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ABSTRACT
We study the complexity of query answering using views in a prob-

abilistic XML setting, identifying large classes of XPath queries –

with child and descendant navigation and predicates – for which

there are efficient (PTime) algorithms. We consider this problem

under the two possible semantics for XML query results: with per-

sistent node identifiers and in their absence. Accordingly, we con-

sider rewritings that can exploit a single view, by means of com-

pensation, and rewritings that can use multiple views, by means of

intersection. Since in a probabilistic setting queries return answers

with probabilities, the problem of rewriting goes beyond the clas-

sic one of retrieving XML answers from views. For both semantics

of XML queries, we show that, even when XML answers can be

retrieved from views, their probabilities may not be computable.

For rewritings that use only compensation, we describe a PTime

decision procedure, based on easily verifiable criteria that distin-

guish between the feasible cases – when probabilistic XML results

are computable – and the unfeasible ones. For rewritings that can

use multiple views, with compensation and intersection, we iden-

tify the most permissive conditions that make probabilistic rewrit-

ing feasible, and we describe an algorithm that is sound in general,

and becomes complete under fairly permissive restrictions, running

in PTime modulo worst-case exponential time equivalence tests.

This is the best we can hope for since intersection makes query

equivalence intractable already over deterministic data. Our al-

gorithm runs in PTime whenever deterministic rewritings can be

found in PTime.

1. INTRODUCTION
Uncertainty is ubiquitous in data and many applications must

cope with it [21]: information extraction from the World Wide

Web [13], automatic schema matching in data integration [31], or

data-collecting sensor networks [30] are inherently imprecise. This

uncertainty is sometimes represented as the probability that the data

is correct, as with conditional random fields [24] in information ex-

traction, or uncertain schema mappings in [19]. In other cases, only

confidence in the information is provided by the system, and can be

seen after renormalization as approximation of probabilities. It is

thus natural to manipulate such probabilistic information in a prob-

abilistic database management system [15].

Recent work has proposed models for probabilistic data, both in

the relational [35, 16, 23] and XML [28, 22, 2] settings. We focus

here on the latter case, which is particularly adapted for the Web.

A number of studies on probabilistic XML have dealt with query

answering for a variety of models and query languages [1, 28, 2,

22]. At the same time, query optimization over probabilistic data

has received little attention. In particular, the problem of answering

queries using views, a key approach for optimization, has received

no attention so far in both the relational and the semistructured set-

tings. Yet probabilistic query evaluation could greatly benefit from

such techniques, as it is often the case that computing probabilistic

results is harder than in the deterministic setting.

Views over XML documents can be seen as fragments of data

that may be available for further querying. Over a probabilistic do-

cument, these data fragments come together with their probability.

Given a document d, a set of views v1, . . . , vn, and a query q, the

goal is to understand whether one can obtain q(d), the answers of

q over d, by accessing view results v1(d), . . . , vn(d) only.

For deterministic data, prior research [36, 25] on XPath rewrit-

ing studied the problem of equivalently rewriting an XPath query

by navigating inside a single materialized XPath view. This would

be the only kind of rewriting supported when the query cache can

store or obtain only copies of the XML elements in a query answer,

while the original node identities are lost. Following a recent in-

dustrial trend (supported by systems such as [6]) towards enhanc-

ing XPath queries with the ability to expose node identifiers and

exploit them via identity-based equality, techniques for multiple-

view rewritings built by intersecting several materialized view re-

sults were proposed. These are potentially more beneficial, as many

queries with no single-view rewriting can be rewritten using multi-

ple views. [8] studied the complexity of rewriting XPath using an

intersection of views and described algorithms that apply for any

documents and type of identifiers, including application level Ids.

We study in this paper the complexity of answering queries us-

ing views in a probabilistic XML setting, identifying large classes

of XPath queries for which there are efficient (PTime) algorithms.

Polynomial time techniques for view-based rewriting are in our

view even more important here than in the deterministic case, given

that query evaluation over probabilistic XML is intractable (in com-

bined data and query complexity) [22]. To the best of our knowl-

edge, our work is the first to address this view-based rewriting prob-

lem. Since in a probabilistic setting queries return answers with

probabilities, the problem of rewriting goes beyond the classical

one of retrieving XML answers from views.

Contributions. We study the rewriting problem under the two

possible semantics for probabilistic XML results: with persistent

node Ids and in their absence. Accordingly, we consider alternative
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plans (rewritings) that can exploit a single view, by means of com-

pensation, or plans that can use multiple views, with intersection.

We first show that, in the probabilistic setting, the problem of an-

swering queries using views becomes more complex and it does not

reduce to its deterministic version. The reason is that query results

now involve not only data trees, but also their probabilities. Hence

probabilities should also be retrieved from probabilistic view re-

sults, by means of a probabilistic function computing them.

Even for the simpler setting (without persistent Ids), the exis-

tence of the probabilistic function is not guaranteed by the ex-

istence of a data-retrieving rewriting. We first present examples

of views and queries for which such a function does not exist.

Based on a certain notion of probabilistic independence between

queries that we introduce (called condition-independence; in short

c-independence), we identify the tightest class of queries and views

for which this function exists, and we describe how it can be com-

puted efficiently. Before describing the general solution, we discuss

in Section 4.3 a particular case that allows (i) a concise and intuitive

formulation of the probabilistic function, (ii) an efficient evaluation

over the view document, with no (or little) post-processing.

For rewritings with intersection, we first provide a sufficient con-

dition – also based on c-independence – that guarantees that the

probabilities of query answers can be computed as a product-like

formula over the probabilities of the views appearing in the inter-

section. For this sound approach, we also present an NP-hardness

result for deciding whether a selection of c-independent views for a

rewriting is possible. Then, going beyond rewritings that assume c-

independent views, we present a sound algorithm, complete under

fairly permissive restrictions, whose complexity drops to PTime

under widely-applicable assumptions. More precisely, it runs in

PTime modulo worst-case exponential time equivalence tests, with

this upper-bound being strict whenever deterministic rewritings can

be found in PTime. This is the best we can hope for as intersection

makes query equivalence intractable already over deterministic data.

All our results are practically interesting as they allow expressive

queries and views, with descendant navigation and path filter pred-

icates. For both semantics, the evaluation of an alternative plan is

no more expensive than query evaluation over probabilistic XML.

Outline of the paper. Preliminaries are given in Section 2. We

formalize the view-based rewriting problem for probabilistic XML

in Section 3. We then present our results for the two semantics of

XML query results: in the absence of persistent node Ids, in Sec-

tion 4, and in their presence, in Section 5. We discuss other related

work in Section 6. We consider possible directions for future work

and we conclude in Section 7.

2. PRELIMINARIES
We first describe the data and query model, which largely relies

on the terminology and notation of [10, 9] and [2]. Minor exten-

sions for probabilistic view-based query rewriting are given in Sec-

tion 3.1, with the problem statement. For a more detailed presenta-

tion of probabilistic XML we refer the reader to [2].

XML documents. We assume the existence of a set of labels L
that subsumes both XML tags and values. We consider an XML

document as an unranked, unordered rooted tree d modeled by a

set of edges edges(d), a set of nodes nodes(d), a distinguished

root node root(d) and a labeling function lbl, assigning to each

node a label from L. The label of root(d) is called the document

name of d. We assume that each node n ∈ nodes(d) has a unique

identifier (e.g., a numeric value) denoted Id(n).

EXAMPLE 1. Consider the document dPER in Figure 1 (where

PER stands for personnel), describing the personnel of an IT de-

partment and the bonuses distributed for different projects. The

dPER : [1] IT- personnel

[8] Rick

[4] name [5] bonus

[2] person [3] person

[6] name [7] bonus

[51] pda[41] Mary[24] laptop [31] pda

[32] 50[25] 44 [26] 50 [54] 15 [55] 44

Figure 1: Example document dPER

[1] IT- personnel

[8] Rick

mux

[13] John

[4] name [5] bonus

[2] person [3] person

mux

[6] name [7] bonus

[51] pda

mux

ind

[56] 15

[22] pda

[41] Mary

0.1

[24] laptop

[31] pda

[32] 50

[23] 25 [25] 44 [26] 50

[54] 15 [55] 44

0.7

0.3

0.90.75 0.25

[11] [21]

[52]

[53]

bPPER :

1 1

Figure 2: Example p-document P̂PER

document dPER indicates that Rick worked under two projects

(laptop and pda) and got bonuses of 44 and 50 in the former

project and 25 in the latter one. Identifiers are written inside square

brackets and labels are next to them, e.g., the node n4 is labeled

name, i.e., lbl(n4) = name.

Probabilistic documents. A finite probability space of XML

documents, or px-space for short, is a pair (D,Pr) with D being

a set of documents and Pr mapping every d ∈ D to a probability

Pr(d) s.t.
∑

{Pr(d) | d ∈ D} = 1.
p-Documents [2] give a general syntax for compactly represent-

ing px-spaces. Like a document, a p-document is a tree but with

two kinds of nodes: ordinary nodes, which have labels and are as in

documents, and distributional, which are used to define the prob-

abilistic process for generating random documents. We consider

two kinds of distributional nodes: mux (for mutually exclusive) and

ind (for independent).

DEFINITION 1. A p-document P̂ is an unranked, unordered

tree with a set of edges edges(P̂), nodes nodes(P̂), the root

node root(P̂), and a labeling function lbl, assigning to each node

n a label from L ∪ {ind(Prn),mux(Prn)}. If lbl(n) is mux(Prn)
or ind(Prn), then Prn assigns to each child n′ of n a probability

Prn(n
′), and if lbl(n) = mux(Prn), then also

∑
n′ Prn(n

′) ≤ 1.

We require leaves and the root to be L-labeled.

EXAMPLE 2. Fig. 2 shows a p-document P̂PER (PER stands

for personnel) having mux and ind distributional nodes, shown on

gray background. Node n52 is a mux node with two children n53

and n56, where Prn52
(n53) = 0.7 and Prn52

(n56) = 0.3.

