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Introduction

One of the most pleasant ways to familiarize oneself with the basic language of abstract
algebraic geometry is to study Galois theory for schemes. In these notes we prove the main
theorem of this theory, assuming as known only the fundamental properties of schemes. The
first five sections of Hartshorne’s book [10], Chapter II, contain more than we need.

The main theorem of Galois theory for schemes classifies the finite étale covering of a
connected scheme X in terms of the fundamental group m(X) of X. After the main theorem
has been proved, we treat a few elementary examples; but a systematic discussion of the
existing techniques to calculate the fundamental group falls outside the scope of these notes.

For a precise statement of the theorem that we shall prove we refer to Section 1. Here we
give an informal explanation.

We first consider the case of topological spaces. Let X,Y be topological spaces, and
f:Y — X a continuous map. We call f: Y — X a trivial covering if Y may be identified
with X x E for some discrete set F, in such a way that f becomes the projection X x £ — X
on the first coordinate. The map f is said to be a covering of X if it is locally a trivial covering,
i.e., if X can be covered by open sets U for which f: f~}(U) — U is a trivial covering. An
example of a non-trivial covering is suggested in Figure 1.

Figure 1.

This is an example of a finite covering, i.e., for each x € X the set f~'(z) C Y is finite.
We call # () the degree of the covering at z; so the covering of Figure 1 has everywhere
degree 2. A map from a covering f: Y — X to a covering g: Z — X is a continuous map
h:Y — Z for which f = gh.
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If X satisfies certain conditions then all coverings of X can be described by means of the
fundamental group m(X) of X. Suppose first that X is pathwise connected, and fix xy € X.
Then 7(X) is defined to be the group of homotopy classes of paths in X from z( to xq. It is
a theorem from algebraic topology that if X is connected, locally pathwise connected, and
semilocally simply connected (see [8; 19]), the fundamental group 7 (X) classifies all coverings
of X, in the following sense. There is a one-to-one correspondence between coverings of X,
up to isomorphism, and sets that are provided with an action of the group = (X), also up
to isomorphism. This correspondence is such that maps between coverings give rise to maps
between the corresponding sets that respect the 7(X)-action, and conversely. In other words,
the category of coverings of X is equivalent to the category of sets provided with an action
of m(X).

There exist similar theories for wider classes of spaces, see [19, Notes to Chapter VJ.
In these theories the fundamental group is not defined with paths, but the existence of a
group for which the coverings of X admit the above description is proved. This group is then
defined to be the fundamental group of X.

A particularly wide class of spaces X can be treated if one wishes to classify only the
finite coverings of X. For this it suffices that X be connected, i.e., have exactly one connected
component. (In these notes the empty space is not considered to be connected.) For any
connected space X there is a topological group 7(X) such that the category of finite coverings
of X is equivalent to the category of finite discrete sets provided with a continuous action
of 7(X). This result, which is difficult to locate in the literature [2], is treated in detail in
these notes (see (1.15)), because of the close analogy with the case of schemes.

To find an analogue of the notion of a finite covering for schemes, one could repeat the
definition given above. The only changes are that f: Y — X should be a morphism of
schemes, and that E should be finite. This is, however, not the “correct” definition. Not
only does it give nothing new (Exercise 5.22(a)), but it is too restrictive in the sense that
many topological coverings cease to be coverings if one passes to the direct scheme-theoretic
analogue. To illustrate this, and to show how finite étale coverings are more general, we
consider an example.

Define g € C[U, V] by g = V3+2V2—15V —4U, and let C be the curve {(u,v) € C x C :
g(u,v) = 0}. We consider the map f: C' — C sending (u,v) to u. Some real points of C



and their images under f in R are drawn in Figure 2. For each u € C, the number #f~!(u)
of points mapping to u is the number of zeros of g(u,V) = V3 + 2V? — 15V — 4u, and this
is 3 unless the discriminant of g(u, V') vanishes. This discriminant equals —432u? 4 2288u +
14400 = —16(27u + 100)(u — 9), so #f*(u) = 3 for u € C — {—12, 9}. From this it can
be deduced that f becomes a covering if points with u = —% or u = 9 are removed; i.e., if
X=C—{- 9and Y = f![X] C C, then f: Y — X is a finite covering of topological
spaces, and the degree is 3 everywhere.

The scheme-theoretic analogue is as follows. The scheme corresponding to X is Spec A,
where A = C[U, ((27U+100)(U—9))"!], and Y corresponds to Spec B, where B = A[V]/gA[V].
The morphism Spec B — Spec A is not locally a trivial covering in the same way as this is
true for the topological spaces. To see this, one looks at the generic point £ of Spec A. Its
local ring is the field of fractions Q(A) = C(U) of A, and the fibre of Spec B — Spec A over &
is the spectrum of Q(B). That is a cubic field extension of Q(A), so Spec Q(B) — Spec Q(A)
is not a “trivial covering”, and Spec B — Spec A is not “trivial” in a neighborhood of &.

It us true that Spec B — Spec A is a finite étale covering. The precise definition of
this notion is given in Section 1. Translating this definition in concrete terms, one finds
that the local “triviality” condition from the topological definition has been replaced by an
analogous algebraic condition, namely that a certain discriminant does not vanish locally
(cf. Exercises 1.3 and 1.6). In our topological example we saw that the existence of three
points of Y mapping to u was implied by the non-vanishing of the discriminant at u, for
u € X. In the scheme-theoretic example this is still true if one restricts to closed points
u € Spec A, since these have an algebraically closed residue class field C; but the non-closed
point u = & has a residue class field C(U) that is not algebraically closed, and there is only
one point of Spec B that maps to &; to compensate for this, it is “three times as large” in
the sense that its residue class field is a cubic extension of C(U).

The algebraic nature of the definition of “finite étale” makes it also work well for fields
different from C, which is not the case with the topological definition. To illustrate this we
write, for a subfield K C C:

Yk, = YN(KxK)={(u,v) € KxK:gu,v)=0, ug {2 9}},

o7
Xk = XNK=K—{-1% o}

Ax = K[U,((27U 4+ 100)(U — 9))71],
Bx = Ak[V]/gAk[V],

with g =V3+2V? — 15V —4U as above.

Consider first K = R. The map Yg — Xg (see Figure 2) is still a covering, but it does not
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have degree 3 everywhere; at points v with u > 9 or u < —
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Figure 2.

definition, however, takes the “invisible points” into account, and Spec Bg — Spec Ag is a
finite étale covering that has degree 3 everywhere. (The degree is defined in Section 5.)

For K = Q, the map Yx — Xk is not even a covering any more: u = 0 has three originals
in Yg, but u = % has none, for n € Z, n # 0. The morphism Spec Bx — Spec Ak, however,
is a finite étale covering for K = Q, and in fact for every subfield K of C.

The main theorem to be proved in these notes asserts that for a connected scheme X the
finite étale coverings of X can be classified in precisely the same way as the finite coverings of
a connected topological space. A precise statement of the theorem is given in Section 1 (see
1.11). If X is the spectrum of a field, the theorem is essentially a reformulation of classical
Galois theory for fields. The connection is explained in detail in Section 2. Section 3 contains
an axiomatic treatment of the sort of categories that we are interested in. The proof of the
theorem is thereby reduced to the verification of the axioms. For the case of finite coverings



of a connected topological space this verification is already done in Section 3, by way of
example. The “affine” information that we need for the proof of the theorem is assembled in
Section 4, and Section 5 contains the proof of the theorem. In Section 6 we show that the
definitions we use are equivalent to those found in the literature, and we prove a theorem that
enables us to treat some very elementary examples. The reader who wishes to see examples
of greater interest is encouraged to go on and read [20, Chapter I, §5; 9; 22].

It is a natural question how to classify the finite étale coverings (or finite coverings) of
a scheme (or topological space) X that is not connected. If, topologically, X is the disjoint
union of its connected components, then such a classification is easily derived from our main
theorem, cf. [9, Exposé V, numéro 9]. For the case of an affine scheme, see [18]. The general
case, however, seems not to have been dealt with.

Prerequisites and conventions
Sets. By #S we denote the cardinality of a set S.

Topology. Topological spaces are not assumed to be Hausdorff. The empty space is not
connected.

Categories and functors. Only a very basic familiarity with these notions is assumed.
Most terms from category theory are defined where they are needed. See also [12].

Commutative algebra. Rings are always assumed to be commutative with 1, except in
Exercises 1.18 and 4.40. The unit element is preserved by all ring homomorphisms, belongs
to all subrings, and acts as the identity on all modules. The group of units of a ring A is
denoted by A*. If A is a ring, an A-algebra is a ring B equipped with a ring homomorphism
A — B. Everything we need from commutative algebra can be found in [1]. Projective
modules, which are not in [1], are treated in Section 4.

Fields. We assume familiarity with ordinary finite Galois theory for fields. Infinite Galois
theory is treated in Section 2. Several examples and exercises make use of valuation theory
and algebraic number theory; see [5; 17; 26].

Schemes. Everything we need about schemes can be found in [10, Chapter II, Sections 1-5].
Schemes need not be separated, and are not assumed to be locally noetherian. The empty
scheme is not connected.

Some exercises need more background. Appropriate references will then be given.



1 Statement of the main theorem

In this section we state the main theorem to be proved in these notes, and we discuss the
relationship with algebraic topology.

1.1 Free modules. Let A be a ring and M a module over A. A collection of elements (w;)ey
of M is called a basis of M (over A) if for every x € M there is a unique collection (a;)¢; of
elements of A such that a; = 0 for all but finitely many ¢ € I and = = Ziel a;w;. If M has a
basis it is called free (over A). If A is not the zero ring and M is free with basis (w;)er, then
the cardinality #/ depends only on M, and not on the choice of the basis (Exercise 1.1). It
is called the rank of M over A, notation: rank4(M). If M is a finitely generated free module
then the rank is finite (Exercise 1.1).

Let M be a finitely generated free A-module with basis wq, ws, ..., w, and let f: M — M
be A-linear. Then

flw) = ayw;  (1<i<n)
j=1
for certain a;; € A, and the trace Tr(f) of f is defined by

n

Tr(f) = Z Q.

i=1

This is an element of A that depends only on f, and not on the choice of the basis (see 4.8,
or Exercise 1.2). It is easily checked that the map Tr: Homa(M, M) — A is A-linear.

1.2 Separable algebras. Let A be a ring, B an A-algebra, and suppose that B is finitely
generated and free as an A-module. For every b € B the map m;: B — B defined by
my(x) = bx is A-linear, and the trace Tr(b) or Trp,4(b) is defined to be Tr(m;). The map
Tr: B — A is easily seen to be A-linear and to satisfy Tr(a) = rank,(B) - a for a € A.

The A-module Hom4 (B, A) is clearly free over A with the same rank as B. Define the A-
linear map ¢: B — Homy (B, A) by (¢(z))(y) = Tr(zy), for x,y € B. If ¢ is an isomorphism
we call B separable over A, or a free separable A-algebra if we wish to stress the condition
that B be finitely generated and free as an A-module. See Exercise 1.3 for a reformulation
of this definition. In 4.13 and 6.10 we shall define the notion of separability for wider classes
of A-algebras.

1.3 Examples. For any integer n > 0 the A-algebra A", with component-wise ring opera-
tions, is clearly a free separable A-algebra. If A = 7Z there are no others (see 1.12 and 6.18),



and the same thing is true if A is an algebraically closed field (see Theorem 2.7). Generally,
if K is a field, then the free separable K-algebras are precisely the K-algebras of the form
H§=1 B;, where each B; is a finite separable field extension of K in the sense of Galois theory,
and ¢ > 0, see Theorem 2.7. (Note that t = 0 gives the zero ring.) Further examples are
found in Exercises 1.5 and 1.6.

1.4 Finite étale morphisms. A morphism f: Y — X of schemes is finite étale if there
exists a covering of X by open affine subsets U; = Spec A;, such that for each i the open
subscheme f~1(U;) of Y is affine, and equal to Spec B;, where B; is a free separable A;-
algebra. In this situation we also say that f: Y — X is a finite étale covering of X.

In 6.9 we shall see that this definition is equivalent to the one found in the literature.

Note that a finite étale morphism is finite [10, Chapter II, Section 3], so for every open
affine subset U = Spec A of X the open subscheme f~1(U) of Y is affine, f~*(U) = Spec B,
where B is a finitely generated A-module. However, in this situation B need not be free as
an A-module, but it is projective, see Section 4 and 5.2.

1.5 Examples. For any non-negative integer n and any scheme X, the disjoint union X II
X1II--- I X of n copies of X, with the obvious morphism to X, is easily seen to be a
finite étale covering of X . Again it is true that for X = SpecZ there are no others (see 1.12
and 6.18). If X = Spec K, where K is a field, the finite étale coverings Y — X are precisely
given by Y = H;l Spec B;, with B; and t as in 1.3. If X = Spec A, where A is the ring of
algebraic integers in an algebraic number field K, then the finite étale coverings Y — X are
precisely given by Y = H§:1 Spec A;, where t > 0 and where for each i the ring A; is the ring
of algebraic integers in a finite extension K; of K that is unramified at all non-zero prime
ideals of A, see 6.18.

1.6 Morphisms of coverings. A morphism from a finite étale covering f: Y — X to a
finite étale covering g: Z — X is a morphism of schemes h: Y — Z for which f = gh. This
notion enables us to speak of the category of finite étale coverings of X, for any fixed scheme
X, notation: FEtx.

Our main theorem will describe this category for connected X. (Connected means for
us that the space of X has exactly one connected component; in particular X = ) is not
connected.)

1.7 Projective limits. A partially ordered set [ is called directed if for any two ¢, 7 € I there
exists k € [ satisfying k > ¢ and k > j. A projective system consists of a directed partially
ordered set I, a collection of sets (5;);cr, and a collection of maps (fi;: Si — Sj)ijer, i>j
satisfying the conditions



fii = (identity on S;) for each i€ [T
fiv = firofi; forall 4 jkelwithi>j>k.

The projective limit of such a system, notation
limS; or lim S,
— «—iel
(the maps f;; are usually clear from the context) is defined by

anSZ = {(xz’)iel € HSZ fZJ(JJJ =T for all Z,j € [ with 7 > j}

el

If all S; are groups, or rings, or modules over a ring A, and all f;; are group homomorphisms,
or ring homomorphisms, or A-module homomorphisms, then lim 5; is a group, or a ring,
or an A-module. Likewise, if all S; are topological spaces, then liLnSZ- can be made into a

topological space by giving [[..; S; the product topology and lim 5; the relative topology.

iel
1.8 Profinite groups. Let I, (;)icr, (fij)ijer, i>; be a projective system in which the m;
are finite groups and the f;; group homomorphisms. Then m = lim 7r; is a group, and if each
m; is endowed with the discrete topology then 7 is a topological space, by 1.7. In fact, 7
is a topological group in the sense that the maps 7 x 7 — m, (z,y) — 2y and 7 — 7,
x — x71, are continuous. A topological group that arises in this way is called a profinite
group. Profinite groups are compact (Exercise 1.9(a)) and totally disconnected; it can be
proved that conversely every compact totally disconnected topological group is profinite (see
[5, Chapter V, Theorem 1]). A homomorphism of profinite groups is a continuous group
homomorphism. An isomorphism is a homomorphism with a two-sided inverse that is again
a homomorphism. Since each continuous bijection from a compact space to a Hausdorff space

is a homeomorphism, each bijective homomorphism is an isomorphism.

1.9 Examples. Let G be an arbitrary group, and I the collection of normal subgroups of
finite index of G. Let I be partially ordered by N > N’ < N C N’. Then the collection
of groups (G/N)ner gives rise to a projective system of finite groups, the transition maps
G/N — G/N' (for N > N') being the canonical homomorphisms. Hence G = limG/N is a
profinite group, and it is called the profinite completion of G. In particular we have

~

Z = liinn>OZ/nZ’



the set of positive integers being partially ordered by divisibility. Since each Z/nZ is a ring,
Z is in fact a profinite ring (definition obvious).

Next let p be a prime number, and I the set of positive integers, totally ordered in
the usual way. Then (Z/p"Z),~0, with the obvious transition maps Z/p"Z — Z/p™Z (for
n > m), is a projective system, and

Z,=limZ/p"Z

is a profinite group. It is in fact a profinite ring, the ring of p-adic integers.
Other important examples of profinite groups occur in infinite Galois theory, see Theo-
rem 2.2.

1.10 Group actions. Let G be a group. An action (on the left) of G on a set F is said to
be trivial if ce = e for all 0 € G, e € E, and free if e # e for all 0 € G, 0 # 1 and all
e € E. It is said to be transitive if E has exactly one orbit under G; in particular £ is then
non-empty.

A G-set is a set E equipped with an action of G on E. A morphism from a G-set F to a
G-set E'isamap f: F — E’ satistying f(oe) = o f(e) for all 0 € G and e € E. This enables
us to speak about the category of G-sets.

If E is a G-set, we write E¢ = {e¢ € E : e = e for all 0 € G}.

Next let m be a profinite group. A w-set is a set E equipped with an action of 7 on E
that is continuous in the sense that the map m x £ — E defining the action is continuous,
if £ has the discrete topology and m x E the product topology. (See Exercise 1.19 for a
reformulation.) A morphism of m-sets is defined as above, and the category of finite m-sets is
denoted by 7-sets.

We are now able to formulate the main theorem of Galois theory for schemes.

1.11 Main theorem. Let X be a connected scheme. Then there exists a profinite group T,
uniquely determined up to isomorphism, such that the category FEtx of finite étale coverings
of X is equivalent to the category w-sets of finite sets on which m acts continuously.

This theorem will be proved in 5.25. The profinite group 7 occurring in the theorem is called
the fundamental group of X, notation: 7(X).

1.12 Examples. The disjoint union of n copies of X corresponds, under the equivalence
in 1.11, to a finite set of n elements on which 7 acts trivially. The fact that for X = Spec Z
there are no other finite étale coverings of X is thus expressed by the group m(SpecZ)
being trivial. The same is true for 7(Spec K), where K is an algebraically closed field. More

9



generally, if K is an arbitrary field, then 7(Spec K) is the Galois group of the separable
closure of K over K, see 2.4 and 2.9. In this case we will prove Theorem 1.11 (except
for the uniqueness statement) in Section 2, where we shall see that the theorem is only a
reformulation of classical Galois theory. In particular, one has 7(Spec K) = 7 if K is a finite
field (see 2.5).

Next let X = Spec A, where A is the ring of integers in an algebraic number field K.
Then 7(X) is the Galois group of M over K, where M is the maximal algebraic extension
of K that is unramified at all non-zero prime ideals of A. More generally, if a € A, a # 0,
then 7(Spec A[1/a]) is the Galois group, over K , of the maximal algebraic extension of K
that is unramified at all non-zero prime ideals of A not dividing a. These facts will be proved
in 6.18.

If p is a prime number, then 7(SpecZ,,) = Z, see 6.18. More examples will be given in 1.16
and 6.24.

1.13 The topological fundamental group. In the introduction we defined coverings of a
topological space X, and maps between such coverings. This leads to the category of coverings
of X. If X satisfies certain conditions then this category has a description analogous to the
one given in 1.11, as follows.

For z € X, the fundamental group m(X,x) is the group of homotopy classes of closed
paths through x; see [8; 19] for details. Now suppose that X is connected, locally pathwise
connected, and semilocally simply connected; the last condition means that every x € X has
a neighborhood U such that the natural map 7(U,z) — w(X, ) is trivial. Then the group
(X, z) is independent of the choice of z € X, up to isomorphism, and denoting it by 7 (X)
we have the following theorem.

1.14 Theorem. Let X be a topological space satisfying the above conditions. Then the
category of coverings of X is equivalent to the category of m(X)-sets.

For the proof of this theorem we refer to [8, Chapitre IX, numéro 6; 19, Chapter V].

The analogy with 1.11 is not complete: the fundamental group 7(X) has no topology,
and the 7(X)-sets need not be finite. As was said in the introduction, one obtains a much
closer analogy by considering only finite coverings.

1.15 Theorem. Let X be a connected topological space. Then there exists a profinite group
(X)), uniquely determined up to isomorphism, such that the category of finite coverings of
X is equivalent to the category 7t(X)-sets of finite sets on which (X)) acts continuously.

The proof of this theorem is given in 3.10.

10



Theorem 1.15 is weaker than 1.14 in the sense that it only classifies finite coverings of
X, but it does so for a much wider class of topological spaces.

If X satisfies the conditions stated just before 1.14, then the group 7(X) from 1.15 is the
profinite completion of the fundamental group 7(X) occurring in 1.14, see Exercise 1.24.

The analogy between 1.11 and 1.15 is more than formal. If X is a non-singular variety
over C, and X}, is the associated complex analytic space (see [10, Appendix B]), then the
algebraically defined fundamental group 7(X) from Theorem 1.11 is isomorphic to the topo-
logically defined fundamental group 7(X}) from Theorem 1.15, which in turn is the profinite
completion of the classical fundamental group from 1.14. (See [10, p. 442] and [20, pp. 40 &
118] for references.) This opens the possibility of calculating the algebraic fundamental group
by topological means. This connection can even be used to calculate fundamental groups of
schemes in characteristic p (see [9; 22], and the discussion in [20, Chapter I, Section 5]).

1.16 Example. If K is a field, then one has 7(PL) = m(Spec K), where PL denotes the
projective line over K. If moreover char(K) = 0, then one has also 7(A})) = 7(Spec K),
where Al is the affine line over K. (See 6.22 and 6.23.) For K = C, this shows that m(P})
and 7(A{) are both trivial. This is consistent with the above remarks, since the associated
complex analytic spaces are simply connected, hence have a trivial fundamental group.

Exercises for Section 1

1.1 Let A be aring, A # 0, and M an A-module with basis (w;);e;.

(a) Prove that there is a ring homomorphism from A to a field k, and that #1 =
dimy (M ®4 k).
(b) Suppose that M is a finitely generated A-module. Prove that #1 is finite.

1.2 (a) Let wy,ws, ..., w, be a basis for M over A, and let
vi:ZaijijM (1<i<mn)
j=1

with a;; € A. Prove: vy, vs, ..., v, is a basis for M over A < det((aij)1<ij<n) € A"

11



1.3

1.4

1.5

1.6

1.7

1.8

(b) The trace Tr(C) of an n x n-matrix C' = (¢;;)1<i j<n Over A is defined by Tr(C) =
> i ci. Prove

Tr(CD) = Tr(DC),
Tr(ECE™Y) = Tr(C)

for n x n-matrices C, D, E over A with det(E) € A*.
(c) Prove that the trace of an A-endomorphism of a finitely generated free module,

as defined in 1.1, is independent of the choice of the basis.

Let B be an A-algebra that is finitely generated and free as an A-module, with basis
wy, Wa, . .., Wy,. Prove: B is separable over A < det(Tr(w;w;))1<;j<n) € A"

Let B be a free separable A-algebra, A’ an A-algebra, and B’ = B ®4 A’. Prove that
B’ is a free separable A’-algebra.

Let K be an algebraic number field with discriminant A and ring of integers A. Prove
that A[1/A] is a free separable Z[1/Al-algebra.

Let A be a ring.
(a) Let a € A. Prove that A[X]/(X? — a) is a free separable A-algebra if and only if
2a € A
(b) Let, more generally, f € A[X] be a monic polynomial. Prove that A[X]/(f) is a
free separable A-algebra if and only if the discriminant A(f) of f belongs to A*.

Suppose that the scheme X is the disjoint union of two schemes X', X”. Prove that the
category FEt x is equivalent to a suitably defined “product category” FEtx, x FEtx..

Let S =1im 5; be a projective limit as in 1.7, and define for each j € I the projection
map f;: S — S; by f;((z;)ier) = x;. Prove that the system (.5, (f;) er) has the following
“universal property”:

(i) fijofi=f; foralli,je I withi> j;

(ii) if Tisaset and (g;: T'— 5;)jer is a collection of maps satisfying f;;0¢; = g; (for
all 7, j € I with i > j) then there is a unique map ¢g: 7' — S such that g; = fjog
for all j € I.

Prove further that this universal property characterizes (5, (f;);er) in the following
sense: if " is a set and (f}: S" — Sj)jer a collection of maps satisfying the analogues
of (i), (ii), then there is a unique bijection f': S" — S such that f; = f; o f’ for all
jel.

12



1.9 Let the notation be as in 1.7, and S = lim 5;.

(a)

1.10 Prove: If 7, is a profinite group for each j in a set J, then []

Suppose that all sets 5; are endowed with a compact Hausdorff topology, that all
S; are non-empty, and that all maps f;; are continuous. Prove that .S is non-empty
and compact. [Hint: Apply Tikhonov’s theorem.|

Suppose that all sets S; are finite and non-empty. Prove that S # (.

Suppose that I is countable, that all S; are non-empty, and that all maps f;; are
surjective. Prove that S # 0.

Let I be the collection of all finite subsets of R, and let I be partially ordered
by inclusion. For each ¢ € I, let S; be the set of injective maps ¢: i — 7Z, and
let fi;: S; — S; (for j C i) map ¢ to its restrictions ¢|j. Prove that this defines
a projective system in which all S; are non-empty and all f;; are surjective, but
that the projective limit S is empty.

jes Tj 1s a profinite group.

1.11 (Open and closed subgroups of profinite groups.) Let 7 = limm; C [Lc;mi be
a profinite group, with all 7; finite groups, and f;: 7 — 7; the projection maps as in
Exercise 1.8, for j € I. Let further 7’ C 7 be a subgroup.

Prove: 7’ is open < 7' is closed and of finite index < 35 € J : ker f; C 7.
Prove: 7’ is closed < there is a system of subgroups (p; C 7;)ier with 7/ =
7N ([Lie; pi) (inside J],.; m;) < there is a system of subgroups (p; C m;);e; with
7' = 7N ([L;c; pi) and for which in addition fi;[p;] = p; for all 4,5 € I with i > j.
Prove that 7" is profinite if it is closed.

Suppose that 7" is a closed normal subgroup. Prove that =/7’, with the quotient
topology, is profinite.

Let G be a group, and G its profinite completion. Prove that there is a natural
group homomorphism f: G — G for which f[G] is dense in G.

Prove: if GG is a free group, then the natural map f: G — G from (a) is injective.
Let G = {(a,b,c,d : aba™" = b?, beb™ = 2, cde™' = d?, dad™' = a?). Prove that
G is infinite and that G is trivial (see [24, 1.1.4]).

1.13 Let p be a prime number, and Z, the ring of p-adic integers defined in 1.9. Prove:

(a)
(b)

Ly, = Loy — pLip;
each a € Z, — {0} can be uniquely written in the form a = up™ with u € Z7,
nezZ, n>0;
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(¢) Z, is a local domain with residue class field F,,.

1.14 Prove that there is an isomorphism 7 [, prime Zp of topological rings (definition
obvious).

1.15 Let ZIO = mn21Z/1O"Z

(a) Prove that each a € Zjo has a unique representation a = » >  ¢,10" with ¢, €
{0,1,...,9}.

(b) Prove that there exists a unique continuous function v: Z;y — R such that v(a) =
(number of factors 2 in a)~! for each positive integer a.

(c) Let (a,)s2, be a sequence of positive integers not divisible by 10 such that the
number of factors 2 in a,, tends to infinity for n — oo. Prove that the sum of the
digits of a,, in the decimal system tends to infinity for n — oo.

1.16 (a) Prove that each ¢ € Z has a unique representation a = Y>> ¢,n! with ¢, €

{0,1,...,n}.

(b) Let b € Z, b > 0, and define the sequence (a,)>,, of non-negative integers by

n=1

agp = b, a,41 = 2. Prove that (a,)22, converges in 7, and that lim a, € 7 is

n—oo

independent of b.
(¢) Let @ = lim a, as in (b), and write a = > °°

n—o0

1 <n<10.

- cpn! as in (a). Compute ¢, for

1.17 A subset J of a partially ordered set [ is called cofinal if Vie I :3d5€ J: 75 > 1.

(a) Prove: if J is a cofinal subset of a directed partially ordered set, then J is directed.

(b) Let the notation be as in 1.7, and let J C I be a cofinal subset. Prove that there
is a canonical bijection hm S = lim__S;.

el
(¢) Prove: Z = lim Z/n!Z.

1.18 (Compact rings are profinite.) In this exercise, rings are not necessarily commu-
tative. Let R be a compact Hausdorff topological ring with 1. It is the purpose of this
exercise to show that R is a profinite ring.

(a) For an open neighborhood U of 0 in R, let V = {x € R: Rx R C U}. Prove that
V' is a neighborhood of 0 in R. If moreover U is an additive subgroup of R, prove
that V' is an open two-sided ideal of R.

(b) Let x: R — R/Z be a continuous group homomorphism. Prove that ker y is
open in R. [Hint: Choose U in (a) such that x[U] C R/Z contains no non-trivial
subgroup of R/Z.]

14



1.19

1.20

1.21

1.22
1.23

1.24

1.25

(c) Derive from (b) that the open additive subgroups U form a neighborhood base
for 0 in R (see [11, Theorems 24.26 and 7.7]) and that the same is true for the
open two-sided ideals.

(d) Conclude that R = lim R/V, the limit ranging over the open two-sided ideals
V C R, and that R is profinite.

