
Intermedia Synchronization Management in DTV Systems
Romualdo Monteiro R. Costa Marcelo Ferreira Moreno Luiz Fernando Gomes Soares

Catholic University of Rio de Janeiro
Rua Marquês de São Vicente 225

22453-900 Rio de Janeiro, RJ, Brazil
+55 21 3527-1500 Ext: 3503

romualdo@telemidia.puc-rio.br moreno@telemidia.puc-rio.br lfgs@inf.puc-rio.br

ABSTRACT
Intermedia synchronization is related with spatial and temporal
relationships among media objects that compound a DTV
application. From the server side (usually a broadcaster’s server or a
Web Server) to receivers, end-to-end intermedia synchronization
support must be provided. Based on application specifications,
several abstract data structures should be created to guide all
synchronization control processes. A special data structure, a
labeled digraph called HTG (Hypermedia Temporal Graph) is
proposed in this paper as the basis of all other data structures. From
HTG, receivers derive a presentation plan to orchestrate media
content presentations that make up a DTV application. From this
plan other data structures are derived to estimate when media
players should be instantiated and when data contents should be
retrieved from a DSM-CC carousel or from a return channel. If the
return channel provides QoS support, another data structure is
derived from the presentation plan, in order to determine when
resource reservation should take place. For content pushed by
broadcasters, HTG is used in the server side as the basis for building
the carousel plan, a data structure that guides the order and
frequency that media objects should be broadcasted.

The paper’s proposals were partially put into practice in the current
open source reference implementation of the standard middleware
of the Brazilian Terrestrial Digital TV System. However, this
reference implementation is used just as a proof of concept. The
ideas presented can be extended to any multimedia document
presentation player (user agent) and content distribution server.

Categories and Subject Descriptors
I.7.2 [Document and Text Processing]: Document Preparation -
languages and systems, markup languages, multi/mixed media,
hypertext/hypermedia, standards.

D.3.2 [Programming Languages]: Language Classifications -
specialized application languages.

General Terms
Design, Languages, Standardization.

Keywords
NCL, Temporal graph, digital TV, intermedia synchronization,
middleware.

1. INTRODUCTION
Intermedia synchronization has been one of the most important QoS
(quality of service) issues in document engineering, multimedia data
communication and multimedia system management. The spatial
and temporal synchronization among media assets plays a central
role in all phases of a digital TV (DTV) application’s life cycle:
since its specification, passing through its playout stage, to its
execution at the receiver.

In DTV applications, spatiotemporal synchronizations must deal
with both predictable events1 (like the end of a media-span
presentation with known duration and known beginning time) and
unpredictable events (like viewer interactions). Moreover, to
maintain the application flow synchronized, content and content-
presentation adaptations can be necessary. Such adaptations are
usually performed during runtime and can be another source of
unpredictability.

The use of the timeline paradigm for temporal synchronization is
only appropriate in supporting “strongly coupled” datacasting, that
is, data with predictable synchronization points, like an audiovisual
data coming from a digital camera. MPEG-video [15] is an example
of a coding process based on timeline.

In multimedia applications in which unpredictable events are
common, the event-driven paradigm (also called constraint/causality
paradigm) is usually the best conceptual model to guide all phases
of an application’s life cycle. Different from the timeline paradigm
that binds synchronized media points to points in time, the event-
driven paradigm bases its synchronization support on the relative
spatiotemporal positioning of events, independent from when (the
absolute moment in time) a synchronization would happen and even
if it would happen.

The use of event-driven paradigm brings three main associated
subjects:

1 In this paper, an event denotes any occurrence in time with finite

or infinitesimal duration

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’08, September 16-19, 2008, São Paulo, Brazil.
Copyright 2008 ACM 978-1-60558-081-4/08/09...$5.00.

©ACM, (2008). This is the author's version of the work. It is posted here by permission of ACM for your

personal use. Not for redistribution. The definitive version was published in Proceedings of the Eighth

ACM Symposium on Document Engineering, {VOL1, ISBN 978-1-60558-081-4, (09/2008)}

http://doi.acm.org/10.1145/1410140.1410203

Intermedia Synchronization Management in DTV Systems
Romualdo Monteiro R. Costa Marcelo Ferreira Moreno Luiz Fernando Gomes Soares

Catholic University of Rio de Janeiro
Rua Marquês de São Vicente 225

22453-900 Rio de Janeiro, RJ, Brazil
+55 21 3527-1500 Ext: 3503

romualdo@telemidia.puc-rio.br moreno@telemidia.puc-rio.br lfgs@inf.puc-rio.br

ABSTRACT
Intermedia synchronization is related with spatial and temporal
relationships among media objects that compound a DTV
application. From the server side (usually a broadcaster’s server or a
Web Server) to receivers, end-to-end intermedia synchronization
support must be provided. Based on application specifications,
several abstract data structures should be created to guide all
synchronization control processes. A special data structure, a
labeled digraph called HTG (Hypermedia Temporal Graph) is
proposed in this paper as the basis of all other data structures. From
HTG, receivers derive a presentation plan to orchestrate media
content presentations that make up a DTV application. From this
plan other data structures are derived to estimate when media
players should be instantiated and when data contents should be
retrieved from a DSM-CC carousel or from a return channel. If the
return channel provides QoS support, another data structure is
derived from the presentation plan, in order to determine when
resource reservation should take place. For content pushed by
broadcasters, HTG is used in the server side as the basis for building
the carousel plan, a data structure that guides the order and
frequency that media objects should be broadcasted.

The paper’s proposals were partially put into practice in the current
open source reference implementation of the standard middleware
of the Brazilian Terrestrial Digital TV System. However, this
reference implementation is used just as a proof of concept. The
ideas presented can be extended to any multimedia document
presentation player (user agent) and content distribution server.

