

A Memory-Efficient Tree Edit Distance Algorithm

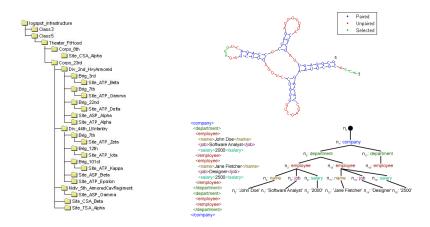
Mateusz Pawlik and Nikolaus Augsten

University of Salzburg, Austria

DEXA 2014

Tree-structured data

- hierarchical data is often modelled as trees
- an interesting query computes the similarity between trees

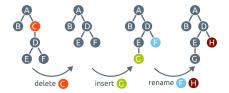


Tree Edit Distance (TED)

• TED is a standard measure to tree similarity

Tree Edit Distance (TED)

- TED is a standard measure to tree similarity
- TED is the minimum number of edit operations to transform one tree into another



• TED has a recursive solution which decomposes trees into subforests

- TED has a recursive solution which decomposes trees into subforests
- pairs of subforests make subproblems

- TED has a recursive solution which decomposes trees into subforests
- pairs of subforests make subproblems
- use distances of smaller subproblems to compute larger

- TED has a recursive solution which decomposes trees into subforests
- pairs of subforests make subproblems
- use distances of smaller subproblems to compute larger
- at each step of the recursion there are two possibilities (LEFT or RIGHT) to obtain smaller subforests

remove		root node
remove	LEFT / RIGHT	subtree
leave only		subtree

- TED has a recursive solution which decomposes trees into subforests
- pairs of subforests make subproblems
- use distances of smaller subproblems to compute larger
- at each step of the recursion there are two possibilities (LEFT or RIGHT) to obtain smaller subforests

remove		root node
remove	LEFT / RIGHT	subtree
leave only		subtree

every choice leads to the correct result

- TED has a recursive solution which decomposes trees into subforests
- pairs of subforests make subproblems
- use distances of smaller subproblems to compute larger
- at each step of the recursion there are two possibilities (LEFT or RIGHT) to obtain smaller subforests

remove		root node
remove	LEFT / RIGHT	subtree
leave only		subtree

- · every choice leads to the correct result
- different choices lead to different #subproblems

- TED has a recursive solution which decomposes trees into subforests
- pairs of subforests make subproblems
- use distances of smaller subproblems to compute larger
- at each step of the recursion there are two possibilities (LEFT or RIGHT) to obtain smaller subforests

remove		root node
remove	LEFT / RIGHT	subtree
leave only		subtree

- every choice leads to the correct result
- different choices lead to different #subproblems
- GOAL of TED algorithms minimize #subproblems

Algorithm		Time	Space	Comments
Tai	1979	$O(n^6)$	$O(n^6)$	first algorithm
Zhang&Shasha	1989	<i>O</i> (<i>n</i> ⁴)	<i>O</i> (<i>n</i> ²)	efficient for balanced trees $O(n^2 \log^2 n)$
Klein	1998	$O(n^3 \log n)$	$O(n^3 \log n)$	bad space complexity
Demaine et al.	2009	<i>O</i> (<i>n</i> ³)	<i>O</i> (<i>n</i> ²)	worst case is frequent
Pawlik&Augsten (RTED)	2011	<i>O</i> (<i>n</i> ³)	<i>O</i> (<i>n</i> ²)	compute optimal strategy

Algorithm		Time	Space	Comments
Tai	1979	$O(n^6)$	$O(n^6)$	first algorithm
Zhang&Shasha	1989	<i>O</i> (<i>n</i> ⁴)	<i>O</i> (<i>n</i> ²)	efficient for balanced trees $O(n^2 \log^2 n)$
Klein	1998	$O(n^3 \log n)$	$O(n^3 \log n)$	bad space complexity
Demaine et al.	2009	<i>O</i> (<i>n</i> ³)	<i>O</i> (<i>n</i> ²)	worst case is frequent
Pawlik&Augsten (RTED)	2011	$O(n^3)$	<i>O</i> (<i>n</i> ²)	compute optimal strategy

