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Tree-structured data
• hierarchical data is often modelled as trees
• an interesting query computes the similarity between trees
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Tree Edit Distance (TED)

• TED is a standard measure to tree similarity

• TED is the minimum number of edit operations to transform one tree into
another
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Recursive solution for TED

• TED has a recursive solution which decomposes trees into subforests

• pairs of subforests make subproblems
• use distances of smaller subproblems to compute larger
• at each step of the recursion there are two possibilities (LEFT or RIGHT) to
obtain smaller subforests

remove
LEFT / RIGHT

root node
remove subtree
leave only subtree

• every choice leads to the correct result
• different choices lead to different #subproblems
• GOAL of TED algorithms - minimize #subproblems
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State of the art in TED

Algorithm Time Space Comments

Tai 1979 O(n6) O(n6) first algorithm

Zhang&Shasha 1989 O(n4) O(n2) efficient for balanced trees
O(n2 log2 n)

Klein 1998 O(n3 log n) O(n3 log n) bad space complexity

Demaine et al. 2009 O(n3) O(n2) worst case is frequent

Pawlik&Augsten (RTED) 2011 O(n3) O(n2) compute optimal strategy

• TED algorithms:
- implement the recursive solution using dynamic programming
- develop strategies to minimize #subproblems

• hard-coded stratgies are bad for specific tree shapes
• RTED uses the optimal strategy
• unfortunately, RTED has a memory problem
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RTED algorithm

strategy computation
O(n2) time and space

optimal
strategy

distance computation
O(n3) time and O(n2) space TED

tree T1

tree T2

• overhead of strategy computation is very low
• #subproblems is minimal compared to previous solutions
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Memory problem in RTED

• both, strategy and distance, are computed in O(n2) space

• the devil lies in the constants
• strategy and distance computations are complex processes:

- based on computing values in quadratic-size matrices

strategy - 4n2 distance - 2n2

• strategy may use 2x the memory of distance computation: 4n2 vs 2n2

• strategy computation is a memory bottleneck
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Memory allocation in RTED strategy

4 matrices of quadratic size are used:
• 1 for optimal strategy
• 3 for intermediate results

optimal strategy L R H

strategy computation (high-level description):

• old (RTED): for each node in one tree a row is
allocated and filled

• observation: after a node is processed, its row
is not needed any more L/R/H
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Early deallocation technique

• new: allocate a row when needed and deallocate not
needed rows

• for each node v in postorder:
read row v

(allocated when v is leaf)
update row p(v)

(allocated when v is the leftmost child of p(v))
deallocate row v

• example: 2 rows instead of 4
• What is the max #rows?

allocate + readallocate + updatedeallocatereadallocate + updatedeallocateallocate + readupdatedeallocate
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Upper bound for the number of rows
calculate max #rows for postorder:

• (1) only leftmost-child leaf nodes add 1 to max #rows
• (2) other nodes do not affect max #rows or reduce it by 1
• there are maximum n/2 leftmost-child leaf nodes

right-to-left postorder

• max #rows = #rightmost-child leaf nodes

rule: if #leftmost-child leaves ≤ #rightmost-child leaves

• use postorder and right-to-left postorder otherwise
• max #rows = n/3

strategy L/R/H total

old (RTED) n2 3n2 4n2

new n2 3n n
3 = n2 2n2
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right-to-left postorder
• max #rows = #rightmost-child leaf nodes

rule: if #leftmost-child leaves ≤ #rightmost-child leaves
• use postorder and right-to-left postorder otherwise
• max #rows = n/3

strategy L/R/H total

old (RTED) n2 3n2 4n2

new n2 3n n
3 = n2 2n2
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Experiments

dataset #trees
old (RTED) new

#rows memory(MB) #rows memory(MB)

TreeBank-200 50

TreeBank-400 10

SwissProt-1000 20

SwissProt-2000 10

TreeFam-400 50

TreeFam-1000 20
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Experiments

dataset #trees
old (RTED) new

#rows memory(MB) #rows memory(MB)

TreeBank-200 50 195.4

TreeBank-400 10 371.3

SwissProt-1000 20 987.5

SwissProt-2000 10 1960.1

TreeFam-400 50 402.6

TreeFam-1000 20 981.9
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Experiments

dataset #trees
old (RTED) new

#rows memory(MB) #rows memory(MB)

TreeBank-200 50 195.4 6.0

TreeBank-400 10 371.3 6.3

SwissProt-1000 20 987.5 3.0

SwissProt-2000 10 1960.1 3.0

TreeFam-400 50 402.6 12.3

TreeFam-1000 20 981.9 14.1
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Experiments

dataset #trees
old (RTED) new

#rows memory(MB) #rows memory(MB)

TreeBank-200 50 195.4 1.10 6.0

TreeBank-400 10 371.3 2.86 6.3

SwissProt-1000 20 987.5 16.64 3.0

SwissProt-2000 10 1960.1 63.20 3.0

TreeFam-400 50 402.6 3.33 12.3

TreeFam-1000 20 981.9 16.73 14.1
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Experiments

dataset #trees
old (RTED) new

#rows memory(MB) #rows memory(MB)

TreeBank-200 50 195.4 1.10 6.0 0.72

TreeBank-400 10 371.3 2.86 6.3 1.30

SwissProt-1000 20 987.5 16.64 3.0 5.13

SwissProt-2000 10 1960.1 63.20 3.0 17.80

TreeFam-400 50 402.6 3.33 12.3 1.46

TreeFam-1000 20 981.9 16.73 14.1 5.58
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Conclusion

• RTED is the best TED algorithm due to its optimal strategy

• strategy computation is the memory bottleneck in RTED

• early deallocation technique solves the memory problem
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Future work

• classical TED approaches are infeasible for large inputs

e.g., trees of 1.000.000 nodes may require 1TB and 100h

• there is a need for other, better solutions

e.g., efficient pruning of the search space
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