
Covering Problems with Hard Capacities

Julia Chuzhoy Joseph (Seffi) Naor

Computer Science Department
Technion, Haifa 32000, Israel

E-mail:
�
cjulia,naor � @cs.technion.ac.il.

Abstract

We consider the classical vertex cover and set cover
problems with the addition of hard capacity constraints.
This means that a set (vertex) can only cover a limited
number of its elements (adjacent edges) and the number of
available copies of each set (vertex) is bounded. This is a
natural generalization of the classical problems that also
captures resource limitations in practical scenarios.

We obtain the following results. For the unweighted
vertex cover problem with hard capacities we give a � -
approximation algorithm which is based on randomized
rounding with alterations. We prove that the weighted ver-
sion is at least as hard as the set cover problem. This is
an interesting separation between the approximability of
weighted and unweighted versions of a “natural” graph
problem. A logarithmic approximation factor for both the
set cover and the weighted vertex cover problem with hard
capacities follows from the work of Wolsey [23] on submod-
ular set cover. We provide in this paper a simple and intu-
itive proof for this bound.

1. Introduction

The set cover problem is defined as follows. Let ������
	��
����	����
be a ground set and let � be a collection of sets

defined over � . Each ����� has a non-negative cost �������
associated with it. A cover is a collection of sets such that
their union is � . The goal is to find a cover of minimum
cost. The set cover problem is a classic NP-hard problem
that was studied extensively in the literature, and the best
approximation factor achievable for it is ���! #"
$ � � [7, 9, 15,
17].

We consider in this paper the set cover problem with
capacity constraints, or the capacitated set cover problem.
Here, each set �%�&� has a capacity '(���)� and a multiplicity* �+��� associated with it, meaning that at most * ���)� copies
of set � can be used and each copy can cover at most ',�����

elements of � . A cover - is a multi-set of input sets that
can cover all the elements, while - contains at most * �+���
copies of each �.�/� , and each copy covers at most '(���)�
elements. We assume that the capacity constraints are hard,
i.e., the number of copies and the capacity of a set cannot
be exceeded. The capacitated set cover problem is a natu-
ral generalization of a basic and well-studied problem that
captures practical scenarios where resource limitations are
present.

A special case of the capacitated set cover problem that
we consider is the capacitated vertex cover problem, de-
fined as follows. An undirected graph 01�1�+2 	 ��� is given
and each vertex 34�52 is associated with a cost ���!36� , a
capacity ',�!36� , and a multiplicity * �!36� . The goal is to find
a minimum cost multi-set 7 of vertices that cover all the
edges, such that for each vertex 38�92 , at most * �!36� copies
appear in 7 , and each copy covers at most ',�!36� edges ad-
jacent to 3 . The capacitated vertex cover problem gener-
alizes the well known vertex cover problem, probably one
of the most studied problems (see [14] for an overview),
for which the best currently known approximation factor is:<;>= ?A@6= ?�@,B C)BD = ?A@,B C)B [3, 13].

The capacitated vertex cover problem was first intro-
duced by Guha, Hassin, Khuller and Or [12]. They con-
sidered the version of the problem with soft capacities,
a special case where the number of available copies of
each vertex is unbounded. A straightforward rounding
of a linear programming relaxation of the problem gives
a 4-approximate solution. Guha et al. [12] show a

:
-

approximation primal-dual algorithm and they also give a� -approximation for the case where each edge EF�G� has
an (unsplittable) demand H��IEJ� . (Gandhi et al. [10] provide
further results on the capacitated vertex cover problem with
soft capacities.) Guha et al. [12] motivate the study of the
capacitated vertex cover problem by an application in gly-
cobiology. The problem emerged in the redesign of known
drugs involving glycoproteins and can be represented as an
instance of the capacitated vertex cover problem.

A closely related problem is facility location with hard



capacities. In this problem, the input consists of a set of
facilities and a set of clients. For each facility and each
client, there is a distance that defines the cost of assigning
the client to the facility. Each facility � has a cost ��� , a
capacity '�� , and a number of available copies * � . Each
client � has a demand H�� . The goal is to open facilities and
to assign all the clients to them. The cost of the solution
is the total cost of the open facilities plus the assignment
costs of the clients. Each copy of facility � can serve total
demand of at most ' � , and at most * � such copies can be
opened. The capacitated set cover problem is a special case
of facility location with hard capacities, where all the dis-
tances are either � or � (note that this distance function is
not a metric). Bar-Ilan et al. [2] give an 	 �! #"
$ ��
  #"
$
�.� -
approximation for the facility location with hard capacities,
where � is the maximal input parameter.

Prior Work There is extensive research on the set cover
problem and the reader is referred to the surveys in [11, 6,
1, 19, 14]. Feige [9] proved that it is impossible to obtain
a better than � ��
�� � � � �6 �� � -approximation for set cover,
unless NP has slightly super-polynomial time algorithms.
A greedy heuristic gives an O(  #"
$ � )-approximation [7, 17]
for the set cover problem.