Categories and Subject Descriptors
I.7.2 [Document and Text Processing]: Document Preparation -
languages and systems, markup languages, multi/mixed media,
hypertext/hypermedia, standards.

D.3.2 [Programming Languages]: Language Classifications -
specialized application languages.

General Terms
Design, Languages, Standardization.

Keywords
NCL, Temporal graph, digital TV, intermedia synchronization,
middleware.

1. INTRODUCTION
Intermedia synchronization has been one of the most important QoS
(quality of service) issues in document engineering, multimedia data
communication and multimedia system management. The spatial
and temporal synchronization among media assets plays a central
role in all phases of a digital TV (DTV) application’s life cycle:
since its specification, passing through its playout stage, to its
execution at the receiver.

In DTV applications, spatiotemporal synchronizations must deal
with both predictable events1 (like the end of a media-span
presentation with known duration and known beginning time) and
unpredictable events (like viewer interactions). Moreover, to
maintain the application flow synchronized, content and content-
presentation adaptations can be necessary. Such adaptations are
usually performed during runtime and can be another source of
unpredictability.

The use of the timeline paradigm for temporal synchronization is
only appropriate in supporting “strongly coupled” datacasting, that
is, data with predictable synchronization points, like an audiovisual
data coming from a digital camera. MPEG-video [15] is an example
of a coding process based on timeline.

In multimedia applications in which unpredictable events are
common, the event-driven paradigm (also called constraint/causality
paradigm) is usually the best conceptual model to guide all phases
of an application’s life cycle. Different from the timeline paradigm
that binds synchronized media points to points in time, the event-
driven paradigm bases its synchronization support on the relative
spatiotemporal positioning of events, independent from when (the
absolute moment in time) a synchronization would happen and even
if it would happen.

The use of event-driven paradigm brings three main associated
subjects:

1 In this paper, an event denotes any occurrence in time with finite

or infinitesimal duration

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’08, September 16-19, 2008, São Paulo, Brazil.
Copyright 2008 ACM 978-1-60558-081-4/08/09...$5.00.

• How to specify spatial and temporal synchronizations among
events;

• How to control the application’s presentation in order to
guarantee that its specified synchronization relationships will be
respected; and

• How to manage transmissions from servers to receivers,
maintaining the QoS required to assure a synchronized
presentation in the client device.

As for the first subject, spatiotemporal event-driven synchronization
can be specified using declarative or imperative languages.

Declarative languages emphasize the declarative description of an
application, rather than its decomposition into an algorithmic
implementation, as it is done when using imperative languages.
Such declarative descriptions generally are a high-level
specification, and thus they are easier to be designed than
imperative ones, which usually require a programming expert.
However, declarative languages typically have a focus on their
design principles. When an application focus matches the
declarative language focus, the declarative paradigm is mostly the
best choice.

Declarative languages can be designed with a focus on the spatial
and temporal synchronization among components of an application.
Examples of so-called time-based declarative languages are NCL
(Nested Context Language) [18], the standard language of the
Brazilian Terrestrial DTV System [1], and SMIL (Synchronized
Multimedia Integration Language) [22], a W3C Recommendation.

Imperative languages, in particular scripting languages, like
ECMAScript [8], provide an expressive support for application
development. However, they have some drawbacks for the content
production: they usually require a programming expertise for
application development; they occasionally put at risk the
application portability; and the management of the application
temporal flow (the presentation control) is much more difficult to be
done as a rule, besides being more error-prone, since the application
programmer is in charge of this task, in contrast with a time-based
declarative language, whose language engine does it automatically.

Moving on to the second subject, the application’s presentation
control, upon receiving a document specification, with all spatial
and temporal relationships among its objects defined, the language
engine must try to guarantee the author’s (the programmer’s)
descriptions. In order to support this task, several data structures are
computed from the application specification. These data structures
must represent all possible predictable and unpredictable events.

One of this data structures is what we call the presentation plan,
responsible for supporting the presentation control. During a DTV
application presentation, all information gathered from viewers and
the receiver’s system, all viewer answers, and all viewer interactions
are collected, updating the computed presentation plan. Therefore,
this data structure represents the current multimedia presentation
state, which can be stored and later retrieved and resumed from the
saved current state. This is a common situation found in a DTV
environment where viewers are allowed to explicitly pause a DTV
application and then to resume it at some later time — possibly days
or weeks later, and even on a different device, still preserving all
actions previously done.

Managing a multimedia presentation state control is to manage the
associated DTV application’s presentation plan. Besides allowing

changes on the plan traverse, thus making a dynamic presentation, it
is also important to allow saving the data structure context, at least
the current state of the plan navigation.

Several times, in order to maintain the synchronization, content and
presentation adaptations are necessary. Therefore, in DTV
applications, the presentation plan must also be able to represent the
specification of adaptation points that can happen during the
presentation flow.

Finally, to support the last mentioned subject, the transmission
management, other data structures can be necessary both in the
server and in the client side.

One of these data structures is what we call the carousel plan, which
is computed from the application specification in the server side
(usually a broadcaster’s server). This data structure will be
important to guide the management of DSM-CC carousels [12]2 for
pushed content.

Other important data structures are usually derived from the
presentation plan in the receiver side. These new data structures are
used to guide content prefetching (the prefetching plan) and QoS
negotiation (the QoS plan) in the receiver’s interactive channel
(return channel), and to guide player instantiations (the player-load
plan), necessary for the exhibition of media-object’s content.

This paper discusses the aforementioned data structures, calling
attention to their importance in managing system’s resources in a
DTV environment, usually a scarce asset in the receiver side, and in
maintaining the spatiotemporal synchronization of DTV
applications.

