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Abstract

In this paper we have considered turbo codes with component convolutional
codes as in the Long Term Evolution (LTE) standard. The interleaver lengths
are of the form 16V or 48V, with ¥ a product of different prime numbers greater
than three. For these interleaver lengths, we have shown that cubic permutation
polynomials (CPP), with some constraints on the coefficients when for a prime p; >
3, 31 (pi—1), allways have an inverse true CPP. For the previously mentioned turbo
codes and CPP interleavers, we have shown that the minimum distance is upper
bounded by the values of 38, 36, and 28, for three different classes of coefficients.
Previously it was shown that for the same interleaver lengths and for quadratic
PP (QPP) interleavers, the upper bound of the minimum distance is equal to 38.
Several examples show that d,,;,-optimal CPP interleavers are better than d,;,-
optimal QPP interleavers because the multiplicities corresponding to the minimum
distances for CPPs are about a half of those for QPPs. A theoretical explanation
in terms of nonlinearity degrees for this result is given for all considered interleaver
lengths and for the class of CPPs for which the upper bound is equal to 38.

Keywords: PP interleaver, CPP, QPP, minimum distance, upper bound, turbo
codes.

1 Introduction

Permutation polynomials (PPs) have been studied for many years ago. They are used
in cryptography or as interleavers for turbo codes [1]. PP interleavers for turbo codes
have some advantages as: fully algebraic description, which made them easy to analyze
and design, low power consumption and low memory requirements. Other well known
and performant interleavers are dithered relative prime (DRP) [2] and almost regular
permutation (ARP) ones [3]. These interleavers can lead to better error correcting per-
formance, but they are not fully algebraic, being a combination of algebraic and random
interleavers.

Quadratic PP (QPP) interleavers have been adopted for turbo codes in the Long Term
Evolution (LTE) standard of the 3rd Generation Partnership Project [4]. Higher than two
degree PP interleavers have received attention in the last years [5-10]. Minimum distance
is a well known metric which affects the performance of error correcting codes. Therefore
it is beneficial to know the upper bounds of the minimum distance of different codes to
know the capabilities in error correction of these codes. Related results for turbo codes



with QPP interleavers are given in |11]. Recently, in [12], upper bounds on the minimum
distance of turbo codes with cubic PP (CPP) interleavers of lengths of the form 8p or
24p, with p a prime number so that 3 | (p — 1), were established. In this paper, we deal
with the upper bounds on the minimum distance of turbo codes using CPP interleavers
of lengths of the form L = 16V or L = 48V, with ¥ a product of different prime numbers
greater than three, and with some constraints for the coefficients when for a prime p; > 3,
31 (p; —1). The main contributions in this paper are:

e We have shown that all CPP interleavers for the above interleavers lengths and

constraints have an inverse true CPP (i.e. a CPP which can not be reduced to a
QPP or a linear PP (LPP)).

e We have obtained three upper bounds of the minimum distance of the turbo codes
using the above CPP interleavers. These upper bounds are equal to 38, 36, and 28,
for different classes of the CPP’ coefficients (as show Tables [10] [11} and [12).

e Some remarks are made for CPP and QPP interleavers from Table III in [13]. The
difference in error correction performance of these CPP and QPP interleavers is
explained in terms of nonlinearity degrees. This result is proven to be generally
valid for all considered interleaver lengths and for the class of CPPs for which the
upper bound is equal to 38. An insight to search d,,;,-optimal CPPs among CPPs
with the largest spread factor is suggested. This fact along with conditions in Table
restricts very much the class of coefficients to find d,,;,-optimal CPPs and thus
saves very much time for searching.

The paper is structured as follows. In Section [2 the used notations are given and
some required previous results about CPPs are provided. In Section [3] the main results
are obtained. In Section [4 some remarks are made for CPP and QPP interleavers from
Table IIT in [13] and Section [5| concludes the paper.

2 Preliminaries

2.1 Notations

In the paper we use the following notations:
e (mod L), with L a positive integer, denotes modulo L operation
e a | b, with a and b positive integers, denotes a divides b
e atb, with a and b positive integers, denotes a does not divide b

e gcd(a,b), with a and b positive integers, denotes the greatest common divisor of a
and b.

2.2 Results about CPPs
A CPP modulo L is a third degree polynomial

m(z) = (fiz + fox® + f32°) (mod L), (1)



so that for x € {0,1,..., L — 1}, values 7(z) (mod L) perform a permutation of the set
{0,1,--- L —1}.

A CPP is true if the permutation it performs cannot be performed by a permutation
polynomial of degree smaller than three.

Two CPPs with different coefficients are different if they lead to different permuta-
tions.

Conditions on coefficients fi, fo, and f3 so that the third degree polynomial in is
a CPP modulo L have been obtained in [5,/6]. Because we are interested in interleaver
lengths of the form 16 - vaz”l p; or 48 - Hi\f:pl pi, with N, a positive integer, in Table [1| we
give the coefficient conditions only for the primes 2, 3, and p;, ¢ = 1,2, ..., N,, when the
interleaver length is of the form

Np

[ = 92"tz . 3nLs . Hpi, with nr2 > 1,nps € {0, 1}, (2)
=1

pi>3,i:1,2,...,Np,p1 <p2<---<pr.

Table 1: Conditions for coefficients fi, fa, f3 so that m(x) in is a CPP modulo L of
the form
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p=2 nL72>1 f17é0,f2:0,f320(m0d 2)
p:3 TZL73:1 (f1+f3)7é0,f220(m0d 3)
(
(
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Pi — 1) nL,pi =1 f1 7é O, fg = 07 f3 =0 (IIlOd pz)
pi—1) [ npp, =1 fi#0,fo=0,f; =0 (mod p;) or
f3 =3f1fs (mod p;)

Wl w
— [ — | — [ ~—

A CPP modulo L
p(x) = (pr& + paa® + psa®) (mod L), (3)
is an inverse of the CPP in if

7(p(z)) =« (mod L),Vx € {0,1,--- ,L —1}. (4)

3 Main Results

In this section we consider the interleaver lengths of the form

L=16-[[pi=2"[[pior L=48-]]pi=2"-3-]]p: (5)

with p; different prime numbers so that p; > 3,Vi =1,2,..., Ny,and p; < py <--- < pn,.
For p; a prime so that 31 (p; — 1), ¢ € {1,2,..., N, }, we will consider only the CPPs
with coefficients fulfilling conditions

f1 7é 0, f2 = 0, fg =0 (mod pz) (6)

In the following we will denote
NP
sz' =" (7)
i=1
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Firstly, we prove two lemmas necessary to derive the upper bounds of the minimum
distance.

Lemma 3.1. Let the interleaver length be of the form given in . Then all true different
CPPs fulfilling conditions (6) when 3 1 (p; — 1), have possible values for coefficients fs
and fo equivalent to those given in Table[q from the second and third column, respectively.
Coefficient f1 has to fulfill the necessary conditions, but not sufficient, from the fourth
column in Table[2.

Table 2: Possible values for coefficients f3 and f5 so that 7(x) in (1)) is a true CPP modulo
16W or 48W¥. (Conditions for coefficient f; from the fourth column are necessary, but not
sufficient.)