Let 7 be a profinite group acting on a set E. Prove that the action is continuous if and
only if for each e € E the stabilizer 7, = {o € m: 0e = e} is open in 7, and for finite
E if and only if the kernel ' = {0 € m: e = e for all e € E'} of the action is open

in 7.

Let G be a group with profinite completion G. Prove that the category of finite G-sets
is equivalent to the category G-sets.

(a) Prove that the category Z-sets is equivalent to the category whose objects are
pairs (E,0), with E a finite set and o a permutation of E, a morphism from
(E,0) to (E’',0’) being a map f: E — E’ satisfying fo = o'f.

(b) Construct a profinite group 7 containing 7 as a closed normal subgroup of index
2, such that the category m-sets is equivalent to the category whose objects are
triples (F,o0,7), with E a finite set and ¢ and 7 permutations of E for which
0? = 72 = idg, a morphism from (E,0,7) to (E’,0’,7') being a map f: E — E’

satisfying fo =o'f and fr=7'f.

Let p be a prime number. Prove that w(SpecZ[1/p]) is infinite.

Let A be the ring of integers of an algebraic number field K. The narrow ideal
class group C* of K is the group of fractional A-ideals modulo the subgroup {A« :
a € K*, o(a) > 0 for every field homomorphism o: K — R}. Let m = w(Spec A), and
denote by 7’ the closure of the commutator subgroup of 7. Prove that =/7’" = C*.
[Hint: Use class field theory [5; 17].]

Let it be given that under the equivalence of categories in 1.14 finite coverings and finite
sets correspond to each other. Deduce from this and Exercise 1.20 that the profinite
group (X)) occurring in 1.15 is the profinite completion of the group 7(X) occurring
in 1.14, if X is as in 1.14.

Let X be the topological space
{0,1, 2,3}, the open sets being

0, {0}, {2}, {0,2}, {0, 1,2},
{0,3,2}, X. Prove: #(X) = Z.
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1.26 (a) Let 7 be a profinite group such that z? = 1 for all z € 7. Prove that  is isomorphic
to (Z/2Z)™ for a uniquely determined cardinal number n, which is equal to the
Z/2Z-dimension of the group of continuous group homomorphisms m — Z/27Z.

(b) Let G be the additive group of a Z/2Z-vector space of dimension k, where k is
an infinite cardinal. Prove: G = (Z/2Z)* as profinite groups.

(¢) Construct a profinite group that is not isomorphic to the profinite completion of
any abstract group.

1.27 Let X be an infinite topological space whose closed sets are exactly the finite subsets
of X and X itself.

(a) Prove that every covering of X is trivial (see the Introduction), that X is con-
nected, and that the group 7(X) from 1.15 is trivial.
(b) Suppose that X is countable. Prove that X is not pathwise connected.

(c) Suppose that #X > #R. Prove that X is locally pathwise connected and semilo-
cally simply connected, and that w(X) is trivial.

1.28 Let X be an irreducible topological space. Prove that the group 7(X) from 1.15 is
trivial.

1.29 Put A = Z[V-3|, B = Z|X]/(X* + X? + 1) and § = (X mod X* + X? +1) € B.
View B as an A-algebra via the ring homomorphism A — B mapping v/—3 to §— 3%
Prove that B is a free separable A-algebra.

1.30 Let p be a prime number, 7 the profinite group [[,, Z/p"Z, and ©" C 7 the closure

of the subgroup generated by (1 mod p™)>2 ;.
(a) Prove that one has 7’ = Z,, as profinite groups, and that 7’ is a pure subgroup of
7, i.e., mn’ = 7' Nmx for all m € Z.

(b) Prove that there is an isomorphism m = 7’ x (w/n’) of abstract groups. [Hint:
First look at finitely generated subgroups of 7/7’, next use compactness of 7'.]

(¢) Prove that m and 7’ x (7/7’) are not isomorphic as profinite groups.
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2 Galois theory for fields

In this section we explain the connection between the Main theorem 1.11 and classical Galois
theory for fields. We denote by K a field. It is our purpose to show that the category of free
separable K-algebras is anti-equivalent to the category of finite 7-sets, for a certain profinite
group 7. This is a special case of the Main theorem, with X = Spec K. In the general proof
we shall use the contents of this section only for algebraically closed K. In that case, which is
much simpler, the group 7 is trivial, so that the category of finite 7-sets is just the category
of finite sets.

We assume, in this section, familiarity with the theory of finite Galois extensions of fields.

2.1 Infinite Galois theory. Let K C L be a field extension. We call K C L a Galois
extension if K C L is algebraic and there exists a subgroup G C Aut(L) such that K = L%,
here we use the notation L% from 1.10. If K C L is a Galois extension we define the Galois
group Gal(L/K) to be Autg(L); then we have K = LGal(E/K),

Let K be a fixed algebraic closure of K. If I C K[X] — {0} is any collection of non-zero
polynomials, the splitting field of F' over K is the subfield of K generated by K and the
zeros of the polynomials in F'. We recall that f € K[X] — {0} is called separable if it has no
multiple zero in K, and that o € K is called separable over K if the irreducible polynomial
of a over K is separable. We denote this irreducible polynomial by fg. Let L be a subfield of
K containing K. We call L separable over K if each a € L is separable over K, and normal
over K if for each o € L the polynomial f§ splits completely in linear factors in L[ X].

2.2 Theorem. Let K be a field, and L a subfield of K containing K. Denote by I the set of
subfields E of L for which E is a finite Galois extension of K. Then I, when partially ordered
by inclusion, is a directed partially ordered set. Moreover, the following four assertions are
equivalent:

(i) L is a Galois extension of K;

(ii) L is normal and separable over K ;

(iii) there is a set F' C K[X]—{0} of separable polynomials such that L is the splitting field

of I over K;

(iv) Uges £ = L.

Finally, if these conditions are satisfied, then there is a group isomorphism Gal(L/K) =
lim _ Gal(E/K).
—Eel

Remark. The projective limit, in the final assertion, is defined with respect to the nat-
ural restriction maps Gal(F/K) — Gal(E'/K), for E,E' € I, E' C E. Since the groups

17



Gal(E/K), for E € I are finite, the isomorphism in the theorem shows that Gal(L/K) may
be considered as a profinite group, as we shall do in the sequel. In particular, Gal(L/K) is
compact and Hausdorff. The topology on Gal(L/K) is called the Krull topology (Wolfgang
Krull, German mathematician, 1899-1971). See Exercise 2.3(a) for a different description of
this topology.

Proof of 2.2. If £, E' € I then FE’' € I so [ is directed.

(i) = (ii) Suppose that K C L is Galois, with group G. Let o € L. Since « is algebraic
over K, the orbit Gar of o under G is finite. The polynomial g = [] 4.4, (X —03) has coefficients
in LY = K, and g(a) = 0, so g is divisible by f&. Since g splits completely into linear factors
in L[X], and has no multiple zeros, the same is true for fi. (It is in fact easy to see that
g = f#.) Therefore L is normal and separable over K.

(ii) = (iii) Simply take F = {fg%:a € L}.

(iii) = (iv) For every finite set I’ C F, the splitting field of F’ over K belongs to I. The
union of the fields in I obtained in this way is the splitting field of F' over K, which is L.

(iv) = (i) It suffices to construct, for each @ € L — K, an element 7 € Autg (L) for
which 7(a) # . Choose Ey € I with o € Ey. Since Ej is finite Galois over K, there exists
p € Gal(FEy/K) with p(a) # a. Because K is an algebraic closure of Ey, the K-isomorphism
p: By = Ey can be extended to a K-isomorphism o: K = K. For each E € I we have
oF = F, since E is Galois over K. But L = (Jg; F, so also 0L = L, and 7 = o|L is now
the required K-automorphism of L with 7(«) # «a.

To prove the final assertion, we map Gal(L/K) to lim _ Gal(E/K) by sending o to
(0|E)ger. 1t is straightforward to verify that this is a well-defined group isomorphism. This
proves Theorem 2.2.

2.3 Main theorem of Galois theory. Let K C L be a Galois extension of fields with
Galois group G. Then the set of intermediate fields of K C L corresponds bijectively to the
set of closed subgroups of G. More precisely, the maps

¢
{E : E is a subfield of L containing K} — {H : H is a closed subgroup of G}
(]

defined by
¢(E) = Autp(L),  o(H)=L"

are bijective and inverse to each other. This correspondence reverses the inclusion relations,
K corresponds to G and L to {idy}. If E corresponds to H, then we have
(a) K C E is finite & H is open; and [E : K] = index|G : H| if H is open;
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(b) E C L is Galois with Gal(L/E) = H (as topological groups);

(c) o|E] corresponds to cHo™, for every o € G

(d) K C Eis Galois < H is a normal subgroup of G; and Gal(E/K) = G/H (as topological
groups) if K C E is Galois.

Proof. Let first E be an intermediate field. Since K" C L is normal and separable, the same
is true for £ C L, so E C L is Galois and we can speak about Gal(L/FE). Using that the sets

Urp={r€eG:7|F=0|F}CG, foroceG, FCL, #F <o,

form a base for the open sets of GG, and similarly for Gal(L/FE), one easily sees that the
inclusion map Gal(L/E) — G is continuous. It follows that the image is compact, hence closed
in G, so that the map ¢ is well defined. Also, since E C L is Galois, we have LE(/E) = B
so Yop(E) =E.

Next let H C G be a closed subgroup, E = ¢(H) = L7, and J = ¢(H) = Autg(L).
We wish to prove H = J. The inclusion H C J is obvious. Conversely, let ¢ € J. In order
to prove o € H it suffices to show that o is in the closure of H, which is H itself; in other
words, given a finite subset F' C L it suffices to show that U, p N H # (). Choose M € I
(see 2.2) with F' C M. Restricting the elements of H to M we obtain a subgroup H’ of
the finite group Gal(M/K), and M" = L " M = E N M. By the main theorem of finite
Galois theory, the extension M#" C M is Galois with group H'. But o|M is the identity
on ENM =M™ so g|M € Gal(M/M™') = H'. Hence o|M = 7|M for some 7 € H, and
therefore 7 € U, p N H, as required.

This completes the proof that ¢ and ¢ are bijective and inverse to each other. It is clear
that they reverse inclusions, that ¢(K) = G and that ¢({id.}) = L.

Let E correspond to H. The map that assigns to each o € G its restriction to E yields
in an obvious way an injective map

G/H — {t: E — L : 7 is a field homomorphism, 7|K =idg}.

This map is also surjective, since each 7: E = 7[E] C L, 7| K = idg, can be extended to an
automorphism p of the algebraic closure, and then p|L € Gal(L/K) since K C L is normal.

We conclude that the above map is bijective. If K C E is finite, then the number of field
homomorphisms 7: £ — L with 7|K = idg is [E : K], so then H is of finite index [E : K]
in G; since H and its cosets are closed this implies that H is open. Conversely, suppose that
H is open. Since G is compact, H is of finite index in GG. By the above, there are precisely
index|[G : H] field homomorphisms 7: £ — L with 7|K = idg. It follows that for any
finite extension K C E’ with E' C E there are at most index|G : H| field homomorphisms
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7: E' — L with 7|K = idg, since any such 7 can be extended to E. Hence [E' : K] <
index[G : H] for all those E’, and since FE is the union of all E’ this implies that [E : K] is
finite. This proves (a).

Above we saw already that there is a continuous bijection Gal(L/FE) — H. Since each
continuous bijection from a compact space to a Hausdorff space is a homeomorphism this
proves (b).

Assertion (c) is proved as in finite Galois theory.

By 2.2, the extension K C FE is Galois if and only if it is normal, so if and only if
o[E] = E for all ¢ € G. By (c) this occurs if and only if H is normal in G. Suppose that these
conditions are satisfied. Then the set of field homomorphisms 7: £ — L with 7|K = idx may
be identified with Gal(F/K). Hence we have a bijection G/H = Gal(E/K), which is easily
checked to be a continuous group homomorphism, if we give G/H the quotient topology. As
in (b) it follows that the map is a homeomorphism. This proves (d).

This concludes the proof of 2.3.

2.4 Separable closure. Let K be a field, and K an algebraic closure of K. The separable
closure K, of K is defined by

K, ={z € K : z is separable over K}.

This is a subfield of K, and K, = K if and only if K is perfect; in particular, K, = K if
char(K) = 0. From 2.2 it follows that K C K, is Galois. The Galois group Gal(K,/K) is
called the absolute Galois group of K.

Observe that any finite separable field extension K C E can be embedded in K,. Us-
ing 2.3(a), (c) we conclude that there is a bijective correspondence between the set of iso-
morphism classes of finite separable extension fields E of K and the set of conjugacy classes
of open subgroups of the absolute Galois group of K.

2.5 Example. Let F, be a finite field, with #F, = ¢ and with algebraic closure Fq. The
only finite extensions of F, in F, are the fields Fpn = {a € F, : o = a} forn € Z, n > 1.
Each F,» is Galois over F,, with Gal(F» /F,) = Z/nZ, the generator of Z/nZ corresponding
to the Frobenius automorphism F' with F(«) = a? for all a.. Taking projective limits, we
see that the absolute Galois group of I, is isomorphic to Z, with 1 € Z corresponding to

F e Gal(F,/F,). The closure of the subgroup generated by F' is equal to the whole group

Gal(IF,/FF,). This is expressed by saying that F'is a topological generator of Gal(F,/F,).

2.6 Finite algebras. Theorem. Let B be a finite dimensional algebra over a field K.
Then B = H:Zl B; for some t € Z> and certain K-algebras B; that are local with nilpotent
mazimal ideals.
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Proof. If B is a domain, then for any b € B — {0}, the map B — B, x — bz, is injective, so
by dimension considerations also surjective, so that b € B*. This shows that B is a field if it
is a domain. Applying this to B/p, for p C B prime, we see that any prime ideal p of B is
mazimal. If my, my, ... m, are distinct maximal ideals of B, then by the Chinese remainder
theorem the natural map B — [[;_, B/m; is surjective, so n < dimy B. This shows that B
has only finitely many maximal ideals, say m;, ms, ..., m;. The intersection ﬂﬁzl m; is the
intersection of all prime ideals of B, so it is the nilradical v/0 of B. Since B is obviously
noetherian, the ideal /0 is nilpotent, so H§=1 m¥ = 0 for N sufficiently large. The m; are
pairwise relatively prime, so the same is true for the m¥, and the Chinese remainder theorem
therefore gives an isomorphism B = [['_, B/mY. Here B; = B/mY is local, since m;/mY is
its only maximal ideal, and it is clearly nilpotent. This proves 2.6.

The decomposition in 2.6 is uniquely determined, see Exercise 2.23.

A similar theorem, with a slightly more complicated proof, is true for Artin rings, see [1,
Chapter 8].

2.7 Separable algebras. Theorem. Let K be a field with algebraic closure K, and let B
be a finite dimensional K -algebra. Denote by B the K-algebra B @ K. Then the following
four assertions are equivalent:

(i) B is separable over K;

(ii) B is separable over K;
(iil) B = K" as K-algebras, for some n > 0;
(iv) B H:Zl B; as K-algebras, where each B; is a finite separable field extension of K.

Proof. (i) & (ii) Let wy, ws, ..., w, be a K-basis for B. Then w; ® l,ws ® 1,...,w, ® 1 is
a K-basis for B. It follows that the diagram

B &5

TrB/Kl lTI'B/K
K——FK

(the horizontal arrows are the natural inclusions) is commutative. Hence Trp/k(wyw;) =
Trgr((w; ® 1)(w; ® 1)), and (i) < (ii) now follows from Exercise 1.3.

(iii) = (ii) is obvious (cf. 1.3).

(ii) = (iii) Applying 2.6 to K, B we see that B = H]“.:1 C; for certain local K-algebras
C; with nilpotent maximal ideals m;. Since B is separable over K it clearly follows that each
C; is separable over K. Let j be fixed, and let ¢: C; — K be any K-linear function. By 1.2
there exists ¢ € C; with ¢(x) = Tr(cz) for all x € C;. Taking x € m; and observing that
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nilpotent maps have trace zero (over a field), we see that m; C ker ¢. This is true for each
¢, so m; = {0} and C; is a field. Since C; is finite over K and K is algebraically closed we
conclude C; = K, as required.

(iv) = (iil) By the theorem of the primitive element we have B; = K(5;) = K[X]/(f;)
with f; € K[X] separable and irreducible. Hence B; = K[X]/(f;), and since f; splits into
distinct linear factors X — «;; in K[X] the Chinese remainder theorem now implies that
B; = [1; K[X]/(X — ay;) = K48, This implies (iii).

(iti) = (iv) Write B = [[._, B; as in 2.6. For each b € B the subalgebra K [b] generated
by b is isomorphic to K[X]/(f) for some f, € K[X]| — {0}. Tensoring the injective map
K[X]/(fy) & K[b] C B with K we find an injective map K[X]/(f;) — B. Thus by (iii) it
follows that K [X]/(f,) has no non-zero nilpotent elements, which means that f; is a separable
polynomial. In particular, if b is nilpotent then X" € (f;,) for some n, so X € (f;,) and b = 0.
This implies that all B; are fields. If b = (by,...,b;) € H§=1 B; = B is arbitrary then f;,
equals the lem of the irreducible polynomials of the b; over K, so these are all separable.
Therefore all B; are separable field extensions of K, as required. (See also Exercise 2.24.)

This proves 2.7.

The technique used in this proof of making an algebra trivial by means of an extension of
the base ring will later play an important role.

2.8 Remark. Let K be a field, and 7 its absolute Galois group (see 2.4). Combining 2.7,
(i) & (iv), with the remark made in 2.4 we see that giving a free separable K-algebra B is
equivalent to giving a finite sequence of conjugacy classes of open subgroups of 7, uniquely
determined up to order. Decomposing a finite m-set (see 1.10) into orbits under = we see
that finite 7-sets are specified by exactly the same data, a finite sequence 71, o, ..., of
open subgroups of 7 corresponding to the disjoint union of the w-sets 7 /m;. This yields
a one-to-one correspondence between free separable K-algebras and finite m-sets. A more
formal statement appears in the following theorem, where the correspondence is extended to
morphisms between the objects.

2.9 Theorem. Let K be a field and 7 its absolute Galois group (see 2.4). Then the categories
kSAlg of free separable K-algebras and w-sets of finite sets with a continuous action of
are anti-equivalent.

Remark. It is clear from the definition in 1.4 that xSAlg is anti-equivalent to FEtgpec k-
So Theorem 2.9 is exactly the case X = Spec K of the Main theorem 1.11, except for the
uniqueness statement in 1.11.
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Proof. The statement of the theorem means that there are contravariant functors F':

kSAlg — m-sets and G: m-sets — xSAlg such that F'G and GF are naturally equiva-
lent to the identity functors on 7w-sets and xSAlg, respectively. This in turn means, for GF,
that there is a collection of isomorphisms 0z: B — GF(B), one for each object B of xSAlg,
such that for any morphism f: B — C' in xSAlg, the diagram

f

B——C

|k
GF(B)GF—@GF(C)

is commutative; and analogously for FG.
We shall now first define F. Let K be a separable closure of K, so that 7 = Gal(K,/K).
For each free separable B-algebra, let

the set of K-algebra homomorphisms B — K. If g: B — K is such a homomorphism and
o € m, then 0 og: B — K is also such a homomorphism. This provides us with an action
of the abstract group m on Alg, (B, K). In order to see that this action is continuous, and
that Alg (B, K,) is a finite m-set (see 1.10), we write B = [[._, B; as in 2.7(iv), and viewing
B; as a subfield of K we write B; = KT with m; C 7 an open subgroup (see 2.4), for each 1.
Then Algg (B, K;) may be identified with the disjoint union of the sets Algy (KT, Ky), for
1 < i < t. Here Algg (K[, K) is the set of field homomorphisms KT — K, that are the
identity on K, and as we have seen in the proof of the Main theorem 2.3 (with G, H, E, L for
m, i, KT, K) this set may be identified with 7 /m;; and clearly this identification respects the
m-action. We conclude that Alg (B, K,) may be identified with the disjoint union [['_, 7 /7,
and since the m; are open in 7 this is a finite set on which 7 acts continuously.

This proves that F'(B) is an object of w-sets. Let f: B — C be a morphism in xSAlg,
i.e., a K-algebra homomorphism from a free separable K-algebra B to a free separable K-
algebra C. Then we define F'(f): F(C) — F(B) by F(f)(g) = go f, for a K-algebra homo-
morphism ¢g: C' — K. This is evidently a morphism of m-sets, and it is now straightforward
to verify that F' is a contravariant functor xSAlg — 7-sets.

Next we define GG. For a finite 7-set E, let

G(E) = Mor,(E, Ky),
the set of morphisms of m-sets £ — K; this makes sense, since the underlying set of K is
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a m-set. The K-algebra structure on K induces a K-algebra structure on G(F), by

(f+9)e)=fle)+gle), (fg)le)= fle)g(e),
(kf)(e)=k-f(e), 1(e)=1

for all f,g € G(E), k € K, e € E. In order to see that G(F) is finite dimensional and
separable as a K-algebra we decompose E into its orbits under m, say £ = H§:1 E;. Then
G(F) may be identified with the product of the K-algebras G(E;), for 1 < i < t. As a
m-set, we may identify E; with m/m; for some open subgroup m; C 7, see Exercise 1.19. Each
morphism of 7-sets g: m/m; — K must be given by g(om;) = o(a) for some a € K (namely,
a = g(m;)), and conversely if a € K then this is a well defined map of m-sets if and only
if @ € KT'. Thus we see that Mor,(7/m;, Ks) may be identified with KT and this is an
identification of K -algebras. We conclude that G(E) = [[;_, K7, and by 2.3(a) and 2.7 this
is a finite dimensional separable K-algebra.

If f: E — D is a morphism of m-sets then G(f): G(D) — G(E), G(f)(g) =go f,isa
morphism of K-algebras, and this makes G into a contravariant functor m-sets — xSAlg.

The functors F and G let [['_, K™ and [[._, 7/ correspond to each other, so clearly
B = GF(B) and E = FG(E) for any free separable K-algebra B and any finite m-set E. We
must now choose these isomorphisms in such a way that they are well behaved with respect
to morphisms, as made precise at the beginning of this proof.

For a free separable K-algebra B, define

0p: B — GF(B) = Mor,(Algy (B, K,), K,)

by 05(b)(g) = g(b), for b € B and g € Algy (B, K). This is easily seen to be a well-defined
K-algebra homomorphism. If f: B — (' is a morphism in xSAlg then the diagram

f

B s (O
931 Jeo
GF(B)GF—(JCZGF(C)

is commutative, since for b € B and g € Alg, (C, K,) we have

(Oc o £)0)(g) = 0c(f(b))(g) = g(f (D)),
{[GF(NIOs0)}9) = {HB(b)OF(f)}(g)
= 0p(b)(go f) =go f(b) =g(f(b)).
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For B = [['_, K™ one checks in a straightforward way that 65 is an isomorphism. Hence
fp is an isomorphism for all B, and GF' is naturally equivalent to the identity functor of
kSAlg.

The proof that F'G is naturally equivalent to the identity functor of 7w-sets is completely
analogous. For a finite m-set F, one defines

ng: E — FG(E) = Alg,(Mor, (F, Ky), Ky)

by ne(e)(g) = g(e), for e € E and g € Mor,(FE, K;). This is easily seen to be a well-defined
morphism of 7-sets, and if f: F — D is a morphism of 7-sets then by a calculation similar
to the above one the diagram

f

E——>D

Z%MFJ:;

is commutative. For F = ]_[2:1 7/m; the map ng is an isomorphism, so this is true for all F,
as required.
This completes the proof of Theorem 2.9.

Exercises for Section 2

2.1 Let K C L be a Galois extension of fields, and I a set of subfields £ C L with K C F
for which

[E: K] <oo forevery E €1

UJE=L

Eel

Prove that I, when partially ordered by inclusion, is directed (see 1.7).

2.2 Let K C L be a Galois extension of fields, and I any directed set of subfields £ C L
with K C E Galois for which | Jg.; £ = L. Prove that there is an isomorphism of
profinite groups Gal(L/K) =lim _ Gal(E/K). (N.B.: the groups Gal(E£/K) need not
be finite here, they are merely profinite.)
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2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

(a) Let K C L be a Galois extension of fields, with Galois group G. View G as a
subset of the set L” of all functions L — L. Let L be given the discrete topology
and L” the product topology. Prove that the topology of the profinite group G
coincides with the relative topology inside L.

(b) Conversely, let L be any field and G C Aut(L) a subgroup that is compact when
viewed as a subset of L¥ (topologized as in (a)). Prove that LY C L is Galois
with Galois group G.

(c) Prove that any profinite group is isomorphic to the Galois group of a suitably
chosen Galois extension of fields.

Let K C L be a Galois extension of fields. Prove that Gal(L/K) is not countably
infinite.

Let K C L be a Galois extension of fields, S C Gal(L/K) any subset, and £ = {z € L :
Vo € S :o(x) = x}. Prove that Gal(L/E) is the closure of the subgroup of Gal(L/K)
generated by S.

Let K C L be a Galois extension of fields, and H' C H C Gal(L/K) closed subgroups
with index[H : H'] < oo. Prove that L C L¥ is finite, and that [L7" : L¥] =
index[H : H'|. Which part of the conclusion is still true if H', H are not necessarily
closed?

Let K, L, F be subfields of a field €2, and suppose that K C L is Galois and that
K C F. Prove that F' C L - F is Galois, and that Gal(L - F'/F) = Gal(L/L N F) (as
topological groups).

Let K be a field. Prove that for every Galois extension K C L the group Gal(L/K) is
isomorphic to a quotient of the absolute Galois group of K.

(a) Suppose that H is a finite subgroup of the absolute Galois group of a field K.
Prove that #H < 2 and #H = 1 if char(K) > 0. [Hint: [15, Theorem 56].]

(b) Let K be a field with separable closure K, and o € K, a ¢ K. Let E be a
subfield of K containing K that is maximal with respect to the property of not
containing «. Prove that Gal(K/F) = Z/2Z or Gal(K,/E) = 7Z, for some prime
number p.

A Steinitz number or supernatural number is a formal expression a = Hp prime pP)
where a(p) € {0,1,2,...,00} for each prime number p. If a = pra(p) is a Steinitz
number, we denote by aZ the subgroup of Z corresponding to Hp pa(p)Zp (with p*Z, =

{0}) under the isomorphism Z = [1,Z, (Exercise 1.14).
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(a) Prove that the map a — aZ from the set of Steinitz numbers to the set of closed
subgroups of Z is bijective. Prove also that aZ is open if and only if a is finite

(i.e., Zp a(p) < o0).

(b) Let F, be a finite field, with algebraic closure F,. For a Steinitz number a, let F
be the set of all x € F, for which [F,(z) : F,] divides a (in an obvious sense).
Prove that the map a — [Fg is a bijection from the set of Steinitz numbers to
the set of intermediate fields of F, C F,. [Ernst Steinitz, German mathematician,
1871-1928]

2.11 Let G be a profinite group. We call G procyclic if there exists o € G such that the sub-
group generated by o is dense in G. Prove that the following assertions are equivalent:
(i) G is procyclic;
(ii) G is the projective limit of a projective system of finite cyclic groups;
(ili) G = Z/aZ for some Steinitz number a (Exercise 2.10);
(iv) for any pair of open subgroups H, H' C G with index|G : H] = index|[G : H'] we
have H = H'.
Prove also that the Steinitz number «a in (iii) is unique if it exists.

2.12 Let K be a field with separable closure K. Prove that the absolute Galois group of K
is procyclic (see Exercise 2.11) if and only if K has, for any positive integer n, at most
one extension of degree n within Kj; and that it is isomorphic to Z if and only if K
has, for any positive integer n, exactly one extension of degree n within K.

2.13 (a) Let E be a torsion abelian group. Prove that E has exactly one Z-module struc-
ture, and that the scalar multiplication Z x £ — FE defining this module structure
is continuous, if F is given the discrete topology.

(b) Let E be the group of roots of unity in Q*. Prove that the map 7* — Aut(E)
induced by (a) is an isomorphism of groups.

(¢) Write Q(¢x) = Q(F), with F as in (b). Prove that Q C Q(() is Galois, and that
the natural map Gal(Q((x)/Q) — Aut(E) = Z* is an isomorphism of topological
groups.

(d) Prove that there are isomorphisms

zr= 1] z,=zxz/2z)x [] (Z/(v-1)Z)

p prime p prime

of topological groups.
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2.14

2.15

2.16

2.17

Let Q(v/Q) be the subfield of Q generated by {\/z : z € Q). Prove that Q C Q(+/Q)
is Galois, and that the map

Gal(Q(v/Q)/Q) — Hom(Q*, {£1}),
o (a'—>0(\/a>/\/a)

(for 0 € Gal(Q(v/Q)/Q) and a € Q) is an isomorphism of topological groups, if
Hom(Q*, {#1}) has the relative topology inside {£1}%". Prove also that this Galois
group is isomorphic to the product of a countably infinite collection of copies of {+1}.

