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Preface

This volume contains the papers presented at UNIF 2016: The 30th International Workshop on Unification (UNIF
2016) held on June 26, 2016 in Porto.

There were 10 submissions. Each submission was reviewed by at least 3, and on the average 3.3, program
committee members. The committee decided to accept 8 papers for publication in these Proceedings. The program
also includes 2 invited talks.

The International Workshop on Unification was initiated in 1987 as a yearly forum for researchers in unification
theory and related fields to meet old and new colleagues, to present recent (even unfinished) work, and to discuss
new ideas and trends. It is also a good opportunity for young researchers and researchers working in related areas
to get an overview of the current state of the art in unification theory. The list of previous meetings can be found
at the UNIF web page: http://www.pps.univ-paris-diderot.fr/~treinen/unif/.

Typically, the topics of interest include (but are not restricted to):

• Unification algorithms, calculi and implementations

• Equational unification and unification modulo theories

• Unification in modal, temporal and description logics

• Admissibility of Inference Rules

• Narrowing

• Matching algorithms

• Constraint solving

• Combination problems

• Disunification

• Higher-Order Unification

• Type checking and reconstruction

• Typed unification

• Complexity issues

• Query answering

• Implementation techniques

• Applications of unification

• Antiunification/Generalization

This years UNIF is a satellite event of the first International Conference on Formal Structures for Computation
and Deduction (FSCD). UNIF 2015 will be held on 26th June 2016 at the Department of Computer Science at the
Faculty of Science of the University of Porto, Portugal.

We would like to thank all the members of the Program Committee and all the referees for their careful work
in the review process. Finally, we express our gratitude to all members of the local organization of FSCD 2016,
whose work has made the workshop possible. We also thanks the Department of Mathematics of the University of
Milano and the Computer Science Institute of the Frankfurt University for financial support. We finally thank the
Easy Chair Team for the allowing use of the online platform and facilities.

Silvio Ghilardi and Manfred Schmidt-Schauß
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Automated Symbolic Proofs of Security Protocols

Ralf Sasse
Institute of Information Security
Department of Computer Science

ETH Zürich

Security protocols are a mainstay of today’s internet ecosystem. Increasingly
many communications happen encrypted, i.e., communication uses a security
protocol for key exchange and then encryption with derived keys. For human
users this is most visible as transport layer security (TLS) used by all web
browsers. History has shown that developing such protocols is an error-prone
process, and attacks have been found even after protocols were in widespread
use for years. One way to find these attacks, and to show their absence with
respect to a particular abstraction, is to use automated protocol verification
tools, like ProVerif [2], Maude-NPA [3], or Tamarin [7, 5, 6].

In this talk we give a brief overview of symbolic protocol analysis methods.
We explain their modeling choices in general, and show Tamarin and some of
its applications in particular. We give a high-level overview of Tamarin’s inner
workings and use. We present multiset rewriting for use in security protocol for-
malization. We show that symbolic methods abstract cryptographic operators
with equational theories. We use constraint-solving as a decision procedure to
determine whether the properties given as first-order logic formulae hold. We
also consider the different stages of the tool’s execution. In particular, we look
in more detail at folding variant narrowing [4] as a building block of Tamarin.

We focus on extending Tamarin from trace properties to observational
equivalence properties [1]. Observational equivalence expresses that two pro-
tocol runs appear the same to the adversary. Trace properties suffice for key
exchange as used in TLS for online banking. Observational equivalence is nec-
essary, e.g., for ballot privacy for electronic voting and untraceability of RFID
passports. This extension of Tamarin requires a number of changes to the
constraint solving. Also, normal form conditions for the dependency graph rep-
resentation of protocol execution must be modified. Observational equivalence
is then approximated by a novel technique, called mirroring dependency graphs.
We finally present a number of case studies for observational equivalence.

We conclude by highlighting an important open issue in symbolic protocol
analysis: find an equational theory for Diffie-Hellman (DH) exponentiation that
can treat addition in the exponent, but still has the finite variant property.
Currently used DH theories only allow multiplication in the exponent. To the
best of our knowledge no representation with the finite variant property is known
for DH with addition, but the existence of such a theory has not been disproven
either.
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Uni�cation in predicate logic

Wojciech Dzik

University of Silesia, Katowice, Poland
a joint work with

Piotr Wojtylak, University of Opole
wojciech.dzik@us.edu.pl, piotr.wojtylak@math.uni.opole.pl

Abstract

We introduce and apply 2nd order uni�cation to predicate logics which extend intu-
itionistic predicate logic Q-INT. We show that uni�cation in a logic L is projective i�
L contains IP.Q-LC, Gödel-Dummett's predicate logic plus Independence of Premise IP;
hence, in such L each admissible rule is either derivable or passive and uni�cation in L is
unitary. We provide an explicit basis for all passive rules in Q-INT. We show that every
uni�able Harrop formula is projective and we extend the classical results of Kleene on
disjunction and existential quanti�er under implication to projective formulas and to all
extensions of Q-INT. We provide rules that are admissible in all extensions of Q-INT. After
proving that L has �ltering uni�cation i� L extends Q-KC = Q-INT + (¬A ∨ ¬¬A), we
show that uni�cation in Q-LC and Q-KC is nullary and in Q-INT it is not �nitary.

1 Introduction

We introduce uni�cation in predicate logic and apply it to solve some problems such as admissibility of
inference rules. Not much is known on admissible rules in intuitionistic predicate logic Q-INT 1, even
less in extensions of Q-INT. In his pioneering work S.Ghilardi introduced uni�cation in propositional
logic. By application of projective uni�ers he gave an elegant solution to the problem of recognizing
admissible rules in intuitionistic propositional logic INT, [11], and in modal logics [12]. An inference
rule is admissible in a logic L if adding it to L does not change the set of theorems of L. Other
applications of uni�cation in logic were also found, see e.g. [1], [10], [11], [8], [9].

Our aim is to introduce and apply uni�cation tools to the problem of admissible rules in predicate
logic, in particular in extensions of Q-INT, as well as to establish uni�cation types of some best known
predicate logics extending Q-INT.

Let us recall some notions of uni�cation in logic: a uni�er for A in a logic L is a substitution τ
making A a theorem of L, i.e. τ(A) ∈ L, [11]. The subsumption preorder is de�ned in a standard way:
σ is more general then τ , if `L τ(x)↔ θ(σ(x)), for some substitution θ. Now a formula A is uni�able
in L (L-uni�able) if it has a uni�er in L. A most general uni�er, mgu, for a formula A is a uni�er that
is more general then any uni�er for A.

If every L-uni�able formula has a mgu, then uni�cation in L is unitary (type 1). Three other
uni�cation types, that is �nitary, in�nitary and nullary (zero), depending on the number of maximal
uni�ers in the complete set of uni�ers of a uni�cation problem, are de�ned in a standard way. E.g.
uni�cation in a logic L is nullary if there is a uni�able formula A such that a maximal uni�er for A in
L does not exist. A substitution σ is a projective uni�er for a formula A in L if it is a uni�er for A,
σ(A) ∈ L, and A `L x↔ σ(x). In this case a formula A is called projective in L, see [11], [1]. We say
that a logic enjoys projective uni�cation if every L-uni�able formula is projective.

Admissible rules can be de�ned as follows: a rule A/B is admissible in L if τ(A) ∈ L implies
τ(B) ∈ L, for every substitution τ , that is, if every uni�er for A is also a uni�er for B. A logic L
is Structurally Complete, SC, if every rule A/B admissible in L is derivable, i.e. A `L B. Classical
propositional logic is SC. A particular failure of structural completeness is caused by passive rules.

1e.g. [15]: "The nonderivable admissible predicate rules of intuitionistic predicate logic have not been
characterized, they are known to form a complete Π0

2 set..."
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Uni�cation in predicate logic Wojciech Dzik

A rule A/B is passive L if its premise A is not uni�able in L. Passive rules are admissible in every logic.
A logic L is Almost Structurally Complete, ASC, if every admissible rule in L which is not passive is
derivable (e.g. all extensions S4.3 are ASC). Projective uni�cation implies ASC (or SC).

Let L be a propositional logic extending INT. By Q-L we denote the least predicate logic extending L.
Hnce Q-CL and Q-INT are classical and intuitionistic predicate logics, respectively. Here we concentrate
on superintuitionistic predicate logics, that is on logics extending Q-INT.

We follow the above notions and de�nitions while introducing uni�cation in predicate logics but
there are di�erences and obstacles on the way. Firstly, now we use the 2nd order substitutions for
predicate variables see [16], [3], and they require restrictions concerning individual variables. Secondly,
superintuitionistic predicate logics in general su�er from lack of adequate semantics, both algebraic
and relational (Kripke). We list some important logics that are Kripke complete:
Q-INT (S. Kripke), Q-LC = Q-INT +(A→ B) ∨ (B → A), the Gödel-Dummett (predicate) logic ([4]),
Q-KC = Q-INT + ¬A ∨ ¬¬A, De Morgan's logic ([5]); but majority of superintuitionistic predicate
logics are Kripke incomplete (see papers of H. Ono, S. Ghilardi, D. Skvortsov).

Many uni�cation results in propositional logic relay on algebraic concepts such as: �nitely presented
algebras, projective algebras as retracts of free algebras, congruences, etc. in varieties of algebras. For
non-classical predicate logics algebraic counterparts are not known and algebraic tools can not be used.

In presenting non-classical predicate logics we follow Braüner - Ghilardi [2]

We consider a standard �rst-order (or predicate) language {→,∧,∨,⊥, ∀, ∃} with free individual
variables: Varf = {a1, a2, a3, . . . }, bound individual variables: Varb = {x1, x2, x3, . . . }, predicate vari-
ables: Pr= {P1, P2, P3, . . . }. Neither function symbols nor the equality predicate = occurs in the
language. 0-ary predicate variables are (regarded as) propositional variables.

Elementary q-formulas are ⊥ and Pj(t1, . . . , tk) for k = arn(Pj) and any individual variables
t1, . . . , tk. Compound q-formulas are built up (from elementary ones) by the use of →,∧,∨, ∀xi , ∃xi ,
we put ¬A = A → ⊥. Formulas are q-formulas in which no bound variable occurs free and sentences
are formulas without free variables. Let q-Fm and Fm denote the sets of all q-formulas and formulas,
respectively. A(a1, . . . , ak) means: all free variables of the formula A are included in {a1, . . . , ak}.

If u, v are individual variables (bound or free), then A[u/v] is the q-formula resulting by the sub-
stitution of the variable v for u in A, i.e. P (x)[x/a] = P (a); we write B(a) instead of B[x/a], and
∀xA(x) for a quanti�er closure of the formula A. We rename bound variables in a given q-formula A
in a uniform way by increasing indices of bound variables with the same number n (see [16]). The for-
mulas A and (A)n are the same, up to renaming of bound variables, and we will often write A = (A)n.
A (second-order) substitution for predicate variables is any mapping ε : q-Fm → q-Fm satisfying the
following conditions:

(i) ε[Fm] ⊆ Fm;
(ii) ε(Pj(t1, . . . , tk)) ≈ (ε(Pj(x1, . . . , xk)))n [x1/t1, . . . , xk/tk]
where k = ar(Pj) and n = ind(Pj(t1, . . . , tk));

(iii) ε(⊥) = ⊥; (iv) ε(A ∧B) = ε(A) ∧ ε(B);
(v) ε(A→ B) = ε(A)→ ε(B); (vi) ε(A ∨B) = ε(A) ∨ ε(B);
(vii) ε(∀xiA) = ∀xiε(A); (viii) ε(∃xiA) = ∃xiε(A);
(ix) ε(Pj(x1, . . . , xk)) 6= Pj(x1, . . . , xk) for a �nite number of variables Pj .

A superintuitionistic predicate logic L is any set of formulas L ⊆Fm, containing all axioms of the
intuitionistic propositional logic INT (meant as 1st-order formulas) and containing the axioms:

∀x(A→ B(x))→ (A→ ∀xB(x)), ∀x(B(x)→ A)→ (∃xB(x)→ A),
∀xB(x)→ B(a), B(a)→ ∃xB(x);

closed under the inferential rules

MP :
A→ C,A

C
and RG :

B(a)

∀xB(x)
(a does not occur in∀xB(x))

and closed under substitutions: ε(A) ∈ L, if A ∈ L, for each substitution ε.

2

UNIF 201610



Uni�cation in predicate logic Wojciech Dzik

2 Uni�ability. A basis for passive rules

A uni�er v : Pr → {⊥,>} is called ground. Note that: (i) A is L-uni�able i� (ii) there is a ground uni�er
for A in L i� (iii) there is a ground uni�er for A in Q�CL (or Q�INT). Note: Uni�able 6= Consistent.

(P∀) denotes the rule:
¬∀zC(z) ∧ ¬∀z¬C(z)

⊥ .

Theorem 1. All passive rules are consequences, over Q�INT, of the rule (P∀), that is all passive rules
are derivable in the extension of Q�INT with the rule (P∀).

3 Projective uni�cation and Harrop formulas

A uni�er ε for a formula A in a logic L is projective if A `L ε(Pi(a1, . . . , an))↔ Pi(a1, . . . , an) for each
predicate variable Pi. if every L-uni�able formula has such ε, then L enjoys projective uni�cation.
IP.Q-LC denotes the Gödel-Dummett predicate logic extended with the following formula called the
Independence of Premise principle:
(IP): (A→ ∃xB(x))→ ∃x(A→ B(x)).

Theorem 2. A superintuitionistic predicate logic L enjoys projective uni�cation if and only if
IP.Q-LC ⊆ L.

Corollary 3. Every logic containing IP.Q-LC is almost structurally complete i.e. every admissible rule
is either derivable or passive.

Corollary 4. IP.Q-LC is the least superintuitionistic logic in which ∨ and ∃ is de�nable by {∧,→, ∀}.

Theorem 5. For every in�nite rooted Kripke frame F =< W,6,D >, IP is valid in F i� F has
constant domain D and W is well ordered. Hence IP.Q-LC is Kripke incomplete.

Harrop formulae are "well-behaved" from a constructivist point of view. Neither disjunction nor
existential q-formula is Harrop. Harrop q-formulas q-FmH (or Harrop formulas FmH) are de�ned by
the clauses:
1. all elementary q-formulas (including ⊥) are Harrop; 2. if A,B ∈ q-FmH , then A ∧B ∈ q-FmH ;
3. if B ∈ q-FmH , then A→ B ∈ q-FmH ; 4. if B ∈ q-FmH , then ∀xjB ∈ q-FmH .

Theorem 6. Any uni�able Harrop's formula is projective in Q�INT.

Theorem 7. For any L-projective sentence A and any formulas B1, B2, ∃xC(x), we have
(i) if `L A→ B1 ∨B2, then `L (A→ B1) ∨ (A→ B2);
(i) if `L A→ ∃xC(x), then `L ∃x(A→ C(x)).

Example: The following non-passive rule is admissible in every superintuitionistic predicate logic:
¬(∃xP (x) ∧ ∃x¬P (x))→ ∃yQ(y) / ∃y[¬(∃xP (x) ∧ ∃x¬P (x))→ Q(y)]

4 Filtering uni�cation and uni�cation types

In [13] a characterization is given of modal logics in which uni�cation is �ltering, that is, for every two
uni�ers for a formula A there is another uni�er that is more general then both of them (type 1 or 0).

Theorem 8. Let L be an superintuitionistic predicate logic. Uni�cation in L is �ltering i� the Stone
law ¬¬A ∨ ¬A is in L.

Corollary 9. For every superintuitionistic predicate logic L
(i) if Q-KC ⊆ L, then uni�cation in L is unitary or nullary;
(ii) if L enjoys unitary uni�cation, then Q-KC ⊆ L.

3
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Uni�cation in predicate logic Wojciech Dzik

Corollary 10. Uni�cation in Q-LC, as well as in Q-KC is nullary. Uni�cation in Q-INT is either
nullary or in�nitary.

