
The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 147–155

MANY
Open Source Machine Translation System Combination

Loïc Barrault
LIUM, University of Le Mans

Abstract
This paper describes a push-the-button MT system combination toolkit. The combination is

based on the creation of a lattice made on several confusion networks (CN) connected together.
This lattice is then decoded with a token-pass decoder to provide the best and/or n-best out-
puts. Each CN is built using a modified version of the TERp tool. The toolkit is made of several
scripts along a core program developed in Java. It is totally configurable and the parameters
can be tuned quite easily.

1. Introduction

Machine translation (MT) system combination has taken a great importance these
past few years. This is mainly due to the fact that single systems achieved good per-
formance and the possibility of taking the most of their complementarity in a system
combination framework is very attractive. Many techniques can be used for system
combination. One concerns hypothesis selection using nbest list reranking based on
various features as described in (Hildebrand and Vogel, 2009). Another approach is
to consider source text and systems outputs as bitext and train a new SMT system on
these data (Chen et al., 2009).

In this paper, a system combination based on confusion network (CN) is described.
This approach is not new, and numerous publications are available on that subject, see
for example, (Rosti et al., 2007); (Shen et al., 2008); (Karakos et al., 2008) and (Leusch
et al., 2009). Such an approach is presented in Figure 1. The protocol can be decom-
posed into three steps :

© 2010 PBML. All rights reserved. Corresponding author: loic.barrault@gmail.com
Cite as: Loïc Barrault. MANY: Open Source Machine Translation System Combination. The Prague Bulletin of
Mathematical Linguistics No. 93, 2010, pp. 147–155. ISBN 978-80-904175-4-0.
doi: 10.2478/v10108-010-0001-y.



PBML 93 JANUARY 2010

System 0

System 1

TERp 
alignment LM

output

1-best 
output

1-best 
output

TERp 
alignment DECODEMerge

System M
1-best 
output

TERp 
alignment

{best hypo
nbest listLattice

CN

CN

CN

Figure 1. MT system combination. Each 1-best outputs are aligned to create as many
Confusion Networks which are connected together to form a lattice. This lattice is then
decoded with a token-pass decoder using a Language Model to produce 1-best and/or

n-best hypotheses.

1. 1-best hypotheses from all M systems are aligned in order to build confusion
networks.

2. All confusion networks are connected into a single lattice.
3. A language model is used to decode the resulting lattice and the best hypothesis

is generated.
Section 2.1 describes the alignment process and in particular the new features

added to TERp in order to be enable alignment of an hypothesis against a CN. The
decoder is presented in section 3. Some example results obtained at the IWSLT’09
evaluation campaign are given in section 5. Finally, a description of the toolkit is
given in section 6.

2. Hypotheses alignment and confusion network generation

The goal of this step is to put the words provided by different systems in compe-
tition with each other inside a confusion network (Mangu et al., 1999).

For each segment, the best hypotheses of M − 1 systems are aligned against the
last one used as backbone. A modified version of the TERp tool (Snover et al., 2009a)
(Snover et al., 2009b) is used to generate a confusion network (see section 2.1 for de-
tails). This is done by incrementally adding the hypotheses to the CN. The hypotheses
are added to the backbone beginning with the nearest (in terms of TER) and ending
with the more distant one. This differs from the result of (Rosti et al., 2007) where
the nearest hypothesis is computed at each step, which is supposed to be better. M

confusion networks are generated in this way. Then all the confusion networks are
connected into a single lattice by adding a first and last node. The probability of the

148



L. Barrault Open Source MT System Combination (147–155)

first arcs (later named priors) must reflect how well such system provides a well struc-
tured hypothesis.

2.1. Modified TERp

The modified TERp is based on TERp v0.1 and is written in Java. Some classes have
been modified and new ones were created to add some functionalities such as align-
ment between a sentence and a confusion network. This has been done by modifying
the data structure and extending some heuristic to find better alignment.