Let a € Q*, n € Z*, and write a = b/c, b,c € Z — {0}. Prove that there is a sequence
(n;)2, of integers n; for which

n; >0, ged(ng, 2bc) =1 for i > 0,
n = lim n; in YA

1— 00

Define the Jacobi symbol (£) € {£1} by (£) € {1} by (£) = lim (£)/(:£), where

(ni), (ni) are the ordinary Jacobi symbols. Prove that this is well-defined and inde-

pendent of the choices made. Prove also that the map Q* x 7* — {£1}, (a,n) — (%),
is continuous and bimultiplicative (Q* has the discrete topology).

Let the notation be as in Exercises 2.13, 2.14, and 2.15. Prove that Q(v/Q) C Q((x),
and that the induced homomorphism

Z* 2 Gal(Q(()/Q) — Gal(Q(v/Q)/Q) = Hom(Q*, {£1})

maps n € Z* to the homomorphism sending a € Q* to (%)

(Kummer theory.) Let K be a field with algebraic closure K and m a positive integer.
Suppose that K contains a primitive m-th root of unity (,,, and let E,, C K* be the
subgroup generated by (,,. Prove that there is a bijective correspondence between the
collection of subfields L C K for which

K C L is Galois, Gal(L/K) is abelian, ¥V 0 € Gal(L/K) : ¢™ = idy,

and the collection of subgroups W C K* for which K*™ C W; this correspondence
maps L to L' N K* and W to K(W'™). Prove also that if L corresponds to W, there
is an isomorphism of topological groups Gal(L/K) — Hom(W/K*™ E,,) mapping
o to (aK*™ — o(a/™)/a'/™); here Hom(W/K*™, E,,) has the relative topology in
(E,)V/E™  where each E,,, is discrete.
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2.18 (Artin-Schreier theory.) Let K be a field with algebraic closure K, and let p =
char(K) > 0. Prove that there is a bijective correspondence between the collection of
subfields L C K for which

K C L is Galois, Gal(L/K) is abelian, ¥V o € Gal(K/L) : o? = idy,

and the collection of additive subgroups W C K for which p[K] C W, where p: K —
K is defined by @(z) = P — x; this correspondence maps L to p[L] N K and W
to K(p '[W]). Prove also that if L corresponds to W, there is an isomorphism of
topological groups Gal(L/K) — Hom(W/p[K],F,) mapping o to (a+p[K] — o(8)—4,
where p(f3) = «).

2.19 Let K be a field, K its separable closure, m a positive integer not divisible by char(K)
and w the number of m-th roots of unity in K.

(a) Let for 7 € Gal(K,/K) the integer ¢(7) be such that 7((,) = C& | where G,
denotes a primitive m-th root of unity. Prove that w is the greatest common
divisor of m and all numbers ¢(7) — 1, 7 € Gal(K,/K).

(b) (Schinzel’s theorem.) Let a € K. Prove that the splitting field of X™ — a over
K is abelian over K if and only if ¥ = b™ for some b € K. [Hint for the “only
if” part: if @™ = a # 0, prove that a®”/7(a) € K* for all 7.]

In the following two exercises we shall study the Galois group of
L:Q(%)Z@(@G@!Hmézw:ame(@)

over Q. We write

M = Q((x) (see Exercise 2.13(c)),
E,. = (group of m-th roots of unity) C M*,
Q = multiplicative group of positive rational numbers.

If A is a multiplicatively written abelian group, we write A™ = {a™ : a € A} for m € Z.

2.20 (a) Prove that Q N M*™ = Qm/&<d(m2) " [Hint: Exercise 2.19.]
(b) Let L, = M(a € Q:a™ € Q), for m € Zg. Prove that M C L,, is Galois, and

that there is an isomorphism of topological groups
Cal(L,,/M) = Hom(Q, EEm2))

mapping o to (a — o(a'/™)/a'/™).
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2.21

()

()

(a)

()

()
(e)

Define E,, — E,, by ¢ — (™™ for n dividing m, and let E= lim E, with respect
to these maps. Prove that E~7 as topological groups.

Prove that M C L is Galois and that the isomorphisms in (b) combine to yield
an isomorphism of topological groups

Gal(L,,/M) = Hom(Q, £?) ;

here Hom(Q, £?) has the relative topology in (E2)?. Prove also that this Galois

group is isomorphic to the product of a countably infinite collection of copies of
Z.

Prove that there is a function @ X (Z=o) — L* such that, if the image of (a,n) is

denoted by @'/, we have

(al/n)n =a, (ab)l/n — al/n bl/n : (al/m)m/n _ al/n

for all a,b € @ and n,m € Z~y with n dividing m.

Let ' be the semidirect product Hom((Q, E) x 7* with the product topology, the
action of Z* on Hom(Q, E) being induced by the natural Z-module structure on
each E, (cf. Exercise 2.13(a)). Prove that I' is isomorphic to the group of those
automorphisms of the abelian group {x € L* : 3m > 0 : 2™ € Q*} that are the

identity on Q*. Prove further that there exists a continuous group homomorphism
¢: Gal(L/Q) — T" such that the diagram

Gal(L/Q) ——-—q—z—s~——-+ r

s

Qal(M/Q) —~— 7

is commutative; here the vertical maps are the canonical ones and the bottom
isomorphism is from Exercise 2.13(c).

Let H={(f,c) €T :Ya € Q:(f(a) mod F?) = (2)} where E/E? is identified
with By = {£1} and the Jacobi symbol (%) is as in Exercise 2.15. Prove that H
is a closed subgroup of T'.

Prove that ¢ yields an isomorphism Gal(L/Q) = H of topological groups. [Hint:
use Exercises 2.16 and 2.20(d).]

Prove that Gal(L/M) is the closure of the commutator subgroup of Gal(L/Q),
and that Gal(L/Q) is not a semidirect product of Gal(M/Q) and Gal(L/M).
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2.22

2.23

2.24

2.25

2.26

Let K be a field that is complete with respect to a discrete nontrivial valuation, and K
the separable closure of K. Let K, be the composite of all L C K, for which K C L
is finite and unramified, and K, the composite of all L C K for which K C L is finite
and tamely ramified; here “unramified” and “tamely ramified” include separability of
the residue class field extension.

(a) Prove that K C Ky, is Galois, and Gal(Kyn,/K) = Gal(ks/k), where k is the
residue class field of K and k; its separable closure.

(b) Prove that K, C Ky is Galois, and that Gal(K},/Kyy,,) is isomorphic to 7 if
char(k) = 0 and to Z/Z, if char(k) = p > 0, with Z, embedded in Z as in
Exercise 1.14.

(c) Prove that K C K, is Galois, that Gal(Ky/K) is a semidirect product of
Gal(k,/k) and Z or Z/Z, (as in (b)), and determine the action of Gal(k,/k)
on Z or Z/ L.

(d) Suppose that #k = ¢ < co. Prove that Gal(K},/K) is isomorphic to the profinite
completion of the group {(a,b: aba™' = b?).

(e) Prove that K, = K, = K if char(k) = 0, and that Gal(K,/K,) is a pro-p-group
if char(k) = p > 0. (A pro-p-group is a projective limit of finite p-groups.)

(f) Prove that Gal(K/K) is a semidirect product of Gal(Ky,/K) and Gal(K,/Kt,).
[Hint: [23, Chapitre II, Proposition 3 and Chapitre I, Proposition 16].]

(a) Let A be a local ring and = € A such that 2? = z. Prove that x =0 or = =1.
(b) Prove that any ring isomorphism [];_, A; — H§:1 B;, where the A; and B; are
local rings and s,t < 0o, is induced by a bijection o: {1,2,...,s} = {1,2,...,t}
and isomorphisms A4; — Boyy, 1 <i <s.
Let B be a finite dimensional algebra over a field K, and write B = HZ:1 B; as in 2.6,
where B; has maximal ideal m;. Let K; = {z € B;/m; : x is separable over K}. Prove
that the number of K-algebra homomorphisms B — K equals Y_;_,[K; : K], and use
this to give an alternative proof of 2.7, (iii) = (iv).

Let B be a free separable algebra over a field K, and write B = [[\_, B; as in 2.7(iv).
Let L be any field extension of K. Prove that B ®j L = LY™x(B) a5 [-algebras if
and only if L contains for each i a subfield containing K that is K-isomorphic to the
normal closure of B; over K.

Let m be a profinite group, #’ C 7 an open subgroup, and p C 7 the normalizer of 7’
in 7. Prove that the automorphism group of the w-set w/7’ in the category w-sets is
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2.27

2.28

2.29

isomorphic to p/7’. In particular, this automorphism group is isomorphic to = /7" if '
is normal in 7.

Show that under the anti-equivalence of Theorem 2.9 injective maps correspond to
surjective maps, surjective maps to injective maps, and fields to transitive m-sets (i.e.,
consisting of exactly one orbit).

Let K C L be a finite Galois extension.

(a) Show that intermediate fields E of K C L can be described categorically as equiv-
alence classes of injective (or monomorphic) morphisms F EN L, two morphisms
ELLandE 5L being equivalent if f = f’g for some isomorphism F % F'.

(b) Show how the bijective correspondence between subgroups of Autg (L) and inter-
mediate fields of K C L can be deduced from Theorem 2.9.

Let K be a field, M a Galois extension of K, and B a finite dimensional K-algebra. If
B®x M =M x M x---x M as M-algebras we say that M splits B. Prove that the
category of K-algebras that are split by M is anti-equivalent to Gal(M/K)-sets.
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3 Galois categories

This section contains an axiomatic characterization of categories that are equivalent to

m-sets (see 1.10) for some profinite group m. Our axiom system is slightly simpler than

that of Grothendieck [9, Exposé V, numéro 4] in that it does not mention “strict” epimor-

phisms. Our proof of the main result of this section, Theorem 3.5, was influenced by the

treatment in [13, Section 8.4]. As an application we prove the topological theorem 1.15.
We now first list the axioms, and explain the terms used afterwards.

3.1 Definition. Let C be a category and F' a covariant functor from C to the category sets

of finite sets. We say that C is a Galois category with fundamental functor F' if the following

six conditions are satisfied.

(G1) There is a terminal object in C, and the fibred product of any two objects over a third
one exists in C.

(G2) Finite sums exist in C, in particular an initial object, and for any object in C the
quotient by a finite group of automorphisms exists.

(G3) Any morphism u in C can be written as u = w'u” where u” is an epimorphism and v’
a monomorphism, and any monomorphism u: X — Y in C is an isomorphism of X
with a direct summand of Y.

(G4) The functor F' transforms terminal objects in terminal objects and commutes with
fibred products.

(G5) The functor F' commutes with finite sums, transforms epimorphisms in epimorphisms,
and commutes with passage to the quotient by a finite group of automorphisms.

(G6) If w is a morphism in C such that F'(u) is an isomorphism, then u is a isomorphism.

3.2 Explanation. (G1) A terminal object of a category C is an object Z such that for
every object X there exists exactly one morphism X — Z in C. Clearly, a terminal object is
uniquely determined up to isomorphism, if it exists. We denote one by 1. In sets the terminal
objects are the one-elements sets.

Suppose we are given objects X, Y, .S and morphisms X — S and Y — S in a category C.
The fibred product of X and Y over S is an object, denoted by X xg Y, together with
morphisms called projectionspy: X XgY — X, pa: X xgY — Y, which make a commutative
diagram with the given morphisms X — S, Y — S, such that given any object Z with
morphisms f: Z — X, ¢g: Z — Y that make a commutative diagram with X — S and
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Y — S, there exists a unique morphism 6: Z — X xg Y such that f = p;0 and g = p,0.

X —— S

The fibred product is uniquely determined up to isomorphism, if it exists. We write X x Y
instead of X x; Y this is the product of X and Y. In sets the fibred product X xg Y is
the set of all pairs (z,y) in the cartesian product of X and Y for which z and y have the
same image in S; if the maps X — S, Y — § are inclusions this may be identified with the
intersection of X and Y.

The notions of a terminal object and a fibred product are special cases of the notion of
a left limit, see Exercises 3.1 and 3.2. Condition G1 implies that C has arbitrary finite left
limits, see Exercise 3.3.

(G2) Let (X;)ier be a collection of objects of a category C. The sum of the X; is an
object, denoted by [[,.; X, together with morphisms ¢;: X; — [[,.; X; for each j € I, such
that for any object Y of C and any collection of morphisms f;: X; — Y, j € I, there is a
unique morphism f: [[,.; X; — Y such that f; = fq; for all j € I. The sum is unique up
to isomorphism if it exists. In the category of sets the sum of the X is their disjoint union.

We say that finite sums exist in C if any finite collection of objects has a sum in C. This
is the case in sets. The empty collection of objects has a sum if and only if C has an initial
object, i.e., an object, to be denoted by 0, with the property that for every object X there is
exactly one morphism 0 — X in C. In sets the empty set is an initial object.

If I is finite, I = {i1,42,...,1,}, we may write X;, I X, IT---I1 X, instead of [[,.; X;.

Let X be an object of C and G a finite subgroup of the group of automorphisms of X in
C. The quotient of X by G is an object of C, denoted by X/G, together with a morphism
p: X — X/G satisfying p = po for all 0 € G, such that for any morphism f: X — Y in C
satisfying f = fo for all o € G there is a unique morphism ¢g: X/G — Y for which f = gp.
Such a quotient is unique up to isomorphism if it exists. In sets we can take X/G to be the
set of orbits of X under G.

Axiom G2 requires that certain finite right limits exist in C; see Exercise 3.4. It follows
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immediately from the main result of this section, Theorem 3.5, that in fact arbitrary finite
right limits exist in a Galois category.

(G3) Let f: X — Y be a morphism in C. We call f an epimorphism if for any object Z
and any morphisms g, h: Y — Z with gf = hf we have g = h, and a monomorphism if for
any object Z and any morphisms g, h: Z — X with fg = fh we have g = h. In sets a map
f is an epimorphism if and only if it is surjective, and a monomorphism if and only if it is
injective. Since any map is a surjection followed by an injection, a decomposition v = u'u”
as in G3 exists in sets.

The morphism u: X — Y is called an isomorphism of X with a direct summand of Y if
there is a morphism ¢y: Z — Y such that Y, together with ¢y =u: X - Y and ¢o: Z — Y
is the sum of X and Z. Taking Z to be the complement of the image of u we see that in
sets any monomorphism has this property.

(G4) This condition is equivalent to the condition that F' commute with arbitrary finite
left limits (given G1); see Exercise 3.6(a). A functor F' with this property is called left exact.

(G5) This condition is satisfied if F' commutes with arbitrary finite right limits, i.e., if F
is right exact; see Exercise 3.7. Theorem 3.5 implies that any fundamental functor F' on a
Galois category C is right exact, but this is not obvious from G5.

3.3 Examples of Galois categories. It is easy to see that the category sets is a Galois
category, the fundamental functor F' being the identity functor. In the same way one verifies
that, for a profinite group 7, the category m-sets of finite sets with a continuous m-action is
a Galois category. In this case one takes F' to be the forgetful functor w-sets — sets.

The main result of this section, Theorem 3.5, asserts that any essentially small Galois
category C is equivalent to m-sets for a uniquely determined profinite group 7. Here we call
C essentially small if it is equivalent to a category whose objects form a set. (Clearly, w-sets
is essentially small.)

Let K be a field, and let C be the opposite of the category xSAlg of free separable
K-algebras. From Theorem 2.9 it follows immediately that C is a Galois category, and from
the proof of 2.9 we see that we can take F' to be defined by F(B) = Algy (B, K;), where K
is a separable closure of K. A direct verification of the axioms G1-G6, depending on 2.7, is
outlined in Exercise 3.9.

Further examples will be discussed in 3.6 and 3.7.

3.4 The automorphism group of a fundamental functor. Let C be a Galois category
with fundamental functor F'. An automorphism of F' is an invertible morphism of functors
F — F. Equivalently, an automorphism ¢ of F is a collection of bijections ox: F(X) —
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F(X), one for each object X of C, such that for each morphism f: Y — Z in C the diagram

F(Y)MF(Z)

| )

FY)———F(Z)

is commutative. Denoting by Sp(x) the finite group of permutations of F(X') we can consider
the automorphism group Aut(F) of F' as a subgroup

Aut(F) C HSF(X)’
X

the product ranging over the objects X of C; it is supposed here that C is small, i.e., that its
objects form a set. Let [y Sp(x) be endowed with the product topology, each Sp(x) being
discrete. Then for each morphism f: Y — Z theset {(ox) € [[y Sr(x) : 02F (f) = F(f)oy}
is closed, so Aut(F) is a closed subgroup of [[y Sp(x). From Exercises 1.10 and 1.11(c) it
thus follows that Aut(F') may be considered as a profinite group, as we shall do in the sequel.
Since we may replace C by an equivalent category, the foregoing is also valid if C is essentially
small instead of small.

For any object X of C, the profinite group Aut(F') acts continuously on the finite set
F(X). Let the resulting Aut(F)-set be called H(X). If f: Y — Z is any morphism in C,
then by the commutativity of the above diagram F(f) is a morphism of Aut(F)-sets. Hence
putting H(f) = F(f) we see that H: C — Aut(F)-sets is a functor, and that F' is the
composite of H and the forgetful functor Aut(F)-sets — sets.

If we take C = m-sets for some profinite group m, and F' the forgetful functor to sets,
then one finds that Aut(F’) may be identified with 7, and that H: C — Aut(F)-sets is the
identity functor; see Exercise 3.11. In the general case we have the following theorem.

3.5 Theorem. Let C be an essentially small Galois category with fundamental functor F'.
Then we have:

(a) the functor H: C — Aut(F')-sets defined in 3.4 is an equivalence of categories;

(b) if ™ is a profinite group such that the categories C and mw-sets are equivalent by an
equivalence that, when composed with the forgetful functor m-sets — mw-sets, yields the
functor F, then 7 is canonically isomorphic to Aut(F');

(c) if F' is a second fundamental functor on C, then F' and F' are isomorphic;

(d) if ™ is a profinite group such that the categories C and m-sets are equivalent, then there
is an isomorphism of profinite groups m = Aut(F') that is canonically determined up
to an inner automorphism of Aut(F).
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For the proof of the theorem, see 3.11-3.19.

3.6 Example. Let X be a connected scheme and = a “geometric point” of X, i.e., a morphism
x: Spec§2 — X for some algebraically closed field Q2. As we shall see in 5.23, there is a
functor FEtx — FEtg,.q sending Y to Y xx Spec(). Composed with the equivalence
FEtg,eco — sets from 2.9, this yields a functor F,: FEtxy — sets. We shall prove that
FEty is a Galois category with fundamental functor F, by verifying the axioms G1-Go6;
see Theorem 5.24. From Theorem 3.5 we shall then deduce the Main theorem 1.11, with
7 = Aut(F,). The latter profinite group is denoted by 7(X,x), the fundamental group of
X in z. If 2/ is another geometric point of X, then 3.5(d) implies that m(X,z) = n(X, 2’)
by an isomorphism that is canonical up to an inner automorphism. This is analogous to the
situation with the fundamental group that is defined in algebraic topology with homotopy
classes of closed paths; see 1.13.

3.7 Finite coverings. Let X be a topological space, x € X, and C the category of finite
coverings of X. Let the functor F,: C — sets send a covering f: Y — X to f~!(z). We
shall prove that, if X is connected, C is a Galois category with fundamental functor F,, and
deduce Theorem 1.15 from 3.5. The basic tool in the verification of axioms G1-G6 is the
following lemma.

3.8 Lemma. Let X,Y, Z be topological spaces, f: Y — X and g: Z — X finite coverings,
h:Y — Z a continuous map with f = gh, and x € X. Then there exists an open neighborhood
U of x in X such that f, g and h are “trivial above U”, i.e., such that there exist finite discrete
sets D and E, homeomorphisms a: f~(U) — U x D and 3: g7 (U) — U x E and a map
¢: D — E such that the diagram

F ) h g 1(U)
fRUxD idy x ¢ UxE‘/ﬁ g
/ idy \
U U

1s commutative; here the maps U x D — U and U X E — U are the projections on the first
coordinate.

Proof of 3.8. By the definition of “finite covering” there exist open neighborhoods U’ and
U” of x in X, finite discrete sets D and E and homeomorphisms a: f~(U’) — U’ x D,
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B: g Y (U") — U” x E such that the diagrams

YUY 2~U"x D Lo i>U”><D

\/ N

commute. Let now first U = U’ N U”; then these assertions are also valid with U’ and U”
replaced by U. Since h maps f~!(U) to g~*(U), there is a continuous map Sha~': U x D —
U x E. Tt respects the projections to U, so it maps each (u,d) € U x D to (u, ¢,(d)) € Ux E
for some map ¢,: D — E. Let ¢ = ¢,. The two obvious maps U x D — D % E and
UxD — UxFE — FE combine into a continuous map U x D — ExE, (u,d) — (¢(d), ¢.(d)),
mapping {x} x D to the diagonal in E' x E. Since the diagonal is open in F x F there is an
open neighborhood of {z} x D in U x D that is also mapped to this diagonal, and since D
is finite this open neighborhood may be taken of the form V' x D, with V' C X open. Then
¢ = ¢, for all v € V. Replacing U by V one now finds that Lemma 3.8 is proved.

3.9 Finite coverings: verification of the axioms. Let X be a topological space, and C
the category of finite coverings of X. We first verify axioms G1, G2, G3 for C.

(G1) The trivial covering idy: X — X is clearly a terminal object of C. If g: Y — Z,
h: W — Z are morphisms in C, then the fibred product is

Y x; W={(y,w) €Y xW:g(y) =h(w) in Z} .

It must be shown that this space, with the obvious map to X, is a finite covering of X. Let
x € X. There is a neighborhood U of x in X above which the coverings Y — X, Z — X
and the map ¢g: Y — Z are trivial in the sense of Lemma 3.8. Replacing U by a smaller
neighborhood, if necessary, we may assume that also the covering W — X and the map
h: W — Z are trivial above U. Then it is straightforward to verify that p: ¥ x; W — X
is trivial above U in the sense that the restriction of p to p~'(U) can be factored into
a homeomorphism p~}(U) = U x E, for some finite discrete set E, and the projection
UxFE—U.

(G2) One takes finite sums in C by forming disjoint unions in an obvious way. In particu-
lar, the unique covering f: Y — X with Y = () is an initial object in C. Next let f: Y — X
be a finite covering and G a finite group of automorphisms of this covering. Then the space
Y /G of orbits of Y under G, provided with the quotient topology and with the obvious maps
to X, is a quotient of Y by G. It must of course be checked that this is a finite covering of
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X. To do this one observes that each x € X has a neighborhood U in X above which not
only the covering Y — X is trivial but each element of G as well, in the sense of Lemma 3.8.

(G3) For the verification of this axiom we refer to Exercise 3.14.

Next let F.: C — sets be defined as in 3.7. We show that F), satisfies G4 and G5 for any
reX.

(G4) This is obvious from the explicit descriptions of terminal objects and fibred products
in C and sets; see G1 above and 3.2.

(Gb) This is likewise obvious (cf. Exercise 3.14(b)).

Finally, assume that X is connected. We prove that axiom G6 is satisfied as well.

(G6) Let h: Y — Z be a morphism in C. Then F,(h) is the restriction of A to the fibres
above x, and this map is bijective if and only if the map ¢ from Lemma 3.8 is bijective. Hence
from this lemma we see that each of the sets {x € X : F,(h) is bijective} and {z € X : F,(h)
is not bijective} is open in X. Since X is connected, one of the two sets is X and the other
is empty. Therefore, if F.(h) is bijective for at least one x € X then h is bijective, hence an
isomorphism because it is open (Exercises 3.13 and 3.12).

We conclude that, if X is connected, C is a Galois category with fundamental functor
F,, for any z € X.

3.10 Finite coverings: proof of Theorem 1.15. Let the notation be as in 3.9, with X
connected. Since every covering Y — X is equivalent to one in which the underlying set of Y’
is a subset of X x Z, the category C is essentially small. It is also a Galois category, by 3.9, so
by Theorem 3.5(a) it is equivalent to m-sets for some profinite group 7. Moreover, by 3.5(d)
the profinite group 7 is uniquely determined, up to isomorphism. This proves Theorem 1.15.

As in 3.6 we can speak about 7(X,x) = Aut(F,), the fundamental group of X in z, for
x € X; and for x,2' € X we have (X, z) = 7(X,2’) by an isomorphism that is canonical
only up to an inner automorphism.

3.11 Proof of Theorem 3.5. Let C be a Galois category with fundamental functor F'. We
begin with the proof of Theorem 3.5. Without loss of generality we assume that C is small
(3.4).

3.12 Subobjects and connected components. A subobject of an object X of C is a
monomorphism Y — X, two subobjects Y — X, Y’ — X being considered the same if
there is an isomorphism Y = Y’ making the diagram

Y ———> Y’

NS
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commutative. By Exercise 3.15(b) each subobject Y — X gives rise to a subset F(Y) C
F(X). The intersection of two subobjects Y — X, Y’ — X is Y X x Y’, with its natural
morphism to X (see Exercise 3.16). By G4 we have F(Y xx Y’) = F(Y) N F(Y’) inside
F(X); with G6 it thus follows that two objects Y — X, Y’ — X are the same if and only
if F(Y) = F(Y’) as subsets of F'(X).

An object X is called connected if it has precisely two distinct subobjects, namely 0 — X
where 0 denotes an initial object (see 3.2, G2), and idx: X — X. Notice that an initial
object is not connected. See Exercise 3.17 for the meaning of connectedness in several Galois
categories.

If X is not connected then there is a subobject Y — X with () = F(0) # F(Y) # F(X).
Using G3 one then finds Z such that X may be identified with Y IT Z so that F(X) is, by
G5, equal to the disjoint union of F(Y') and F(Z). Arguing by induction on #F(X) one
concludes that every object of C is the sum of its connected subobjects. The latter objects
are called the connected components of the object. Likewise it follows that any subobject of
X is the sum of a subset of the set of connected components of X.

3.13 “Prorepresentability” of F. Let A be a connected object of C, and a € F(A). We
claim that for each X the map

Morg(A, X) — F(X),  fr~ F(f)(a)

is injective; here Morg(A, X)) is the set of morphisms from A to X. To prove the claim,
suppose f,g: A — X are such that F(f)(a) = F(g)(a). Since F' commutes with equalizers
(Exercise 3.6(a)), the equalizer C' of f and g is a subobject of A with a € F(C). By the
connectedness of A this implies that C' = A, so f = g, as required.

Denote by I the set of all pairs (A,a), where A is connected and a € F(A). Write
(A,a) > (B,b) if b = F(f)(a) for some f € Morc(A, B); by the injectivity proved above,
this f is unique if it exists. If both (A, a) > (B,b) and (B,b) > (A, a) in I, with corresponding
morphisms f: A — B, g: B — A, then the uniqueness implies that gf =id4 and fg = idp,
so that (A,a) and (B,b) are the same up to isomorphism. It follows that > is a partial
ordering on the set of isomorphism classes of elements of I.

We claim that the resulting partially ordered set is directed (1.7). To prove this, let
(A,a),(B,b) € I, and let C be the connected component of Ax B for which F(C'), considered
as a subset of F(Ax B) = F(A) x F(B) (axiom G4), contains the pair (a,b). Then (C, (a,b))
precedes both (A, a) and (B,b) in I, as required.
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If (A,a) > (B,b) in I then the diagram of induced maps
More(B, X)

-

/
Morc (A, X)

F(X)

is commutative for any X, so there is a map
lim Morc(4, X) — F(X);

see Exercise 3.18 for the definition of the injective limit lim . We claim that this map is
bijective. Injectivity follows from the injectivity proved above. Further, if z € F(X) then
x € F(A) for some connected component A of X, and the map Morgc(A, X) — F(X)
corresponding to the pair (A,z) € I sends the canonical monomorphism A — X to = €
F(X). This implies surjectivity.

If X — Y is a morphism in C then the induced maps Morc(A, X) — Morc(A4,Y), for
(A,a) € I, combine to a map between the injective limits, and the diagram

lii>n1 Morc (4, X) — F(X)

]

lim Morc(4,Y) —F(Y)

is commutative. We conclude that the functor F' is naturally equivalent to the functor
lim Morg (A, —). This is expressed by saying that F'is “prorepresentable”.

3.14 Galois objects. Let A be connected. Then #Autc(A) < #Morc(A, A) < #F(A), so
Autc(A) is finite. We call A a Galois object if the quotient A/Autc(A) (axiom G2) is the
terminal object 1. This is the case if and only if the map F(A)/Autc(A) = F(A)/Autc(A) —
F(1) = 1is an isomorphism, so if and only if Autc(A) acts transitively on F'(A). Then clearly
#Autc(A) > #F(A), so for a connected Galois object A we have Autc(A) = Morc(A, A)
and #Autc(A) = #F(A), and Autc(A) acts freely and transitively on F'(A) (see (1.10)).

Let X be an arbitrary object of C. We claim that there exists (A,a) € I with A Galois
such that the injective map Morc (A, X) — F(X) from 3.13 is bijective.