7 — 7 | 7 )
16W | 2W or 4V or 6¥ | 0 or 2¥ or 4V or 8¥ 1 (mod 8) or 3 (mod 8)
48W || 2W or 4V or 6¥ | 0 or 6¥ or 12W or 18W | or 5 (mod 8) or 7 (mod 8)

Proof. For the interleaver length of the form L = 16V, a true CPP is equivalent to a
CPP for which fo < L/2 = 8V¥ and f3 < L/2 = 8W. For the interleaver length of the
form L = 48V, a true CPP is equivalent to a CPP for which fo < L/2 = 24V and
fs < L/6 = 8W¥. Taking into account the coefficient conditions for a CPP given in Table
[1 coefficients fo and f3 from Table [2] follows.

We note that when L = 16V or L = 48V, from condition 1) in Table [1| f; results
odd. Thus, we can have only f; = 1 (mod 8) or f; = 3 (mod 8) or f; = 5 (mod 8) or
fi =7 (mod 8). O

Taking into account the result in Lemma [3.1] for interleaver lengths of the form (),
coefficients f3 and f, of a CPP fulfilling conditions () when 3 (p; — 1) are of the form

f3 = k'g, . 2\1171{3 € {1,2,3}, f2 = k'Q . Q\If,kg € {0, 1,2,3}, for L = 16\11, (8)

f3 = k’g : Q\I/,kg € {1,2,3}, f2 = ]€2 : 6\Ij,k2 € {0, 1,2,3}, for L = 48V. (9)

Lemma 3.2. Let the interleaver length be of the form given in . Then, a true CPP
m(z) = fix + for® + f32* (mod L), fulfilling conditions (6] when 3 4 (p; — 1), has an
inverse true CPP p(z) = p1x + pax® + p3x® (mod L), with

p3 = [, (10)
p2 = fo or po = fo+ 4V (mod 8V¥), when L = 16V, (11)
p2 = fa or pa = fo+ 12V (mod 24V), when L = 48V. (12)

p1 is the unique modulo L solution of the congruence fipy =2W -k +1 (mod L), so that
p1 = fi (mod 24) when L = 48W, with k from Tables [8, according to the coefficients

fs; f2 and fi.



Table 3: Determining coefficients p, and p; of the inverse CPP p(z) depending on the
coefficients f3, fo and f; when L = 16V (kg = 2¥ (mod 8)).

f3 fa Condition for f; Congruence for P2
determining p;
2V 0 fi=3 (mod 8) or | fip1 =2V - ((kg +6) (mod 8)) fa
fi =7 (mod 8) +1 (mod (16 - ¥))
2U or 6¥ | f; =1 (mod 8) fipr =1 (mod (16 - ¥))
0 fi=1(mod 8) or | fip1 =2¥ - ((ky +2) (mod 8))
fi =5 (mod 8) +1 (mod (16 - ¥))
4V -
2V or 6¥ | f; =5 (mod 8) fipr =8V +1 (mod (16 - V))
2V or P f1 =3 (mod 8) fipr =1 (mod (16 - ¥)) fo +4V
6w 6w fi =7 (mod 8) (mod 8W)
PAY fi =7 (mod 8) fipr =8V +1 (mod (16 - V))
6w f1 =3 (mod 8)
AU |2V or 6V | f; =7 (mod 8) fipr =1 (mod (16 - V)) fo

4 fi =1 (mod 8) or

0 fi=1(mod 8
2V or 6¥ | f; =3 (mod 8
Oor4¥ | f; =3 (mod 8) or

0 fi=5 (mod 8
20 fi=>5 (mod 8 fipr =1 (mod (16 - ¥)) fo + 4V
6w fi=1 (mod 8 (mod 8W)
2V fi=1 (mod 8 fipr = 8¥ 4 1 (mod (16 - ¥))
6w fi =5 (mod 8)
6w 0 fi=1(mod 8) or | fip1 =2¥ - ((ky + 6) (mod 8)) fo
fi =5 (mod 8) +1 (mod (16 - ¥))
4 -
2U or 6¥ | f; =1 (mod 8) fipr =1 (mod (16 - ¥))
0 fi =3 (mod 8) or | fip; =2V - ((k\p + 2) (mod 8))
fi =7 (mod 8) +1 (mod (16 - ¥))

2U or 6¥ | f; =5 (mod 8) fipr =8V +1 (mod (16 - V))

Proof. p(z) is an inverse CPP of w(x) if
7(p(z)) =z (mod L),Vx € {0,1,...,L —1}. (13)

Taking into account Lemma [3.1] after some algebraic manipulations, equation is
equivalent to

(fipr = 1) -z + (frpa + fop?) - 2 + (fips + 2f2p2p1 + fapr) - 2° + (3fapipa + 2fopapr + fop3) - 2+
+(3f3pps + 3f3p1p3) - & + (faps + fap3) - 2° + 3faprps - 2" =0 (mod L),V € {0,1,...,L —1}.
(1)
Because m(x) and p(z) are true CPPs, from Lemmal[3.1]it results that p; = f3 = k3-20,
with k3 € {1,2,3}. Because p; is odd Vi € {1,2,...,N,}, ¥ from is also odd. Then,
we can have U =1 (mod 8), ¥ = 3 (mod 8), ¥ =5 (mod 8) or ¥ = 7 (mod 8). Then,

>



Table 4: Determining coefficients p, and p; of the inverse CPP p(z) depending on the

coefficients f3, fo and f; when f3 = 2VU and L = 48V (ky = (2¥) (mod 24)).

’ f3 \ f2 \ Condition for f; \ kg k \ 02 ‘
20 0 fie (1,13} (mod 24) | 10o0r22 | (ke +2) | fo
f1 € {9,21} (mod 24) 20or 14 | (mod 24)
f1 € {5,17} (mod 24) 20or 14 | (ky + 10)
f1 € 49,21} (mod 24) 10 or 22 | (mod 24)
f1 € {3,15} (mod 24) 20r 14 | (kg + 14)
fie {7,190} (mod 24) | 10or 22 | (mod 24)
f1 € {3,15} (mod 24) 10 or 22 | (kg + 22)
f1 € {11,23} (mod 24) 20r 14 | (mod 24)
6V or 18¥ fi=1 (mod 24) 22 (kv +2)
f1 =9 (mod 24) 14 (mod 24)
1 =13 (mod 24) 10
7, =21 (mod 24) )
fi=>5 (mod 24) 2 (kg +10)
fi =9 (mod 24) 22 (mod 24)
fi =17 (mod 24) 14
Fi =21 (mod 24) 10
Fi =1 (mod 24) 10| (kg +14)
fi =9 (mod 24) 2 (mod 24)
fi1 =13 (mod 24) 22
fi = 21 (mod 24) 14
f1 =5 (mod 24) 14 (kg +22)
i =9 (mod 24) 10 | (mod 24)
f1 =17 (mod 24) 2
fi =21 (mod 24) 22
120 Fi € {1,7,13,10} (mod 24) | 10 or 22 | (kg +2)
f1€43,9,15,21} (mod 24) | 2 or 14 | (mod 24)
fL€15,11,17,23} (mod 24) | 2or 14 | (kg + 10)
f1€4{3,9,15,21} (mod 24) | 10 or 22 | (mod 24)
2V = 2 (mod 8) or 2V = 6 (mod 8). Because every p; is odd and 3 { p;, we can have
(

U =1 (mod 24), ¥ = 5 (mod 24), ¥ = 7 (mod 24), ¥ = 11 (mod 24), ¥ = 13 (mod 24),
U = 17 (mod 24), ¥ = 19 (mod 24), or ¥ = 23 (mod 24). Then 20 = 2 (mod 24),
10 (mod 24), 2¥ = 14 (mod 24) or 2V = 22 (mod 24).