When using relaxed constraints with TERp, the shift heuristics allow a block of
words to be moved if it matches (or is a paraphrase of) another block of words some-
where else. Shifts are also allowed when a stem or synonym is found somewhere
else.

When considering confusion networks, the same heuristics are applied except that
the block of words must match (be a paraphrase, synonyms or stem of) one of the
sequence of words represented in the CN. An example of such a case is presented
in figure 2. In figure 2, we can notice that the paraphrase the dinner / supper allow

Is
the dinner

included ?

Do you dinnercalculated ?have

Is the dinner included ?

isSupper ?included

Paraphrase

{

Match

Is the dinner included

?

NULLsupper

Match

Match

Match

Sub

SubIns
Sub

Do you NULL
supper

calculated
have

NULL

Match

Figure 2. Incremental alignment with TERp resulting in a confusion network.

a switch of block of word. However, the word supper is aligned with the word the
because no rule is used in order to make inside-paraphrase word alignment, yet ! (see
section 6.4 for future features).

149



PBML 93 JANUARY 2010

In addition to the confusion network generation, the possibility of using scores
on words has been added, which can be very useful during the decoding. For the
moment, these scores must be computed separately from MANY. The underlying idea
is to provide an option to include confidence measure at word level, though it can be
computed at any level (see for example, (Ueffing and Ney, 2005)). In this version of
the software, the scores are equal to the priors of the systems. However, these values
can be modified in the configuration file.

3. Decoding

The decoder is based on the token pass decoding algorithm (see for example (Young
et al., 1989)). The principle of this decoder is to propagate tokens over the lattice and
accumulate various scores into a global score for each hypotheses.

The scores used to evaluate the hypotheses are the following :
• the system score : this replace the score of the translation model. Until now, the

words given by all systems have the same probability which are equal to their
priors, but any confidence measure can be used at this step.

• the language model (LM) probability.
• a fudge factor to balance the probabilities provided in the lattice with regard to

those given by the language model.
• a null-arc penalty : this penalty avoids to always go through null-arcs encoun-

tered in the lattice.
• a length penalty : this score helps to generate correctly sized hypotheses.
The probabilities computed in the decoder can be expressed as follow :

log(PW) =

Len(W)∑
n=0

[log(Pws(n)) + αPlm(n)] (1)

+Lenpen(W) + Nullpen(W)

where Len(W) is the length of the hypothesis, Pws(n) is the score of the nth word
in the lattice, Plm(n) is its LM probability, α is the fudge factor, Lenpen(W) is the
length penalty of the word sequence and Nullpen(W) is the penalty associated with
the number of null-arcs crossed to obtain the hypothesis.

At the beginning, only one token is created at the first node of the lattice. Then this
token spread over the consecutive nodes, accumulating the score on the arc it crosses,
the language model probability of the word sequence generated so far and null or
length penalty if applicable. The number of tokens can increase really quickly to cover
the whole lattice, and, in order to keep it tractable, only the Nmax best tokens are kept
(the others are discarded), where Nmax can be configured in the configuration file.
Other methods to restrict the number of tokens (like pruning based on score or other
heuristics) can easily be implemented in this software, but this is not done already.

150



L. Barrault Open Source MT System Combination (147–155)

3.1. Technical details about the token pass decoder

This software is based on the Sphinx4 library and is highly configurable (Walker
et al., 2004). The maximum number of tokens being considered during decoding, the
fudge factor, the null-arc penalty and the length penalty can all be set within the xml
configuration file. This is useful for tuning (see the config file generator description
in section 6.2).

The probabilities which are manipulated within the decoder are all obtained from
the LogMath class which ensures the consistency of the values.