The paper’s proposals were partially put into practice in the current
open source reference implementation of the Ginga middleware [1],
the standard middleware of the Brazilian Terrestrial Digital TV
System. In Ginga, all mentioned data structures are based on
temporal graph concepts. However, Ginga’s reference
implementation is used in this paper as just a proof of concept. The
ideas presented can be extended to any multimedia document
presentation player (user agent) and content distribution server.

The paper is organized as follows. Section 2 presents some related
work. Section 3 discusses the presentation-plan building and use in
the receiver side of a DTV system, in order to guide the application
flow control. Section 4 discusses the building and use of the
carousel plan in the server side, in order to guide the object carousel
management. Section 5 introduces the use of the prefetching and
QoS negotiation plans in the receiver side, in order to guide the
pulled content transmission in the interactive channel. Section 6 is
reserved for the final remarks.

2. RELATED WORK
Several players are available for Web-based multimedia
applications. One of them is the Ambulant open-source player [7],
which aims to be a reference implementation of the SMIL engine, at
this time supporting SMIL 2.1 [22] specification.

The Ambulant document presentation begins parsing the document
specification and building its DOM tree [21]. Each node in the tree

2 DSM-CC carousels provides cyclical data transmission from a

server to client receivers

that represents media assets (image, text, audio etc.) or SMIL
composite elements (par, seq, excl) is controlled by a data structure
called time node. Composite elements have temporal semantic
embedded and group other elements (media assets or compositions,
recursively). Edges in the tree preserve temporal relationships
among composites and their children, defined by the composite
semantics. Other relationships among time nodes are represented by
semantic links, in addition to tree edges. The combination of both
relationships forms the complete time graph [17] [22]. Each time
node has an associated state machine, which is in a particular
presentation state depending on the document presentation flow.

NCL user agent open-source implementation for Ginga middleware
[1] is similar to Ambulant. NCL context (composition) nodes group
media nodes and other context nodes, recursively. However, NCL
context nodes have no predefined semantics. Instead, NCL context
includes link elements defining spatiotemporal relationships among
context’s children. Similar to SMIL time nodes, each NCL node has
an associated state machine, which is in a particular presentation
state depending on the document presentation flow.

Both in NCL and SMIL, the presentation flow starts from a root
node. From this moment on, relationships defined among
composition’s children are triggered in appropriate specified relative
moments, changing presentation states of related nodes.

The data structure defined by NCL nodes and SMIL time nodes is
sufficient and efficient enough for playing a document, if it is
assumed that all media assets are available at the moment their
presentation are triggered. However, in DTV broadcasting
environments, where receiver’s resources are normally restricted, it
is impossible to have all media contents before the document starts.
In this case, contents must be retrieved from a remote location
during a document play. The aforementioned data structure is very
inefficient in guiding this task. To derive the moment that a
prefetching should be done, or that a QoS negotiation for a data
transfer must be started, or that an object carousel should be loaded,
usually requires the simulation of the document presentation flow,
which is almost always very inefficient.

Aiming at to bypass this problem, the NCL user agent reference
implementation builds another data structure based on a temporal
graph data model, called Hypermedia Temporal Graph (HTG) [19].
HTG represents in a unique digraph structure all relationships
among presentation states of all media assets that compose a
document, instead of having this relationships distributed and
embedded in composition elements. HTG represents all predictable
and unpredictable events that can cause changes in the presentation
state machines of media assets (which can be started, paused,
resumed, stopped and aborted) and all content and content-
presentation alternatives, as discussed in Section 3.

The CMIFed Player [20], responsible for controlling the
presentation of CMIF documents, basis for the SMIL language
specification, builds a graph of temporal dependencies at a compile
phase, when media object relationships (parallel, sequential etc.) are
processed and event expected times are calculated. The execution
control uses an internal clock to traverse the temporal graph and to
identify the moments to fire presentation actions. The system can
simulate the document execution and locate presentation
inconsistencies, like loops and resource contention. CMIFed also
uses the graph information to perform a content prefetching
whenever the presentation scheduler becomes idle. However, the

proposed ideas could not be directly applied to SMIL 2.1
specification, due to the complexity of SMIL temporal relationships.

HTG concept is similar to Firefly temporal chains [6]. In Firefly, the
main temporal chain is built corresponding to a sequence of
predictable presentation events, initiated from the event that
corresponds to the beginning of the document presentation. As
usual, a predictable event is one that can have its time of occurrence
computed based on the occurrence time of another event. Other
auxiliary temporal chain of events can also be computed, each one
being initiated by an unpredictable event, like a viewer interaction,
alternatives that can only be evaluated during runtime, etc. All
events of an auxiliary temporal chain must be predictable in relation
to another event present in the same chain.

During runtime, each auxiliary chain is joined to the main chain, as
soon as its initial unpredicted event is evaluated. Therefore, only at
the time the last unpredicted event of the document happens, the
whole temporal chain can be obtained.

Different from Firefly’s temporal chains, HTG is not a simple
timeline of presentation actions and represents all possible
presentations of the whole document. In addition, instead of adding
branches (auxiliary chain) to the graph (the main chain), according
to the document presentation flow, branches are pruned from the
graph, when alternatives or unpredictable events cannot occur
anymore. Firefly chains are used only to compute media content
duration in order to maintain document temporal consistency.

A document presentation can run as many times as necessary,
partially or totally. For each runtime, a new activation is done,
without any historical relationship with the previous ones. However,
there are many situations where the application’s presentation
history is important to be maintained, in order to reach the desired
results, as for example:

• When viewers are allowed to explicitly pause a DTV application
and then resume it at some later time — possibly days or weeks
later, and even on a different device;

• When a viewer changes the TV channel, thus starting another
application in the new channel, but then regrets and returns to the
previous channel, resuming the application and inheriting all
information previously given, all answers previously provided, all
interactions previously done, all environment information
previously set, etc.