Thus, for L = 16V and py = fo = ky - 20, with ky € {0,1,2,3}, is equivalent to

2V

(fipr = 1) -2+ 2k - (fy + p3) - 2% + 20 - (ks fi + 4k3Wpy + kyp}) - 2%+
4k U2 - (Bksp? + 2kspy + 2k3W) -z + 4ks W2 - (2k3Wpy + 3ksp?) - 2° + Skok2W3 - 204
+8k3W3p; - 2" = 0 (mod 16V),Vx € {0,1,...,16¥ — 1}.
(15)
For L = 16V, fo = ko - 2V and py = ((k2 +2) (mod 4)) - 2V, with k, € {0,1, 2,3},



Table 5: Determining coefficients p, and p; of the inverse CPP p(z) depending on the
coefficients f3, fo and f; when f3 = 2VU and L = 48V (ky = (2¥) (mod 24)).
’ f3 \ fo \ Condition for f; \ kg \ k \ P2

20 | 6V | f1 =15 (mod 24) | 2 | (kg +2) fo + 120

fi=7(mod 24) | 10 | (mod 24) | (mod 24¥)
fi =3 (mod 24) | 14
fi =19 (mod 24) | 22
fi =23 (mod 24) | 2 | (ky + 10)
fi =15 (mod 24) | 10 | (mod 24)
fi=11 (mod 24) | 14

fi =3 (mod 24) | 22
fi=3(mod 24) | 2 | (ky + 14)
fi =19 (mod 24) | 10 | (mod 24)
fi =15 (mod 24) | 14
fi =17 (mod 24) | 22
fi =11 (mod 24) | 2 | (kg +22)
fi=3 (mod 24) | 10 | (mod 24)
fi =23 (mod 24) | 14
fi =15 (mod 24) | 22
18U | f, =3 (mod 24) | 2 | (kg +2)
fi =19 (mod 24) | 10 | (mod 24)
fi =15 (mod 24) | 14
fi =7 (mod 24) | 22
fi=11 (mod 24) | 2 | (ky + 10)
fi =3 (mod 24) | 10 | (mod 24)
fi =23 (mod 24) | 14
fi =15 (mod 24) | 22
fi=15 (mod 24) | 2 | (k¢ + 14)
fi=7(mod 24) | 10 | (mod 24)
fi =3 (mod 24) | 14
f1 =19 (mod 24) | 22
fi =23 (mod 24) | 2 | (ky +22)
fi =15 (mod 24) | 10 | (mod 24)
fi =11 (mod 24) | 14

fi =3 (mod 24) | 22

(14) is equivalent to

(flpl — 1) x4+ 20 - <2f1 + fle + kigp%) : 1’2 + 2V - (k?gfl + 4/€§\I/p1 + k?gp?) . ZL’3+
+4W? - (3koksp? + 2kokspy + 2k3W + 2kgp?) -t + 4ks U2 - (2k3Up; + 3ksp?) - 25+ (16)
+8kok3 WP - 28 + 8k3Wp; - 2" = 0 (mod 16W),Vz € {0,1,...,16¥ — 1}.
For L = 48V, py = fo = ko - 6V, with ky € {0, 1,2, 3}, is equivalent to
+12ko U2 - (3kzpT + 2kspy + 2k3 W) - 2t + 12k3 02 - (2k53Upy + k3p?) - 2° + 24k k303 - 204

+-24k303 py - 27 4 16k30* - 27 = 0 (mod 48¥),Va € {0,1,...,480 — 1}.
(17)



Table 6: Determining coefficients p, and p; of the inverse CPP p(z) depending on the
coefficients f3, fo and f; when f3 = 4V and L = 48V (ky = (2¥) (mod 24)).
’ f3 \ f2 \ Condition for f; \ kg \ k \ P2 ‘

4V 0 f1€43,9,15,21} (mod 24) | 2 | (kg +2) | f2
f1€{5,11,17,23} (mod 24) | 10 | (mod 24)
f1€{1,7,13,19} (mod 24) | 2 | (kg + 10)
f1€1{3,9,15,21} (mod 24) | 10 | (mod 24)
f1€43,9,15,21} (mod 24) | 14 | (ky + 14)
f1€45,11,17,23} (mod 24) | 22 | (mod 24)
f1€{1,7,13,19} (mod 24) | 14 | (ky + 22)
f1€{3,9,15,21} (mod 24) | 22 | (mod 24)

6W or 18U f1 =3 (mod 24) 2 | (kg +2)
fi =11 (mod 24) 10 | (mod 24)
fi =15 (mod 24) 14
fi =23 (mod 24) 22
i =3 (mod 24) 10 | (kg +10)
fi =7 (mod 24) 14 | (mod 24)
fi =15 (mod 24) 22
fi =19 (mod 24) 2
i =3 (mod 24) 4 | (kg + 14)
f1 =11 (mod 24) 22 | (mod 24)
fi =15 (mod 24) 2
i =23 (mod 24) 10
f1 =3 (mod 24) 22 | (kg +22)
fi =7 (mod 24) 2 | (mod 24)
f1 =15 (mod 24) 10
fi =19 (mod 24) 14
120 Fi € 3,15} (mod 24) 2 | (ky +2)

fL € {11,23} (mod 24) | 10| (mod 24)
f1€{9,21} (mod 24) 14
f1 € 45,17} (mod 24) 22
fle (1,13} (mod 24) | 14 | (kg + 10)
fi e 13,15} (mod 24) | 10| (mod 24)
f1 € {7,19} (mod 24) 2
f1€{9,21} (mod 24) 22

( )

( )

( )

fie {3, 15} mod 24 14 (k\p + 14)
f1 € {5,17} (mod 24 10 | (mod 24)
f1 €{9,21} (mod 24 2
fi€ (11,23} (mod 24) | 22
i€ {1,13} (mod 24) > | (ky + 22)
fi€{3,15) (mod 24) | 22| (mod 24)

( )

( )

f1 € 47,19} (mod 24 14
f1 €49,21} (mod 24 10

For L = 48W, fy = ky - 60 and py = ((ks + 2) (mod 4)) - 60, with k, € {0,1,2, 3},



Table 7: Determining coefficients p, and p; of the inverse CPP p(z) depending on the
coefficients f3, fo and f; when f3 = 4V and L = 48V (ky = (2¥) (mod 24)).
’ f3 \ fo \ Condition for f; \ kg \ k \ P2

AU | 6V | fi=9(mod 24) | 2 | (kg +2) fo + 120

fi =17 (mod 24) | 10 | (mod 24) | (mod 24V)
fi=21 (mod 24) | 14
fi=>5 (mod 24) | 22
fi=1(mod24) | 2 | (ky + 10)
fi =09 (mod 24) | 10 | (mod 24)
f1 =13 (mod 24) | 14
f1 =21 (mod 24) | 22
fi=21 (mod 24) | 2 | (ky + 14)
fi=>5 (mod 24) | 10 | (mod 24)
fi=9 (mod 24) | 14
fi =17 (mod 24) | 22
fi=13 (mod 24) | 2 | (ky +22)
fi =21 (mod 24) | 10 | (mod 24)
fi=1(mod 24) | 14
f1 =09 (mod 24) | 22
ISV | fi =21 (mod 24) | 2 | (ky +2)
fi=5 (mod 24) | 10 | (mod 24)
fi=9 (mod 24) | 14
fi =17 (mod 24) | 22
fi=13 (mod 24) | 2 | (ky + 10)
fi =21 (mod 24) | 10 | (mod 24)
fi=1(mod 24) | 14
fi=9 (mod 24) | 22
fi=9 (mod 24) | 2 | (kg + 14)
fi =17 (mod 24) | 10 | (mod 24)
fi =21 (mod 24) | 14
fi =5 (mod 24) | 22
fi=09 (mod 24) | 10 | (mod 24)
fi =13 (mod 24) | 14
f1 =21 (mod 24) | 22

(14) is equivalent to

(fl,ol — 1) - T+ 6‘1/ . (k?zfl + k?Qp% + 2f1) . 1’2 -+ 20 . (k?gfl + 12k§\11p1 + ]fgp?) . I3+
+12U2 - (3koksp? + 2kokspy + 2k3W + 2ksU?p?) - 2t 4 12ks W2 - (2k3Up; + k3p?) - 2°+
+24ko k203 - 20 4 24K3WP py - 27 4 16k30* - 27 = 0 (mod 48¥),Vx € {0,1,...,480 — 1}.