Recall that uni�cation in LC and in KC is unitary, but in INT it is �nitary, see [11].
Results analogous to Theorem 2 and 3 hold in modal predicate logics extending Q-S4.
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Solving equations in pure double Boolean algebras

Philippe Balbiani

Institut de recherche en informatique de Toulouse

1 Introduction

Herrmann et al. [7] have generalized lattices of concepts to algebras of semiconcepts.
Operations between semiconcepts give rise to pure double Boolean algebras [9, 10].
Such algebraic structures can be seen as the union of two Boolean algebras, the inter-
section of which being a lattice of concepts. In this paper, we study word problems and
unification problems in several classes of pure double Boolean algebras.

2 Semiconcepts

Formal contexts are structures of the form IK = (G,M,∆) where G is a nonempty set
(with typical member noted g), M is a nonempty set (with typical member noted m)
and ∆ is a binary relation between G and M . The elements of G are called objects,
the elements of M are called attributes and the intended meaning of g∆m is: object g
possesses attribute m. For all X ⊆ G and for all Y ⊆ M , let X. = {m ∈ M : for
all g ∈ G, if g ∈ X then g∆m} and Y / = {g ∈ G: for all m ∈ M , if m ∈ Y then
g∆m}. The claims in the next lemma follow directly from the definition of the maps
. : X 7→ X. and / : Y 7→ Y /. See [3, 6] for details.

Lemma 1. Let X1, X2, X ⊆ G and Y1, Y2, Y ⊆M .

1. The following conditions are equivalent: (a) X ⊆ Y /, (b) X. ⊇ Y .
2. If X1 ⊆ X2 then X.

1 ⊇ X.
2 and if Y1 ⊇ Y2 then Y /

1 ⊆ Y /
2 .

3. X ⊆ X./ and Y /. ⊇ Y .
4. If there exists Y ′ ⊆ M such that X = Y ′/ then X = X./ and if there exists
X ′ ⊆ G such that X ′. = Y then Y /. = Y .

Given X ⊆ G and Y ⊆ M , the pairs (X,X.) and (Y /, Y ) are called semiconcepts of
IK. More precisely, pairs of the form (X,X.) are called left semiconcepts of IK and pairs
of the form (Y /, Y ) are called right semiconcepts of IK. Remark that (∅,M) and (G, ∅)
are semiconcepts of IK. Let H(IK) = (H(IK), 0l, 0r, 1l, 1r,∼l,∼r,tl,tr,ul,ur) be
the algebraic structure of type (0, 0, 0, 0, 1, 1, 2, 2, 2, 2) defined by

– H(IK) is the set of all semiconcepts of IK,
– 0l = (∅,M),
– 0r = (M/,M),
– 1l = (G,G.),
– 1r = (G, ∅),
– ∼l (X,Y ) = (G \X, (G \X).),

UNIF 2016 13



– ∼r (X,Y ) = ((M \ Y )/,M \ Y ),
– (X1, Y1) tl (X2, Y2) = (X1 ∪X2, (X1 ∪X2).),
– (X1, Y1) tr (X2, Y2) = ((Y1 ∩ Y2)/, Y1 ∩ Y2),
– (X1, Y1) ul (X2, Y2) = (X1 ∩X2, (X1 ∩X2).),
– (X1, Y1) ur (X2, Y2) = ((Y1 ∪ Y2)/, Y1 ∪ Y2).

Remark that if G,M are finite then H(IK) is finite too and moreover, | H(IK) |≤
2|G| + 2|M |. The set H(IK) can be ordered by the binary relation v defined by

– (X1, Y1) v (X2, Y2) iff X1 ⊆ X2 and Y1 ⊇ Y2.

Before formally introducing pure double Boolean algebras, we prove lemmas which
will put the above definitions into perspective.

Lemma 2. Let (X1, Y1), (X2, Y2) ∈ H(IK).

1. The following conditions are equivalent: (a) (X1, Y1) v (X2, Y2), (b) (X1, Y1) ul
(X2, Y2) = (X1, Y1)ul(X1, Y1) and (X1, Y1)tr (X2, Y2) = (X2, Y2)tr (X2, Y2).

2. If (X1, Y1) is a left semiconcept then (X1, Y1) v (X2, Y2) iff (X1, Y1)ul (X2, Y2)
= (X1, Y1).

3. If (X2, Y2) is a right semiconcept then (X1, Y1) v (X2, Y2) iff (X1, Y1)tr(X2, Y2)
= (X2, Y2).

Lemma 3. The binary relation v is reflexive, antisymmetric and transitive on H(IK).

We shall say that an object g is sparse if ∆(g) 6= M and an attribute m is sparse if
∆−1(m) 6= G. IK is said to be sparse if for all g ∈ G, g is sparse and for all m ∈M , m
is sparse. We shall say that a couple (g, g′) of objects is a cover if ∆(g) ∪∆(g′) = M
and a couple (m,m′) of attributes is a cover if ∆−1(m) ∪∆−1(m′) = G. A sparse IK
is said to be covered if for all g, g′, g′′ ∈ G, if (g′, g′′) is a cover then (g, g′) is a cover
or (g, g′′) is a cover and for all m,m′,m′′ ∈M , if (m′,m′′) is a cover then (m,m′) is
a cover or (m,m′′) is a cover.

3 Pure double Boolean algebras

Let A = (A, 0l, 0r, 1l, 1r,∼l,∼r,tl,tr,ul,ur) be an algebraic structure of type
(0, 0, 1, 1, 2, 2, 2, 2). For all a ∈ A, let ?la =∼r∼l a and ?ra =∼l∼r a. A is said
to be concrete iff there exists a formal context IK = (G,M,∆) and an injective homo-
morphism from A to H(IK). We shall say that A is a pure double Boolean algebra if
for all a, b, c ∈ A, it satisfies the conditions 1–13, 16–28, 31 and 32 in Fig. 1. Now, we
can relate pure double Boolean algebras and concrete structures.

Proposition 1 ([7]). The following conditions are equivalent:

1. A is concrete.
2. A is a pure double Boolean algebra.

A is said to be s-concrete iff there exists a sparse formal context IK = (G,M,∆) and
an injective homomorphism from A to H(IK). We shall say that a pure double Boolean
algebra A is sparse if it satisfies the conditions 14 and 29 in Fig. 1.
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Proposition 2. The following conditions are equivalent:

1. A is s-concrete.
2. A is a sparse pure double Boolean algebra.

Proof. Simple variant of the proof of Proposition 1.

A is said to be c-concrete iff there exists a covered sparse formal context IK = (G,M,
∆) and an injective homomorphism from A to H(IK). We shall say that a sparse pure
double Boolean algebra A is covered if it satisfies the conditions 15 and 30 in Fig. 1.

Proposition 3. The following conditions are equivalent:

1. A is c-concrete.
2. A is a covered sparse pure double Boolean algebra.

Proof. Simple variant of the proof of Proposition 1.

1. a ul (b ul c) = (a ul b) ul c,
2. a ul b = b ul a,
3. ∼l (a ul a) =∼l a,
4. a ul (b ul b) = a ul b,
5. a ul (b tl c) = (a ul b) tl (a ul c),
6. a ul (a tl b) = a ul a,
7. a ul (a tr b) = a ul a,
8. ∼l (∼l aul ∼l b) = a tl b,
9. ∼l 0l = 1l,

10. ∼l 1r = 0l,
11. 1r ul 1r = 1l,
12. aul ∼l a = 0l,
13. ∼l∼l (a ul b) = a ul b,
14. 0l = 0r ,
15. ?l ?l a ul ?la = ?la ul 1l,

16. a tr (b tr c) = (a tr b) tr c,
17. a tr b = b tr a,
18. ∼r (a tr a) =∼r a,
19. a tr (b tr b) = a tr b,
20. a tr (b ur c) = (a tr b) ur (a tr c),
21. a tr (a ur b) = a tr a,
22. a tr (a ul b) = a tr a,
23. ∼r (∼r atr ∼r b) = a ur b,
24. ∼r 1r = 0r ,
25. ∼r 0l = 1r ,
26. 0l tr 0l = 0r ,
27. atr ∼r a = 1r ,
28. ∼r∼r (a tr b) = a tr b,
29. 1r = 1l,
30. ?r ?r a tr ?ra = ?ra tr 0r ,

31. (a ul a) tr (a ul a) = (a tr a) ul (a tr a),
32. a ul a = a or a tr a = a.

Fig. 1.

4 A first-order signature

Let Ω be the first-order signature consisting of the following function symbols together
with their arities: ⊥l (0), ⊥r (0), >l (0), >r (0), ¬l (1), ¬r (1), ∨l (2), ∨r (2), ∧l (2)
and ∧r (2). Let V AR be a countable set of variables (with typical members noted x, y,
etc). The set T (Ω, V AR) of all terms over Ω and V AR (with typical members noted
s, t, etc) is inductively defined as usual. We write s(x1, . . . , xn) to denote a term whose
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variables form a subset of {x1, . . . , xn}. The result of the replacement of x1, . . . , xn
in their places in s with terms t1, . . . , tn will be noted s(t1, . . . , tn). A substitution is a
function σ assigning to each variable x a term σ(x). We shall say that a substitution σ
is ground if for all variables x, σ(x) is a variable-free term. For all terms s(x1, . . . , xn)
let σ(s) be s(σ(x1), . . . , σ(xn)). The composition σ ◦ τ of the substitutions σ and τ
assigns to each variable x the term τ(σ(x)).

5 Word problems

Let C be a class of pure double Boolean algebras. Now, for the word problem in C: given
terms s, t, decide whether C |= s = t.

Proposition 4. 1. The word problem in the class of all pure double Boolean algebras
is PSPACE-complete.

2. The word problem in the class of all sparse pure double Boolean algebras is
PSPACE-complete.

3. The word problem in the class of all covered sparse pure double Boolean algebras
is NP -complete.

Proof. (1) See the proofs of Propositions 45 and 51 in [2].
(2) and (3) Simple variants of the proof of Propositions 45 and 51 in [2].

6 Unification problems

Let C be a class of pure double Boolean algebras. Now, for the unification problem in
C: given a finite set Σ = {(s1, t1), . . . , (sntn)} of pairs of terms, decide whether there
exists a substitution σ such that C |= σ(s1) = σ(t1), . . ., C |= σ(sn) = σ(tn). In that
case, the substitution σ is called unifier ofΣ. Remark that if a finite set of pairs of terms
possesses a unifier then it possesses a ground unifier. This follows from the fact that for
all unifiers σ of a finite set Σ of pairs of terms and for all ground substitutions τ , σ ◦ τ
is a ground unifier of Σ. There are two main questions about the unification problem.
Firstly, there is the question of its computability.

Proposition 5. 1. The unification problem in the class of all sparse pure double
Boolean algebras is NP -complete.

2. The unification problem in the class of all covered sparse pure double Boolean
algebras is NP -complete.

Proof. Firstly, remark that, in any class of sparse pure double Boolean algebras, every
variable-free term is equal either to 0l, or to 1r. Secondly, remark that, in any class
of sparse pure double Boolean algebras, the word problem is in P when restricted to
variable-free terms. Hence, in any class of sparse pure double Boolean algebras, the
unification problem is in NP . As for its NP -hardness, it follows from a reduction of
the satisfiability problem for Boolean formulas.

Secondly, there is the question of its type. See [1, 4, 5, 8] for details about unification
types.
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Proposition 6. 1. The unification type in the class of all pure double Boolean alge-
bras is nullary.

2. The unification type in the class of all covered sparse pure double Boolean algebras
is unitary.

Proof. (1) Adapting the line of reasoning suggested by Jeřábek [8] in the case of modal
logic K, we prove that {(¬r¬lx ∨l x,¬r¬lx ∨l 0l)} has no minimal complete set of
unifiers in the class of all pure double Boolean algebras.
(2) Adapting the line of reasoning suggested by Baader and Ghilardi [1] or Dzik [4, 5]
in the case of modal logic S5, we prove that every finite set of pairs of terms has a most
general unifiers in the class of all covered sparse pure double Boolean algebras.

7 Conclusion

The decidability of the unification problem in the class of all pure double Boolean
algebras and the unification type in the class of all sparse pure double Boolean algebras
are still open.
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Abstract

We investigate properties of convergent and forward-closed string rewriting systems in the context of the syn-
tactic criteria introduced in [7] by Christopher Lynch and Barbara Morawska (we call these LM-Systems). One of
the criteria is that the system be non-subterm-collapsing, i.e., no term should be equivalent to a proper subterm of it.
Since a string rewriting system can be viewed as a term-rewriting system over a signature of purely monadic func-
tion symbols, we adapt the notion of LM-system to the string rewriting case. We prove that the subterm-collapse
problem for convergent and forward-closed string rewriting systems is effectively solvable. Therefore, there exists
a decision procedure that verifies if such a system is an LM-System. We use the same construction to prove that
the cap problem from the field of cryptographic protocol analysis, which is undecidable for general LM-systems, is
decidable when restricted to the string rewriting case.

1 Introduction

In this paper we investigate the properties of convergent and forward-closed string rewriting systems.
Our motivation comes from the syntactic criteria defined by Christopher Lynch and Barbara Morawska
in [7]. They showed that for any term-rewriting system R that satisfies their criteria (which we call
LM-Systems), the unification problem modulo R is solvable in polynomial time. In [5] it was shown
that these conditions are tight, i.e., relaxing any of them leads to NP-hard unification problems. It was
also shown in [5] that the subterm-collapse problem for term-rewriting systems that satisfy all of the
other conditions of LM-Systems is undecidable.

In this current work, we show that the subterm-collapse problem is decidable when restricted to
convergent and forward-closed string rewriting systems. These string rewriting systems can be viewed
as term rewriting systems over a signature of purely monadic function symbols. We give an analogous
definition of LM-Systems for string rewriting systems. Thus, given a forward-closed and convergent
string rewriting system T there is an algorithm that decides if T is an LM-System.

The construction used to show the decidability of the subterm-collapse problem for forward-closed
and convergent string rewriting systems is also used to show that the cap problem, an important problem
from the field of cryptographic protocol analysis, is also decidable for such string rewriting systems.
This is in contrast with some of our recent work that shows that the cap problem, which is undecidable
in general, remains undecidable when restricted to general LM-Systems [1].

All proofs in this extended abstract have been omitted for brevity. The interested reader can consult
the technical report for details1.

1https://arxiv.org/abs/1604.06509

1

UNIF 2016 19



Lynch-Morawska Systems on Strings D. S. Hono II, P. Narendran, and R. Veras

2 Definitions

We present here some notation and definitions. Only a few essential definitions are given here; for more
details, the reader is referred to [3] for term rewriting systems, and to [4] for string rewriting systems.

Let Σ be a finite alphabet. As is usual, Σ∗ stands for the set of all strings over Σ. The empty string is
denoted by λ . For a string x, |x| denotes its length and xR denotes its reversal. A string u overlaps with
a string v iff there is a non-empty proper suffix of u which is a prefix of v. For instance, aba overlaps
with acc, but aba does not overlap with cca. However, aba overlaps with itself since a is both a prefix
and a suffix of aba.

A string rewriting (rewrite) system (SRS) R over this alphabet is a set of rewrite rules of the form
l → r where l,r ∈ Σ∗; l and r are respectively called the left- and right-hand-side (lhs and rhs) of the
rule. The rewrite relation on strings defined by the rewrite system R is denoted →R. The reflexive and
transitive closure of this relation is ∗−→R. Termination and confluence are defined as usual. An SRS R is
convergent iff it is both terminating and confluent.

A string is irreducible with respect to R iff no rule of R can be applied to it. The set of strings
that are irreducible modulo R is denoted by IRR(R). Note that this set is a regular language, since
IRR(R) = Σ∗ r {Σ∗l1Σ∗ ∪ ...∪ Σ∗lmΣ∗}, where l1, . . . , lm are the lhs of the rules in R. A string w′ is
an R-normal form (or a normal form if the rewrite system is obvious from the context) of a string w
for an SRS R if and only if w →∗

R w′ and w′ is irreducible. We write this as w →!
R w′. An SRS R is

right-reduced if every right-hand side is in normal form.

String rewriting systems can be viewed as a restricted class of term rewriting systems where all
functions are unary. As in [2] a string u over a given alphabet Σ is viewed as a term over one variable
derived from the reversed string of u; i.e., if g,h ∈ Σ, the string gh corresponds to the term h(g(x)). (In
other words, the unary operators defined by the symbols of a string are applied successively in the order
in which these symbols appear in that string.) A string of the form wl where w ∈ Σ∗ and l is a left-hand
side is called a redex. A redex is innermost if no proper prefix of it is a redex. The longest suffix of an
innermost redex that is a left-hand side in R is called its l-part and the remaining prefix its s-part.