A p-document P̂ has as associated semantics a px-space JP̂K de-

fined by runs of the following random process: independently for

each mux(Prn) (resp. ind(Prn)) node, select at most one (resp.

some) of its children n′ and delete all other children along with

their descendants; then remove in turn each distributional node,

connecting ordinary children of deleted distributional nodes with

their closest ordinary ancestors. The result of such a run is a ran-

dom document P (an ordinary document), whose nodes (Ids) are a

subset of those of P̂ . Note that there might be several runs result-

ing in the same P , e.g., by different choices under ordinary nodes

of P̂ that are not kept in P . The probability of a run is the product

of all (i) Prn(n
′) for each chosen child n′ of a mux or ind node n,

(ii) 1 − Prn(n
′) for each not chosen child n′ of a ind node n,

(iii) 1 −
∑

n′ Prn(n
′) for all children n′ of each mux n for which

no children were chosen. The probability of a random document

P , Pr(P), is the sum of probabilities of all runs resulting in P .

EXAMPLE 3. One can obtain the document dPER from P̂PER
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IT- personnel

person

bonus

laptop

name

IT- personnel

person

bonus

laptop

qRBON : qBON : v1BON : v2BON :

IT- personnel

person

bonus

IT- personnel

person

bonus

Rick

name

Rick

Figure 3: TP queries qRBON, qBON and TP views: v1BON, v2BON

by choosing: the left child of the mux node n11, the right child of the

mux node n21, the left child of the mux node n52, and either child

of the ind node n53. The marginal probability of these choices (and

the probability of dPER), is 0.4725 = 0.75× 0.9× 0.7× 1× 1.

By dn we denote the subdocument of d rooted at n and by P̂n -

the p-subdocument of P̂ rooted at a node n. Note that other kinds of

local distributional nodes: det (i.e., deterministic) and exp (i.e., ex-

plicit) are studied in [2] and all the results of this paper remain valid

for p-documents with all four of these distributional nodes. We use

only mux and ind nodes here because they are convenient and the

model based on them is a complete representation system [2].

Tree­pattern queries. The language of tree-pattern queries (TP)

is roughly the subset of navigational XPath with child, descendant

navigation, predicates, and without wildcards.

DEFINITION 2. A tree-pattern q is a non-empty, unordered, un-

ranked rooted tree, with a set of nodes nodes(q) labeled with sym-

bols from L, a distinguished node called the output node out(q)
(i.e., tree-patterns are unary queries), and two types of edges: child

edges, labeled by / and descendant edges, labeled by //. The root

of q is denoted root(q).

The main branch mb(q) of q is the path from root(q) to out(q).
The depth of a main branch node is the distance from it to the root,

i.e., the depth of root(q) is 1 and of out(q) is |mb(q)|.
For ease of exposition, we often write tree-patterns q in XPath

notation [7], and we refer to this notation by xpath(q). We use

lbl(q) as short notation for lbl(out(q)) and the following graph-

ical representation for tree-patterns: we use single lines to denote

child edges and double lines for descendant edges, the main branch

is the vertical path starting from the root, the output node is in a

circle, and predicates are subtrees starting with side branches (see

Figure 3). We say that a TP query is formulated over a document d

or over a p-document P̂ , if lbl(root(q)) = lbl(root(d)), respec-

tively lbl(root(q)) = lbl(root(P̂)).

EXAMPLE 4. Consider the queries qRBON and qBON in Fig-

ure 3, left, (where BON stands for bonuses and RBON for Rick’s

bonuses). qRBON asks for bonuses of Rick received for the project

Laptop and qBON asks for bonuses on Laptop. The other two

queries v1BON and v2BON in Figure 3, right, ask for Rick’s bonuses

and just for bonuses, respectively. The output nodes of all these

queries are labeled with bonus.

The semantics of tree-patterns can be given using embeddings.

An embedding e of a TP query q into a document d is a func-

tion from nodes(q) to nodes(d) satisfying: (i) e(root(q)) =
root(d); (ii) for any n ∈ nodes(q), lbl(e(n)) = lbl(n); (iii) for

any /-edge (n1, n2) in q, (e(n1), e(n2)) is an edge in d; (iv) for

any //-edge (n1, n2) in q, there is a path from e(n1) to e(n2) in d.

The result of applying a tree-pattern q to a document d is the set:

q(d) := {e(out(q)) | e is an embedding of q into d} .

EXAMPLE 5. For the queries in Figure 3, qRBON(dPER) =
qBON(dPER) = v1BON(dPER) = {n5}, v2BON(dPER) = {n5, n7}.

Intersections of tree­patterns. We consider in this paper the

extension TP∩ of TP, denoting intersections of tree-pattern queries:

TP
∩ = {q1 ∩ · · · ∩ qk | k ∈ N, qi ∈ TP}.

We say that a TP∩ query q =
⋂k

i=1 qi is formulated over a set of

documents D if
⋃k

i=1 lbl(root(qi)) = {lbl(root(d)) | d ∈ D}.

Its result over D is the node set
⋂k

i=1 qi(d | d ∈ D, lbl(root(qi))
= lbl(root(d))). Note that unsatisfiable TP∩ patterns q are possi-

ble (when there is no documents D s.t. q(D) 6= ∅). For the purpo-

ses of our paper, we assume hereafter only satisfiable TP∩-patterns;

satisfiability can be tested in straightforward manner (we refer the

reader to this paper’s extended version [11], for more details).

Query equivalence and containment.. A pattern q1 is con-

tained in a pattern q2, denoted q1 ⊑ q2, if q1(d) ⊆ q2(d) for

every d. Also q1 is equivalent to q2, q1 ≡ q2, if q1 ⊑ q2 and

q2 ⊑ q1. We discuss how to check containment of TP∩ queries

in Section 5. For TP queries, containment can be decided using

containment mappings [4, 27] which are similar to embeddings.

In short, a containment mapping from q1 to q2 is a function from

nodes(q1) to nodes(q2) that respects the labels of nodes and

maps any two nodes connected with /-edges to nodes connected

with /-edges, while nodes connected with //-edges can be mapped

to any connected nodes. Then for q1 and q2 in TP, q2 ⊑ q1 iff

there is a containment mapping from q1 to q2 [27]. Note that such

a mapping can be computed in polynomial time. For example, ob-

serve that qRBON is contained in v2BON, and in qBON, v1BON, while

none of the latter two queries is contained in each other.

Unless stated otherwise, in this paper all the TP-queries are as-

sumed to be minimized, i.e. without subsumed subqueries that have

the same root (minimization can be done in PTime); equivalence

of minimized queries amounts to isomorphism [27].

Querying p­documents. So far, queries were functions over

XML documents, outputting sets of nodes. Over p-documents P̂ , a

query q (TP or TP∩) naturally yields a set of pairs node-probability

(n, p), for n a node of P̂ and p the probability that q can be embed-

ded into a random document P of P̂ by some e s.t. e(out(q)) = n;

this value (p) will also be written as Pr(n ∈ q(P)). Formally:

q(P̂) := {(n, p) | p =
∑

P∈JP̂K:n∈q(P)
Pr(P)}.

It is known [22] that TP queries can be evaluated over p-docume-

nts P̂ in PTime in |P̂| (data complexity); the same holds for TP∩.

EXAMPLE 6. qBON returns the node n5 iff the right child of

the node n21 is chosen, thus, qBON(P̂PER) = {(n5, 0.9)}. v
1
BON

returns n5 iff the left child of n11 is chosen, thus, v1BON(P̂PER) =
{(n5, 0.75)}. qRBON returns n5 iff both of the above conditions are

satisfied, thus, qRBON(P̂PER) = {(n5, 0.9 × 0.75)}. Since v2BON

has no predicates, n5 and n7 are labeled with bonuses and are not

probabilistically conditioned: v2BON(P̂PER) = {(n5, 1), (n7, 1)}.

3. VIEW­BASED REWRITING
We assume a set of view names V disjoint from the set of labels

L. By a view v we denote a tree-pattern query (that defines the

view) together with its name v ∈ V .

Deterministic view­based rewriting. Let d be a document,

v a view. A (deterministic) view extension of v over d, denoted dv ,

is an XML document obtained by connecting to a root node labeled

by a special label doc(v) all the documents from the set

{d′ | d′ subtree of d s.t. root(d′) ∈ v(d)}.

Hence dv can be queried by queries of the form doc(v)/lbl(v)/ . . . .

If V is a set of views defined over d, then Dd
V = {dv | v ∈ V }.

For Q either TP or TP∩ and q ∈ Q that may use doc(v)/lbl(v),
for v ∈ V , the unfolding of q with V , denoted unfoldV (q), is a
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(dPER)v1

BON
:

[5] bonus

[24] laptop [31] pda

[32] 50[25] 44 [26] 50

doc(v1BON)[0] [5] bonus
mux

[22] pda

0.1

[24] laptop
[31] pda

[32] 50[23] 25 [25] 44 [26] 50

0.9

[21]

doc(v1BON)[0]

ind[1]

0.75

( bPPER)v1

BON
:

Id(0)

Id(1)

Id(31)

Id(5)Id(21)

Id(22)

Id(23)

Id(24)

Id(32)
Id(25) Id(26)

Figure 4: View extensions (dPER)v1

BON

and (P̂PER)v1

BON

Q-query obtained from q by replacing each occurrence of

doc(v)/lbl(v) with the definition of v.

EXAMPLE 7. v1BON and v2BON in Figure 3 are views. The view

extension (dPER)v1

BON

is in Figure 4, left. Also, (dPER)v2

BON

has

a root labeled doc(v2BON) under which there are the subtrees of

dPER rooted at n5 and n7.

In the deterministic setting, the problem of query answering using

views is to find an alternative query plan qr , called a rewriting, that

can be used to answer q. Formally:

DEFINITION 3. Let d be a document, q a TP-query and V a set

of TP-views over d, Q ∈ {TP,TP∩}. A deterministic Q-rewriting

of q using V is a query qr ∈ Q over Dd
V s.t. unfoldV (qr) ≡ q, i.e.,

for any instance of d, unfoldV (qr)(d) = q(d).