(18)
Because (2V) | L, from (15]), (16), (L7), or (18), we have
(fipr —1) -2 =0 (mod 2¥),Va € {0,1,..., L —1}. (19)



Table 8: Determining coefficients p, and p; of the inverse CPP p(z) depending on the
coefficients f3, fo and f; when f3 = 6W and L = 48V (kg = (2¥) (mod 24)).

| f3 | fo \ Condition for f; | ke | k \ 02 |
60 0 FL € {7,11,19,23} (mod 24) | 10 or 22 | (kg +2) fa
(mod 24)
Fi € {7,11,19,23} (mod 24) | Zor 14 | (kg + 10)
(mod 24)
Fi € {1,5,13,17} (mod 24) | 10 or 22 | (kg + 14)
(mod 24)
f1€{1,5,13,17} (mod 24) | 2 or 14 | (k¢ +22)
(mod 24)

6V or 18V f1 € {5,13} (mod 24
f1 € {1,17} (mod 24 22 (mod 24)
fi€ {5, 13} mod 24 2 (/{?\p + 10)

( ) 10 (kv + 2)
( )
( )
f1€{1,17} (mod 24) 14 (mod 24)
( )
( )
( )
)

fr € {1,17} (mod 24 10 (kg + 14)
f1 € {5,13} (mod 24 22 (mod 24)
fi € {1,17) (mod 24 2 (kg +22)
fi € {5,13} (mod 24 14 (mod 24)

120 Fie{l,5,7,11,13, 10 or 22 | (kg + 14)
17,19,23} (mod 24) (mod 24)
7€ {1,5,7,11,13, 2or 14 | (ke + 22)
17,19,23} (mod 24) (mod 24)
60 i € {7,23] (mod 24) 10 | (kv +2) | fot 120
i € {11,19] (mod 24) 22| (mod 24) | (mod 24')
f1 - {7, 23} (mod 24) 2 (k‘\p + 10)
f1 € {11,19} (mod 24) 14 (mod 24)
i€ {7,23} (mod 24) 92 | (ke + 14)
1 € {11,19] (mod 24) 10 | (mod 24)
i€ {7.23} (mod 24) 4| (kg +22)
fi € {11,19} (mod 24) 2 (mod 24)
18U fi € (11,19} (mod 24) 10 | (kg +2)
f1 € {7,23} (mod 24) 22 (mod 24)
1 € {11,19} (mod 24) 2 | (kg +10)
i€ {7.23} (mod 24) 14 | (mod 24)
1 € {11,19} (mod 24) 22 | (ko + 14)
f1 € {7,23} (mod 24) 10 (mod 24)
f1 € {11,190} (mod 24) 4| (ke +22)
f1 € {7,23} (mod 24) 2 (mod 24)

Equation is equivalent to

fipr =1 (mod 2V) < fipy =2V -k +1 (mod L), with k£ € {0,1,2,...,7} when L = 16,
and k € {0,1,2,...,23} when L = 480,
(20)
According to Theorem 57 from [14], we note that congruence fip; = 2¥-k+1 (mod L)
has only one solution p; modulo L when L = 16¥ or when L = 48¥ and f; = 1 (mod 3)
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or fi = 2 (mod 3), because ged(f1,L) = 1. When L = 48V, with ¥ = 1 (mod 3),
fi = 0 (mod 3), and k € {1,4,7,...,22}, or when L = 48V¥, with ¥ = 2 (mod 3),
fi =0 (mod 3), and k € {2,5,8,...,23}, congruence fip; =2V -k+1 (mod L) has three
solutions modulo L because ged(fi, L) = 3 and 3 | (2¥ - k + 1), but we will show that
only the solution that fulfills condition p; = 0 (mod 3) is valid and it is unique.

With , is fulfilled if and only if
k-x—+ky (fi+p]) 2°+ (ksfy +4k3Upy + ksp}) - 2°+
+2ko U - (3ksp? + 2kspy + 2k2V) - 2t + 2k - (2k3Wpy + 3ksp?) - 2° + dkok2U? . 20+
+4k30%p; - 2" =0 (mod 8),Vz € {0,1,...,7}.
(21)
When 2¥ = 2 (mod 8), is equivalent to
ka4 ke (fi 4 pl) - 2 + (ks fo + 4K3p1 + kap}) - 2+
+2ky - (3ksp? 4 2kspy + 2k3) - ot + 2ks - (2k2py + ksp?) - 2° + 4kokd - 25+ (22)
+4k3p, - 2" =0 (mod 8),Vz € {0,1,...,7}.

When 2¥ = 6 (mod 8), is equivalent to

kx4 ke (fu+pl) - a® + (ks fu+ dk3py + kapy) - 2”+
+2ky - (k3p? + 2kspy + 2k3) - &t + 2ks - (2k3p1 + kspl) - 2° + 4dkokd - 2%+ (23)
+4k3py - 2" =0 (mod 8),Vz € {0,1,...,7}.

With , is fulfilled if and only if

k-x+ (21 + fike + kopt) - 2 + (ksfi + 4k3Wpy + ksp}) - 2°+
+2W - (3koksp] + 2kokspy + 2k3W + 2k3p3) - 2t + 23V - (2k3Upy + 3k3p]) - 2+ (24)

+4kok2W? - 25 + 4k3U?p, - 27 = 0 (mod 8),Vx € {0,1,...,7}.
When 2¥ = 2 (mod 8), is equivalent to

kox+2-(2f1 + fika 4 kopl) - 2° 4 (ks fo + 4k3p1 + kspl) - 2%+
+2 - (3koksp] + 2kokspy + 2k3 + 2ks3p?) - at + 2ks - (2k3p1 + 3kzpd) - 2°+  (25)
+dkok? - 2% + 4k3p, - 27 =0 (mod 8),Vz € {0,1,...,7}

and when 2¥ = 6 (mod 8), is equivalent to
k-x + 2. (2f1 + flk’g + k‘Qp%) . 1‘2 + (k’gfl + 4]€§p1 + kﬁgp?) . 373—|-
+2 - (koksp? + 2kokspr + 2k + 2k3p?) - a* + 2ks3 - (2k3p1 + ksp?) - 2°+ (26)
+dkok? - 2% + 4k3p, - 27 = 0 (mod 8),Vx € {0,1,...,7}.