We will also need a special kind of normal form for strings, modulo any given SRS T . With that
purpose, we define, following Sénizergues [8], a leftmost-largest reduction as follows: let ≻ be a given
total ordering on the alphabet Σ and ≻L be its length + lexicographic extension2. A rewrite step xly →
xry is leftmost-largest if and only if (a) xl is an innermost redex, (b) any other left-hand side that is a
suffix of xl is a suffix of l as well, (i.e., l is the l-part of this redex) and (c) if l → r′ is another rule in
the rewrite system, then r′ ≻L r. A string w′ is said to be a leftmost-largest (ll-) normal form of a string
w iff w →! w′ using only leftmost-largest rewrite steps. Given a terminating system T , it holds that any
string w has a unique normal form produced by leftmost-largest rewrite steps alone, since every rewrite
step is unique; this unique normal form will be denoted as ρT (w).

Next, we define what it means for a string x ∈ Σ+ to cause a subterm-collapse.

Definition 2.1. Let R be a convergent string rewriting system. A string x is said to cause a subterm-
collapse if and only if there is a non-empty string y such that xy →∗

R x. R is subterm-collapsing if and
only if there is a string that causes a subterm-collapse.

Throughout the rest of the paper, a,b,c, . . . ,h will denote elements of the alphabet Σ, and strings
over Σ will be denoted as l,r,u,v,w,x,y,z, along with subscripts and superscripts.

A string rewrite system T is said to be forward-closed iff every innermost redex can be reduced to
its normal form in one step.

2 Sénizergues refers to this as the short-lex ordering

2
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We now give some preliminary results on convergent and forward-closed string rewriting systems.
This first lemma shows that reducing all right-hand sides of rules in R will preserve the equivalence
generated by R as well as the properties that we are interested in.

Lemma 2.2. Let R be a convergent and forward-closed string rewriting system, and let l → r be a rule
in R. Then

(
Rr

{
l → r

})
∪
{

l → ρR(r)
}

is convergent, forward-closed and equivalent to R.

The following is an easy consequence:

Corollary 2.3. Let R be a convergent, forward-closed and right-reduced string rewriting system. Then
no two distinct rules have the same left-hand side.

The next preliminary result shows that we can use leftmost-largest reduction steps to reduce an
innermost redex to its normal form in a single step.

Lemma 2.4. Let R be a convergent, forward-closed and right-reduced string rewriting system, and let
w be an innermost redex. Then w → ρR(w), i.e., w reduces to its normal form in one leftmost-largest
reduction step.

3 LM-Conditions for String Rewriting Systems

We now give an equivalent definition of quasi-determinism for string rewriting systems R. This def-
inition is adapted from that of [7]. We also define a right-hand side critical pair for string-rewriting
systems. Thus, we are able to formulate the conditions of [7] in the context of string rewriting systems.

A string rewriting system R is quasi-deterministic if and only if

1. No rule has λ as its right-hand side

2. No rule in R is end-stable—i.e., no rule has the same rightmost symbol on its left- and right-hand
sides, and

3. R has no end pair repetitions—i.e., no two rules in R have the same unordered pair of rightmost
symbols on their sides.

We define a right-hand-side critical pair as follows: if l1 → r1 and l2 → r2 are two distinct rewrite rules
and r2 = xr1 for some x (i.e., r1 is a suffix of r2) then {xl1, l2} is a right-hand-side critical pair. The set
of all right-hand-side critical pairs is referred to as RHS(R).

A string-rewriting system is deterministic if and only if it is non-subterm-collapsing and RHS(R) is
quasi-deterministic. A Lynch-Morawska string rewriting system or LM-system is a convergent right-
reduced string rewriting system R which satisfies the following conditions:

(i) R is non-subterm-collapsing,
(ii) R is forward-closed, and

(iii) RHS(R) is quasi-deterministic.

In light of the results of [6], a convergent string rewriting system R is an LM-system if and only if
RHS(R) is quasi-deterministic and

(a) R is almost-left reduced [6].
(b) There are no overlaps among the left-hand sides of R.
(c) No lhs overlaps with a rhs.

3
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We now work towards proving the main results of this paper. Namely, we will show below that the
subterm-collapse problem for convergent and forward-closed string rewriting systems is decidable.

The first of our results towards the above goal is:

Lemma 3.1. Let R be a convergent, forward-closed and quasi-deterministic string rewriting system
and x,y,z ∈ IRR(R) such that xy →! z. Then there exist irreducible strings x = x1,x2, . . . ,xn,xn+1,
y1,y2, . . . ,yn,yn+1 such that

1. y = y1 . . .yn+1,

2. xiyi is an innermost redex for all 1 ≤ i ≤ n,

3. xiyi → xi+1 for all 1 ≤ i ≤ n, and

4. xn+1yn+1 = z.

An immediate consequence of the definition of subterm-collapse (Definition 2.1)is the following:

Lemma 3.2. Let R be a convergent forward-closed string rewriting system and x,y ∈ IRR(R) such that
xy →! x and y 6= λ . (Thus x causes a subterm-collapse.) Let y1 be a prefix of y. Then xy1 causes a
subterm-collapse.

We now prove that R is subterm-collapsing if and only if there is a right-hand side of a rule in R
that causes a subterm collapse in the sense of Definition 2.1. This lemma will be key in showing the
decidability of the subterm-collapse problem as it allows us only to consider right-hand sides of rules
for possible sources of subterm-collapse.

Lemma 3.3. Suppose R is a convergent forward-closed string rewriting system. Then R is subterm-
collapsing if and only if and only if there is a right-hand side r that causes a subterm-collapse.

The main lemma of this section appears below. It gives us that a certain language, parameterized
by two strings u,v ∈ Σ∗, is a deterministic context-free language. We prove this by constructing a
deterministic pushdown automaton to recognize this language.

Lemma 3.4. Let R be a convergent forward-closed string rewriting system, u,v ∈ IRR(R), and # 6∈ Σ.
Then the language

Lu,v =
{

w# | uw →! v, w 6= λ
}

is a deterministic context-free language over (Σ∪{#})∗

As a consequence of the above Lemma 3.4 the subterm-collapse problem is decidable for convergent,
foward-closed, string-rewriting systems.

Corollary 3.5. The following decision problem:

Given: A convergent, forward-closed, right-reduced SRS R.

Question: Is R subterm-collapsing?

is effectively solvable.

The construction of the DPDA in the proof of Lemma 3.4 can be carried out in polynomial time.
Thus, not only is the above subterm-collapse problem for convergent, forward-closed string rewriting
systems decidable, it is efficiently decidable. This is in contrast to the results of [5] where it was shown

4
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that checking if a given term-rewriting system is subterm-collapsing, even when the system satisfies all
of the other Lynch-Morawska conditions, is undecidable.

We can therefore conclude that the problem of verifying if a convergent and forward-closed string
rewriting system (or a term rewriting system over a signature of monadic function symbols) is an LM-
system is decidable.

As another corollary of the above result, we get that the cap problem for convergent, forward-closed,
string-rewriting systems is also decidable. This problem, also known as the deduction problem, is often
studied in the field of symbolic cryptographic protocol analysis.

Corollary 3.6. The Cap Problem:

Given: A convergent, forward-closed string-rewriting system R, a string u ∈ Σ+ (representing the
intruder knowledge) and a secret v ∈ Σ+.

Question: Does there exists a string w ∈ Σ+ (called a cap term) such that uw →!
R v?

is decidable.

Proof. The construction is essentially the same as that in the proof of Corollary 3.5. This time a DPDA
is constructed, using Lemma 3.4, for the language Lu,v.

On the other hand, the cap problem is known to be undecidable for general term-rewriting systems,
even when restricted to LM-Systems.
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Abstract
In this paper we investigate convergent term rewriting systems that conform to the criteria set out

by Christopher Lynch and Barbara Morawska in their seminal paper “Basic Syntactic Mutation.” The
equational unification problem modulo such a rewrite system is solvable in polynomial-time. In this
paper, we derive properties of such a system which we call an LM-system. We show, in particular,
that the rewrite rules in an LM-system have no left- or right-overlaps.

We also show that despite the restricted nature of an LM-system, there are important undecid-
able problems, such as the deduction problem in cryptographic protocol analysis (also called the cap
problem) that remain undecidable for LM-systems.

Keywords: Equational unification, Term rewriting, Polynomial-time complexity, NP-completeness.

1 Introduction
In this paper we investigate convergent term rewriting systems that conform to the criteria set out by
Christopher Lynch and Barbara Morawska in their seminal paper “Basic Syntactic Mutation.” In earlier
work [5] it was shown that relaxing any of the conditions given by Lynch and Morawska results in
a unification problem that is NP-hard. Thus these conditions are tight in the sense that relaxing any
of them leads to an intractable unification problem (assuming P 6= NP). In this work, we continue
our investigations on Lynch-Morawska criteria. As in [5] we consider the case where the equational
theories have convergent and forward-closed term-rewriting systems, which we call LM-Systems. This
definition differs from that of [7] in which the set of axioms E is saturated by paramodulation and do not
necessarily form a convergent set of rewrite rules. All other criteria of [7] remain essentially unchanged.

We give a structural characterization of these systems by showing that if R is an LM-System, then
there are no overlaps between the left-hand sides of any rules in R and there are no forward-overlaps
between any right-hand side and a left-hand side. This characterization shows that LM-Systems form a
very restricted subclass of term-rewriting systems. Any term-rewriting system that contains overlaps of
these kinds cannot be an LM-System. Using these results, we show that saturation by paramodulation
is equivalent to forward-closure when considering convergent term-rewriting systems that satisfy all of
the remaining conditions for LM-Systems.

Despite their restrictive character, we show in section 4 that the cap problem, which is undecid-
able in general, remains undecidable when restricted to LM-Systems. The cap problem (also called
the deduction problem) originates from the field of cryptographic protocol analysis. This result shows
that LM-Systems are yet strong enough to encode important undecidable problems. Our proof of un-
decidability uses a many-one reduction from the halting problem for reversible deterministic 2-counter
Minsky machines.

In the interest of brevity we have omitted many details and most of the proofs of results appearing
in this paper. The interested reader can find all of the details in the technical report.1

1https://arxiv.org/abs/1604.06139
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2 Notation and Preliminaries
We assume the reader is familiar with the usual notions and concepts in term rewriting systems [2] and
equational unification [3]. A term t is ε̄-irreducible modulo a rewriting system R if and only if every
proper subterm of t is irreducible. The concept of forward closure is defined in [4]. The following
theorem, shown in [4], gives a necessary and sufficient condition for a rewrite-system to be forward-
closed.

Theorem 2.1. [4] A convergent rewrite system R is forward-closed if and only if every innermost redex
can be reduced to its R-normal form in one step.

We next show that there are ways to simplify a rewrite system R while still maintaining the properties
that we are interested in. More precisely, given a convergent, forward-closed rewrite system R we
can reduce the right-hand sides of rules in R while maintaining convergence, forward-closure and the
equational theory generated by R. Let R be a convergent rewrite system. Following [6] we define
R↓ =

{
l→ r↓ | (l→ r) ∈ R

}

Lemma 2.2. Let R be a convergent, forward-closed rewrite system. Then R↓ is convergent, equivalent
to R (i.e., they generate the same congruence), and forward-closed.

A convergent rewrite system R is right-reduced if and only if R = R↓.
From the above lemma, it is clear that right-reduction does not affect forward-closure. However, full

interreduction, where one also deletes rules whose left-hand sides are reducible by other rules, will not
preserve forward-closure. The following example illustrates this:

f (x, i(x))→ g(x) g(b)→ c f (b, i(b))→ c
The last rule can be deleted since its left-hand side is reducible by the first rule. This will preserve

convergence, but forward-closure will be lost since f (b, i(b)), an innermost redex, cannot be reduced in
one step to c in the absence of the third rule.

However, the following lemma enables us to do a restricted deletion of superfluous rules:

Lemma 2.3. Let R be a convergent, forward-closed, term rewriting system. Let li→ ri ∈ R for i∈ {1,2}
such that ∃p ∈ FPos(l1) : p 6= ε and l1|p = σ(l2) for some substitution σ . That is, l1 contains a proper
subterm that is an instance of the left-hand side of another rule in R. Then, R′ = Rr {l1→ r1} is
convergent, forward-closed and equivalent to R.

We call systems that have no rules such that the conditions of Lemma 2.3 obtain almost-left-reduced.
Note, however, that they are not fully left-reduced as there is still the possibility of overlaps at the root.
If a convergent, forward-closed and right-reduced R is not almost-left-reduced, then the above lemma
tells us that we may delete such rules and obtain an equivalent system.

3 Lynch-Morawska Conditions
In this section we define the Lynch-Morawska conditions. We also derive some preliminary results on
convergent term rewriting systems that satisfy the Lynch-Morawska conditions.

A new concept introduced by Lynch and Morawska is that of a Right-Hand-Side Critical Pair. Since
our focus is only on convergent term rewriting systems, this definition can be modified as follows:

s→ t u→ v
σ(s)≈ σ(u)

where σ = mgu(v, t) and σ(s) 6= σ(u).

2
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For an equational theory E, RHS(E) =
{

e
∣∣ e is the conclusion of a Right-Hand-Side Critical Pair

inference of two members of E
}
∪ E [7].

A set of equations E is quasi-deterministic if and only if

1. No equation in E has a variable as its left-hand side or right-hand side,
2. No equation in E is root-stable—i.e., no equation has the same root symbol on its left- and right-

hand side, and
3. E has no root pair repetitions—i.e., no two equations in E have the same pair of root symbols on

their sides.

A set of equations E is subterm-collapsing if and only if there are terms t and u such that t is a proper
subterm of u and E ` t ≈ u (or t =E u). A theory E is deterministic if and only if it is quasi-deterministic
and non-subterm-collapsing.

A Lynch-Morawska term rewriting system or LM-system is a convergent, almost-left-reduced and right-
reduced term rewriting system R which satisfies the following conditions:

(i) R is non-subterm-collapsing,
(ii) R is forward-closed, and

(iii) RHS(R) is quasi-deterministic.

The goal of the remainder of this section is to show that, given an LM-system R, there can be no
overlaps between the left-hand sides of any rules in R and that there can be no forward-overlaps. These
notions are defined precisely below. Further, we use those results to derive the equivalence of forward-
closure and saturation by paramodulation when R is an LM-system.

These results show that LM-systems are a highly restrictive subclass of term-rewriting systems. How-
ever, in a later section, we show that there are important decision problems that remain undecidable when
restricted to LM-systems.

The first of these results, Lemma 3.1 and its proof, are used multiple times to prove other results. It
concerns how terms s and t, such that s is an innermost redex and t is ε̄-irreducible, can be joined. It
establishes that there are only two possible cases, and further, only one of these cases can hold at a time.

Lemma 3.1. Let R be an LM-system, s = f (s1, . . . ,sm) an innermost redex and t = g(t1, . . . , tn) an ε̄-
irreducible term such that f 6= g. Then s and t are joinable modulo R if and only if exactly one of the
following conditions holds:

(a) there is a unique rule l→ r with root pair ( f ,g) and s−−−−→
l→r

t, or

(b) there are unique rules l1→ r1 and l2→ r2 with root pairs ( f ,h) and (g,h) such that s−−−−→
l1→r1

t̂ and

t−−−−→
l2→r2

t̂ for some term t̂.

Given Lemma 3.1, we can immediately derive two results that will be useful in proving the main
result of this section.

Corollary 3.2. Suppose l→ r ∈ R is a rule with root-pair ( f ,g), s = f (s1, . . . ,sm) and t = g(t1, . . . , tn),
and s and t are ε̄-irreducible. Then, s ↓R t if and only if s −−−−→

l→r
t.

Corollary 3.3. Let R be an LM-System. Suppose l → r ∈ R is a rule with root-pair ( f ,g) and s =
f (s1, . . . ,sm) and t = g(t1, . . . , tn) be terms that are joinable. Let ŝ1, . . . , ŝm, t̂1, . . . , t̂n be respectively the
normal forms of s1, . . . ,sm, t1, . . . , tn. Then

f (ŝ1, . . . , ŝm) −−−−→
l→r

g(t̂1, . . . , t̂n).