- implement the recursive solution using dynamic programming
- develop strategies to minimize #subproblems

Algorithm		Time	Space	Comments
Tai	1979	$O(n^6)$	$O(n^6)$	first algorithm
Zhang&Shasha	1989	<i>O</i> (<i>n</i> ⁴)	<i>O</i> (<i>n</i> ²)	efficient for balanced trees $O(n^2 \log^2 n)$
Klein	1998	$O(n^3 \log n)$	$O(n^3 \log n)$	bad space complexity
Demaine et al.	2009	<i>O</i> (<i>n</i> ³)	<i>O</i> (<i>n</i> ²)	worst case is frequent
Pawlik&Augsten (RTED)	2011	<i>O</i> (<i>n</i> ³)	<i>O</i> (<i>n</i> ²)	compute optimal strategy

- implement the recursive solution using dynamic programming
- develop strategies to minimize #subproblems
- hard-coded stratgies are bad for specific tree shapes

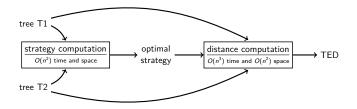
Algorithm		Time	Space	Comments
Tai	1979	$O(n^6)$	$O(n^6)$	first algorithm
Zhang&Shasha	1989	<i>O</i> (<i>n</i> ⁴)	<i>O</i> (<i>n</i> ²)	efficient for balanced trees $O(n^2 \log^2 n)$
Klein	1998	$O(n^3 \log n)$	$O(n^3 \log n)$	bad space complexity
Demaine et al.	2009	<i>O</i> (<i>n</i> ³)	<i>O</i> (<i>n</i> ²)	worst case is frequent
Pawlik&Augsten (RTED)	2011	<i>O</i> (<i>n</i> ³)	<i>O</i> (<i>n</i> ²)	compute optimal strategy

- implement the recursive solution using dynamic programming
- develop strategies to minimize #subproblems
- hard-coded stratgies are bad for specific tree shapes
- RTED uses the optimal strategy

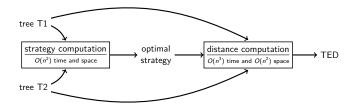
Algorithm		Time	Space	Comments
Tai	1979	$O(n^6)$	$O(n^6)$	first algorithm
Zhang&Shasha	1989	<i>O</i> (<i>n</i> ⁴)	<i>O</i> (<i>n</i> ²)	efficient for balanced trees $O(n^2 \log^2 n)$
Klein	1998	$O(n^3 \log n)$	$O(n^3 \log n)$	bad space complexity
Demaine et al.	2009	<i>O</i> (<i>n</i> ³)	<i>O</i> (<i>n</i> ²)	worst case is frequent
Pawlik&Augsten (RTED)	2011	<i>O</i> (<i>n</i> ³)	<i>O</i> (<i>n</i> ²)	compute optimal strategy

- implement the recursive solution using dynamic programming
- develop strategies to minimize #subproblems
- hard-coded stratgies are bad for specific tree shapes
- RTED uses the optimal strategy
- unfortunately, RTED has a memory problem

RTED algorithm

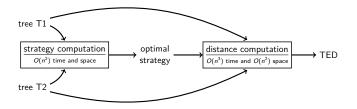


RTED algorithm



• overhead of strategy computation is very low

RTED algorithm

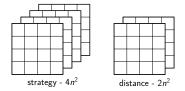


- overhead of strategy computation is very low
- #subproblems is minimal compared to previous solutions

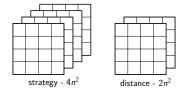
• both, strategy and distance, are computed in $O(n^2)$ space

- both, strategy and distance, are computed in $O(n^2)$ space
- the devil lies in the constants