Solutions (k, p1) of equations (22), ([23)), (25)), and for each value of f3 € {2V, 4V, 6V},
fo € {0,2¥, 4V 6V}, and f; (mod 8) € {1,3,5,7}, can be found using specific software

programs. We have used symbolic calculus in Matlab for this goal. These solutions are

unique for each value of f; (mod 8) and they are given in Table |3 unified for the cases
when 2U = 2 (mod 8) and 2¥ = 6 (mod 8).

With , is fulfilled if and only if
ka4 3ky - (fr 4 pl) - 2® + (ks fo + 12k3Upy + kap}) - 2™+
+6ko W - (3ksp] + 2kspy + 2k3 V) - 2t + 6z - (2k3Upy + ksp?) - 2° + 12kok3 02 - 20+
+12k302p; - 27 + 8k U3 - 2° = 0 (mod 24),Vz € {0,1,...,23}.
(27)
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When 2V¥ = 2 (mod 24), is equivalent to

+6ky - (3ksp? + 2kspy + 2k3) - 1t + 6ks - (2k3py + k3p?) - 2° + 12kok3 - 25+
+12k3p; - 2" + 8k3 - 27 = 0 (mod 24),Vx € {0,1,...,23}.

When 2¥ = 10 (mod 24), is equivalent to

k- +3ky- (fi+p3) -2 + (kafi + 12k3p1 + kspl) - 2+
+6ky - (3ksp? 4 2kspy + 2k3) - ot + 6ks - (2k3py + k3p?) - 2° + 12kok3 - 25+
+12k3p1 - a7 4+ 16k; - 2° = 0 (mod 24),Vz € {0,1,...,23}.

When 2V¥ = 14 (mod 24), (27) is equivalent to

ka4 3ky - (fr 4 pi) - 2 + (ks fr + 12k3p1 + kspy) - 2™+
+6ky - (ksp? + 2kspy + 2k3) - &t + 6ks - (2k3p1 + 3ksp?) - 2° + 12kok3 - 20+
+12k3p; - 27 + 8k3 - 2° = 0 (mod 24),Vx € {0,1,...,23}.

When 20 = 22 (mod 24), (27) is equivalent to

kx4 3ky - (fi +pl) - 2 + (ksfi + 12K5p1 + kyp) - 2°+
+6]€2 : (l{?3p% + 2k3p1 + 2]6;) . ZE4 + 6/{33 : (2k§p1 + 3/€3p3) : 175 + 12]€2k§ . l’6+
+12k3p; - 27 4 16k; - 2° = 0 (mod 24),Vz € {0,1,...,23}.

With (20), (T8) is fulfilled if and only if

+6W - (3koksp? + 2kokspy + 2k3W + 2kgp?) - &t 4 6ks W - (2k2Upy + kyp?) - 2°4+
X

+12kok3 02 - 2% + 12k50%p; - 27 + 8k3 0P - 27 = 0 (mod 24),Vz € {0,1,...,23}.

When 2V¥ = 2 (mod 24), is equivalent to

k-x + 3- <2f1 + 3f1/{72 + p?) . $2 + (k’3f1 + 12/65/)1 + kgp?) . 133+

(28)

(29)

(30)

(31)

(32)

46 - (3koksp? 4 2kokspy + 2Kk3 + 2ksp?) - a* + 6ks - (2k3py + ksp?) - 2° + 12kok3 - 25+

+12k3p; - 2" + 8k3 - 27 = 0 (mod 24),Vx € {0,1,...,23}.
When 2¥ = 10 (mod 24), (32) is equivalent to

k- +3-(2fi +3fika + pl) - 2® + (ksfi + 12k3p1 + kspl) - 2°+
+12kok2 - 2% + 12k3p; - 27 + 16k3 - 2° = 0 (mod 24),Vz € {0,1,...,23}.

When 2V = 14 (mod 24), is equivalent to

+12kok3 - 2% + 12k3p;, - 27 + 8k5 - 2” = 0 (mod 24),Vx € {0,1,...,23}.

12
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When 2V = 22 (mod 24), is equivalent to

k’ -x + 3 . <2f1 + 3f1]€2 + p%) . Q?Q + (k’gfl + 12/€§p1 + kgp?) . $3+
+6 - (kaksp? + 2kokspr + 2k3 + 2ksp?) - 2 + 6k - (2k3p1 + 3kspl) - 2+ (36)
+12koks - 2° + 12k3p; - 27 + 16k3 - 2 = 0 (mod 24),Vz € {0, 1,...,23}.

Solutions (k, p1) of equations (28)-(31)) and (33)-(B6) for each value of f; € {27, 4T, 6V},
fo € {0,6¥,120 18V}, and f; (mod 24) € {1,3,...,23}, found by software means,

are given in Tables . When the congruence equation fip; = 2U -k + 1 (mod 48V)
has three solutions in variable p; (mod 48¥), the valid solution (i.e. that which ful-
fills one of the equations (28)-(81)) is only p; = fi (mod 24). We note that, be-
cause of condition (f; + f3) # 0 (mod 3) for L = 48V, for a certain value of f,
f1 (mod 24) can take only 8 different values from the 12 ones from the set {1,3,...,23}.
For example, if f3 = 2¥ and ky = (2¥) (mod 24) = 2, then f3 = 2 (mod 3) and
f1 (mod 24) € {3,5,9,11, 15,17, 21, 23}. 0

We note that the inverse CPP from Lemma3.2]is a true CPP and thus the CPP 7(z)
does not admit an inverse QPP.

From Lemma [3.2 when L = 16V, we have fip; = kg - (kg +2) + 1 (mod 8) or
fipr = kv - (kg +6) + 1 (mod 8), with ky = 2¥ (mod 8) € {2,6}. Thus, we always
have fip1 = 1 (mod 8) when L = 160. Also, from Lemma [3.2) when L = 48¥ we
have fip1 = ky - (kg +2) + 1 (mod 24) or fip; = ky - (kg +10) + 1 (mod 24) or fip; =
ky-(ky+14)+1 (mod 24) or fip1 = ky- (ke +22)+1 (mod 24), with ky = 2V (mod 24) €
{2,10,14,22}. This means that fip; (mod 24) € {1,9,17}, and thus fip; = 1 (mod 8)
and f; = p; (mod 8). In the following theorems we require the values of f; = p; (mod 8)
depending on the values of coefficients f3, fo, and po, and on the interleaver length
L € {16¥,48V}. For CPP interleavers of lengths of the form L = k- 16V, k., € {1, 3},
fulfilling conditions (6) when 31 (p; — 1), we have f3 = p3 = k3 - 20, with k3 € {1,2, 3},
fo=ko kp 2V, py = ko -k -2V or py = (kg +2)-kr-2¥ (mod L), with ky € {0, 1,2, 3}.
Values of f; = p; (mod 8) depending on the values of k3 € {1,2,3}, ks € {0, 1,2, 3}, and
p2, for L =ky - 16V, k;, € {1, 3}, are given in Table [

Table 9: Values of f; = p; (mod 8) depending on the values of ky € {0,1,2,3} and of
ks € {1,2,3) for L = kz, - 160, kp € {1,3).