To construct (A, a), put Y = XF) the product of a number of copies of X, one for
each element of F'(X) (axiom G1). Let a be the element of F(Y) = F(X)"%) (axiom G4)
whose z-th coordinate is z, for x € F(X), and let A be the connected component of Y for
which a € F(A). We claim that (A, a) has the desired properties.
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Denote the composite of the canonical monomorphism A — Y with the projection on the
2-th coordinate Y = XX) — X by p,, for z € F(X). Then the map Morc(4, X) — F(X)
sends p, to x, for z € F(X), so it is surjective. We knew already that it is injective, so it is
bijective, and it follows at the same time that each morphism A — X is of the form p,.

Next let a’ be another element of F'(A). From Morg(A, X) = #F(X) it follows that the
injective map Morg(A4, X) — F(X) induced by (A, d’) is also bijective. This means that the
coordinates of a’, when viewed as an element of F(Y) = F(X)¥X) are precisely all elements
of F(X), each occurring once. Hence there is an automorphism o of Y = X*X) permuting
the factors, such that F(c) maps a to a/. This automorphism transforms the connected
component A of Y into a connected component A’ of Y, and from o’ € F(A)NF(A") (inside
F(Y')) we see that we must have A = A’. We conclude that A has an automorphism sending
a to d’, so that A is indeed a Galois object.

3.15 Construction of 7. Put J = {(4,a) € I : A is Galois}. We prove that J is a cofinal
subset of I (Exercise 1.17). Let (B,b) € I. By 3.14 there is a connected Galois object A
such that there is a morphism f: A — B. By G3 and the connectedness of B the map
F(f): F(A) — F(B) is surjective, so F(f)(a) = b for some a € F(A). Now (4,a) € J,
and (A,a) > (B,b), as required. Let f': A — B be another morphism. By the surjectivity
of F(f) there exists o' € F(A) with F(f)(a') = F(f')(a), and since A is Galois there is
o € Autc(A) with o’ = F(o)(a). Then F(fo)(a) = F(f")(a), so fo = f’ by the injectivity
of Morc(A, B) — F(B). We conclude that the natural action of Autc(A) on Morg(A, B) is
transitive.

Since J is cofinal in I the result of 3.13 implies that F' is naturally equivalent to the
functor lim Morc(4, —).

Let (A, a), (B,b) € J besuch that (A,a) > (B, b), with corresponding morphism f: A — B.
For each 0 € Autc(A) there is a unique 7 € Autc(B) for which

a1 p

A—1 5

commutes, namely, the automorphism 7 with F'(7)(b) = F(fo)(a). The map Autc(A) —
Autc(B) sending o to 7 in this situation is clearly a group homomorphism. It is surjective,
since by the transitivity proved above each 7 f is of the form fo. Thus we obtain a projective
system of finite groups with surjective transition maps. We write m for the projective limit
lim Autc(A), which is a profinite group.
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3.16 A functor to w-sets. Let X be an object of C. For each connected Galois object A,
the group Autc(A) acts on Morc(A, x) by (o, f) — fo~!. This action is, for (A,a) > (B,b)
in .J, compatible with the maps Autc(A) — Aute(B), Morg(B, X) — Morg(A4, X), so it
gives rise to a continuous 7-action on the finite set lim Morc (A4, X) = F/(X).

If X — Y is a morphism in C then it is easy to check that the induced map
lim Morc(4, X) — lim Morc(4,Y) is a morphism of m-sets. Hence if we write H(X)
for the set F'(X) equipped with the m-action just defined, and H(f) = F(f) for a morphism
f in C, then H is a functor C — 7w-sets that composed with the forgetful functor w-sets —
sets yields F. (We shall see in 3.19 that this H is the same one as in 3.4.)

3.17 The effect on connected objects. Let B be a connected object, and let (A,a) € J
be such that Morg(A, B) — F(B). In 3.15 we proved that Autc(A) acts transitively on
Morc(A, B), so we have an isomorphism of 7-sets

H(B) = Autc(A)/G
with H as in 3.16, where G C Autc(A) is the subgroup
G ={o € Autc(A) : fo=f}

for some fixed f: A — B.

Since the natural map m — Autc(A) is surjective, the action of 7 on H(B) is transitive.
Hence H maps connected objects of the category C to connected objects of the category
m-sets (Exercise 3.17(a)).

Since fo = f for all o € G, the morphism f: A — B induces a morphism g: A/G — B.
We claim that this is an zsomorphism. To prove this, it suffices to check that F(g) is an
isomorphism. In any case F(g) is surjective, since F(f) is. Further F'(A/G) = F(A)/G has
cardinality #(Autc(A4)/G), because the action of Autc(A) on F(A) is free and transitive.
Since also F'(B) has cardinality #(Autc(A)/G) this completes the proof.

3.18 An equivalence of categories. To prove that the functor H: C — m-sets from 3.16
is an equivalence it suffices to check that (i) each finite m-set is isomorphic to one of the form
H(X), for an object X of C; and (ii) for every two objects X,Y of C the functor H yields
a bijective map Morc(X,Y) — Mor,(H(X), H(Y)) (see Exercise 3.20).

We first prove (i). Every finite 7-set is isomorphic to a finite sum of transitive m-sets,
and the functor H preserves finite sums since [’ does. Hence it suffices to consider a tran-
sitive m-set, and any such is of the form Autc(A)/G for some connected Galois object
A and some subgroup G C Autc(A) (cf. Exercise 1.19). Let a € F(A). Then the map
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Autc(A) = Morg(A, A) — F(A) sending f to F(f)(a) is bijective, and F(A) with the -
action (o, F(f)(a)) — F(fo')(a) is H(A). Thus H(A) is isomorphic to the 7-set Autc(A)
on which 7 acts by left multiplication, by F(f)(a) — f~!. Since F is a functor, Autc(A)
and its subgroup G act in a second way on H(A) = F(A), namely by (o,z) — F(0)(x);
under the identification of 7-sets H(A) = Autc(A) just given this is right multiplication by
o~!. We thus see that the quotient H(A)/G in the category 7-sets is the m-set Autc(A)/G.
Since the natural map F(A)/G — F(A/G) is an isomorphism, by G5, the same is true for
H, so we have H(A/G) = Autc(A)/G in w-sets. This proves (i).

To prove (ii), let X, Y be objects of C. The map Morc(X,Y) — Mor,(H(X), H(Y))
to be proved bijective is in any case injective, by Exercise 3.6(b). If X = []_, X; then
More(X,Y) = [];_, Morc(X;,Y), by the definition of [[, and since H preserves finite sums
we have an analogous decomposition for Mor,(H(X), H(Y)). In this way the question is
reduced to the case that X is connected. If X — Y is any morphism, factored as X — 7 — Y
with X — Z epimorphic and Z — Y monomorphic, then the connectedness of X implies
that Z is connected (Exercise 3.21), so Z is one of the connected components of Y. If we
write Y = ]_[ - J, the Y; being the connected components of Y, then it easily follows that
Morg(X,Y) = ]_[]:1 Morc(X,Y;) for connected X, and since also H(X) is connected (3.17)
there is a similar decomposition for Mor,(H(X), H(Y')). The question has now been reduced
to the case that both X and Y are connected.

Let X and Y be connected. Choosing (A4, a) € J sufficiently large we can write X = A/G4
and Y = A/G, for certain subgroups Gi,Gy C Autc(A) with H(X) = Autc(A)/G,
H(Y) = Autc(A)/G; (see 3.17). Any m-homomorphism Autc(A)/Gy — Autc(A)/Gy is of
the form 7G; — 770G for some uniquely determined oG € Autc(A)/Gs, and for given 0G5
this is a well-defined m-homomorphism if and only if Gyo C 0G5. Hence #Mor,(H(X), H(Y))
= #{oGy € Autc(A)/Gy : Gio C 0Gy}. To count Morg(X,Y) we use that for any
f € Morc(X,Y) there exists o € Autc(A) for which the diagram

A ﬂ>A/Gl:X

ho
A—A/Gy=Y
with natural horizontal maps h; commutes; namely, choose a’ € F(A) with F(hy)(d') =
F(fhy)(a), and o with F(c)(a) = a’. We have hyo = hyo' & 0'07! € Gy & Goo = Gyo’, 50

f uniquely determines the coset Gyo. Conversely, a given element o € Autc(A) gives rise to
a morphism f: X — Y if and only if hyo factors via A/G1, so if and only if heoT = hyo for
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all 7 € G, so if and only if 0G; C Gyo. Therefore #Morc(X,Y) = #{Ga0 : 0G; C Gyo},
and replacing o by 0! we see that this is the same as #Mor, (H(X), H(Y)). This proves (ii).
We have proved that the functor H defined in 3.16 is an equivalence of categories.

3.19 End of proof of Theorem 3.5. We first prove (b). Let m be any profinite group
and H: C — m-sets any equivalence that composed with the forgetful functor F}: m-sets
— sets yields F. Then Aut(F) = Aut(F}), since H is an equivalence, and Aut(F;) = 7 by
Exercise 3.11. Hence m = Aut(F’). This proves (b).

To prove (a), we apply (b) to the group 7 constructed in 3.15 and the functor H defined
in 3.16. Then H is an equivalence by 3.18, and composed with the forgetful functor to sets
it yields F'. Hence by (b) we may identify 7 with Aut(F"), and then H becomes identified
with the functor from 3.4 (cf. Exercise 3.11(c)). This implies (a).

To prove (c), let F': C — sets be a second fundamental functor. We have

lim Morg(A, —) = F, lim Morg(4, —) = F,
J 7
with J as defined in 3.15 and J’ defined similarly for F”. Since all pairs (A,a) € J with
the same A are isomorphic, we may replace J by a subset J, containing exactly one pair
(A, a) for each connected Galois object A. Similarly, choose J C J’ such that Jj contains
exactly one pair (A,a’) for each connected Galois object A; it should be noted that the
definitions of “connected” and “Galois” (3.12 and 3.14) do not refer to a fundamental functor.
If (A,a),(B,b) € Jy and g: A — B is a morphism, then there is a unique € Autc(B) for
which F'(3) sends F(g)(a) to b. Then f = (g satisfies F'(f)(a) = b, so (A,a) > (B,b) in Jy. It
follows easily that (A, a) > (B,b) in Jy if and only if the corresponding elements (A, a’), (B, ')
of Jj satisty (A,a’) > (B,b); but the morphisms f, f': A — B with F(f)(a) = b and
F'(f")(a’) =V are not necessarily the same. For each a@ € Autc(A) there exists v € Autc(B)

for which the diagram

a1 p

L
N

commutes, with f, f' as above. Mapping « to v we obtain a projective system of finite non-
empty sets Autc(A), with A ranging over the connected Galois objects. By Exercise 1.9(b)
the projective limit is non-empty, so we can make a simultaneous choice of vy € Autc(A)
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such that all diagrams

f

A—B

A lOJB
/

QUL

as above commute. These automorphisms induce an isomorphism

lim Morc(4, —) = lim Morc (4, —),
Jo Jb

so F' = F'. This proves (c).

Finally, we prove (d). Let H': C — m-sets be an equivalence, and F’ the composite with
the fundamental functor to sets. Then m = Aut(F’) by (b), and since F” = F' by (c) there
is an isomorphism of profinite groups Aut(F”) = Aut(F) that is canonically determined up
to an inner automorphism.

This completes the proof of Theorem 3.5.

3.20 Theorem. Let C and C' be essentially small Galois categories, F': C' — sets a
fundamental functor and G: C — C' a functor such that F = F'G is a fundamental functor
for C. Let H: C — 7-sets and H': C' — 7’-sets be the equivalence from Theorem 3.5(a),
with m = Aut(F), @ = Aut(F"). Then there is a natural continuous group homomorphism
7' — 7 such that the functor G': n-sets — 7’'-sets that endows a w-set with the ©'-action
induced by " — 7w gives rise to a commutative diagram

G

C———C

!
T-sets ——— 1r'-sets.

Proof. Each automorphism (o%,) of F’, with Y ranging over the objects of C’, gives rise to
an automorphism (ox) of F, with ox = U’G(X) for each object X of C. The resulting map
Aut(F") — Aut(F) is easily seen to be a continuous group homomorphism (cf. Exercise 3.10)
and to have the property stated in the theorem. This proves 3.20.

3.21 Examples. Let X and X' be connected topological spaces, f: X' — X a continuous
map, ' € X’ and z = f(z') € X. Denote the categories of finite coverings of X and X’ by C
and C’, respectively. Then there is a functor G: C — C' with G(Y) =Y xx X' ={(y,2) €
Y x X’ : y and z have the same image in X }. Using the notation of 3.7 we have F,,G = F,, so
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the conditions of 3.20 are satisfied. Hence we find a natural continuous group homomorphism
7(X',2") — 7(X, z). It follows that 7 is a functor from the category of connected topological
spaces with base point to the category of profinite groups (cf. Exercise 3.22).

Let K’ be a field and K a subfield. Then there is a functor xSAlg — /SAlg sending
A to A®g K'. Passing to the opposite categories and defining the fundamental functor F’
by F'(B) = Algy/ (B, K.) (cf. 3.3) one finds that the conditions of 3.20 are satisfied. This
gives rise to a continuous group homomorphism 7’ — 7, where 7/, 7 are the absolute Galois
groups of K’ K, respectively. It is easily seen that this is simply the map restricting the
action of 7’ on K to K, which may be considered as a subfield of K.

Exercises for Section 3

3.1 (Left limits and right limits [12].) A directed graph D consists of a set V = Vp
of wvertices, a set ' = Ep of edges, a source map s = sp: E — V and a target map
t =tp: B — V; each e € F is to be thought of as an arrow from s(e) to t(e). Let D
be a directed graph and C a category. A D-diagram in C is a map that assigns to each
v € V an object X, of C and to each e € E a morphism f, from X, to X, in C.
A morphism from a D’diagram ((Xv>v€Va (fe)eeE) to a D‘diagram ((Yv)v€V7 (ge)eeE)
is a collection of morphisms (h,: X, — Y,)pev in C such that hye)fe = gehs(e) for all
ec k.

(a) Show that the D-diagrams in C form a category. We denote this category by CP.

(b) Show that there exists a functor I': C — CP mapping an object X to the constant
D-diagram with X, = X for all v € V and f. = idx for all e € E, and mapping
a morphism h: X — Y to the morphism (h,),cy with all h, = h.

(c) A left limit of a D-diagram A in C is an object lim A of C such that
HomC<_7 m A) = HomCD (F(_)a A)

as functors on C. Prove that @A is unique up to isomorphism if it exists, and
that the notion of a left limit generalizes that of a projective limit (see 1.7 and
Exercise 1.8).

(d) Show that C admits left limits of all D-diagrams in C if and only if the functor
I': C — CP has a right adjoint lim: CP = C,i.e.,

Homg(—,lim —) =2 Homegn (I'(—), —) .

pam—
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If this right adjoint exists, we say that C admits left limits over D.
(e) A right limit of a D-diagram A in C is an object lim A of C such that

Home(lim A, —) & Homen (A, I'(—)).

Formulate and prove the analogues of the assertions in (c¢) and (d). If T" has a left
adjoint h_rr>1 CP — C we say that C admits right limits over D.

3.2 (Left limits in axiom G1.) Let C be a category.
(a) Prove that C admits left limits over the empty directed graph (with V = E = ()
if and only if C has a terminal object.

(b) Prove that C admits left limits over the directed graph e——e———e if and
only if the fibred product of any two objects over a third one exists in C.

3.3 (Equalizers and finite left limits.) Let C be a category. An equalizer of two mor-
phisms f,g: X — Y in C is a left limit of the D-diagram f,¢g: X = Y, with D =
. We say that C has equalizers if it admits left limits over D = © We say that
C has finite products if it admits left limits over any D with V finite and F = 0. We
say that C has finite left limits if it admits left limits over any finite D (i.e., with both
V and E finite).

(a) Suppose that C satisfies G1 (see 3.1), and let f,g: X — Y be morphisms in C.
Let X xy X be formed with respect to f and g. Prove that there exists a natural
morphism X Xy X — X x X and a diagonal morphism X — X x X such that
X Xxxx (X xy X) is an equalizer of f and g.

(b) Prove that C satisfies G1 if and only if it has equalizers and finite products, and
if and only if it has finite left limits.

3.4 (Right limits in axiom G2.) Left C be a category.

(a) Prove that C admits right limits over the empty directed graph if and only if C
has an initial object.

(b) Prove that the following three assertions are equivalent:
(i) finite sums exist in C;
(ii) any two objects X,Y of C have a sum X II'Y in C, and C has an initial
object;
(iii) C admits right limits over any directed graph D with V finite and F empty.
(¢) Show how the quotient X/G of an object X by a finite subgroup G C Aut(X)
can be interpreted as a right limit.
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3.5

3.6

3.7

3.8

3.9

Let f: X — Y be a morphism in a category C. Prove that f is an epimorphism if and
only if Y, together with idy: Y — Y and f: X — Y, is a right limit of the diagram
Y <+ X — Y in which both arrows equal f.

Left C be a category satisfying G1, and F' a covariant functor from C to the category
of sets.

(a) Prove that F' satisfies G4 if and only if it commutes with equalizers and with
finite products, and if and only if it commutes with arbitrary finite left limits.

(b) Suppose that F' satisfies G4 and G6, and let f,g: X — Y be morphisms in C
with F(f) = F(g). Prove that f = g.

Let C be a category and F' a covariant functor from C to the category of sets. Suppose
that F' commutes with finite right limits. Prove that F' satisfies G4. [Hint: Exercises 3.4
and 3.5.]

Let C be the category of modules over a ring A, and F' a covariant functor from C to the
category of abelian groups. Suppose that F' is additive, i.e., that for any two A-modules
X,Y the map F': Homu(X,Y) — Hom(F(X), F(Y)) is a group homomorphism.

(a) Prove that F' commutes with finite products.

(b) Prove that a sequence 0 — X — Y 2, Z in C is exact if and only if X, with the
map X — Y and the zero map X — Z, is an equalizer of f and the zero map
Y — Z.

(c¢) Prove that F', when composed with the forgetful functor to the category of sets,
is left exact if and only if for every exact sequence 0 — X — Y — Z in C the
sequence 0 — F(X) — F(Y) — F(Z) is exact.

Let K be a field, with algebraic closure K. In this exercise, A, B and C' denote free
separable K-algebras.

(a) Prove that if A — B, A — C are K-algebra homomorphisms, B ®4 C' is a free
separable K-algebra. [Hint: 2.7 ]

(b) Let G be a finite group of K-algebra automorphisms of A, and extend G by K-
linearity to A @ K. Prove that one has (A @k K)¢ =2 AY @ K as K-algebras,
and that A% is a free separable K-algebra. [Hint: use a basis of K over K]

(c¢) Let f: A — B be a K-algebra homomorphism. Prove that f[A] is a free separable
K-algebra, and that f[A]={b€eB:b®1=1®0bin B®y4 B}.
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3.10

3.11

3.12

3.13

3.14

3.15

(d) Deduce that the opposite of the category of free separable K-algebras is a Galois
category, with F(A) = Alg, (A, K) = Alg, (A, K,); here K, is a separable closure
of K.

Let C be an essentially small Galois category with fundamental functor F'. Prove that a
base for the open neighborhoods of idr in Aut(F’) is given by the sets {o € Aut(F) : ox
is the identity on F'(X)}, with X ranging over the objects of C.

Let m be a profinite group, and F' the forgetful functor from m-sets to the category
sets of finite sets.

(a) Prove that an automorphism o of F' is completely determined by the maps
O/t F(m/7") — F(m/7'), with 7’ ranging over the open normal subgroups of 7.
(The action of 7 on 7 /7" is induced by left multiplication.)

(b) Let @’ be an open normal subgroup of 7. Prove that the group of 7-sets-auto-
morphisms of the 7-set 7 /7’ is isomorphic to the group 7 /7', with 7 € 7/’ acting
as right multiplication by 771. Prove also that any set-theoretic map =/7" — 7 /7’
commuting with all 7-sets-automorphisms of 7/7" is given by left multiplication
by some element of /7.

(¢) Conclude that Aut(F) may be identified with 7, and that the functor H : m-sets
— Aut(F')-sets defined in 3.4 is the identity functor.

Let X be a topological space, and f: Y — X a finite covering. Prove that f is open
and closed.

Let X,Y,Z be topological spaces, f: Y — X and g: Z — X finite coverings, and
h:Y — Z a continuous map with f = gh. Prove that h is a finite covering.

Let X be a topological space, C the category of finite coverings of X, and h: Y — Z
a morphism in C.

(a) Prove that the image of h is open and closed in Z.

(b) Prove that h is injective if and only if it is a monomorphism, and that h is
surjective if and only if it is an epimorphism.

(c¢) Prove that C satisfies axiom G3.

Let C be a category and F': C — sets be a functor such that axioms G1, G4, G6 are
satisfied. Let further f: ¥ — X be a morphism in C.

(a) Prove that f is a monomorphism if and only if the first projection p;: Y xxY — Y
is an isomorphism.
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(b) Prove that f is a monomorphism if and only if F'(f) is injective.

3.16 Let C be a category, Y — X « X’ morphisms in C, and suppose that the fibred
product Y x x Y’ exists. Prove: if Y — X is a monomorphism, then sois Y xx Y’ — Y/,
and if both Y — X and Y’ — X are monomorphisms, then sois Y xx Y’ — X.

3.17 (a) Let 7 be a profinite group and E a finite m-set. Prove that F, as an object of
m-sets, is connected if and only if the action of 7 on F is transitive.
(b) Let K be a field and A a free separable K-algebra. Prove that A, as an object of
the category opposite to xSAlg, is connected if and only if A is a field.

(c¢) Let X be a connected topological space and Y — X a finite covering. Prove that
Y — X, as an object of the category of finite coverings of X, is connected if and
only if Y is connected as a topological space.

(d) Let X be a connected scheme and Y — X a finite étale covering. Prove that
Y — X, as an object of FEtx, is connected if and only if the scheme Y is
connected. (See Exercise 5.16.)

3.18 (Injective limits.) An injective system of sets consists of a directed partially ordered
set I, a collection of sets (5;);er and a collection of maps (fi;: S; — Sj)ijer, i<; satis-
fying the conditions

fii = (identity on S;) for each i€ I,
fix = finofy; forall i jkelwithi<j<k.

Call z € S; equivalent to y € S; if there exists k € I with £ > ¢, k > j and
fie(®) = fix(y) in Sg.
(a) Prove that this is an equivalence relation on the disjoint union of the sets .S;. The
set of equivalence classes is called the injective limit of the system, notation: hi>n S;
or lim.___S;.
—riel
(b) Prove that the injective limit can be interpreted as a right limit (Exercise 3.1).

(c) Suppose that I # (), that all S; are groups and that all f;; are group homomor-
phisms. Show that li_n>15i has a natural group structure.

(d) Let I be the set of positive integers, ordered by divisibility. For n,m € I, n
dividing m, let Z/nZ — Z/mZ be the group homomorphism mapping (1 mod n)
to (m/n mod m). Prove that limZ/nZ = Q/Z.

3.19 Describe the connected Galois objects in the category m-sets, for a profinite group .
Do the same thing for the category opposite to xSAlg, for a field K.
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3.20

3.21

3.22

3.23

3.24

3.25

Let H be a covariant functor from a category C to a category D. Prove that H is an
equivalence of categories if and only if the following two conditions are satisfied:

(i) every object of D is isomorphic to one of the form H(X), for an object X of C;

(i) for any two objects X, Y of C the functor H yields a bijective map Morc(X,Y) —
Morp(H(X), H(Y)).

Let X — Z be an epimorphism in a Galois category, and W — Z a subobject different
from 0, Z. Prove that W x; X — X is a subobject different from 0, X.

Let Gal be the category whose objects are pairs (C, F') where C is a small Galois
category and F' a fundamental functor on C. A morphism(C, F') — (C', F') is a functor
G: C — C with F' = F'G. Prove that the assignment (C, F) — Aut(F) extends to
a contravariant functor from Gal to the category of profinite groups with continuous
group homomorphisms. Is this functor an anti-equivalence of categories?

Let 7' — 7 be a homomorphism of profinite groups and G’: m-sets — 7’-sets the
induced functor (see 3.20).

(a) Prove that 7" — 7 is surjective if and only if G’ sends connected m-sets to con-
nected 7'-sets.

(b) Prove that #’ — 7 is injective if and only if for every connected object X’ of
m'-sets there is an object X of m-sets and a connected component Y’ of G'(X)
such that there is a 7’-homomorphism Y’ — X',

Let C be a category and F': C — sets a covariant functor. Prove that the following
two assertions are equivalent:

(i) C is a Galois category with fundamental functor F’

(ii) for every set S of objects of C there is a set T" of objects of C with S C T such that
the category D whose objects are the elements of T', with the same morphisms as
in C, is a small Galois category with fundamental functor F'|D.

Let C be a Galois category with fundamental functor F', let A be a connected object
of C (cf. 3.12), and a € F(A). By C4 we denote the category whose objects are
morphisms f: X — A in C, a morphism from f: X — Ato g: Y — Ain C4 being a
morphism h: X — Y in C for which f = gh.

(a) Define the functor F,: C,4 — sets by sending f: X — A to the subset F'(f)™!(a)
of F(X). Prove that C4 is a Galois category with fundamental functor F,.
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(b) Define the functor G: C — Cy4 by G(X) = (X x A — A) (the canonical projec-
tion). Prove that F,G is a fundamental functor on C.

(c¢) Prove that if C is small the profinite group Aut(F,) is isomorphic to an open
subgroup of Aut(F).

(d) Define the functor J: C4 — C by J(X — A) = X. Prove that (J, G) is an adjoint
pair of functors, i.e.,

Morc(J(Y), X) = Morc, (Y, G(X))

functorially in X and Y.

3.26 Let C be the category defined as follows. An object of C is a triple (D, A, (04)a<a)
where D is a finite set, A an ordinal number and o,: D — D a map, for each ordinal
number o < A, such that

o2 =idp for all & < A |
o, = 1dp for almost all o < A |
0003 = 030, for all o, B < .

A morphism from (D, X, (04)a<r) to (E, ft, (Ta)a<y) is @ map f: D — E for which
foo = Tof for all & < min{\, u}; fo, = f for all @ with min{\, u} < o < A; and
f =7.f for all @ with min{\, pu} < a < p.

Let F': C — sets be the forgetful functor sending (D, A, (04)a<x) to D. Prove that
C is a Galois category with fundamental functor F', and that C is not essentially small.

3.27 Let C be the category whose objects are quintuples (S, T, «, 3,7), where S, T are finite
sets and o, 3,v: S — T are bijections, a morphism from (S, T, o, 3,7) to (S", T", &/, 3, 7)
being a pair of maps f: S — S, g: T — T’ for which ga =/ f, g8 =0"f, gv=7°"f.

(a) Prove that C is an essentially small Galois category, with a suitably defined fun-
damental functor.
(b) Describe the connected objects of C.

(¢) For which profinite group 7 is C equivalent to m-sets?
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4 Projective modules and projective algebras

This section contains the affine information needed for the following section. We denote by
A a ring.

4.1 Definition. An A-module P is called projective if the functor Hom (P, —) on the
category of A modules is exact, i.e., if for every exact sequence My — M; — M, of A-
modules the induced sequence Hom 4 (P, My) — Hom4 (P, M;) — Homy (P, Ms) is exact.

4.2 Theorem. For any A-module P the following four assertions are equivalent:
(i) P is projective;
(ii) for every surjective A-homomorphism f: M — N and every A-homomorphism g: P — N
there exists an A-homomorphism h: P — M for which fh = g:

P
h jg
}_/
M / N 0,

(ili) every exact sequence of A-modules 0 — My — M, — P — 0 splits (see Ezercise 4.2);
(iv) there is an A-module Q) for which P & Q is a free A-module.

Proof. (i)=-(ii) If M — N — 0 is exact, then Hom(P, M) — Hom(P, N) — 0 is exact, so
g € Hom(P, N) is the image of some h € Hom(P, M).

(ii)=(iii) Take M = M;, N = P, g =idp, and apply Exercise 4.2.

(iii)=(iv) Mapping the basis elements of a free module F' of sufficiently large (possibly
infinite) rank to a collection of generators for P we obtain a surjective A-homomorphism
F — P. Calling the kernel @ and applying (iii) to the sequence 0 — @ — F — P — 0 one
finds that P® Q = F.

(iv)=-(i) Since Homy4 (A, M) = M, the A-module A is clearly projective. Further, if (P;);cs
is any collection of A-modules, then it is easy to prove that €,_, P; is projective if and only
if each P; is projective (cf. Exercise 4.4). These facts immediately imply (iv)=(i).

This proves 4.2.

4.3 Flatness. Recall that an A-module P is called flat if the functor —®4 P on the category
of A-modules is exact. Clearly A is flat, and replacing “projective” by “flat” in the proof
of 4.2, (iv)=(i), one finds that direct summands of free modules are flat. We conclude that
projective modules are flat.
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4.4 Examples. (a) Suppose that there are rings A;, A with A = A; x Ay. Then each A; is
a projective A-module. If the A; are non-zero these modules are not free. Every A-module
P can be written as P = P; X P, where P; is an A;-module (namely, P, = (1,0) - P and
P, =(0,1) - P), and P is projective over A if and only if each P; is projective over A;.

