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Abstract

We present a method to compute rigorous upper bounds for the topological entropy h(T ,A) of a continuous map T with
respect to a fixed (coarse) partition of the phase space A. Long trajectories are not used; rather a single application of T to
the phase space produces a topological Markov chain which contains all orbits of T , plus some additional spurious orbits.
By considering the Markov chain as a directed graph, and labelling the arcs according to the fixed partition, one constructs
a sofic shift with topological entropy greater than or equal to h(T ,A). To exactly compute the entropy of the sofic shift, we
produce a subshift of finite type with equal entropy via a standard technique; the exact entropy calculation for subshifts is then
straightforward. We prove that the upper bounds converge monotonically to h(T ,A) as the topological Markov chains become
increasingly accurate. The entire procedure is completely automatic. © 2001 Elsevier Science B.V. All rights reserved.

MSC: 37B40; 94A17; 37M25

Keywords: Topological entropy; Topological Markov chain; Subshift of finite type; Sofic shift; Right-resolving presentation

1. Introduction

The topological entropy h(T ) (see [1] for a definition) of a continuous map T : M on a compact phase space
M is difficult to estimate. It is even more difficult to obtain rigorous bounds. This difficulty stems from the fact
that it is numerically infeasible to estimate the topological entropy directly from standard definitions using open
covers or ε-separated/spanning sets. Most numerical approaches have focussed on one-dimensional mappings,
taking advantage of the kneading theory of unimodal maps [2–4]. Another approach [5,6] in one dimension is to
approximate a general map by a Markov map, for which the entropy is relatively easily calculated. Baldwin and
Slaminka [7] improve an approach [8], where the topological entropy is estimated as the logarithmic growth rate of
the one-dimensional variation of T n with n. This approach has been extended to higher dimensions by Newhouse
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and Pignataro [9], where one considers the growth rate of the volume of submanifolds. Chen et al. [10] suggest
a method of providing sharp lower bounds for the topological entropy of chaotic saddles and attractors based on
successive preimages of the map. Other approaches in higher dimensions include counting the number of periodic
points of a given period (this assumes that a result [11] for axiom A systems holds in greater generality), and various
methods of constructing good “grammars” (essentially approximations of Markov partitions); see [12] for a careful
application of these approaches to the Hénon map.

With the exception of Chen et al. [10], there are no methods applicable to higher dimensional systems which
provide rigorous bounds for the entropy ([10] provides a lower bound). While in principle, the approach of Newhouse
and Pignataro [9] may be applied to systems with more than one expanding direction, the computation of exponential
increases in volume of images of submanifolds quickly becomes infeasible.

Our approach provides a rigorous upper bound for the entropy of a multidimensional system with respect to a
fixed partition. The theoretical results are completely general with no restrictions on the map other than continuity.
In contrast to [9], our method can also efficiently handle systems with more than one expanding direction.

The remainder of this section defines the objects to be estimated and their relationships to known quantities.
In Section 2, we describe the main algorithm and state the corresponding theoretical results. Section 3 contains
numerical examples and comparisons of our new method in a variety of situations. Implementational details are
discussed in Appendix A and proofs of the main results are given in Appendix B.

1.1. Preliminary definitions

An intuitive definition of topological entropy is as follows: partitionM into a collection of setsQ = {A1, . . . , Aq},
and consider orbits ON(x) = {x,Tx, . . . , T N−1x} of length N . If T ix ∈ Aai for i = 0, . . . , N − 1, then ON(x)
gives rise to the N -string [a0, a1, . . . , aN−1]. We form the collection of all possible N -strings

WN(T ,A) = {[a0, a1, . . . , aN−1] : ∃x ∈ M s.t. T ix ∈ Aai , 0 ≤ i < N}, (1)

and consider log|WN(T ,A)|/N , which describes the growth rate of the number of distinct symbol strings generated
by orbits of T with increasing length (|WN(T ,A)| denotes the cardinality of the set WN(T ,A)). We define the
quantity

h∗(T ,A) := lim
N→∞

log|WN(T ,A)|
N

= inf
N≥1

log|WN(T ,A)|
N

. (2)

It is our aim to compute rigorous upper bounds for h∗(T ,A). The following proposition relates h∗(T ,A) to the
standard topological entropy h(T ).

Definition 1. A partition A is called generating, if
∨∞

i=0T
−iA = B (non-invertible maps) or

∨∞
i=−∞T iA = B

(invertible maps), whereB denotes the Borel σ -algebra.

Proposition 2.

1. If A is a generating partition, then

h(T ) ≤ h∗(T ,A).

2. h(T ) ≤ lim
diam

inf
A→0

h∗(T ,A).

Proof. See Appendix B. �
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Part 2 says that by refining arbitrary partitions A, we obtain an upper bound for h(T ) in the limit. In practice, if
a generating partition is known, we will use this. If a generating partition is not known, a geometrical study of the
dynamics often provides suggestions for partitions which are near to generating (see, for example, the Hénon map
analysis in Section 3.3). Even in cases where A is not a generating partition, our numerical studies indicate that
h∗(T ,A) still provides good estimates of the topological entropy.