The two alternatives, TP-rewritings and TP∩-rewritings, are re-

spectively motivated by the two possible interpretations of XML

query results. In an XML document, nodes have unique Ids used

by internal operators (selections, unions, joins, etc.) to manipulate

data during query evaluation. Queries can then either (i) introduce

fresh Ids for the nodes in the result (one for each node Id of the

original document), or (ii) expose (preserve) in the result the origi-

nal Ids from the document. The former case corresponds to what is

called the copy semantics, under which the Ids of any document in

Dd
V are disjoint from those of d and from those of any other doc-

ument in Dd
V . Since in this case one cannot know whether nodes

in different view extensions are in fact copies of the same node in

d, the only possible rewritings are those that access a single docu-

ment from Dd
V and maybe navigate inside it. In the latter case, ev-

ery document in Dd
V preserves the original Ids, which will identify

nodes across different documents in Dd
V . One can thus formulate

and exploit more complex rewritings, as node Ids can be used to

intersect (join by Id) results of different views over the same input

data d. TP∩-rewritings qr extend TP-rewritings in that they can

access several Dd
V documents at once, by first navigating in indi-

vidual documents and then intersecting the result.

View compensation. As in [10, 9], for TP queries q1 and q2,

the result of compensating q1 with q2, denoted comp(q1, q2), is

a TP-query obtained by deleting the first symbol from xpath(q2)
and concatenating the rest to xpath(q1). q2 is said to be the com-

pensation of q1. For example, the result of compensating q1 =
a/b with q2 = b[c][d]/e is the concatenation of a/b and [c][d]/e:

comp(q1, q2) = a/b[c][d]/e.

Intuitively, compensation brings further navigation over a view’s

extension and, by results revisited in Section 4 ([36, 3]), a determin-

istic TP-rewriting will be of form qr = comp(doc(v)/lbl(v), . . . ).

3.1 Problem Definition
Encoding probabilistic view extensions. Let P̂ be a p-do-

cument, v a view. We generalize extensions to the probabilistic case

by simply bundling v’s results (nothing more, nothing less) in one

p-document P̂v , which is rooted at a node having a special label

doc(v), whose subtree is constructed as follows: (i) plug a unique

ind-child below root(P̂v), (ii) for each pair (α, β) in the set

{(P̂ ′, p) | P̂ ′
subtree of P̂, (root(P̂ ′), p) ∈ v(P̂)},

add α as a subtree of this ind-node with the probability β.
The role of P̂v is to give direct access to all the results of the view

v, by simply evaluating doc(v)/lbl(v) over this p-document; this

does not mean that we assume nor exploit later on an independence

property between view outputs (as the ind-node may suggest).

A set of p-documents DP̂
V for the set of views V and unfolding

of a query over DP̂
V are defined as in the deterministic case.

Note that, for ease of exposition, we make here a slight abuse of

terminology: under both result semantics w.r.t. node Ids, within a

view extension, Ids are not necessarily unique; the same Id – ei-

ther preserved from the original document or a copy of one – may

appear several times in the extension. While this is unnecessary in

the deterministic context (and could be easily avoided, modulo iso-

morphic results), it is necessary in the probabilistic one: to compute

Pr(n ∈ q(P)) for some node n, n needs to be properly identified in

all its occurrences in a view’s output, even for TP-rewritings (that

use only one view and do not intersect results based on Ids). W.l.g.,

to simplify the presentation of one of our proofs we make these

multiple occurrences directly accessible through queries, by the fol-

lowing post-processing step over view extensions: we plug below

each node n a child node with a fresh label “Id(n)”. Also, w.l.g.,

even under copy semantics, an extension P̂v will be composed of

subtrees of the original document instead of copies thereof.

EXAMPLE 8. Continuing with Example 7, the view extension

(P̂PER)v1

BON

is in Figure 4, right. Each node n has a new child,

labeled “Id(n)” (whose own Id is omitted to avoid clutter). Also,

(P̂PER)v2

BON

has a root labeled doc(v2BON), with an ind-child un-

der which there are the subtrees of P̂PER rooted at n5 and n7; the

edges between this ind-node and its children are valued 1.

Probabilistic view­based rewriting. Query answering using

views in the probabilistic setting is more involved than in the deter-

ministic one, as q(P̂) is a set of node-probability pairs. Therefore,

one should deal with two sub-problems: (i) find a query in terms

of views, that retrieves the nodes N of q(P̂) (this corresponds to

deterministic rewritings) and (ii) compute the probabilities for the

nodes in N , using probabilities from DP̂
V . Both sub-problems re-

quire algorithms that access p-documents DP̂
V only. Formally:

DEFINITION 4. Let P̂ be a p-document, q a TP query and V be

a set of TP views over P̂ , and let Q ∈ {TP,TP∩}. A probabilistic

Q-rewriting Qr = (qr, fr) of q using V is a pair of

(i) a deterministic Q-rewriting qr – over random documents P –

of q using V , and

(ii) a probability function fr s.t. for every node n of P̂ it holds

that fr(n,D
P̂
V ) = Pr(n ∈ q(P)).

When DP̂
V is clear we will write fr(n) instead of fr(n,D

P̂
V ).

Hence the additional challenge that needs to be addressed in

probabilistic view-based rewriting is to construct a probability func-

tion fr that, by definition, has access only to the p-documents in

DP̂
V . In Sections 4 and 5 we respectively discuss when and how

this is possible for TP and TP∩-rewritings.

4. TP­REWRITINGS
When persistent node Ids cannot be exploited, only one view exten-

sion P̂v could be used in a rewriting, by means of navigation [36,

3]. So a deterministic TP-rewriting qr could only be of the form
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qr = doc(v)/lbl(v)[p1][p2]..[pg ], qr = doc(v)/lbl(v)[p1][p2]..[pg ]/p,

or qr = doc(v)/lbl(v)[p1][p2]..[pg ]//p.

for v ∈ V and the TP-queries p and pi (possibly empty) compen-

sating v (with additional predicate conditions and navigation).

Main ingredients. Let us fix the names for the main ingredients

of this section: the input query q and the view v from the set of

views V – to be used in a rewriting – formulated over p-document

P̂ , the integer k = |mb(v)|. Let n be one node for which we need

to compute the probability Pr(n ∈ q(P)) via the fr function, let

n1, . . . , na be the ancestor-or-self nodes of n that are selected by v
(i.e., for which Pr(ni ∈ v(P)) > 0).1

Notation for “splitting” queries. We revisit the terminology

of [9], for “splitting” TP queries into a prefix, a suffix, or several

tokens. A prefix q′ of q is any tree-pattern that can be obtained from

q by “moving up” the output mark, i.e., by setting as out(q′) a

node of mb(q) and interpreting what follows that node as predicate

(side) branches. For any depth y, q(y) is the prefix of q with y main

branch nodes. A suffix q′ of q is any subtree of q rooted at a node

of mb(q). The suffix of q rooted at the node of depth y is denoted

q(y). The main branch of q can be partitioned by its sub-sequences

separated by //-edges, and each pattern corresponding to such a

sub-sequence is called a token of q. We can thus see a tree-pattern

q as a sequence of tokens q = t1// . . . //tx. The token tx, which

ends with out(q), is the last token of q.

EXAMPLE 9. The prefix q
(2)
RBON corresponds to the XPath

ITpersonnel//person[/name/Rick][bonus/laptop], the suffix

of qRBON rooted at the depth-2 node corresponds to person[name
/Rick]/bonus[laptop]. Also, qRBON can be split into tokens t1 =
ITpersonnel and t2 = person[/name/Rick]/bonus[laptop].

The following three queries that can be obtained from q or v will

be often referred to in this section:

• q′: the query that can be obtained from the prefix q(k) by

removing all predicates of its output node, out(q(k)).

• v′: the query that can be obtained from v by removing all

predicates of its output node, out(v).

• q′′: the query obtained from q(k) by removing all predicates

of nodes other than the output node out(q(k)). Formally,

q′′ = comp(mb(q(k)), (q(k))(k)).

EXAMPLE 10. In our running example, for qRBON as the input

query q, v1BON as the view v (k = 3), q(k) is q itself, q′ corresponds

to the XPath IT − personnel//person[name/Rick]/bonus, q′′

corresponds to IT − personnel//person/bonus[laptop] and v′

is v1BON itself since there are no predicates on out(v).

We start by revisiting a key result from [36, 3], for deterministic

rewritings based on compensation:

FACT 1. [36, 3] Let q and V be TP-queries. There exists a

deterministic TP-rewriting of q over V iff there exists v ∈ V , with

k = |mb(v)|, such that comp(v, q(k)) ≡ q.

In our example, we have comp(v1BON, bonus[laptop]) ≡ qRBON.

Fact 1 can be verified in polynomial time [36]. As a reformula-

tion of it, we have that comp(v, q(k)) ≡ q iff the following hold:

q(k) ⊑ v(⊑ v′) and (v ⊑)v′ ⊑ q′.

Fact 1 says that, using one view v from V , we can find all the nodes

n ∈ q(d) by querying dv with q(k), i.e., the data in dv suffices to

extract all such n. This naturally extends to a probabilistic setting:

1Note that only the absence of //-edges in the main branch of the
view or of the compensation guarantees that n’s ancestor-or-self

selected by v is unique, regardless of P̂ (see Definition 5).
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Figure 5: p-Documents witnessing non-existence of TP-

rewritings (Examples 11 and 12)

we can find all the nodes n from q(P̂) by querying P̂v with q(k),

i.e., the data in P̂v it suffices to extract all ns. Note that n is in the

query result q(P) iff Pr(n ∈ q(P)) > 0.

PROPOSITION 1. Let q and v be TP-queries, k = |mb(v)|. Let

qr = comp(doc(v)/lbl(v), q(k)) be a deterministic TP-rewriting of

q using v. Then for every p-document P̂ the following holds:

Pr(n ∈ q(P)) > 0 if and only if Pr(n ∈ qr(Pv)) > 0.