(b) If A is a field, then every A-module is free, hence projective. If A = K[G], where K
is a field and G a finite abelian group of order not divisible by char(K), then again every
A-module is projective (see Exercise 4.6 or 4.7).

(¢) A Z-module is projective if and only if it is free. This is because every subgroup of a
free abelian group is free. In this example Z can be replaced by any principal ideal domain
(see Exercise 4.9).

(d) Let A be the ring of integers of an algebraic number field or, more generally, a
Dedekind domain. Then a non-zero finitely generated A-module is projective if and only if
it is torsionfree, and if and only if it is isomorphic to a module of the form A™ @& I for some
n > 0 and some non-zero ideal I of A; moreover, A" @& [ = A" @ I’ if and only if n = n/
and I and I’ have the same ideal class. See Exercises 4.10 and 4.11 for this. Hence if A has
a non-trivial class group then there are projective A-modules that are not free. We remark
that projective A-modules that are not finitely generated are free (Exercise 4.12).

(e) Let A be a domain, with field of fractions K. An A-submodule I of K is projective if
and only if it is invertible, i.e., if and only if I.J = A for some J C K, where I[J = {>""" | x;y; :
neZ, n>0, x,€l, y;€J(1<i<n)}; see Exercise 4.13.

(f) If A= K[X1,Xs,...,X,], where K is a field and n < oo, then every projective A-
module is free. This was proved by D. Quillen and A.A. Suslin in 1976, answering a question
of Serre from 1955. See [16] for the case of finitely generated modules, and [3] for the other
case.

(g) If A is a local ring, then every projective A-module is free. This was proved by I.
Kaplansky [14]. For finitely generated modules we prove this below (see 4.5), the countably
generated case is done in Exercise 4.14, and the general case in Exercise 4.16.

For more information about projective modules, see [4; 16; 21] and the references given
there.

4.5 Proposition. A finitely generated module over a local ring is projective if and only if it
18 free.

Proof. Let A be a local ring with maximal ideal m and P a finitely generated projective
A-module. Let x1,29,...,2, € P be such that the x; ® 1 form a basis for the A/m-vector
space P ®4 A/m. Let f: A" — P send the i-th basis vector to x;. Then f ® ida/m is an
isomorphism (A/m)” — P ®4 (A/m), so the cokernel M of f, which is a finitely generated
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module, satisfies M = mM. By the lemma of Nakayama [1, Proposition 2.6] this implies that
M =0, so f is surjective. By 4.2(iii) we now have A" = P & ker(f). It follows that ker(f)
is finitely generated and satisfies ker(f) = m-ker(f). Again applying Nakayama’s lemma we
conclude that ker(f) = 0, so f is an isomorphism. This proves the “only if” part of 4.5. The
“if 7 part is immediate from 4.2. This proves 4.5.

4.6 Local characterization of projective modules. For f € A we write Ay = S7'A4,
where S = {f":n >0}, and My = S™'M = M ®4 Ay for an A-module M. Recall that M
is finitely presented if there is an exact sequence A™ — A" — M — 0 of A-modules with
m,n < 0o.

Theorem. Let A be a ring and P an A-module. The following properties are equivalent:
(i) P is a finitely generated projective A-module;
(ii) P is finitely presented, and Py, is a free An-module for any mazimal ideal m of A;
(iii) there is a collection (fi)icr of elements of A with > ., Af; = A, such that for each
i € I the Ay,-module Py, is free of finite rank.

el

Notice that (iii) just means that the sheaf associated to P on Spec A is locally free of finite
rank (see [10, Chapter II, Section 5]). Exercise 4.23 shows that one cannot replace “finitely
presented” by “finitely generated” in (ii).

Proof. (ii)=(i) Assuming (i) we have P & @ = A" for some () and some n < oo (Exercise
4.3). Then @ is finitely generated, so P is finitely presented. From P, & Qn = Al we see
that P, is a finitely generated projective Ay-module, so Py, is free by 4.5.

(ii)=-(iii) Assume (ii), and let m be a maximal ideal of A. Choose isomorphisms g: A}, —
Py, h: Py — A} that are inverse to each other. By Exercise 4.20, we have Homy, (AL, Py) =
Homy (A", P)yw and Homy,, (Pn, Af) = Homa(P, A")w, so g = ¢'/s, h = h'/t for certain
A-linear maps ¢': A — P, h': P — A" and certain s,t € A — m. From gh = idp_,
hg = id4y it follows that uwg’h’ = ust -idp, wvh'g’ = wvst - idgn for certain u,v € A —m.
With f = stuv € A—m, ¢" = tuvgd/f (= ¢'/s), h" = suwwh’/f (= I'/t) we now have
isomorphisms g": A%} — Py, h": Py — A% over Ay that are inverse to each other. Letting m
range over all maximal ideals of A, we obtain a collection of f’s that is not contained in any
maximal ideal and therefore generates A as an A-ideal.

(iii)=-(i) Writing 1 € A as a linear combination of the f; we see that we may assume
that I is finite. For each i E I, choose an isomorphism g;: A"Z_(i) — Py, that maps the

canonical basis vectors of A ) inside the image of P in Py, so that g; is induced by an
A-linear map g,: A" — P, These maps combine to a map ¢': AXicr™) — P Applying
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Exercise 4.21(a) to the cokernel of ¢’ we see that ¢’ is surjective. For each i € I the map

jer () 7 n(j), hence finitely

¢’ induces a map A% — Py, whose kernel is isomorphic to A%
generated. By Exercise 4.21(b) it now follows that the kernel of ¢’ is finitely generated, so
P is finitely presented. Let M — N be any surjective map of A-modules. Then the map
Homy (P, M) — Homyu (P, N) becomes surjective after tensoring with Ay, for any i € I;
here we use Exercise 4.20 and the fact Py, is Ay -projective. Applying Exercise 4.21(a) to
the cokernel of Hom (P, M) — Homu (P, N) we see that this map is surjective, so that P is
projective by 4.2(ii).

This completes the proof of the theorem.

4.7 The rank of a projective module. Let P be a finitely generated projective A-module.
From Theorem 4.6(iii) it follows that for each p € Spec A the Ay-module P, is free, and that
the function

rank(P) = rank4(P): Spec A — Z

assigning to p the rank of P, over A, is locally constant, hence continuous. If Spec A is
connected, e.g., if A is a domain, then rank(P) is constant and may be identified with a non-
negative integer. We say that P is faithfully projective if rank(P) > 1, i.e., rank(P)(p) > 1
for all p € Spec A.

4.8 The trace. Let P be a finitely generated projective A-module, and P* = Hom(P, A).
For each A-module M, define

¢: P* @4 M — Homy(P, M)

by ¢(f @ m)(p) = f(p) - m. We claim that ¢ is an isomorphism of A-modules. This is clear
if P = A, since then both modules may be identified with M, and ¢ becomes id,;. Taking
direct sums we find that ¢ is also an isomorphism if P =2 A" for some n < oo, and passing
to direct summands one deals with general P.
The trace
Tr = Trpja: Endy(P) — A

is now defined to be the composite of the maps
End,(P) = Homa(P,P) > P* @, P — A

where P*®4 P — A maps f®pto f(p).

The trace is an A-linear map, which agrees with the trace defined in 1.1 in the case that
P = A™; see Exercise 4.35. It follows that the trace defined in 1.1 is independent of the choice
of the basis. See Exercise 4.36—4.40 for further properties of the trace.
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4.9 Projective algebras. A finite projective A-algebra is an A-algebra B that is finitely
generated projective when considered as an A-module. For such an algebra we write [B : A]
for rank 4(B); this is a continuous function Spec A — Z.

4.10 Proposition. Let B be a finite projective A-algebra. Then we have:
(a) the map A — B is injective if and only if [B : A] > 1 (i.e., [B : Al(p) > 1 for all
p € Spec A);
(b) the map A — B is surjective if and only if [B : A] < 1, and if and only if the map
B ®s B — B sending x @y to xy is an isomorphism;
(c) the map A — B is an isomorphism if and only if [B: A] = 1.

Proof. (a) “Only if”. If [B : A](p) = 0, then B, = 0, so A, — B, is not injective, and
consequently A — B is not injective either. “If”. If [B : A](p) > 1, then the kernel of
A, — B, annihilates the non-zero free A,-module B, so must be zero. But if A, — B, is
injective for all p then so is A — B.

(b) First suppose that B ® 4 B = B. Comparing the ranks we see, using Exercise 4.26,
that [B : A]*> = [B: A], so [B : A] < 1. Next suppose that [B : A] < 1. To prove that A — B
is surjective we may assume that A is local; then [B : A] is constant. If [B : A] = 0 then
B = 0 and clearly A — B is surjective. Next suppose that [B : A] = 1. Then End4(B) is free
of rank 1 over A, the identity map of B forming a basis. The map 1: B — End4(B) defined
by ¥ (b)(z) = bz is injective, and the composed map A — B — End4(B) is an isomorphism,
so A — B is surjective. Finally, if A — B is surjective then B = A/a for some ideal a of a,
and B®4 B = B/aB = B.

(c) This is clear from (a) and (b).

This proves 4.10.

4.11 Faithfully projective algebras. An A-algebra B is called faithfully projective if it is
finite projective with [B : A] > 1, i.e., if it is faithfully projective as an A-module. See 4.10(a)
and Exercise 4.25 for equivalent properties. In particular we see that B is faithfully flat over
A if it is faithfully projective (see Exercise 4.25, and Exercise 3.16 of [1]).

4.12 Proposition. Let B be a faithfully flat A-algebra, and P an A-module. Then P is
finitely generated projective as an A-module if and only if P ® 4 B is finitely generated pro-
jective as a B-module.

Proof. The “only if” part is true for any A-algebra B, see Exercise 4.33. To prove the “if”
part, assume that P ®4 B is a finitely generated projective as a B-module. Choose a finite
collection of generators of P ®4 B of the form p ® 1, with p € P. These give rise to an
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A-linear map A™ — P that becomes surjective when tensored with B; so by faithful flatness

A" — P is already surjective. Let @ be the kernel. Then 0 - Q®4 B — B" - P4 B — 0

is exact, so Q ® 4 B is finitely generated projective over B, and applying what we just proved

for P to Q we conclude that @ is finitely generated and hence that P is finitely presented.
Let M be any A-module. We claim that the natural map

HOIIlA<P, M) XA B — HOIHB(P XA B,M Xa B)

is an isomorphism. If P = A™ for some m < oo this is clear, since both sides may be identified
with (M ®4 B)™. In the general case we choose an exact sequence A™ — A" — P — 0.
Then we have a commutative diagram

0 —>—HOII1A(P, M) XA B—>HOII1A(An,M) Xa B—>HOII1A(Am,M) XA B

0 > Hompg(P®4 B,M ®4 B) —Hompg(A" @4 B, M @4 B)—>Homp(A™ @4 B, M ®4 B).

The top row is exact by right exactness of Hom4(—, M) and flatness of B, and the bottom
row is exact for the same two reasons in reverse order. By what we just proved the two vertical
arrows at the right are isomorphisms. Hence the remaining vertical arrow is an isomorphism,
as required.

To prove that P is projective, let now M — N be a surjective A-linear map. Then
M®aB — N®4B is surjective, and since P® 4 B is projective it follows that Homp(P ® 4 B,
M ®4 B) — Homp(P ®4 B, N ®4 B) is surjective. By what we just proved this implies that
Homy (P, M) ® 4 B — Homa(P, N) ®4 B is surjective, so by faithful flatness of B the map
Hom4 (P, M) — Hom (P, N) is surjective. This proves that P is projective over A.

This proves 4.12.

4.13 Projective separable algebras. Let B be a finite projective A-algebra. The trace
Tr(b) or Trpsa(b) of an element b € B is defined to be the trace of the A-linear map
B — B sending z to bx. Clearly Trp/a: B — A is A-linear. Define the A-linear map
¢: B — Homyu(B, A) by ¢(x)(y) = Trpja(xy) for x,y € B. If ¢ is an isomorphism we call B
a projective separable A-algebra.

The main properties of projective separable algebras will be developed in the next section,
in scheme-theoretic language. It turns out that projective separable algebras correspond
exactly to finite étale coverings of an affine scheme; see Proposition 5.6.

We close this section with two propositions about projective separable algebras that will be
needed in the next section.
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4.14 Proposition. Let B be an A-algebra, and C' a faithfully flat A-algebra such that B&,C
is a projective separable C-algebra. Then B is a projective separable A-algebra.

Proof. From 4.12, with B and C' in the roles of P and B, we see that B is a finite projective
A-algebra. To show that the map ¢: B — Homy (B, A) defined above is an isomorphism,
it suffices to show that ¢ ® ido: B ®4 C' — Homyu (B, A) ® 4 C' is an isomorphism, because
C' is faithfully flat over A. As in the proof of 4.12, we may identify Hom (B, A) ® 4 C' with
Home (B ®4 C,C), and then B ®4 C — Homg (B ®4 C,C) is induced by the trace map
(Exercise 4.36). It is an isomorphism because B ® 4 C' is projective separable over C. This
proves 4.14.

4.15 Lemma. Let B be a projective separable A-algebra and f: B — A an A-algebra homo-
morphism. Then there exist an A-algebra C' and an isomorphism B = A x C' of A-algebras
such that f is the composition of B = A x C with the projection A x C — A.

Proof. Since f is A-linear there is a unique e € B such that f(z) = Tr(ex) for all z € B.
We shall prove that e is an idempotent that gives rise to the desired splitting.

Putting x = 1 we see that Tr(e) = 1. Because f is a ring homomorphism and Tr is
A-linear we have Tr(exy) = f(zxy) = f(z)f(y) = f(x)Tr(ey) = Tr(f(x)ey) for all z,y € B.
By the definition of separability this implies that ex = f(x)e for all x € B. This shows that
e annihilates ker(f), so calculating Tr(e) by means of the exact sequence 0 — ker(f) —
B — A — 0 and Exercise 4.38 we see that Tr(e) = f(e). Hence f(e) = 1, and the A-linear
map A — B sending 1 to e yields an isomorphism A @ ker(f) — B of A-modules. Putting
r = e in ex = f(x)e we see that e*> = e. Since e annihilates ker(f) it follows that the
map A @ ker(f) — B respects multiplication, if multiplication is defined componentwise on
A @ ker(f). Since A and B have unit elements the same is true for ker(f), so this is an
A-algebra.

This proves the lemma.

4.16 Proposition. Let A be a ring and B a projective separable A-algebra. Consider B & 4
B as a B-algebra via the second factor. Then there exist a B-algebra C' and a B-algebra
isomorphism B@4 B = B x C that, composed with the natural projection B x C — B, yields
the map B ® 4 B — B sending x ® y to xy.

Proof. From Exercise 4.47 we see that B® 4 B is a projective separable B-algebra. Moreover,
the map f: B®4 B — B defined by f(x ® y) = xy is a B-algebra homomorphism. The
proposition now follows if we apply 4.15 to f: B ®4 B — B. This proves 4.16.
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Exercises for Section 4

4.1

4.2

4.3

4.4

4.5
4.6

Let C be the category of modules over a ring A, and F a covariant additive functor
from C to the category of abelian groups (see Exercise 3.8). We call F' ezxact if for
every exact sequence X — Y — Z in C the sequence F'(X) — F(Y) — F(Z) is exact.
Prove that the following three assertions are equivalent:

(i) F is exact;
(ii) for every exact sequence 0 - X — Y — Z — 0 in C the sequence 0 — F(X) —
F(Y)— F(Z) — 0 is exact;
(iii) F commutes with arbitrary finite left or right limits.
Let 0 - My — M; — M, — 0 be a short exact sequence of modules over a ring A.

The sequence is said to split if there is an isomorphism M; = My @ M, of A-modules
for which the diagram

0 M M, M, 0
lid lz lid
0 M, My ® M, M, 0

(with the obvious maps in the bottom row) is commutative. Prove that the following
three assertions are equivalent:
(i) the sequence 0 — My — M; — My — 0 splits;
(i) thereis an A-linear map M; — M, such that the composed map My — M; — M,
is the identity on My;
(iii) there is an A-linear map My — M, such that the composed map My — M, — Mo
is the identity on M.

Let P be a finitely generated module over a ring A. Prove that P is projective if and
only if P& Q = A" for some finitely generated A-module ) and some non-negative
integer n.

Let A be a ring, M an A-module, (P;);c; a collection of A-modules, and P = @, P,.
Prove that Homy (P, M) = [[,c; Homa(F;, M) and P @4 M = @, (P ®4 M).
Prove the statements in Example 4.4(a).

Let K be a field and G a finite abelian group of order not divisible by char(K’). Prove
that K[G] is isomorphic to the product of a finite number of fields, and deduce that
every K|[G]-module is projective.
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4.7 Let A be a ring and G a finite abelian group for which #G -1 € A*.

(a) Suppose that f: M — N is a homomorphism of A[G]-modules, and g: N — M
an A-linear map with fg = idy. Define ¢: N — M by ¢'(z) = (#G-1)71.
> vec 0 - glot - ). Prove that ¢’ is a homomorphism of A[G]-modules and that
fg' =idn.

(b) Let P be an A[G]-module. Prove that P is projective as an A[G]-module if and
only if P is projective when considered as an A-module. (See the following exercise
for a converse.)

4.8 Let A be aring and G a finite abelian group. Consider A as an A[G]-module by letting
every o € (G act as the identity on A. Prove that A is projective as an A[G]-module if
and only if #G -1 € A*.
4.9 Let A be a ring with the property that every ideal of A is projective (a hereditary ring).
(a) Prove that any submodule of a free A-module is isomorphic to the direct sum of
a collection of ideals of A.
(b) Prove that over a principal ideal domain a module is projective if and only if it is
free.
4.10 (a) Let A be aring, and I, J ideals of A with I +.J = A. Prove that there is an exact
sequence 0 — [-J — I & J — A — 0 of A-modules, and that I&J = ([-J) & A.
(b) Prove that every ideal of a Dedekind domain A is projective and that an A-module
is projective if and only if it is isomorphic to a direct sum of a collection of ideals
of A.
(c) Let M be a finitely generated module over a Dedekind ring A. Prove that M is
projective if and only if M is torsionfree (i.e., if am = 0 with a € A and m € M,
then a = 0 or m = 0).
4.11 Let A be a Dedekind domain.

(a) Prove that two fractional A-ideals are isomorphic as A-modules if and only if they
belong to the same ideal class.

(b) Let I,J be fractional A-ideals. Prove that the map I ®4 J — I.J sending = ® y
to xy is an A-module isomorphism. [Hint: Localize.]

(c¢) Let Iy, Iy, ..., Iy, J1, Jo, . .., Jp be fractional A-ideals. Prove that Iy 1,®. .. &I, =
J1DI®...®J, as A-modules if and only if n = m and I115... I, and J1J5 ... Jp,

belong to the same ideal class. [Hint: take exterior powers.]
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4.12 Let A be a Dedekind domain and (7,,)22, a sequence of fractional A-ideals. Prove that
D, oI =D, , A as A-modules, and deduce that every projective A-module that is
not finitely generated is free.

4.13 Let A be a domain with field of fractions K, and I C K an A-submodule.

(a) Prove that I is projective if and only if it is invertible, and that it is free if and
only if it is principal. [Hint: map a free module onto I.]

(b) Prove that invertible ideals are finitely generated.
(c) Prove that A is a Dedekind domain if and only if all ideals of A are projective.

4.14 Let A be a local ring with residue class field k.

(a) Suppose ay,as,...,a, € A are such that none of the a; belongs to the ideal
generated by the others, and let a = (a;); € A™. Let f: A" — A" be an A-linear
map with f(a) = a. Prove that f ®idy is the identity mapping on k", and that f
is invertible.

(b) Let F be a free A-module, P a direct summand of F', and a € P. Prove that P
has a free direct summand containing a. [Hint: Choose a basis of F' on which a
has the smallest possible number of non-zero coordinates, say ay, as, ..., a,, and
apply (a) to a suitable map A" — P — A™ ]

(c) Prove that a countably generated projective A-module is free.

4.15 Let A be a ring, I a set, M; a countably generated A-module for i € I, and M =
P,c; M;. Suppose that M = P @ @, where P,(Q C M are A-submodules of M.

(a) Write i — j, for i,57 € I, if there exists x € M, such that the P-component
or the (-component of z has a non-zero projection on M;. Prove that for each
i € I the set D(i) = {j € I : there exist m > 0 and ig,i1,...,4, € [ with
i =1dg— iy — -+ — iy = j} is countable.

(b) For J C I, write M; = @jeJMJ’ C M, Pr=PnNnM; Q;=QnNM; Prove
that for any ¢ € [ there is a countable subset J of I containing ¢ such that

Mj; = P;® @y, and that for any such subset P; and (); are direct summands of
P and Q.

(c) Deduce that P is the direct sum of countably generated modules.
[Hint: use transfinite induction.]

4.16 Deduce from 4.14 and 4.15 that any projective module over a local ring is free.

4.17 Let an ideal a of a ring A be called almost nilpotent if for every sequence (a;)$°, of
elements of a there exists n with [[}_,a; = 0.
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4.18

4.19

4.20

4.21

4.22

4.23

(a) Prove that a nilpotent ideal is almost nilpotent.

(b) Prove that a finitely generated almost nilpotent ideal is nilpotent.

(c¢) Let K[X;y,Xs,...] be the polynomial ring in countably many variables over a
field K, and I the ideal generated by {Xj - [, Xf(i) ck,n>1,a(i) >0 (1<
i < mn), Y a(i) > k}. Prove that K[X;, Xo,...]/I is alocal ring whose maximal
ideal is almost nilpotent but not nilpotent.

Let A be a local ring whose maximal ideal m is almost nilpotent.

(a) Prove that any A-module M with mM = M is zero.

(b) Let F be a free A-module. Prove that a subset of F' is an A-basis if and only if
it yields an A/m-basis for F' ®4 A/m. Prove also that any generating set for F’
contains a basis.

Let A be a local ring whose maximal ideal m is not almost nilpotent.
(a) Construct a countably generated non-zero A-module M with M = mM. [Hint:
Consider a suitable injective limit A - A — A — ... ]
(b) Let f: FF'— M be A-linear, with F' free and M as in (a). Prove that ker(f) UmF

generates F' but does not contain a basis.

Let M, N be modules over a ring A, with M finitely presented, and let S C A be a mul-
tiplicative subset. Prove that the obvious map S~ 'Hom(M, N) — Homg-14(S™ M,
S~IN) is an S~!A-module isomorphism.

Let A be a ring, (f;)ier a collection of elements of A with >, , Af; = A, and M an
A-module.
(a) Suppose that My, =0 for all i € I. Prove that M = 0.
(b) Suppose that My = 0 is a finitely generated Af-module for each i € I. Prove
that M is finitely generated.

Let M = {q € @ : ¢ has a squarefree denominator}, considered as a module over
A = Z. Prove that M, is Ap-free of rank 1 for every prime ideal p of A, but that M is
not projective over A.

Let V be an infinite set and A = F} .

(a) Prove that A has a maximal ideal n and that is not principal.

(b) Let M = A/n, with n as in (a). Prove that M is finitely generated, that M, is
Ap-free of rank < 1 for every maximal ideal m of A, but that M is not projective.
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4.24

4.25

4.26

4.27

4.28

4.29

Let A be a ring and P a finitely generated projective A-module. Prove that A can
be written as the product of finitely many rings, A = A; x Ay X -+ X A,,, such that
P =P x P, x --- x P, where each P} is a finitely generated projective A;-module of
constant rank.

Let A be aring and P a finitely generated projective A-module. Prove that the following
four properties are equivalent:
(i) P is faithfully projective;
(ii) the map A — Endz(P) giving the A-module structure is injective;
(iii) P is faithful, i.e., an A-module M is zero if and only if M ® P = 0;
(iv) P is faithfully flat, i.e., a sequence My — M; — My of A-modules is exact if and
only if the induced sequence My ® P — M; ® P — M, ® P is exact.

Let P and P’ be finitely generated projective modules over a ring A, and k € Z, k > 0.
Prove that the A-modules P® P, P® P’, Hom (P, P'), P* = Homa(P, A), /\k P, p&k
are finitely generated projective, and that the ranks of these modules are given by

rank(P @ P') = rank(P) + rank(P’),
rank(P ® P') = rank(P) - rank(P’),
rank(Hom , (P, P')) = rank(P) - rank(P’),
rank(P*) = rank(P),
(N P) = ("),
rank(P®") = rank(P)"

rank

as functions on Spec A.

Let P be a finitely generated A-module such that for each p € Spec A the Ay,-module
P, is free of finite rank r(p), where r: Spec A — Z is continuous. Prove that P is
finitely generated projective.

Let P be a finitely generated module over a ring A. Prove that P is projective of rank 1
if and only if P is invertible, i.e., if and only if P ® @Q = A for some A-module Q. [Hint
for the “only if” part: take @ = P*/]

For aring A, let Pic(A) be the set of isomorphism classes of finitely generated projective
A-modules of rank 1. Prove that Pic(A) is an abelian group with operation ®4, the
Picard group of A. Express the function Homa(—, —): Pic(A) x Pic(A) — Pic(A) in
terms of the group operation.
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4.30 Let A be a ring. The group KA is defined by generators and relations. There is one
generator [P] for each finitely generated projective A-module P (up to isomorphism),
and one relation [P @& P'] = [P] + [P'] for each pair P, P' of such modules.

(a) Prove that [P] = [P'] if and only if P and P’ are stably isomorphic, i.e., if and
only if P @ A™ = P’ @ A™ for some n > 0.

(b) Prove that ®4 induces a multiplication on KyA that makes KyA into a commu-
tative ring with unit element [A].

(c¢) Show that there are group homomorphisms ¢: Pic(A) — (KpA)* and ¢: K¢A —
Pic(A) (the latter from an additive group to a multiplicative group) with ¢ =
idpic(a). [Hint: put ¢ ([P]) = A ) P to be defined in a suitable way if rank(P)
is non-constant.|

4.31 Let A be a ring, and HyA the ring of continuous functions Spec A — Z.

(a) Prove that rank: KgA — HpA is a ring homomorphism.

(b) Construct a ring homomorphism A\: HyA — KyA such that rank o A = idg, 4.

(c) Let KyA = ker). Prove that KgA = HyA @ KyA. Remark. Tt can be proved that
Ky A is the nilradical of KyA; see [4, Proposition 1X.4.6].

4.32 (a) Prove that KyA = 0 if A is a field, or a local ring, or a principal ideal domain, or
a semilocal ring (i.e., a ring with only finitely many maximal ideals).

(b) Prove that KyA = Pic(A) = CI(A), the ideal class group of A, if A is a Dedekind

domain.

4.33 Let A be a ring, B an A-algebra and P a projective A-module. Prove that P ® 4 B is
a projective B-module, and that the diagram

Spec B——— Spec A

rankpg (P ®4 B)\‘ AmkA(P)
Z

commutes if P is finitely generated.

4.34 Prove that any ring homomorphism f: A — B induces a ring homomorphism KyA —
KyB via — ®4 B, and that K is a functor.

4.35 Let P be a free A-module with basis wy, ws, . .., w,, and define w} € P* = Homa(P, A)
by wi(w;) =1 if i =j and w}(w;) =0 if i # j.

*

(a) Prove that P* is a free A-module with basis w}, w3, ..., w}.
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4.36

4.37

4.38

4.39

4.40

4.41

4.42

(b) Let f: P — P be A-linear, f(w;) = >, ajw; with a;; € A. Prove that ¢~'(f) =
Zi,j a;;w; ® w;, where ¢: P* ®4 P — Homu(P, P) is as in 4.8.
(c) Prove that the traces defined in 1.1 and 4.8 coincide.

Let A be aring, B an A-algebra and P a finitely generated projective A-module. Prove
that the diagram of natural maps

Enda(P) 292, Bnd (P o, B)
lTrP/A lTI"P@) AB/B
A B

is commutative.
Let A be a ring and P a finitely generated projective A-module.

(a) Suppose that P has constant rank n. Prove that Trp/a(idp) =n -1 € A.
(b) In the general case, prove that Trp/a(idp) is the image of rank(P) under the
natural map HopA — T'(Spec A, O) = A; here HyA is as in Exercise 4.31, the sheaf
O is the natural sheaf of rings on Spec A (see [10, Chapter II, Section 2]), the
map HyA — I'(Spec A, O) is induced by the ring homomorphisms Z — A,, and
['(Spec A, O) = A is the isomorphism from [10, Chapter II, Proposition 2.2].
Let A be aring, 0 - Py — P, — P, — 0 an exact sequence of A-modules in which
P, and P, are finitely generated projective, and g: P, — P; an A-linear map with
glPy] C Py. Denote by h the induced map P, — P,. Prove that P is finitely generated
projective and that Trp, /a(g) = Trp,a(g | Po) + Trp, a(h).

Let P and @ be two finitely generated projective A-modules, and f: P — @, g: Q — P
two A-linear maps. Prove that Trg/a(f o g) = Trp/a(g o f).

(a) Let P be a finitely generated projective A-module. Prove that the map ¢: End4(P)
— End 4 (P*) defined by ¥(f)(g) = go f is an anti-isomorphism of not necessarily
commutative rings, and that Trp. /4 (¢¥(f)) = Trp/a(f).