’ k‘g ‘ ]{32 ‘ P2 ‘ fl = )1 (mod 8) ‘
lor2or3|0or?2 fo 1, 3,5, 0or7
fa lorb
Lors Lors fo+ kr - 4p (mod L) 3or7
fQ 3or7
2 Lo % ap (mod L) Tor 5

Theorem 3.3. Let the interleaver length be of the form given in . Then the minimum
distance of the classical nominal 1/3 rate turbo code with two recursive systematic convo-
lutional codes parallel concatenated having the generator matriz G = [1,15/13] (in octal
form) and CPP interleavers, fulfilling conditions (6 when 3 1 (p; — 1), with coefficients
fs = ks -2V, fo =ky- kg -2V, k, € {1,3}, and the values of ks, ks, k, = 2¥ (mod 8),
and of coefficient fi = p1 (mod 8) from Table 1s upper bounded by the value of 38.
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Table 10: Values of k3, ko, kp, and fi

p1 (mod 8) for which the upper bound of
the minimum distance for CPP interleavers of lengths of the form is equal to 38
(fg = k3'2\If, k‘g € {1,3}, f2 = kz‘k’L'Q\p, kg € {O, 1,2,3}, kL € {1,3}, kq/ =2V (HlOd 8))

f1 = pP1 (mod 8) f1 = pP1 (IIlOd 8) f1 = pP1 (mod 8) /{33 kQ I{Z\p
(from eq. (50); | (from eq. (52); | (from eq. (5I));
P2 = kaLQ\I/) P2 = k’gk’LQ\If) P2 = (]{32 + 2)
k20 (mod L))
3 1 - 1 0or2 2
7 5 - 1 0or2 6
- 1 7 lor3|1lor3|2o0r6
7 5 - 3 0or2 2
3 1 - 3 0or2 6

Proof. We consider the interleaver pattern of size nine shown in Fig. [II We note that
this interleaver pattern is similar to that in Fig. 1 from [11], but here we consider true
CPP-based interleavers instead of QPP-based ones.

< b , < b ,
/T\ |
X, X +b X +C %, X +b X, +C
z(x) z(x)  w(x+c) z(x+c) 7(x+b) z(% +b)
a a a

Figure 1: Critical interleaver pattern of size six for CPP-based interleavers

The six elements of permutation 7(-) indicated in Fig. [1] are written in detail below

( r1 — 7T(Q?1)

$1+b—>77'(l’1+b)

1+ c— 7m(ry+c)

To = m(Ta) = (1) + @

To+b— m(ra+b) =m(r1+b) +a
To+c—m(rat+c)=7(r1+c¢)+a

(37)

\

Writing x = p(n(x)), for # = x; and x = x5, the equations corresponding to points
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T + b and x5 + ¢ from are written as

{ 7(p(r(x2)) +b) = w(p(r(21)) + ) + a (mod L) 8)
w(p(m(x2)) + ¢) = w(p(m(21)) + ¢) + a (mod L)

Using the equation corresponding to the point x5 from in , and then replacing
7(x1) by x, we have

{ 7(p(z +a) +b) =m(p(x) +b) +a (mod L) (39)
m(p(x +a) +c) =m(p(x) +¢) + a (mod L)
For x = 0 in (39)), we have
7(p(a) +b) = w(b) + a (mod L)
{ #(p(a) + ) = () +a (mod L) (40)
and for x =1 in , we have
{ w(p(1+a)+b) =7(p(1) +b) +a (mod L) (41)
m(p(1+a)+c) =n(p(1) + ¢) + a (mod L)
Equations in are equivalent to
(00002 S 30 ) =0 (ot 2
c-pla)-(2- fa+3- f3-(c+p(a))) =0 (mod L)
and equations in (41)) are equivalent to
2:0- fy- (pla+1) = p(1))+
+30be for (e plat 1)+ Pat 1) = b p() = A) =0 (mod 1)\

2-c fo-(pla+1)—p(1)+
+3-c- fy-(c-plat+1)+p*(a+1)—c-p(1) — p*(1)) =0 (mod L)

Because for the lengths considered in (), and for conditions () when 3 4 (p; — 1),
coefficients f, and f3 are multiples of 2V, coefficient f5 is multiple of 3 for n; 3 = 1, then
the congruences from and are fulfilled if the left hand terms are divisible by 8.

In and we consider a = 7, b =5 and ¢ = 8, for which the interleaver pattern
from Fig. [1] leads to minimum distance of 6 +2 -7 + 3 - 6 = 38, because each of the two
3-weight input error patterns leads to a parity sequence of weight 7 and each of the three
2-weight input error patterns leads to a parity sequence of weight 6.

For a =7, b =5 and ¢ = 8, equations in are equivalent to

{ 5'/)(7)‘(2'f2+3'f3~(5+p(7))) :O(mOd L) (44)
8-p(7)-(2- fa+3-fs-(8+p(7))) =0 (mod L)

and equations in are equivalent to

{ 5-(p(8) —p(1))- (2 fa+3- fs- (54 p(8) + p(1))) =0 (mod L) (45)
8-(p(8) —p(1))-(2- fo+3- f3- (84 p(8) +p(1))) =0 (mod L)

With conditions fg = pP3 = ]{33 2‘117 with k’3 S {1, 2, 3}, f2 = ]{32 -kL~2\If, P2 = kg 'kL A
or pg = (ko +2) - kr -2V (mod L), with ks € {0,1,2,3}, k, € {1,3}, it is obviously that
the second equation from and is fulfilled.
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With the above coefficients f3 and fo, for ps = ks - k7 - 2V the first equation from ({44))
becomes
5-7T-(pr+7 ko-kp-2U + 7% ky-2U) - kg - 20
(2 ka+ (A —kp) ks (B+Tp1+ T ko ky - 20+ 7 ky-20)) =0 (mod (kr, - 16%))
(46)
For py = (ko +2) - k- 2¥ (mod L) the first equation from becomes
5.7 (pr+7- (kg +2) kp -2V + 7% ky-20) -k - 20-
(2 kot (4—Fkp) ks - 5+Tp1+ T (ka+2) k- 20+ 7° - k3 -20)) =0 (mod (kg - 167))

(47)
is fulfilled if and only if
5.7 (p1+7 kg kp - 20+ 7% ks -2W0) - (2-ky+ (4 —kp)-5- kgt (48)
+(4—kp) T ks-(p1 +7 ky-kp -2V + 7 k3-20)) =0 (mod 8)
and is fulfilled if and only if
5.7 (pr+7 (ko +2) kp 20U+ 7% ks -20) - (2- ko + (4 —kg)-5- kst (49)
With ky = 2¥ (mod 8), and are equivalent to
3-(p1+ 7 ko kp-ko+ks k) (2-ka+ (4+3kp) - ks+ (50)
+(4+I€L)-]{73'(p1—|—7~]€2~/{3L'/€\p+/€3'k\p)):0(mOdS)
and
3 (p1+ 7 (ka+2) kp ko +ky ko) (2 ke + (4+3kp) - kst (51)

‘|‘(4+k’L)']{73'(p1+7~(ki2+2)'k‘L'kqj—|—k3'kqj)):O(m0d8),

respectively.
Similarly, for po = ko - kz - 2¥ the first equation from is fulfilled if and only if

3(p1+k2kLk\p+k3k\p)

02

and for po = (ko +2) - kz, - 2¥ (mod L) the first equation from is fulfilled if and only
if
3-(p1+ (ke +2) - k- ko + ks - kg)-

(2 ky+(4—Fkp) ks-(54+p1+ (ka+2) k- ke +ks-kyg)) =0 (mod 8) (53)

Solutions of equations — in variable p; = f; (mod 8), found by software means,
are given in Tables [10| for possible values of k3, ko, and ky. We note that equation (53)
has no solutions.

Thus, for CPPs with values of coefficient f; = p; (mod 8) according to Table [10] we
have the upper bound of the minimum distance equal to 38.