3.2. Language model

There are two ways of loading a LM with this software.
The first solution is to use the LargeTrigramModel class, but as its name tells us,

only a 3-gram model can be loaded with this class.
The second and easiest way is to use a language model hosted on a lm-server. This

kind of LM can be accessed via the LanguageModelOnServer class which is based on
the generic LanguageModel class from the Sphinx4 library. This allows us to load a
n-gram LM with n higher than 3, which is not possible with a standard LM class in
Sphinx4 yet (it is currently being done).

In addition, the Dictionary interface has been extended in order to be able to load
a simple dictionary containing all the words known by the LM (no need to know the
different pronunciations of each words in this case).

As the language model interface is also written in java and is using the Sphinx4
library, one could easily write a new class to load a LM in a proprietary file format.

4. Tuning

There is a lot of parameters which can be tuned in MANY. The edit costs of the
modified TERp, the prior costs of each systems in the lattice, the fudge, null-arc penalty
and length penalty for the decoder. This can easily been done by generating configu-
ration files (with the help of genSphinxConfig.pl, see section 6.3). Parameters for mod-
ified TERp, for the decoder and systems weights are currently tuned together. The
separate tuning of TERp and decoder parameters is an ongoing work, and I could not
say whether it is preferable or not yet.

Any method can then be used to provide new values for these parameters. As an
example, we are using Condor (Berghen and Bersini, 2005) to optimize those param-
eters.

5. Some example results

MANY software has been used for the IWSLT’09 evaluation campaign. Table 1
presents the results obtained with this approach. The SMT system is based on MOSES,

151



PBML 93 JANUARY 2010

the SPE system corresponds to a rule-based system from SYSTRAN whose outputs
have been corrected by a SMT system and the Hierarchical is based on Joshua.

Systems Arabic/English Chinese/English
Dev7 Test09 Dev7 Test09

SMT CSLM 54.75 50.35 41.71 36.04
SPE CSLM 48.13 - 41.23 38.53
Hierarchical 54.00 49.06 39.78 31.89
SMT CSLM + SPE CSLM 42.55 40.14
+ tuning 43.06 39.46
SMT CSLM + Hier. 55.89 50.86
+ tuning 57.01 51.74

Table 1. Results of system combination on Dev7 (development) corpus and Test09,
the official test corpus of IWSLT’09 evaluation campaign.

In these task, the system combination approach yielded +1.39 BLEU on Ar/En and
+1.7 BLEU on Zh/En. One observation is that tuning parameters did not provided
better results for Zh/En.

6. Software description

The software is available at the following address :

http://www-lium.univ-lemans.fr/~barrault/MANY

6.1. Data

The software takes several files as input (which are supposed to be synchronized1)
containing the 1-best hypothesis of all systems, one sentence per line. These hypothe-
ses can contain foreign words if no translation have been found for them, and they
will be considered as unknown words during the decoding step.

6.2. Configuration file

The configuration file is an xml file similar to those used with Sphinx4.
<component name="decoder" type="edu.loic.decoder.TokenPassDecoder">
<property name="dictionary" value="dictionary"/>
<property name="logMath" value="logMath"/>
<property name="logLevel" value="INFO"/>

1i.e. each nth line is the translation of the same source sentence

152



L. Barrault Open Source MT System Combination (147–155)

<property name="lmonserver" value="lmonserver"/>
<property name="fudge" value="0.2"/> <!-- This value is multiplied by 10 in the software -->
<property name="null_penalty" value="0.3"/>
<property name="length_penalty" value="0.5"/> <!-- This value is multiplied by 10 in the software -->
</component>

This part allows us to configure the decoder parameters such and more particularly
the fudge factor, the null-arc penalty and the length penalty.
<component name="lmonserver" type="edu.cmu.sphinx.linguist.language.ngram.LanguageModelOnServer">
<property name="lmserverport" value="1234"/>
<property name="lmserverhost" value="machine1"/>
<property name="maxDepth" value="4"/>
<property name="logMath" value="logMath"/>
</component>

