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Allocation problems in networks

A number of interesting problems in networks involve optimization of
a social utility function (sum of agents’ utilities) under resource
constraints, privacy constraints, and strategic behavior by agents

Examples include:
- power production, distribution,
consumption on the smart grid,
- Bandwidth allocation to cellular
service providers
- unicast, multi-rate multicast
service on the Internet
- advertisement on social networks
- economies with public or local
public goods (e.g., investment on
clean air or cyber-security)
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Spectrum allocation

Total Bandwidth B

xx xx
1 2 3 N

...

max
x∈RN

+

∑
i∈N

vi(xi)

s.t.
∑
i∈N

xi 6 B

private consumption goods: utilities vi(·) depend only on their own
allocation
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Unicast service on the Internet

T1x1

T2x2

T3x3

T4x4

R1 x1

R2 x2

R3 x3

R4 x4

Tx Rx

x1 x2 x1 x2

x3

x3 x4

max
x∈RN

+

∑
i∈N

vi(xi)

s.t.
∑
i∈Nl

xi 6 c
l ∀ l ∈ L
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Multi-rate multicast service on the Internet

T1x11

T2
x22
x23

T3
x34
x35

R1 x11

R2 x22

R4 x34

R3 x23

R5 x35

Tx Rx

x11 x22

x34
x35

x11

x23
x22

max
x∈RN

+

∑
k∈K

∑
i∈Gk

vki(xki)

s.t.
∑

k∈Kl

max
i∈Gl

k

{xki} 6 c
l ∀ l ∈ L
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Power allocation in wireless networks

Each “agent” is a (transmitter, receiver) pair.

1

2

3 4
N1 = {1, 2, 3} N2 = {3, 4}

x1

x2

x3 x4

max
x

∑
i∈N

vi({xi}i∈Nk(i)
)

s.t. x ∈ RN
+

The vector of transmission powers x = (x1, . . . , xN) is a public (or
local public) good
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NUM and Salient Features

Maximize sum of utilities subject to network constraints

max
x

∑
i∈N

vi(x) s.t. x ∈ X.

Linear constraints - common knowledge.

vi(·) - Private information and known only to agent i

Designer can impose taxes and quasi-linear utilities

ui = vi(x) − ti.
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Informal Framework of Mechanism Design

Designer wishes to allocate “optimally”.

Agents are strategic and...

Possess private information relevant to optimal allocation.

Designer wishes to cover this Informational gap

Design Message Space and Contract.

Agents then announce a selected message and receive outcomes based
on the contract.
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Hurwicz-Reiter Model

V = ×Vi X

CP

CP

Envinronment Outcome

V = ×Vi X = ×Xi
v

x

M = ×Mi

Messages

Contract : h

M = ×Mi

(NE) h

m

Design M & h : M→ X to replicate CP mapping at NE.
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Motivating Question

The motivating question, in this work, is whether it is possible to design
Nash implementation mechanisms that posses certain properties...
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Motivating Design Principles

(a) Reduction in communication overhead for NUM problems

Models with “large” type spaces - Private info. vi : RA → R.

(b) Systematic Design to deal with Allocative constraints

Integrate different network constraints under one design umbrella.

Special focus: Can off-equilibrium feasibility be accommodated?
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Motivating Design Principles (contd)

(c) Informational constraints on messaging

What if not all agents can talk to a common designer?

What if they don’t want to? (privacy)

1

2

3

4

m1 m2

m2

m4

m2 m3

m3 m4

(Not to be confused with Unicast or Multicast links or
dependence of utility on local allocation only.)
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Motivating Design Principles (contd)

(d) Learning of Nash equilibrium

Solution concept of NE and convergence of a learning dynamic go
together for models with stable environments

Design for two Off-equilibrium properties

- Off-equilibrium Feasibility

- Convergence of a “large” class of Learning algorithms.

(e) Designing beyond sum of utilities - fairness

What about mechanism design for other objectives?, e.g.,

max
x∈X

∑
i∈N

log (vi(x)) or max
x∈X

(
min
i∈N

(
vi(x)

))
.
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Overview

(a) Reduced communication
overhead

(b) Systematic Design

(c) Informational constraints
on messaging

(d) Learning of NE

(e) Designing beyond SoU

Part 1: Multirate/Multicast

Part 2: Distributed M.D. and
Learning

Fairness (not in this talk)
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Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

Overview

1 Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

2 Distributed Mechanisms with Learning Guarantees
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Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

Relevant Literature

Earliest works by [Groves, Ledyard 1977] for Lindahl allocation
and [Hurwicz 1979] for Walrasian allocation. Also [Tian 1989,

Chen 2002] for Lindahl allocation.