To summarise: we will describe a method for computing a rigorous upper bound for the topological entropy
h∗(T ,A) with respect to a fixed partitionA. The method may be applied to any continuous multidimensional map,
without any restriction on the dimension of unstable manifolds or assumptions such as hyperbolicity. In practice,
we find that the obtained values are good estimates of the topological entropy h(T ), even when the underlying
partition A is not generating. Moreover, our algorithm is very efficient in terms of computing time. Alternative
existing methods of entropy computation become extremely inefficient in higher dimensions, especially when the
dimension of the unstable manifold exceeds 1.

2. The algorithm

We select a coarse partition A and will produce upper bounds for h∗(T ,A). If there are good choices for A
based on the dynamics, we will use these; otherwise, we will choose a simple partition, making sure that it contains
enough sets, based on bounds we now discuss.

IfA containsm sets, then clearly, h∗(T ,A) ≤ logm; thus, an important condition for a suitable partitionA is that
logm ≥ h(T ). Some rough upper bounds for h(T ), where T is a differentiable map on a d-dimensional manifold
are as follows.

Theorem 3.

1. h(T ) ≤ max{0, d log supx∈M‖DxT ‖}; [13].
2. h(T ) ≤ log maxx∈M maxL⊂TxM |detDxT|L| with M smooth and compact; [14].

If we have no information on how large h(T ) may be, we can use Theorem 3 as a guide for the number of sets
A should contain.

2.1. An outline of the algorithm

1. Choose a partition B (much finer than A), and define a topological Markov chain with respect to B such that
all words generated by T are also generated by the topological Markov chain. The entropy of the topological
Markov chain (with respect to the partition A) will be computed exactly and will provide an upper bound for
h∗(T ,A).

2. The set of all words generated by orbits of the topological Markov chain forms a sofic shift. The entropy of this
sofic shift equals the entropy of the topological Markov chain with respect to A.

3. To compute the entropy of the sofic shift, we “present” the sofic shift in the form of a right-resolving presentation
(a labelled graph with special properties). The entropy of the sofic shift is then easily computed from the maximal
eigenvalue of the adjacency matrix for this right-resolving presentation.

In practice, one computes the (0, 1) adjacency matrix for the topological Markov chain; this matrix is then trans-
formed into another adjacency matrix representing the right-resolving presentation, and the maximal eigenvalue
of this second matrix is found, providing a rigorous upper bound for h∗(T ,A). It should be emphasised that the
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procedure is completely general and automatic, in the sense that any partition B that is a refinement of A may be
used, and that the construction of the topological Markov chain and resulting right-resolving presentation may be
easily automated on a computer.

2.2. Constructing the topological Markov chain

We produce a refinement of A, denoted B = {B1, . . . , Bn}, so that each A ∈ A is a union of elements of B;
typically B will be very much finer than A. Define a transition matrix on B via

Bij =
{

1 if Bi ∩ T −1Bj �= ∅,
0 otherwise.

(3)

The matrix B defines a topological Markov chain. Orbits of the topological Markov chain generate words from the
partition A in the following way. Call [b0, . . . , bN−1] a B-word if Bbi ,bi+1 = 1 for i = 0, . . . , N − 2. The B-word
[b0, . . . , bN−1] generates a unique A-word given by [a0, . . . , aN−1], where Bbi ⊂ Aai , i = 1, . . . , N − 1. Define
the set of all A-words of length N by

WN(B,A)= {[a0, . . . , aN−1] : there is a B-word [b0, . . . , bN−1] of length N such that

Bbi ⊂ Aai , i = 1, . . . , N − 1}. (4)

2.2.1. Relationship to T
Clearly, orbits of the topological Markov chain are pseudo-orbits of the map T , and therefore WN(T ,A) ⊂
WN(B,A); that is, our topological Markov chain generates all words that T generates, plus some extra words. The
number of extra words generated depends on how fine the partition B is relative to A. Our plan is therefore to fix
A and successively refine B. At all times, we will have

h(B,A) := lim
N→∞

log|WN(B,A)|
N

≥ lim
N→∞

log|WN(T ,A)|
N

= h∗(T ,A). (5)

Furthermore, one has the following theorem.

Theorem 4. Let A = {A1, . . . , Aq} partition M, where each Ai is compact. Then

lim
diamB→0

h(B,A) = h∗(T ,A). (6)

Proof. See Appendix B.2. �

2.3. The associated sofic shift

The reason for constructing such a topological Markov chain is that h(B,A) is able to be computed exactly. To do
this, we construct a directed labelled graph, with nodes 1, . . . , n corresponding to elements of B, and arcs and labels
which we now define. Each element of A will have a distinct label selected from the label set L = {a,b, c, . . . } .
The nodes i and j are connected with an arc iff Bij = 1; this arc is labelled with the label corresponding to the set
A ∈ A satisfying Bi ⊂ A.

Example 5 (Simple example: topological Markov chains and sofic shifts). Consider the (piecewise) continuous
map T : [0, 1] given by



72 G. Froyland et al. / Physica D 154 (2001) 68–84

Tx =
{

2x, x < 1
2

3
2 (x − 1

2 ), x ≥ 1
2 .

We select

A = {A1, A2} = {[0, 1
2 ), [ 1

2 , 1)}, B = {B1, B2, B3, B4} = {[0, 1
4 ), [ 1

4 ,
1
2 ), [ 1

2 ,
3
4 ), [ 3

4 , 1)}.
By Theorem 3(1), we see that h(T ) ≤ log 2, so by choosing A to contain two sets, we have a chance of capturing
all the entropy.