This part configures the LM class which will connect to the lm-server hosted on ma-
chine1 on port ”1234”. The maxDepth field correspond to the depth of the LM loaded
on the server.
<component name="MANY" type="edu.lium.mt.MANY">
<property name="decoder" value="decoder"/>
<property name="terp" value="terp"/>
<property name="output" value="output.many"/>
<property name="priors" value="4.0e-01 4.0e-01 2.0e-01"/>
<property name="hypotheses" value="hyp0.id hyp1.id hyp2.id" />
<property name="hyps_scores" value="hyp0_sc.id hyp1_sc.id hyp2_sc.id" />
<property name="costs" value="1.0 1.0 1.0 1.0 1.0 0.0 1.0" />
<!-- del stem syn ins sub match shift-->
<property name="terpParams" value="terp.params"/>
<property name="wordnet" value="/opt/mt/WordNet-3.0/dict/"/>
<property name="shift_word_stop_list" value="/opt/mt/terp/terp.v1/data/shift_word_stop_list.txt"/>
<property name="paraphrases" value="/opt/mt/terp/terp.v1/data/phrases.db"/>
</component>

This part is the core part. It configures the various files to combine, the costs for
TERp, the location of WordNet and the paraphrases table (also for TERp). The priors
can be set here and are used in the lattice.

6.3. Scripts

The main script is called Many.sh. Some parameters have to be set inside this script
in order to run a system combination experiments. The reader should refer to the
readme file provided with the software.

Each input sentence (as well as the corresponding word scores) must have an id
which is of the following form : [set][doc.##][sent] The shell script add_id.sh is in
charge of adding such an id to the input data (called in the Many.sh script).

The perl script genSphinxConfig.pl is used to generate a new config file with specific
values. This is very useful for generating a new config file with parameters estimated
by a certain optimization procedure.

6.4. Future features

Several features are planned to be added into MANY. One is the possibility of ex-
ploring all shifts which do not decrease the alignment score instead of using heuris-

153



PBML 93 JANUARY 2010

tics. This has been done by (Rosti et al., 2009) and provided good results (even though
the increasing time of processing was not indicated).

Another feature would be the intra-paraphrase word alignment. Like is presented
in figure 2, when a paraphrase is found, it appears that the word alignment inside
that paraphrase is not always the best. In that example, (supper is aligned with the
instead of dinner, which would be better. This could be easily added using a specific
alignment model.

As mentioned before, the load of a n-gram (whatever is n) language model has to
be added. In some cases, that can be faster than using a LM server.

An alternative to the token pass decoder would be the use of Minimum Bayesian
Risk decoder applied on the final lattice (MBR-Lattice) like described in (Tromble
et al., 2008)

7. Discussion

One might notice that the performance of a system combination is highly depen-
dent of the input hypotheses (in terms of number of hypotheses, complementarity of
the systems which provide them, and of course quality), the parameters of the align-
ment module and the language model used to decode the lattice. The tuning of all
parameters plays consequently a big role in the quality of this kind of approach. As
an example, in (Rosti et al., 2009), after the creation of the lattice, three iterations of
tuning have been done in order to obtain good results. This kind of tuning procedure
is not currently implemented in that software, but it is a very important step which
should not be underestimated.

8. Conclusion

This paper presents a machine translation system combination software, MANY,
based on the decoding of a lattice made of several confusion networks connected to-
gether. The software is written in java and is composed of a modified version of TERp
software and a decoder based on Sphinx4 library. This software, which is easily exten-
sible and highly configurable, obtained good results when used during the IWSLT’09
evaluation campaign.

Bibliography

Berghen, Frank Vanden and Hugues Bersini. CONDOR, a new parallel, constrained extension
of powell’s UOBYQA algorithm: Experimental results and comparison with the DFO algo-
rithm. Journal of Computational and Applied Mathematics, 181:157–175, September 2005.