(b) Let f: P — P and g: Q — @ be endomorphisms of finitely generated projective
A-modules P and Q. Prove that Trpgg/a(f ® g) = Trpja(f) - Trga(g).

Let By, Bs,..., B, be algebras over a ring A. Prove that []}"_, B; is a finite projective
A-algebra if and only if each B; is a finite projective A-algebra.

Let A be a ring, B a finite projective A-algebra, and P a finitely generated projec-
tive B-module. Prove that P, when considered as an A-module, is finitely generated
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4.43

4.44
4.45

4.46

4.47

and projective. Prove also that the map Hom (B, A) ® g Homp(P, B) — Homa(P, A)
sending f ® g to f o g is surjective.

Let A be a ring, B a finite projective A-algebra, and C' a finite projective B-algebra.
Prove that C is a finite projective A-algebra. Can you express [C' : A] in terms of
[C': B] and [B : A]?

With A, B and C' as in the previous exercise, show that Trg/4 = Trg/a o Tre/p.

Let By, Bs,..., B, be algebras over a ring A. Prove that [[}"_, B; is a projective sepa-
rable A-algebra if and only if each B; is a projective separable A-algebra.

Let A be a ring, B a projective separable A-algebra and C' a projective separable B-
algebra. Prove that C' is a projective separable A-algebra. [Hint: use Exercises 4.42
and 4.44. In 5.12 we shall give a different proof.]

Let A be a ring, B a projective separable A-algebra and C' any A-algebra. Prove that
B ®4 C'is a projective separable C-algebra.
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5 Finite étale morphisms

In this section we treat the basic properties of finite étale morphisms, and we prove the Main
theorem 1.11.

5.1 Affine morphisms, locally free morphisms. Let f: Y — X be a morphism of
schemes. We call f affine if there is an open affine cover {U;} of X such that f~(U;) is
affine for each i or, equivalently, if f~1(U) is affine for every open affine U C X (see [10,
Chapter II, Exercise 5.17]). Notice that finite morphisms are affine. We call f finite and
locally free if there exists a covering of X by open affine subsets U; = Spec A;, such that
f~YU) = Spec B; is affine for each i, where B; is an A;-algebra that is finitely generated
and free as an A;-module.

5.2 Proposition. Let f: Y — X be a morphism of schemes. Then f is finite and locally
free if and only if for each open affine subset U = Spec A of X the open subscheme f~(U)
of Y is affine, f~1(U) = Spec B, where B is a finite projective A-algebra.

Proof. The “if” part is clear from Theorem 4.6(iii). To prove the “only if” part, assume that
f is finite and locally free, and let U = Spec A be open affine in X. Then f~!(U) = Spec B is
affine, since f is affine. As in the proof of [10, Chapter II, Proposition 3.2] there is a covering
of U by open affine subsets U; = Spec Ay, such that for each i we have f~*(U;) = Spec By,,
where By, is an Ay-algebra that is finitely generated and free as an Ajy-module. From
Theorem 4.6 it now follows that B is a finite projective A-algebra. This proves 5.2.

5.3 The degree. Let f: Y — X be a finite and locally free morphism of schemes. For
each open affine set U = Spec A in X, with f~}(U) = Spec B, there is a continuous rank
function [B : A] : U = Spec A — Z; see 4.9. Clearly, the functions belonging to different
U’s agree on their intersection, so they give rise to a continuous function sp(X) — Z, where
sp(X) denotes the underlying topological space of X. This function is called the degree of
Y over X, or of f, and is denoted by [V : X] or deg(f). For each integer n the set {z €
sp(X) : [Y : X](z) = n} is open and closed in X. If [Y : X] is constant, it is identified with
the unique integer in its image; this occurs, for example, if X is connected.

A morphism Y — X of schemes is called surjective if the map of the underlying topolog-
ical spaces is surjective.

5.4 Proposition. Let f: Y — X be a finite and locally free morphism of schemes. Then we
have:
(a) Y =0<[YV:X]=0;
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(b) Y — X is an isomorphism < [Y : X] = 1;
(¢) Y — X is surjective < [Y : X| > 1 < for every open affine subset U = Spec A of X
we have f~Y(U) = Spec B, where B is a faithfully projective A-algebra.

Proof. We may clearly assume that X = Spec A is affine. Then Y = Spec B for some
finite projective A-algebra B. Now (a) is trivial, (b) is the same as 4.10(c), and (c) reduces,
by 4.10(a), to the statement that Spec B — Spec A is surjective if and only if A — B is
injective. “If”: since B is finite over A, this immediately follows from [1, Theorem 5.10]. “Only
if”: if p € Spec A, and q € Spec B maps to p, then B, # 0 since By # 0, so [B : A|(p) # 0,
and A — B is injective by 4.10(a). This proves 5.4.

5.5 Finite étale morphisms. We recall from 1.4 that a morphism f: Y — X is called
finite étale if there is a covering of X by open affine sets U; = Spec A; such that for each ¢
the open subscheme f~1(U;) of Y is affine, f~!(U;) = Spec B;, where B; is a free separable
As-algebra. In particular we see that any finite étale morphism is finite and locally free.

5.6 Proposition. A morphism f:Y — X is finite étale if and only if for each open affine
subset U = Spec A of X the open subscheme f~(U) of Y is affine, f~1(U) = Spec B, where
B is a projective separable A-algebra.

Proof. Clear from 5.2 and the remark that the map ¢: B — Homa(B, A) from 4.13 is an
isomorphism if and only if the induced map B, — Homy,(B,, A,) is an isomorphism for
each p € Spec A (cf. Exercise 4.20). This proves 5.6.

We refer to Exercises 5.1-5.8 for further basic properties of finite locally free and finite étale
morphisms, in particular for the fact that these notions are stable under base extension
(Exercises 5.5(a) and 5.8).

5.7 Surjective, finite and locally free morphisms. The study of finite étale morphisms
is greatly simplified if we make base extensions W — X that are surjective, finite and locally
free, as we shall now see. For an affine description of such morphisms we refer to Exercise 5.9.

5.8 Proposition. Let f: Y — X be an affine morphism of schemes, and g: W — X a
morphism that is surjective, finite and locally free. Then' Y — X is finite étale if and only if
Y xx W — W is finite étale.

Proof. The “only if” part is correct for any W — X, by Exercises 5.5(a) and 5.8. To
prove the “if” part, let U = Spec A be an open affine part of X. Since f is affine we have
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f~YU) = Spec B for some A-algebra B. To prove that f is finite étale it suffices to show that
B is projective separable over A. By Exercise 5.9, we have ¢g~!(U) = Spec C for a faithfully
projective A-algebra C'. The inverse image of Spec C' under Y xx W — W is Spec B ®4 C,
by [10, Chapter II, proof of Theorem 3.3]. Since Y x x W — W is finite étale, Proposition 5.6
implies that B ® 4 C' is a projective separable C-algebra. From 4.14 it now follows that B is
a projective separable A-algebra. This proves 5.8.

5.9 Totally split morphisms. A morphism f: Y — X of schemes is called totally split if
X can be written as the disjoint union [10, Chapter II, Exercise 2.12] of schemes X,,, n € Z,
n > 0, such that for each n the scheme f~'(X,,) is isomorphic to the disjoint union of n
copies of X, with the natural morphism X, 11X, II---11.X,, — X,,. In many cases of interest
we have X = X, for a single n; this must happen, for example, if X is connected. Clearly a
totally split morphism is finite étale.

5.10 Theorem. Let f: Y — X be a morphism of schemes. Then f is finite étale if and only
if fis affine andY xx W — W is totally split for some W — X that is surjective, finite
and locally free.

Proof. The “if” part is immediate from 5.8. To prove the “only if” part, let f: YV — X
be finite étale, and first assume that [Y : X] = n is constant. We prove by induction
on n the existence of a surjective, finite and locally free morphism W — X such that
Y xx W — W is totally split. If n = 0 we can simply take W = X. Next suppose that
n > 0. We claim that the diagonal morphism Y — Y Xxx Y is both a closed immersion
and an open immersion. If X = Spec A is affine, then also Y = Spec B is affine, and
the splitting Spec B II SpecC = Spec B ®4 B implied by Proposition 4.16 proves our
claim. In the general case we cover X with open affine subsets U; = Spec A;, so that Y is
covered with open affine subsets f~1(U;) = Spec B; and Y x x Y with open affine subsets
Spec B; ®4, B;, by [10, Chapter II, proof of Theorem 3.3], and our claim follows. We can
now write Y X x Y = Y ITY". The second projection Y x x Y — Y is finite étale of degree n,
by Exercises 5.5 and 5.8. Since idy: Y — Y has rank 1, we see from Exercises 5.3 and 5.8
that the induced morphism Y’ — Y is finite étale of rank n — 1. Applying the induction
hypothesis we find a morphism W — Y that is surjective, finite and locally free such that
Y’ xy W — W is totally split. We show that the composed morphism W — Y — X now
satisfies our requirements. Since Y/ xy W — W and W =Y xy W — W are totally split, the
same is true for Y Xy W =Y Xx YV xy W = (YIIY') Xy W = (Y Xy W) II(Y' xy W) — W.
From [Y : X] > 1 it follows that Y — X is surjective, so W — X is also surjective. Finally,
W — X is finite and locally free by Exercise 5.6. This concludes the induction step, and
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finishes the proof of the existence of W in the case that the degree [Y : X] is constant.

In the general case we write X = [[2, X,,, where sp(X,,) = {z € sp(X) : [V : X](z) =
n}. Then Y, = f~}(X,) — X, is finite étale of constant degree n, for each n, so there
exist surjective, finite and locally free morphisms W,, — X,, for which Y, xx, W, — W,
is totally split. The combined morphism W = [[°2, W,, — [[°2, X, = X now satisfies our
requirements.

This proves 5.10.

5.11 The use of 5.10. Totally split morphisms of constant rank are the scheme theoretic
analog of trivial finite coverings of a topological space X, i.e., coverings of the form X x E —
X where F is a discrete finite set. Locally, every finite covering is trivial, and any morphism
between finite coverings is locally trivial as well (Lemma 3.8). This fact formed the basis of
our proof of the topological Theorem 1.15 in Section 3. In the case of schemes, finite étale
morphisms are only “locally trivial” if “locally” is understood in a suitable “Grothendieck
topology”: finite étale coverings become trivial (= totally split) after a base extension W —
X as in Theorem 5.10. Below we shall see that any morphism Y; — Y5 between totally
split morphisms Y; — X, Y5 — X is locally trivial in a sense analogous to Lemma 3.8; see
Lemma 5.14. These facts enable us to reduce many proofs to the case of “trivial” morphisms,
in which case straightforward verifications are usually sufficient.

As a first illustration of this technique we prove a result that can in fact be proved directly
from the definitions (see Exercises 4.46, 5.6 and 5.8).

5.12 Proposition. Let Z — Y and Y — X be finite étale morphisms of schemes. Then the
composed morphism Z — X is finite étale.

Proof. First assume that Y — X is totally split of constant degree: Y = X T X IT--- 11 X,
with n summands. Then Z = Z; 11 Z, 11 - - - 11 Z,,, where each Z; is finite étale (Exercises 5.4
and 5.8). By Exercises 5.4 and 5.8 also Z; [l Z, 11 --- 11 Z,, — X is finite étale, as required.

The case that Y — X is totally split of non-constant degree is immediately reduced to
the preceding case, again with Exercises 5.4 and 5.8.

In the general case one chooses W — X as in Theorem 5.10, so that ¥ xx W — W is
totally split. Since Z xx W — Y xx W is finite étale (Exercises 5.5(a) and 5.8), the result
already proved implies that Z x x W — W is finite étale. From Proposition 5.8 it now follows
that Z — X is finite étale. This proves 5.12.

5.13 Notation. If X is a scheme and E a finite set of cardinality n, we write X x E for
the disjoint union of n copies of X, one for each element of E; cf. Exercise 5.11. Any map
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¢: D — F of finite sets induces in a natural way a morphism X x D — X x E. The
morphisms X x D — X x E obtained in this way are easily seen to be finite étale; this
follows in fact from Exercises 5.3, 5.4, 5.8 and the remark that the identity morphism X x X
is finite étale.

The following lemma is analogous to Lemma 3.8.

5.14 Lemma. Let X,Y,Z be schemes, f:Y — X and g: Z — X totally split morphisms,
h:Y — Z a morphism with f = gh, and x € X. Then there exists an open affine neigh-
borhood U of x in X such that f, g and h are “trivial above U7, i.e., such that there exist
finite sets D and E, isomorphisms a: [~Y(U) — U x D and B: g/(U) — U x E, and a
map ¢: D — E such that the diagram

F ) h (V)
fRUxD dy x ¢ UxE‘/ﬁ g
/ idys \
U U

1s commutative; here U x D — U, U x E — U are the first projections, and U x D — U X E
1s the morphism induced by ¢.

Proof. Replacing X by a suitable open neighborhood of & we may assume that X = Spec A
is affine and that the totally split morphisms f and g are each of constant degree, so that
Y 5 X x D = SpecAP” and Z = X x E = Spec AF for certain finite sets D and E
(cf. Exercise 5.11(c)). It must be shown that the A-algebra homomorphism ¢: AF — AP
corresponding to h: Y — Z is induced by a map ¢: D — FE, at least above an open affine
neighborhood U of x. Since the local ring A, has no non-trivial idempotents (Exercise 2.23(a))
it follows from Exercise 5.11(d) that the local map v,: A — AP is induced by a map
¢: D — E. Hence v and the map ¢*: A¥ — AP induced by ¢ have the same image in
Hom4(A¥ AP), = Homa, (AZ, AD) (Exercise 4.20). It follows that ¢ and ¢* yield the same
map A[l/a]” — A[1/a]” for some a € A not belonging to the prime ideal corresponding to
x. The open neighborhood U = Spec A[1/a] of z in Spec A now satisfies our requirements.
This proves Lemma 5.14.

Remark. In a completely analogous way one proves that any x € X has an open neighbor-
hood U such that each of a given finite set of morphisms between totally split schemes over
X is trivial above U, in a sense that is made precise in Exercise 5.12.
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The first important consequence of Lemma 5.14 is that morphisms between finite étale
coverings are finite étale as well.

5.15 Proposition. Let f: Y — X and g: Z — X be finite étale morphisms of schemes,
and h:Y — Z a morphism with f = gh. Then h is finite étale.

Proof. If f and g are totally split the assertion follows from Lemma 5.14, since any morphism
UxD — U x E induced by a map D — F is finite étale, as we remarked in 5.13. In the
general case we choose surjective, finite and locally free morphisms W, — X, Wy, — X such
that Y xx W7 — Wi and Z x x Wy — W,y are totally split. Then W = Wy xx Wy — W is
also surjective, finite and locally free (Exercise 5.7), and Y xx W — W, Z xx W — W
are totally split. Hence by the case already dealt with, Y xx W — Z xx W is finite étale.
But Z xx W — Z is surjective, finite and locally free (Exercise 5.5), and Y xx W =
Y Xz (Z xx W), so applying Proposition 5.8 with Z xx W and Z in the roles of W and X
we conclude that Y — Z is finite étale; here we use that Y — Z is affine (Exercise 5.13).
This proves 5.15.

5.16 Proposition. Let f: Y — X, g: Z — X be finite étale and h:Y — Z a morphism
with f = gh. Then h is an epimorphism in FEtx if and only if h is surjective.

Proof. “Only if”. By 5.15, the morphism £ is finite and locally free, so Zy = {z € Z :
Y : Z](z) = 0} is open and closed in Z (see 5.3), and Z = Z, Il Z; where Z, = Z — Z,.
We have h™1(Zy) = 0, by 5.4(a), and h: Y — Z; is surjective by 5.4(c). The compositions
of h with the two natural morphisms 7 = Zy Il Z; = Zy I Zy 11 Z; are the same, so if h
is an epimorphism these two natural morphisms must be the same. Then Zy; = () and h is
surjective, as required.

“If”. Suppose that h is surjective and that p,q: Z — W are morphisms with ph = ¢h,
with W finite étale over X. We have to prove that p = ¢, and this can be checked locally, so
we may assume that X = Spec A is affine. Then Y = Spec B, Z = Spec C, and W = Spec D
are also affine, and p, ¢, h correspond to maps D = C' — B giving the same map D — B.
The surjectivity of h implies that [B : C] > 1 (see 5.4(c)), hence that C' — B is injective
(see 4.10(a)). Therefore the two maps D =2 C' are the same, and p = gq.

This proves 5.16.

5.17 Proposition. Let f: Y — X, ¢g: Z — X be finite étale and h: Y — Z a morphism
with f = gh. Then h is a monomorphism in FEtx if and only if h is both an open immersion
and a closed immersion.
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Proof. The “if”-part is trivial (see Exercise 5.14). Conversely, assume that h: Y — Z is a
monomorphism. Then the first projection Y X 7Y — Y is an isomorphism (Exercise 3.15(a));
here it should be noted that Y xz Y is finite étale over Z (Exercises 5.7(a) and 5.8) and
hence over X (Proposition 5.12). If U = Spec A C X is open affine, and f~!(U) = Spec B,
g1 (U) = Spec O, this yields an isomorphism B = B®¢ B sending b to b® 1, s0 [B: C] < 1
by 4.10(b). This proves that [Y : Z] < 1. Putting Z, = {z € Z : [Y : Z](z) = n} we
therefore have Z = Z, 11 Z;, and from 5.4(a), (b) we see that h™*(Zy) =0, h: Y = Z;. This
proves 5.17.

5.18 Quotients under group actions. For a scheme X, let Affx be the category of affine
morphisms Y — X (see 5.1), a morphism between affine morphisms being defined as in 1.6.
We show that in Affx quotients under finite groups of automorphisms exist. To do this, it is
convenient to replace Affx by the anti-equivalent category of quasi-coherent sheaves of Ox-
algebras [10, Chapter II, Exercise 5.17]. So let A be a quasi-coherent sheaf of Ox-algebras,
and G a finite group of automorphisms of A. For any open subset U C X the set A(U)Y
of G-invariants of A(U) is a sub-Ox(U)-algebra of A(U), and it is the kernel of the map
A(U) = @, AU) sending a € A(U) to (0(a) — a)sec € P, AU). Using [10, Chapter
I1, Proposition 5.7] we conclude that the assignment U +— A(U)¢ is a quasi-coherent sheaf of
Ox-algebras. We denote this sheaf by AY. It is straightforward to check that any morphism
f: B — A of quasi-coherent sheaf Ox-algebras satisfying o o f = f for all ¢ € G factors
uniquely via the inclusion morphism A“ — A. For the anti-equivalent category Affy this
implies that for any affine morphism f: Y — X and any finite group G of automorphisms
of Y — X in Affx the quotient g: Y/G — X exists in Affx. The construction makes it also
clear that for any open set U C X we have ¢~ }(U) = f~1(U)/G; and if U = Spec A is open
affine, f~1(U) = Spec B, then g~'(U) = Spec BC.

It is now our purpose to show that Y/G — X is finite étale if Y — X is finite étale. To do
this we need the following auxiliary result.

5.19 Proposition. Let Y — X be an affine morphism, G a finite group of automorphisms
of Y = X in Affx, and W — X a finite and locally free morphism. Then (Y xx W)/G =

Proof. It is easy to see that Y xx W — W is affine, and that GG induces a finite group of
automorphisms of Y x x W — W in Affyy, so the quotient (Y x xW)/G — W is well-defined.
The morphism g: Y xx W — (Y/G) xx W induced by the natural morphism ¥ — Y/G
satisfies goo = g for all 0 € G, so it gives rise to a morphism (Y xx W) /G — (Y/G) xx W.
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We claim that this is an isomorphism. This can be checked locally, so we may assume that
X = Spec A is affine. Then Y = Spec B and W = Spec C are affine as well, and C'is a finite
projective A-algebra. It must be proved that the natural map BY ® 4 C — (B ®4 O)¢ is an
isomorphism. The sequence 0 — B¢ — B — B, B of A-modules, in which the last map
sends b € B to (a(b) —b)seq, is exact, so by the flatness of C' (see 4.3) it gives rise to an exact
sequence 0 — B ®,C — B, C — @,_. B®4 C. This shows B ®, C = (B ®, C)°,
as required. This proves 5.19.

ceG

5.20 Proposition. Let Y — X be a finite étale morphism of schemes, and G a finite group
of automorphisms of Y — X in FEtx. Then the quotient Y/G — X of Y — X under G
exists in FEtx.

Proof. Since finite morphisms are affine, the quotient g: Y/G — X exists in Aff x. It suffices
to show that Y/G — X is in fact finite étale.

Let it first be assumed that f: Y — X is totally split. By the remark following Lemma 5.14,
the space X is covered by open sets U above which both f~1(U) — U and the action of G
on f~1(U) are trivial; that is, we can identify f~!(U) with U x D for some finite set D, such
that the action of G on U x D is induced by an action of G on D. Denote by D/G the set
of orbits of D under G. Then it is readily checked that U x (D/G) is a quotient of U x D
under G in Affy, so U x (D/G) = f~Y(U)/G. Hence U x (D/G) = g~ (U), s0o g (U) - U
is finite étale. This implies that g: Y/G — X is finite étale.

In the general case we choose a surjective, finite and locally free morphism W — X for
which Y x x W — W is totally split. Then (Y x x W)/G — W is finite étale by the result just
proved, and (Y xx W)/G = (Y/G) xx W by 5.19. From 5.8 it now follows that Y/G — X
is finite étale. This proves 5.20.

5.21 Proposition. Let Y — X be a finite étale morphism, G a finite group of automor-
phisms of Y — X in FEtx, and Z — X any morphism of schemes. Then (Y xx Z)/G =
(Y/G) Xx Z in FEtZ

Proof. As in the proof of 5.19 we have a morphism (Y xx Z)/G — (Y/G) xx Z. We first
prove that this is an isomorphism if Y = X x D for some finite set D, the action of GG being
induced by an action of G on D. Then Y xx Z =2 Z x D, and (Y xx Z)/G and (Y/G) xx Z
are both isomorphic to Z x (D/G) (cf. the proof of 5.20), as required. Next we consider
the case that Y — X is totally split. Then X can be covered by open sets U above which
both Y — X and the action of GG are trivial, as in the proof of 5.20. Hence by the case just
dealt with, the morphism (Y xx Z)/G — (Y/G) x x Z is locally an isomorphism, so it is an
isomorphism.
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In the general case we choose a surjective, finite and locally free morphism W — X
for which Yy, — W is totally split; here we write —y for — xx W. Then the above result
implies (Y xw Zw)/G = (Yw/G) xw Zw. Here Yiy xw Zw = (Y xx Z) xz W, where
Wy, =W xx Z — Z is surjective, finite and locally free (Exercise 5.5). Hence by 5.19 we
have (Yo xw Zw)/G = (Y xx Z)/G) xz W. Again by 5.19 we have Yy /G = (Y/G)w, so
(Yw/G) xw Zw = (Y/G)w xw Zw = ((Y/G) X x Z) x s Wz. We conclude that the morphism
(Y xx Z)/G — (Y/G) xx Z becomes an isomorphism after — x, Wy. By Exercises 5.9
and 4.25 it follows that it was already an isomorphism. This proves 5.21.

5.22 Finite étale morphisms: verification of the first three axioms. Let X be a
scheme. We show that the category FEtx of finite étale coverings of X satisfies the axioms
G1, G2, G3 of 3.1.

(G1) The identity morphism X — X is clearly a terminal object in FEtyx. If Y —
W « Z are morphisms of finite étale coverings of X, then Y xy Z — W is finite étale by
Exercises 5.7(a) and 5.8, and Y Xy Z — X is finite étale by Proposition 5.12. Hence fibred
products exist in FEtx.

(G2) If Y; — X is finite étale for 1 < i <mn, then [[;_, ¥; — X is finite étale (Exercises 5.3
and 5.8). Hence finite sums exist in FEtx. In particular, ) — X is an initial object. By
Proposition 5.20, quotients under finite groups of automorphisms exist.

(G3) Let h: Y — Z be a morphism of finite coverings of X. As in the proof of 5.16
we can write Z = Z II Z;, where the subschemes Zy = {z € Z : [V : Z](z) = 0} and
Zy = Z — Zy are open and closed in Z. Then h™!'(Zy) = ), and h factors as Y — Z; — Z.
Here Y — Z; is surjective, hence an epimorphism (Proposition 5.16), and Z; — Zy11 2, = Z
is a monomorphism by Proposition 5.17. This proves that any morphism in FEtyx is an
epimorphism followed by a monomorphism. Further, by Proposition 5.17 any monomorphism
is an isomorphism with a direct summand.

5.23 Finite étale morphisms; the fundamental functor. A geometric point of a scheme
X is a morphism z: Spec {2 — X, where () is an algebraically closed field. Geometric points
exist if X is non-empty (Exercise 5.18), in particular if X is connected. Let X be a scheme
and z: Spec{) — X a geometric point of X. I[f Y — X is finite étale then sois Y X x Spec ) —
Spec 2, by Exercises 5.5(a) and 5.8. This gives rise to a functor H,: FEtx — FEtg,..q with
H.(Y) =Y xxSpec . The absolute Galois group (see 2.4) of € is trivial, so by Theorem 2.9
and the remark following that theorem there is an equivalence of categories J: FEtgpecq —
sets. Let I, = J o H, denote the composed functor FEty — sets; see Exercise 5.19 for
an explicit description of F,. We prove that F) satisfies axioms G4 and G5 of 3.1, and if X
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is connected also axiom G6. Since J is an equivalence we may replace F, by H, in each of
these axioms.

(G4) Clearly, H, transforms the terminal object X — X of FEtx into the terminal object
Spec () — Spec Q) of FEtgpecq. Also H, = — X x Spec {2 commutes with fibred products, since
this is true for any base change.

(G5) Any base change trivially commutes with finite sums, transforms epimorphisms in
epimorphisms by Exercise 5.5(c) and Proposition 5.16, and commutes with passage to the
quotient by a finite group of automorphisms by Proposition 5.21. This applies in particular
to H, = — X x Spec ().

(G6) Let it now be assumed that X is connected. Then for any finite étale covering
Y — X the degree [Y : X]| is constant (see 5.3). By Exercise 5.5(b) we have [Y : X] =
[H,(Y) : Spec€]. Further we see from the proof of Theorem 2.9 that the anti-equivalence
oSAlg — sets sends a separable (2-algebra of rank n over €2 to a set of cardinality n.
Combining this we conclude that #F,(Y) = [Y : X] for any finite étale covering Y — X.

To prove (G6), let h: Y — Z be a morphism for which F,(h): F,(Y) — F.(Z) is
bijective. We wish to prove that h is an isomorphism. Factor Y — Z as in the proof of (G3)
intoY — 7y — Zy11Zy = Z, where Y — Zj is surjective. Since F}(h) is an isomorphism and
F, commutes with finite sums, the map F,(Z1) — F,(Z) = F,(Zy) Il F,(Z;) is surjective.
Therefore F,(Zy) = 0, so [Zy : X] =0, and Z, = () by Proposition (5.4)(a). Hence Z; = Z,
and Y — Z is surjective. Also [Y : X| = #F,(Y) = #F.(Z) = [Z : X], and from Exercise
5.20 it now follows that Y — Z is an isomorphism.

5.24 Theorem. Let X be a connected scheme, x a geometric point of X, and F,: FEtx —
sets as defined in 5.23. Then FEtx is a Galois category with fundamental functor F,.

Proof. This was done in 5.22 and 5.23. This proves 5.24.

5.25 Proof of the Main theorem 1.11. It is straightforward to verify that FEty is an
essentially small category for any scheme X. From Theorems 3.5(a) and 5.24 it thus follows
that for connected X the category FEty is equivalent to m-sets for some profinite group 7.
The uniqueness of 7 follows from 3.5(d).

This finishes the proof of the main theorem.

5.26 The fundamental group. For X, z, F, as in Theorem 5.24 we write 7(X,z) =
Aut(F,), the fundamental group of X in x, see 3.6. We show that this is a functor on the
category S whose objects are pairs (X, z) with X a connected scheme and = a geometric
point of X, a morphism (X’ z’') — (X, x) being a morphism f: X’ — X of schemes for
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which fox’ = x. If f is such a morphism, then the functor G = — xx X': FEty — FEtyx/
satisfies Fiy oG = F, (canonically), so from Theorems 5.24 and 3.20 we see that a continuous

group homomorphism 7(X’,z') — m(X,z) is induced. It follows that 7(—, —) is a functor

from S to the category of profinite groups.

Exercises for Section 5

5.1

5.2

5.3

5.4

5.5

Let X be a scheme and d: X — Z any continuous function that assumes only non-
negative values. Prove that there is a finite and locally free morphism Y — X such
that d = [V : X].

Let Y — X be a finite and locally free morphism. Prove that the underlying map
sp(Y) — sp(X) is open and closed.

Let Y; — X be a morphism of schemes, for 1 <i<n,andY =Y, IIY,II.---11Y,, — X
the induced morphism. Prove that Y — X is finite and locally free if and only if each
Y; — X is finite and locally free. Prove also that [V : X] =>"" [V;: X]if Y — X is
finite and locally free.