It is easily verified that the matrix B is given by

B =




1 1 0 0

0 0 1 1

1 1 0 0

0 1 1 0


 .

Let the partition sets B1, B2, B3, and B4 correspond to vertices 1, 2, 3, and 4, respectively. By assigning A1

the label a and A2 the label b, we arrive at the following directed labelled graph (which we denote by
G(B,A)).

Elements of WN(B,A) are generated by walks of length N on this graph, concatenating labels along the walk.
Words generated by walks on this graph are not the result of a subshift of finite type on the symbols {a,b} because
while the words [aa], [ab], [ba] and [bb] are allowed, the word [bbb] is not (if it were of finite type, one could
form all possible words by concatenation of allowable two-words).

2.4. A (reduced) right-resolving presentation of the sofic shift

Let W(G(B,A)) denote the set of all bi-infinite words that are generated by walks on the labelled directed
graph we have just constructed. The problem with the graph G(B,A) in Example 5 is that there can be more
than one arc with the same label emanating from the same node. This makes entropy computation difficult,
and so we seek a new graph (or presentation) G′(B,A) for which: (i) W(G′(B,A)) = W(G(A,B)) and (ii)
that from each node of G′(B,A), all outgoing arcs have different labels. We now describe an algorithm for
finding the “essential subgraph” R of such a graph G′. We will call R a reduced right-resolving presenta-
tion of G; see Appendix B.3 for details and proofs of necessary results. Nodes of the reduced right-resolving
presentation will be called hypernodes and arcs will be called hyperarcs. Hypernodes will be subsets of
{1, 2, . . . , n}.
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Example 6 (Simple example: reduced right-resolving presentations). The figure below shows the result of Algo-
rithm 2.4 applied to the graph in Example 5 (using the hypernode {1} as the initial hypernode).

1. Begin with an empty graph R and add a single hypernode consisting of a single (randomly selected) node of
G(B,A).

2. If possible, choose a hypernode in the graphRwith no outgoing hyperarcs and call this hypernodeH . Otherwise,
go to the pruning step 6.

3. Denote by H ′ the set of all nodes in G(B,A) reached by all outgoing arcs in G(B,A) starting at nodes in the
hypernode H and labelled (in G(B,A)) with a. Add the hypernode H ′ and a hyperarc labelled a starting at H
and terminating at H ′.

4. Repeat (3) for all labels in the alphabet.
5. Return to (2).
6. Remove all hypernodes inR without incoming hyperarcs (along with their outgoing hyperarcs).
7. If some hypernodes were removed, return to (6), otherwise stop.

We briefly outline the construction of this graph:

• The node 1 in G(B,A) has outgoing arcs labelled with a terminating at nodes 1 and 2 in G(B,A), therefore we
create a hypernode {1, 2} and a hyperarc labelled a starting at hypernode {1} and terminating at hypernode {1, 2}.

• Now consider the hypernode {1, 2}. Nodes 1 and 2 have outgoing arcs labelled a terminating at nodes 1–4, so we
create the hypernode {1, 2, 3, 4} and add a hyperarc labelled a starting at {1, 2} and terminating at {1, 2, 3, 4}.

• Collectively, nodes 1–4 have outgoing arcs labelled both a and b emanating from them. Take label a. The terminal
nodes of these arcs are 1–4, so we add a hyperarc labelled a looping from the hypernode {1, 2, 3, 4} back to itself.
Now take label b. The terminal nodes of these arcs are 1–3, so we add a new hypernode {1, 2, 3} and a hyperarc
from {1, 2, 3, 4} to {1, 2, 3} labelled b.

• Nodes 1–3 again collectively have outgoing arcs labelled with both a and b. First take a. The terminal nodes of
these arcs are 1–4, so we add a hyperarc labelled a from {1, 2, 3} to {1, 2, 3, 4}. Now consider the arcs labelled
b. The terminal nodes are 1 and 2, so we add a hyperarc from {1, 2, 3} to {1, 2} labelled b.

• All hypernodes now have outgoing arcs, so we begin pruning.
• Only hypernode {1} has no incoming hyperarc, so we delete this single hypernode and its outgoing arc (this

removal is indicated by the dashed box in Example 6).
• All remaining hypernodes have incoming hyperarcs, so we stop.

Note that the hyperarcs leaving each hypernode are all labelled differently in Example 6, in contrast to the arcs
and nodes of the graph of Example 5. The reader may like to verify that the final pruned graph of Example 6 is
independent of the hypernode used to initiate Algorithm 2.4.
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2.5. Entropy of the sofic shift

One forms an adjacency matrix for the graph produced by Algorithm 2.4 as follows. Suppose that there are m
hypernodes; then define an m×m matrix by

Rij = l if hypernode i has l outgoing hyperarcs terminating at hypernode j. (7)

We are now in a position to compute the entropy of our topological Markov chain with respect to the partition A.

Proposition 7. Suppose that T is transitive and let λ denote the maximal eigenvalue of R. Then h∗(T ,A) ≤
h(B,A) = log λ.

