
Research Archive

Citation for published version:
Angelo Basteris, Sharon M. Mijenhuis, Jaap H. Buurke, Gerdienke
B. Prange, and Farshid Amirabdolllahian, ‘Lag–lead based 
assessment and adaptation of exercise speed for stroke survivors’, 
Robotics and Autonomous Systems, Vol. 73: 144-154, November 
2015.

DOI:
https://doi.org/10.1016/j.robot.2014.08.013

Document Version:
This is the Accepted Manuscript version. 
The version in the University of Hertfordshire Research Archive 
may differ from the final published version.  

Copyright and Reuse: 
© 2014 Elsevier B. V. 
This manuscript version is made available under the terms of the 
Creative Commons Attribution-NonCommercial-NoDerivatives
License CC BY NC-ND 4.0  
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which 
permits non-commercial re-use, distribution, and reproduction in 
any medium, provided the original work is properly cited, and is 
not altered, transformed, or built upon in any way.

Enquiries
If you believe this document infringes copyright, please contact Research & 
Scholarly Communications at rsc@herts.ac.uk

https://doi.org/10.1016/j.robot.2014.08.013
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rsc@herts.ac.uk


Lag-lead based assessment and adaptation of exercise speed for stroke survivors  
Angelo Basteris*1, Sharon M. Nijenhuis2,  Jaap H. Buurke2,3 , Gerdienke B. Prange2,4 , 
Farshid Amirabdollahian1 

Abstract 

The SCRIPT project aims at delivering robot-mediated hand and wrist exercise for people 
with stroke in their homes. In this context, adapting the exercise to the individual needs 
potentially enhances recovery.  

We designed a system composed of an orthosis, a personal computer and an arm support. The 
system enables users to exercise their hand and wrist movements by playing videogames. 
Movements and their required speed are tailored on the individual’s capabilities. During the 
exercise the system assesses whether the subject is in advance (leading) or in delay (lagging) 
with respect to a reference trajectory. This information provides input to an adaptive 
mechanism aimed at making the exercise not too easy nor too challenging by adapting the 
required movement speed accordingly. 

In this paper, we show results of the adaptation process in a study involving seven persons 
with chronic stroke who completed a six weeks training in their homes. We defined session 
types as challenging, challenging-then supporting, supporting, under-supporting and under-
challenging, based on the patterns observed in difficulty and lag-lead score. We show that the 
mechanism of adaptation has been effective in 195 of 248 (78.6 %) sessions.  

Based on our results, we propose the lag-lead based assessment and adaptation as an auto-
tuning tool for rehabilitation robotics. 
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1 Introduction 

Due to an aging society, the number of people suffering a stroke will increase, leading to increased 
demands for healthcare, while the availability of healthcare professionals is decreasing [1]. Overall, 
this will have a strong impact on healthcare services and related costs. Therefore, new ways of 
providing healthcare services, such as remotely supervised intensive treatment and self-administered 
exercises, e.g., in the patient’s home, address a major issue for future healthcare organisation [2].  

1.1 Robotic rehabilitation for stroke 

Functional recovery from stroke demands a long period of physical rehabilitation. Research into 
motor relearning and cortical reorganization after stroke has provided a neurophysiological basis for 
restoration of arm function: high training intensity, active initiation and execution of movements, 
feedback and application of functional exercises are key aspects [3, 4]. Technological innovations 
provided an opportunity to design interventions that combine many of such aspects, of which 
rehabilitation robotics is a well-known example. With such a robotic device, the required amount of 
movement support can be provided, thereby allowing active practice when this is not possible 
otherwise. This facilitates intensive training with a high dosage, while the patient is actively 
contributing to the movement. Robotic systems have an additional advantage in that they potentially 
allow unsupervised training. This enables the patient to train frequently without a therapist present, 
even in his/her own home environment. 

The application of rehabilitation robotics has been shown to be effective for the hemiparetic arm, 
although transfer of robotic training effects to activities of daily living is less pronounced [5]. 
Contemporary robot-aided therapy focused mainly on the proximal arm, resulting in improvements in 
the proximal arm, but with limited generalization to the wrist and hand [6-8]. Without additional 
involvement of the hand in exercises, the functional nature of the training is not optimally employed. 
Moreover, the wrist and hand play a major role in a person’s functional independence. In order to 
maximize independent use of the upper extremity in daily life, it is important to involve functional 
practice of the wrist and hand in an intensive way in treatment [9]. Therefore, involving the wrist and 
hand in robotic training is important, but this is currently not applied to a large extent.  