The rest of this section is organized as follows. We first discuss the

existence of probabilistic TP-rewritings, comparing with the de-

terministic case and illustrating by examples the aspects on which

may depend the construction of the probability-retrieving function

fr . These will allow us to articulate the frontier between the feasi-

ble cases and the unfeasible ones. We then give some general con-

siderations on which our results for TP-rewritings are built (Sec-

tion 4.2). Then, before describing the general solution, we discuss

in Section 4.3 a particular case - the one of restricted rewritings –

that allows (i) a concise and intuitive formulation of the fr compo-

nent of rewritings, based mainly on probabilistic c-independence,

and (ii) an efficient evaluation over the view extension, with no (or

little) post-processing. We consider in Section 4.4 the general case,

giving one additional necessary condition that along with the ones

of Section 4.1 (Proposition 3 therein) will enable a sound and com-

plete procedure for the existence of probabilistic TP-rewritings.

4.1 Existence of Probabilistic TP­Rewritings
In the probabilistic setting, we first raise the question: is infor-

mation in P̂v always sufficient to extract the probabilities Pr(n ∈

q(P)) for nodes n in q(P̂)? We show that the answer to this ques-

tion is negative, and that there are q and v for which a deterministic

TP-rewriting qr exists but not a probabilistic one (i.e., no func-

tion fr exists such that for any P̂ and node n ∈ P̂ it holds that

fr(n) = Pr(n ∈ q(P))). Thus, the probabilistic rewriting prob-

lem is crucially different from the deterministic one. We present

two examples (11 and 12) that give insight into this phenomenon.

EXAMPLE 11. Consider the query q = a/b[c] and the view

v = a[.//c]/b. We show that there is no probabilistic rewrit-

ing (qr, fr) for q over {v}. One can see that comp(v, q(2)) =
a[.//c]/b[c] is equivalent to q, so qr = comp(doc(v)/lbl(v), q(2))
is a deterministic TP-rewriting of q using v.

Consider now the two p-documents P̂1 and P̂2 from Figure 5.

Clearly, Pr(b ∈ q(P1)) = 0.65 × 0.5 and Pr(b ∈ q(P2)) = 0.5,

and these probabilities are different. The function fr should com-

pute the first probability 0.325 on a p-document (P̂1)v and 0.5

on (P̂2)v , hence fr should distinguish these p-documents. How-

ever, one can see that these p-documents are indistinguishable by

v: (P̂1)v = (P̂2)v .2 Hence, fr does not exist.

2The probability of the b node is obtained directly as 0.65 in (P̂1)v ,

and as 1− (1− 0.3)× (1− 0.5) = 0.65 in (P̂2)v .
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The problem exposed in Example 11 comes from the fact that,

in the unfolding a[.//c]/b[c], the predicate [.//c] coming from the

view (whose probability of matching comes already “packed” into

P̂v results, as a condition located above the compensation depth k)

and the predicate [c] coming from the compensation (whose proba-

bility needs to be computed from P̂v , as a condition at depth k) can

interact. More precisely, the existence of a match for one predicate

depends on the (non-)existence of a match of the other.

c­Independent queries. We now introduce a notion of inde-

pendence of queries, allowing us to capture necessary properties

for the existence of probabilistic rewritings (it will also be used for

TP∩-rewritings). Two TP-queries q1 and q2 are probabilistically

condition-independent (in short c-independent) – denoted q1⊥q2 –

if, for every P̂ and n ∈ P̂ , Pr(n ∈ (q1 ∩ q2)(P)) equals

[Pr(n ∈ q1(P))× Pr(n ∈ q2(P))]÷ Pr(n ∈ P).

For instance, the queries qBON and v1BON are c-independent,

i.e., (qBON⊥v1BON). The two TP-queries a[b] and a[c] are not c-

independent, as we can easily construct P̂ over which for some

n ∈ P , we have Pr(n ∈ a[b](P)) > 0 and Pr(n ∈ a[c](P)) > 0,

yet the probability of the joint test Pr(n ∈ a[b][c](P)) equals zero.

Deciding probabilistic c-independence is tractable:

PROPOSITION 2.c-Independence is decidable (PTime) in TP.

PROOF SKETCH. We can use a syntactic notion instead of the

probabilistic one for c-independent queries. Intuitively, it precludes

dependencies between probabilites of predicates from the two que-

ries to match over p-documents. The two definitions for c-indepen-

dence can be proven equivalent, and testing for the syntactic one

can be done in PTime, in particular via TP∩-satisfiability tests.

Due to space limitations, we refer the reader to the extended ver-

sion [11] for the complete proof.

Getting back to Example 11, intuitively, we need to ensure that

predicates above depth k from the view a[.//c]/b do not interact

with those at depth k from the query. We can capture this in general

by testing whether v′ ⊥ q′′. Note that in the example we have that

v′ = a[.//c]/b and q′′ = a/b[c], and consequently v′ 6⊥ q′′. We

can prove the following adaptation of Fact 1 to the probabilistic

case, towards avoiding unwanted probabilistic interactions.

PROPOSITION 3. Let q and V be TP-queries. Then there exists

a probabilistic TP-rewriting of q over V only if there exists v ∈ V
as in Fact 1 – i.e., for k = |mb(v)|, comp(v, q(k)) ≡ q – such that

v′ ⊥ q′′.

PROOF SKETCH. Example 11 can be used as a generic contra-

dicting construction, to show that when the c-independence condi-

tion does not hold there can be no probabilistic rewriting (it illus-

trates this situation in the simplest possible form).

An immediate corollary of Proposition 3 is that fewer views may

be used to rewrite a query than in the deterministic case:

COROLLARY 1. [of Prop. 3] v must satisfy v′ ≡ q′, i.e, v and q
are isomorphic modulo predicates at and below the depth k.

We show next that the conditions of Proposition 3 are only nec-

essary for the existence of a probabilistic rewriting in general.

EXAMPLE 12. Consider the query q = a//b[e]/c/b/c//d and

the view v = a//b[e]/c/b/c. Clearly, q(5) is a compensation for v
and qr = comp(v, q(5)) is a deterministic TP-rewriting for q and

v. Also, the conditions of Proposition 3 are satisfied by q and v.

On Figure 5 (right) we present two p-documents P̂3 and P̂4

that show the non-existence of a probability function fr , such that

(qr, fr) is a probabilistic TP-rewriting for q and v.

In the two documents, let nd denoted the node labeled d, let nc1

and nc2 denote the second node, respectively third node, labeled c
(the ones selected by v). Clearly, we have that
Pr(nd ∈ q(P3)) = [0.4× 0.3 + 0.6× 0.4− 0.3× 0.4× 0.6) = 0.288,

Pr(nd ∈ q(P4)) = [0.3× 0.4 + 0.3× 0.8− 0.3× 0.4× 0.8) = 0.264.

A function fr that would be part of a probabilistic rewriting

should be able to compute the probability value for nd to be se-

lected by q in both (P̂3)v and (P̂4)v , hence fr should distinguish

these p-documents. But one can see that these p-documents are in-

distinguishable by v (i.e., (P̂3)v = (P̂4)v) as in both documents

nc1 is selected by v with probability 0.12, while nc2 is selected by

v with probability 0.24. Hence, fr does not exist.

The reason for which it is not possible to retrieve the right prob-

ability values for q’s answer is twofold: (i) there are multiple (two)

c-ancestors of the d-node, whose probabilities would have to be

taken into account for Pr(nd ∈ q(P)), and (ii) the images of the

b[e]/c/b/c part of v (i.e., its last token) are not necessarily disjoint.

This is because the sequence of labels (b, c, b, c) has a prefix – (b, c)
– that is also a suffix thereof; we call it hereafter a prefix-suffix. As

a consequence, in particular, the separate probability of the lower

image of b[e]/c/b/c is not computable because the [e] predicate

might match in a part of the document that is never visible in view

results (we only have access to nc1 and its descendants).

The above example illustrates the remaining aspects on which

the existence of a probabilistic rewriting may depend. These have

to do with the nodes n1, . . . , na ∈ v(P̂) one may have to inspect to

compute Pr(n ∈ q(P)) (whether there is just one such ancestor-or-

self node or there are several) and the last token of v (whether it has

predicates, whether images of it in a document are always disjoint).

These aspects will allow us to fully characterize the feasible cases,

in Sections 4.3 and 4.4. We first give some general considerations

on which our results for TP-rewritings are built.

4.2 General Results
To start, we can always formulate Pr(n ∈ q(P)) as follows:

Pr(n ∈ q(P)) = Pr(
a∨

i=1

[ni ∈ v′(P) ∧ n ∈ q(k)(P
ni)]).

Recall a is the number of n’s ancestor-or-self nodes selected by v.

So we can always formulate fr in terms of view extensions as:

fr(n) = Pr(

a∨

i=1

[ni ∈ v′(P) ∧ n ∈ q(k)(P
ni
v )]).

Let ei denotes the event ni ∈ v′(P) ∧ n ∈ q(k)(P
ni
v ), for

i = 1, a. By the inclusion-exclusion principle, we can give the

following general formulation of the fr function:

LEMMA 1. fr can always be formulated as follows:

fr(n) := Pr(
a∨

i=1

ei) =
∑

i

Pr(ei)−
∑

i1,i2

Pr(ei1 ∩ ei2 ) + . . .

+ . . . (−1)r−1
Pr(

⋂

i

ei). (1)

Under the independence condition v′ ⊥ q′′, the following holds:

LEMMA 2. Under the conditions of Proposition 3 – i.e., for k =
|mb(v)|, comp(v, q(k)) ≡ q and v′ ⊥ q′′ – we can compute the

probability of an event ei as follows:

Pr(ei) =[Pr(ni ∈ v(P))÷ Pr(ni ∈ v(k)(P
ni
v ))] ×

× Pr(n ∈ q(k)(P
ni
v )). (2)

PROOF SKETCH. Immediate by the following reformulations:

Pr(ei) = Pr(ni ∈ v′(P))× Pr(n ∈ q(k)(P
ni
v ) | ni ∈ v′(P))

= Pr(ni ∈ v′(P))× Pr(n ∈ q(k)(P
ni
v )).
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Pr(ni ∈ v′(P)) = [Pr(ni ∈ v(P))÷ Pr(ni ∈ v(k)(P
ni
v ))].