(Thus the normal form of s and t is an instance of the right-hand side r.)

3
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The above two corollaries, along with Lemma 3.1, allows us to state the first of the results concerning
the non-overlapping property of LM-systems. The following establishes that there can be no overlaps
between left-hand sides of two rules occurring at the root-position and that there can be no overlaps
between a right-hand side of a rule and a left-hand side of another rule at the root position. This is
achieved by showing that these terms cannot be unified.

Corollary 3.4. Let R be an LM-System and let l1→ r1 and l2→ r2 be distinct rules in R. Then
(a) l1 and l2 are not unifiable, and (b) r1 and l2 are not unifiable.

Next, we work towards showing that the other possible overlaps cannot occur either. The next
lemma, and its extension, are used towards this goal. The technical result is used in the proofs of
various other lemmas and corollaries.

Lemma 3.5. Let R be an LM-System, and suppose f (s1, . . . ,sm) −−−−→
l→r

g(t1, . . . , tn). Then the following

diagram commutes:

f (s1, . . . ,sm) g(t1, . . . , tn)

f (s′1, . . . ,s
′
m) g(t ′1, . . . , t

′
n)

l→ r

∗

l→ r

∗

where s′1, . . . ,s
′
m, t
′
1, . . . , t

′
n are the normal forms of s1, . . . , tn respectively.

The above result can be extended to the general case by induction.

Definition 3.1. (Non-Overlay Superpositions and Foward Overlaps). Let R be a rewrite-system. We
define the following sets:

NOSUP(R) :=
{

σ(l1[l2]p)
∣∣ p ∈ FPos(l1)r{ε} and σ = mgu(l1|p =? l2) , l1→ r1, l2→ r2 ∈ R

}

FOV(R) := { σ(l1→ r1[r2]p)
∣∣ p ∈ FPos(r1), and σ = mgu(r1|p =? l2), l1→ r1, l2→ r2 ∈ R}

The previous results of this section are now brought together to prove the following main results
about LM-systems concerning the status of overlaps. Namely, we show that there are no non-overlay
superpositions and no forward-overlaps.

We first establish that there are no superpositions occurring between the left-hand sides of two
distinct rules in R. Formally, this amounts to showing that NOSUP(R) = /0. The main idea of the proof
is that we show that such superpositions would induce critical pairs, and then these critical pairs cannot
be joinable, which would contradict the confluence of our system (R is convergent by definition).

Corollary 3.6. NOSUP(R) = /0 for all LM-systems R.

We now turn to the case of forward-overlaps as defined in the section on forward-closure.

Lemma 3.7. Let R be an LM-System, then FOV(R) = ∅.

We can now state the following lemma, which follows easily from the above results concerning
overlaps. First we introduce the following definition:

Definition 3.2. A term-rewriting system R is said to be non-overlapping if and only if there are no
left-hand side superpositions and no forward-overlaps.

4
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Lemma 3.8. Every LM-system is non-overlapping.

Proof. Follows from above results.

Finally, using the results derived above about LM-systems, we show that every LM-system is sat-
urated by paramodulation. It is clear that every rewrite system saturated by paramodulation is also
forward-closed. The next result establishes that for LM-systems, these two concepts are equivalent.
Specifically, an LM-system is trivially saturated by paramodulation as there can be no overlaps into the
left-hand side of an equation nor the right-hand side of an equation.

Corollary 3.9. Every LM-System is saturated by paramodulation.

4 The Cap Problem Modulo LM-Systems
In this section we prove that although LM-systems are a restrictive subclass of term-rewriting systems
there are still important problems that are undecidable when restricted to LM-systems. Specifically, we
show that the cap problem2, which has important applications in cryptographic protocol analysis, is
undecidable even when the rewrite system R is an LM-system.

The cap problem [1] is defined as follows:
Instance: An LM-System R, a set S of ground terms representing the intruder knowledge, and a

ground term M.
Question: Does there exist a cap term C(�1, . . . ,�n) such that C[�1 := si1 , . . . ,�n := sin ] →∗R M?
We show that the above problem is undecidable by a many-one reduction from the halting problem

for reversible deterministic 2-counter Minsky machines (which are known to be equivalent to Turing
machines). The construction is extremely similar to the one given in [5]. Originally, it was used to show
the undecidablility of the subterm-collapse problem for LM-Systems. The construction is modified
slightly to account for the cap problem, however the majority of the reduction remains unchanged. The
details of Minsky machines can be found in the technical-report.

Theorem 4.1. The cap problem modulo LM-Systems is undecidable.
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Abstract

The unification type of an equational theory is defined using a preorder on substitutions, called

the instantiation preorder, whose scope is either restricted to the variables occurring in the unification

problem, or unrestricted such that all variables are considered. It is known that the unification type

of an equational theory may vary, depending on which instantiation preorder is used. More precisely,

it was shown that the theory ACUI of an associative, commutative, and idempotent binary function

symbol with a unit is unitary w.r.t. the restricted instantiation preorder, but not unitary w.r.t. the

unrestricted one. Here, we improve on this result, by showing that, w.r.t. the unrestricted instantiation

preorder, ACUI is not even finitary.

Introduction

The first preorder introduced to deal with unification [Rob65] was in fact the unrestricted
instantiation preorder. It was designed for syntactic unification and it worked pretty well
considering that it gave a unitary unification type. Yet, when it comes to equational unification,
researchers usually employ the restricted instantiation preorder, though the reason for this
change was not explained in early papers.

We use the following notation to distinguish between these two preorders:

σ ≤XE τ iff ∃λ∀x ∈ X. λ(σ(x)) =E τ(x) and σ ≤∞E τ iff ∃λ∀x ∈ V. λ(σ(x)) =E τ(x)

Here, V is the countably infinite set of all variables, whereas X is a (usually finite) subset of it.

From now on, we will use ≤E to denote the restricted preorder ≤Var(Γ)
E when the unification

problem Γ is clear from the context.
Note that ≤∞E ⊆ ≤E , which has as an easy consequence that the unification type in the

restricted case can never be worse than the type in the unrestricted case. In particular, syntactic
unification is also unitary w.r.t. ≤E . Hence, for the empty theory it makes no difference which
instantiation preorder is used. For this reason, the distinction between these two orders was
not always rigorously made clear, though it was known that the unrestricted preorder could
lead to unpleasant results in weak unification [Ede85].

It took until 1991 before the first example of an equational theory for which the unrestricted
and restricted unification types are different was published. That particular theory is ACUI,
the theory of idempotent abelian monoids:

ACUI := {x+ 0 = x, x+ (y + z) = (x+ y) + z, x+ y = y + x, x+ x = x}
From [BB88] it was known that ACUI is unitary in the restricted case; in [Baa91], it was
shown that its unrestricted type is not unitary. This paper thus showed that the choice of the
instantiation preorder makes a difference for equational unification. However, it did not show
how big that difference actually is: the unrestricted type of ACUI might be finitary, which is
still a quite pleasant type from the application point of view. Here we show that this is not the
case: ACUI is at least infinitary. However, the precise unrestricted unification type of ACUI is
still an open problem: it is either infinitary or of type zero.

1
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Auxiliary Results

In the following, Var(s) denotes the set of variables occurring in the term s, Dom(σ) = {x ∈
V | σ(x) 6= x} the domain of the substitution σ, and VRan(σ) =

⋃
x∈Dom(σ) Var(σ(x)) the

variable range of σ.
The proof of our main result (Theorem 2) is based on the fact that ACUI is a theory in

which no variable is going to pop – in or out – of a term, i.e. the set of variables of a term is
stable under equality modulo the theory. As a matter of fact, this property is called regularity
in unification theory.

Definition 1. An identity s = t is regular if Var(s) = Var(t). A set of identities E is regular
if all elements of E are regular.

Regularity of the defining set of identities of an equational theory implies regularity of the
whole theory.

Lemma 1 ([Yel85]). E is regular iff =E is regular.

Obviously, all the identities of ACUI are regular, which by the above lemma yields that
s =ACUI t implies Var(s) = Var(t). Thus, the following lemma applies to ACUI.

Lemma 2. Let E be a regular theory and Γ = 〈s = t〉 an E-unification problem s.t. Var(s) ∩
Var(t) = ∅. Then the set U of all unifiers σ of Γ satisfying

∀y ∈ VRan(σ).∃x, x′ ∈ V s.t. x 6= x′ and y ∈ Var(σ(x)) ∩Var(σ(x′))

is complete w.r.t. ≤∞E .

Proof. Let σ be a unifier of Γ that does not belong to U , i.e., there is y0 ∈ VRan(σ) s.t. there
exists a unique x0 verifying y0 ∈ Var(σ(x0)) (note that x0 = y0 is possible). Let τ = {x0 7→
y0, y0 7→ x0} be the substitution that exchanges x0 with y0 (and is the identity if x0 = y0).
Then define the new substitution σ′ as σ′(x) := τ(σ(x)) for x ∈ V \ {x0} and σ′(x0) := x0.
Note that VRan(σ′) ( VRan(σ): in fact, if x0 ∈ VRan(σ), then x0 6∈ VRan(σ′); otherwise,
y0 6∈ VRan(σ′). Using the fact that, in any case, x0 6∈ VRan(σ′), we can show that σ is an
(unrestricted) instance of σ′:

∀x ∈ V \ {x0} : (τ ◦ {x0 7→ τ ◦ σ(x0)} ◦ σ′)(x) = (τ ◦ {x0 7→ τ ◦ σ(x0)})(σ′(x))

= τ(σ′(x)) = τ ◦ τ ◦ σ(x) = σ(x)

Additionally, we have for the variable x0:

(τ ◦ {x0 7→ τ ◦ σ(x0)} ◦ σ′)(x0) = (τ ◦ {x0 7→ τ ◦ σ(x0)})(x0)

= τ(τ ◦ σ(x0)) = σ(x0)

This shows σ′ ≤∞E σ. However, we need to show that σ′ is a unifier of Γ in order to make the
comparison useful. Because E is a regular theory, σ(s) =E σ(t) implies Var(σ(s)) = Var(σ(t)).
Then, if x0 occurs in one of the terms s, t, it also has to occur in the other one since it is the
unique producer of y0. This contradicts our assumption on Γ. Since, on the variables different
from x0, σ′ is an instance of σ, we thus know that σ′ is a unifier of Γ.

Consequently, we can replace σ with σ′ and so shrink VRan(σ). Since VRan(σ) is finite,
repeating this process will end with a unifier σ∗ that satisfies the required condition and is more
general w.r.t. ≤∞E than the original unifier σ.

2
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A second auxiliary result that will be employed in the proof of our main theorem follows
easily from the order-theoretic point of view on unification types [Baa89, BS01]. Given any
preorder � on the set U of E-unifiers of Γ, we denote with ∼ its induced equivalence relation,
i.e., σ ∼ τ iff σ � τ and τ � σ. We denote the ∼-equivalence class of a unifier σ as [σ] and the
set of all equivalence classes of unifiers as [U ]. The partial order induced by � on equivalence
classes is defined as usual, i.e., [σ] ≤ [τ ] iff σ � τ . We say that M ⊆ [U ] is complete w.r.t. ≤ if
every element of [U ] is above (w.r.t. ≤) some element of M .

Theorem 1 ([BS01]). Let M be the set of ≤-minimal elements of [U ]. If C is a minimal
complete set of E-unifiers of Γ w.r.t. �, then M = {[σ] | σ ∈ C}. Conversely, if M is complete
in U , then any set of representatives of M is a minimal complete set of E-unifiers of Γ.

The following easy consequence of this result holds w.r.t. any preorder on unifiers, and thus
in particular both for the restricted and the unrestricted instantiation preorder.

Lemma 3. Let C be a complete set of E-unifiers of an E-unification problem Γ. Then Γ has
a minimal complete set of E-unifiers iff C contains a minimal complete set of E-unifiers of Γ.

The Unrestricted Type of ACUI is at Least Infinitary

We will more generally show the result for regular theories satisfying certain properties, and
then show that ACUI satisfies these properties. From now on we assume that

• E is a regular theory,

• Γ = 〈s = t〉 is an E-unification problem s.t. Var(s) ∩Var(t) = ∅,
• there is a ≤∞E -minimal unifier σ of Γ that uses fresh variables, i.e., VRan(σ)\X 6= ∅ where
X = Var(s) ∪Var(t), and

• this unifier σ belongs to the set U defined in the formulation of Lemma 2.

We will prove that in such a configuration, Γ, and so E, is at least infinitary w.r.t. unrestricted
instantiation.

Let x0 ∈ VRan(σ) \X and consider the following construction of substitutions:

σz := σ ◦ (x0z) where (x0z) := {x0 7→ z, z 7→ x0} and z ∈ V.

We will show that, under certain conditions on z, such substitutions σz are ≤∞E -minimal unifiers
that are incomparable to each other w.r.t. ≤∞E . By Theorem 1, this implies that Γ cannot have
a finite minimal complete set of unifiers w.r.t. ≤∞E since there are infinitely many variables z
satisfying these conditions.

Lemma 4. For any z 6∈ X, σz is a minimal unifier of Γ w.r.t. ≤∞E .

Proof. Note that σz is a unifier of Γ because x0, z 6∈ X. Moreover, let θ be a unifier of Γ s.t.
θ ≤∞E σz, i.e., there is a substitution λ s.t.

∀x ∈ V. σz(x) =E λ ◦ θ(x)

Consequently, if we “multiply” from the right with (x0z), we obtain

∀x ∈ V. σ(x) =E λ ◦ (θ ◦ (x0z))(x).

Because (θ◦(x0z)) is a unifier of Γ with (θ◦(x0z)) ≤∞E σ, minimality of σ yields σ ≤∞E (θ◦(x0z)),
i.e., there exists µ s.t.

∀x ∈ V. (θ ◦ (x0z))(x) =E µ ◦ σ(x).

3
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Consequently, “multiplying” again from the right with (x0z) yields

∀x ∈ V. θ(x) =E µ ◦ σz(x).

Thus, we have shown that θ ≤∞E σz for a unifier θ of Γ implies σz ≤∞E θ, which proves that σz
is a minimal unifier of Γ w.r.t. ≤∞E .

Lemma 5. For any two different variables z, z′ 6∈ Dom(σ) ∪ VRan(σ), σz and σz′ are incom-
parable w.r.t. ≤∞E .

Proof. Assume there exists λ s.t. ∀x ∈ V. σz′(x) =E λ ◦ σz(x), and let t0 := σ(x0).

Case 1: Var(t0) = ∅
Then σz′(z) =E λ ◦ σz(z) implies z =E λ(t0). This definitely contradicts the existence of λ
since it cannot create a variable from a ground term.

Case 2: Var(t0) 6= ∅
Then there exists y0 ∈ Var(t0). Note that, independent of whether y0 = x0 or y0 6= x0, we
have y0 ∈ VRan(σ). Since σ ∈ U by our assumptions on σ, there is x1 ∈ V different from x0

s.t. σ(x1) =E t1 and y0 ∈ Var(t1). Again, σz′(z) =E λ ◦ σz(z) implies z =E λ(t0). Because E
is regular, this implies Var(λ(y0)) ⊆ {z}.

Since z, z′ 6∈ Dom(σ) ∪ VRan(σ), x1 6= z and x1 6= z′; so σz′(x1) =E λ ◦ σz(x1) implies
t1 =E λ(t1) Again, regularity yields Var(λ(y0)) ⊆ Var(t1).

Then Var(λ(y0)) = ∅ as z 6∈ VRan(σ) and Var(t1) ⊆ VRan(σ). In fact, if x1 ∈ Dom(σ),
then Var(t1) is contained in VRan(σ) by the definition of VRan. Otherwise, we must have
x1 = σ(x1) =E t1. Since y0 ∈ Var(t1), regularity of E yields y0 = x1 and Var(t1) = {y0}.
Thus, y0 ∈ VRan(σ) yields Var(t1) ⊆ VRan(σ).