Wolsey [23] considered the submodular set cover prob-
lem. Let � be a real valued function defined over all sub-
sets of a finite set � . Function � is called non-decreasing
if ���+�����������<� for all ��������� , and submodular if
������� 
 ����� ��������� ��� � 
 ���+� !�� � for all � 	 �"�#� . The
input to the submodular set cover problem is a set cover in-
stance together with a non-decreasing submodular function
� defined over all collections of the input sets (i.e., here,
� �4� ). The goal is to find a minimum cost cover - such
that ���!-,�<�$��� � � . In the case of the capacitated set cover
problem, for any multiset % of input sets, define ����%�� to be
the maximum number of elements that % can cover (given
the capacity constraints). It is not hard to see that � is a non-
decreasing submodular function. Wolsey [23] showed using
dual fitting that the approximation factor of a greedy heuris-
tic for the submodular set cover problem is 	 �I "�$
�'&)(+* � ,
where �,&)(+* ��-/.103234'56��� � � � � .

Metric facility location is a well studied field. Many
heuristics, as well as approximation algorithms with
bounded performance guarantees, were developed [5, 18,
20, 22]. For the metric facility location problem with hard
capacities, Pál, Tardos and Wexler [21] recently gave a��7 
98 � -approximation using local search.

1.1. Our Contribution

The first result we present is a � -approximation for the
unweighted capacitated vertex cover problem. Our algo-
rithm uses randomized rounding with alterations. The first

rounding step in our algorithm applies randomized round-
ing where the probabilities are derived from a solution to
a linear programming relaxation of the problem. However,
the rounding may not yield a feasible cover and therefore
we need to add more vertices to the cover. This is done in
the alteration step. Our analysis uses a sophisticated charg-
ing scheme to bound the number of vertices that are added
to the cover in this step. We also prove that the more gen-
eral version where edges have unsplitable demands is not
approximable in the presence of hard capacities. Contrast
this with the 3-approximation algorithm of Guha et al. [12]
for this case (with soft capacities).

We consider the weighted capacitated vertex cover and
prove that it is set-cover hard. This means that the best ap-
proximation factor that can be achieved for this problem is: �! #"
$ � � . Our hardness proof holds even for the case of� � 	
� � weights and unit multiplicity. Interestingly, we are
not aware of any other “natural” graph problem where there
is a logarithmic separation between the approximability of
the weighted and unweighted versions. (However, there are
several examples of problems where the unweighted ver-
sion is polynomially solvable while the weighted version is
NP-hard.) We note that Gandhi et al. [10] obtained a

:
-

approximation algorithm for the weighted capacitated ver-
tex cover problem where the capacity of each vertex can be
exceeded by at most a factor of two.

We proceed to consider the capacitated set cover prob-
lem. As already noted, it follows from Wolsey’s work [23]
that a natural greedy heuristic achieves an approximation
factor of 	 �! #"
$ � � for this problem. We note that the in-
tegrality gap of the natural linear programming relaxation
of the problem is unbounded, similar to the case of facil-
ity location with hard capacities [21]. Indeed, Wolsey used
a different linear programming formulation (see Section 6
for a description of the linear program). We consider the
same greedy heuristic as Wolsey and provide a direct com-
binatorial proof of the approximation factor of this heuris-
tic. We believe that our proof is simple and intuitive. We
note that the main obstacle in applying the “standard” (set
cover) charging scheme in the presence of hard capacities
is that it is not clear how to “charge” the sets in the optimal
solution for the sets in the solution computed by the greedy
algorithm. Since there are hard capacities, the assignment
of elements to sets in the cover is dynamic, and, moreover,
elements may be covered and uncovered several times dur-
ing the iterations of the algorithm.

The rest of the paper is organized as follows. In Section
3, we show a � -approximation algorithm for unweighted
capacitated vertex cover. In section 4.1 we show that the
weighted capacitated vertex cover problem is at least as
hard as the set cover problem, even in the case where* �I3 � � �

for all 3 � 2 . In Section 5 we provide a de-
scription of the greedy algorithm for the set cover problem



with hard capacities, and give a simple proof that the al-
gorithm achieves an 	 �! #"
$ � � -approximation, implying an
	 �! #"
$�� 2�� � -approximation for the weighted capacitated ver-
tex cover problem. In Section 6 we discuss extensions of
the algorithm to more general covering problems, such as
submodular set cover and multi-set multi-cover.

2. Preliminaries

Consider an instance of the set cover problem with hard
capacities. Let � be a multiset of sets from � , where each� � � appears in � at most * ����� times. Then � �����8�
defines a partial cover of the elements by the sets from � :
for each �%��� , E�� � , such that if ��� 	 EJ� �	� , we say that E
is covered by � in � . The cover � is called feasible, if eachE � � is covered at most once. The value of � is defined
to be � �
� — the number of elements covered by � . Given a
feasible multi-set � , we denote by ����� � the maximal value
of a feasible partial cover � ����� � .

Lemma 1 Given a feasible multi-set � , a cover � of value
����� � can be computed in polynomial time. In particular,
we can establish whether � is a feasible solution to the set
cover problem.