These two examples illustrate different situations in a DTV
environment. In the first one, the application, and thus all its
contents, must be resumed from the exact point where it had been
paused, or from a preceding point. In contrast, in the second one, the
application must be resumed in a future point of the TV program,
with regards the time it had been interrupted. Nevertheless, in both
cases, all previous information should be preserved.

As far as the authors know, only HTG provides an efficient data
structure to allow a document presentation resuming, considering all
interactive actions and all alternative choices performed in the past.

Jeong et al. [16] have developed a mechanism for pre-scheduling
multimedia presentations. The prefetcher, named EPS (Event Pre-
Scheduler), estimates the maximum time for recovering the entire
content of each document object and builds a prefetching plan in
order to have all media contents ready at their playing time. The
building algorithm postpones the start of the document presentation

as a whole, in order to avoid gaps and loss of synchronization
during the presentation. The execution plan data structure, used as
input for the prefetching plan calculation, is based on the partition of
media objects in minimum segments that satisfy the Allen equality
condition (equals) [2]. At document runtime phase, there is a
monitor that compares the actual object prefetching duration with
the expected duration previewed in the plan. If the actual duration
overcomes the predicted one, the system runs an instant scheduling
algorithm to recalculate the object presentation duration, in order to
maintain the temporal segment synchronization. When necessary,
the algorithm sacrifices static media objects, shrinking their
durations. The interesting characteristic of such an algorithm is that
it allows correcting delays introduced not only by the operating
system kernel interruptions, but also by the algorithm itself.
EPS presents a practical approach for identifying several
requirements that must be considered when elaborating prefetching
mechanisms. Other contribution of this work is the implementation
of a strategy for building the prefetching plan. However, the
proposal only considers documents exclusively based on predictable
relationships and predictable media object durations. Furthermore,
all contents must be locally and contiguously stored in a hard disk,
ignoring aspects related to network transmission. The strategy
presented always prefetches the entire object content to memory,
before start playing it. It is not possible for a media player to
download data that is currently being presented in parallel with data
that is being prefetched.
In order to maintain intermedia synchronization in networks that
allow QoS negotiation, intramedia QoS negotiation (delay,
bandwidth, etc.) can be used to guarantee that content pulled from
an interactive channel will be available for presentation in the
receiver side when they are necessary. None of the proposals
discussed in this paper mention the intramedia QoS negotiation and
maintenance issue, not even the NCL player reference
implementation for Ginga. However, Ginga anticipates the future
use of this procedure discussing how HTG can be used to derive the
moment a QoS negotiation should be started, as presented in Section
5.

Focusing on the presentation scheduling and on pushed contents
coming from servers, the MPEG-4 system [14] allows the
specification of spatial and temporal synchronizations among events
using a declarative language called XMT-O [14]. This language
inherits several SMIL modules, allowing that relationships can be
defined using compositions with temporal semantics or using events
defined over media objects. However, another MPEG-4 language
called BIFS (Binary Format for Scenes) [14] is used to control the
presentation, from servers to receivers. This approach is
implemented in the MPEG-4 reference player [13] and others, like
the OSMO4 [11].

BIFS follows the timeline paradigm3 and its specifications can be
synchronously multiplexed with media objects into a stream [14]
that can be presented at the same time it arrives, avoiding previous
storage. Although BIFS follows the timeline paradigm, it simulates
some content presentation adaptation and also viewer interactions.

3 Besides timeline, BIFS optionally supports some temporal

constructs using FlexTime model [14]. FlexTime allows
defining synchronization relationships using a very limited set
of Allen relations [2].

Using BIFS, multiple object contents can be simultaneously
transmitted and the content to be presented can be chosen at
presentation time. BIFS also supports a limited type of viewer’s
interactions which can change the value of the object visibility
property. Additionally, an interactive action can also change the
entire MPEG-4 document being presented.

The use of the timeline paradigm of BIFS can facilitate the
presentation control, since tasks like player loading and content
transmission can be driven by absolute time positions on the time
axis. The main problem, however, is the limitation to represent
spatial and temporal synchronizations among events, mainly the
unpredictable ones. In MPEG-4, the conversion from XMT-O to
BIFS preserves the occurrence times of predictable events but the
semantics of relative relationships among events is lost.

XHTML-based languages, such as BML [3], ACAP-X [4] and
DVB-HTML [9] allow a declarative description of relationships
involving unpredictable events; in fact, only viewer interactions.
Intermedia synchronization in its broad sense can only be achieved
using imperative coding, commonly written in ECMAScript [8].
DOM events and external events4 can trigger a scripting object used
to provide temporal and spatial synchronization, content and
presentation adaptability, and other facilities that are not otherwise
possible. DTV middleware systems based on these languages offer
no support for prefetching, QoS negotiation or carousel
management. In these middleware systems, only intermedia
synchronization support for presentation is considered, and even
though, by means of imperative language-based control.

An alternative to represent content synchronizations in the
aforementioned DTV middleware systems is to split a document,
which represents a whole TV application, into several small
documents fired along the time by commands issued by authors.
This approach can only be used for simple applications and
although it eventually avoids the disadvantages of using imperative
languages for synchronization purposes, the application’s logical
semantics is completely lost. Note that this approach indeed uses a
timeline paradigm where the absolute moments in time are defined
by commands sent by application authors.