- both, strategy and distance, are computed in $O(n^2)$ space
- the devil lies in the constants
- strategy and distance computations are complex processes:
 - based on computing values in quadratic-size matrices

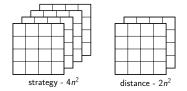


- both, strategy and distance, are computed in $O(n^2)$ space
- the devil lies in the constants
- strategy and distance computations are complex processes:
 - based on computing values in quadratic-size matrices



• strategy may use 2x the memory of distance computation: $4n^2 vs 2n^2$

- both, strategy and distance, are computed in $O(n^2)$ space
- the devil lies in the constants
- strategy and distance computations are complex processes:
 - based on computing values in quadratic-size matrices



- strategy may use 2x the memory of distance computation: $4n^2$ vs $2n^2$
- strategy computation is a memory bottleneck

4 matrices of quadratic size are used:

- 1 for optimal strategy
- 3 for intermediate results

optimal strategy

4 matrices of quadratic size are used:

- 1 for optimal strategy
- 3 for intermediate results

optimal strategy

strategy computation (high-level description):

4 matrices of quadratic size are used:

- 1 for optimal strategy
- 3 for intermediate results

optimal strategy

strategy computation (high-level description):

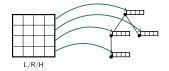
 old (RTED): for each node in one tree a row is allocated and filled

4 matrices of quadratic size are used:

- 1 for optimal strategy
- 3 for intermediate results

strategy computation (high-level description):

- old (RTED): for each node in one tree a row is allocated and filled
- observation: after a node is processed, its row is not needed any more



Mateusz Pawlik and Nikolaus Augsten

new: allocate a row when needed and deallocate not needed rows

- new: allocate a row when needed and deallocate not needed rows
- for each node v in postorder:
 read row v

 (allocated when v is leaf)
 update row p(v)
 (allocated when v is the leftmost child of p(v))
 deallocate row v

- new: allocate a row when needed and deallocate not needed rows
- for each node v in postorder: read row v
 (allocated when v is leaf)
 update row p(v)
 (allocated when v is the leftmost child of p(v))
 deallocate row v
- example: 2 rows instead of 4

- new: allocate a row when needed and deallocate not needed rows
- for each node v in postorder: read row v
 (allocated when v is leaf)
 update row p(v)
 (allocated when v is the leftmost child of p(v))
 deallocate row v

• example: 2 rows instead of 4

- new: allocate a row when needed and deallocate not needed rows
- for each node v in postorder: read row v
 (allocated when v is leaf)
 update row p(v)
 (allocated when v is the leftmost child of p(v))
 deallocate row v

• example: 2 rows instead of 4

- new: allocate a row when needed and deallocate not needed rows
- for each node v in postorder:
 read row v

 (allocated when v is leaf)
 update row p(v)
 (allocated when v is the leftmost child of p(v))
 deallocate row v
- example: 2 rows instead of 4

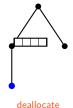
allocate + read

- new: allocate a row when needed and deallocate not needed rows
- for each node v in postorder: read row v
 (allocated when v is leaf)
 update row p(v)
 (allocated when v is the leftmost child of p(v))
 deallocate row v
- example: 2 rows instead of 4

allocate + update

- new: allocate a row when needed and deallocate not needed rows
- for each node v in postorder:
 read row v

 (allocated when v is leaf)
 update row p(v)
 (allocated when v is the leftmost child of p(v))
 deallocate row v
- example: 2 rows instead of 4



Mateusz Pawlik and Nikolaus Augsten

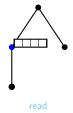
- new: allocate a row when needed and deallocate not needed rows
- for each node v in postorder:
 read row v

 (allocated when v is leaf)
 update row p(v)
 (allocated when v is the leftmost child of p(v))
 deallocate row v