Note that Lemma 1 does not imply that fr is always computable

(recall Example 12). In fact, we will show in Section 4.4 that the

probability of joint ei events may not be computable from P̂v . Be-

fore discussing this, we consider a restricted case (where v selects

an unique ancestor-or-self node of n, i.e., a = 1), for which there

is no need to manage joint events.

4.3 Restricted TP­Rewritings

DEFINITION 5. We say that a TP-rewriting using a view v and

compensation c is restricted if either mb(v) has no //-edges, or

mb(c) has no //-edges.

The case of restricted rewritings was brought forward by the fol-

lowing question: In the deterministic case, the XML answers q(d)
can be obtained by executing the alternative plan over the view ex-

tension dv (a deterministic XML document); since, by construction,

in the probabilistic case, the view extension P̂v is a p-document,

would it be enough to query it with the rewriting and get “for free”

both the XML nodes n of q(P̂) and their probabilities Pr(n ∈
q(P))? This would represent, in our view, the most intuitive for-

mulation of the fr function, requiring no post-processing after the

querying phase. We show that this is indeed possible for restricted

rewritings under Proposition 3’s conditions. More precisely, we

show that this approach works modulo one minor adjustment: ac-

count for certain probability values (of out(v) predicates to match),

which come already “packed” into results of v; these have to be di-

vided away since they will be re-accounted for by compensation.

Let na be the unique ancestor-or-self of n that is selected by v.

The fr formulation from Eq. (1) can be now simplified, reflecting

the following: the probability Pr(n ∈ q(P)) that n occurs in q’s

result amounts to the probability Pr(n ∈ qr(Pv)) that n is selected

by qr in Pv , divided by the probability Pr(na ∈ v(k)(P
na
v )) that

na verifies the predicates on out(v).
THEOREM 1. Let qr= comp(doc(v)/lbl(v), q(k)) be a restricted

deterministic TP-rewriting of q using v. Then, there exists a prob-

abilistic TP-rewriting (qr, fr) of q using v if and only if

v′ ⊥ q′′. Moreover, fr can be computed as follows:

Pr(n ∈ q(P)) = Pr(n ∈ qr(Pv))÷ Pr(na ∈ v(k)(P
na
v )).

PROOF SKETCH. We start by assuming that v′ ⊥ q′′, which

was already proven a necessary condition. We discuss next how fr
can be computed when this c-independence condition holds.

Let us first assume that there are no predicates on out(v), which

implies that v = v′. Hence, for the assumed node na, we have that

Pr(na ∈ v(k)(P
na)) = 1. Knowing this, let us now understand

whether the equality we aim for can indeed hold, namely:

Pr(n ∈ q(P)) = Pr(n ∈ qr(Pv)).

By P̂v’s definition, we can write the right-hand side as follows:

Pr(n ∈ qr(Pv)) =Pr(na ∈ doc(v)/lbl(v)(Pv)) ×

Pr(of matching the rest of qr from na in Pv)

=Pr(na ∈ v(P))× Pr(n ∈ q(k)(P
na
v ))

=Pr(na ∈ v(P))× Pr(n ∈ q(k)(P
na))

=Pr(n ∈ q(P)).

The first two reformulations are immediate by Pv’s construction,

the third one is enabled by the c-independence condition v′ ⊥ q′′.
To complete the proof, if there are predicates on out(v), by the

same c-independence condition we have that

Pr(na ∈ v′(P)) = Pr(na ∈ v(P))÷ Pr(na ∈ v(k)(P
na)),

and then we can use v′ in the previous line of reasoning.

As an immediate corollary of Theorem 1, when v has no predi-

cates on the output node, the fr function becomes the intuitive one:

Pr(n ∈ q(P)) = Pr(n ∈ qr(Pv)),

hence a simple interrogation of the view extension with the plan

comp(doc(v)/lbl(v), q(k)) would retrieve both the XML data and

(for free) their probability.3

EXAMPLE 13. A deterministic TP-rewriting for qBON is qr =
comp(doc(v2BON)/bonus, q(3)), and this plan is obviously restricted.

Observe that (v2BON)
′ ⊥ (qBON)

′′ (and (v2BON)
′ ≡ (qBON)

′), so

Theorem 1 applies. So the probability Pr(n5 ∈ qBON(PPER)) is

Pr(n5 ∈ qr((PPER)v2

BON

)) ÷ Pr(n5 ∈ (v2BON)(3)(P
n5

PER)) =

0.9÷1. Besides n5, for all other nodes ni, Pr(ni ∈ qBON(PPER))=
0 since Pr(ni ∈ qr((PPER)v2

BON

))= 0.

4.4 Unrestricted TP­Rewritings
We now consider the general case, starting with an additional

necessary condition that, along with the ones of Proposition 3, en-

ables a sound and complete procedure for the existence of proba-

bilistic rewritings. In order to go beyond the scope of the previous

section (i.e., restricted rewritings), we must assume that (i) the view

v has at least one //-edge in the main branch, and (ii) the compen-

sation q(k) has at least one //-edge in the main branch.

We show that the remaining ingredient for deciding whether a

probabilistic TP-rewriting exists is the last token of v. Let t be

this token, of the form t = l1[Q1]/ . . . /lm[Qm], where lm =
lbl(v) and any of Q1, . . . , Qm may be empty. Also, let u denote

the length of the maximal prefix-suffix of the sequences of labels

(l1, . . . , lm), so 0 ≤ 2 × u ≤ m. Hence, when u ≥ 1, we can

write t as follows:

l1[Q1]/l2[Q2]/.../lu[Qu]/.../l1[Qm−u+1]/.../lu−1[Qm−1]/lu[Qm]

EXAMPLE 14. Revisiting Example 12, the last token of our view

is b[e]/c/b/c, for which the sequence of labels of the main branch,

(b, c, b, c), has a maximal prefix-suffix of length 2. Hence in the

example we have u = 2.

We can now give our main result for unrestricted rewritings.

THEOREM 2.Let q and v be TP-queries s.t. there is a determin-

istic, non-restricted TP-rewriting qr=comp(doc(v)/lbl(v), q(k)). Let

u be the size of the maximal prefix-suffix of v’s last token. There ex-

ists a probabilistic TP-rewriting (qr, fr) of q using v iff

1. v′ ⊥ q′′ (the condition of Proposition 3), and

2. the first u− 1 nodes of v’s last token have no predicates.

Moreover, fr can be computed as in Equation (1).

PROOF SKETCH. Example 12 can be used as a generic contra-

dicting construction, to show that when some of the first u − 1
nodes of v’s last token have predicates there can be no probabilis-

tic rewriting (observe that it illustrates this situation in the simplest

possible form). We describe in the rest of the proof one possible

way to build fr when the condition holds, via queries that exploit

the special Id(n) nodes we introduced in view extensions.

The individual probability of ei events can be computed as in

Eq. (2). We detail next the probability of joint ei events.

Case u = 0. When the label sequence (l1, . . . , lm) has no prefix-

suffix, any probability of the form Pr(ei ∩ ej), for ni ancestor of

nj , can be computed as follows.

3Note that, for any p-document P̂ , any node n s.t. Pr(n ∈
qr(Pv)) > 0, if there is only one ancestor-or-self na of n s.t.
Pr(na ∈ v(P)) > 0, Theorem 1’s approach is sound and com-
plete, regardless of whether qr is restricted or not. However, in the
case of unrestricted plans, this approach would be data-dependent.
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Assuming that ni ∈ v′(P) already, we construct a TP∩-pattern

α that will test in P̂ the remaining conditions for ei ∩ ej :

α = q(k) ∩ comp(lm//l1[Q1]/ . . . /lm[Qm][Id(nj)], q(k)).

Knowing ni ∈ v′(P), we can then test by n ∈ α(Pni) all the

remaining conditions for ei ∧ ej . More precisely, we test that:

• nj is also selected by v′; for this, only the conditions of the

last token need to be tested since the rest matches already for

ni to be selected by v′,
• n is selected by q(k) from ni (left-hand side of intersection)

• n is also selected by q(k) from nj (compensation in right-

hand side of intersection).

Therefore we now have the following:

Pr(ei ∩ ej) =Pr(ni ∈ v′(P))× Pr(n ∈ α(Pni ) | ni ∈ v′(P))

=Pr(ni ∈ v′(P))× Pr(n ∈ α(Pni
v ) | ni ∈ v′(P))

=Pr(ni ∈ v′(P))× Pr(n ∈ α(Pni
v ))

=[Pr(ni ∈ v(P))÷ Pr(ni ∈ lm[Qm](Pni
v ))] ×

× Pr(n ∈ α(Pni
v )).

We can take the steps in α because different images in Pv of the

part l1/ . . . /lm of v are necessarily disjoint. The second reformu-

lation is an immediate consequence of v′ ⊥ q′′. The third one

follows also from it, since v(k) = lm[Qm]. So Pr(ei ∩ ej) can

be computed using v’s results, with the special representation of Id

values allowing us here a simpler formulation for it.

Any conjunction of up to a events can be computed similarly.

Case u ≥ 1. Let (l1, . . . , lu) be the maximal prefix-suffix of the

sequence (l1, . . . , lm), and assume that there are no predicates on

the first u− 1 nodes of v’s last token t of the form: t =

l1/l2/.../lu−1/lu[Qu]/.../l1[Qm−u+1]/.../lu−1[Qm−1]/lu[Qm]

We describe below the formula for Pr(ei ∩ ej), in the case of two

events ei and ej . For ni ancestor of nj , let s(i, j) denote the num-

ber of data nodes from ni to nj in P̂ , including these two nodes (we

can always get the s(i, j) values from P̂ni
v ). The formula for the

probability of joint events will change slightly (via the α pattern).