O
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X, +2a %, X

X

7(x +2a) 7(x, +2a)

N
—_~
<
S~—
Y
—
=

<& > < >
< » < »

Figure 2: Critical interleaver pattern of size four for CPP-based interleavers

Theorem 3.4. Let the interleaver length be of the form given in . Then the minimum
distance of the classical nominal 1/3 rate turbo code with two recursive systematic convo-
lutional codes parallel concatenated having the generator matriz G = [1,15/13] (in octal
form) and CPP interleavers, fulfilling conditions (€]) when 3 1 (p; — 1), with coefficients
fs=2-kp-2V and fo =kr -2V or fo =3 ki -2V, ki, € {1,3}, is upper bounded by the
value of 36.

Proof. We consider the interleaver pattern of size four shown in Fig. [2]
The four elements of permutation 7(-) indicated in Fig. [2| are written in detail below

x1 — 7m(zq)

x1 + 2a — w(x1 + 2a)

o — m(x) = 7(x1) + @

Ty +2a — m(r2+2a) = 7(r1 +2a) + a

(54)

Writing x = p(n(x)), for z = x5 the equation corresponding to points x5 + 2a from
(54) is written as

m(p(r(z) + a) + 2a) = 7(z + 2a) + a (mod L) (55)
For z = 0 in (5F)), we have
w(pla) + 2a) = 7(2a) + a (mod L) (56)
Equation is equivalent to
2a- p(a) - (2fo +3fs - (p(a) +2a)) = 0 (mod L) (57)

or

2a* - (p1 + paa + p3a®) - (2f2 + 3f3 - a- (p1 + pea+ psa® +2)) =0 (mod L) (58)
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As in Theorem 3.3 for f3 = p3 = 22U, fo = py = ko - kyp, - 20, with ky € {1,3},

equation becomes
2a% - (p1+a-ky-kp - 20 4+a®-2-20) - kg - 20
(2ky + (4 —Fkp)-2-a-(p1+a-ky-kp-2U +a*-2-2V +2)) =0 (mod (k- 16V))
(59)

For fs = p3 =22V, fo = ko - kp -2V, and py = (ko + 2) - kz - 2¥ (mod L), with

ks € {1,3}, equation becomes
2a% - (p1+a- (kg +2) -k -2V 4 a®-2-20) - kg - 20.

(ks 4 (4—ki)-2-a-(p1+a-(ks+2) kp-20+a?-2-20 +2)) =0 (mod (kg - 16¥))

(60)
With k, = 2¥ (mod 8), is fulfilled if and only if
2a% - (pr+a-ky k- ke +a>-2- ky) (61)
(2ky+ (4 —kp)-2-a-(pr+a-ky-kp kg +a®>-2 kg +2) =0 (mod 8)
and is fulfilled if and only if
2a* - (p1+a- (kg +2) -k -ky +a*-2-ky): (62)
(2k2+(4—/<:L)2a(p1+a(k2+2)kqu,—i—aZQk\p—i—Q)):O(modS)
For a =7, and become
2-(p1+ 7 ko kp -ky+2 ky) (63)
and
2:-(p1 +7-(ka+2) kp ko +2 ky) (64)
respectively.

Solutions in variable p; = f; (mod 8) of equations and (64)), for ko, k€ {1,3}
and kg € {2,6}, found by software means, are given in Table We see that we have
all possible values of p; (mod 8) for the corresponding values of ks, ko, and py, given in
Table @

Table 11: Values of p; (mod 8) fulfilling equation for py = ks - k- 20 and equation
for po = (ko +2) - ki - 2V (mod L), ko, kr, € {1,3}, for f3 =4V (the upper bound of
the minimum distance for CPP interleavers of lengths of the form is equal to 36).

P1 = f1 (mod 8) P1 = fl (HlOd 8) kg kg kq;
(from eq. (63)); (from eq. (64));
P2 = kaLQ‘IJ) P2 = (k?Q + 2)

kg, -2V (mod L))

] 3or7 H lord H2\10r3\20r6‘

For a = 7 in , the interleaver pattern from Fig. [2| leads to minimum distance
of 44+2-10+ 2 -6 = 36, because each of the two 2-weight input error patterns before
interleaving leads to a parity sequence of weight 10 and each of the two 2-weight input
error patterns after interleaving leads to a parity sequence of weight 6. Thus, the theorem
is proven.

O
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Theorem 3.5. Let the interleaver length be of the form given in . Then the minimum
distance of the classical nominal 1/3 rate turbo code with two recursive systematic convo-
lutional codes parallel concatenated having the generator matriz G = [1,15/13] (in octal
form) and CPP interleavers, fulfilling conditions (6] when 3 1 (p; — 1), with coefficients
fs=ks -2V, fo =ky -k -2V, k, € {1,3}, and the values of ks, ko, k, = 2¥ (mod 8),
and coefficient fi = p; (mod 8) from Table 15 upper bounded by the value of 28.

Table 12: Values of k3, ko, ky = 2¥ (mod 8), and of f; = p; (mod 8) for which the upper
bound of the minimum distance for CPP interleavers of lengths of the form is equal
to 28 (fg = k?g . 2‘1/, f2 = ]fg . kL . 2‘1/, k’L S {173}>

fi=p1 (mod 8) || f1 = p1 (mod &) || f1 = p1 (mod 8) ks ko ky
(from eq. (71)); (from eq. (from eq.
p2 = kokr2W) with ; with ;
P2 = ka’Lz\I/> P2 = (kQ + 2)
-k 2¥ (mod L))
5! 7 - 1 0or2 2
1 3 - 1 0or2 6
5 - 3 or lor3|2o0r6
3or7 lorb - 2 0 2o0r6
lorb 3or7 - 2 2 2o0r6
1 3 - 3 0or?2 2
5! 7 - 3 0or2 6

Proof. We consider again the interleaver pattern of size four shown in Fig. but with
the values 2a from the two 2-input weight patterns before interleaving replaced by value
a. Then equation becomes

m(p(n(z) + a) + a) = 7(z + a) + a (mod L) (65)
For z = 0 in (65), we have
w(pla) + a) = (a) + a (mod L) (66)
Equation is equivalent to
a-pla)-(2f2+3f3- (pla) +a)) = 0 (mod L) (67)
or
a? - (p1 + paa + p3a®) - (2fa +3fs-a- (p1 + paa + psa® +1)) = 0 (mod L) (68)

With f3 = p3 = k3 -2, k3 € {1,3}, and fo = pp = ko - k- 2V, Ky € {0,1,2,3},
kr € {1,3}, equation becomes
a’-(pr+a-ky-kp 20 +a® ks -2W) - kg - 20.