1.2 The SCRIPT project 

To accommodate treatment incorporating the abovementioned key aspects for motor relearning, the 
SCRIPT (Supervised Care and Rehabilitation Involving Personal Telerobotics) project aims to apply 
robot-aided therapy at home as it would enable self-administration of more intense and more frequent 
exercise, focusing on hand and wrist exercise. These aspects are combined in the SCRIPT1 system, 
consisting of a passive-actuated orthosis (which provides an off-set force towards extension of fingers 
and wrist using elastic cords and leaf springs [10]), interactive games that require hand 
opening/closing and/or wrist movements to control the games, and a personal computer, installed at a 
patient’s home for independent training with off-line remote supervision by a healthcare professional 
[11]. 

1.3 The need for adaptive exercises 

Besides optimization of the dosage of treatment, active contribution of a person to such treatment 
should be emphasized as well. Self-initiated and self-generated activity stimulates brain plasticity 
underlying functional reorganisation of the cortex after a stroke [12]. The importance of self-
generated activity over being guided passively was emphasized in a study by Lotze and colleagues in 
healthy subjects, where training of voluntary induced wrist movements resulted in larger increases in 
performance and cortical reorganisation compared to passively induced movements. Along the same 
lines, repeatedly completing reaching movements of stroke patients by a robotic device when they 
couldn’t reach the target (with the patient being passive) was inferior to making active reaching 
movements without robotic assistance [13].  



To optimally encourage active contribution of the patients themselves, more specific control and 
adaptation of training environments to persons´ abilities and needs is required. It is increasingly 
recognized that patients respond differently to a certain treatment for the upper extremity, e.g. in the 
field of robot-aided therapy [14]. The current challenge is to understand how to customize arm 
training programmes to each patient’s needs and abilities. This is especially important as the time 
course of recovery and treatment responses vary considerably across patients [14]. 

With a robotic device, haptic guidance can be used to stimulate motor relearning. Different types of 
haptic guidance have been implemented in robotic devices, ranging from passive guidance (no active 
contribution of the patient needed) to soft or hard guidance, guiding a patient along a pre-defined 
trajectory where deviations are resisted to a larger or smaller extent [14, 15]. A comparison of four 
specific types of haptic guidance (passive guidance, hard guidance, soft guidance and error-
augmentation) with no guidance (active movements without interference from the robot) during 
reaching movements in healthy persons indicated that motor adaptation (as a basis for motor learning) 
was largest and fastest in the two guidance conditions that didn’t restrict movement errors and 
required the largest effort: active movement and error-augmentation [16].  

Stimulating improvement of arm/hand function via optimal engagement and active contribution 
requires that the exercises are challenging; meaningful not being too difficult nor too easy, at all 
times. According to the Challenge Point framework, this is expected to improve motor learning and 
neuromotor recovery [17]. This implies that, ideally, the training environment adapts to the 
performance of the patient. This must also take into account that the stroke population is highly 
heterogeneous in terms of limitations caused by the stroke and the time course of functional 
improvement. There is also an element of relearning involved in rehabilitation which allows us to use 
taxonomies from learning theory, shown in Figure 1. In this domain, balancing between supporting 
and challenging the student allows achieving optimal learning [18].  

When applying support from technology to the upper extremity in order to improve arm/hand 
function, according to abovementioned considerations it is important to promote active movement, 
allow errors and variability, and continuously adapt the amount of support to the varying performance 
of movements. In robotic gait training, these issues have been incorporated into an ‘assist-as-needed’ 
guidance algorithm that optimizes movement error and robotic support, including a forgetting factor 
to reduce the robotic support when error is small, while at the same time allowing the variability of 
movements that are natural to human movement [19]. 

 

 

Figure 1 Sanford hypothesised that for growth and personal development to occur, a student needs to have a 
challenge/support balance. Too much support, and the student will never really learn …too much challenge, and the 
student will become frustrated and possibly quit trying. 



