
body simulation is parallelized by distributing the bodies (molecules) among
the processors. Communication is primarily required to compute interactions
with bodies assigned to remote machines. Our Java program uses message com-
bining to obtain high performance: each processor receives all bodies it needs
from another machine using a single RMI. After each operation, updates are
also sent using one RMI per destination machine. Since Water is an O(N?) algo-
rithm and we optimized communication, the relative communication overhead
is low. We used 1,728 bodies for the measurements.

Barnes-Hut is an O(N log N) N-body simulation. We wrote a Java program
based on the code by Blackston and Suel [1997]. This code is optimized for dis-
tributed memory architectures. Instead of finding out at runtime which bodies
are needed to compute an interaction, as in the SPLASH-2 version of Barnes-
Hut, this code precomputes where bodies are needed, and sends them in one
collective communication phase before the actual computation starts. In this
way, no stalls occur in the computation phase [Blackston and Suel 1997]. We
used a problem with 30,000 bodies.

Figures 7 to 12 show the speedups for these six applications obtained by
Manta and Sun compiled. For both systems, the programs are compiled stat-
ically using the Manta compiler. The speedups for each system are computed
relative to the parallel Manta program on a single CPU. The sequential exe-
cution times of Manta and Sun compiled are very similar, as the applications
are compiled with the Manta compiler for both systems (for some applications
Manta is slightly faster due to caching effects).

Table VI gives performance data of the six applications, including the total
number of messages sent (summed over all CPUs) and the amount of data
transferred, using 16 or 32 CPUs. These numbers were measured at the Panda
layer, so they include header data. Also, a Manta RMI generates two Panda
messages, a request and a reply.

Figures 7 to 12 show that Manta’s higher communication performance
results in substantially better application speedups. Sun compiled performs
well for only two applications, Water and ASP. Water has by far the lowest
communication overhead of the six applications. On 32 CPUs, it sends 2,708
(44984/16.61) messages and 1.20 (20.05/16.61) MBytes per second (for Sun
compiled). ASP communicates more than Water, but it performs relatively few
RMIs per second. With the other four applications, Manta obtains much better
maximal speedups, ranging from a factor 1.8 (for Barnes-Hut and Radix) to
3.4 (for SOR).
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Manta obtains high efficiencies for all applications except Radix sort. Radix
sends the largest number and volume of messages per second of all six ap-
plications; on 32 CPUs, it sends almost 27,000 (39418/1.46) messages and
85 (124.68/1.46) MBytes per second, summed over all CPUs.

Table VI shows that the Sun RMI protocol sends far more messages for all
applications than Manta, because the Sun serialization protocol buffers mes-
sages and transfers large messages in chunks of 1 KBytes (see Section 3.3). The
volume of the data transferred by the Manta protocol is somewhat lower than
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Table VI. Performance Data for Manta and Sun Compiled on 16 and 32 CPUs

Time 16 CPUs Data Time 32 CPUs Data
Program System (s.) #messages (MByte) (s.) #messages (MByte)
ASP Manta 25.64 38445 95.30 | 12.22 79453 196.96
Sun compiled | 27.56 154248 100.23 | 15.83 319870 207.17
SOR Manta 10.96 44585 80.38 5.64 92139 166.11
Sun compiled | 19.38 134765 84.62 | 24.39 285409 175.11
Radix Manta 1.19 9738 62.46 1.46 39418 124.68
Sun compiled | 2.06 78674 64.87 3.56 183954 130.35
FFT Manta 3.52 8344 152.06 1.88 33080 157.14
Sun compiled | 6.07 173962 157.37 4.80 204949 163.45
Water Manta 25.46 6023 8.44 | 13.41 23319 17.30
Sun compiled | 26.78 16088 9.59 | 16.61 44984 20.05
Barnes-Hut Manta 14.90 18595 23.78 8.81 107170 52.26
Sun compiled | 16.74 45439 25.20 | 20.91 171748 57.58

that for the Sun protocol, since Manta does not send type descriptors for each
class on every call and Manta sends fewer messages and thus fewer headers.

5. RELATED WORK

We discuss related work in three areas: optimizations to RMI, fast communi-
cation systems, and parallel programming in Java.

Optimizations for RMI. RMI performance is studied in several other papers.
KaRMI is a new RMI and serialization package (drop-in replacement) designed
to improve RMI performance [Nester et al. 1999; Philippsen et al. 2000]. The
Manta performance is better than that of KaRMI (see Table III in Section 3.2).
The main reasons are that Manta uses static compilation and a completely na-
tive runtime system (implemented in C). Also, Manta exploits features of the
underlying communication layer (the scatter/gather interface). KaRMI uses a
low-quality JIT (JDK 1.1.6 in the cited publications) and a runtime system
written mostly in Java (which thus suffers from the poor JIT performance).
KaRMI is designed to be portable and therefore avoids using native code (e.g.,
KaRMI throughput could have been improved in certain cases, but the design-
ers deliberately chose not to because it would require native code). Manta, on
the other hand, was developed from scratch to obtain high communication per-
formance. Both KaRMI and Manta RMI use a wire format that is different from
the standard RMI format.