Proof. See Appendix B.3. �

Example 8 (Simple example: entropy of sofic shifts). The adjacency matrix for the reduced right-resolving pre-
sentation of Example 6 is

(8)

The largest eigenvalue of R is approximately λ = 1.8393, and therefore h(B,A) = log 1.8393 ≥ h∗(T ,A).
If we had set B = A, we would have obtained h(B,A) = log 2. As noted at the end of Example 5, by setting
B = {B1, B2, B3, B4}, we eliminate the word [bbb] (a word which would be allowed ifB = A). Thus the refinement
of B from two sets to four sets eliminates this word and reduces the entropy to log 1.8993. By refining the partition
B further, more “illegal” words will be eliminated, and the bound h(B,A) will decrease monotonically. In the limit
of the diameters of the partition sets in B going to zero, h(B,A) ↓ h∗(T ,A); this is the content of Theorem 4.

Remark 9. For non-transitive T , h(T ) is equal to the maximum of the entropy of T restricted to each transitive
region. It is possible that the topological Markov chain governed by B is still transitive, and in this case, the algorithms
may be applied exactly as before to obtain upper bounds for h∗(T ,A) and h(T ). If the topological Markov chain
is not transitive (not irreducible), then the algorithms must be applied separately to each irreducible component
of B.

3. Examples and results

The examples we present range from well-studied systems to those whose entropy is at present not able to be
efficiently computed. For some examples, we state that our computations are rigorous. In making this claim, we are
working under the assumption that our computer performs exact calculations. In principle, it is possible to allow
for roundoff errors by making the boundaries of the sets in B fuzzy, 3 however, we have not done this here, and do
not believe our results would substantially differ by allowing for roundoff.

Each of the calculations presented here takes on the order of seconds to minutes of computer time (including the
construction of the Markov chain B).

3 If numerical images land within some tolerance region of a boundary, we accept membership in sets on both sides of the boundary. By doing
this, we allow more pseudo-orbits of T and so preserve our upper bound for h(T ).
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Fig. 1. Comparison with previous results. (a) Estimate of the entropy (to base 2) of the logistic mappings x �→ µx(1 − x) versus µ: method
of present paper. (b) Entropy (to base 2) of the logistic mappings x �→ µx(1 − x) versus µ: figure reproduced from Block et al. [3], with kind
permission from Kluwer Academic Publishers.

3.1. A family of logistic mappings

To compare our method with previous work, we consider estimating the topological entropyh∗(T ,A) of the family
of logistic maps Tµ(x) = µx(1−x) for 3.5 ≤ µ ≤ 4. For all parameter valuesµ, we have usedA = {[0, 1

2 ), [ 1
2 , 1]}

and B is either an equipartition of [0, 1] into 212 or 214 subintervals. Shown in Fig. 1 are graphs of h(B,A) versus
µ calculated using our method (left frame) and from Block et al. [3] (right frame).

The agreement is very good, demonstrating that:

1. This simple choice of A yields good results even when it is not generating. That is, h∗(T ,A) ≈ h(T ) here.
2. The bound h∗(B,A) for h∗(T ,A) is very tight and can be considered as an estimate.

3.2. A hyperbolic linear automorphism of the 2-torus

We now demonstrate the efficacy of our method in a 2D example where the exact value of the entropy is
known. Let T : T2 be given by T (x, y) = (x + y, x) (mod 1). It is known that h(T ) = log( 1

2 (
√

5 + 1)) ≈
log 1.6180. We set A = {[0, 1) × [0, 1

2 ), [0, 1) × [ 1
2 , 1)}. The refined partitions B will be produced by repeated

bisections of the torus; that is, elements of B will be of the form [(p − 1)/2k, p/2k) × [(q − 1)/2k, q/2k),
p, q = 1, . . . , 2k , k ≥ 1. Our results are summarised in Table 1. The trend here seems to be that the number of
hypernodes in R is a little less than twice that of the cardinality of B, while the maximal hypernode size is not
very large in comparison to the cardinality of B; that is, lots of hypernodes, but each hypernode is of relatively

Table 1
Upper bounds for h∗(T ,A) for the linear toral automorphism

k Cardinality of B Number of hypernodes in R Maximal hypernode size Entropy estimate h(B,A)
2 16 32 5 log 1.8393
3 64 144 10 log 1.7494
4 256 448 21 log 1.6916
5 1024 1792 42 log 1.6583
6 4096 7472 83 log 1.6393
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small size. Our next example exhibits completely contrasting behaviour. We admit that we do not fully understand
how the properties of T or A influence the properties of the induced hypergraph, such as its size and connectivity;
it would be interesting to derive some general principles to help further decrease computing time and memory
requirements.

3.3. Hénon

We use the standard Hénon map, T (x, y) = (1 − 1.4x2 + 0.3y, x) and consider the action of T restricted to the
box [−1.5, 1.5]× [−1.5, 1.5]. Recent numerical results [12] suggest that h(T ) ≈ 0.4651. To begin with, we use the
simple partitionA = {[−1.5, 1.5]× [0, 1.5], [−1.5, 1.5]× [−1.5, 0]}. The elements of our refined partitions B will
be of the form [−1.5+3(p−1)/2k,−1.5+3p/2k)×[−1.5+3(q−1)/2k,−1.5+3q/2k),p, q = 1, . . . , 2k , k ≥ 1.