If s(i, j) > m, the α pattern and the probability formula remain

the same as in the case of u = 0.

Otherwise, if s(i, j) ≤ m, let α be defined by the TP∩-pattern:

α = q(k)∩comp(lm−s(i,j)+1[Qm−s(i,j)+1]/../lm[Qm][Id(nj)], q(k))

Then, we can formulate Pr(ei ∩ ej) as before:

Pr(ei ∩ ej) =Pr(ni ∈ v′(P))× Pr(n ∈ α(Pni ) | ni ∈ v′(P))

=Pr(ni ∈ v′(P))× Pr(n ∈ α(Pni
v ) | ni ∈ v′(P))

=Pr(ni ∈ v′(P))× Pr(n ∈ α(Pni
v )) = Pr(n ∈ α(Pni

v ))

× [Pr(ni ∈ v(P))÷ Pr(ni ∈ lm[Qm](Pni
v ))]

A similar approach can be used to compute any conjunction of up

to a events under the assumption that there are no predicates on the

first u− 1 nodes of v’s last token.

We summarize the results of this section with algorithm TPrewrite

(Figure 6), which takes as input a TP query q and a set of views V
and returns all possible deterministic TP-rewritings qr which can be

complemented by a fr function, for a probabilistic TP-rewriting.

PROPOSITION 4. TPrewrite is sound and complete for deciding

whether a probabilistic TP-rewriting of a query q over views V
exists. It runs in PTime in the size of the query and views.

Remark. Note that, in the case of probabilistic TP-rewritings,

there is a complexity separation between the decision problem for

the existence of a rewriting – which is tractable – and the one of

executing the alternative access plans based on views – which can

be done in EXPTime. Exponential time in the size of the query and

views is unavoidable in practice, since TP-query evaluation over

INPUT : TP query q and views V
OUTPUT: Set of TP-rewritings R

R := ∅;

for each v ∈ V do
k := |mb(v)|,
t := last token of v,

u := size of maximal prefix-suffix in t
if comp(doc(v)/lbl(v), q(k)) ≡ q then

q(k) := the prefix of q of size k
v′ := v w/o predicates at node of depth k (out(v))

q′′ := comp(mb(q(k)), q
(k)

(k))

if v′ �⊥ q′′ then continue;

if comp(doc(v)/lbl(v), q(k)) is restricted then

R := R ∪ {comp(doc(v)/lbl(v), q(k))}

else if no predicates on the first u− 1 nodes in t then

R := R ∪ {comp(doc(v)/lbl(v), q(k))}

Algorithm 1: TPrewrite for probabilistic TP-rewritings.
Figure 6: Algorithm TPrewrite for probabilistic TP-rewritings

p-documents (and view extensions) is intractable in query size. We

strongly conjecture that the same complexity bounds should remain

valid for the evaluation of intersections of tree pattern queries, as in

the deterministic case. Although our general formula from Eq. (1),

for the probability-retrieving function, can be exponentially large in

the size of the view result (by the inclusion-exclusion formulation),

it can be reformulated into one that remains tractable in the size of

the data, in a rather technical but not very complex manner. For

space reasons, these details are omitted.

5. TP∩­REWRITINGS
We consider in this section the problem of view-based rewriting

over probabilistic data in the presence of persistent node Ids, using

TP∩-rewritings, i.e., intersections of possibly compensated views.

The pattern qr of a TP∩-rewriting will now be of the form
⋂

i,j
uij ,

where each uij is a TP-rewriting over some view vj , i.e., a possibly

compensated view.

Let V = {v1, . . . , vm}, with m = |V |, be the set of TP views

to be used in a rewriting (each vi contains q or a prefix thereof).

Given an candidate plan qr =
⋂

i,j
uij in TP∩, verifying that it

is a deterministic rewriting of q in TP can be done by verifying

unfoldV (qr) ≡ q (see [10]), which in turn amounts to testing that

(i) each TP query in unfoldV (uij) contains q, and

(ii) q contains the TP∩ query unfoldV (qr).
Before discussing TP∩-rewritings, we recall how one can decide

containment and equivalence between a TP query and a TP∩ one.

5.1 Equivalence and Containment for TP∩

Since Q in TP∩ is a rewriting for q in TP iff unfoldV (Q) ≡ q,

deciding whether a TP query q is equivalent to a TP∩ query Q
is a crucial step for our problem. It is known [10] that one can

rely on mappings to decide whether q ≡ Q. For that, Q can be

first equivalently reformulated into the union of TP queries ∪iQi,

called its possible interleavings, which can be exponentially large

in |Q|. Interleavings capture all the possible ways to order or coa-

lesce the main branch nodes of queries participating in the intersec-

tion.4 Testing q ≡ Q was shown to be coNP-hard and boils down

to testing q ≡ ∪iQi, which in turn boils down to testing that (i) for

some j, q ⊑ Qj , and (ii) for all i, Qi ⊑ q. (This is reminiscent of

results from relational databases, on comparing conjunctive queries

with unions of conjunctive queries.) We can immediately conclude

that the following also holds:

4I.e., ways that are not leading to unsatisfiability.
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COROLLARY 2. Deciding the existence of a probabilistic TP∩-

rewriting for a TP query q and TP views V is coNP-hard.

The equivalence problem was however shown in [10] to be solv-

able in PTIME when q belongs to a restricted fragment of TP,

called extended skeletons.

Extended skeletons. Informally, this fragment limits the use of

//-edges in predicates, in the following manner: a token t of a TP

query v will not have predicates that have //-edges and that may

become redundant because of descendants of t and their respective

predicates in some interleaving v might be involved in (by inter-

secting v with some other query). To define extended skeletons

we use the following additional terminology: by a //-subpredicate

st we denote a predicate subtree whose root is connected by a //-

edge to a linear /-path l that comes from the main branch node n
to which st is associated (as in n[...[.//st]]). l is called the in-

coming /-path of st and can be empty. Extended skeletons are pat-

terns v having the following property: for any main branch node

n and //-subpredicate st of n, there is no mapping (in either di-

rection) between the incoming /-path of st and the /-path following

n in the main branch (where the empty path is assumed to map in

any other path). For example, the expressions a[b//c//d]/e//d or

a[b//c]/d//e are extended skeletons, while a[b//c]/b//d, a[b//c]//d,

a[.//b]/c//d or a[.//b]//c are not.

This TP sub-fragment does not restrict in any way the use of //-

edges in the main branch or the use of predicates with /-edges only.

As our focus in this paper is on efficient algorithms for view-

based rewriting, it is thus natural to ask if over probabilistic data

this problem remains tractable, when we deal with extended skele-

tons under persistent node Ids. Our general approach hereafter will

be to describe decision and evaluation techniques that are sound

and complete when applied to any queries and views, but may

depend, unavoidably, on equivalence tests involving TP∩-queries.

Therefore, their complexity will depend on the one of such tests.

5.2 Using Pairwise c­Independent Views
As for TP-rewritings, we present our results starting with the as-

sumption that a deterministic rewriting qr has been found. Without

loss of generality, let us first assume that qr consists only of inter-

sected views (plans with possibly compensated views are discussed

in Section 5.4). W.l.o.g., qr can be of the form qr = doc(v1)/v1 ∩
· · · ∩ doc(vm)/vm and, necessarily, q ⊑ vi for all vi.

We first give some intuition on the possible construction of the

probability component of the rewriting, fr: for a given node n ∈
q(P), since each view vi gives a probability value, Pr(n ∈ vi(P)),
and since we are interested in the probability of the intersection

thereof, we might be tempted to try what is arguably the most in-

tuitive definition for fr here, the one which would simply combine

by multiplication the values Pr(n ∈ vi(P)). There are however

two issues with this straightforward fr candidate.

The first issue is probabilistic dependencies. We have introduced

the notion of c-independence in the previous section, which can

guarantee that the existence of some embedding of a view vi in

a given document does not depend – w.r.t predicate conditions –

on the existence (or non-existence) of some embedding of another

view vj in this document. We will see now that, for pairwise c-

independent views, a function fr based on multiplication of these

views’ probabilities can be built.

The second issue has to do with an adjustment for a probability

term that appears in each of the views’ probability values. More

precisely, for each node n that appears in q(P̂) and, consequently,

appears in each v1(P̂), . . . , vm(P̂), we have m probability values

Pr(n ∈ vi(P)). Furthermore, each value Pr(n ∈ vi(P)) can be

seen as the product of two distinct probability terms:

(i) the (appearance) probability of n being part of a possible

world of P̂ , denoted Pr(n ∈ P),
(ii) the probability of n being selected by vi in a possible world in

which n is known to appear, denoted in the following Pr(n ∈
vi(P) | n ∈ P).

Note that the first term is independent of any particular view to

whose result we may be referring, as it only depends on the docu-

ment itself (this is reflected by our notation). We can thus write for

each vi and node n that

Pr(n ∈ vi(P)) = Pr(n ∈ P)× Pr(n ∈ vi(P) | n ∈ P).

Given a deterministic rewriting qr of q formed by pairwise c-inde-

pendent views v1, . . . , vm, for a node n ∈ q(P)), we would thus

have as the overall product the following formulation:
∏

i

Pr(n ∈ vi(P)) = Pr(n ∈ P)m×
∏

i

Pr(n ∈ vi(P) | n ∈ P). (3)

Therefore, in Eq. (3) we account for the probability Pr(n ∈ P)
too many times, once for each view that participates in the rewrit-

ing, although we should account for it exactly once. By dividing

Eq. (3) with Pr(n ∈ P)m−1, we can correct this overuse of n’s

appearance probability, obtaining the following fr formula when

the views v1, . . . , vm are pairwise c-independent:

fr(n) = Pr(n ∈ P)×
∏

i

Pr(n ∈ vi(P) | n ∈ P) (4)

=
∏

i

Pr(n ∈ vi(P))÷ Pr(n ∈ P)m−1. (5)

Each c-independent view vi gives us Pr(n ∈ vi(P) | n ∈ P),
but there is still one missing ingredient in order to be able to com-

pute fr as in Eq. (4): n’s appearance probability value, Pr(n ∈ P).
We can prove the following:

LEMMA 3. Pr(n ∈ P) is computable from P̂v1 , . . . , P̂vm iff

there exists one vi verifying mb(q) ⊑ vi.