Proof: For each �1� � , let *�
 ����� denote the number of
copies of � that appear in � . We build the following di-
rected network. Let 0 � ��� 	���	 ���#� be the directed inci-
dence graph of � and � , i.e., � contains a vertex for each
copy of each set in � : � � � 3 � �������,� � � 	
� � � �* 
 �+��� � , � �5� . For each 3 � ����� ��� , E&� � , there is an
edge �!3 �A�+��� 	 EJ� ����� of capacity

�
iff E � � . Add a source

vertex � and an edge ��� 	 3 �A������� of capacity ',����� for each� � � 	�� ��� � *�
 ����� . Add a sink vertex � an edge �IE 	 � �
of capacity

�
for each E � � .

Consider the maximum flow in this network. The value
of the flow is at least ����� � , since the optimal cover defines
a feasible flow in the network. Also, the maximum flow in
the network is integral, and thus it induces a feasible partial
cover of the same value.

Clearly, � is a feasible solution to the set cover problem
iff ����� � ��� ��� .

Since vertex cover with hard capacities is a special case
of set cover with hard capacities, (where each vertex 3&� 2
can be viewed as a set whose elements are the edges adja-
cent to 3 ), all above definitions as well as Lemma 1 can also
be applied to the vertex cover problem.

3. Vertex Cover with Hard Capacities

In this section, we consider the unweighted capacitated
vertex cover problem. We show a � -approximation for the

special case where for each 3 � 2 , * �I3 � � �
. The algo-

rithm can be extended to obtain a � -approximation for the
case where * �!36� is arbitrary. In section 4.1 we show that
the weighted version is set-cover hard. The approximation
algorithm for the capacitated set cover problem can be used
for the weighted capacitated vertex cover problem.

We start with the following linear programming relax-
ation of the problem. For 38�92 , let � �!36� be a variable indi-
cating whether 3 belongs to the cover. For E �5��� 	 36� ��� ,
let �(�IE 	 3 � be a variable indicating whether vertex 3 covers
edge E . For each 3 �12 , � �!36� denotes the set of edges
adjacent to 3 .

-! � "# 4 C � �I3 � (UVC)

s.t.

� ��E 	 �(� 
 �(�IE 	 36�)� �
for all E<� ��� 	 36� � �

�(�IE 	 36� ��� �!36� for all E � � , 38� E
"$ 4&%(' #*) �(�IE

	 36� � '(�!36�,+-� �!36� for all 3 � 2
� �!36� 	 �(�IE 	 36� � � for all 38� 2 , E � �

� �!36� � �
for all 38� 2

Lemma 2 Let ��� 	 �6� be a feasible solution to (UVC), where� is integral. Then, there exists a feasible solution ��� 	/. � to
(UVC) where

.
is also integral and

.
can be computed in

polynomial time (given � ).

Proof: Let 7 � � 3 �G2�� � �!36� � � �
. We use Lemma 1

to compute an (integral) cover
.

of the edges by vertices
in 7 . Note that � induces a fractional flow of value � ��� in
the network constructed in the proof of Lemma 1. Thus,0 �+7 � �1� ��� , and therefore, in

.
, all the edges are covered.

3.1. The Rounding Algorithm

Consider a fractional optimal solution ��� 	 �6� to (UVC).
We show how to round this solution, obtaining a feasible
solution ���2� 	 �3� � where �4� is integral. By Lemma 2, �5� in-
duces a capacitated vertex cover. The rounding algorithm
consists of three major steps.

Step 1: (Setting it up) We need the following definitions.

6 For each � � 7 , define 75� � �7� � ���(�6�98: � and 75�2<; 7 .

6 Define ��� to be the set of edges with one endpoint in7 and the other endpoint in 7 .

6 For each � �92 , �=�+���(��� ��� � � ���(� .



6 For each � � 7 , define �
��� � ��� $ 4&%���'�� ) �(�IE 	 �(� ,
and �6���(�)��� $
	 '���� #*) 4&%���'
� ) �(�IE 	 3 ����� �=����� ��� ; �
���(� .
Note that the value of �
���(� denotes the total contribu-
tion of � to the coverage of edges in � ����� � , and �6��� �
denotes the total contribution of vertices in 7 to the
coverage of these edges.

6 For each � �/7 , define
8 ���(� � 8� '�� ) ; � , and � ��� � �� � ;G: 8 ���(� ���6���(� . The meaning of these variables is

explained below.

The constraints of (UVC) guarantee that each edge E ���� 	 36� �F� has at least one endpoint in 7 : Since �(��E 	 � � 
� ��E 	 36�)� �
, � ��E 	 �(� � � ��� � , and �(�IE 	 36� � � �!36� , it follows

that � ���(�
� 8: or � �!36� � 8: must hold.
Consider a vertex � �17 . If edge ��� 	 3 ���5� � exists

( 3 � 7 ), then since �(�IE 	 3 � �1� �I3 ��� 8: , it follows that� ���(� � �(�IE 	 �(��� D: . It also follows that for each � ��7 ,�
���(� � : �6���(� , since �(��E 	 � � � : �(�IE 	 36� for each ��� 	 36� ���� .
Our cover is going to consist of the vertices of 7 together

with a subset ��� 7 , such that 7 !�� can fractionally cover
all the edges. (By Lemma 2, 7 !�� is also an integral feasible
vertex cover.)