Rather than partitioning all of [−1.5, 1.5]×[−1.5, 1.5] at every level of refinement ofB, we “trim” the topological
Markov chain (and the current partition) by finding the strongly connected component of the associated graph
[15]. It can be shown [16] that the trimmed partition at each level of refinement contains the chain recurrent
set of T (see [17] for a definition). This trimmed partition produces the maximal irreducible component of the
topological Markov chain and it may be shown using arguments similar to those in the proof of Proposition B.12
that this irreducible component generates the same entropy as topological Markov chains produced without any
trimming.

Fig. 2. Example trimmed partitions of [−1.5, 1.5] × [−1.5, 1.5] for the Hénon map. The horizontal dotted line denotes the boundary of the
coarse partition A.
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Table 2
Upper bounds for h∗(T ,A) for the Hénon map

k Cardinality of B Number of hypernodes in R Maximal hypernode size Entropy estimate h(B,A)
4 122 31 92 0.6244
5 295 29 171 0.5858
6 694 57 338 0.5518
7 1713 163 682 0.5225
8 4197 234 1360 0.5024
9 9766 270 2621 0.4780

10 21639 892 5162 0.4669
11 49296 1086 10286 0.4628

Table 3
Upper bounds for h∗(T ,A) for the Hénon map

k Cardinality of B Number of hypernodes in R Entropy estimate h(B,A)
4 122 31 0.6244
5 295 28 0.5858
6 694 81 0.5466
7 1713 180 0.5200
8 4197 244 0.5028
9 9766 409 0.4825

10 21639 980 0.4720
11 49396 1162 0.4687

Numerical routines [18] to produce topological Markov chains by rigorously calculating all possible intersections
in (3) are coded in the GAIO 4 package. The use of these routines allow us to state that we have rigorous upper
bounds for h∗(T ,A). Some refined partitions are shown in Fig. 2 and numerical results are shown in Table 2. Note
that the final value of 0.4628 is below the accepted value of the entropy. If the accepted value of h(T ) is correct,
this proves that A is not generating for T .

Following the suggestion of D’Allessandro et al. [12] that a partition which is near to generating may be constructed
by joining up primary and close-to-primary homoclinic tangencies, we recomputed the entropy estimates using an
approximation of the partition in [12]. This approximate partition is given by the two-set partition created whenM =
[−1.5, 1.5]×[−1.5, 1.5] is bisected by the polygonal arc with vertices (−1.5,−0.01), (0.703,−0.01), (0.8, 0.025),
(1.231,−0.085), (1.272,−0.07) and (1.5,−0.07). The results of Table 3 suggest that this new partition does indeed
capture more entropy than the simple-minded horizontal bisection, and our final value now indeed represents an
upper bound.

3.4. 3D logistic

Our final example studies a 3D chaotic system (9) which appears numerically to possess an approximately 2D
attractor. Define

T (x, y, z) = (y − µx, λy(1 − x), x − γ z), (9)

where µ = 1.2, λ = 2.35 and γ = 0.1. A plot of a long trajectory of T is shown in Fig. 3(a) and a rigorous outer
box covering of the chain recurrent set is displayed in Fig. 3(b).

4 http://www.upb.de/math/∼agdellnitz/gaio.
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Fig. 3. Invariant attracting sets for the 3D logistic map. (a) Plot of a trajectory of T of length 10 000. (b) Rigorous outer box covering of the
chain recurrent set.

Table 4
Upper bounds for h∗(T ,A) for the 3D logistic map

k Cardinality of B Number of hypernodes in R Maximal hypernode size Entropy bound h(B,A)
3 289 49 276 1.197
4 1352 285 1190 1.040
5 6037 1288 4625 0.892
5a 10428 2496 7977 0.837

a The partition sets of B have diameter 1
32 in two coordinate directions and 1

64 in the third coordinate direction.

To select a suitable number of partition sets for the coarse partition A, we use the bound of Theorem 3(2),
which suggests that eight sets are sufficient to capture all of the entropy. We bi-partitioned a cube containing a
long trajectory along each coordinate axis at x = 0.3, y = 1.0, z = 0.3, to create an eight-set partition. Results of
our calculations are summarised in Table 4. To obtain a rough “ballpark” comparison for our entropy bounds, we
estimated the Lyapunov exponents for the 3D logistic map and found that λ1 ≈ 0.18, λ2 ≈ 0.13 and λ3 ≈ −2.31.
Assuming that the Pesin equality holds for this system, one has that the measure-theoretic entropy of T (using
the physical measure µ exhibited by most orbits) is hµ(T ) ≈ 0.18 + 0.13 = 0.31. Since h(T ) = sup{hµ(T ) :
µ is a T -invariant probability measure}, the value 0.31 represents a rough lower bound for h(T ). Our best bound
of 0.837 for h(B,A) is consistent with this result. It is reasonable that 0.837 is significantly higher than 0.31 as our
boxes in B are still relatively large, allowing many spurious orbits to remain.

While the application of our method to systems with higher dimensional unstable manifolds poses no problems,
the method of Newhouse and Pignataro [9] would require significantly more computational effort since it necessitates
the computation of exponential growth rates of volumes of higher dimensional manifolds.