However, since z =E λ(t0), the variable z is produced by λ from at least one variable y
that occurs in t0, i.e., there is a variable y ∈ Var(t0) \ {y0} such that Var(λ(y)) = {z}.1
Since y ∈ VRan(σ) and σ ∈ U , there exists x 6= x0 s.t. y ∈ Var(σ(x)). Yet again, as
z, z′ 6∈ Dom(σ) ∪ VRan(σ), we know x 6= z and x 6= z′, and thus σz′(x) =E λ ◦ σz(x) im-
plies σ(x) =E λ ◦ σ(x). Since we know that z ∈ Var(λ ◦ σ(x)), regularity yields z ∈ Var(σ(x)).
However, this is absurd since x 6= z and z 6∈ VRan(σ).

To sum up, we have shown that σz ≤∞E σz′ does not hold. A symmetric argument yields
that σz′ ≤∞E σz also does not hold.

Since the complement of the finite set X ∪Dom(σ) ∪VRan(σ) in the countably infinite set
V of all variables is infinite, the set of unifiers of Γ must have infinitely many minimal elements.
By Theorem 1, this shows that Γ cannot have a finite minimal complete set of unifiers.

Lemma 6. The unification problem Γ does not have a finite minimal complete set of E-unifiers
w.r.t unrestricted instantiation, and thus E is at least infinitary w.r.t. ≤∞E .

We are now ready to apply this result to ACUI.

Theorem 2. ACUI is at least infinitary w.r.t. ≤∞ACUI.

Proof. Since ACUI is regular, it is sufficient to show that there is an ACUI-unification problem
Γ and a minimal unifier σ of Γ satisfying the conditions stated at the beginning of this section.

1Note that, if there is no such additional variable in t0, then this already contradicts the existence of λ,
making the point.
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According to Corollary 3.6 in [BB88], any most general unifier (w.r.t. restricted instantia-
tion) of the ACUI-unification problem Γ = 〈x+ y + z = u+ v〉 must use a fresh variable. Let θ
be such an mgu.

If Γ does not have a minimal complete set of ACUI-unifiers w.r.t. unrestricted instantiation,
then we are done. Thus, assume that Γ has a minimal complete set M w.r.t. unrestricted
instantiation. By Lemma 2 and Lemma 3, we can assume without loss of generality that
M ⊆ U , and by Theorem 1 we know that the elements of M are ≤∞ACUI-minimal. Since θ is an
ACUI-unifier of Γ, there is a σ ∈M such that σ ≤∞ACUI θ. Since ≤∞ACUI ⊆ ≤XACUI, this implies that
σ is also an mgu of Γ w.r.t. restricted instantiation, and thus it introduces a fresh variable.

Consequently, we have shown that all prerequisites for applying Lemma 6 are satisfied, which
proves the theorem.

Conclusion

In this paper we have shown that the gap between the unification types of equational theories
w.r.t restricted and unrestricted instantiation is wider than previously known. In fact, for
ACUI, which is unitary w.r.t. restricted instantiation, it was only known that the unrestricted
type is at least finitary [Baa91]. Now we know that it is at least infinitary, which makes using
unrestricted instantiation in this setting even less desirable.

Regarding future work, it would of course be good if we could determine the exact unification
type of ACUI w.r.t. unrestricted instantiation (infinitary or type zero), but we have not been
able to achieve this yet.
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Abstract

Unification with constants modulo the theory ACUI of an associative (A), commutative (C) and

idempotent (I) binary function symbol with a unit (U) corresponds to solving a very simple type of set

equations. It is well-known that solvability of systems of such equations can be decided in polynomial

time by reducing it to satisfiability of propositional Horn formulae. Here we introduce a modified

version of this problem by no longer requiring all equations to be completely solved, but allowing for a

certain number of violations of the equations. We introduce three different ways of counting the number

of violations, and investigate the complexity of the respective decision problem, i.e., the problem of

deciding whether there is an assignment that solves the system with at most ` violations for a given

threshold value `.

1 Unification modulo ACUI and set equations

The complexity of testing solvability of unification problems modulo the theory

ACUI := {x+ 0 = x, x+ (y + z) = (x+ y) + z, x+ y = y + x, x+ x = x}

of an associative, commutative and idempotent function symbol “+” with a unit “0” was inves-
tigated in detail by Kapur and Narendran [KN92], who show that elementary ACUI-unification
and ACUI-unification with constants are polynomial whereas general ACUI-unification is NP-
complete. Here we concentrate on ACUI-unification with constants, but formally introduce the
problem in its disguise of testing solvability of set equations.

Given a finite base set B and a set of variables X = {Z1, . . . , ZN} that can assume as values
subsets of B, consider a system Σ of set equations, which consists of finitely many equations of
the following form:

K ∪X1 ∪ . . . ∪Xm = L ∪ Y1 ∪ . . . ∪ Yn, (1)

where K,L are subsets of B and X1, . . . , Xm, Y1, . . . , Yn ∈ X.
A B-assignment is a mapping of subsets of B to the variables, i.e., it is of the form

σ : X → P(B). If there is no confusion, we will omit the prefix B- from B-assignment. Such
an assignment σ is a solution of the system of set equations Σ if

K ∪ σ(X1) ∪ . . . ∪ σ(Xm) = L ∪ σ(Y1) ∪ . . . ∪ σ(Yn)

holds for all equations of the form (1) in Σ.
Solvability of a system of set equations can be reduced in polynomial time (see below) to

satisfiability of propositional Horn formulae [KN92], which can be tested in linear time [DG84].
To introduce this reduction, we define Boolean variables p(a,X) for every a ∈ B and X ∈ X.

The intuitive semantics of these variables is that p(a,X) is true iff a is not in X for the given
assignment.

Now, for each equation of the form (1) and each a ∈ K \ L we generate the Horn clauses

p(a, Y1) ∧ . . . ∧ p(a, Yn)→ ⊥.

1
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Indeed, whenever an element a ∈ B is in K but not in L, for the equation to hold true, a must
be in some Yj . The symmetric Horn clauses are also produced, i.e., for each a ∈ L \K

p(a,X1) ∧ . . . ∧ p(a,Xm)→ ⊥.

It remains to deal with the elements a 6∈ K ∪ L. First, if a belongs to none of the variables
on the right-hand side, then it should not belong to any of the variables on the left-hand side,
which is expressed by the Horn clauses

p(a, Y1) ∧ . . . ∧ p(a, Yn)→ p(a,Xj) for all j = 1, . . . ,m.

Symmetrically, if a is not on the left-hand side, it cannot be on the right-hand side, which yields

p(a,X1) ∧ . . . ∧ p(a,Xm)→ p(a, Yj) for all j = 1, . . . , n.

The number of derived Horn clauses and their sizes are polynomial in the size of the given
system Σ of set equations, where the size of Σ is the sum of the cardinality of B, the number of
variables in X, and the number of equations in Σ. The size of a Horn clause is just the number
of literals occurring in it.

It is easy to see that the Horn formula obtained by conjoining all the Horn clauses derived
from a system of set equations is satisfiable iff the original system of set equations has a solution
(see [KN92] for details). Consequently, solvability of systems of set equations can be decided
in polynomial time.

2 Minimizing the number of violated equations

We say that the B-assignment σ violates a set equation of the form (1) if

K ∪ σ(X1) ∪ . . . ∪ σ(Xm) 6= L ∪ σ(Y1) ∪ . . . ∪ σ(Yn).

Given a base set B, a set of variables X = {Z1, . . . , ZN}, a system Σ of k set equations of the
form (1), and a nonnegative integer `, we now ask whether there exists a B-assignment σ such
that at most ` of the equations of the system are violated by σ. We call this decision problem
MinVEq-SetEq. For a given `, MinVEq-SetEq(`) consists of all systems of set equations for
which there is a B-assignment that violates at most ` equations of the system.

We will show that MinVEq-SetEq is NP-complete using reductions to and from Max-HSAT.
Given a Horn formula ϕ that is a conjunction of k Horn clauses and a nonnegative integer `,
Max-HSAT asks whether there is a propositional assignment τ that satisfies at least ` of the
Horn clauses of ϕ. For a given `, Max-HSAT(`) consists of those Horn formulae for which there
is a propositional assignment that satisfies at least ` of its Horn clauses. It is well-known that
Max-HSAT is NP-complete [JS87].

Reducing MinVEq-SetEq to Max-HSAT For this purpose, we introduce new Boolean
variables good(i), whose rôle is to determine whether the ith equation is to be satisfied or
not. We conjoin good(i) to the left-hand side of each of the Horn clauses derived from the ith
equation, i.e., if the ith equation is of the form (1), then we generate the following Horn clauses:

• For each a ∈ K \ L: good(i) ∧ p(a, Y1) ∧ . . . ∧ p(a, Yn)→ ⊥;

• For each a ∈ L \K: good(i) ∧ p(a,X1) ∧ . . . ∧ p(a,Xm)→ ⊥;

2
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• For each a 6∈ K ∪ L:

good(i) ∧ p(a, Y1) ∧ . . . ∧ p(a, Yn)→ p(a,Xj) for all j = 1, . . . ,m;

good(i) ∧ p(a,X1) ∧ . . . ∧ p(a,Xm)→ p(a, Yj) for all j = 1, . . . , n.

• Furthermore, we add the Horn clause > → good(i).

If k′ is the number of clauses generated by the original reduction (see Section 1) and k is the
number of set equations in the system Σ, then we obtain k′ + k Horn clauses in this modified
reduction. Let ϕΣ = C1 ∧ · · · ∧ Ck′+k denote the Horn formula obtained by conjoining these
Horn clauses.

Intuitively, setting the Boolean variable good(i) to false “switches off” the Horn clauses
induced by the ith equation in the original reduction. Consequently, the satisfaction of these
clauses is no longer enforced, which means that the ith equation may be violated. By maxi-
mizing satisfaction of the clauses > → good(i), we thus minimize the number of violated set
equations. More precisely, we can show the following lemma.

Lemma 1. Let Σ be a system of set equations consisting of k equations and generating k′

clauses in the reduction introduced in Section 1. Then we have

Σ ∈ MinVEq-SetEq(`) iff ϕΣ ∈ Max-HSAT((k′ + k)− `).
Since Max-HSAT is in NP, this lemma implies that MinVEq-SetEq also belongs to NP.

Reducing Max-HSAT to MinVEq-SetEq Consider the Horn formula ϕ = C1 ∧ . . . ∧Ck,
where Ci is a Horn clause for i = 1, . . . , k. To construct a corresponding system of set equations,
we use the singleton base setB = {a}. For every Boolean variable p appearing in ϕ, we introduce
a set variable Xp. Intuitively, a belongs to Xp iff p is set to false. Now, each Horn clause in ϕ
yields the following set equations:

• If Ci is of the form p1 ∧ . . . ∧ pn → p, then the corresponding set equation is

Xp1
∪ . . . ∪Xpn

∪Xp = Xp1
∪ . . . ∪Xpn

.

Obviously, this equation enforces that a cannot belong to Xp if it does not belong to any
of the variables Xpi

.

• If Ci is of the form p1 ∧ . . . ∧ pn → ⊥, then the corresponding set equation is

Xp1
∪ . . . ∪Xpn

= {a}.
This equation enforces that a must belong to one of the variables Xpi

.

• If Ci is of the form > → p, then the corresponding set equation is

∅ = Xp.

This equation ensures that a cannot belong to Xp.

Given the intuition underlying the variables Xp (a belongs to Xp iff p is set to false), it is easy
to prove the following lemma.

Lemma 2. Let ϕ = C1 ∧ . . . ∧ Ck be a Horn formula and Σϕ the corresponding system of set
equations. Then ϕ ∈ Max-HSAT(`) iff Σϕ ∈ MinVEq-SetEq(k − `).

Since Max-HSAT is NP-hard, this lemma implies that MinVEq-SetEq is also NP-hard. Put
together, the two lemmas yield the exact complexity of the MinVEq-SetEq problem.

Theorem 1. MinVEq-SetEq is NP-complete. NP-hardness holds even if we restrict the cardi-
nality of the base set B to 1.

3
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3 Minimizing the number of violating elements

Instead of minimizing the number of violated equations, we can also minimize the number of
violating elements of B.

Given an assignment σ, we say that a ∈ B violates an equation of the form (1) w.r.t. σ if
a ∈ (K ∪ σ(X1) ∪ . . . ∪ σ(Xm)) ∆(L ∪ σ(Y1) ∪ . . . ∪ σ(Yn)), where ∆ denotes the symmetric
difference of two sets. We say that a ∈ B violates the system of set equations Σ w.r.t. σ if it
violates some equation in Σ w.r.t. σ. Given a base set B, a set of variables X = {Z1, . . . , ZN},
a system Σ of k set equations and a nonnegative integer `, we now ask whether there exists
a B-assignment σ such that at most ` of the elements of B violate Σ w.r.t. σ. We call this
decision problem MinVEl-SetEq. For a given `, MinVEl-SetEq(`) consists of all systems of set
equations for which there is a B-assignment σ such that at most ` of the elements of B violate
Σ w.r.t. σ.

In contrast to the problem MinVEq-SetEq considered in the previous section, MinVEl-SetEq
can be solved in polynomial time. In order to show this, we introduce the notion of projection.
Given an element a ∈ B, the projection of an equation of the form (1) to a is the equation

(K ∩ {a}) ∪X1 ∪ . . . ∪Xm = (L ∩ {a}) ∪ Y1 ∪ . . . ∪ Yn. (2)

The projection of a system of set equations Σ to a, Σa, is the system of the projections of all
equations in Σ to a. Note that, for Σa, we use the base set {a}. Finally, the projection of a
B-assignment σ to a is the {a}-assignment σa : X→ P({a}) defined as σa(X) = σ(X) ∩ {a}.

The following facts are easy to show:

1. The element a ∈ B violates Σ w.r.t. σ iff σa does not solve Σa.

2. Given {a}-assignments σa for all a ∈ B, define the B-assignment σ as

σ(X) =
⋃

a∈B

σa(X) for all X ∈ X.

Then we have σa = σa for all a ∈ B.

3. There is a B-assignment σ such that at most ` of the elements of B violate Σ w.r.t. σ iff
at most ` of the systems of set equations Σa (a ∈ B) are not solvable.

Thus, to check whether Σ ∈ MinVEl-SetEq(`), it is sufficient to check which of the systems of
set equations Σa for a ∈ B are solvable. This can obviously be done in polynomial time.

Theorem 2. MinVEl-SetEq is in P.

4 Minimizing the number of violations

A disadvantage of the measure used in the previous section is that it does not distinguish be-
tween elements that violate only one equation and those violating many equations. To overcome
this problem, we count for each violating element how many equations it actually violates. We
say that a ∈ B violates the system of set equations Σ p times w.r.t. σ if it violates p equations
in Σ w.r.t. σ. Further, we say that σ violates Σ q times if q =

∑
a∈B pa where, for each a ∈ B,

the element a violates Σ pa times w.r.t. σ.
Given a base set B, a set of variables X = {Z1, . . . , ZN}, a system Σ of k equations, and

a positive integer `, we now ask whether there is an assignment σ that violates Σ at most `
times. We call this decision problem MinV-SetEq. For a given `, MinV-SetEq(`) consists of all

4

UNIF 201640



Approximately Solving Set Equations Baader, Marantidis, and Okhotin

systems of set equations for which there is a B-assignment σ such that σ violates Σ at most `
times.

It is easy to adapt the approach used in Section 2 to solve MinVEq-SetEq to this new
problem. Basically, we now introduce Boolean variables good(i, a) (instead of simply good(i))
to characterize whether the element a ∈ B violates the ith equation. We conjoin good(i, a) to
the left-hand side of each of the Horn clauses derived from the ith equation for a. Furthermore,
we add the Horn clauses > → good(i, a).

Following the earlier notation, we obtain k′ + k|B| Horn clauses in this modified reduction,
and again use ϕΣ to denote the obtained Horn formula. The following lemma implies that
MinV-SetEq is in NP.

Lemma 3. Let Σ be a system of set equations over the base set B, consisting of k equations
and generating k′ clauses in the reduction introduced in Section 1. Denote with ϕΣ = C1∧ · · ·∧
Ck′+k|B| the Horn formula derived by the modified reduction. Then we have

Σ ∈ MinV-SetEq(`) iff ϕΣ ∈ Max-HSAT((k′ + k|B|)− `).
For base sets of cardinality 1, MinV-SetEq coincides with MinVEq-SetEq, which we have

shown to be NP-hard even in this restricted setting. This shows that the complexity upper
bound of NP is optimal.