However, the split of a document into several small documents is
frequently used as an alternative for avoiding previously storage of
contents in receivers. This alternative is commonly adopted in DTV
middleware systems to allow receivers with limited resources.
Instead of using a solution similar to MPEG-4 BIFS, pushed
contents are transported inside DSM-CC object carousels [12]. The
carousel management is very simple in this case: small DSM-CC
carousels for small split documents are created and transmitted. The
split documents are fired by using DSM-CC stream events, and they
need to be transmitted only until their corresponding stream events
are dispatched. However, the responsibility of splitting an
application efficiently and generating the corresponding stream
events is passed to the application authors. This can be a very
difficult task and more prone to errors.

An autonomic management of object carousels will need a data
structure for guiding content insertion and exclusion. As an
additional advantage, the original application does not need to be

4 In DTV systems, it is usual to have DSM-CC stream events [12]

triggering the execution of imperative codes.

split, maintaining the logical semantics of all relationships among its
media contents. As far as this paper authors know, only Ginga
middleware provides support for carousel management, as discussed
in Section 4.

3. INTERMEDIA SYNCHRONIZATION
FOR PRESENTATION CONTROL

Authoring goals are very different from presentation goals, as
regards data structures for spatial and temporal synchronization
definition. Specification languages usually intend to offer high-level
constructs to aid the authoring process. These constructs favor
relationships among media objects that exist in the author’s mind
model (logical semantics). Presentation data structures are closer to
the execution machine and should offer low-level primitives in
order to make easy the presentation scheduling.
Actually, preserving the high-level abstraction, or a data structure
close to it, can make difficult the presentation flow control, as
discussed in the previous section with regard to NCL and SMIL
node structures.
The presentation phase involves the management of media players
and the delivery of media contents to them. Usually, a user agent is
composed of a set of players, each one responsible for the exhibition
of specific media types. It is important to have each specific player
instantiated and ready before the exact moment in time its
corresponding media presentation should start, in order to avoid
undesirable delays, mainly present when receiver’s resources are
restricted, like processing power and memory.
When the time for an object presentation is reached, the
corresponding player must receive the media content to be
presented. Moments in time for player instantiations and for starting
presentation are both derived from the presentation data structure
and correspond to the player-load plan and presentation plan,
respectively.
DTV environments have some specific characteristics that must be
taken into account when defining an efficient presentation data
structure. When an application does not have any semantic
relationship with the main audiovisual streams, it may be presented
from its start point, as soon as the TV channel is tuned in. However,
when the main audiovisual streams are part of an application, the
application must start from the current audiovisual runtime position.
Thus, the presentation data structure must allow an efficient (with a
minimum possible delay) application starting, from any moment in
time during its assigned period.
When DTV applications are started, interactive events that might
have happened in the past, like viewer interactions, should be taken
in account. An acceptable and simple solution consists in ignoring
all past interactions that might have happened until the chosen
starting point. This approach is possible for an application that is
running for the first time. However, it is not applicable in several
cases, for example, if the application has been paused and then
restarted. In this case, interactive events that can be inferred from
the last running should be maintained. Thus, maintaining the
presentation state is another requirement for the data structure we
are searching for.
The presentation structure of Ginga middleware was developed in
conformance with these requirements. Both the player-load plan and
the presentation plan of the Ginga reference implementation are

derived from a directed graph, which is built at document compile
time.
NCL recognizes three types of events: presentation event,
corresponding to playing a content anchor (whole media-object
content, or part of this content); selection event, corresponding to a
viewer interaction (selection of a content anchor); and attribution
event, corresponding to setting a value to a property (variable). Each
event defines a state machine that should be maintained by the
receiver user agent. An event can be in the sleeping, occurring or
paused state, and change its state upon receiving actions: start, stop,
pause, resume and abort.

The Ginga presentation data structure, called Hypemedia Temporal
Graph (HTG) [19], is composed of vertices, which represent actions
(for state changes) performed on event state machines, and directed
edges that represent relationships among actions, derived from the
document specification in NCL. An edge is labeled by a condition
that must be satisfied in order to trigger the action specified in the
edge’s output vertice.
HTG maintain all relationships among actions, predictable or
unpredictable, depending on the condition type associated with its
edges. HTG defines simple and compound conditions. A simple
condition is defined by a temporal interval that must be spent to fire
the edge traverse (and so the action defined in the edge’s output
vertice), or by a variable that must be evaluated in relation to a
desirable value, or still by external actions, such as viewer
interactions. Compound conditions are defined through logical
operators (or, and, not) binding two or more conditions.
The two last mentioned simple condition types are used to represent
unpredictable events and adaptation points. A variable is evaluated
during runtime and a viewer interaction is always unpredictable
within a certain time interval.
After defining an application starting point5, HTG can be used to
derive the presentation plan. When applications contain only
predictable events, graph edges are labeled only by temporal
intervals. From the document starting time, the graph traverse
identifies every action that must be applied to media players. These
actions can have their moment in time computed taking into account
the time intervals required to satisfy conditions from the HTG entry
point to the corresponding action vertices. This set of actions and
corresponding moments in time compose the presentation plan.
While the presentation plan for applications without unpredictable
events can be entirely computed a priori (at compile time), for
applications where unpredictable events may occur this is not true.
However, the same procedure previously applied can be used to
compute actions and their corresponding moment in times for all
predictable events from an application starting point to an
unpredictable event; and from each unpredictable event to the next
unpredictable event in the graph traverse. In this last case, the
compute moments in time will be relative to the moment in time that
the starting unpredictable event of the traverse path happens.
During an application presentation, as soon as an unpredictable
event time is known, the presentation plan is updated changing all
moments in time relative to this event to be now relative to

5 NCL does not restrict its documents to have only one entry

point. The language defines that each port element (anchor) in a
composition can be a document entry point.