Appendix A. Implementational details

In this section, we give more details on the numerical realisation of the algorithms presented. The two main
computational steps are:
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1. Compute the topological Markov chain on the fine partition B. For reasons of efficiency, in practice one does
not compute the transition matrix (3) on a full partition of M , but instead uses subdivision techniques in order to
compute finer and finer coverings of the chain recurrent set of T in M [15,16,19]. In each step of this technique
the matrix (3) is computed on the current collection of sets. For maps these computations can be made both
rigorous and efficient [18].

2. Compute the (reduced) right-resolving presentation of the sofic shift. This involves the construction of the
(“hyper”-)graphR, where the nodes ofR consist of subsets of the set of nodes of G(B,A); see Section 2.4. In
step 3 of Algorithm 2.4 a candidate for a new hypernode together with a corresponding hyperarc is constructed
and is eventually added toR if it is not already present.

As mentioned, there exist efficient algorithms for step 1 — at least in the case where the dynamical system is given
by a discrete map. In step 2 one is faced with the question of how to efficiently store and compute the hypergraph
R. Since the transitions between hypernodes are directly given by the transitions between the nodes in G(B,A), it
is immediate to compute a candidate for a new hypernode from a given one. After the creation of this candidate,
one has to decide whether this hypernode is already contained inR or not. Depending on the data structure used to
storeR and on the dynamics of the underlying system this may be computationally expensive. In the following, we
are going to describe a data structure which enables this decision to be accomplished efficiently. An upper bound
for the complexity of the corresponding search withinR is given by O(n log(n)), where n is the number of sets in
B.

A.1. The data structure

Let B = {B1, . . . , Bn} be the fine partition. Every hypernode R ∈ R is then uniquely determined by a subset
of the set {1, . . . , n}. A common way to store such a set is by a bit-vector of length n, where the ith bit is set to
1 if and only if i ∈ R. The disadvantage of this approach is that every candidate for a new hypernode has to be
compared bitwise with every existing one. We are not going to use this approach but will instead make use of the
following idea: if two hypernodes S,R ∈ R differ only by one element, it is sufficient to store the common part
once and additionally the difference between S andR. In comparing a candidate with S andR it suffices to compare
the common part once and additionally the differences.

Let us be more precise. We are going to construct a tree T in order to store the elements of R. To every node
N ∈ T except the root N0 ∈ T , we assign a pair (i(N), s(N)), where i(N) ∈ {1, . . . , n} denotes a node within the
graph G(B,A) of the sofic shift and s(N) ∈ {0, 1, . . . , |R|} is either 0 or denotes 5 a node in R. Every node of T
may have at most n children. Now the hypernode R = {r1, . . . , r(} ∈ R (where we sort the elements of R such that
r1 < r2 < · · · < r() is represented as a path (N0, N1, . . . , N() in T with

i(Nj ) = rj , j = 1, . . . , ( s(N() > 0.

As an example consider a hypergraphR with nodes

{{2}, {1, 2, 5}, {1, 4}, {1}}.

The corresponding tree is then given as depicted in Fig. 4. The corresponding paths in T are

{2} : (N0, N2), {1, 2, 5} : (N0, N1, N3, N5), {1, 4} : (N0, N1, N4), {1} : (N0, N1).

5 The value of s(N) is necessary only to label nodes in the transition matrix R; for the purposes of the tree storage, we need only to check if
s(N) is non-zero or not.



80 G. Froyland et al. / Physica D 154 (2001) 68–84

Fig. 4. Example of a tree for the storage of the reduced right-resolving presentation R.

A.2. Storage of the tree

The maximal number of children of a node depends on the number of sets in the partition B. Since the actual
number of children of a node varies from node to node and may differ significantly (essentially depending on the
dynamics of the underlying system), it is not advisable to pre-allocate memory for every possible child of a node.
Rather we store the actual children of a node in a set, such that the complexity of the task of looking for a particular
child is of order O(log n).

A.3. Handling of a candidate for a new hypernode

Let us return to the original task now, namely the problem of having to decide whether a newly created candidate
R for a new hypernode of R is already contained in R or has to be inserted. Let again R = {r1, . . . , r(} with
r1 < · · · < r(. We start with r1 and look for a child N1 of the root of T such that

i(N1) = r1.

If it exists, we repeat the process with r2 and the children of N1. If not, we insert the new hypernode R into T by
constructing the corresponding path in T as described above.

A.4. Construction of the hypergraphR

So far, we have only discussed how to efficiently store the elements ofR. In fact, while we are building the tree
T we are constructing the transition matrix R corresponding to R on the fly. Every time we create a candidate for
new hypernode we either update an existing entry of this matrix (in the case when the candidate is already contained
in T ) or create a new one (in the case when the candidate is inserted into T ).

Appendix B. Proofs

B.1. Proof of Proposition 2

Lemma B.1. Let ν be any T-invariant probability measure and hν(T ,A) denote the standard metric entropy of T
with respect to the partition A. Then hν(T ,A) ≤ h∗(T ,A).
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Proof. Let A be a partition, and define Hν(A) = ∑
A∈Aν(A) log(ν(A)). Further, let |A| denote the cardinality of

A. It is clear that Hν(
∨N−1

i=0 T
−iA) ≤ log|∨N−1

i=0 T
−iA| (Corollary 4.2 of [1]). Thus

hν(T ,A) ≤ h∗(T ,A) := lim
N→∞

(
1

N

)
log

∣∣∣∣∣
N−1∨
i=0

T −iA

∣∣∣∣∣
for all invariant ν. �

Proof of Proposition 2.