First, we round up � ��� � to be equal to
�

for each vertex�G�>7 . As a result, � can increase its contribution to the
coverage of the edges belonging to � � ���(� by a factor of��� � ���(� , i.e., it can cover each edge E � ��� 	 3 � � � �+���(�
by the fraction

. �IE 	 � � ��� ' $ � � )� '�� ) . (Note that
. �IE 	 �(� � �

,
since �(��E 	 � � �9� ��� � , and also � $ 4&%('�� ) . ��E 	 � � � '(���(�
by the following constraint of (UVC): � $ 4&%('�� ) � ��E 	 �(� �'(���(� + � ��� � .) Since � ��� �/� D: , � � 8 ���(� � 8D . Thus, the
edges belonging to �=�+���(� get a contribution from � of at
least

"$ 4&% � '�� ) �(�IE
	 �(�

� ��� � � "$ 4&% � '�� ) � ��E 	 �(� � � 
98 ���(� ����
��� �
� � 
98 ��� ���
���
��� � 
 : �6���(� 8 ��� � �

To complete the fractional cover, we need an additional
coverage of value � � ;G: 8 ���(� �
�6��� �&��� ���(� from vertices
belonging to 7 , since �
���(� 
 �6���(� suffices to cover � �+���(� .
Our goal in the next two steps is to find �/� 7 such that for
each � � 7 , the vertices from � can contribute to � ����� � at
least � ���(� .
Step 2: (Randomized rounding) Each vertex 3%� 7 is
independently chosen to be in � with probability equal to� � �I3 � . For each vertex 3 ��� , for each E � �=�+�!36� , define a
new cover of edge E by vertex 3 :

. ��E 	 3 � � � ' $ � #*)� ' #*) .

Step 3: (Altering the rounding) In this step we start with
a feasible fractional solution ���5� 	 � � � and iteratively alter
it until �2� becomes integral, while maintaining feasibility
of ���2� 	 �3� � . We denote by  the vertices in 7 that are in
“deficit”, i.e.,

 .�
!" # �9�97
� "$
	 ' # � � ) 4%$&�'� # 4%( . ��E 	 3 �)��� ��� �%* +, �

Our initial feasible solution ���5� 	 � �#� for (UVC) is defined
as follows: If 38��7 !-� , then �4� �!36�)� �

, otherwise �4�+�I3 � �� �I3 � . For E�� ��� 	 3 � , � � �IE 	 36� and � � �IE 	 � � are defined as
follows.
6 If � 	 3G�57 , then � ����E 	 � � � �(��E 	 � � and � �+�IE 	 3 � ��(�IE 	 36� .
6 If � � 7 ;. : if 3/�/� , then � � �IE 	 36� � . �IE 	 36� , else� ����E 	 36����� . Set � �+�IE 	 � � � � ; � �+�IE 	 36� . Note that

since �10�2 , it has enough capacity to complete the
cover of �=�+��� � .

6 If � �3 : if 3 �3� , then � �+�IE 	 36�%� . �IE 	 3 � and� ����E 	 �(� � � ; . �IE 	 3 � . (Note that � �+�IE 	 �(�����(�IE 	 � � ,
since

. �IE 	 36� � �(��E 	 3 � ). Else ( 340�4� ), set � �+�IE 	 �(� ��(�IE 	 �(� and � � �IE 	 3 ���<�(�IE 	 36� .
It is easy to see that ���4� 	 � �#� is a feasible solution for (UVC).
We now show how to get rid of  by adding new vertices to� . We charge the cost of the new vertices added to � to the
vertices of  .

PROCEDURE ELIMINATE.
While  50�26 :

1. Let � �7 , E<� ��� 	 3 � � ��� , such that 38� 7=;&� (there
must be at least one such 3 ). Let  �� � � � �� � �50�� 	 E � � �!� 	 3 � � � � � .

2. Add 3 to � (set �4� �!36�)� �
).

Update the cover: For each � �8 �� where E � ��!3 	 � �&�G��� , set � �+�IE � 	 36��� . �IE � 	 36���9� ' $ � � #*)� ' #*) .
Set � � ��E � 	 � �)� � ; � � ��E � 	 3 � . Note that the value
of � ����E � 	 � � can only decrease. Set � ����E 	 3 � to be
the minimum between

�
and the remaining ca-

pacity of 3 (which must be at least �(�IE 	 36� ). Set�3�+�IE 	 � � � � ; � �+�IE 	 36� .
Update the set : : For each � �  for which

"$
	 '�;<� = )?> =,4%( � � ��E 	A@ � �B� �I� � , remove � from  .

Update the cover of �=�+�!� � as follows. For eachE<�5�DC 	 � � �9��� such that CE0�7� , set � ����E 	 C �)�"�
and � �+�IE 	 � � � �

. Note that � has enough capac-
ity to cover all such edges.