Chen, Yu, Michael Jellinghaus, Andreas Eisele, Yi Chang, Sabine Hunsicker, Silke Theison,
Christian Federmann, and Hans Uszkoreit. Combining multi-engine translations with
moses. In Workshop on Statistical Machine Translation, pages 42–46, Athens, Greece, March
2009.

154



L. Barrault Open Source MT System Combination (147–155)

Hildebrand, Almut Silja and Stephan Vogel. CMU system combination for WMT’09. In Pro-
ceedings of the Fourth Workshop on Statistical Machine Translation, pages 47–50, Athens, Greece,
March 2009.

Karakos, Damianos, Jason Eisner, Sanjeev Khudanpur, and Markus Dreyer. Machine transla-
tion system combination using ITG-based alignments. In 46th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Language Technologies., pages 81–84, Columbus,
Ohio, USA, June 16-17 2008.

Leusch, G., E. Matusov, and H. Ney. The RWTH system combination system for WMT 2009.
In Proceedings of the Fourth Workshop on Statistical Machine Translation, pages 61–65, Athens,
Greece, March 30-31 2009.

Mangu, L., E. Brill, and A. Stolcke. Finding consensus among words : Lattice-based word error
minimization. In European Conference on Speech Communication and Technology, Interspeech,
volume I, pages 495–498, 1999.

Rosti, A.-V.I., S. Matsoukas, and R. Schwartz. Improved word-level system combination for
machine translation. In Association for Computational Linguistics, pages 312–319, 2007.

Rosti, A.-V.I., B. Zhang, S. Matsoukas, , and R. Schwartz. Incremental hypothesis align-
ment with flexible matching for building confusion networks: BBN system description for
WMT09 system combination task. In EACL/WMT, pages 61–65, 2009.

Shen, Wade, Brian Delaney, Tim Anderson, and Ray Slyh. The MIT-LL/AFRL IWSLT-2008 MT
System. In International Workshop on Spoken Language Translation, Hawaii, U.S.A, 69–76 2008.

Snover, Matthew, Nitin Madnani, Bonnie Dorr, and Richard Schwartz. Fluency, adequacy, or
HTER? exploring different human judgments with a tunable MT metric. In Workshop on
Statistical Machine Translation, Athens, Greece, March 2009a.

Snover, Matthew, Nitin Madnani, Bonnie Dorr, and Richard Schwartz. TER-Plus: Paraphrase,
semantic, and alignment enhancements to translation edit rate. Machine Translation Journal,
2009b.

Tromble, Roy W., Shankar Kumar, Franz Och, and Wolfgang Macherey. Lattice Minimum
Bayes-Risk decoding for statistical machine translation. In Conference on Empirical Methods
in Natural Language Processing, pages 620–629, Honolulu, Oct. 2008.

Ueffing, Nicola and Hermann Ney. Word-level confidence estimation for machine translation
using phrase-based translation models. In International Conference on Human Language Tech-
nology and Empirical Methods in Natural Language Processing, pages 763–770, Morristown, NJ,
USA, 2005. Association for Computational Linguistics. doi: http://dx.doi.org/10.3115/
1220575.1220671.

Walker, Wille, Paul Lamere, Philip Kwok, Bhiksha Raj, Rita Singh, Evandro Gouvea, Peter Wolf,
and Joe Woelfel. Sphinx-4: A flexible open source framework for speech recognition. Tech-
nical Report TR-2004-139l, Sun Microsystems Laboratories, Novembre 2004.

Young, S. J., N. H. Russell, and J. H. S. Thornton. Token passing : a simple conceptual model
for connected speech recognition systems. Technical report, Cambridge University Engi-
neering Department, July 1989.

155


	Introduction
	Hypotheses alignment and confusion network generation
	Modified TERp

	Decoding
	Technical details about the token pass decoder
	Language model

	Tuning
	Some example results
	Software description
	Data
	Configuration file
	Scripts
	Future features

	Discussion
	Conclusion