1.4 Adaptive exercises 

Besides providing assist-as-needed support by a device, tailoring exercise to the individual’s 
performance can be done by considering a wide variety of inputs and outputs. The simplest step in 
this sense is to evaluate subject’s active range of motion (ROM) prior to each session and scale the 
training environment accordingly. Typically such scaling is maintained constant during the session, 
also for safety reasons.  

Another possibility, is to evaluate subject’s motor improvement for a session, based on a statistical 
model, and increase the exercise difficulty if the subject has overcome a predefined target [20]. Again, 
this mechanism operates at a session level, and in this case it also requires the final decision of a 
healthcare professional prior to changes to the exercise difficulty. 

When considering an online adaptation instead, a possibility is to adapt the robot dynamics based on 
subjects’ performance [21]. An alternative output for the online adaptation process is the exercise 
difficulty. A computation mechanism based on Fitts’ Law has been validated on reaching movements 
in a single study session [22]. In this case, the system switched among three levels of difficulty. The 
task difficulty – and the related cognitive workload – can also be adjusted by combining performance 
data with psychophysiological measurements [23].  

Regarding wrist movements, an adaptive procedure based on the number of successful (i.e. those with 
limited contribution by the robot) movements was used to introduce an offset in terms of joint angle 
by shifting from pathologic towards natural posture [24]. 

1.5 Lag-lead based mechanism of adaptation  

The SCRIPT1 system assesses the active ROM and movement duration during the calibration phase 
prior to each session, and then adapts the task difficulty by altering the exercise speed online within 
the training session [25]. The system can assess whether the subject is anticipating (leading) or in 
delay (lagging) with respect to a desired trajectory for each articulation, i.e. hand flexion or wrist 
extension. Using the lagging or leading status, a score is calculated that provides input to an adaptive 
mechanism aimed at making the exercise not too easy nor too challenging. We previously tested this 
approach on healthy subjects by regulating the movement time, based on a lag-lead indicator, in a 
reaching task [26]. Our study provided support for the online adaptation with healthy subjects. In this 
study, we hypothesize that if such an approach is able to adapt a training environment to varying 
performance across subjects with stroke and within subjects with stroke over time, this would present 
a way to provide independent training for stroke subjects at a proper challenge level within each 
training session, motivating the subjects to practice more. In the present study, the feasibility and 
effect of the lag-lead approach for adaptation of the exercise environment to personal performance is 
examined during home-based training of the hand and wrist by subjects with chronic stroke. We 
considered that by observing the progression of task difficulty within a training session it is possible 
to determine whether the subject was challenged or supported by the system. Hence, we defined types 
of sessions based on patterns in the adaptation behaviour, and verified whether our approach 
effectively challenged and motivated subjects without making the exercise nor too easy nor too 
difficult.  

2. Methods  

2.1 Experimental setup  

The SCRIPT system, shown in Figure 2, consists of several components. A passive-actuated hand and 
wrist orthosis is used to assist the wrist and hand during training [10]. The orthosis is an exoskeleton 
on the forearm and hand, which interacts physically with the user by providing forces to the wrist and 
hand through elastic cords and leaf springs. The orthosis is equipped with resistive sensors to measure 
joint excursions of the wrist and fingers. A Windows based personal computer contains all custom- 



 

Figure 2 The SCRIPT1 system ‐ composed by passive orthosis, touchscreen display, personal computer and arm support. 

developed software components needed to complete a training session, including data acquisition and 
processing, patient user interface and games.  

Five finger sensors are used to measure hand opening. This happens considering hand opening as the 
standard deviation of positions of the five finger tips, estimated by applying the finger sensors 
readings as input to a kinematic model of the hand. The wrist angle is measured in a range of approx. 
45 degrees of extension to 90 degrees of flexion by a potentiometer. For each session, these signals 
are normalized with respect to the maximum and minimum measured value during a preliminary 
calibration phase. 

At the time of this study, the system included two video games (seashell and supercrocco) aiming at 
enhancing subject’s motivation by having their speed tailored to the individual’s performance. In the 
first game, the subject operates a seashell (cursor) by opening and closing the hand. The shell has to 
catch fishes (targets) which appear on the screen (i.e. the subject has to close the hand on time to 
close the shell and catch a fish). In the second game, supercrocco, the subject controls a crocodile 
(cursor) by flexing and extending the wrist to avoid obstacles (targets). The speed of both games is 
set according to the corresponding movement duration measured before each session during the 
calibration.  