It is easy to see that feasibility is maintained after each itera-
tion. The number of iterations of PROCEDURE ELIMINATE

is bounded by � 7!� , since � �5� is increased by one in each iter-
ation. At the end, when  becomes empty, for each 3 with� � �!36��� �

, we set � � �I3 � � � . The final solution is 7 !�� .
The next theorem follows from the discussion.

Theorem 3 The algorithm computes a feasible solution���2� 	 �3� � to (UVC), where �4� is integral.

To obtain an integral capacitated vertex cover, we apply
Lemma 2 to the solution ���5� 	 � �#� .
3.2. Analysis

The analysis of the rounding is divided into two parts.

Charging scheme for Step (3) We show that we can
charge the cost of adding vertices to � in PROCEDURE

ELIMINATE to the vertices in  , such that each �9�  pays
at most � ���(� 
 �

. Consider an iteration of PROCEDURE

ELIMINATE. We charge the vertices of  �� ! � � � for adding3 to � . Each � �  �� , where E � ���I� 	 36� �>��� , is going
to pay

. �IE � 	 36� (which is exactly the contribution of 3 to the
cover of E � ). Vertex � is going to pay the remaining cost
(if any remains), which is also at most the contribution of3 to the cover of the edge ��� 	 36� . We now bound the total
amount charged to

@ �  . While
@

is still in  , in each it-
eration it pays exactly an amount equal to the coverage that
edges in �=��� @ � get from the newly added vertex 3 . Once
the coverage of �=�+� @ � coming from vertices in � exceeds� � @ � , @ is removed from  . Therefore, in total

@
pays at

most � � @ � 
�� .
Bounding the cost We now bound the total cost of the
solution produced.

Claim 4 Let �5�57 such that �6��� � � :� ' 8 ��� '
� )�)�� . Then,
the probability that � �  after Step (2) is at most:� ' 8 ��� '�� )�)���� '�� ) .
Proof: Consider E � ��� 	 36� � �=����� � . We define the

random variable � $ �
	 . �IE 	 36� 3 � �
� otherwise

. Variables

� $ are independent since there are no parallel edges in the
graph. Note that:

6 � �7 iff "$ 4&%���'�� ) � $ � � ��� � .
6 The expectation of � $ 4&% � '�� ) � �IEJ� is:


 � Exp �� "$ 4&% � '�� ) � $�
�
� "$
	 ' # � � ) 4&% � '�� ) � . �IE 	 3 � + � �!36�
� �%� ��� �

6 The variance of � $ 4&% � '�� ) � �IEJ� is:

� D � Var �� "$ 4&%���'�� ) � $�
�
� "$
	 '���� #*) 4&%���'�� ) . D �IE 	 36�,+
�&� �!36�,+ � � ; � � �I3 ���
� 


It follows from Chebyshev’s Inequality, when applied to the
random variable � $ 4&%)��'�� ) � $ , that

Prob �� "$ 4&% � '�� ) � $ ��� ���(� 
�
� Prob ���������

"$ 4&%)��'�� ) � $ ; 
 ������
� 
 ; �6���(� � � ;/: 8 ���(� � 
�

� Prob �� ������
"$ 4&% � '�� ) � $ ; 
 ������

� : �6���(� � �

 8 ��� ��� 
�
�

� D� � D ���(� � � 
 8 ���(� � D
� �� � ��� �
� �

98 ���(� � D
We are now ready to compute the expected cost of the

solution.

6 For 3.� 7 , the expected cost we pay in Step (2) is� � �!36� .
6 For �9� 7 where � � ��� ���26 , we pay at most � � ��� � in

Step (1), and we do not pay in Step (3).

6 For � ��7 where �=�+���(� 0�26 , consider two cases:

– If � ��� � � :� ' 8 ��� '�� )�)�� , then in Step (1) we pay a
unit for opening � . In Step (3), we pay at most



� ���(� 
 � with probability at most
:� � '�� ) ' 8 ��� '
� )�)�� .

Thus, the expected cost is bounded by

� 
 �?� ��� � 
 � �7+ �� �6���(� � �

98 ��� ��� D
� � 
 � � � ;/: 8 ���(� �� � � 
 8 ���(� � D 
 �� �6��� �
� �

98 ���(� � D
� : 
 � �

� ;/: 8 ���(� �� � � 
 8 ���(� � D
– If �6��� ��� :� ' 8 ��� '�� )�) � , then in Step (1) we pay a

unit for opening � , and at most � ��� � 
G� in Step
(3). In total we pay:

: 
 � ��� ��� : 
 � � ; : 8 ���(� �
�6��� �
� : 
 � �

� ;/: 8 ���(� �� � � 
98 ���(� � D
In both cases it suffices to note that

: 
 : ' 8�� D � '�� )�)� ' 8 ��� '
� )�)�� �� � ���(��� :
8 ��� '
� ) holds for all