1. Using Lemma B.1 and the facts that: (i) if A is generating, then hν(T ) = hν(T ,A) (Theorems 4.17 and 4.18
of [1]), and (ii) the variational principle (Theorem 8.6 of [1]) that states that h(T ) = supν is T -invariant hν(T ), the
result follows.

2. By Theorem 8.3 of [1], limdiamA→0 hν(T ,A) = hν(T ). Combining this with the variational principle, and
Lemma B.1, we have the following result. �

Remark B.2. Before we continue, we point out a few subtle differences between h∗(T ,A) and h(T ).

1. h∗(T ,A) too low: If the partition A is not complex enough to fully capture the total entropy of T (for example,
if A is not generating), then one may have h∗(T ,A) < h(T ). For example, set T : [0, 1] , Tx = 4x (mod 1),
and A = {[0, 1

2 ), [ 1
2 , 1]}. It is easy to see that h∗(T ,A) = log 2 < log 4 = h(T ).

2. h∗(T ,A) too high: Sometimes the use of a partition generates an artificial amount of entropy and h∗(T ,A) >
h(T ). For example, define T : {x ∈ R2 : ‖x‖2 ≤ 1} (using polar coordinates) by T (θ, r) = (2θ(mod 1), 1

2 r),
and set A = {{0 ≤ θ < 1

2 }, { 1
2 ≤ θ < 1}}. Now h∗(T ,A) = log 2, however, h(T ) = 0 as T is a contraction

with respect to the Euclidean norm.

While we must be careful that situation (1) does not occur in practice (see the discussion at the beginning of Section
2 for basic precautions), we believe that situation (2) is rare.

B.2. Convergence of h(B,A) → h∗(T ,A)

Proof of Theorem 4.

1. For N ∈ N and ε ≥ 0, we define the following shift invariant subsets of {1, . . . , q}Z:

W(∞, ε) := {a = (ai) : ∃(xi)∞i=0, xi ∈ Aai , d(Txi , xi+1) ≤ ε)},
W(N, ε) := {a = (ai) : ∀i ≥ 0, ∃xi, . . . , xi+N−1 with xi ∈ Aai and d(Txi , xi+1) ≤ ε)}.

Clearly, W(N2, ε1) ⊂ W(N1, ε2) if N1 ≤ N2 ≤ ∞ and 0 ≤ ε1 ≤ ε2. If N < ∞ and ε ≥ 0 is arbitrary, then
W(N, ε) is a subshift of finite type and thus compact.

2. We will showW(∞, ε) = ⋂
N∈NW(N, ε) for every ε ≥ 0, which implies in particular thatW(∞, ε) is compact.

Let a ∈ ⋂
N∈NW(N, ε). Then for every N there are xi,N for 0 ≤ i ≤ N − 1 such that d(Txi,N , xi+1,N ) ≤ ε.

By compactness there exists a subsequence of (x0,N )N∈N converging to some x0 ∈ Aa0 . By switching to a
further subsequence we can achieve that the corresponding subsequence of (x1,N ) converges to some x1 ∈ Aa1 .
By continuity, we have d(Tx0, x1) ≤ ε. This implies a ∈ W(∞, ε). The reverse inclusion is obvious.

3. In this part, we show W(N, 0) = ⋂
ε>0W(N, ε) if N < ∞.

Consider a fixed word a = [a0, . . . , aN−1]. For ε ≥ 0 the set

Cε := {(x0, . . . , xN−1) ∈ MN : ∀i xi ∈ Aai and d(Txi , xi+1) ≤ ε}



82 G. Froyland et al. / Physica D 154 (2001) 68–84

is compact. Clearly,C0 ⊂ Cε for every ε > 0, i.e.C0 ⊂ ⋂
ε>0Cε. On the other hand, if x = (x0, . . . , xN−1) ∈ Cε

for every ε > 0, then by continuity d(Txi , xi+1) = 0 for every i, i.e. x ∈ C0. By compactness this impliesC0 �= ∅
if and only if Cε �= ∅ for all ε > 0. Since W(N, ε) for N < ∞ is uniquely determined by all words of length N ,
the claim follows.

4. To conclude the proof, we observe

W(∞, 0) =
⋂
N∈N

⋂
ε>0

W(N, ε) =
⋂
ε>0

⋂
N∈N

W(N, ε) =
⋂
ε>0

W(∞, ε).

Let a(N, ε) for N ∈ N, ε ≥ 0 denote the number of distinct symbol sequences of length N in W(∞, ε). Then

lim
ε→0

lim
N→∞

log a(N, ε)

N
= lim

ε→0
inf
N∈N

log a(N, ε)

N
= inf

ε>0
inf
N∈N

log a(N, ε)

N

= inf
N∈N

inf
ε>0

log a(N, ε)

N
= inf

N∈N
log a(N, 0)

N
= h∗(T ,A).