document starting time. That is, by adding the moment in time that
the unpredictable event has occurred to moments in time relative to
this unpredictable event.
Sometimes an unpredictable event does not happen within the time
period at whatever time its occurrence is allowed. In this case all
actions in the presentation plan whose occurrence depends only on
this event must be removed.
The presentation plan, together with HTG and all local and global
variable settings made during a document presentation, represent the
past and possible future history of an application. This information
is called the presentation state of an application and is the only
information needed for starting or resuming an application from
whatever point.
Considering memory limitations of DTV receivers, media players
should only be instantiated when necessary. For example, they
usually cannot stay instantiated after being used, waiting for a
possible next utilization. However, due to resource limitations too,
the time needed to instantiate a media player can introduce a delay
long enough to cause loss of temporal synchronization among
content presentations. In this case, a player-load plan should be
computed from the presentation plan.
For each start and resume presentation action in the presentation
plan, new moments in time must be computed for the equivalent
player-load plan, taking into account the delay for each player
instantiation. Other types of actions present in the presentation plan
must be disregarded when building the player-load plan.
From the presentation plan, the prefetching plan and the QoS
negotiation plan must be derived, as discussed in Section 5.

4. INTERMEDIA MANAGEMENT OF
BROADCASTING CONTENT

In terrestrial DTV systems it is usual to have some application data
transmitted in synchronized streams using timestamps (following
the timeline paradigm), as for example, the main audio and the main
video. It is also usual to have other data (other video, audio image,
text, etc) transmitted asynchronously (without timestamps) in other
streams. Although these other objects are transmitted
asynchronously, they can be synchronized with themselves and with
data coming in synchronous streams. In this case, the event-driven
paradigm is used for synchronization, with another asynchronously
transmitted object, the DTV application, carrying the
synchronization specification, as mentioned in Section 1.
In terrestrial broadcasting system, all streams are multiplexed and
transmitted to receivers inside a frequency channel. In the client
side, receivers must be tuned in a desired channel to start receiving
its contents.
Since a channel can be tuned at any time and because asynchronous
transmitted data must be delivered previously to its exhibition time,
the data must be sent repeatedly, in order to guarantee its reception
independent from the time a channel is tuned in. MPEG System
standard defines a cyclical data structure to transport these data
called DSM-CC carousel [12]. Following this standard, data may be
put in a carousel that is transmitted time after time in an elementary
stream. Using object carousels data objects may be inserted more
than once and in any place within a carousel.
The carousel bit length, the carousel stream transmission rate, and
the space between instances of a same object give the maximum

delay for retrieving that object. The carousel transmission rate is
limited by the TV channel bandwidth. Moreover, as this bandwidth
is shared with other data streams synchronized by timestamps,
including the main audiovisual streams, if the carousel time-length
increases, the audiovisual quality of service decreases. Thus, it is
very important to maintain the carousel as small as possible.
When a receiver is tuned in a desired channel, the main audiovisual
streams can be immediately presented. However, the
asynchronously transmitted data already received must wait the
application specification arrival to know the exact time (calculated
by the presentation plan) to be presented. Thus, the application
specification must have the shortest possible delay. As a
consequence, it should be inserted in a carousel more than once, as
explained before.
The simplest way to deal with the carousel management is having a
carousel with all data (application specification and its media
contents) needed to run an application. In this case, the server side
has a very simple procedure. The receive side has two extreme cases
of operation, as follows.
The first case requires initiating an application only after receiving
all its data. This can generate a large delay that can impair the
correct application running, especially if there are temporal
relationships involving asynchronously transmitted data and other
data streams, for example, the main video stream. This approach
also usually requires a large storage capacity in the receiver, what is
uncommon.
The second case works without needing the storage of all
application’s media contents. In this case the receiver must assure
that, after starting an application, it will always have a media
content already extracted from the carousel when the moment in
time for the content presentation arrives. For a correct performance,
the receiver engine should build from the presentation plan,
discussed in Section 3, a prefetching plan, specifying the moment a
media object should be extracted from the carousel to the system
memory, as discussed in Section 5.
The two previous cases assume that a carousel transports all
information needed to run an application. As aforementioned, this is
not a good approach, since it leaves a smaller bandwidth for the
main audiovisual streams, decreasing their QoS. Therefore, it is
worth to try to work with carousels containing only part of
applications. This presumes that the server side knows which part of
an application a carousel should transport in a certain moment.
One solution, adopted in some related work presented in Section 2,
is to pass the carousel management responsibility to the application
author. The author must split the application into smaller
applications that in a whole give the same result. Each one of these
smaller applications is then transmitted inside a carousel, as before.
In this case, the author is also responsible for triggering these
applications in precise moments, using another DSM-CC facility:
stream events [12].
An alternative and better solution is to run the carousel management
autonomically. To accomplish this task, the server should build a
carousel plan to guide object insertions to or removals from a
carousel. The carousel plan would contain the moments in time
when media objects should be available at receivers.
In the Brazilian Terrestrial DTV System (SBTVD), DSM-CC object
carousels are used. The carousel plan is built based on the HTG
model, but in the server side this time.

The carousel plan is similar to the presentation plan built in
receivers, with the exception that, once built, it does not need to be
updated, since there is no feedback coming from receivers.
Therefore, as for the server knowledge, all unpredictable events
must be treated as if they will happen at the moment they will be
enabled.
From the carousel plan, the server-side middleware should estimate
which objects must be placed inside the carousel, how many times,
in which places, and which objects must be removed from; a
difficult optimization problem indeed.
In the current server reference implementation for SBTVD, the
removal processes is done in its plenitude, but the insertion needs a
better algorithm. In the current implementation, the application
object is always present in the carousel. It is the only object inserted
several times, in order to minimize the application starting delay.
Other objects are inserted in the carousel depending on its length,
the carousel length, their maximum retrieving delay, and their
expected presentation times, obtained from the carousel plan.
It should be noted that the use of an optimized carousel does not
relieve receivers from managing the carousel loading. If they do not
have sufficient memory to retrieve the whole carousel data, a
prefetching plan should be built to guide the retrieval, as discussed
in the next section.