Theorem 3. MinV-SetEq is NP-complete.

5 Conclusion

Our investigation of how to approximately solve set equations was motivated by unification
modulo the equational theory ACUI. The idea is that, even if there is no unifier, there may
be substitutions that almost are unifiers, i.e., that almost solve the unification problem. In
some applications it may be interesting to find such approximate solutions, which violate some
of the equations, but in a minimal way. We have shown that, depending on how we measure
violations, the complexity of the problem may stay in P or increase to NP.

As further work, we have started to look at approximate unification modulo the equational
theory ACUIh, which corresponds to unification in the description logic FL0 [BN01]. This sort
of unification can be used to detect redundancies in ontologies, and approximate unification
may allow to detect more potential cases of redundancy. Since ACUIh-unification can be re-
duced to solving certain language equations [BN01], we thus need to investigate approximately
solving language equations. In this setting, the elements of the sets are words, i.e., structured
objects, and measures for violations should take this structure into account. Our investigation
of unification modulo ACUI can be seen as a warm-up exercise for this more challenging task.

References

[BN01] Franz Baader and Paliath Narendran. Unification of concept terms in description logics. J. of
Symbolic Computation, 31(3):277–305, 2001.

[DG84] W. F. Dowling and J. Gallier. Linear-time algorithms for testing the satisfiability of proposi-
tional horn formulae. Journal of Logic Programmming, 1(3):267–284, 1984.

[JS87] Brigitte Jaumard and Bruno Simeone. On the complexity of the maximum satisfiability prob-
lem for Horn formulas. Inf. Process. Lett., 26(1):1–4, 1987.

[KN92] D. Kapur and P. Narendran. Complexity of unification problems with associative-commutative
operators. J. Automated Reasoning, 9:261–288, 1992.

5

UNIF 2016 41



42



Let’s Unify With Scala Pattern Matching! ∗

Edmund S.L. Lam1 and Iliano Cervesato1

Carnegie Mellon University Qatar
sllam@qatar.cmu.edu and iliano@cmu.edu

Abstract

Scala’s pattern matching framework supports algebraic data types. It also has an extensible
system of user-definable pattern extractors. These advanced features enable the develop-
ment of more complex term manipulations on top of Scala’s primitive pattern matching
infrastructure. In this paper, we discuss the development of a lightweight library for first-
order term unification on top of this extensible pattern matching framework. Together
with a set of combinators for writing unification control statements that resemble Scala
pattern matching, this library serves as a basis for building more complex domain specific
languages (e.g., constraint solvers, logical frameworks) that rely on unification.

1 Introduction

Scala [4] is a modern programming language with extensive support for both imperative
and functional programming. Specifically, Scala’s pattern matching framework supports
algebraic data types through case class definitions. It also provides an extensible system
of user-definable pattern extractors. These advanced features allow the programmer to
build complex pattern matching routines on top of the language’s native pattern matching
framework (e.g., Joins and Actors [1]). Scala does not come with native support for unifi-
cation, and the only open-source unification library for it [5] provides only basic utilities,
which make little use of Scala’s advanced features (e.g., flexible syntax, integration with
pattern matching framework). In this paper, we build first-order term unification on top
of this extensible pattern matching framework. We have developed a lightweight library
in Scala that allows the programmer to perform unification over first-order terms. This
library defines a set of combinators to implement control statements that resemble Scala’s
pattern matching. For instance, Figure 1 shows a unification example in the style of Scala’s
case matching statements.

Here, lines 1 and 2 declare x and y, two new logical variables and line 3 defines f as
the term F(Const(5),x), where F is a subclass of Term, representing an uninterpreted
binary function application. All are subclasses of the Term type. In line 4, term f calls

1 val x: Term = new LogVar()
2 val y: Term = new LogVar()
3 val f: Term = F(Const(5),x)
4 f unify (
5 Const(4) withMgu θ => {
6 ... // there is no θ such that F(Const(5),x)θ = Const(4)θ
7 },
8 F(y,Const(4)) >=> {
9 ... // executes with mgu [5/y, 4/x] implicitly applied to x and y

10 }
11 )

Figure 1: Code snippet highlighting unification case control statement

∗This paper was made possible by grants JSREP 4-003-2-001 and NPRP 4-341-1-059, from the Qatar National
Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility
of the authors.

UNIF 2016 43



Let’s Unify With Scala Pattern Matching! Lam and Cervesato

1 val x: Term = new LogVar()
2 val y: Term = new LogVar()
3 val unifA = new Unif( Const(4) )
4 val unifB = new Unif( F(y,Const(4)) )
5 val f: Term = F(Const(5),x)
6 f match {
7 case unifA(θ) => ...
8 case unifB(θ) => ...
9 }

Figure 2: Code snippet highlighting unification in extensible pattern matching

its unify method with two input alternatives: lines 5–7 attempts to unify f and the term
Const(4), and if successful, the most general unifier θ is made available in the scope of the
nested code sequence in line 6. Similarly, lines 8–10 defines another case that unifies f and
F(y,Const(4)), but with an alternative programming flavor: if successful, >=> implicitly
applies the most general unifier onto the logical variables x and y (logical variables double
up as mutable containers), hence the instantiation of these logical variables are side-effects
of the case statement. Like a matching case statement, these alternatives are tried in top-
down order and the operation throws an exception if none applies. In the present scenario,
the second case statement is executed. If, rather than using the case matching format,
the programmer prefers to directly integrate his/her unification code with Scala’s pattern
matching framework, our unification library also includes a unification pattern extractor
that allows this. The code fragment in Figure 1 then assumes the form shown in Figure 2.

Through Scala’s extensible pattern matching framework, lines 3 and 4 declare two in-
stances of pattern extractor Unif (whose implementation is discussed in Section 3) for
the term Const(4) and F(y,Const(4)). These extractors are used in the matching state-
ment (lines 7 and 8), corresponding respectively to unification cases in Figure 1. This
lightweight library serves as a foundational basis for developing more complex domain
specific languages (e.g., constraint solvers, logical frameworks) that rely on unification.

2 Abstract Semantics

In this section, we give an abstract semantics for our unification construct, implemented as
the unify control statement. It describes the behavior of this construct independently of
the underlying approach to implementation (a Scala embedding here). For simplicity, we
focus on a core term language consisting of constants, variables and uninterpreted function
symbols. We also omit typing information. We begin by introducing some notation. We
write ~o for a tuple of syntactic objects o. We denote the extension of a sequence ~o with an
object o as ‘o, ~o ’, with () indicating the empty tuple. A generic substitution is denoted θ or
φ. We write oθ for the application of θ on object o. The composition of two substitutions
θ and φ is denoted by ‘θ ◦ φ’. Given two first-order terms t1 and t2, the meta-operation
mgu(t1, t2) returns the most general unifier (mgu) θ of t1 and t2 if it exists, ⊥ if not.

Standard expressions eα Term expressions et Identifiers x Function symbols f

Terms t ::= Const(eα) | Var(x) | f(~et) Substitutions θ, φ ::= · | θ, [t/x]

Expressions e ::= eα | t | et apply θ | et unify {~u}
Unify Cases u ::= t withMgu θ => e | t >=> e
Figure 3: Unification on Scala Terms: Abstract Syntax

Figure 3 shows the abstract syntax of the fragment of interest: we focus on our term

2
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Normal Form Expression n Standard Evaluations 〈Ψ; e〉 7→ 〈Ψ; e〉

Unification Evaluations: 〈Ψ; θ; t〉 7→ 〈Ψ; θ; e〉

〈Ψ; eα〉 7→ 〈Ψ′; e〉
〈Ψ; θ; eα〉 7→ 〈Ψ′; θ; e〉 lift

〈Ψ; eα〉 7→ 〈Ψ′; e〉
〈Ψ; θ; Const(eα)〉

7→ 〈Ψ′; θ; Const(e)〉

const
〈Ψ; θ, [t/x]; Var(x)〉

7→ 〈Ψ; θ, [t/x]; t〉

var

〈Ψ; θ; ~et〉 7→ 〈Ψ′; θ′; ~e′t〉
〈Ψ; θ; f(~et)〉 7→ 〈Ψ′; θ′; f(~e′t)〉

func 〈Ψ; θ; et〉 7→ 〈Ψ′; θ′; e′t〉
〈Ψ; θ; et, ~et〉 7→ 〈Ψ′; θ′; e′t, ~et〉

seqHead
〈Ψ; θ; ~et〉 7→ 〈Ψ′; θ′; ~e′t〉

〈Ψ; θ;n, ~et〉 7→ 〈Ψ′; θ′;n, ~e′t〉
seqTail

〈Ψ; θ; et〉 7→ 〈Ψ′; θ′; e′t〉
〈Ψ; θ; et apply φ〉

7→ 〈Ψ′; θ′; e′t apply φ〉

applyExp
〈Ψ; θ;n apply φ〉

7→ 〈Ψ; θ;nφ〉

applyEnd
〈Ψ; θ; et〉 7→ 〈Ψ′; θ′; e′t〉
〈Ψ; θ; et unify {~u}〉

7→ 〈Ψ′; θ′; e′t unify {~u}〉

uExp

mgu(n, t) = ⊥
〈Ψ; θ;n unify {t withMgu φ => e, ~u}〉

7→ 〈Ψ; θ;n unify {~u}〉

uPure1 mgu(n, t) = φ

〈Ψ; θ;n unify {t withMgu φ => e, ~u}〉
7→ 〈Ψ; θ; e〉

uPure2

mgu(n, t) = ⊥
〈Ψ; θ;n unify {t >=> e, ~u}〉

7→ 〈Ψ; θ;n unify {~u}〉
uMut1

mgu(n, t) = φ

〈Ψ; θ;n unify {t >=> e, ~u}〉
7→ 〈Ψ; θ ◦ φ; e〉

uMut2

Figure 4: Unification on Scala: Abstract Semantics

language and the unify control statement. All other syntactic fragments of Scala (referred
to as “standard expressions”) are treated abstractly and denoted by eα. Types are omitted
for succinctness. Expressions that are expected to evaluate to terms are denoted by et.
We call them term expressions. Terms are constants Const(eα), logical variables Var(x)
or function applications f(~et). Scala expressions eα are agnostic to our unification library,
terms t are primitive expressions, while the expression et apply θ applies substitution θ to
the result of et. Our main focus is on the unification construct et unify {~u}, where the
subject (resultant term of et) is unified with cases expressed in ~u. We have two forms of
unification cases, shown in Section 1: t withMgu θ => e expresses the pure (immutable)
unification with t resulting in mgu θ and continuing with the body expression e with no
side-effects on t (instantiations has to be done explicitly by applying θ on t, i.e., t apply θ).
On the other hand, t >=> e denotes mutable unification with t: e is executed with mgu
θ implicitly applied (as side-effects) to logical variables appearing in t and the unification
subject.

Figure 4 defines the abstract semantics of the unify construct by means of state tran-
sitions of the form 〈Ψ; θ; e〉 7→ 〈Ψ′; θ′; e′〉, called unification evaluation. Here, Ψ represents
the abstract state of the Scala runtime, θ keeps track of the mutable changes imposed by
the use of mutable unify cases, and e is the current expression being evaluated. 〈Ψ′; θ′; e′〉
represents the resultant state. Expressions in normal form are denoted by n and the ab-
stract evaluation of a standard expression eα is written 〈Ψ; eα〉 7→ 〈Ψ′; e〉. Such abstract
evaluations are lifted into a unification evaluation by the (lift) rule. Note that the re-
sultant state is of the form e, meaning that it may be a unification expression (a term,
unify or apply expression). Rules (const), (var) and (func), together with auxiliary rules
(seqHead) and (seqTail), inductively define the evaluation of terms in a standard way. The
rule (applyExp) evaluates expressions et apply θ when et is not in normal form, while
(applyEnd) defines the cases when it is. Similarly, the rule (uExp) defines the evalua-
tion of a unify construct where its unification term subject is not in normal form, while
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// type Subst = Map[LogVar[Any],Term[Any]]

// Definitions of Terms
abstract class Term[A] {

def mgu(other: Term[A]): Option[Subst]
def apply(theta: Subst): Term[A]
def unify[B](cases: UnifCase[A,B]*): B
def withMgu[B](body: Subst => B): PureUnifCase[A,B]
def >=>[B](body: => B): ImmUnifCase[A,B]

}
class LogVar[A] extends Term[A]
case class Const[A](n:A) extends Term[A]
case class Func[A](sym: String, args: List[Term[Any]]) extends Term[A]

// Unify cases: t withMgu θ => e and t >=> e
abstract class UnifCase[A,B](pat: Term[A])
class PureUnifCase[A,B](pat: Term[A], body: Subst => B) extends UnifCase[A,B](pat)
class MutUnifCase[A,B](pat: Term[A], body: => B) extends UnifCase[A,B](pat)

// Unification Pattern Extractor
class Unif[A](pat: Term[A]) {

def unapply(t: Term[A]): Option[Subst] = t mgu pat
}

Figure 5: Class Declarations of the Unification Library

all other cases — (uPure1/2) and (uMut1/2) — require otherwise. Rules (uPure1/2)
handle the cases where the topmost unification case to attempt is a pure unify case state-
ment t withMgu θ => e: (uPure1) deals with the case where this unification attempt fails
(i.e., mgu(n, t) = ⊥) during which the remaining alternatives are attempted next, while
(uPure2) defines the successful case (i.e., mgu(n, t) = θ), in which the body expression
e is executed next, with the implicit assignment of θ with the result of mgu(n, t). Rules
(uMut1/2) do the same for mutable unify cases: (uMut2) is similar to (uPure2) except
that it additionally composes the substitution state θ with the resultant substitution φ of
the unification of n and t. This models logical variable instantiation as side-effects of the
case statement. Note that n is guaranteed not to contain any logical variables that appear
in θ, since the corresponding (var) rule would have been applied to obtain the normal form
term n itself. Hence the composition ‘θ ◦ φ’ is always well-defined.

3 Implementation

We now describe our implementation of the unification library in Scala. For brevity, we
discuss only the public interfaces and combinator operations of this library. The full code
is open-source and available for download at https://github.com/sllam/unifscala.

Figure 5 shows the class declarations of our unification library. Substitutions are im-
plemented as maps from logical variables to terms and aliased as the type Subst for con-
venience. Terms are represented by the class Term[A]. We refer to polymorphic type A
as the base type, and require that it is not a Term type itself. Terms are extended by
three subclasses, namely LogVar[A] that represents logical variables, Const[A] that repre-
sents a constant value and Func[A] that represents a function application, where A is some
base type. Constants and function applications are declared as ‘case’ classes and hence
are treated as algebraic datatypes for convenient pattern matching. Logical variables are
omitted from this however, since they are uniquely identified as references, rather than by
their structure. Terms support a number of operations: mgu(t) unifies the current term
with t and returns their most general unifier, if it exists. This method corresponds to the
meta-operation mgu(t, t′) used in Section 2 and encapsulates the actual implementation of
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first-order term unification. The method apply(θ) simply applies the substitution θ onto
the current term and returns the resultant term of this application. The method unify
implements the control statement of the same name and takes a sequence of unification
cases of type UnifCase[A,B], where A is the base type of the term subject and B the return
value of the statement. Unification cases are constructed by two methods, namely withMgu
and >=>, respectively corresponding to the syntax entities introduced in Figure 3. A term t
calling withMgu takes a higher-order function θ => e (of type Subst => B) and constructs
the unification case t withMgu θ => e. Similarly, t calling >=> takes a nullary higher-order
function e (of type => B) and constructs the unification case t >=> e. To support mutable
side-effects, logical variables double as containers that can be instantiated with values. We
omit these code fragments since their implementations are fairly standard.