An arm support (SaeboMAS, Saebo Inc, Charlotte NC, USA) provided gravity compensation of the 
proximal arm. A telesupervision platform enables the healthcare professional to remotely monitor the 
progress of the therapy by accessing a secure dedicated web user interface. 

2.2 Lag-lead based assessment of performance 

In order to achieve the adaptive behaviour of the game, it was needed to assess subject’s movement 
on the fly (i.e. as practice progressed). During the exercise, the target onset triggers the acquisition of 
the movement excursion signal, either hand opening or wrist angle. The acquisition finishes when the 
current target passes the cursor. Then, the movement profile is considered only within the interval 
corresponding to a minimum and maximum value, respectively m and M. The time interval between 
these two points is considered as movement duration, T, and NQ is the number of samples within this 
time frame. If the movement lasts less than 0.5 seconds (thus not reflecting any volitional control of 
the subject), then it is withdrawn and no score is computed. Otherwise, the system generates a 



reference trajectory xR, of the same size matching NQ. For finger movement (hand opening), we use a 
model validated for healthy subjects and stroke survivors [27]: 
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where c1 = (m+M)/2, c2 = (M-m)/2, c3 = T/2 and c4 = T/6, while for the wrist angle excursion we use a 
minimum jerk profile [28] : 
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The sampled signal x is then compared with the reference trajectory, and the lag-lead score LL is 
defined as the fraction of samples in which the signal was higher (for an increasing signal) or lower 
(for a decreasing one) than the reference trajectory: 
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ேೂ
 (3), 

thus varying in range [0,1]. Hence, the worst case, 0 means that the subject is constantly in delay with 
respect to the reference (lagging), whilst the best case 1 represents systematic advance (leading). Note 
that, given the greater or equal than sign in (3), the case where a subject is exactly in sync with the 
reference trajectory also results in a score 1. 

2.3 Adaptive behaviour of the system 

The lag-lead score is used to adapt the exercise, in order to make it easier for subjects who were often 
in delay with respect to the reference trajectory (failure), and harder for those able to anticipate it 
(success).  
This was achieved by multiplying the speed of the game by a factor λ which was the outcome of an 
adaptive process. Let th+  and th- be the thresholds for the lag-lead score which determine success and 
failure, respectively. If among the last N trials there is a number of successes (or failures) higher than 
N+ (or N-) , the current value of the multiplier factor λ is divided (or multiplied) by 0.9. 
 In our case, λ started at 1 and we used N=20, N+=N-=10, th+=0.8 and th-=0.4. This implied that a 
subject was considered failing when lagging for the 40% of the time within one movement repetition 
(LL<0.4), and successful when leading for at least the 80% of the time (LL>0.8).  If a subject was 
failing  for at least 10 of the last 20 movement repetitions (more than 10 of the 20 trials), the game 
speed was multiplied by 0.9, while it was divided by 0.9 if one was leading on 10 or more of the last 
20 trials.  

2.4 Classification of session type based on pattern of adaptation 

Based on the observed patterns in exercise difficulty and score, we defined five types of sessions, 
namely challenging, challenging - then supporting, supporting, under-challenging and under-
supporting (summarized in Table 1). The former three are those in which the adaptation mechanism 
was effective in holding the score within the target region. Ideally, this happened with a progressive 
increase in speed (challenging session). If such increase was followed by a decrease in speed prior to 
session’s end, the session was classified as challenging – then supporting. In a supporting session, the 
success was achieved by progressively decreasing the speed of the exercise. Finally, the adaptation 
mechanism could eventually fail and lead to sessions with scores respectively higher (under-
challenging) or lower (under-supporting) than the target region. 

 
 



Table 1 Definition and conditions specifying five adaptation types – categories shaded in green represent 
effective adaptation 

Adaptation type  Rationale  Conditions

Challenging  The score is held within the target range, but there is a progressive 
increase in the difficulty of the exercise during the session, possibly 
due  to  warming  and  motor  learning.  This  constantly  new 
challenging is supposed to engage the subjects 

ି݄ݐ ൏ തതതܮܮ ൏  ା݄ݐ
max(λ)>1 
λN=max(λ) 

Challenging‐  then 
supporting 

After such constant increase in speed (challenging phase), subject’s 

performance might  decrease  (e.g.  because  of  loss  of  attention, 

fatigue). In such a case, we would observe a decrease in difficulty 

(supporting phase) towards the end of the session. 