5. INTERMEDIA MANAGEMENT FOR
CONTENT LOADING

As discussed in Section 3, based on the presentation plan the user
agent knows when media contents must be played. However, in
order to be able to execute this task, not only media players must be
instantiated but also media contents must be available on time.
The player-load plan, discussed in Section 3, guides the player
instantiation to solve the first requirement. In order to deal with the
second requirement, two approaches are possible, as already
discussed for data obtained from DSM-CC carousel. The same
procedures can be extended for pulled data obtained by using return
channels (or interactive channels): i) requiring all application’s
contents before starting it; ii) requiring application media contents
on the fly, that is, during the application execution.
As aforementioned, the first solution requires a large receiver’s
storage capacity, which is usually impossible for low cost receivers.
Moreover, such solution can introduce an unbearable application
starting delay.
The second solution is much better, but demands from receivers the
control of content retrievals. For pushed data transported in DSM-
CC carousels, a prefetching plan must be built, establishing when a
media object should be taken out of a carousel.
A carousel prefetching plan is built based on the presentation plan
and the estimated carousel delay. In the current Ginga middleware
reference implementation, a very simple procedure is used, based on
the worst case carousel delay. In the procedure, all unpredictable
events are assumed to happen immediately after they are enabled.
As for pulled data, the download procedures depends on if the
interactive channel network allows intramedia QoS negotiation or
not. Intramedia QoS deals with single media objects. It is associated
with the moment that contents are obtained from storage locations,
the network transfer rate, transfer delay and transfer jitter, and
scheduling policies in the involved (clients’ and servers’) operating

systems. In fact, intramedia QoS is an important support in order to
guarantee a correct maintenance of intermedia synchronization.
If QoS support is not provided by an interactive channel, receivers
must download media objects guided by a prefetching plan. This
plan is built based on the presentation plan, as usual, taking into
account the estimate network transfer delay and transfer jitter for
each object. Because the plan is built based on estimations, pre-
fetching mechanisms in receivers’ middleware will be useful only to
minimize the probability of having temporal mismatches. Of course,
a conservative algorithm can avoid all temporal mismatches, but
with a cost of more expensive receivers and larger application
starting delay. Indeed, bringing all application’s contents before
starting an application can be considered a special case of this
solution. When building the prefetching plan, a conservative
approach assumes that all unpredictable events happen immediately
after they are enabled.
In interactive channels that offer QoS support a better control can be
achieved. In this case, from their presentation plans, receivers build
their QoS plans, taking into account the transfer delay and the
transfer jitter that will be negotiated for each object. The QoS plan is
then used to trigger resource reservation procedures in order to
obtain the desired QoS. If the negotiation is succeeded, then it is
guaranteed that the media object will be in a receiver on time; else a
new negotiation can be started with more relaxed QoS parameters or
a new negotiation can be started in future time, but, in this case,
with more strict QoS parameters. Using QoS, the chances for
temporal synchronization mismatches are reduced.
QoS negotiation in DTV systems brings back the interesting topic
about resource reservations in advance raised by mobile computing
work. Resource reservation in advance enables scheduling and
allocation of resources at an early stage in time. This way, the
availability of resources can actually be guaranteed for the point in
time when the resources are needed.
In mobile computing, handoffs can cause QoS breaks. Thus
resource reservation in advance should be made based on the next
future location of a mobile device. The problem in mobile
computing is to know the future location and when it will be
reached. So, QoS in advance could be achieved only based on
estimations and with resource waste. In contrast, DTV systems do
not have these constraints.
Based on the presentation plan, the exact moments in time to make
resource reservations are known a priori, assuming that all
unpredictable events happen immediately after they are enabled.
Resource reservation in advance does not guarantee zero
synchronization mismatches, but reduces even more the mismatch
probability, since it enlarges the time range for resource reservation
negotiation.
The reference implementation of Ginga does not provide support for
QoS negotiation yet. In receivers, besides the presentation plan, only
the prefetching plan is built using a conservative algorithm. It is
assumed that all future unpredictable events will happen
immediately after they are enabled, and the worst case transfer delay
and jitter (both for the DSM-CC carousel and for the interactive
channel) are assumed. In the implementation, the interactive channel
is continuously probed, adjusting the worst case delay and jitter on
the fly.

6. FINAL REMARKS
This paper presents an enhanced set of data structures to support
intermedia synchronization management in client and server sides
of a DTV system. The proposed data structures are derived from a
directed time graph model (HTG), which preserves not only event
execution times but also all temporal relationships among events,
including unpredictable relationships, such as viewer interactions
and those requiring on-the-fly content adaptations.

All proposed data structures take into account that applications
should run in receivers where resources are normally restricted, and
that applications should have a good response time.

The HTG model can also be used in the authoring phase. The
Composer authoring tool [10] uses HTG to guide its temporal view
exhibition. In Composer’s temporal view, a graphical representation
of all application’s media objects is presented in a relative time
axes, making easier the creation of temporal relationships among
media objects.

The temporal graph structure and most of the other derived data
structures discussed in this paper were implemented in the reference
implementation of the Ginga middleware, the standard middleware
of the Brazilian Terrestrial Digital TV System, used in this paper as
a proof of concept. This open source implementation can be
obtained from www.ncl.org.br.

In the current implementation, algorithms used for establishing the
moments in time for the carousel plan creation and for the
prefetching plan creation are very simple and are based only on the
worst case, as mentioned in the paper. They need to be enhanced in
near future.