• example: 2 rows instead of 4

- new: allocate a row when needed and deallocate not needed rows
- for each node v in postorder:
 read row v

 (allocated when v is leaf)
 update row p(v)
 (allocated when v is the leftmost child of p(v))
 deallocate row v
- example: 2 rows instead of 4



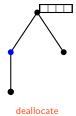
- new: allocate a row when needed and deallocate not needed rows
- for each node v in postorder:
 read row v

 (allocated when v is leaf)
 update row p(v)
 (allocated when v is the leftmost child of p(v))
 deallocate row v
- example: 2 rows instead of 4

allocate + update

- new: allocate a row when needed and deallocate not needed rows
- for each node v in postorder:
 read row v

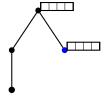
 (allocated when v is leaf)
 update row p(v)
 (allocated when v is the leftmost child of p(v))
 deallocate row v
- example: 2 rows instead of 4



- new: allocate a row when needed and deallocate not needed rows
- for each node v in postorder: read row v
 (allocated when v is leaf)
 update row p(v)
 (allocated when v is the leftmost child of p(v))
 deallocate row v

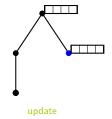
• example: 2 rows instead of 4

- new: allocate a row when needed and deallocate not needed rows
- for each node v in postorder: read row v
 (allocated when v is leaf)
 update row p(v)
 (allocated when v is the leftmost child of p(v))
 deallocate row v
- example: 2 rows instead of 4



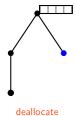
- new: allocate a row when needed and deallocate not needed rows
- for each node v in postorder:
 read row v

 (allocated when v is leaf)
 update row p(v)
 (allocated when v is the leftmost child of p(v))
 deallocate row v
- example: 2 rows instead of 4



- new: allocate a row when needed and deallocate not needed rows
- for each node v in postorder:
 read row v

 (allocated when v is leaf)
 update row p(v)
 (allocated when v is the leftmost child of p(v))
 deallocate row v
- example: 2 rows instead of 4



- new: allocate a row when needed and deallocate not needed rows
- for each node v in postorder: read row v
 (allocated when v is leaf)
 update row p(v)
 (allocated when v is the leftmost child of p(v))
 deallocate row v

• example: 2 rows instead of 4

- new: allocate a row when needed and deallocate not needed rows
- for each node v in postorder:
 read row v

 (allocated when v is leaf)
 update row p(v)
 (allocated when v is the leftmost child of p(v))
 deallocate row v

- example: 2 rows instead of 4
- What is the max #rows?

calculate max #rows for postorder:

calculate max #rows for postorder:

• (1) only leftmost-child leaf nodes add 1 to max #rows

calculate max #rows for postorder:

- (1) only leftmost-child leaf nodes add 1 to max #rows
- (2) other nodes do not affect max #rows or reduce it by 1

calculate max #rows for postorder:

- (1) only leftmost-child leaf nodes add 1 to max #rows
- (2) other nodes do not affect max #rows or reduce it by 1
- there are maximum n/2 leftmost-child leaf nodes

calculate max #rows for postorder:

- (1) only leftmost-child leaf nodes add 1 to max #rows
- (2) other nodes do not affect max #rows or reduce it by 1
- there are maximum n/2 leftmost-child leaf nodes

right-to-left postorder

calculate max #rows for postorder:

- (1) only leftmost-child leaf nodes add 1 to max #rows
- (2) other nodes do not affect max #rows or reduce it by 1
- there are maximum n/2 leftmost-child leaf nodes

right-to-left postorder

max #rows = #rightmost-child leaf nodes

calculate max #rows for postorder:

- (1) only leftmost-child leaf nodes add 1 to max #rows
- (2) other nodes do not affect max #rows or reduce it by 1
- there are maximum n/2 leftmost-child leaf nodes

right-to-left postorder

• max #rows = #rightmost-child leaf nodes

rule: if #leftmost-child leaves $\leq \#$ rightmost-child leaves

• use postorder and right-to-left postorder otherwise

calculate max #rows for postorder:

- (1) only leftmost-child leaf nodes add 1 to max #rows
- (2) other nodes do not affect max #rows or reduce it by 1
- there are maximum n/2 leftmost-child leaf nodes

right-to-left postorder

• max #rows = #rightmost-child leaf nodes

rule: if #leftmost-child leaves $\leq \#$ rightmost-child leaves

- use postorder and right-to-left postorder otherwise
- max #rows = n/3

calculate max #rows for postorder:

- (1) only leftmost-child leaf nodes add 1 to max #rows
- (2) other nodes do not affect max #rows or reduce it by 1
- there are maximum n/2 leftmost-child leaf nodes

right-to-left postorder

• max #rows = #rightmost-child leaf nodes

rule: if #leftmost-child leaves $\leq \#$ rightmost-child leaves

- use postorder and right-to-left postorder otherwise
- max #rows = n/3

	strategy	L/R/H	total
old (RTED)	n ²	3 <i>n</i> ²	4 <i>n</i> ²
new	n ²	$3n\frac{n}{3} = n^2$	2 <i>n</i> ²

dataset	#trees	olo	i (RTED)	new		
	"	#rows	memory(MB)	#rows	memory(MB)	
TreeBank-200	50					
TreeBank-400	10					
SwissProt-1000	20					
SwissProt-2000	10					
TreeFam-400	50					
TreeFam-1000	20					

dataset	#trees	old (RTED)		new	
		#rows	memory(MB)	#rows	memory(MB)
TreeBank-200	50	195.4			
TreeBank-400	10	371.3			
SwissProt-1000	20	987.5			
SwissProt-2000	10	1960.1			
TreeFam-400	50	402.6			
TreeFam-1000	20	981.9			

dataset	#trees	old (RTED)		new	
	#tices	#rows	memory(MB)	#rows	memory(MB)
TreeBank-200	50	195.4		6.0	
TreeBank-400	10	371.3		6.3	
SwissProt-1000	20	987.5		3.0	
SwissProt-2000	10	1960.1		3.0	
TreeFam-400	50	402.6		12.3	
TreeFam-1000	20	981.9		14.1	

dataset	#trees	old (RTED)		new	
	#tices	#rows	memory(MB)	#rows	memory(MB)
TreeBank-200	50	195.4	1.10	6.0	
TreeBank-400	10	371.3	2.86	6.3	
SwissProt-1000	20	987.5	16.64	3.0	
SwissProt-2000	10	1960.1	63.20	3.0	
TreeFam-400	50	402.6	3.33	12.3	
TreeFam-1000	20	981.9	16.73	14.1	

dataset	#trees	old (RTED)		new	
	#trees	#rows	memory(MB)	#rows	memory(MB)
TreeBank-200	50	195.4	1.10	6.0	0.72
TreeBank-400	10	371.3	2.86	6.3	1.30
SwissProt-1000	20	987.5	16.64	3.0	5.13
SwissProt-2000	10	1960.1	63.20	3.0	17.80
TreeFam-400	50	402.6	3.33	12.3	1.46
TreeFam-1000	20	981.9	16.73	14.1	5.58

Conclusion

• RTED is the best TED algorithm due to its optimal strategy

Conclusion

- RTED is the best TED algorithm due to its optimal strategy
- strategy computation is the memory bottleneck in RTED

Conclusion

- RTED is the best TED algorithm due to its optimal strategy
- strategy computation is the memory bottleneck in RTED
- early deallocation technique solves the memory problem

Future work

• classical TED approaches are infeasible for large inputs e.g., trees of 1.000.000 nodes may require 1TB and 100h

Future work

- classical TED approaches are infeasible for large inputs
 e.g., trees of 1.000.000 nodes may require 1TB and 100h
- there is a need for other, better solutions
 - e.g., efficient pruning of the search space