Krishnaswamy et al. [1998] improve RMI performance somewhat by using
caching and UDP instead of TCP. Their RMI implementation, however, still
has high latencies (e.g., they report null-RMI latencies above a millisecond on
Fast Ethernet). Also, the implementation requires some modifications and ex-
tensions of the interfaces of the RMI framework. Javanaise [Hagimont and
Louvegnies 1998] and VJava [Lipkind et al. 1999] are other Java systems
that implement object caching. Javanaise proposes a new model of distributed
shared objects (as an alternative to RMI). Breg et al. [1998] study RMI perfor-
mance and interoperability. Hirano et al. [1998] provide performance figures of
RMI and RMI-like systems on Fast Ethernet.
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Fast communication systems. Much research has been done since the 1980s
on improving the performance of remote procedure call protocols [Hutchinson
et al. 1989; Johnson and Zwaenepoel 1991; van Renesse et al. 1989; Schroeder
and Burrows 1990; Thekkath and Levy 1993]. Several important ideas resulted
from this research, including the use of compiler-generated (un)marshalling
routines, avoiding thread-switching and layering overhead, and the need for
efficient low-level communication mechanisms. Many of these ideas are used
in today’s communication protocols, including RMI implementations.

Except for support polymorphism, Manta’s compiler-generated serialization
is similar to Orca’s serialization [Bal et al. 1997]. The optimization for nonblock-
ing methods is similar to the single-threaded upcall model [Langendoen et al.
1997]. Small, nonblocking procedures are run in the interrupt handler to avoid
expensive thread switches. Optimistic active messages is a related technique
based on rollback at runtime [Wallach et al. 1995].

Instead of kernel-level TCP/IP, Manta uses Panda on top of LFC, a highly effi-
cient user-level communication substrate. Lessons learned from the implemen-
tation of other languages for cluster computing were found to be useful. These
implementations are built around user level communication primitives, such as
active messages [von Eicken et al. 1992]. Examples are Concert [Karamcheti
and Chien 1993], CRL [Johnson et al. 1995], Orca [Bal et al. 1998], Split-C
[Culler et al. 1993], and Jade [Rinard et al. 1993]. Other projects on
fast communication in extensible systems are SPIN [Bershad et al. 1995],
Exo-kernel [Kaashoek et al. 1997], and Scout [Mosberger and Peterson 1996].
Several projects are currently also studying protected user-level network
access from Java, often using VIA [Chang and von Eicken 1998, 1999;
Welsh and Culler 2000]. However, these systems do not yet support remote
method invocation.

Parallel programming in java. Many other projects for parallel program-
ming in Java exist.? Titanium [Yelick et al. 1998] is a Java-based language
for high-performance parallel scientific computing. It extends Java with fea-
tures like immutable classes, fast multidimensional array access, and an explic-
itly parallel SPMD model of communication. The Titanium compiler translates
Titanium into C. It is built on the Split-C/Active Messages back-end.

The JavaParty system [Philippsen and Zenger 1997] is designed to ease par-
allel cluster programming in Java. In particular, its goal is to run multithreaded
programs with as little change as possible on a workstation cluster. It allows
the methods of a class to be invoked remotely by adding a remote keyword to
the class declaration, removes the need for elaborate exception catching of re-
mote method invocations, and, most importantly, allows objects and threads
to be created remotely. Manta optionally allows a similar programming model,
but it also supports the standard RMI programming model. JavaParty was
originally implemented on top of Sun RMI, and thus suffered from the same

performance problem as Sun RMI. The current implementation of JavaParty
uses KaRMI.

2See for example the JavaGrande Web page at http:// www,javagrande.org /.
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Spar/Java is a data and task-parallel programming language for semiauto-
matic parallel programming [van Reeuwijk et al. 1997]. The Do! project tries to
ease parallel programming in Java using parallel and distributed frameworks
[Launay and Pazat 1998]. Ajents is a Java system that supports object migra-
tion [Izatt et al. 1999]. Several Java-based programming systems also exist
for developing wide-area metacomputing applications [Alexandrov et al. 1997;
Baldeschwieler et al. 1996; Christiansen et al. 1997].

An alternative for parallel programming in Java is to use MPI instead of
RMI. Several MPI bindings for Java already exist [Carpenter et al. 1999; Getov
et al. 1998; Judd et al. 1999]. This approach has the advantage that many
programmers are familiar with MPI and that MPI supports a richer set of com-
munication styles than RMI, in particular collective communication. However,
the MPI message-passing communication style is difficult to integrate cleanly
with Java’s object-oriented model. MPI assumes an SPMD programming model
that is quite different from Java’s multithreading model. Also, current MPI im-
plementations for Java suffer from the same performance problem as most RMI
implementations: the high overhead of the Java Native Interface. For example,
for the Java-MPI system described in Getov [1999], the latency for calling MPI
from Java is 119 us higher than calling MPI from C (346 versus 227 us, mea-
sured on an SP2).