ି݄ݐ ൏ തതതܮܮ ൏  ା݄ݐ
max(λ)>1 
λN<max(λ) 

Supporting  The lag‐lead score results in the target range, but this is achieved 
by progressively reducing the difficulty. This means that the game 
somehow supports the subject. 

ି݄ݐ ൏ തതതܮܮ ൏  ା݄ݐ
max(λ)=1 
 

Under‐supporting  This is a failure of the adaptation mechanism, for which the score 
is lower than the target range. This possibly results in a frustrating 
experience for the subject, who  is not able to accomplish his/her 
task.  

തതതܮܮ ൏  ି݄ݐ

Under‐challenging  This is a failure of the adaptation mechanism, for which the score 
is higher than the target range. This possibly limits the outcome of 
the  exercise,  since  the  subject  performs  well  below  his/her 
capabilities.  

തതതܮܮ ൐  ା݄ݐ

 

Consider each training session as including NR  movement repetitions. This results in having two 
arrays of size NM, which contain respectively the difficulty scaling factor λ and the lag-lead score LL 
for each movement repetition. The abovementioned classification relies on imposing the conditions 
specified in Table 1 over these two vectors. 

 
2.5 Experimental protocol 
Data from a sub-set of seven chronic stroke patients participating in an ongoing clinical evaluation 
[29] was used for the present study. The study protocol was approved by local medical ethics 
committees (Enschede, the Netherlands and Rome, Italy) and all participants provided informed 
consent. For participation in the study, subjects had to meet the following inclusion criteria: 1) 
between 6 months and 5 years after stroke; 2) age between 18 and 80 years; 3) clinically diagnosed 
with partial central paresis of the arm and hand because of a stroke, but with 15° active elbow flexion 
and a quarter range of active finger flexion; 4) living at home and having internet access; 5) having a 
carer who is co-resident or closely involved in their care; 6) able to understand and follow 
instructions; 7) no additional orthopaedic, neurological, or rheumatologic disease of the upper 
extremity; and 8) no severe neglect or uncorrected visual impairments.  
Subjects received six weeks of arm and hand training at home using the SCRIPT system. Trained 
healthcare professionals (HCP) installed the system in the first training week in the subjects’ homes, 
and instructed them how to operate it towards performing daily exercises mediated via interactive 
games. All subjects trained independently, and were remotely supervised, off-line, by a HCP. Subjects 
were recommended to train 180 minutes per week (equalling a schedule of 6 days per week, 30 
minutes per day), but they were free to choose their own preferred training time, and were allowed to 
practice whenever desired. 
During the first training week, the HCP contacted each subject three times, in order to ensure 
competence with the SCRIPT system. During the other training weeks, the HCP visited each subject 
once per week to check on the subject’s performance.  

 



2.6 Data analysis 

In order to evaluate the performance of the lag-lead based assessment and adaptation, we considered 
for each session the array of lag-lead scores and the corresponding array of game difficulty (scaling 
factors λ). These values were computed on-the-fly during subjects’ exercise. For each session, we 
considered as indicators of the amount of usage, the time spent playing and the number of movements 
repetitions.  

Primary indicator of the performance of the adaptation mechanism was the percentage of sessions  in 
which this was effective (types challenging, challenging – then supporting and supporting). We 
considered its overall efficacy, differences among movements and subjects. 

We also hypothesized that the success of the adaptation effectively motivated subjects to train more. 
Hence, we tested whether the duration of a session (measured either by number of repetitions or session 
duration) was higher in sessions where the adaptation was effective.   

3. Results 

3.1 Amount of exercise 

Data from seven subjects were included in the study. Their demographic characteristics and results 
about training duration are shown in Table 2. Overall, subjects performed a total of 248 training sessions 
(35±11 sessions per subject). This led to a gross total of 63 hours of practice (9±4 hours per subject). 
Table 2 shows the overall exercise duration, the number of game instances for which the adaptation 
process has been analysed and the partitioning among hand and wrist movements for each subject. 