8 ��� � , � � 8 ��� �
� 8D .
4. Hardness Results

4.1. Weighted Vertex Cover

We show that the capacitated vertex cover with arbitrary
weights is at least as hard as the set cover problem. Given
an instance of the set cover problem, let 0 � ��� 	���	 � � �
be its bipartite incidence graph, where � � � ,

� � � ,��� 	 E ������� iff E9��� . For each vertex 3 in the graph, let� �!36� denote its degree. For each 35� � , define � �!36� to
be the weight of the corresponding set, and '(�I3 � � � �I3 � .
For each 3 � � , define ���I3 ��� � , and '(�I3 ��� � �!36� ; � .
For each vertex 3 in the graph, the multiplicity * �I3 �<� �

.
Given a solution to the set cover instance, the solution to
the capacitated vertex cover consists of all the vertices of

�
and the vertices from � corresponding to the sets in the set
cover. The set vertices can cover all their adjacent edges.
Since each element is covered in the set cover solution, for
each 3 � � , at least one of its adjacent edges is covered by
a set vertex, so 3 has enough capacity to cover the remain-
ing edges. The other direction is also true. Given a feasible
solution to the vertex cover problem, we can find a feasi-
ble solution to the set cover problem of the same cost. The
solution to the set cover problem consists of the sets corre-
sponding to the vertices of � that participate in the solution
of the vertex cover instance.

4.2. Vertex Cover with Unsplittable Demands

We assume that each edge E has a demand H��IEJ� that must
be supplied by one of its endpoints. For each 3%�G2 , the

sum of the demands of the adjacent edges that 3 supplies
must not exceed the capacity '(�I3 � . It is impossible to ap-
proximate this problem, since, given a problem instance, it
is NP-hard to answer the question whether 2 (the set of
all the vertices in the problem instance) is a feasible vertex
cover. The reduction is from partition. Suppose we have �
numbers

� 8 	��
���(	 � % . We build two special vertices 3 and� with capacities '(�!36� ��',���(� � 8D � %� 	 8 � � . Addition-
ally, for each element

� � , we add a vertex � with capacity'(��� ��� � � , and two edges: �I3 	 � � and ��� 	 � � with demands
equal to

� � . If there is a feasible assignment of all the edges
to the vertices, then the set of edges that � and 3 cover de-
fines a partition, since for each � , either � covers the edge��� 	 � � , or 3 covers the edge �!3 	 � � . The converse is also true:
a partition trivially defines a feasible assignment of edges.

5. Set Cover with Hard Capacities

In this section we consider the set cover problem with
hard capacities. For the sake of simplicity, we assume that
for each set � � � , only one copy is available, i.e., * ��������

. If this is not the case, we can view each available copy
of each set as a distinct set. Consider the following greedy
algorithm.

ALGORITHM GREEDY COVER:
Start with � � 6 .
While � is not a feasible capacitated set cover:

For each � � ��;�� , let ���+��� be the max-
imum possible increase in the number of ele-
ments covered by adding � to � , i.e. �����)�9�
����� ! � � � � ; ����� � . Among the sets in ��; � , let�/��.���$�-! � 2 > �&' 2 )���� ; ' 2 )�&' 2 ) . Add � to � .

Note that the values ���+��� can be computed using Lemma
1. Wolsey [23] shows that ALGORITHM GREEDY COVER

achieves a  #"
$ ��-/.10 2 � � � � -approximation, using the dual fit-
ting technique. We show a simpler and a more intuitive
charging scheme that proves the same result.

Let 	 �4� be a collection of sets, and let � �
	 ���
be a feasible partial cover. We will always assume that each
element E is covered by at most one set � ��	 . For each
	 � ��	 , we denote by ��
 ��	 � � the number of elements
covered by sets in 	 � . We need the following result.

Lemma 5 Let 	 be a feasible solution to the set cover
problem and let 	 8 	 	 D be a partition of 	 into two disjoint
subsets. Then there is a feasible cover � ��	 �F� , such
that all the elements are covered in � and � 
 ��	 8 � � ����	 8 � .
Proof: Let � ��	 � � be a feasible cover, where each
element E�� � is covered by some � ��	 , and assume that
��
 ��	 8 � � ����	 8 � . Let � ����	 8 � � be a feasible partial



cover, where ��
 � ��	 8 � � ����	 8 � . Note that the existence of
cover � � follows from the definition of ����	 8 ). As � � is a
partial cover, some elements may not be covered in ��� . We
gradually change the cover � , while maintaining its feasi-
bility, until the condition of the lemma holds. Perform the
following procedure:

While ��
 ��	 8 �)������	 8 � :
Let � � 	 8 be a set, such that � covers less el-
ements in � than it does in � � . There is at least
one such set since ��
 ��	 8 �)�#����	 8 � .
Let E �/� be some element covered by � in � � ,
but covered by some � 0� � in � . Note that it
is possible that � � 	 8 , or � � 	 D . Change �
so that now E is covered by � , i.e., remove ��� 	 EJ�
and add ��� 	 E � to � .