Recent works motivated by [Kelly, Maulloo, Tan 1998]

- Competitive equilibria, only for price-takers.

Two classifications for recent works: based on constraint set, based
on full/partial implementation.

Single-link Unicast

[Yang, Hajek 2006b], [Maheshwaran, Başar 2004] - full
implementation.
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Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

Relevant Literature (contd)

More General Constraint set

[Yang, Hajek 2007], [Johari, Tsitsiklis 2009] - arbitrary
convex constraint sets but with partial implementation.

Off-equilibrium Feasibility.

[Jain, Walrand 2010] - Partial Implementation.

[Kakhbod, Teneketzis 2012a,b] - Full implementation for general
unicast and multicast.

Achilleas Anastasopoulos Mechanism Design with Allocative, Informational and Learning ConstraintsMay 2017 17 / 46



Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

The Multirate/Multicast Model

max{x11, x12}
+ max{x23, x24}

T1

T2

R1 x11

R2 x12

R3 x23

R4 x24

max{x11, x12}+ x23 x12C

A B

Tx Rx

x24

max{x11, x12}

max{x23, x24}

x11

x23

Agent - a specific transmitter-receiver pair.

Multicast Group - Group of agents requesting the same content.
(e.g. same TV program).

Multi-rate - Agents within the same multicast group can request
different QoS (e.g. high/standard definition video).

Watching on mobile phone or on HDTV.
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Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

Notation

max{x11, x12}
+ max{x23, x24}

T1

T2

R1 x11

R2 x12

R3 x23

R4 x24

max{x11, x12}+ x23 x12C

A B

Tx Rx

x24

max{x11, x12}

max{x23, x24}

x11

x23

Set of multicast groups K = {1, . . . , K}.

Agents indexed group-wise (k, i) ∈ K× Gk (called agent ki).

Each agent uses a fixed route Lki ⊂ L.

Set of groups active on link l ∈ L denoted by Kl ⊂ K.

Agents from group k that are active on link l are identified by
Gl
k ⊂ Gk.
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Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

Centralized Problem

max{x11, x12}
+ max{x23, x24}

T1

T2

R1 x11

R2 x12

R3 x23

R4 x24

max{x11, x12}+ x23 x12C

A B

Tx Rx

x24

max{x11, x12}

max{x23, x24}

x11

x23

Agents

T1-R1
T1-R2
T2-R3
T2-R4

max
x∈RN

+

∑
k∈K

∑
i∈Gk

vki(xki) (CPMM)

s.t.
∑

k∈Kl

max
i∈Gl

k

{xki} 6 c
l ∀ l ∈ L
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Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

Public and Private goods

Two levels of interaction in the Multi-rate Multicast problem

1 Contest between groups through the highest rate at each link.

2 No contest within a group, since only maximum gets charged.

Due to the max{·}, there’s a possible case for free-riding.
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Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

Systematic Mechanism Design

max
x,s

∑
ki∈N

vki(xki)

s.t. xki > 0 ∀ ki ∈ N (C1)

and
∑
k∈Kl

slk 6 c
l ∀ l ∈ L (C2)

and xki 6 s
l
k ∀ i ∈ Gl

k, ∀ k, l (C3)

slk - proxy for max
i∈Gl

k

{
xki
}

.
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Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

KKT - Necessary and Sufficient

Assuming utilities are strictly concave (and monotonic) and differentiable
There exist

Primal variables (x∗, s∗) and

Dual variables (λ∗l )l∈L and (µlki
∗
)ki∈N,l∈Lki

such that:

1. Primal Feasibility – (x∗, s∗) satisfy multicast constraints.

2. Dual Feasibility – λ∗, µ∗ > 0.
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Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

KKT - Necessary and Sufficient

Assuming utilities are strictly concave (and monotonic) and differentiable

3. Complimentary Slackness –

λ∗l

( ∑
k∈Kl

slk
∗
− cl

)
= 0 ∀ l ∈ L

µlki
∗ (
x∗ki − s

l
k

∗)
= 0 ∀ ki ∈ N, l ∈ Lki

4. Stationarity –

v′ki(x
∗
ki) =

∑
l∈Lki

µlki
∗ ∀ ki ∈ N if x∗ki > 0

λ∗l =
∑
i∈Gl

k

µlki
∗ ∀ k ∈ Kl, l ∈ L

Achilleas Anastasopoulos Mechanism Design with Allocative, Informational and Learning ConstraintsMay 2017 23 / 46



Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

Mechanism - Message Space

Mki = R+ × R2Lki
+ where mki =

(
yki,

(
plki, q

l
ki

)
l∈Lki

)
.

yki – agent ki’s demand for allocation.

plki – individual price for ki. (proxy for µlki)

Best not to have agents pay at prices quoted by themself.

So qlki used in place of plke for the “next” agent on link l.

plkj qlkj

plki qlki

plke qlke
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Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

Mechanism: Proportional Allocation

A new allocation scheme ..... that guarantees off-equilibrium
feasibility!

Demand y is translated into allocation x using a scaling factor, i.e.,
x̂ki(m) = r yki with r = minl∈L

{
rl(m)

}
.

x1

x2 y

x

y

x

y x
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Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

Mechanism: Taxes

Tax for any agent ki is the sum of taxes tlki over route Lki.

Consider agents kj ki ke from Gl
k.

Define wl
k =

∑
i∈Gl

k

plki and w̄l
−k =

1

Kl − 1

∑
k′∈Kl\{k}

wl
k′ .
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Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

Mechanism: Taxes

Consider agents kj ki ke from Gl
k.

tlki = xkiq
l
kj + (qlki − p

l
ke)

2 + qlkj
(
plki − q

l
kj

) (
slk − xki

)
+ (wl

k − w̄l
−k)

2 + w̄l
−k

(
wl

k − w̄l
−k

) (
cl −

∑
k′∈Kl

slk′
)

Define wl
k =

∑
i∈Gl

k

plki and w̄l
−k =

1

Kl − 1

∑
k′∈Kl\{k}

wl
k′ .
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Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

Mechanism: Taxes

Consider agents kj ki ke from Gl
k.

xkiq
l
kj

Payment for xki

Define wl
k =

∑
i∈Gl

k

plki and w̄l
−k =

1

Kl − 1

∑
k′∈Kl\{k}

wl
k′ .
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Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

Mechanism: Taxes

Consider agents kj ki ke from Gl
k.

(qlki − p
l
ke)

2

Equal Prices (individual)

plkj qlkj

plki qlki

plke qlke

Define wl
k =

∑
i∈Gl

k

plki and w̄l
−k =

1

Kl − 1

∑
k′∈Kl\{k}

wl
k′ .
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Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

Mechanism: Taxes

Consider agents kj ki ke from Gl
k.

qlkj
(
plki − q

l
kj

) (
slk − xki

)

Complimentary Slackness (individual)

Define wl
k =

∑
i∈Gl

k

plki and w̄l
−k =

1

Kl − 1

∑
k′∈Kl\{k}

wl
k′ .
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Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

Mechanism: Taxes

Consider agents kj ki ke from Gl
k.

(wl
k − w̄l

−k)
2

Equal Prices (group)

Define wl
k =

∑
i∈Gl

k

plki and w̄l
−k =

1

Kl − 1

∑
k′∈Kl\{k}

wl
k′ .
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Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

Mechanism: Taxes

Consider agents kj ki ke from Gl
k.

w̄l
−k

(
wl
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) (
cl −

∑
k′∈Kl
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)
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Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

Summary of Results

Theorem (Full Implementation+IR+WBB/SBB)

At any Nash equilibrium m∗ of the induced game,

The allocation x̂(m∗) is the unique solution to (CPMM).

Individual Rationality is satisfied for all agents.

Weak Budget Balance
∑

ki∈N tki(m
∗) > 0.

Strong Budget Balance
∑

ki∈N tki(m
∗) = 0, with an augmented

message space.

Basic idea behind proof of Implementation

F.O.C. for NE gives KKT as necessary conditions.