 

Table 2 Characteristics of the subjects in this study and amount of exercise, sessions and partitioning among wrist and hand movements 

Subject Sex 
Age 

(years) 

Time 
post 

stroke 
(months) 

FM 
score at 

inclusion 

ARAT 
score at 

inclusion 

Total 
Exercise 

duration[h] 

Sessions 
[#] 

Average 
session 

duration 
[m] 

Hand 
movements 

[#] 

Wrist 
movements 

[#] 

 

nl01 M 34 11 56 47 4.14 40 6.2 2525 574  
nl02 M 52 10.5 17 5 13.03 30 26.1 1871 1130  
nl03 M 43 26 11 4 9.91 58 10.3 1975 5621  
nl04 M 58 10.5 44 31 9.36 25 22.5 1003 783  
nl05 F 61 10 9 3 2.87 39 4.4 350 4177  
it02 M 62 8 16 3 10.65 30 21.3 7645 99  
it04 F 66 11 46 54 12.88 26 29.7 1028 1137  

Abbreviations: FM score = Fugl-Meyer test score; ARAT score = Action Research Arm Test score 

3.2 Game difficulty and evolution of score in different types of sessions 

Figure 3 shows examples of the five types of sessions for several subjects, including both hand and 
wrist movements. Each of these figures shows time progression of score and game speed.  
Figure 3a shows a challenging session in which patnl02 performed 165 movements of wrist flexion, 
and the game speed progressively increased to about twice (2.05) the initial value. This happened in 
about 25 minutes.  

Figure 3b shows a challenging – then supporting session performed by subject patit02. In this case, 
the difficulty did not exclusively increase (since after about 2, 10 and 17 minutes this was decreased 
by the adaptation rules). However, there was an overall increase up to 2.6 times the initial speed, after 
22 minutes. After that, the speed was then decreased until 2.05 times the initial value. Then the 
subject decided to stop, after 25 minutes of exercise.  



 

 

 

 

 

 

 

 
 

Figure 3c shows a supporting session performed by patnl02. In this case, during the 5 minutes of 
practice the difficulty was reduced to 0.81 times the initial value and the observed average lag-lead 
score was 0.46, thus within the target region.  
Figure 3d shows an under-challenging session performed by patnl04. In this case, the difficulty 
progressively increased to 1.37 times the initial value. This value was still too low, provided that the 
average score for the 5 minutes of the session (0.89) remained above the target value.  
Finally, Figure 3e shows an under-supporting session performed by patnl01. In this case, despite the 
fact that the difficulty decreased to 0.65 times the initial value within the 15 minutes of duration, the 
average score (0.2) was below the target value.  

 

b) 

d) 

Figure 3 Time progression of  score and difficulty  (game
speed) for sessions of different categories: (a) challenging 
,(b)  challenging  –  then  supporting  ,(c)  supporting  ,(d)
under‐challenging  ,(e)  under‐supporting  .  Solid  line  for
score  represents  filtered  signal  (moving  average, N=5), 
dashed  line  represents  raw  values.  The  green  area
represents  the  interval defined  as  successful by  setting
the regulator parameters th+=0.8 and th‐=0.4. 



3.3 Performance of the adaptation algorithm 

The adaptation process ran for 123 sessions for wrist exercise and in 125 hand exercise sessions. Out 
of these 248 sessions, there have been 195 cases of effective adaptation. The frequency of each of the 
session types is shown in Figure 4. 

 

Figure 4 Partitioning among the different session types with respect to the challenge and support theory. The numbers  
represent the frequency of each type. 

Table 3 Number of observations of different session types for hand and wrist exercises. 

 

Effective Ineffective 

 Challenging - 
then 

supporting 
Challenging Supporting Under-challenging Under-supporting 

 
Wrist 1 94 10 18 0 123 

Hand 11 67 12 1 34 125 
Total 12 161 22 19 34 248 

Table 3 shows how the number of observations differs between wrist and hand exercise. 
Regarding the wrist the adaptation has been effective in 105 episodes (85%). This includes 
challenging (94), supporting (10) and challenging – then supporting (1) sessions. Failures resulted 
exclusively in a under-challenging (18 sessions). Also, no episodes of under-supporting adaptation 
(i.e., subjects scoring consistently below the target score) have occurred.  