Using Lemma 3, we sum up the positive results of this section in

the next theorem:

THEOREM 3. Let q be a TP query, v1, . . . , vm a set of pairwise

c-independent TP views s.t. there exists a vi satisfying mb(q) ⊑ vi.
Let qr be a deterministic TP∩-rewriting of q, of the form

qr = doc(v1)/v1 ∩ · · · ∩ doc(vm)/vm.

Then, (qr, fr) with fr as in Eq. (4), is a probabilistic TP∩-rewriting

of q over V .

PROOF SKETCH. We refer the reader to [11], for the formal

proof based on the material that precedes in this section.

EXAMPLE 15. Consider the following (compensated) view for

v2BON: v = comp(doc(v2BON)/bonus, q(3)). Clearly the views

v1BON and v are c-independent, and qRBON = v1BON ∩ v. Ac-

cording to Theorem 3, the probability Pr(n5 ∈ qRBON(PPER))
equals 0.75× 0.9÷ 1 by the expression

Pr(n5 ∈ v1BON(PPER))×Pr(n5 ∈ v(PPER))÷Pr(n5 ∈ PPER).

For other ni, Pr(ni ∈ qRBON(PPER))=Pr(ni ∈ v1BON(PPER))=0.

We next show that, even for very limited (//-free) input queries and

views V , it is hard to decide the existence of a subset of pairwise

c-independent views from V on which a rewriting as in Theorem 3

can be built. This implies that, for extended skeletons as well, it is

hard to find TP∩-rewritings by Theorem 3’s approach.

THEOREM 4. Let TP query q and TP views V be without //-

edges. Then, deciding whether there exists a TP∩-rewriting of q
using only pairwise c-independent views from V is NP-hard.
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PROOF SKETCH. We prove this by reduction from the prob-

lem of k-DIMENSIONAL PERFECT MATCHING: Given a k-

hypergraph H = (U ;E) with s = |U | and m = |E|, is there

a subset S ⊆ E of s/k hyperedges such that each vertex of U is

contained in exactly one hyperedge of S?

Let U = {u1, . . . , us} and let E = {e1, . . . , em} denote the

nodes and edges of the k-dimensional hypergraph H .

We build an input query q of the form q = a[1]/a[2]/ . . . /a[s]//b.

For each edge ei ∈ E, we build a view vi as follows: a sequence

of s a-labeled nodes separated by /-edges, followed by a //-edge

and then a b-labeled node. On the a-nodes, the predicates corre-

sponding to the vertices of ei are present. For example, for an edge

ei = (1, 2, 3) (for k = 3) we would construct the following view:

vi = a[1]/a[2]/a[3]/a . . . /a//b.

Now, if a perfect matching for H exists, one can notice that the

views corresponding to the edges of this matching should be c-

independent. Their intersection gives an equivalent rewriting both

in the absence and in the presence of probabilities. Vice-versa, if

we find a rewriting of q using views, this means that we have a set

of views which are c-independent and cover all the predicates of q.

But this amounts to finding a perfect matching for H .

5.3 Using View Decompositions
Theorem 4 shows that it may not be possible to find a TP∩-rewriting

based on c-independent views efficiently. It may however be pos-

sible to build probabilistic rewritings, without requiring pairwise

c-independence. We describe in this section a general, sound and

complete approach, which attempts to build a system of probability

values from the views’ results, even in the presence of dependent

views. We first give the intuition behind it with an example.

EXAMPLE 16. Consider the input query q = a[1]/b[2]/c[3]/d,

and the views v1 = a[1]/b/c[3]/d, v2 = a/b[2]/c[3]/d, v3 =
a[1]/b[2]/c/d, and v4 = a//d.

Note that the first three views are not c-independent with each

other. Their intersection does yield a deterministic TP∩-rewriting

of q (in fact, v1 and v2 would suffice for a deterministic rewriting

of q). Moreover, v4, which gives us the probability Pr(n ∈ P)
for any node n in q’s result, would be considered redundant in the

deterministic setting (it contains the other three views).

For a probabilistic rewriting, it remains to specify the probability

function fr . However, due to probabilistic dependencies between

the views, it is no longer possible to simply multiply the individual

probabilities from v1, v2, v3 (v4 gives the values Pr(n ∈ P)).
However, one could retrieve the values Pr(n ∈ q(P)), by slightly

more involved arithmetic manipulations, starting from the obser-

vation that these can be seen as the product of four independent

probability values: Pr(n ∈ P) and one value for each of the three

predicates. With a slight abuse of notation, for j ∈ {1, 2, 3} let

Pr(j) denote the probability of the predicate [j] to match at the cor-

responding depth. The following system of equations can then be

built straightforwardly, for each n such that Pr(n ∈ q(P)) > 0 :

Pr(n ∈ v1(P)) = Pr(n ∈ P)× Pr(1)× Pr(3),

Pr(n ∈ v2(P)) = Pr(n ∈ P)× Pr(2)× Pr(3),

Pr(n ∈ v3(P)) = Pr(n ∈ P)× Pr(1)× Pr(2),

Pr(n ∈ v4(P)) = Pr(n ∈ P),

which would allow us to obtain easily the probability values

Pr(n ∈ q(P)) = Pr(n ∈ P)× Pr(1)× Pr(2)× Pr(3),

provided the system allows an unique solution for the unknown

value of Pr(n ∈ q(P)). This condition can be verified indepen-

dently of any node n (i.e, it is not data dependent).

Outline of the general approach. The idea illustrated by

Example 16 can be generalized into an algorithm that applies to

any query and views, without being data dependent. In principle,

we will still rely on probability terms that are independent, but at

a more fine-grained level. More precisely, we will decompose the

set of views V = {v1, . . . vm} into a set of pairwise c-independent

view decompositions (in short d-views; these are queries from TP

as well) denoted w1, . . . , ws, and then use d-views instead of the

given ones. The major difference w.r.t. the setting of Theorem 3

is that now we will not have the explicit probabilities of d-views’

results, but only some combinations thereof (from the results of

the given views), in a non-homogenous linear system. Based on

this system, we will then describe a decision procedure (sound and

complete) for the existence of the fr function, running in PTime

in the size of the query and of the initial set of views.

We start by describing how we move from the initial set of views

to the set of d-views w1, . . . , ws, by the following four steps.

We can see each view vi as being of the form vi = fti//mi//lti,
where fti is the first token, lti is the last token, and mi denotes the

rest (mi may be empty; if mi is empty, lti may also be empty).

Step 1. For each vi, build the TP queries w1
i , . . . , w

si
i as follows:

(i) |mb(fti)|+|mb(lti)| queries: one query for each main branch

node n of either fti or lti, obtained from v by removing all

predicates from v except the ones on n.

(ii) One query of the form mb(fti)//mi//mb(lti), i.e., obtained

from vi by keeping only the predicates of the mi part.

Step 2. For each view vi and its wj
i queries obtained at the previ-

ous step, repeat until no change occurs the following: replace any

two queries wx
i , w

y
i s.t. wx

i 6⊥ wy
i by their intersection wx

i ∩ wy
i .

Step 3. Replace each query obtained at the previous step by its

intersection with the linear query mb(q).

Step 4. Across the m sets of queries obtained at the previous step,

group the queries into equivalence classes (by query equivalence).

Then, by introducing one d-view name for each equivalence class,

output the final set of d-views {w1, . . . , ws}.
For each of the initial views vi, let Wi ⊆ {w1, . . . ws} denote

the d-views into which it is decomposed. We can now write the
following equation for each view vi:

Pr(n ∈ vi(P)) = Pr(n ∈ P)×
∏

wj∈Wi

Pr(n ∈ wj(P) | n ∈ P) (6)

For the input query q, let Wq ⊆ {w1, . . . ws} denote the d-views

into which q can be decomposed. We have an additional equation:

Pr(n ∈ q(P)) = Pr(n ∈ P)×
∏

wj∈Wq

Pr(n ∈ wj(P) | n ∈ P). (7)

Let S(q, V ) denote the non-homogenous system of m + 1 linear

equations that can be obtained from Eq. (6) and Eq. (7), by taking

the logarithm. Note that S(q, V ) has s + 2 variables: s variables

corresponding to Pr(n ∈ wj(P) | n ∈ P) terms, one variable for

Pr(n ∈ P), and one distinguished variable for Pr(n ∈ q(P)).
We are now ready to present our main results for probabilistic

TP∩-rewritings :

THEOREM 5. Let q be a TP query, V = {v1, . . . , vm} be a set

of TP views containing q. Let qr be a deterministic TP∩-rewriting

of q, of the form qr = doc(v1)/v1∩· · ·∩doc(vm)/vm. There exists

a probabilistic TP∩-rewriting, of the form (qr, fr), if S(q, V ) ad-

mits an unique solution for Pr(n ∈ q(P)). Unless mb(q) has only

/-edges, such a probabilistic TP∩-rewriting exists only if S(q, V )
admits an unique solution for Pr(n ∈ q(P)).

PROOF SKETCH. For each of the views participating in qr , the

decomposition into a product of independent terms by Eq. (6) is
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sound. Moreover, it is the maximal one (w.r.t. number of terms) or,

put otherwise, the most fine-grained, since dependencies between

tests of the views must occur within the same d-view. Any other re-

formulation of the view probabilities is necessarily either subsumed

by S(q, V ) or equivalent to it modulo renaming of variables.

In particular, predicates of the same node must be part of the

same d-view (the probabilities for them to match are obviously not

independent). Note that we can refer to predicates of the first or last

tokens of views - and their probability to match - unambiguously,

since the main branch nodes of these tokens are unambiguously

identified on the path from the root of the p-document to some re-

sult node n selected by q. But this is not the case for predicates of

the mi parts of views, and the reason we need to consider them “in

bulk”, by a single wj
i expression corresponding to all of them.