Another future work is to use adaptations for compensating delays
greater than the predicted values used to build the plans, stretching
and shrinking media object presentations. NCL DTV profiles do not
support the specification of variable content-presentation duration,
as does the NCL full profile. However, NCL user agents can make
small adjustments, mainly in static media presentations. The ideas
presented in [5] could be used in a future implementation, as well as
in a future DTV profile specification.

7. ACKNOWLEDGMENTS
The authors would like to thank Carlos Salles and Marcio Moreno
who provided a thoughtful discussion of this work, tracked down
and also fixed problems in the initial reference implementation of
Ginga.

8. REFERENCES
[1] ABNT NBR Associação Brasileira de Normas Técnicas. 2007.

Digital Terrestrial Television Standard 06: Data Codification
and Transmission Specifications for Digital Broadcasting, Part
2 – GINGA-NCL: XML Application Language for Application
Coding (São Paulo, SP, Brazil, November, 2007).
http://www.abnt.org.br/imagens/Normalizacao_TV_Digital/A
BNTNBR15606-2_2007Ing_2008.pdf.

[2] Allen J.F. 1983. Maintaining Knowlegde about Temporal
Intervals. Communications of the ACM, 26(11), November
1983, pp. 832-843.

[3] ARIB Association of Radio Industries and Business. 2004.
ARIB Standard B-24 Data Coding and Transmission
Specifications for Digital Broadcasting, version 4.0, 2004.

[4] ATSC Advanced Television Systems Committee. 2000. ATSC
Data Broadcasting Standard - A/90, 2000.

[5] Bachelet, B.; Mahey, P.; Rodrigues, R.F.; Soares, L.F.G. 2007.
Elastic Time Computation in QoS-Driven Hypermedia
Presentations. ACM SIGMM Multimedia System Journal,
vol.12, No. 6. Springer Verlag. (Maio de 2007); pp.461-478.
ISSN: 0942-4962

[6] Buchanan M.C., Zellweger P.T. 1992. Specifying Temporal
Behavior in Hypermedia Documents. I Proceedings of
European Conference on Hypertext (Milan, Italy, December
1992). ECHT'92.

[7] Bulterman D.C.A., Jansen J., Kleanthous K., Blom K., Benden
D. 2004. AMBULANT: A Fast, Multi-Platform Open Source
SMIL Player. In Proceedings of ACM International
Conference on Multimedia (New York, USA, 2004).

[8] ECMA International - European Association for Standardizing
Information and Communication Systems. 1999. ECMA – 262
– ECMAScript Language Specification. 3rd Edition.
http://www.ecma-international.org/publications/
standards/Ecma-262.htm.

[9] ETSI European Telecommunication Standards Institute. 2006.
ETSI TS 102 812 V1.2.2 Digital Video Broadcasting “Digital
Video Broadcasting (DVB); Multimedia Home Platform
(MHP) Specification 1.1.1”.

[10] Guimarães, R.L; Costa, R.R.; Soares, L.F.G. 2008. Composer:
Authoring Tool for iTV Programs. In Proceedings of European
Interactive TV Conference (Salzburg, Austria, July 2008).
EuroiTV 2008.

[11] GPAC Project on Advanced Content. OSMOSE Player for
MPEG-4 – OSMO4.
http://gpac.sourceforge.net/player.php

[12] ISO/IEC International Organization for Standardization 13818-
6. 1998. Information technology – Generic coding of moving
pictures and associated audio information - Part 6: Extensions
for DSM-CC.

[13] ISO/IEC International Organisation for Standardisation.
14496-5. 2000. Coding of Audio-Visual Objects – Part 5:
Reference Software. 2nd Edition, 2001.

[14] ISO/IEC International Organization for Standardization 14496-
1. 2004. Coding of Audio-Visual Objects – Part 1: Systems.
3nd Edition.

[15] ISO/IEC International Organization for Standardization 14496-
10. 2005. Information Technology – Coding of Audio-Visual
Objects – Part 10: Advanced Video.

[16] Jeong T., Ham J., Kim S. 1997. A Pre-scheduling Mechanism
for Multimedia Presentation Synchronization. In Proceedings
of IEEE International Conference on Multimedia Computing
and Systems (Ottawa, Canada, 1997), pp. 379-386.

[17] Schmitz P. 2001. The SMIL 2.0 Timing and Synchronization
Models: Using Time in Documents. Technical Report.
Microsoft Research.

http://research.microsoft.com/research/pubs/view.aspx?type=T
echnical%20Report&id=439

[18] Soares L.F.G., Rodrigues R.F. 2006. Nested Context Language
3.0 Part 8 – NCL Digital TV Profiles. Technical Report.
Departamento de Informática da PUC-Rio, MCC 35/06.
http://www.ncl.org.br/documentos/NCL3.0-DTV.pdf.

[19] Soares L.F.G., Costa, R.M.R; Moreno,M.F. 2008. Graph-
Based Schedulers for Resource Management and Presentation
Control in a QoS Architecture for DTV Applications.
Technical Report. Departamento de Informática da PUC-Rio,
MCC 12/08.

[20] van Rossum G., Jansen J., Mullender K.S., Buterman D. 1993.
CMIFed: A Presentation Environment for Portable
Hypermedia Documents. In Proceedings of ACM Multimedia
(Anaheim, USA, August 1993).

[21] W3C World-Wide Web Consortium. 2004. Document Object
Model – DOM Level 3 Specification. W3C Recommendation.

[22] W3C World-Wide Web Consortium. 2005. Synchronized
Multimedia Integration Language – SMIL 2.1 Specification,
W3C Recommendation.
http://www.w3.org/TR/2005/RECSMIL2-20051213/