Existence using S.O.C. and invertibility.
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Distributed Mechanisms with Learning Guarantees

Overview

1 Systematic Design for Allocative constraints: Multi-rate/multicast
transmission

2 Distributed Mechanisms with Learning Guarantees

Achilleas Anastasopoulos Mechanism Design with Allocative, Informational and Learning ConstraintsMay 2017 28 / 46



Distributed Mechanisms with Learning Guarantees

Mechanism Design, Learning and Networks

Mechanism Design /

Strategic behavior

Learning /

Transient behavior

Networks /

Local messages
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Distributed Mechanisms with Learning Guarantees

Learning and Modeling trade-offs

Fully
Compliant

Agents

Fully
Strategic
Agents

Design Choices

Sophistication & Guarantees

Good enough guarantee and
large enough design space
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Distributed Mechanisms with Learning Guarantees

Mechanism Design, Learning and Networks

Well-known algorithms for finding roots and/or optimization

Stochastic Approximation: [Robbins, Monro 1951]

Gradient Descent: [Nesterov 1983]

Simulated Annealing: [Khachaturyan et al 1979, Kirkpatrick

et al 1983]

Online algorithms: prediction with advice [Littlestone, Warmuth

1994, Vovk 1992]; exp3 [Auer et al 2002]

Learning /

Transient Behavior
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Distributed Mechanisms with Learning Guarantees

Mechanism Design, Learning and Networks

Decentralized system

Message passing is done locally

Realistic and scalable architecture

Several well-known graph problems such as

Consensus on a Network [Fischer, Lynch, Paterson 1985]

Byzantine Generals [Lamport, Shostak, Pease 1982]

Network /

Local Messages
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Distributed Mechanisms with Learning Guarantees

Learning + Networks

State of the art design has accommodated at most two out of three
requirements

Learning on a network with non-strategic agents: distributed
optimization

- Distributed Stochastic Gradient descent: [Tsitsiklis, Bertsekas 1986]

- Consensus and Optimization: [Nedic, Ozdaglar, Parrilo 2008]

- ADMM: [Boyd, Parikh, Chu, Peleato, Eckstein 2011].

Learning /

Transient Behavior

Network /

Local Messages
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Distributed Mechanisms with Learning Guarantees

Mechanism Design + Learning

Mechanism
Design

Learning

Mechanism Design with Learning
guarantees in Broadcast
environments (i.e., fully connected
networks).

Supermodularity has played a major
role in providing learning guarantees
in games. [Milgrom, Roberts

1990; Chen 2002]
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Distributed Mechanisms with Learning Guarantees

Mechanism Design + Learning

Theorem (Milgrom and Roberts 1990)

For a supermodular game i.e., compact action space and an increasing
best-response, any learning strategy within the adaptive dynamics (AD)
class converges to a point between two most extreme NE.

Limitations

Requirement of a compact action space, and

A region for the convergent point if multiple equilibria exist.

Experimental results have shown that supermodularity does not result
in fast convergence
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Distributed Mechanisms with Learning Guarantees

Goal - Design simultaneously for all three

Mechanism Design /

Strategic behavior

Learning /

Transient behavior

Networks /

Local messages
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Distributed Mechanisms with Learning Guarantees

Walrasian and Lindahl allocation

Two centralized problems - private and public goods

Private good

max
x∈RN

∑
i∈N

vi(xi) s.t.
∑
i∈N

xi = 0. (Walrasian)

Public good

max
x∈R

∑
i∈N

vi(x). (Lindahl)
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Distributed Mechanisms with Learning Guarantees

Walrasian and Lindahl allocation

Two centralized problems - private and public goods

Private good

max
x∈RN

∑
i∈N

vi(xi) s.t.
∑
i∈N

xi = 0. (Walrasian)

Public good

max
x∈R

∑
i∈N

vi(x). (Lindahl)

Environment assumption: Utilities vi : R→ R are assumed to be strictly
concave with continuous second derivatives such that

v′′i (·) ∈
(
−η,−

1

η

)
.
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Distributed Mechanisms with Learning Guarantees

Summarizing our goals

We aim to design, as before, reduced message space Nash implementation
mechanisms such that...

A. Allocation and Tax function depend only on neighborhood messages

x̂i, t̂i : M→ R, with x̂i(mi,mN(i)) and t̂i(mi,mN(i))

B. There is guaranteed convergence, to the Nash equilibrium, when
agents choose their learning strategies within a class L of learning
strategies.

Achilleas Anastasopoulos Mechanism Design with Allocative, Informational and Learning ConstraintsMay 2017 38 / 46



Distributed Mechanisms with Learning Guarantees

Walrasian Mechanism - Proxy via neighbor

Message: mi = (yi, qi) ∈ RN+1,

- Demand yi ∈ R,

- Proxy qi = (q1i , . . . , q
N
i ) ∈ RN.