The number of sessions including exercise of hand movements was similar (125). In this case, the 
adaptation was effective in 90 sessions. These include challenging (67), supporting (12) and 
challenging- then supporting (11) sessions. Overall, the success rate resulted lower than for wrist 
movements (72%). In this case, failures consisted mainly in under-supportive sessions (34), while we 
observed only one under-challenging session. 

Figure 5 shows the number of sessions for each of the five categories, for each subject. It is 
noteworthy that under-challenging sessions happened for three out of seven subjects (patnl01, patnl04 
and patit04).  

Error! Reference source not found.5b shows the session types for hand movement. In this case, the 
under-supporting sessions involved five subjects, including the same subjects who produced under-
challenging sessions for the wrist (patnl01, patnl04 and patit04).  

 



 

Figure 5 Number of training sessions for each of the five types, for each subject, for wrist (a) and hand exercises(b) 

 

3.4 Effect of adaptation on training duration 

We had hypothesized that the successful adaptation resulted in higher subject motivation and 
consequently in longer – more intense sessions. An ANOVA test confirmed significantly larger 
number of movement repetitions performed by subjects when the adaptation was effective (p=0.001). 
Subjects performed a larger number of repetitions in session with effective adaptation also when 
considering separately wrist (p=0.025) and the hand (p=0.01), as shown in Figure 6. Although Pearson 
correlations test show that number of movements and session duration are significantly correlated 
(R=.377, p<0.001), efficacy of the adaptation does not have a significant effect on training duration 
(p=0.066). 

 

Figure 6 Efficacy of adaptation in making subjects perform higher number of movement repetitions per session 
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Figure 7 Role of challenge in increasing the number of movement repetitions per session. Note the higher number of 
repetitions for challenging and challenging – then supporting categories in comparison to all others. 

Also, as reflected by ANOVA results, when considering each session type separately there are 
significant differences in number of movement repetitions between categories (p<0.001). Again, this 
effect is observed also when considering wrist (p=0.04) and hand only (p<0.001), as shown in Figure 
7. Contrast analysis reveals that challenging – then supporting and challenging sessions led to higher 
number of movements repetitions with respect to other types of session (p<0.05 in all cases). 
Moreover, no significant difference in session duration was found among categories. 

 

4. Discussion 

4.1 Amount of exercise 

In this study, we considered data from subjects who participated in an ongoing evaluation. The 
participants (seven subjects with chronic stroke) covered a wide range of impairment (Fugl-Meyer 
[30] score ranging from 9 to 56, Action Research Arm Test [31] ranging from 3 to 54). They were 
allowed to choose when and for how long to exercise. Overall, they did not practice as much as 
advised (6 sessions of 30 minutes each per week). However, the amount of exercise was solely their 
choice. Session durations varied on average from 4.4 to 29.7 minutes across subjects.  

It is also noteworthy that, even in this small sample, there were strong differences in training – arising 
again from individual choices. By observing the number of hand and wrist movements, one can notice 
that some subjects trained primarily on either hand (nl01, it02) or wrist movements (nl03, nl05) while 
the remainders (nl02, nl04, it04) tended to practice both hand and wrist movements. 

4.2 Game difficulty and change of score in different types of sessions 

Based on existing literature in learning theory and the challenge point framework, we proposed a 
framework for the classification of the session types based on the pattern of the task difficulty 
obtained by an adaptive mechanism. This categorization can be applied to any context in which there 



is an automatic adaptation of the task difficulty. We showed that regardless of duration, number and 
type of movements, each session can be classified as one of these types. Although there is a strong 
variation among movement repetitions in the lag-lead score, its average value across one session can 
be used as an indicator for the performance of the subject. In particular, by considering its value and 
the pattern visible in game difficulty changes, one can assess whether the assigned task has been of 
the adequate difficulty for a subject.  

4.3 Performance of the adaptation algorithm 

We proposed a mechanism of adaptation based on a spatio-temporal kinematic parameter, a lag-lead 
index, in order to adapt the task speed in a robot-assisted exercise. In this domain, one typical 
approach is that of using speed, time or the EMG signal to modulate the impedance of a robot [21]. 
This differs from our case, in which given the passive nature of our device changing system 
impedance during interaction was not possible.. Instead, our proposed approach used the visual 
channel and speed of stimuli presentation to provide a varying level of challenge during the 
interaction based on performance.  