The assertion of the theorem follows because a(N, ε) ≥ |WN(B,A)| if diamB ≤ ε. �

Remark B.3. In the case of non-compact Ai one may apply Theorem 4 to A = {Ā1, . . . , Āq}.

B.3. Construction of the reduced right-resolving presentation

The setW(G(B,A)) is by definition a sofic shift; that is, it is a set of bi-infinite words formed by the concatenation
of labels read on walks around a directed labelled graph. In the sequel we select the necessary results from Lind
and Marcus [20].

Definition B.4. We call a shift W-irreducible, if given words u, v ∈ W(G(A,B)), one can always find a word
w ∈W(G(A,B)) such that uwv ∈W(G(A,B)).

Definition B.5. A graph G will be called irreducible if there is a path from any node i to any other node j . A
non-negative matrix B will be called irreducible if given states i, j there is an N ≥ 0 such that (BN)ij > 0.

In the case of subshifts of finite type, and in particular, our topological Markov chain governed by B,W-irreducibility
of the topological Markov chain is equivalent to irreducibility of the (0, 1) transition matrix.

Lemma B.6. Suppose that the (0, 1) transition matrix B for the topological Markov chain is irreducible. Then the
associated sofic shift isW-irreducible.

Proof. The word umust terminate at some node of the topological Markov chain, call it n1; likewise, n2 is a starting
node of the word v. The word w is simply the word read by taking a path from n1 to n2, a path which exists by
irreducibility of the topological Markov chain. �

Definition B.7. A labelled graph G′ is a right-resolving presentation of a labelled graph G if: (i)W(G′) =W(G)

and (ii) for each node of G′, all outgoing arcs are labelled differently.

Theorem B.8 (Theorems 3.3.2 and 3.3.11 of [20]).

1. Every sofic shift has a right-resolving presentation.
2. A sofic shift isW-irreducible iff it has aW-irreducible right-resolving presentation.
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Theorem B.9 (Theorem 4.3.3 of [20]). The entropy of aW-irreducible sofic shift is given by the maximal eigenvalue
of the adjacency matrix R of an irreducible right-resolving presentation.

A graph of aW-irreducible right-resolving presentation may not be irreducible. The following two results say
that each irreducible component of such a graph carries all of the entropy.

Lemma B.10. If the graph of aW-irreducible right-resolving presentationG′(A,B) has more than one irreducible
component, then all irreducible components generate the same words.

Proof. Suppose that one has two irreducible components C1 and C2, such that one may not move from C1 to C2

(reverse movement may or may not be allowed). Let v be a word generated in C2 that cannot be generated in C1,
and let u be an arbitrary word generated in C1. Given these words u, v ∈W(G′(A,B)), we should be able to find a
word w ∈W(G′(A,B)) such that uwv ∈W(G′(A,B)). Clearly, the word uwv may not be formed entirely in C1,
and one cannot move into C2; thusW-irreducibility is contradicted. �

Corollary B.11. The entropy generated by any irreducible component of the graph of aW-irreducible right-resolving
presentation equals the entropy generated by the full graph.

Proof. Follows directly from Lemma B.10. �

The main construction embedded in Algorithm 2.4 is described in the proof of Theorem B.8(1). However, the
formal construction of a full right-resolving presentation, as described in [20] requires an initial hypernode collection
consisting of all subsets of the nodes {1, 2, . . . , n}. That is, one must begin with 2n hypernodes; something which is
computationally infeasible. We now show that one does not need to construct a full right-resolving presentation to find
a suitable adjacency matrix; rather a subgraph containing any irreducible component of the full graph is sufficient.

Proposition B.12. Algorithm 2.4 applied to a W-irreducible sofic shift produces a directed labelled graph such
that the logarithm of the maximal eigenvalue l of the adjacency matrix R for this graph is equal to h(B,A).

Proof. We consider a W-irreducible right-resolving presentation Gfull, with existence guaranteed by Theorem
B.8(1). Lemma B.10 and Corollary B.11 tell us that we may focus on any one of the irreducible components of
Gfull. We seek to find a subgraph GAlg1 ⊂ Gfull containing one of the (possibly several) irreducible components of
Gfull by choosing a (random) starting hypernode and traversing all possible outgoing hyperarcs as in Algorithm 2.4
(steps 1–5) and then deleting all non-recurrent hypernodes (steps 6 and 7). Clearly, our algorithm finds a subgraph
GAlg1 containing an irreducible componentGirred. This irreducible componentGirred governs aW-irreducible shift
by arguments as in the proof of Lemma B.6. The fact thatGirred carries all of the entropy generated byGfull follows
from Corollary B.11. We now need only show that this entropy is equal to log λ, where λ is the maximal eigenvalue
of the matrix R. In analogy to the construction of R, create the matrix Rirred using only nodes in Girred (the matrix
Rirred is irreducible by definition). Applying Corollary B.11 and Theorem B.9, we have that h(B,A) = log λirred,
where λirred is the maximal eigenvalue of Rirred. Since our subgraph GAlg1 consists of the irreducible component
Girred, plus, possibly additional nodes whose connecting arcs eventually lead into Girred, but do not have incoming
arcs originating in Girred, one can show that l = lirred, and the result is proven. �

Proof of Proposition 7. Transitivity of T implies irreducibility of B. The result then follows by Lemma B.6 and
Proposition B.12. �
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