It is clear that we can perform the procedure and main-
tain a feasible cover � , while ��
 ��	 8 � � ����	 8 � . The mo-
ment a pair ��� 	 EJ�F� � � is added to � , it stays there till
the end of the procedure. Thus, the number of iterations is
bounded by � � � � and is therefore finite. At the end of the
procedure we have a cover that satisfies the conditions of
the lemma.

We now proceed with the analysis of ALGORITHM

GREEDY COVER. Denote the solution computed by AL-
GORITHM GREEDY COVER by � � � � 8 	 � D 	
���
�(	 � � � ,
and assume that the sets are added to the solution by the
algorithm in this order. For each � , � � � � ' , let� � � � � 8 	 � D 	
���
�(	 � � � be the solution at the end of iter-
ation � . Let 	  �� be an optimal solution. We “replay” the
algorithm, while charging the costs of the sets added to �
by ALGORITHM GREEDY COVER to the sets in 	  �� .

Start with � � � 6 . For each � � 	  �� , let
@ � ���)� be

the number of elements covered by � in 	  �� (assuming
every element is covered by exactly one set in 	  �� ). For
each iteration � of ALGORITHM GREEDY COVER, new val-
ues

@ ������� of sets in 	  �� ; � � are defined. The following
invariant holds throughout the analysis: we can cover all the
elements by the sets in 	  �� !�� � , even if the capacities of
sets �%� 	  �� ; � � are restricted to be

@ � ����� .
The invariant is clearly true for � � and

@ � . Consider
iteration � of ALGORITHM GREEDY COVER. We add set � �
to the solution. Since the invariant holds for � � � 8 , @ � � 8 , the
collection of sets � � ! 	  �� is a feasible cover, even if we
restrict the capacities of sets � � 	  �� ; � � to be

@ � � 8 ���)� .
By Lemma 5, there is a feasible cover � � ��� �3! 	  �� � �� , where each set � � 	  �� ; � � covers at most

@ � � 8 �+���
elements and the sets in � � cover exactly ����� ��� elements.
For each � � 	  ���; � � , define

@ �A����� to be the number of
elements covered by � in � . Note that

@ ���+���
� @ � � 8 ����� .
If � � � 	  �� , we do not charge any sets for its

cost, since 	  �� also pays for it. Otherwise, suppose

����� � �&� � � . The number of elements covered by sets in
	  �� ; � � in � is � 2 4������	� 
�
 @ � � 8 ���)� ; � � . Therefore,� 234�������� 


 � @ � � 8 �+��� ; @ � ���)� � � � � . We charge each

� � 	  �� ; � � with
; ' 2 
 )� 
 + � @ � � 8 �+��� ; @ � ������� . Note that

the total cost charged to the sets in 	  �� in this iteration is
exactly ���+� � � .

We now bound the cost charged to each � � 	  �� .
If � � � , let � denote the iteration when � is added to� . Otherwise, let � ��' 
5�

, where ' is the total num-
ber of iterations. For each � ��� , at the beginning of it-
eration � , ���+��� � @ � � 8 ����� . This follows from the way
the value of

@ � � 8 ����� is determined. Since ALGORITHM

GREEDY COVER chooses a set other than � in this itera-
tion,

; ' 2 
 )� 
 � ; ' 2 )= 
���� ' 2 ) . The total value charged to � is:

�
� 8"
� 	 8 � @ � � 8 ����� ; @ � �+��� � ����� � �� �
�%� �����

�
� 8"
� 	 8 �

@ � � 8 ���)� ; @ ���������@ � � 8 �+���
�%� ������� � @ � �������
�%� ������� �/� � � �

The total cost of the solution is bounded by 	  ���� � 
 �� ��-/.10 2 � � � � � .
6. Extensions

It is not hard to show that the natural ilinear programs
for the set cover problem with hard capacities, as well
as the more general submodular set cover problem, have
an unbounded integrality gap. Wolsey [23] shows us-
ing the dual fitting technique that ALGORITHM GREEDY

COVER achieves an 	 �! #"
$ � � &)(+* � � -approximation for the
general submodular set cover problem, where � &)( * �
-/.10 2 4'5 ��� � � � � . Wolsey uses the following linear pro-
gramming formulation:

-! � "
2 4'5

���+��� � ����� (SSC)

s.t.

"
2 4��

��� �+��� � ����� � ���!� ; 	�� � 	$� �
� ����� � � �(� � �

Here, � � �������"����	 ! � � � � ; ����	�� .
We remark that our analysis of Algorithm Greedy Cover

can be extended to prove a similar approximation guarantee
for the submodular set cover problem.