At Step 3 (intersection with mb(q)), we simply explicit the fact

that nodes n we are interested in must be found on the path match-

ing mb(q), as they verify Pr(n ∈ q(P)) > 0. Omitting this step

would keep the approach sound, but may cause us to miss oppor-

tunities to reuse the same variable across distinct views (and ulti-

mately find the fr function). (For a detailed proof, see [11].)

PROPOSITION 5. Let q be a TP query and V = {v1, . . . , vm}
be a set of TP views s.t. there exists a deterministic TP∩-rewriting

of q, of the form qr = doc(v1)/v1 ∩ · · · ∩ doc(vm)/vm. Testing

whether the system S(q, V ) admits an unique solution for Pr(n ∈
q(P)) can be done in PTime, modulo TP∩-equivalence tests.

PROOF SKETCH. Finding a deterministic rewriting requires an

equivalence test of the kind described in Section 5.1, hence a worst-

case exponential step.

Regarding the fr component for a probabilistic rewriting, in the

S(q, V ) construction, by the way intersections of patterns are con-

structed at Step 2, these TP∩ queries reduce trivially to equivalent

TP ones (they are union-free, in the terminology of [8]). So we can

safely assume that each run of Step 2 deals only with tree patterns,

instead of intersections thereof. At Step 4, the d-views are obtained

based on equivalence tests, which may involve TP∩ queries.

Then, testing if S(q, V ) admits an unique solution for Pr(n ∈
q(P)) can be done in polynomial time by straightforward linear

algebra manipulations. Note that this does not necessarily mean

that S(q, V ) admits an unique solution for all its variables.

5.4 Dealing with Compensated Views
We consider in this section general TP∩-rewritings that, before

performing the intersection step, might compensate (some of) the

views. We show that rewriting in this new setting can be reduced

to the one discussed in the previous section, by relying also on the

results of Section 4. This allows us to reuse the same PTime algo-

rithm and to find strictly more rewritings, namely those that would

not be feasible without compensation.

The general approach will be the following. Starting from the

given set of views V , all containing the input query q or a prefix

thereof, we will expand V into V ′ by adding to it all possible com-

pensated views of the form comp(v, q(a)), for v ∈ V and a being

a depth in the range 1 to |mb(q)|. As in [8], the views of V ′ will

then be used to build what we call the canonical deterministic plan

qr =
⋂

vi∈V ′ doc(vi)/vi. For a probabilistic rewriting, among the

views of V ′, we select the subset V ′′ of those that (i) either were

originally in V , or (ii) verify certain conditions that ensure their

result probabilities can indeed be computed from the initial results

of the view they were constructed on (using the decision procedure

described in Section 4).

Algorithm TPIrewrite (see Figure 7) details this approach, and it

represents a decision procedure for finding TP∩-rewritings based

on possibly compensated views. It takes as input a TP query q and

INPUT : TP query q and views V
OUTPUT: canonical rewriting qr

R := ∅, V ′ := V , V ′′ := V

Prefs := {(vi, a) | q(a) % vi, for q(a) being the prefix

of size a of q};

for each v ∈ V do
k := |mb(v)|,
t := last token of v,

u := size of maximal prefix-suffix in t

for each (v, a) ∈ Prefs do

V ′ := V ′ ∪ {comp(v, q(a))}
v′ := v w/o predicates at node of depth k (out(v))

q′′ := comp(mb(v), q
(a)

(a))

if v′ �⊥ q′′ then continue;

if comp(doc(v)/lbl(v), q(a)) is restricted then

V ′′ := V ′′ ∪ {comp(v, q(a))}

else if no predicates on the first u− 1 nodes in t then

V ′′ := V ′′ ∪ {comp(v, q(a))}

qr =
T

vi∈V ′ doc(vi)/vi

if unfold(qr) ≡ q then

if S(q, V ′′) has unique solution for Pr(n ∈ q(P)) then

return true

Algorithm 2: TPIrewrite for probabilistic TP∩-rewritings.Figure 7: TPIrewrite for probabilistic TP∩-rewritings

a set of TP views V and returns the canonical deterministic TP∩-

rewriting qr , whenever the fr function can also be built.

We can prove the following main result for TP∩-rewritings:

PROPOSITION 6. TPIrewrite is sound for testing if a probabilis-

tic TP∩-rewriting of a query q over views V exists. It is also com-

plete, unless mb(q) has only /-edges.

Modulo TP∩-equivalence tests, TPIrewrite runs in PTime in the

size of the query and views.

Potentially expensive equivalence tests may be performed when

we verify whether qr is a deterministic rewriting (step before last

in TPIrewrite) or in the construction of the S(q, V ) system. But

these can be performed efficiently when we deal with the restricted

fragment of extended skeletons.

COROLLARY 3 (OF PROP. 6). If the views V and query q are

extended skeletons, TPIrewrite runs in PTime in the size of the

query and views.

Remark. Note that the evaluation of the rewriting on the view

extensions might require first the evaluation of any compensated

view used in qr and fr , hence may require exponential time in the

size of the query and views, which is not surprising given that the

evaluation of TP queries over probabilistic XML is intractable.

6. OTHER RELATED WORK
There is a rich literature on query rewriting using views for de-

terministic XML data. XPath rewriting using only one view [36,

25, 37] or multiple views [6, 34, 5, 8, 26] was the topic of several

studies. They differ in the completeness guarantees they provide,

or the assumptions they rely on.

Some join-based rewriting methods either give no completeness

guarantees [6, 34] or can do so only if there is extra knowledge

about the structure and nesting depth of the XML document [5].

Others can only be used if the node Ids are in a special encoding

that accounts for structural information [34]. Rewriting more ex-

pressive XML queries using views was studied in [14, 18, 29].

[17] studies query answering using views for relational proba-

bilistic data. There is little work dealing with the optimization of
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query answering for probabilistic XML. A system that uses rela-

tional probabilistic databases for storying and managing probabilis-

tic XML is proposed in [20]. Approximate computation of proba-

bilities for tree-pattern queries over probabilistic XML is studied

in [22, 33]. We presented some preliminary results on rewriting for

probabilistic XML at a workshop without formal proceedings [12].

7. CONCLUSION AND FUTURE WORK
Our work is the first to address the problem of answering queries

using views over probabilistic XML. Since in a probabilistic set-

ting queries return answers with probabilities, view-based rewriting

goes beyond the classic problem of retrieving answers from XML

views. Thus, the new challenge raised in the probabilistic setting

is to find probability-retrieving functions that can access only view

results, while being able to compute the probabilities of answers.

We identified large classes of XPath queries – with child and de-

scendant navigation and predicates – for which there are efficient

(PTime) algorithms, considering the rewriting problem under the

two possible semantics for XML query results: with persistent node

identifiers and in their absence. Accordingly, we considered rewrit-

ings that can exploit a single view, by means of compensation, and

rewritings that can use multiple views, by means of intersection.

Recall that (direct) query answering for probabilistic XML model

considered here is also polynomial in data and intractable in query

complexity [22].

All our results are practically interesting, as they allow expres-

sive queries and views, with descendant navigation and path filter

predicates, and our decision procedures are based on easily verifi-

able criteria on the query and views. For both semantics, the evalu-

ation of an alternative plan is no more expensive then query evalua-

tion over probabilistic XML. Moreover, rewritings based solely on

intersection would require only the computation of the fr function,

either by a product formula or by solving a S(q, V ) system, opera-

tions that should cost significantly less than the dynamic program-

ming approach for query evaluation over the original data [22].

Even for plans that do use compensation (which may require TP-

evaluation over view extensions), the costs should be reduced in

practice, especially if extensions are much smaller that the original

p-document. We intend to evaluate the impact of these techniques

in practice, in a probabilistic XML management system. Also,

heuristics for choosing the views that participate in a rewriting, tai-

lored to the setting of probabilistic XML data, may represent valu-

able optimizations. Beyond the natural choice of just caching the

probabilistic results, keeping and exploiting for rewritings a sort of

why-provenance of probability values is also an interesting direc-

tion for future research.

Another possible direction for future work is to broaden the set-

ting to other models for probabilistic XML data. The p-documents

studied in this paper have local probabilistic dependences, while

there are models allowing for more complex probabilistic interac-

tions between remote fragments of data [32]. For these types of

data, query answering is intractable (already in data complexity)

and it would be interesting to see under which conditions we can

gain tractability by relying on views.
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[6] A. Balmin, F. Özcan, K. Beyer, R. Cochrane, and H. Pirahesh. A framework for

using materialized XPath views in XML query processing. In VLDB, pages

60–71, 2004.

[7] M. Benedikt and C. Koch. XPath leashed. ACM Comput. Surv., 41(1):3:1–3:54,

2008.

[8] B. Cautis, A. Deutsch, and N. Onose. XPath rewriting using multiple views:

Achieving completeness and efficiency. In WebDB, 2008.

[9] B. Cautis, A. Deutsch, N. Onose, and V. Vassalos. Efficient rewriting of XPath

queries using query set specifications. PVLDB, 2(1):301–312, 2009.

[10] B. Cautis, A. Deutsch, N. Onose, and V. Vassalos. Querying XML data sources

that export very large sets of views. TODS, 36(1):5:1–5:42, 2011.

[11] B. Cautis and E. Kharlamov. Answering queries using views over probabilistic

XML. Technical Report. http://biblio.telecom-paristech.fr/

cgi-bin/download.cgi?id=11925.

[12] B. Cautis and E. Kharlamov. Challenges for view-based query answering over

probabilistic XML. In 5th Alberto Mendelzon International Workshop on

Foundations of Data Management, 2011.

[13] C.-H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan. A survey of web

information extraction systems. IEEE TKDE, 18(10):1411–1428, 2006.

[14] L. Chen and E. A. Rundensteiner. XCache: XQuery-based caching system. In

WebDB, 2002.
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