We integrate our unification library into Scala’s pattern matching framework by means
of the extractor class Unif. Scala’s extensible pattern matching framework is best described
by the following classic example:

1 object Twice {
2 def unapply(x: Int): Option[Int] = if(x%2==0) Some(x/2) else None
3 def test(x: Int) {
4 x match {
5 case Twice(y) => println(x + "is even and twice " + y)
6 case _ => println(x + " is odd") } }
7 }

Here, Twice is declared as an object with an unapply method that takes an integer x
and returns the value of half x only if x is even. This unapply method is implicitly called
during pattern matching (in the illustrative method test) to extract the corresponding
value y. As shown in Figure 5, we declare Unif as a class of extractors: given a term
pattern pat, Unif(pat) constructs a unification pattern extractor for pat. The unapply
method of this class of extractors simply takes a term t and attempts to unify t with
pat to produce an mgu (i.e., t mgu pat). Looking back to Figure 2, unification pattern
extractors for patterns Const(4) and F(y,Const(5)) were defined in this manner and used
to extract most general unifiers.

4 Conclusion

We have developed a lightweight unification library in Scala that allows the program-
mer to express first-order term unification natively using either Scala’s pattern matching
framework or with combinators that resemble Scala’s match statement. With this unifica-
tion library as the core, we intend to build more sophisticated programming constructs,
for instance backtracking statements that integrate with unification and logical reasoning
frameworks. Our work here contributes a step towards easier development of high-level
declarative domain specific languages (e.g., [2, 3]) that rely on unification.
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Type unification for structural types in Java
– Extended Abstract –

Martin Plümicke

Baden-Wuerttemberg Cooperative State University Stuttgart/Horb
pl@dhbw.de

In the past we considered type inference for Java with generics and lambda-expressions. The
base of our algorithm was a finitary type unification. The algorithm determines nominal types
in subjection to a given environment. This is a hard restriction as separate compilation of Java
classes without relying on type informations of other classes is impossible. Let us consider the
following example:

import java.util.Vector;

class A { m (v) { return v.elementAt(0); } }

For the method m the type Vector<A> → A is inferred, as Vector is the only class in the
environment. This type is not principal. The principal type of m would be a structural type
ST<A>, that have a method elementAt: ST<A> → A.
We present an extended type unification algorithm as the base of a type inference algorithm
for a Java-like language, that infers structural types without given environments.

The type unification algorithm
The type unification problem is given as: For a set of constraints { θ1 l θ′1, . . . , θn l θ′n }, where
θi, θ

′
j are type terms, a substitution σ is demanded, such that for all 1 6 i 6 n : σ( θi ) is a

subtype of σ( θ′i ). The substitution σ is called type unifier. The type unification algorithm is
given by eight rules, that are applied most often as possible. If the result C is in solved form
(all elements has either the form T

.
= θ, T l θ, or θ l T , where T is a type variable) then C is

the result otherwise the algorithm fails. We prove the termination of the algorithm and give a
soundness and a completeness theorem.

Example
Extending the example from the beginning

class Vector<A> extends ST<A> { given in as Standard Java }

class Main { main() { return new A<>().m(new Vector<Integer>(...)); }}

leads to the set of type constraints C = { Vector<Integer> l ν1, ν1 l ST<ν2> }. Applying
the type unification algorithm to C results in { ν2 .

= Integer, Vector<Integer> l ν1, ν1 l
ST<Integer> }. The type inferred program is then given as

class A { ν2 m (ν1 v) { return v.elementAt(0); } }

class Main { Integer main() { return new A<>().m(new Vector<Integer>(...)); }}
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Overlap and Independence in Multiset Comprehension

Patterns∗

Iliano Cervesato1 and Edmund S.L. Lam1
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Abstract

Rule-based programming, a model of computation by which rules modify a global state by concurrently

rewriting disjoint portions of it, is gaining popularity as a simple, effective, and declarative means for

implementing concurrent [1, 4] and distributed applications [5]. The state is often a multiset of first-

order facts, with the rules specifying transformations over them. A rule consists of a head pattern which

identifies a fragment of the state and a body which prescribes actions, often replacing this fragment

with new facts. In this paper, we study rule interaction. Specifically, we identify conditions when

two rule heads overlap by possibly targeting the same facts, which in many languages would prevent

applying them concurrently — non-overlapping rules are independent and can always be executed in

parallel without the risk of interference. A precise way of characterizing which rules are independent

and which overlap is at the basis of numerous optimizations in the runtime of rule-based languages. It

is also a useful debugging tool for programmers. We carry out this study in the context of Comingle [5],

a rule-based language for programming mobile distributed applications. Head patterns in Comingle

consist not only of partially instantiated facts, as found in most rule-based languages, but also of

constraints and multiset comprehension patterns, which adds a challenging twist to our endeavor and

interesting avenues of future work.

1 Multiset Comprehension Patterns

In this section, we formalize the syntax and matching semantics of a fragment of Comingle [5].
But first, some notation. We write o for a multiset of syntactic objects o. We denote the
extension of a multiset o with an object o as “o, o”, with ∅ indicating the empty multiset. We
also write “o1, o2” for the union of multisets o1 and o2. We write ~o for a tuple of o’s and [~t/~x]o
for the simultaneous substitution within object o of all free occurrences of variable xi in ~x with
the corresponding term ti in ~t. A generic substitution is denoted θ. Substitution implicitly
α-renames bound variables as needed to avoid capture.

Syntax. The top part of Figure 1 defines the abstract syntax of Comingle’s head patterns.
Computation in Comingle happens by rewriting facts F of the form p(~t) where p is a predicate
symbol and ~t is a tuple of terms. The semantics of Comingle is largely agnostic to the specific
language of terms as long as it is predicative — in this paper, we assume a first-order term
language, later extended with primitive multisets.

Comingle head patterns, written H, have the form E | g. We refer to E as the template of
the pattern and to g as its guard. The template E consists of atoms F and of comprehension
patterns [5] of the form *F | g+~x→ts . An atom F is a fact p(~t) that may contain variables in the

∗This paper was made possible by grants NPRP 4-1593-1-260 and NPRP 4-341-1-059, from the Qatar National
Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility
of the authors.
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Syntax





Variables: x Terms: t Guards: g Predicates symbols: p

Facts F ::= p(~t)
Expressions E ::= F | *F | g+~x→t

Head Patterns H ::= E | g

Matching:

E ,head St

E ,head St





E ,head St E ,head St
′

E,E ,head St ,St
′ (hmset-1 )

∅ ,head ∅
(hmset-2 )

F ,head F
(hfact )

|= [~t/~x]g *F | g+~x→ts ,head St

*F | g+~x→~t,ts ,head St , [~t/~x]F
(hcomp-1 )

*F | g+~x→∅ ,head ∅
(hcomp-2 )

Residual:

E ,¬head St
E ,¬head St





E ,¬head St E ,¬head St
E,E ,¬head St

(h¬mset-1 )

∅ ,¬head St
(h¬mset-2 )

F ,¬head St
(h¬fact )

F ′ 6v *F | g+~x→ts *F | g+~x→ts ,¬head St
*F | g+~x→ts ,¬head St , F ′

(h¬comp-1 ) *F | g+~x→ts ,¬head ∅
(h¬comp-2 )

where F ′ v *F | g+~x→ts iff F ′ = θF and |= θg for some θ = [~t/~x]

Head match:

St
H�−→ St

{
θE ,head St

+ θE ,¬head St− |= θg

St+,St−
E|g�−−→ St−

(match)

Figure 1: Matching a Rule Head

terms ~t. Guards in patterns and comprehensions are Boolean-valued expressions constructed
from terms and are used to constrain the values that the variables can assume. Just like for
terms we keep guards abstract, writing |= g to express that ground guard g is satisfiable. Two
common types of guards are term equality t = t′ and multiset membership t ∈ ts. We drop
the guard from patterns and comprehensions when it is the always-satisfiable constant >. A
comprehension pattern *F | g+~x→ts represents a multiset of all facts that match the atom F
and satisfy guard g under the bindings of variables ~x that range over ts, a multiset of tuples
called the comprehension range. We call F the subject of the comprehension. The scope of ~x is
the atom F and the guard g. We implicitly α-rename bound variables to avoid capture.

Given two head patterns H1 = E1 | g1 and H2 = E2 | g2 without (free) variables in
common, we define the parallel composition of H1 and H2, written H1 ‖ H2, as the head
pattern E1, E2 | g1 ∧ g2.

Matching. During computation, Comingle head patterns are matched against a state, written
St , which is a multiset of ground facts p(~t). We describe the successful match of a head pattern

H = E | g against a state St by means of the judgment St
H�−→ St ′, with St ′ collecting the

portion of the state St that was not matched by the pattern.

2
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Let E be a ground template — we will deal with the more general case momentarily. In-
tuitively, matching E against a store St means splitting St into two parts, St+ and St−, and
checking that E matches St+ completely. The latter is achieved by the judgment E ,head St

+

defined in the upper central part of Figure 1. Rules hmset-∗ partition St+ into fragments to be
matched by each atom in E: plain facts F must occur identically (rule hfact) while for compre-
hension atoms *F | g+~x→ts the state fragment must contain a distinct instance of F for every
element of the comprehension range ts that satisfies the comprehension guard g (rules hcomp-∗).

In Comingle, comprehension patterns must match maximal fragments of the state. There-
fore, no comprehension pattern in E should match any fact in St−. This check is captured by
the judgment E ,¬head St− in the lower central part of Figure 1: it holds unless St− contains a
fact F ′ and E a pattern *F | g+~x→ts for which there exists a substitution θ such that F ′ = θF
and guard θg is satisfied. Rules h¬mset-∗ test each individual atom and rule h¬fact ignore facts.

Rules h¬comp-∗ deal with comprehensions *F | g+~x→ts : they check that no fact in St− matches
any instance of F while satisfying g.

Rule (match) in Figure 1 describes head matching in Comingle. This involves identifying
a ground instance of the pattern obtained by means of a substitution θ. The instantiated
guard must be satisfiable (|= θg) and we must be able to partition the state into two parts St+

and St−. The instance of the template must match St+ (θE ,head St+), while the remaining
fragment St− must not match any comprehension in it (θE ,¬head St−). In Comingle, rules also
contain a body B, another template, and the body instance θB is then unfolded into ground
facts StB which replaces St+ in the state. A formal description and examples of use can be
found in [5].

2 Overlapping Patterns

Two head patterns H1 = E1 | g1 and H2 = E2 | g2 without variables in common overlap if the
former consumes facts that may prevent the latter from being applicable. This happens if there

is a state St such that St
H1�−→ St1 and St

H2�−→ St2 for some St1 and St2, but there is no St ′ such

that St
H1‖H2�−−−−→ St ′. Head patterns H1 and H2 (without common variables) are independent

if they do not overlap. For example, H1 = p(a,X), q(X) and H2 = p(Y, Y ), r(Z) overlap, for
instance in state p(a, a), q(a), r(b), while H1 and H ′2 = p(b, Y ), r(Z) are independent.

The above definitions do not provide any guidance as to how to determine whether two head
patterns overlap (or are independent). In the rest of this section, we devise effective conditions
to make this determination in some common cases. We proceed incrementally, starting from
simplified patterns and progressing towards the general case, which remains unsolved in its full
generality.

Multisets We start with head patterns of the form H = F , featuring an empty guard and
no comprehensions. Then, H1 and H2 overlap if and only if one contains a fact unifiable in

the other template. In symbols, if H1 = p(~t1), F
′
1 and H2 = p(~t2), F

′
2, and moreover there is a

substitution θ such that θ~t1 = θ~t2.
This was the situation in our earlier example. Note that the pair of facts p(~t1) and p(~t2)

may not be unique in H1 and H2. While this makes determining independence a combinatorial
problem, head patterns in typical rule-based language contain just a handful of atoms.

In a traditional first-order language, the substitution θ can be conveniently chosen to be
the most general unifier (mgu) of p(~t1) and p(~t2), but no such concept exists for more complex
term languages, for example languages featuring term-level multisets [2] or higher-order terms.
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Guards We next add guards, but still no comprehensions. Our head patterns then assume
the form H = F | g. Now, head patterns H1 = F 1 | g1 and H2 = F 2 | g2 without common
variables overlap if their template contains a unifiable fact and both guards hold for the witness

substitution. In symbols, H1 and H2 overlap if H1 = p(~t1), F
′
1 | g1 and H2 = p(~t2), F

′
2 | g2, and

moreover there is a substitution θ such that θ~t1 = θ~t2 and |= θg1 and |= θg2. For example, in a
term language over integers, the patterns H1 = p(X) | X > 3 and H2 = p(Y ) | Y < 10 overlap
for the state p(7) for instance, while H1 and H ′2 = p(Y ) | Y < 3 are independent.

An effective approach to finding overlaps, for instance in this last example, is to compute
unifiers θ between candidate facts p(~t1) and p(~t2), and then pass the partially instantiated
guards θg1 and θg2 to an SMT solver such as Z3 [3] to ascertain satisfiability.

Multisets of facts, possibly constrained through guards, are found in a majority of rule-
based languages, for example CHR [4]. This makes the above approach widely applicable.
Comprehensions in Comingle complicate this picture, however, as we explore next.

Open-ended Comprehensions We will now allow multiset comprehensions among the
atoms of a head pattern, but impose the restriction that their comprehension range does not
appear anywhere else in the template, in particular not in guards. Therefore, we shall accept
the pattern p(X), *p(x) | x > 0+x→Xs , but not p(X), *p(x) | x > 0+x→Xs | |Xs| = 0 where |M |
returns the number of elements in multiset M .

Given two head patterns H1 = E1 | g1 and H2 = E2 | g2 with the above characteristics
(and without common variables), it may come as a surprise that the procedure we just saw
in the absence of comprehensions still determines overlaps. The reason is that an open-ended
comprehension — one whose range we do not constrain through guards or other mechanisms
— can never fail: at worst it will return an empty multiset through its range.

As a simple example, consider the templates H1 = p(X), which consists of a single fact, and
H2 = *p(x)+x→Xs . Template H1 succeeds in any state that contains at least one fact headed

by the predicate symbol p. For example, p(a)
H1�−→ ∅. Instead, H2 always succeeds: indeed

p(a)
H2�−→ ∅ and ∅ H2�−→ ∅. Putting them together, we have that p(a)

H1‖H2�−−−−→ ∅. Note however
that H2 matches different portions of this state when applied in isolation (it matches p(a))
and when composed with H1 (it matches ∅), a behavior that does not manifest in the absence
of comprehensions. This weak form of interaction, although not an overlap according to our
definition, has implications when implementing Comingle [5].

General Comprehensions Constraints over comprehension ranges, whether in guards or
through shared variables, significantly complicate determining whether head patterns are inde-
pendent. Consider the following pair of patterns:

A) H1 = *p(x)+x→Xs , q(Y ) | Y ∈ Xs and H2 = p(Z)

H1 and H2 overlap in states such as p(a), q(a), in which each succeeds separately, but fail when
composed as H2 grabs p(a) forcing the comprehension range Xs to be instantiated to the empty
multiset, thereby failing the guard.

Membership constraints are not the only guards that lead to overlap in the presence of
comprehensions. Consider the following cardinality constraint:

B) H1 = *p(x)+x→Xs | |Xs| > 0 and H2 = p(Z)

Here, the state p(a) witnesses the overlap as the combined head patterns fails since the range
Xs will be instantiated to the empty multiset, which violates the constraint.
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Explicit guards are not even needed to cause overlap. Consider these head patterns:

C) H1 = *p(x)+x→Xs , *q(y)+y→Xs , and H2 = p(Z)

and the state p(a), q(a). On it, they succeed independently, but fail when composed.
In each of these examples, comprehension ranges appear more than once in one of the head

patterns. This is not a sufficient condition, however, for the presence of overlap. The following
three examples use the same operations on comprehension ranges seen earlier (membership test,
cardinality constraints, and variable sharing) and yet the patterns appearing on each row are
independent.

D) H1 = *p(x) | x < 3+x→Xs , q(Y ) | Y ∈ Xs and H2 = p(Z) | Z > 5
E) H1 = *p(x)+x→Xs | |Xs| ≤ 8 and H2 = p(Z)
F) H1 = *p(x)+x→Xs , *q(y) | y ∈ Xs+y→Ys , and H2 = p(Z)

Situation (D) differs from (A) in that the two bounds are such that no fact p(n) can match both
patterns. Example (E) imposes an upper bound on the comprehension range that matches H1,
while (B) forced a lower bound (that H2 encroaches upon). Finally, the second occurrence of
Xs in (F) filters out values for Ys rather than requiring that some terms be present.