An interesting special case of the submodular set cover
problem is the multi-set multi-cover problem. In this prob-
lem, the input sets are actually multi-sets, i.e. an elementE.� � can appear in � � � � more than once, and the
elements have splittable demands. The multi-set multi-
cover problem with unbounded set capacities can be de-
fined as an IP: -! �� � � � � ��� � � H 	 � ����� C 	 ����� � .
The constraints �$�3C are called multiplicity constraints,
and they generally make covering problems much harder,
as the natural linear programming relaxation has an un-
bounded integrality gap. Dobson [8] gives a combinato-
rial greedy � ��- .'0 8�� � ��� � 8�� � � � � � � � -approximation al-
gorithm, where � ��� � is the � th harmonic number. This is
a logarithmic approximation factor for the case where � is
a
� � 	�� � matrix (set multi-cover), but can be as bad as a

polynomial approximation bound in the general case (multi-
set multi-cover). Recently, Carr, Fleischer, Leung and
Phillips [4] gave a 	 -approximation algorithm, where 	 de-
notes the maximum number of variables in any constraint.
Their algorithm is based on a linear relaxation in the spirit
similar to that of (SSC). Using similar ideas for strength-
ening the linear program, Kolliopoulos and Young [16] ob-
tained an 	 �! #"
$ � � -approximation.

For the multi-set multi-cover problem with hard capac-
ities, the function ����	�� can be computed in polynomial
time. Thus, ALGORITHM GREEDY COVER can be imple-
mented to run in polynomial time, achieving an approxima-
tion ratio of 	 �! #"
$(��-/.10 234'5 � � � ��� .
References

[1] E. Balas and M Padberg. Set partitioning: a survey.
SIAM Review, 18:710–760, 1976.

[2] J. Bar-Ilan, G. Kortsarz, D, Peleg. Generalized sub-
modular cover problems and applications. In Proceed-
ings of the 4th Israel Symposium on Computing and
Systems 1996, pp. 110-118.

[3] R. Bar-Yehuda and S. Even. A local-ratio theorem
for approximating the weighted vertex cover problem.
Annals of Discrete Mathematics, 25:27-45, 1985.

[4] R.D. Carr, L.K. Fleischer, V.J. Leung and C.A.
Phillips. Strengthening integrality gaps for capacitated
network design and covering problems. In Proceed-
ings of the 11th ACM-SIAM Symposium on Discrete
Algorithms, pp. 106–115, 2000.

[5] M. Charikar, S. Guha, E. Tardos and D. Shmoys.
A constant-factor approximation algorithm for the ' -
median problem. In Proceedings of the 31st Annual
ACM Symposium on the Theory of Computing, pp. 1-
10, 1999.

[6] N. Christofides and S. Korman. A computational sur-
vey of methods for the set covering problem. Manage-
ment Science 21:591–599, 1975.

[7] V. Chvátal. A greedy heuristic for the set-covering
problem. Mathematics of Operations Research,
4(3):233–235, 1979.

[8] G. Dobson. Worst-case analysis of greedy heuris-
tics for integer programming with non-negative data.
Mathematics of Operations Research, 7(4): 515-531,
1972.

[9] U. Feige. A threshold of  �� � for approximating set
cover. Journal of the ACM, 45(4):634–652, July 1998.

[10] R. Gandhi, S. Khuller, S. Parthasarathy, A. Srinivasan.
Dependent rounding in bipartite graphs. In Proceed-
ings of the 43rd Annual IEEE Symposium on Founda-
tions of Computer Science, 2002.

[11] R.S. Garfinkel and G.L. Nemhauser. Optimal set cov-
ering: a survey. In Perspectives on optimization: a
collection of expository articles, A.M. Geofrion, ed.,
164–183, 1972.

[12] S. Guha, R. Hassin, S. Khuller, and E. Or. Capacitated
vertex covering with applications. In Proceedings of
the 13th Symposium on Discrete Algorithms, pp. 858–
865, 2002.

[13] D.S. Hochbaum. Approximation algorithms for the set
covering and vertex cover problems. SIAM Journal on
computing, 11:555-556, 1982.

[14] D.S. Hochbaum (editor). Approximation algorithms
for NP-hard problems. PWS Publishing Company,
1996.

[15] D. S. Johnson. Approximation algorithms for combi-
natorial problems. J. Comput. System Sci., 9:256-278,
1974.

[16] S.G. Kolliopoulos and N.E. Young. Tight approxima-
tion results for general covering integer programs. In
Proceedings of the 42nd Annual Symposium on Foun-
dations of Computer Science, pp. 522–528, 2001.

[17] L. Lovász. On the ratio of optimal and fractional cov-
ers. Discrete Mathematics, 13:383-390, 1975.

[18] P. B. Mirchandani and R. L. Francis (editors). Discrete
location theory. Wiley Interscience, 1990.

[19] M.W. Padberg. Covering, packing and knapsack prob-
lems. Annals of Discrete Mathematics 4:265–287,
1979.



[20] D. B. Shmoys, É. Tardos, and K. Aardal. Approxima-
tion algorithms for the facility location problem. In
Proceedings of the 29th Annual ACM Symposium on
the Theory of Computing, pp. 265-274, 1997.

[21] M. Pál, É. Tardos, T. Wexler. Facility location with
nonuniform hard capacities. In Proc. 42nd Annual
Symposium on Foundations of Computer Science, pp.
329–338, 2001.

[22] V. V. Vazirani. Approximation algorithms. Springer-
Verlag, 2001.

[23] L. A. Wolsey. An analysis of the greedy algorithm for
the submodular set covering problem. Combinatorica,
2:385-393, 1982.