Proxy qi are included to collect demand yj from non-neighbor agents.

i j k

ykqkj

qki
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Mechanism - Allocation and Tax

Allocation: x̂i = yi −
1

N− 1

(∑
k6=i

yk

)
.

n(i, k) neighbor of i closest to k,

Tax: t̂i = p̂i
price

x̂i +
∑

k∈N(i),
k=i

(
qki − yk

)2
explicit

duplication

+
∑

k/∈N(i)
k6=i

(
qki − qkn(i,k)

)2
duplication via
message passing

,

p̂i =
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Mechanism - Allocation and Tax
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∑
k6=i

yk

)
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Mechanism - Allocation and Tax

Allocation: x̂i = yi −
1

N− 1

( ∑
k∈N(i)

qkn(i,k)

ξ
+
∑

k/∈N(i)
k6=i

qkn(i,k)

ξd(i,k)−1

)
.

d(i, k) shortest distance to k

Tax: t̂i = p̂i
price

x̂i +
∑

k∈N(i),
k=i

(
qki − ξyk

)2
explicit

duplication

+
∑

k/∈N(i)
k6=i

(
qki − ξqkn(i,k)

)2
duplication via
message passing

,

p̂i =
1

δ

(
qin(i,i)

ξ
+
∑

k∈N(i)

qkn(i,k)

ξ
+
∑

k/∈N(i)
k6=i

qkn(i,k)

ξd(i,k)−1

)
.
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Main Result

Theorem

1 The induced game has unique NE and the corresponding allocation is
x∗.

2 Best-Response for the induced game is contractive and hence every
learning dynamics in the ABR class, converges to the NE.

3 Budget Balance: the total tax paid at NE is zero, t̂1 + · · ·+ t̂N = 0.

Same results for Lindahl allocation.
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Sketch of the proof

Efficient Nash equilibrium – arguments same as before.

Contraction – verify ‖∇BR‖ < 1.

Row-sum matrix norm.

Explicitly write down best-response (yi, qi) = BRi (y−i, q−i).

Quadratic tax and Linear allocation make this easy.

Show there exist parameters ξ ∈ (0, 1) and δ ∈ (0,∞) for any given
η ∈ (1,∞).
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Contraction and ABR

Theorem (Healy and Mathevet (2012))

If a game is contractive i.e.,

‖∇BR‖ < 1,

then all ABR dynamics converge to the unique Nash equilibrium.

Cournot Best-Response Dynamics.

Best-Response to empirical distrib. from past k periods.

Best-Response to any convex combination of past k periods.

Fictitious Play (under concave utilities).
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Adaptive Best-Response Dynamics (ABR)

“Asymptotically, the support of randomized actions must not be further
than the best-response to the worst observed action in the finite past.”

m1

m2

m?
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Adaptive Best-Response Dynamics (ABR)

“Asymptotically, the support of randomized actions must not be further
than the best-response to the worst observed action in the finite past.”

m1

m2

m?

C

BR(C)

C′

Message at t should be inside C′
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Numerical example

N = 31, η = 25. Agents’ utility function as quadratic
vi(x) = θix

2
i + σixi.

Two graphs: (1) full binary tree and (2) Erdős-Reńyi random graph
where any two edges are connected with probability p = 0.3

Two types of learning dynamics: (a) action taken is the best-response
to an exponentially weighed average of past actions; (b) best-respond
to the arithmetic mean of past 10 rounds
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Erdos-Renyi and Exponential Weight

Erdos-Renyi and 10-period average
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Conclusions and Future Research Directions

We try to systematize the design of mechanisms for NUM problems
with small message spaces, allocative constraints and off-equilibrium
feasibility, informational constraints and provide learning guarantees.

Can we further reduce average message space from (N+ 1) to(
deg+ 1

)
?

j i k

yi + sL + sR

sR =
∑

l∈L(i)

yl
∑

r∈R(i)

yr = sL

Impossibility of Learning for “small and continuous” mechanisms.

What about dynamic environments? (dynamic mechanism
design/dynamic games/Perfect Bayesian Equilibria...)

Achilleas Anastasopoulos Mechanism Design with Allocative, Informational and Learning ConstraintsMay 2017 46 / 46



Distributed Mechanisms with Learning Guarantees

Thank you.
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