Let (X;)iesr be a collection of schemes, and Y; — X; a finite and locally free morphism,
for each i € I. Prove that the induced morphism [[,.; Y; — [[;c; Xi is finite and locally
;er Xi 1s obtained in this
X;] equals [Y; : X;| when restricted to sp(X;), for

free, and that each finite and locally free morphism Y — []

way. Prove also that [[[,.,Yi: ]
each 5 € I.

i€l

Let Y — X be a finite and locally free morphism of schemes, and let W — X be any
morphism of schemes.

(a) Prove that Y xx W — W is finite and locally free.
(b) Prove that the diagram

sp(W) ——sp(X)
]

[YXXW:W\ ;/[Y:X]
Z

1S commutative.

(c) Suppose that Y — X is surjective. Prove that Y xx W — W is surjective.
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5.6

5.7

5.8
5.9

5.10

5.11

5.12

Suppose that Z — Y and Y — X are finite and locally free morphisms of schemes.
Prove that the composed morphism Z — X is finite and locally free.

Let Y — X and Z — X be finite and locally free morphisms of schemes.

(a) Prove that Y xx Z — X is finite and locally free.
(b) Prove that [Y xx Z: X]=[Y : X]-[Z: X].
(c) Prove that Y xx Z — X is surjective if Y — X and Z — X are surjective.

Do Exercises 5.1-5.7 with everywhere “finite and locally free” replaced by “finite étale”.

Prove that a morphism Y — X is surjective, finite and locally free if and only if for
each open affine subset U = Spec A of X the open subscheme f~1(U) of Y is affine,
f~1(U) = Spec B, where B is a faithfully projective A-algebra (see 4.11).

Let Y — X be a finite étale morphism of schemes, and let W — X be the surjective,
finite and locally free morphism constructed in the proof of 5.10 for which Y x xW — W
is totally split. Prove that W — X is finite étale, and express [W : X] in terms of
Y : X].

If F is a finite set and A is a ring, we write A® for the ring of functions £ — A, with
pointwise addition and multiplication.

(a) For a scheme X and a finite set E, prove that X x F = X Xgpecz (Spec ZF) (see
5.13 for the definition of X x E).

(b) Let X,Y be schemes and F a finite set. Prove that there is a bijection, natural in
X, Y and E, from the set Mor(X x E,Y’) of morphisms X x F — Y of schemes
to the set of maps £ — Mor(X,Y).

(c) For a ring A and a finite set E, prove that (Spec A) x E = Spec A%,

(d) Suppose that A is a ring that has no non-trivial idempotents, and let E, D be
finite sets. Prove that any A-algebra homomorphism A® — AP is induced by a
map D — E.

Let D = (V, E,s,t) be a directed graph as in Exercise 3.1, and suppose that V' and
E are finite. Let further X be a scheme, and let a D-diagram in the category of
totally split schemes over X be given; more precisely, let for each v € V' a totally split
morphism f,: Y, — X be given, and for each a € £/ a morphism h,: Y gy — Y with
freyhe = fs(e)- Prove that any x € X has an open affine neighborhood U such that the
diagram is trivial above U, in the sense that there exist finite sets C,, for v € V', maps
Pe: Csey — Cie), for e € E, and isomorphisms «,: f,*(U) = U x C, such that for
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each e € I the diagram

fao(U) fro(U)
as(e)\x ;/ozt(e)
fs(e) U x Cy(e) ————U x Cye f(e)
/ idy \
U U

is commutative; here U x Cy) — U, U x Cye) — U are the first projections, and
U x Cye) — U x Cye is the morphism induced by ¢..

5.13 Let Y — Z — X be morphisms of schemes such that Z — X and the composed
morphism Y — X are affine. Prove that Y — 7 is affine.

5.14 Prove that an open immersion is a monomorphism in the category of all schemes.

5.15 Let f: Y — X, ¢g: Z — X be finite étale and h: Y — Z a morphism with f = gh.
Prove:
(a) h is an epimorphism in FEtx if and only if [Y : Z] > 1,
(b) his a monomorphism in FEtx if and only if [Y : Z] < 1;
(c) his an isomorphism if and only if it is both an epimorphism and a monomorphism
in FEty.

5.16 Let X be a connected scheme, and let Y — X be finite étale. Prove that Y — X is a
connected object of the category FEty, in the sense of 3.12, if and only if sp(Y') is a
connected topological space.

5.17 Let Y — X be an affine morphism, and G a finite group of automorphisms of ¥ — X
in Affy, as in 5.18. Prove that sp(Y/G) is homeomorphic to the orbit space sp(Y)/G
with the quotient topology.

5.18 Let X be a scheme. Show that giving a geometric point of X is equivalent to giving a
point y € X together with a field homomorphism k(y) — € from the residue field at
y to an algebraically closed field €).

5.19 Let X be a scheme and = a geometric point of X. Show that the functor F,: FEtxy —
sets defined in 5.23 is naturally equivalent to the functor that sends a covering f: Y —
X to the set {y: SpecQ) — Y : fy = x}. [Hint: use the explicit description of the anti-
equivalence oSAlg — sets from the proof of 2.9.]
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5.20

5.21

5.22

5.23

Let f: Y — X, g: Z — X be finite étale with [Y : X] = [Z : X]|, and suppose that
h:Y — Z is a surjective morphism with f = gh. Prove that h is an isomorphism.
[Hint: apply 5.14 if f and ¢ are totally split, and make a surjective, finite and locally
free base change in the general case.]

Let f: Y — X be finite étale with X connected. Prove that W — X in 5.10 can be
chosen to be finite étale and connected, of degree dividing [Y : XL

Let X be a scheme, with underlying topological space sp X.

(a) Denote by C the category of all morphisms f: Y — X that are locally totally split,
i.e., for which every z € X has an open neighborhood U such that f~(U) — U
is totally split (5.9). Prove that C is equivalent to the category of finite coverings
of sp X.

(b) Suppose that X is connected, and let 7(sp X) be as in 1.15. Prove that there is a
continuous surjective group homomorphism 7(X) — 7(sp X).

Let X be an irreducible scheme. Prove that every morphism f:Y — X of schemes
that is locally totally split (Exercise 5.22(a)) is totally split.
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6 Complements

In the preceding sections we studied finite étale morphisms, but the notion of an étale
morphism has not even been defined. We shall give this definition in the present section, and
we shall prove, for locally noetherian X, that a morphism Y — X is finite étale if and only
if it is finite and étale. For general X something stronger than finite is needed, see 6.4.

To define étale morphisms we have to define flat morphisms and unramified morphisms.
We only treat those properties of these notions that we need. For a more systematic treatment
of flat morphisms, unramified morphisms and étale morphisms we refer to [9; 20].

Similarly, we considered projective separable algebras, but a separable algebra has not
been defined. We give the definition in 6.10, and we prove that an algebra is projective
separable if and only if it is projective as a module and separable. For more information on
separable algebras, even non-commutative ones, we refer to [7].

In Theorem 6.13 we describe the finite étale coverings of a normal integral scheme. This is
applied to the calculation of w(X), where X = Spec A for a Dedekind domain A or X = Pk
or AL for a field K.

For more techniques to calculate the fundamental group we refer to [9] and [22]. A
particularly lucid exposition, without proofs, is found in [20, Chapter I, Section 5].

6.1 Flat morphisms. A ring homomorphism f: A — B is called flat if B is flat (see 4.3)
when regarded as an A-module via f. A morphism f: Y — X of schemes is called flat if for
every y € Y the induced ring homomorphism Ox ¢« — Oy, is flat.

6.2 Proposition. Let f: A — B be a ring homomorphism. Then the following four asser-
tions are equivalent:
(i) f is flat;
(ii) for every prime ideal q of B the induced map Ay — By is flat;
(iii) the induced morphism Spec B — Spec A is flat;
(iv) for every mazimal ideal n of B the induced map Ap-1jy) — By is flat.

Proof. (i)=(ii) Let ¢ C B be a prime ideal, p = f~![q C Aand S=A—p. If A — B is
flat, then so is A4, = S™*A — S™!'B, by [1, 2.20], and since S™'B — B, is flat [1, 3.6], this
shows that (i) implies (ii).

(ii)=-(iii) This is true by definition.

(ii)=-(iv) Obvious.

(iv)=-(i) To prove that A — B is flat it suffices to prove that for any injective map
M — N of A-modules the induced map M ®4 B — N ®4 B is injective [1, 2.19]. So let
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M — N be injective. Then for any maximal ideal n of B the map M@ Ap-1py — N@aAp-1py
is injective by flatness of A — A;-1y. By (iv) it follows that M ®4 B, — N ®4 B, is injective
for any n. Since B — B, is flat, this implies that the kernel K of M ® 4 B — N ® 4 B satisfies
K ®p B, = 0 for all maximal ideals n of B. Therefore K = 0, as required.

This proves 6.2.

6.3 Proposition. Let f: Y — X be a morphism of schemes. Then the following four
assertions are equivalent:
(i) f is flat;

(ii) for any pair of open affine subsets V.= Spec B C' Y, U = Spec A C X with f[V] C U
the induced ring homomorphism A — B is flat;

(iii) there is a covering of Y by open affine subsets V; = Spec B; such that for each i there
is an open affine subset U; = Spec A; C X with f[V;] C U; for which the induced ring
homomorphism A; — B; is flat;

(iv) for every closed point y € Y the induced ring homomorphism Ox sy — Oy, is flat.

Proof. This is a straightforward consequence of 6.2. We leave the proof to the reader.

6.4 Finitely presented morphisms. Let f: Y — X be a morphism of schemes. We recall
[10, Chapter II, Section 3] that f is called finite if there exists a covering of X by open
affine subsets U; = Spec A; such that for each i the open subscheme f~(U;) of YV is affine,
f~YU;) = Spec B;, where B; is an A;-algebra that is finitely generated as an A;-module.
Replacing “finitely generated” by “finitely presented” (see 4.6) we obtain the definition of a
finitely presented morphism; see Exercise 6.3 for an equivalent definition.

Over a noetherian ring, every finitely generated module is finitely presented. Hence if X
is locally noetherian, “finitely presented” is the same as “finite”.

Warning. Since in most of the literature on the subject all schemes are supposed to be
locally noetherian, the above terminology is not commonly used, and if it is used it does not
necessarily refer to the same notion.

We shall prove that, for finitely presented morphisms, “flat” is equivalent to “locally
free”. We need a lemma.

6.5 Lemma. Let P be a module over a ring A. Then P is finitely generated and projective
if and only if P is finitely presented and flat.

Proof. The “only if”-part we know from Section 4 (see 4.6(ii) and 4.3). To prove the
“if 7-part, let first P be a finitely presented A-module and M a flat A-module, and write
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P* = Homu(P, A). We claim that the map
¢: P*®4 M — Homu (P, M)

defined in 4.8 by ¢(f ® m)(p) = f(p)m, is an isomorphism. If P = A™ for some n < oo this
is clear, as in 4.8. In the general case one chooses an exact sequence

A" - A" - P —0

with m,n < oo, and one considers the commutative diagram

0 — P QUM ——A" QUM —A™" Q. M

} | }

0 —>HOH1A(P, M) —>HOIHA(An, M)—)-HOH]A(Am,M)

The first row is exact since the functor —* = Hom(—, A) is left exact and M is flat, and
the second row is exact since Hom(—, M) is left exact. We have just seen that the last two
vertical arrows are isomorphisms. Hence the remaining vertical arrow is also an isomorphism.
This proves our claim.

Let now P be finitely presented and flat. Applying the above result to M = P we find
an element

t
Zfi®p¢€P*®AP
i=1

such that ¢ (Zzzl fi ® p;i) =idp, ie.,

t
Zfi(ff)pi =g forall ze€P
i=1

Hence the A-linear maps

frP— AL f(x) = (fi(z))iz,

t

g: A = P glla)) = Y a

=1

satisfy ¢gf = idp, so ¢ is surjective and the sequence 0 — kerg — A — P — 0 splits.
Therefore P is finitely generated projective. This proves 6.5.

Remark. Finitely generated flat modules need not be projective: see Exercise 6.5(b).
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6.6 Proposition. Let f: Y — X be a morphism of schemes. Then f is finite and locally
free if and only if it is finitely presented (as in 6.4) and flat.

Proof. This is clear from Proposition 5.2, Exercise 6.3 and Lemma 6.5. This proves 6.6.

6.7 Unramified morphisms. Let f: Y — X be a morphism that is locally of finite type
[10, Chapter II, Section 3|, and y € Y. The morphism f is said to be unramified at y if
Oy, /m;Oy,, is a finite separable field extension of Ox,/m,, where z = f(y) € X. See
Exercise 6.6 for a reformulation of this definition for affine schemes, and Exercise 6.7 for the
relation to number theory.

A morphism f: Y — X issaid to be unramified if it is locally of finite type and unramified
at ally e Y.

6.8 Etale morphisms. A morphism f: Y — X issaid to be étale ifit is flat and unramified.

6.9 Proposition. A morphism f:Y — X of schemes is finite étale (see 1.4) if and only if
it is finitely presented (see 6.4) and étale (see 6.8).

Remark. It follows that, for X locally noetherian, finite étale is equivalent to finite and
étale. This is not true in general, see Exercise 6.8.

Proof of 6.9. By 6.6, finitely presented and étale is equivalent to finite and locally free and
unramified. Since finite étale morphisms are also finite and locally free, and all notions are
local on X, it suffices to prove the following assertion. Let B be an algebra over a ring A,
and suppose that B is finitely generated and free as an A-module. Then B is separable over
A (see 1.2) if and only if Spec B — Spec A is unramified.

First we reduce the problem to the case that A is a field. By definition, B is separable
over A if and only if the map ¢: B — Homy(B, A) defined in 1.2 is an isomorphism. Using
Exercises 4.36 and 6.9 one sees that this is the case if and only if for each p € Spec A the
analogously defined map B ®4 k(p) — Homy,) (B @4 k(p), k(p)) is an isomorphism, where
k(p) denotes the residue class field of p; in other words, if and only if B ®4 k(p) is separable
over k(p) for every p € Spec A.

Likewise, it is straightforward to see from the definition that Spec B — Spec A is unram-
ified if and only if Spec B ®4 k(p) — Spec k(p) is unramified for every p € Spec A. Thus the
problem has now been reduced to the case that A is a field.

Let A be a field. Then we can write B = Hle B;, where each B; is a local ring with a
nilpotent maximal ideal (Theorem 2.6). It is easy to see that the B; are in fact the localiza-
tions of B at all q € Spec B. Hence from 6.7 we see that Spec B — Spec A is unramified if
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and only if each B; is a finite separable field extension of A. By 2.7, this is equivalent to B
being separable over A, as required.
This proves 6.9.

The above proposition shows that our notion of “finite étale” agrees with the one found in
the literature [20].

6.10 Separable algebras. Let A be a ring and B an A-algebra. The ring homomorphism
B®4 B — B sending r ® y to zy makes B into a B ® 4 B-algebra and hence into a B® 4 B-
module. The A-algebra B is said to be separable if B is projective as a B ® 4 B-module.

6.11 Proposition. Let B be an algebra over a ring A. Then B is projective separable
(see 4.13) over A if and only if B is projective as an A-module and separable as an A-algebra

(see 6.10).

Proof. “Only if”. Let B be projective separable over A . Then B is projective as an A-
module by definition. Further, the isomorphism B®4 B = B x C' from 4.16 shows that B is
projective as a B ® 4 B-module, so separable as an A-algebra.

“If”. Assume that B is projective as an A-module and separable as an A-algebra. First
we show that B is finitely generated as an A-module.

Since B is projective over B ®4 B, there is a B ® 4 B-linear map f: B — B ®4 B for
which the composed map B — B®4 B — B is the identity on B. Let e = f(1). Writing e as
a finite sum of elements of the form = ® y, with z,y € B, we see that there exists a finitely
generated sub-A-module N of B such that e € image(N ® N — B ® B).

Because B is projective as an A-module we can embed B as a direct summand in a free
A-module F'. Then B ® B is a direct summand of F' ® F. Since N is finitely generated, we
can select a finitely generated free direct summand M of F' with N C M. Then e, considered
as an element of F' ® F', belongs to M ® M; we show that in fact the whole image of f is
contained in M ® M.

Let b€ B. Then f(b) = f(b®1)-1)=(b®1)-ec (B®1)-image(N®@N — B® B) =
image(B® N — B ® B) C F ® M. Similarly we have f(b) € M ® F. But M is a direct
summand of F', so f(b) e (FQM)N (MR F)=M® M.

This proves that f[B] C M ® M. It follows that the composite of the natural maps
MM — F®F — B® B — B is surjective. Since M ® M is finitely generated as an
A-module this implies that B is finitely generated as well.

To finish the proof of 6.11 we must now show that B is separable over A in the sense
of 4.13. We briefly indicate two different ways of doing this, leaving the details to the reader.
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As in the proof of 6.9 we may assume that A is a field, using Exercise 6.11. Next, using
Theorem 2.7, we may assume that A is algebraically closed and, using Theorem 2.6 and
Exercise 6.12, that B is a local ring. Then B ®,4 B is also a local ring (Exercise 6.13), so the
projective B ® 4 B-module B is free (Proposition 4.5). Calculating dimensions over A one
finds that B = A, as required.

The second method follows the lines of the proof of Theorem 5.10. First one reduces the
problem to the case that B has constant rank (cf. Exercise 4.24) and one argues by induction
on the rank. The hypothesis that B is B® 4 B-projective leads to a splitting B&4 B = BxC
as in Proposition 4.16, where C' is a separable B-algebra (by Exercises 6.11, 6.12). By the
induction hypothesis, C'is a projective separable B-algebra, so the same is true for B ®4 B.
One can now apply 4.14 to conclude the proof.

This proves 6.11.

Proposition 6.11 shows that our terminology agrees with the terminology used in the
literature [7].

6.12 Normal integral schemes. Recall that a scheme is normal if all of its local rings are
integrally closed domains.

Let X be a normal integral scheme. We shall describe all finite étale coverings ¥ — X
of X. Any such Y can be written, in a unique way, as the disjoint union of finitely many
connected schemes Y;, where each Y; — X is finite étale (see 3.12 and Exercise 5.16). It will
therefore suffice to describe all finite étale coverings Y — X that are connected.

Denote by K the function field of X [10, Chapter II, Exercise 3.6]. Then Ox(U) may
be considered as a subring of K, for every nonempty open set U C X. Let L be a finite
separable field extension of K. For an open set U C X, U # (), let A(U) be the integral
closure of Ox(U) in L and A(0) = {0}. It is readily verified that A is a quasi-coherent
sheaf of Ox-algebras. By [10, Chapter II, Exercise 5.17] it therefore gives rise to an affine
morphism Y — X with Y = Spec A. The scheme Y is called the normalization of X in L.
We say that X is unramified in L if Y — X is unramified (see 6.7).

6.13 Theorem. Let X be a normal integral scheme with function field K, and let L be a
finite separable field extension of K such that X is unramified in L. Then the normalization
of X in L is a connected finite étale covering of X. Moreover every connected finite étale
covering of X arises in this way.

Proof. We first prove the last statement of the theorem, asserting that every connected
finite étale covering of X arises in the way described. We begin with a lemma concerning
the affine situation.
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6.14 Lemma. Let A be a domain that is integrally closed inside its field of fractions K,
and let B be a projective separable A-algebra. Then there are finite separable field extensions
Ly, Lo, ..., Ly of K such that there is an isomorphism B @4 K = H§=1 L; of K-algebras.
Moreover, this isomorphism induces an isomorphism B = HZ:I B;, where B; denotes the
integral closure of A in L;.

Proof. Since B® 4 K is a separable K-algebra, Theorem 2.7 implies that B®4 K =2 szl L;
with K C L; a finite separable field extension for 1 < i < ¢t. The map B — B ®4 K is
injective, because A — K is injective and B is flat over A. Hence B may be considered
as a subring of H§:1 L;. Since B is finitely generated as an A-module it is integral over A,
so B C ngl B;, with B; as in the lemma. To prove that equality holds, let = € Hle B;.
Then for each y € B we have zy € H;l B;, and since A is integrally closed this implies, by
Exercises 6.17 and 6.18, that Tr(zy) € A, where Tr = Trpgx/k. The map B — A sending
y to Tr(zy) is A-linear, so by the definition of separability (see 4.13) there exists =’ € B
with Tr(zy) = Trg/a(a'y) for all y € B. Then Tr(zy) = Tr(2'y) for all y € B ®4 K, by
K-linearity, and since B ®4 K is separable over K this implies that z = 2/ € B, as required.
This proves 6.14.

Continuing the proof of Theorem 6.13, let X be a normal integral scheme with function field
K, and f: Y — X a connected finite étale covering. Let U = Spec A be an open non-empty
affine subset of X, and f~1(U) = Spec B C Y. Then the conditions of 6.14 are satisfied, so B
is a product of finitely many domains. Consequently f~!(U) is the union of open irreducible
subsets [10, Chapter II, Proposition 3.1], and all local rings of f~1(U) are domains. Taking
the union over U we see that the same two statements are valid for Y. By Exercise 6.14 we
can write Y as the disjoint union of open irreducible subsets; but Y is connected, so it must
itself be irreducible. Its local rings are domains, so by [10, Chapter II, Proposition 3.1] the
scheme Y is integral. Let L be its function field. To prove that Y is the normalization of
X in L it suffices to prove, for any non-empty open affine subset U = Spec A of X, that
f~YU) = Spec B, where B is the integral closure of A in L; but this is immediate from
Lemma 6.14, with ¢ = 1. Finally, X is unramified in L by 6.9. This proves the last statement
of 6.13.
Before proving the first statement of 6.13 we treat two lemmas.

6.15 Proposition. Let C be a separable algebra of rank n over a field K, with #K > n.
Then there exists v € C with C = K[y].

Proof. By 2.7(iv) we can write C' = [[_, C, where each C; is a finite separable field
extension of K. We proceed by induction on ¢, the case t = 0 being trivial. For ¢ > 0, we have
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C = C' x G, where C" = [['Z] C; can be written as C' = K[y]. Then €' = K[X]/gK[X]
for some polynomial ¢ € K[X] with deg g = [C" : K] = n — [Cy : K] < n. By the
theorem of the primitive element we can write C; = K[al. Using that #K > n we can
choose a € K with g(a + o) # 0. Then the irreducible polynomial f of a + « over K is
relatively prime to g, so the kernel of the K-algebra homomorphism K[X]| — C mapping X
toy = (7,a+a) € C'" x C, = C is generated by f - ¢g. Comparing dimensions we see that
the map is surjective, so K[y] = C. This proves 6.15.
Exercise 6.19 shows that the bound in 6.15 is sharp.

6.16 Lemma. Let A be a local domain that is integrally closed in its field of fractions K.
Denote the maximal ideal of A by m. Let L be a finite separable field extension of K, and
assume that the integral closure B of A in L is finitely generated as an A-module. Assume
furthermore that B/mB is a separable A/m-algebra. Then B is free of rank [L : K] as an
A-module.

Proof. Write n = [B/mB : A/m]. We begin by proving n < [L : K]. To do this, we first
assume #A/m > n. Then 6.15, applied to C' = B/mB, implies B/mB = (A/m)[F mod mB|
for some § € B. Since A is integrally closed in K, the irreducible polynomial of § over
K belongs to A[X], and it has degree < [L : K]. Therefore (5 mod mB) is a zero of a
polynomial in (A/m)[X] with leading coefficient 1 and degree < [L : K]. It follows that one
has [B/mB : A/m] <[L: K].

Next we assume #A/m < n. Choose a positive integer ¢ with (#£A/m)" > n and ged(t, [L :
K]) = 1. Since A/m is finite, there exist irreducible polynomials of every degree in (A/m)[X],
so we can choose a polynomial f € A[X] with leading coefficient 1 and degree ¢ such that
(f mod m[X]) € (A/m)[X] is irreducible. Put A" = A[X]/fA[X]. Then A’ is free of rank ¢
as an A-module, and A’/mA’ is the finite field of cardinality (#A/m)’, so A" is local and
Spec A’ — Spec A is unramified at m. From Exercise 6.10 we now see that A’ is a projective
separable A-algebra. (This also follows from Exercise 1.6(b).) Since f is irreducible in A[X]
it is irreducible in K[X], so K’ = A’ ®4 K = K[X|/fK[X] is a field. From 6.14 it follows
that A’ is the integral closure of A in K'. Put B’ = A/@ B and L' = A®4 L = L[X]|/fL[X].
The condition ged(t, [L : K]) = 1 implies that f is irreducible in L[X], so L’ is a field. Since
B’ is a projective separable B-algebra (Exercise 4.47) it is the integral closure of B in L’
(Lemma 6.14). It is therefore also the integral closure of A’ in L'. We have now proved that
A K' mA’, L', B’ satisfy the conditions of 6.16, and in addition we have

#A /mA >n=[B/mB:A/m]=[A"®@4 (B/mB): A ®4(A/m)] =[B'/mB": A'/mA"].

Hence by the first part of the proof we have n < [L': K'| = [L : K], as required.
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Let (i1, 52,...,0, € B be such that the (8; mod mB) span B/mB as an A/m-vector
space. Then by Nakayama’s lemma the (3; span B as an A-module, since B is supposed to
be a finitely generated A-module. It follows that 31, 3s, ..., 3, span L as a K-vector space
(Exercise 6.20). But n < [L : K], so we must have n = [L : K], and f31, (s, . . ., 3, are linearly
independent over K. We conclude that B is free of rank [L : K| over A, as required. This
proves 6.16.

To prove 6.13, let X be a normal integral scheme, K its function field, L a finite separable field
extension of K, and Y the normalization of X in L. Suppose that the morphism f: Y — X
is unramified. We claim that f is finite étale and that Y is connected.

Let U = Spec A be an open affine subset of X. Then f~}(U) = Spec B, where B is the
integral closure of A in L. The map Spec B — Spec A is surjective [1, Theorem 5.10], and
Exercise 6.21 now implies that Y is connected.

Next we prove that ¥ — X is finite. If X is locally noetherian this is true for the
normalization of X in any finite separable field extension of K, see Exercise 6.22. In the
general case we use that Y — X is unramified and hence locally of finite type, as follows.
Since Y — X is affine, it is quasi-compact [10, Chapter II, Exercises 3.2 and 5.17(b)], and
since it is also locally of finite type it is actually of finite type [10, Chapter II, Exercise
3.3(a)]. Hence if A and B are as above, B is a finitely generated A-algebra [10, Chapter II,
Exercises 3.3(c)] and since B is integral over A it must be a finitely generated A-module
(Exercise 6.23). This proves that ¥ — X is finite.

To prove that Y — X is finite étale it suffices, by Propositions 6.6 and 6.9, to show that
B is projective as an A-module, with A and B still as above. Lemma 6.16 implies that B, is
projective of rank [L : K] as an Ap-module, for every p € Spec A. From Exercise 4.27 it thus
follows that B is projective over A, as required.

This completes the proof of Theorem 6.13.

6.17 Corollary. Let X be a normal integral scheme, K its function field, K an algebraic
closure of K, and M the composite of all finite separable field extensions L of K with L C K
for which X is unramified in L. Then the fundamental group w(X) is isomorphic to the
Galois group Gal(M/K).

Proof. We note that K C M is Galois, so that it makes sense to speak about Gal(M/K).
The natural morphism Spec K’ — X induces a functor G: FEty — FEtsyec i, by G(Y) =
Y xx Spec K. One readily checks that, if L is as in Theorem 6.13, this functor sends the
normalization of X in L to Spec L. Theorem 6.13 therefore implies that the image of G is
contained in the full subcategory of FEtg,.. x whose objects are of the form Spec B, where
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B is a finite dimensional K-algebra that is split by M (see Exercises 2.25 and 2.29). This
category is equivalent to Gal(M/K)-sets, by Exercise 2.29. By Theorem 3.20, the functor
G induces a continuous group homomorphism Gal(M/K) — w(X).

By Theorem 6.13, the functor G sends connected objects to connected objects, so by
Exercise 3.23(a) the map Gal(M/K) — w(X) is surjective. To prove that it is injective
we use the criterion of Exercise 3.23(b). Let X’ be a connected object of the subcategory
of FEtgp..x described above. Then X’ = Spec L for some finite field extension L of K
contained in M, so there are finite field extensions Ly, Lo, ..., L; of K contained in M such
that X is unramified in each L; and such that L is contained in the composite field extension
Lqi-Ly-...-L;. Denote by Y; the normalization of X in L;. Then Y = Y; x Y5 x .- xY, belongs
to FEty, and one has G(Y') = Spec (L1 ®k Ly Qk ... @k L;). The natural surjective map
Li®g Lo®k ... Qg Ly — Ly -Lo-...- Ly sending 21 x5 ® ... ® 2y to £125 . .. x4 shows that
Spec(Ly - Ly-...-L;) is a connected component of G(Y'), and the inclusion L C Ly-Lo-...- Ly
yields a morphism Spec(L;y - Ly - ... - L;) — Spec L in FEtg,.. k. Hence the condition of
Exercise 2.23(b) is satisfied, and Gal(M/K) — w(X) is injective.