IceT [Gray and Sunderam 1997] also uses message passing instead of RMI.
It enables users to share Java Virtual Machines across a network. A user can
upload a class to another virtual machine using a PVM-like interface. By ex-
plicitly calling send and receive statements, work can be distributed among
multiple JVMs.

Another alternative to RMI is to use a Distributed Shared Memory (DSM)
system. Several DSM systems for Java exist, providing a shared memory pro-
gramming model instead of RMI, while still executing on a distributed mem-
ory system. Java/DSM [Yu and Cox 1997] implements a JVM on top of the
TreadMarks DSM [Keleher et al. 1994]. No explicit communication is neces-
sary, all communication is handled by the underlying DSM. DOSA [Hu et al.
1999] is a DSM system for Java based on TreadMarks that allows more effi-
cient fine-grained sharing. Hyperion [Antoniu et al. 2000; Macbeth et al. 1998]
tries to execute multithreaded shared-memory Java programs on a distributed-
memory machine. It caches objects in a local working memory, which is al-
lowed by the Java memory model. The cached objects are flushed back to
their original locations (main memory) at the entry and exit of a synchronized
statement. Jackal is an all-software fine-grained DSM for Java based on the
Manta compiler [Veldema et al. 2001a; Veldema et al. 2001b]. cJVM is another
Java system that tries to hide distribution and provides a single system image
[Aridor et al. 1999].

6. CONCLUSION

In this article we investigated how to implement Java’s remote method invoca-
tion efficiently, with the goal of using this flexible communication mechanism
for parallel programming. Reducing the overhead of RMI is more challenging
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than for other communication primitives, such as remote procedure call,
because RMI implementations must support interoperability and polymor-
phism. Our approach to this problem is to make the frequent case fast. We
have designed a new RMI protocol that supports highly efficient communica-
tion between machines that implement our protocol. Communication with Java
virtual machines (running the Sun RMI protocol) is also possible but slower.
As an example, all machines in a parallel system can communicate efficiently
using our protocol, but they can still communicate and interoperate with ma-
chines running other Java implementations (e.g., a visualization system). We
have implemented the new RMI protocol (called Manta RMI) in a compiler-
based Java system, called Manta, which was designed from scratch for high-
performance parallel computing. Manta uses a native Java compiler; but to
support polymorphism for RMIs with other Java implementations, it is also
capable of dynamically compiling and linking bytecode.

The efficiency of Manta RMI is due to three factors: the use of compile time
type information to generate specialized serializers; a streamlined and efficient
RMI protocol; and the use of fast communication protocols. To understand the
performance implications of these optimizations, we compared the performance
of Manta with that of the Sun RMI protocol. Unfortunately, current implemen-
tations of the Sun protocol are inefficient, making a fair comparison a difficult
task. To address this problem, we have built an implementation of Sun RMI by
compiling the Sun protocol with Manta’s native compiler. We also reduced the
overhead of this system for native calls, thread switching, and temporary ob-
jects. This system, called Sun compiled, achieves better latency and throughput
than the Sun JDK and the IBM JIT, so we used this system for most measure-
ments in this article, in particular to compare the Manta and Sun RMI protocols.

The performance comparison on a Myrinet-based Pentium Pro cluster shows
that Manta RMI is substantially faster than the compiled Sun RMI protocol.
On Myrinet, the null-RMI latency is improved by a factor of 8, from 301 us (for
Sun compiled) to 37 us, only 6 us slower than a C-based RPC. A breakdown
of Manta and Sun compiled shows that Manta obtains major performance im-
provements in all three layers. The differences with the original Sun JDK 1.2
implementation of RMI are even higher; for example, the null-RMI latency of
the JDK over Myrinet is 1316 us, 35 times as high as with Manta. The through-
put obtained by Manta RMI is also much better than that of Sun compiled. In
most cases, the Sun protocol performs unnecessary byte-swapping, resulting in
up to three times lower throughput than Manta’s.

Although such low-level latency and throughput benchmarks give useful in-
sight into the performance of communication protocols, a more relevant factor
for parallel programming is the impact on application performance. We there-
fore implemented a collection of six parallel Java programs using RMI. Perfor-
mance measurements on up to 32 CPUs show that five out of these six programs
obtain high efficiency (at least 75%) with Manta, while only two applications
perform well with Sun compiled. Manta obtains up to 3.4 times higher speedups
for the other four applications.

In conclusion, our work has shown that RMI can be implemented almost
as efficiently as Remote Procedure Call, even on high-performance networks
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like Myrinet, while keeping the inherent advantages of RMI (polymorphism
and interoperability). Also, we showed that an efficient RMI implementation
is a good basis for writing high-performance parallel applications, although
the lack of broadcast support complicates programming of some applications.
Adding support for broadcast to RMI by replicating shared objects is a topic of
our ongoing research [Maassen et al. 2000].
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