Negation-as-absence is a common variant of (B) whose patterns are independent:

G) H1 = *p(x)+x→Xs | |Xs| = 0 and H2 = p(Z)

Here, H1 asks for the state not to contain predicates of the form p(n) (alternatively, this
constraint could be written as the guard Xs = ∅). Here H1 and H2 are independent as there
is no state in which both can succeed.

These examples illustrate the rich space of behaviors that constrained comprehension pat-
terns opens to. A general algorithmic approach to determining when such patterns overlap (or
are independent) has not been found yet, however. This will be the focus of future research.

3 Conclusions

In this paper, we have explored overlap and independence, two forms of head pattern interaction
in rule-based languages. We specifically focused on the head constructions of Comingle [5], a
language for programming mobile distributed applications with roots in advanced forms of
multiset rewriting. While the form of head patterns found in traditional languages lend itself
to a simple procedural characterization of these properties, a similar recipe for the full range
of constructs found in Comingle has so far proved elusive. Specifically, the interaction of
constraints (or guards) and multiset comprehensions was shown to be diverse and varied. In
future work, we intend to study this interaction at a deeper level, and to devise effective
algorithms for overlap an independence in full Comingle.
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Abstract

We study admissibility of multi-conclusion rules algebraically. For single-conclusion
consequence relations the method is well established: admissibility corresponds to validity
on free algebras in quasivarieties. An algebraic counterpart of a multi-conclusion conse-
quence relation is a universal class (and of a single-conclusion one a quasivariety). The
main obstruction here is that universal classes need not have free algebras. We show how
to overcome this di�culty.

We apply our result and show that Blok-Esakia isomorphism between intermediate
multi-conclusion consequence relations and modal Grzegorczyk multi-conclusion conse-
quence relations preserves structural completeness and universal completeness.

1 Introduction

Admissibility and Structural completeness are well established notions for single-conclusion consequence
relations (scr) and quasivarieties. However its extension to multi-conclusion consequence relations
(mcr) is recent. In the paper [9] Rosalie Iemho� studied admissibility for multi-conclusion rules from
the perspective of proof theory. She proved the following fact (see the next sections for de�nitions).

Theorem 1 ([9, Proposition 6]). A rule Γ/∆ is admissible for a multi-conclusion consequence relation
` if and only if for every substitution and for every �nite set of formulas Σ

`
∧
σ(Γ),Σ yields ` σ(∆),Σ.

A study of admissibility for multi-conclusion rules with the aid of algebraic methods was undertaken
by George Metcalfe in [12]. However the investigation presented there are limited to quasivarieties.
More speci�cally, mcrs appearing in this way are least extensions of scrs. The main obstacle here is the
possibility of lack of free algebras for universal classes. Indeed, free algebras exist for every quasivariety,
and the admissibility may be described as validity on free algebras. We show how to overcome this
di�culty in Theorem 5. This is our main contribution in this note.

We apply our results in the context of intermediate and modal mcrs. In Theorem 11 we show that
the Blok-Esakia isomorphisms preserves structural completeness and universal completeness.

2 Multi-conclusion consequence relations

Let us �x a language L (i.e., a set of variables and a set of symbols of operations with ascribed arities).
Let Form be the algebra of all formulas (terms) in L. A (multi-conclusion) rule (in L) is an ordered
pair, written as Γ/∆, of �nite subsets of Form. In case when |∆| = 1 we talk about single-conclusion
rules. A set of inference rules, written as a relation `, is a multi-conclusion consequence relation, mcr
in short, if for every �nite subsets Γ,Γ′,∆,∆′ of Form, for every ϕ ∈ Form and for every substitution
σ : From→ From the following conditions are satis�ed

• ϕ ` ϕ;

∗The work was supported by the Polish National Science Centre grant no. DEC- 2011/01/D/ST1/06136.
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• if Γ ` ∆, then Γ,Γ′ ` ∆,∆′;

• if Γ ` ∆, ϕ and Γ, ϕ ` ∆, then Γ ` ∆;

• if Γ ` ∆, then σ(Γ) ` σ(∆).

(We adopt the common convention and omit the curly brackets for sets, write commas for unions and
omit the empty set.)

A rule r is admissible for a mcr ` if for every �nite set ∆ of formulas the condition `r ∆ yields that
` ∆. Here `r is a least mcr extending ` and containing r. A mcr is universally complete if the sets of
its admissible and derivable rules (those which are in `) coincide. And a mcr is structurally complete
if the sets of its admissible single-conclusion and derivable single-conclusion rules coincide.

Note that for a logic or, more generally, for saturated mcr ` a rule Γ/∆ is not admissible i� there
is a substitution σ such that ` σ(∆) and 6` σ(δ) for every δ ∈ ∆, i.e., when the disuni�cation problem
for Γ/∆ has no solution [1].

Admissibility is much more elusive than derivability. However, adding admissible rules to mcrs may
strengthen their �proof power� and essentially shorten derivations of theorems [5].

3 Universal classes

We say that a class U of algebras in a �xed signature is universal i� it is axiomatizable by �rst order
sentences of the form

(∀x̄)[s1 ≈ s′1 ∧ · · · ∧ sm ≈ s′m → t1 ≈ t′1 ∨ · · · ∨ tn ≈ t′n],

where n and m are natural numbers not both equal to zero and si, s
′
i, tj , t

′
j are arbitrary terms. We

call such formulas strict universal sentences. When m = 0 we talk about multi-identities, when n = 1
about quasi-identities, when m = 0 and n = 1 about identities. Recall also that a class of algebras is
a universal positive class if it is axiomatizable by multi-identities, a quasivariety if it is axiomatizable
by quasi-identities, and a variety if it is axiomatizable by identities.

A strict universal sentence u is admissible for an universal class U if the sets of multi-identities
satis�ed in U and in the class {A ∈ U | A |= u} coincide.

A universal class U is structurally complete if the set of admissible for U quasi-identities and the
set of quasi-identities valid in U coincide. And U is universally complete if the set of admissible for U
strict universal sentences and the set of strict universal sentences valid in U coincide.

It is generally accepted that universal classes are algebraic counterparts of mcrs. But, according
to the best of our knowledge, in the literature there is no notion of algebraizable mcrs extending the
notion of algebraizable scrs [4]. Nevertheless, in our application we restrict to the situation where the
correspondence is established.

4 Characterization of admissibility

Let U be a universal class and A be an algebra in the signature of U . A congruence α of A is called
U-congruence if A/α ∈ U . Let ConU (A) be the set of all U-congruences of A. Clearly, ConU (A) is
ordered by the set inclusion. Let ConminU (A) be the set of minimal congruences in ConU (A). Here is
the key technical lemma.

Lemma 2. For every γ ∈ ConU (A) there exists µ ∈ ConminU (A) such that µ ⊆ γ.

Proof. We use the Zorn Lemma. Indeed, the intersection of a chain of U-congruences of A is
a U-congruence. In order to see this let us consider such a chain C and let α =

⋂
C. Let

u = (∀x̄)
∧
i∈I si(x̄) ≈ s′i(x̄) → ∨

j∈J tj(x̄) ≈ t′j(x̄) be a strict universal sentence valid in U . We
prove that A/α |= u.

2
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Suppose that A/α |= ∧
i∈I si(ā/α) ≈ s′i(ā/α) for some tuple ā of elements from A. Then for every

β ∈ C we also have A/β |= ∧
i∈I si(ā/β) ≈ s′i(ā/β). Since for every β ∈ C we have A/β |= u, the sets

Ind(β) = {j ∈ J | A/β |= tj(ā/β) ≈ tj(ā/β)}
are not empty. Moreover

β ⊆ β′ implies Ind(β) ⊆ Ind(β′).

This and the �niteness of all sets Ind(β) imply that
⋂
β∈C Ind(β) 6= ∅. Take j0 ∈

⋂
β∈C Ind(β). Then

A/β |= tj0(ā/β) ≈ t′j0(ā/β) for every β ∈ C. Hence A/α |= tj0(ā/α) ≈ t′j0(ā/α). This shows that
A/α |= u.

Let T be an algebra of terms in the signature of U over a �xed denumerable set {x0, x1, x2, . . .} of
variables. De�ne

FU = {T/µ | µ ∈ ConminU (T)}.
We identify the generators x0/µ, x1/µ, . . . of G = T/µ ∈ FU with x0, x2 . . . respectively. The family
FU is a substitute of a free algebra in a quasivariety. In particular, we have the following fact.

Lemma 3. Let e = (∀x̄)
∨
j∈J tj(x̄) ≈ t′j(x̄) be a multi-identity. Then the following conditions are

equivalent:

1. U |= e,

2. FU |= e,

3. for every G ∈ FU there exists j ∈ J such that G |= tj(x̄) ≈ t′j(x̄).

Proof. The implications (1)⇒(2) and (2)⇒(3) should be clear. Let us prove that (3) yields (1). Let us
consider an algebra A from U and a tuple ā of its elements. We show that A |= ∨

j∈J tj(ā) ≈ t′j(ā).
Let h : T→ A be any homomorphism such that h(xi) = ai. Then ker(h) is a U-congruence. Thus,

by Lemma 2, there exists G ∈ FU and a homomorphism g : G → A such that g(xi) = ai. By the
assumed condition, there exists j ∈ J such thatG |= tj(x̄) ≈ t′j(x̄). HenceA |= tj(g(x̄)) ≈ t′j(g(x̄)).

This shows that if U andW are universal classes such that FU = FW , then U+(U) = U+(W), where
U+(K) denotes a least universal positive class containing K. The converse implication is also true.

Lemma 4. Let U and W be universal classes. Then FU = FW if and only if U+(U) = U+(W).

Proof. It is enough to show that FU = FU+(U). Since U ⊆ U+(U), by Lemma 2, for every congruence

γ ∈ ConminU (T) there exists δ ∈ ConminU+(U)(T) such that δ ⊆ γ. Next we use the known fact that

algebras in U+(U) are homomorphic images of algebras from U , see [7, Exercise 3.2.2]. Thus for every
δ ∈ ConminU+(U)(T) there exists γ ∈ ConU (T) such that γ ⊆ δ. By Lemma 2, we may assume that

γ ∈ ConminU (T). Since ConminU (T) and ConminU+(U)(T) are antichains in the lattice of all congruences of

T, we obtain that ConminU (T) = ConminU+(U)(T).

Theorem 5. A strict universal sentence u is admissible for U if and only if FU |= u.

Proof. Let W be the class of algebras from U satisfying u, i.e, W = {A ∈ U | A |= u}. Then u is
admissible for U i� U+(U) = U+(W). Now if FU |= u, then Lemma 3 gives that

U+(U) = U+(FU ) ⊆ U+(W) ⊆ U+(U)

and u is admissible. For the opposite implication, assume that u is admissible. Then, by Lemma 4,
FU = FW . Therefore, since FW ⊆ W and W |= u, we have that FU |= u.

For a class K of algebras let Q(K) be a least quasivariety containing K and U(K) be a least universal
class containing K.
Corollary 6. Let U be a universal class. Then

• U is structurally complete if and only if Q(U) = Q(FU ),

• U is universally complete if and only if U = U(FU ).

3
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5 Application

5.1 Intermediate and modal mcrs

We are interested in intermediate and modal mcrs. Let K denotes modal logic K and INT denotes
the intuitionistic logic, both interpreted as a set of formulas. Then an intermediate mcr is an mcr `
in the language of INT such that ` ϕ for every ϕ ∈ INT and ϕ,ϕ → ψ ` ψ for every formulas ϕ,ψ.
And a modal mcr is an mcr ` in the language of K such that ` ϕ for every ϕ ∈ K and ϕ,ϕ→, ψ ` ψ
and ϕ ` 2ϕ for every formulas ϕ,ψ. A (general, intermediate or modal) mcr is axiomatized by a set R
of rules if it is a least (general, intermediate or modal receptively) mcr containing R.

Intermediate and modal mcrs have algebraic semantics. Let us recall that a Heyting algebra is a
bounded lattice endowed with the binary operation → such that a∧ b 6 c i� a 6 b→ c for every triple
a, b, c of its elements. It appears that the class of all Heyting algebras forms a variety which constitutes
a semantics for INT . A modal algebra is a Boolean algebra endowed with additional unary operation
2 such that for all its elements a, b we have 2(a ∧ b) = 2a ∧ 2b and 21 = 1. The variety of modal
algebras gives a semantics for K.

Let r be a rule ϕ1, . . . , ϕm/ψ1, . . . , ψn. By the translation of r we mean a strict universal sentence
T(r) given by

(∀x̄)[ϕ1 ≈ 1 ∧ · · · ∧ ϕm ≈ 1 → ψ1 ≈ 1 ∨ · · · ∨ ψn ≈ 1].

The following completeness theorem follows from [10, Theorem 2.2], see also [2, Theorem 2.5 in
Appendix] for the modal case.

Theorem 7. Let ` be an intermediate or modal mcr axiomatized by a set of inference rules R. Let U
be the universal class axiomatized by T(R) of Heyting or modal algebras respectively. Then for every
inference rule r we have r ∈` if and only if U |= T(r).

The above theorem allows us to switch from mcrs to universal classes. If ` and U are as Theorem
7 , we say that U and ` correspond to each other. In particular, we have the following fact.

Corollary 8. Let U be a universal class of Heyting or modal algebras and ` be an intermediate or
modal mcr respectively. Assume that U and ` correspond to each other. Then

• U is structurally complete if and only if ` is structurally complete,

• U is universally complete if and only if ` is universally complete.

5.2 Blok-Esakia isomorphism

A modal algebra M is called an interior algebra if for every a ∈M it satis�es a > 2a = 22a. And an
interior algebra M is a Grzegorczyk algebra if it also satis�es 2(2(a→ 2a)→ a) 6 a for every a ∈M
[8]. Recall that the variety of modal (interior or Grzegorczyk) algebras characterizes the modal logic
K (S4 or GRZ respectivelly). The connection of Heyting algebra with interior algebra is given by the
following McKinsey-Tarski theorem [11, Section 1]. Recall that open elements of an interior algebra M
form the Heyting algebra O(M) with the order structure inherited from M.

Theorem 9. For every Heyting algebra H there is an interior algebra B(H) such that

1. OB(H) = H;

2. for every interior algebra M, if H 6 O(M), then B(H) is isomorphic to the subalgebra of M
generated by H;

The algebra B(H) is called the free Boolean extension of H.
Let H be the variety of all Heyting algebras, and G be the variety of all Grzegorczyk algebras. Let

LU (H) and LU (G) be the lattices of all universal classes of Heyting algebras and Grzegorczyk algebras
respectively. Let us de�ne two operators on these lattices. For U ∈ LU (H) and Y ∈ LU (G) we put

ρ : LU (G)→ LU (H); Y 7→ {O(M) |M ∈ Y}
σ : LU (H)→ LU (G); U 7→ U({B(H) | H ∈ U}).

4
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Since O commutes with U, ρ(Y) belongs to LU (H) for Y ∈ LU (G). The fact that σ(U) ∈ LU (G) for
U ∈ LU (H) is much less trivial. It holds since every free Boolean extension of a Heyting algebra is a
Grzegorczyk algebra [3, Corollary III.7.9], see also [14] for the new proof.

The following extension of the Blok-Esakia theorem ([3, Theorem 7.10], [8, Theorem 7.11], [6,
Theorem 9.66], [15, Section 3])) was �rstly observed by Emil Je°ábek in [10, Theorem 5.5]. However
one can also deduce it from [3]. A detailed exposition of the algebraic proof may be found in [14].

Theorem 10. The mappings σ and ρ are mutually inverse isomorphisms between the lattices LU (H)
and LU (G).

The fact that σ and ρ preserves structural completeness for varieties was proved by Vladimir
Rybakov in [13, Theorem 5.4.7] and for quasivarieties by the author in [14]. Here our contribution is
the following extension.

Theorem 11. Let U be a universal class of Heyting algebras. Then

• U is structurally complete if and only if σ(U) is structurally complete,

• U is universally complete if and only if σ(U) is universally complete.
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