We have proved that the map Gal(M/K) — m(X) is bijective, so it is an isomorphism of
profinite groups (see 1.8). This proves 6.17.

6.18 Dimension one. We apply 6.13 and 6.17 to the case that the normal integral scheme
X is locally noetherian of dimension one. Then for each closed point x € X the local ring
Ox . is a discrete valuation ring [1, Theorem 9.3]. In this situation the proof of 6.13 becomes
much simpler (Exercise 6.22); in particular, Lemma 6.16 can be dispensed with. The field
M in 6.17 is the largest extension of K within a fixed separable closure of K in which all
valuations induced by the closed points x € X are unramified, see Exercises 6.7 and 6.26.

Many examples given in 1.12 are of the above type. If X = Spec Z,, for some prime number
p, then K = Q,, and M is the maximal unramified extension of K. It is well known that
Gal(M/K) = Gal(F,/F,) = Z (cf. [26, Section 3-2]), so 6.17 implies that 7(SpecZ,) = Z.
If X = Spec A[1/a], where A is the ring of algebraic integers in an algebraic number field
K, and a € A, a # 0, then the closed points z € X are in one-to-one correspondence
with the non-zero prime ideals of A that do not divide a. The field M is the maximal
algebraic extension of K that is unramified at these primes. This yields the description
m(Spec A[1/a]) = Gal(M/K) announced in 1.12. From Theorem 6.13 and Exercise 6.25
we also see that the finite étale coverings Y — Spec A[l/a| are precisely given by Y =
[1;_, Spec B;, where ¢ > 0 and where for each i the ring B; is the integral closure of A[1/a]
in a finite extension K; of K that is contained in M.

In particular we can take A = Z, a = 1, so that X = SpecZ. Minkowski’s theorem that
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the discriminant of any algebraic number field L # Q exceeds 1 in absolute value implies
that any such L ramifies at some prime number. Therefore M = Q, and 7(SpecZ) is trivial.

6.19 Valuations on K (t). Let K be a field. The examples X = P} and X = AL given in
1.16 are also of the type described in 6.18. To treat these we need some facts on algebraic
function fields of one variable, which may be found in [6].

Let t be transcendental over K. For every irreducible polynomial f € K|t| with leading
coefficient 1, the map vy: K(t)* — Z defined by vs(f"g/h) = n, forn € Z, g,h € KJt] —
fK]|t], is an exponential valuation on K(t¢) that is trivial on K. The same is true for the
map Voo : K(t)* — Z defined by vy (g/h) = degh — degg, for g, h € K[t] — {0}. Every non-
trivial exponential valuation on K (t) that is trivial on K is equivalent to exactly one of the
valuations just defined.

Let v be one of these valuations, F a finite separable field extension of K (t), and w an
extension of v to F'. We recall that w is said to be tamely ramified over v if the residue class

field extension K (t), C F,, is separable and the ramification index e(w/v) is not divisible
by char(F,) (= char(K)). If moreover e(w/v) = 1, then w is unramified over v. Finally, v
is said to be tamely ramified, or unramified, in F' if every w extending v is tamely ramified,

or unramified.

6.20 Proposition. Let K be a field, t transcendental over K, and F a finite separable
extension of K(t) such that every element of F'— K is transcendental over K. Suppose that
the valuation v, defined above is tamely ramified in F', and that all valuations vy defined
above are unramified in F'. Then F = K (t).

Proof. Let v and w be as above, and let K(t), and F,, denote the completions. The differ-
ential exponent m(w) of w (with respect to K (t)) is defined to be the largest integer m with
the property that any x € F,, with e(w/v)w(xz) > —m satisfies v(Trp, /k(), (x)) > 0 (see [6,
Chapter IV, Section 8|; observe that e(w/v)w is the normalized valuation equivalent to w,
i.e., it has value group Z). We have

m(w) > e(w/v) —1

m(w) = e(w/v) — 1 < w is tamely ramified over v
(see [6, Chapter IV, Theorem 7]), and therefore
m(w) =0 < w is unramified over v.

For almost all pairs v,w we have m(w) = 0.
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To every F' as in the proposition is attached a non-negative integer g, the genus of F,
see [6, Chapter II, Section 1]. By Hurwitz’s formula [6, Chapter VI, Section 2, Corollary 2
to Theorem 2] we have

295 =2 = [F - K(t)) 2910 — 2) + > m(w)[Fu : K],

the sum ranging over all w as above, with F,, denoting the residue class field. We notice
that the hypothesis that every element of F' — K be transcendental over K is needed for
this formula. Using the ramification hypotheses of 6.20 and the fact that gx) = 0 (see [6,
Chapter II, Section 2]) we find from Hurwitz’s formula

2gp —2= —2[F : K(t)] + ) _(e(w/vee) = 1)f (w/vs0),

the sum now ranging over the valuations w of F' extending v, and f(w/v.,) denoting the
residue class field degree [F, : K, _] = [F,, : K]. The well-known formula " e(w/vs) f(w/vo0 )
= [F': K(t)] (see [6, Chapter IV, Theorem 1]) now yields

—2<2gp —2< 2[F: K(t)]|+[F: K()] =—[F: K(),
so [F: K(t)] =1 and F = K(t). This proves 6.20.

6.21 Corollary. Let K be a field, t transcendental over K, and F' a finite separable extension
of K(t). Suppose that v is tamely ramified in F', and that all vy are unramified in F'. Then
F = L(t) for some finite separable extension L of K.

Proof. Let L = {z € F : z is algebraic over K}. Then t is transcendental over L. Applying
6.20 to the extension L(t) C F we see that L(t) = F. Since K(t) C L(t) = F is finite
separable the same is true for K C L. This proves 6.21.

6.22 The fundamental group of Pi. Let K be a field, and X = Pk the projective
line over K. The discussion in 6.18 applies to X, the function field of X being K (t), with
t transcendental over X, and the valuations of K(t) corresponding to the closed points of
X are the valuations vy, v defined in 6.19. If F' is a finite separable field extension that
is unramified at all these valuations, then 6.21 implies that F' C K,(t), where K, denotes
a separable closure of K. Conversely it is easy to see that K(t) C K,(t) is unramified at
all these valuations. Therefore the field M from 6.17 equals K(t), and by 6.17 we have
7(PL) & Gal(K,(t)/K(t)) & Gal(K,/K) = m(Spec K). In particular 7(P}) is trivial if K is
separably closed.
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6.23 The fundamental group of AL. Again let K be a field, and X = Al = Spec K|t]
the affine line over K, with ¢ transcendental over K. The function field of X is K(t), and
the valuations of K(t) corresponding to the closed points of X are the valuations vy defined
in 6.19.

Suppose that char K = 0. Then every valuation of K (¢) that is trivial on K, in particular
Uso, 18 tamely ramified in any finite extension K (t) C F. Hence using 6.21 we find, as in 6.22,
that the field M from 6.17 again equals K,(T'). Consequently 7(A};) = m(Spec K) if K has
characteristic zero.

If char K = p > 0 the natural map 7(A}) — 7 (Spec K) is still surjective, but it is not
injective (see Exercise 6.28). In particular 7(Aj;) is non-trivial if K is a separably closed
field of non-zero characteristic.

6.24 Finite rings. Let A be a finite ring, and suppose that Spec A is connected. Then A
is a local ring with a nilpotent maximal ideal m, by [1, Chapter 8]. Let k& denote its residue
class field. We claim that 7(Spec A) & 7(Spec k) = Z.

The ring homomorphism A — & induces a continuous group homomorphism 7(Spec k) —
7(Spec A). If B is an A-algebra for which Spec B® 4 k is connected, then Spec B is connected,
by Exercise 6.32. Hence by Exercise 3.23(a) the map m(Speck) — m(Spec A) is surjective.
Next let Spec ¢ be a connected object of FEtgpecr. Then ¢ = k[X]/ fk[X] for some separable
irreducible f € k[X]. Choose g € A[X] with (¢ mod m[X]) = f, and such that the leading
coefficient of ¢ is a unit. Then B = A[X|/gA[X] is free as an A-module, and Spec B — Spec A
is unramified. Hence Spec B belongs to FEtg,e. 4, and B ®4 k = (. From Exercise 3.23(b) it
now follows that w(Spec k) — 7(Spec A) is injective. This proves that m(Spec A) = 7(Spec k).
In 2.5 we have already seen that 7(Spec k) = Z.

Exercises for Section 6

6.1 A module M over a domain A is called torsionfree if for every non-zero a € A and
every non-zero x € M one has ax # 0.
(a) Prove that a flat module over a domain is torsionfree.

(b) Let A be a Dedekind domain. Prove that any torsionfree A-module can be written
as an injective limit of finitely generated projective A-modules, and that an A-
module is flat if and only if it is torsionfree.
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6.2
6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

Prove Proposition 6.3.

Let f: Y — X be a morphism of schemes. Prove that f is finitely presented (asin 6.4) if
and only if for every open affine subset U = Spec A C X the open subscheme f~[U] C
Y is affine, f~}[U] = Spec B, where B is an A-algebra that is finitely presented as an
A-module.

Let M be a module over a ring A. Prove that M is a flat A-module if and only if M,
is a flat Ap-module for every maximal ideal m of A, and if and only if M, is a flat
Ag-module for every prime ideal p of A.

Let A =Ty, where V is a set.

(a) Prove that A, = IF, for every prime ideal p of A, and that every A-module is flat.

(b) Suppose that V' is infinite. Prove that there is a finitely generated flat A-module
that is not projective. [Hint: Exercise 4.23.]

Let A be a ring, B a finitely generated A-algebra, and q € Spec B. Prove that the
morphism f: Spec B — Spec A is unramified at q if and only if p = f(q) generates the
maximal ideal of By and the residue class field k(q) is a finite separable extension of
k(p).

Let A be a Dedekind domain and B the integral closure of A in a finite separable
field extension of the field of fractions of A. Let further q be a maximal ideal of B, and
p = ANg. Prove that Spec B — Spec A is unramified at q if and only if the ramification
index e(q/p) equals 1 and B/q is separable over A/p, i.e., if and only if q is unramified
over p in the sense of algebraic number theory.

Let A = [],.; ki be the product of an infinite collection (k;);c; of fields, and a =
{(z;)ier € A: x; = 0for almost all i € I'}. Prove that the morphism Spec A/a — Spec A
is finite and étale, but not finite étale.

Let A be a ring, M and N two finitely generated free A-modules, and f: M — N an
A-linear map. Prove that f is an isomorphism if and only if for each p € Spec A the
induced map M ®4 k(p) — N ®4 k(p) is an isomorphism.

Prove that a morphismf: Y — X of schemes is finite étale if and only if it is finitely
presented (see 6.4), flat, and unramified at every closed point y € Y.

Let A be a ring, B a separable A-algebra (see 6.10), and C' an A-algebra. Prove that
B ®4 C'is a separable C-algebra.

Let A be aring and By, B, ..., B, algebras over A. Prove that [[}_, B; is a separable
A-algebra if and only if each B; is a separable A-algebra.
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6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24

Let K be an algebraically closed field and B a finite dimensional K-algebra that is a
local ring. Prove that the residue class field of B is K, and that B ®g B is a local ring.

Let X be a topological space that can be written as the union of open irreducible
subsets. Prove that X can be written as the disjoint union of open irreducible subsets.

Let A be a noetherian ring for which Spec A is connected, and suppose that A, is a
domain for all p € Spec A. Prove that A is a domain. [Hint: if a- b = 0 for all non-zero
ideals a, b of A, choose a,b as large as possible and prove that a + b = A.]

Let X be a locally noetherian scheme all of whose local rings are domains. Prove that
X is the disjoint union of a collection of integral schemes. [Hint: use Exercises 6.14 and
6.15.]

Let A be a domain that is integrally closed in its field of fractions K, and let  be an
element of an extension field of K. Prove that x is integral over A if and only if the
irreducible polynomial of x over K has coefficients in A.

Let K be a field, L a finite extension field of K, and x € L. Let > ja; X" be the
irreducible polynomial of & over K, with a, = 1. Prove that Try x(z) = —[L : K(z)] -
Qp—1-

Let K be a finite field and C the K-algebra K#X*! Prove that there does not exist
v € C with C' = K[y].

Let A be a domain with field of fractions K, and L an algebraic field extension of K.
Prove that for every x € L there exists a € A, a # 0, such that ax is integral over A.

Let f: Y — X be a continuous surjective map from a topological space Y to a con-
nected topological space X, and assume that every x € X has an open neighborhood
U for which f~!(U) is connected. Prove that Y is connected.

Let X be a locally noetherian normal integral scheme with function field K, and L a
finite separable field extension of K. Prove that the normalization Y of X in L is finite
over X. [Hint: use [1, Proposition 5.17].] Prove also that Y is locally free of degree
[L : K] over X if X has dimension one. [Hint: Exercise 4.10(c).]

Let A be a ring and B a finitely generated A-algebra that is integral over A. Prove
that B is finitely generated as an A-module.

Let X be a normal integral scheme with function field K, and Lq, Ly two finite separable
field extensions of K within a given algebraic closure of K. Prove: if X is unramified
in L; and in Lo, then X is unramified in L, - Ly and in every subextension of K C L.
[Hint: use 6.17 and its proof.]

97



6.25 Let X, K, M be as in 6.17, and L a finite field extension of K contained in M. Prove
that X is unramified in L.

6.26 Let X be a connected scheme. Prove that the following properties are equivalent:
(a) X is locally noetherian, and every local ring of X is a discrete valuation ring or
a field;

(b) there is a covering of X by open affine subsets U; = Spec A;, where each A; is a
Dedekind domain or a field;

(¢) for each open affine subset U = () of X we have U = Spec A, where A is a Dedekind
domain or a field.

6.27 Let X be a connected locally noetherian normal scheme of dimension one, K its
function field (cf. Exercise 6.16), and K a separable closure of K. For each closed
point z € X let w, be a valuation on K, extending the valuation on K correspond-
ing to x (see 6.18), and let I, be the inertia group of w, in Gal(K,/K). Prove that
7(X) = Gal(K/K)/N, where N is the closure of the normal subgroup of Gal(K,/K)
generated by all groups I,.

6.28 Let K[t] be the polynomial ring in one variable over a field K of non-zero characteristic
p, and let f € K[t] — {0} have degree not divisible by p. Prove that X = Spec K|[t] is
unramified in the p-th degree extension K (t,u) of K (t) defined by u? —u = f. Deduce
that the natural map m(A}) — m(Spec K) is not injective.

6.29 Let K be a separably closed field with char(K) = p > 0. Prove that 7(A},) is topolog-
ically generated by its p-Sylow subgroups [23, Chapitre I, numéro 1.4].

6.30 Prove that 7(SpecZ[1/2]) is topologically generated by its 2-Sylow subgroups. Prove
that m(SpecZ[1/p]) is not topologically generated by its p-Sylow subgroups if p is an
odd prime.

6.31 Prove that 7(SpecZ[X]) and m(P}) are trivial.

6.32 Let B be a ring and I C B a nilpotent ideal. Prove that the set of idempotents of B
maps bijectively to the set of idempotents of B/I, under the natural map B — B/I.

6.33 Let p be a prime number and n € Z, n > 0. Prove that the ring homomorphism
Z, — Z/p"Z induces an isomorphism 7(Spec Z/p"Z) = w(Spec Z,).

6.34 Let A be a complete local ring with residue class field k. Prove that m(Spec A) =
7w (Speck).

6.35 Prove that m(SpecZl[i]) and 7(SpecZ[(1 + +/—3)/2]) are trivial.
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6.36 (a) Let K be a totally imaginary number field with class number h, ring of integers
A, and discriminant A over Q. Suppose that for every totally imaginary number
field L with [L : Q] > 60 - h - [K : Q] the discriminant Ay, of L over Q satisfies
|AL VA > | Ay |VIEQ Prove that 7(Spec A) is a finite solvable group. [Hint:
use class field theory, see Exercise 1.23.]

(b) Prove that m(SpecZ[(y]) is trivial, where 5y denotes a primitive 20-th root of
unity. [Hint: use (a) and the results of [25, Chapter 11].]
(c) Prove that m(Spec Z[v/—5]) has order two, and that 7(Spec Z[(1 + v/—163)/2]) is

trivial.

6.37 Let Ay, Ay, As be local rings with maximal ideals my, my, mo, and f;: A; — Ay (i =0, 1)
ring homomorphisms that are local (i.e., f;[m;] C my or, equivalently, f; '(my) = m,).
Put A = Ay x4, A1 = {(ag,a1) € Ag X Ay : folag) = fi(a1)}.
(a) Prove that A is a local ring,.
(b) Let B be a free separable A-algebra, and put B; = B®4 A;, fori = 0,1, 2. Suppose
that there are isomorphisms B; = A; x A; x --- x A; of A;-algebras, for ¢ =0, 1.
Prove that for some n > 0 isomorphisms B; = Al' of A;-algebras can be chosen,
for © = 0,1, 2, such that the diagram of natural maps

By B, B
| J /
Ap Ay A

1s commutative.
(c) With the hypotheses of (b), prove that B~ A x A x --- x A as A-algebras.

6.38 Let A be the ring {(a,b) € Z X Z : a = b mod 6}.

(a) Describe Spec A.

(b) Prove that every finite étale covering of Spec A is locally totally split (see Exer-
cise 5.22(a)). [Hint: use Exercise 6.37 and the fact that 7(Z) is trivial.]

(¢) Prove that w(Spec A) 2 Z. [Hint: Exercise 5.22(a) ]
(d) Letn € Z,n > 0. Prove that up to isomorphism there exists exactly one projective
separable A-algebra B of rank n over A for which Spec B is connected. Give an

explicit description of this algebra.
6.39 Let A be the group ring of the cyclic group of order 6 over Z.

(a) Prove that A is isomorphic to a subring of Z xZ x Z[(14++/—3) /2| X Z[(14++/—3) /2]
of index 23 - 32, and describe Spec A.
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A

(b) Prove that mw(Spec A) = Z.
6.40 Prove that m(SpecZ[v/—3]) is cyclic of order two (cf. Exercise 1.29).
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List of symbols

cardinality of a set

sum in a category, disjoint union ............ ... ... 34
ProduCt o 34
fibred product over S ... 33
quotient (of object by group of automorphisms) ................... 34
degree of a field extension

rank of an algebra ...... ... .. . 58
degree of a morphism of schemes ............. ... ... .. ... ... 69
category

category of finite sets

category of finite sets with continuous m-action ..................... 9
category of finite étale coverings of a scheme X .................... 7
category of free separable K-algebras

category of affine morphisms to a scheme X ....................... 75

ring of rational integers

field of rational numbers

field of real numbers

field of complex numbers

finite field of ¢ elements

ring of p-adic INtegers . ... 9
affine line over K [10, p. 74]

projective line over K [10, p. 77|

fundamental group of a pathwise connected topological space X ....2
fundamental group of a connected scheme X ....................... 9
profinite fundamental group of a connected topological space X ...10
fundamental group in a point x of a pathwise connected topological
SPACE X ottt 10

fundamental group in a geometric point = of a connected scheme X 37
profinite fundamental group in a point z of a connected topological
SPACE X ottt 39
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QY

Ends P
Gal(L/K)
Homa (M, N)
index| : |
lim
Morc(A, X)
Mor,(E, K)
rank 4 (M)
sp(X)
Spec A
()

()
TrP/A(f)
Tr(C)

separable closure of a field K' ......... ... ... ... L. 20
algebraic closure of a field K

residue class field of a field F' ... ... ... . 92
completion of a field F' at a valuation v ........................... 93
group of units of a ring A

dual Hom(P, A) of a projective A-module P ....................... 57
profinite completion of a group G ....... ... ... L. 8
set of G-invariants of a G-set E ........ ... .. .. L. 9
ring of functions from a finite set Etoaring A ................... 80
subgroup of m-th powers in a multiplicative group A .............. 29

product of n copies of a ring A
localization of a ring A at the prime ideal p

nilradical of a ring ........ . 21
complex analytic space associated to a variety X [10, p. 493] ...... 11
local ring in point y of scheme Y [10, p. 72] ....................... 83
set of K-algebra homomorphisms B — Ky ........................ 23
automorphism group of L ...... ... ... 17
group of K-automorphisms of field L ............................. 17
automorphism group of a fundamental functor F' .................. 36
characteristic of a field K

degree of a polynomial f

degree of a morphism f between schemes ......................... 69
module of A-endomorphisms of an A-module P ................... 57
Galois group of a field extension L over K ........................ 17
module of A-module homomorphisms from M to N

index of a subgroup in a group

projective limit . ... ... .. . 8
set of morphisms in C from Ato X .......... ... ... ... ..., 40
set of morphisms of m-sets £ — K, ... i 23
rank of module M over A ... ... . . .. 6
underlying topological space of a scheme X

spectrum of a ring A

trace of an A-module endomorphism f ........... ... ... ... 6
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trace of an A-endomorphism f of a projective A-module P ........ 57
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Page numbers in italics refer to definitions.

absolute Galois group, 20, 26, 27 separable —, 20
action cofinal partially ordered set, 14
group —, 9 compact ring, 14
free —, 9 completion
transitive —, 9 profinite —, 8, 13
trivial —, 9 component
additive functor, 49 — connected, 40
adjoint, 47 connected
affine morphism, 69 — component, 40
category of —s, 75 — object, 40
algebra, 5 — scheme, 5, 7
faithfully flat — 58 covering, 1, 10
faithfully projective —, 58 category of —s, 2, 10
finite projective —, 58, 67 degree of —, 1
free separable —, 6, 12 finite —, 1, 10, 37-39, 46
projective separable —, 59, 68, 87 finite étale —, 1, 7
separable —, 6, 12, 21, 87, 96 map between —s, 1
almost nilpotent ideal, 63 morphism of —s, 7
Artin-Schreier theory, 29 trivial —, 1, 72

automorphism of fundamental functor, 35
D-diagram, 47

basis (of module), 6, 11 category of —s, 47
constant —, 47
category limit of —s, 47
essentially small —, 35 morphism of —s, 47
Galois —, 33, 35, 52 degree
— of affine morphisms, 75 — of covering, 1
— of coverings, 10 — of morphism, 69
— of D-diagrams, 47 differential exponent, 93
— of finite coverings, 10, 46 dimension one, 92
— of finite étale coverings, 7, 9 directed graph, 47
— of finite 7-sets, 9, 22, 36 directed partially ordered set, 7, 14
— of finite sets, 33—-35
— of free separable K-algebras, 22, 47 edge, 47
— of G-sets, 9, 15 empty scheme, 5
— of quasi-coherent sheaves of Ox-algebras, epimorphism, 35, 49, 81
75 strict —, 33
small —, 36 equalizer, 48, 49
closure essentially small, 35
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étale covering
finite —, 1, 7
category of —s, 7, 9
étale morphism, 86
finite —, 7, 70, 86, 96
exact functor, 54, 61
left- —, 35, 49
right- —, 35
exact sequence, 49
split —, 54, 61
exponential valuation, 93
extension
Galois —, 17, 25
normal —, 17
separable —, 17

faithful module, 65
faithfully flat, 58, 65
— algebra, 58
— module, 65
faithfully projective, 57, 58
— algebra, 58
— module, 57
fibred product, 33, 48
finite and locally free morphism, 69, 70, 71, 79,
86
finite covering, 1, 10, 37-39, 46
category of —s, 10, 46
finite étale covering, 1, 7
category of —s, 7, 9
finite étale morphism, 7, 70, 86, 96
finite left limit, 48
finite morphism, 7, 69, 84, 86
finite 7-set, 9, 22
finite product, 48
finite projective algebra, 58, 67
finite right limit, 49
finite set
category of —s, 33-35
finite sum, 84, 48
finite type, 91
locally of —, 86
finitely presented

— module, 56, 84

— morphism, 84, 86, 96
flat

— module, 54, 84, 95

— morphism (of schemes), 83, 84, 86

— ring homomorphism, 83
free

— group action, 9

— module, 6

— separable algebra, 6, 12
function field

— of a scheme, 88

— of one variable, 93

functor
additive —, 49
exact —, 54, 61

fundamental —, 3%
left-exact —, 35, 49
prorepresentable —, 41
right-exact —, 35
fundamental functor, 33
automorphism of —, 35
fundamental group
algebraic —, 1, 9, 11, 37
— of a connected scheme, 1, 9
—in a point, 37, 78
topological —, 1, 10

Galois category, 33, 35, 52
Galois extension, 17, 25
Galois group, 17
absolute —, 20, 26, 27
Galois object, 41
Galois theory
infinite — (for fields), 17
Main theorem of — (for fields), 18
Main theorem of — (for schemes), 9, 78
genus, 94
geometric point, 37, 77, 81
group
absolute Galois —, 20, 26, 27
— action, 9
fundamental —, 1, 9, 37
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Galois —, 17
Picard —, 65
procyclic —, 27
profinite —, 8, 13

pro-p- —, 31
topological —, &
G-set, 9

morphism of —s, 9

hereditary ring, 62
homomorphism

local ring —, 99

— of profinite groups, 8
Hurwitz’s formula, 94

ideal class group, 66

narrow —, 15
initial object, 34, 48
injective limit, 41, 51
injective system, 51
intersection of subobjects, 40
invertible

— module, 65

— submodule, 55
isomorphism (in FEty), 81

Jacobi symbol, 28

kernel (of profinite groups), 15
Krull, 18

— topology, 18, 26
Kummer theory, 28

left-exact functor, 85, 49
left limit, 34, 47, 48

finite —, 48
limit
finite —, 34, 48

injective —, 41, 51
left —, 34, 47, 48
— of D-diagrams, 47
projective —, 8§, 12, 47
right — 48, 48

local ring homomorphism, 99

Main theorem of Galois theory
— for fields, 18
— for schemes, 9
— proof, 78
map between coverings, 1
module
basis of —, 6, 11
faithful —, 65
faithfully flat — 65
faithfully projective — 57
finitely presented —, 56, 84
flat —, 54, 84, 95
free —, 6
invertible —, 65
projective —, 54, 55, 84
rank of —, 6, 57
torsionfree —, 62, 95
monomorphism, 35, 81
morphism
affine —, 69
equalizer of —s, 48
étale —, 86
finite —, 7, 69, 84, 86

finite and locally free —, 69, 70, 71, 79, 86

finite étale —, 7, 70, 86, 96
finite type —, 91

finitely presented —, 84, 86, 96

flat —, 83, 84, 86

— locally of finite type, 86
— of coverings, 7

—s of D-diagrams, 47

— of G-sets, 9

— of m-sets, 9
quasi-compact —, 91
surjective —, 69-72, 79
totally split —, 71
unramified —, 86, 96

narrow ideal class group, 15
nilpotent ideal, 64

almost —, 68
normal extension, 17
normal integral scheme, 88
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normalization (of schemes), 88 right limit, 48, 48

normalized valuation, 93 finite —, 49
ring

object compact —, 14
connected —, 40 hereditary —, 62
Galois —, 41 — of p-adic integers, 9
initial —, 84, 48 semilocal —, 66
sub- —, 59
terminal -, 35, 48 scheme, 5

open immersion, 81 connected —, 5, 7

empty —, 5

p-adic integer, 9, 13 normal integral —, 88
Picard group, 65 normalization of —s, 88
m-set, 9, 22 product of —s, 34

category of finite —s, 9, 22, 36 unramified —, 88

morphism of —s, 9 semilocal ring, 66
procyclic group, 27 semilocally simply connected space, 10
product, 34 separable

fibred —, 33, 48 — algebra, 6, 12, 21, 87, 96

finite —, 48 — closure, 20

— of schemes, 3/ — element, 17
profinite completion, 8, 13 — extension, 17
profinite group, 8, 13 free —, 6

homomorphism of —s, 8 — polynomial, 17

kernel of —s, 15 set

open and closed subgroups of —s, 13 category of finite —s, 33-35
projection, 33 small category, 36
projective essentially —, 35

faithfully —, 57 source map, 47

~ limit, 8, 12, 47 split

— module, 54, 55, 84 — algebra, 32

— separable algebra, 59, 68, 87 — sequence, 54, 61

— system, 7 splitting field, 17
pro-p-group, 31 stabilizer, 15
prorepresentability, 41 stably isomorphic, 66

Steinitz, 26
quasi-coherent sheaves of Ox-algebras, 75 — number, 26
quasi-compact morphism, 91 strict epimorphism, 33
quotient (of object by group), 34, 48, 76 subobject, 59
intersection of —s, 40

ramification index, 93 sum, 34
rank (of module), 6, 57 finite —, 34, 48
right-exact functor, 35 supernatural number, 26
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surjective morphism, 69-72, 79

tamely ramified, 93
target map, 47
terminal object, 83, 48
topological generator, 20
topological group, &
topological space, 5
torsionfree module, 62, 95
totally split morphism, 71
locally —, 82
trace
— for free modules, 6, 67
— for projective algebras, 59, 67
— for projective modules, 57, 67
— of matrices, 12

transitive group action, 9
trivial covering, 1, 72
trivial group action, 9

universal property (for projective limits), 12

unramified
— morphism, 86, 96
— scheme, 88
— valuation, 93

valuation, 93
differential exponent of —s, 93
exponential —, 93
normalized —, 93
tamely ramified —, 93
unramified —, 93

vertex, 47
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