Overall, our algorithm was effective in 79% of the sessions. Considering only the wrist movement, its 
effectiveness was higher (85%). In this case, ineffective cases consisted only in under-challenging 
sessions. Such case has only the minor disadvantage of a too easy exercise, thus possibly boring the 
subject. It is also remarkable that such condition occurred only for those patients mildly impaired 
(nl01 ,nl04, it04). Instead, those patients who practiced mostly the wrist movements (nl03, nl05) 
experienced mostly challenging sessions, and eventually supporting exercises. 

Regarding hand movements, the adaptive system was less effective (72%) when compared to the 
wrist, yet still presenting a substantial number of cases where our algorithm was effective. In 
particular, opposite to the case of the wrist, failures consisted nearly exclusively of under-supporting 
sessions. This occurred for five subjects out of seven. These included those mildly impaired for whom 
the wrist exercise was too easy. Another aspect which suggests the higher difficulty of the hand 
exercise is the larger number of challenging – then supporting sessions for the hand, compared to 
wrist movements.  

4.4 Relation between categories and number of repetitions 

The adaptation mechanism enhanced subjects’ engagement, as proven by the increased number of 
repetitions in case of effective adaptation. Although the average number of repetitions resulted higher 
for challenging – then supporting sessions, there is a large number of outliers for the challenging type. 
In many cases, subjects performed within a challenging session more repetitions than in a challenging 
– then supporting one – i.e. they performed better for a longer time. This confirms the effect of 
challenge on subjects’ motivation, i.e. by challenging the subject it is possible to extend the training 
intensity without affecting his/her performance. The role of challenge in motivation is also confirmed 
by the lower number of repetitions in under-challenging sessions compared to the under-supporting 
ones (read over-challenging in this case). 

5. Conclusions and future work 

In this feasibility study, we used a lag-lead score to evaluate the performance of stroke survivors 
during robot-assisted wrist and hand movements. This was calculated as the fraction of movement in 
which one is moving in advance of a reference trajectory. An adaptive controller based on the history 
of such score, assigning faster tasks if one was performing above the desired level and slower if below 
this level, successfully maintained the average score within a target range. We proposed a framework 
for the classification of session types based on patterns in the process of adaptation. These types were 
challenging, fatiguing, supporting, under-supporting and under-challenging. Overall, the adaptation 
was successful in maintaining the score within the target range in 79% of cases.  



We observed different behaviours amongst hand and wrist movements, representing a relative 
easiness in wrist movement compared to hand movements. These observations can be used towards 
further tuning of the lag-lead reference trajectory models as well as defining interactive games where 
difficulty in individual movement components, i.e. wrist flexion and extensions or hand opening and 
closing, can be separately tuned. In this study, wrist actions occurred mostly during the supercrocco 
game where subjects’ wrist flexion and extension resulted in diving under or jumping over 
approaching obstacles. We used the minimum jerk trajectory model for wrist flexion and extension. 
Based on our observations, it appears that our chosen model provided a challenging interaction, while 
having only one occurrence of challenging-then-supporting. This was different for the hand, as more 
occurrence of challenging-then-supporting was observed. In our future studies, we intend to identify 
whether this observation was due to the use of different reference trajectory model used, or if it 
occurred due to the way games reacted to these gestures differently, or whether this was linked to the 
state of wrist and hand in individual’s recovering from stroke.    

One of the limitations of this study is the small sample size. In current study, it is not possible to draw 
inference from patient’s level of impairment in conjunction with the observed categories in their 
sessions. The same adaptation mechanism is hence currently being tested on a larger number of 
subjects thus to see if patient’s impairment is likely contributor to the type of challenge mostly 
overcome. Also, a further limitation arises from small number of games available. In a planned future 
study, we increased the number of available games, thus to provide chances to provide a more 
appealing context for practice, hoping to retain patients in an exercise session for a longer duration. 
Presence of cases where under-challenging or under-supporting categories are observed can be 
indicative of apparent ease or over-whelming task difficulty as possible by one game. Having a larger 
subset of games would allow us to compare and contrast between presence of these categories and 
patient’s choice of preferred games.  

In summary, the findings from the present study indicate that the lag-lead model is promising to use 
as an adaptation regulator to adapt exercise difficulty within a game to the current performance of a 
subject.  
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