(2k32+(4—]€L>kg&(pl—f-ak'g]’CL2\P+6L2]{332\P+1)):O(HIOC1 (k’L16\I/))
(69)
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Equation is fulfilled if and only if
a* (pr+a-ky-kp 20+ a® ks 20)-

70
(2kg + (4 — k) kz-a-(pr+a-ky-kp 20 +a®- ks -2V + 1)) = 0 (mod 8) (70)
For a = 7 and with kg = 2V (mod 8), equation becomes
Tk ky - kw + ka - ko)
(p1+ o kr kv + ks ky) (1)

(2ky + (4 +kp) ks (p1+ T ky-kp-ky + ks kg +1)) =0 (mod 8)

For f3 = ps = ks -2V, k3 € {1,3}, and py = (k2 +2) - kr - 2V, ky € {0,1,2,3},
ki € {1, 3}, equation is fulfilled if and only if

(p1 +7- (ko +2) -k - kg + k3 - ky)-

(2ka+ (44 k) ks - (p1+7-(ka+2) -k -ky + ks kg +1)) =0 (mod 8) (72)
Now we consider x = 1 in equation . Then, we have
m(p(r(1)+a)+a) =n(a+ 1)+ a (mod L) (73)
Equation ([73)) is equivalent to
(1) +a+m(a)+a-p(r(l)+a)- (2f2+3f5- (p(r(l) +a)+a)) = (74)

=n(a)+7(l)+a-(2fs+3f3-(a+1))+a (mod L)

a-(2fz- (p(r(1) +a) = 1) +3fs- (p(7(1) +a) - (p(x(1) + a) + a) = (a+1)) = 0 (HﬂO((ﬂl L))

75

With f3 = kg -2V, k3 € {1,3}, and fo = ko - k- 2V, ko € {0,1,2,3}, kr € {1,3},
equation becomes

a-kp- 2V - (2ky - (p(m(1) +a) — 1)+

(A= k) ks - (p(m(1) + @) - (p(r(1) + ) + ) — (a+ 1)) = 0 (mod (ky - 168)) 0
Equation is fulfilled if and only if
a-(2ky- (p(m(1l) +a) — 1)+ (77
(A= k) ks - (p(r(1) +0) - (p(m(1) + @) +a) — (a+1)) = 0 (mod §)
For a = 7 and kg = 2V¥ (mod 8), equation becomes
7 2k - (p(r(1) +7) = 1)+ (78)

+(4 = k) ks p(r(1) +7) - (p(m(1) +7) +7) = 0 (mod 8),

or

2ky + 7 - p(m(1)+7) - (2ka+ (4 — k) - k3 - (p(w(1) +7) +7) =0 (mod 8), (79)
where for pg = k3 - 2W, k3 € {1,3}, po = ko - k- 2V, ko € {0,1,2,3}, k € {1,3}, and
taking into account that f; = p; (mod 8),

p(r(1)+7) (mod 8) =1+ p(7)+7-7(1) - (2p2 + 3p3 - (w(1) + 7)) (mod 8) =
=147 (pr+Tpa+p3)+7-(fr+fot f3) 2p2+3ps-(fi+ fot fs+T7)) (mod8) =

:1—|—7'(p1+7k2~]€L-k@+l€3-k@)+7'(p1+]€2'/€[,'l{5\1;+/{33-k}\1;)~l€L-kq,-

(2ka+ (4 —kr) ks (pr + ka2 -kr - ko + ks - kg + 7)) (mod 8)
(80)
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and for p3 = k3 -2V, k3 € {1,3}, po = (ko +2) - k- 2V, ko € {0,1,2,3}, k, € {1,3}, and
fl = p1 (mOd 8)a

p(r(1) +7) (mod 8) =147 (p1 + 7 (ka +2) - kr - ky + k3 - kg )+
+7-(p1+ ko kp - ko + ks - ky) - ki - ke (81)

Solutions in variable p; = f; (mod 8) of equations and ([79), with or (81,

found by software means, are given in Tables[12]in terms of possible values of k3, ks, and
ky. We note that equation has no solutions.
O

From Theorems [3.3] and it results that for all CPP interleavers of lengths of
the form given in (), fulfilling conditions ([6) when 3 { (p; — 1), the global upper bound
of the minimum distance is equal to 38. To get this global upper bound CPP interleavers
have to be searched among those with coefficients given in to Table [10}

4 Remarks and Examples

In this section we analyze QPPs and CPPs from [13] (Table III) of interleaver lengths
greater than or equal to 592. All these lengths are of the form with N, = 1, and thus

U =p =p.

Table 13: Minimum distances (d;,) and corresponding multiplicities (Ng,, ), spread
factors (D), nonlinearity degrees (¢) and refined nonlinearity degrees (¢) for QPPs and
CPPs from [13] (Table III).

L L | QPP [ dmin | Napi | S [ ] CPP | dmin | Nain [ S [ D]
T4x? + 129z (13]) | 35 276
592 7427 + 93z 28 os0 | 4] 3 742% 4+ 022 + 315z 38 558 | 8| 5 || 20
(dmln'opt_QPP)

656 24622 + 21z 38 1226 | 4| 3 8223 + 16422 + 185z 38 620 | 8| 5 || 22
25813 + 022 + 323z ( [13]) 37 79 8|5

688 8622 + 3652 38 1290 | 4| 3 862° + 022 + 21z 24
(dmin-opt-CPP) 38 652 | 8|5

752 9422 + 165z 38 1418 [ 4] 3 94x3 + 18822 + hdlzx 38 716 [ 8] 5 [ 26
1022% + 229z 35 194 [ 4] 3 [ 3423+ 10222 + 399z ([13]) || 35 98 [8]5

816 1022% + 49z 3423 + 027 + 19z 28
(din-opt-QPP) 38 1546 | 4 | 3 (din-opt-CPP) 38 782 | 8|7

848 31822 + 185z 38 1610 [ 4| 3 31827 + 21222 + 157« 38 812 |8 5 || 28

912 1142% + 29z 38 1738 [ 4] 3 11423 + 11422 + 287« 38 878 [ 8] 41 30

944 11822 + 265z 38 1802 [ 4 3 35423 + 022 4+ 1792 38 910 | 8| 5 || 32

976 12222 + 59z 38 1866 | 4 | 3 12223 4+ 022 + 307z 38 942 [ 8| 5 || 32

In Table[13|we have tabulated QPPs and CPPs from [13] (Table III) and we have given
the minimum distances (d,:,) and the corresponding multipicities (N, ,, ) for dual trellis
termination [15], as well as the spread factors (D), the nonlinearity degrees (¢) and the
refined nonlinearity degrees (¢’) for each PP. In Theorem 1 from [11] it was shown that
the upper bound for QPP interleavers and lengths of the form , the upper bound of the
minimum distance is equal to 38. We note that QPPs of length 592 and 816 and CPPs
of lengths 688 and 816, from |13|, are not optimal from the point of view of minimum

21



distance. Therefore we also give in Table[13]d,,;,-optimal QPP and CPPs for these lentghs
(denoted d,in-0pt-QPP or d,in-0opt-CPP). In |13] it was shown that all CPPs from Table
are better in terms of frame error rate (FER), than the corresponding QPPs. It is
interesting that these better CPPs were found even for interleaver lengths of the form
(5) without knowing the results in this paper. This difference in FER performance is
explained in that for the same minimum distance, the corresponding multipicities of
CPPs are about a half of those of QPPs. We also see that the nonlinearity degree for
CPPs is twice that for QPPs. In [16] it was stated that the multiplicity of low-weight
codewords is typically a multiple of L/{. Thus, the double value of ¢ for CPPs compared
to that for QPPs explains the values of multiplicities for CPPs as being about a half
of those for QPPs. We note that, for interleaver lengths of the form given in , this
result is general for all QPPs and for all CPPs with coefficients from Table Indeed,
nonlinearity degree for QPPs of the interleaver lengths of the form given in is equal
to [16]
B L B 16 - kr - ¥ B

Carp = ged(2fa, L) ged(2ksy - kp, - 29,16 - ky - U)

- (16]€L\I/)/(4]€L\I/):4 ,fOI‘k'QE{l,?)}

In Appendix 1 we proved that nonlinearity degree for CPPs of the interleaver lengths
of the form , with coefficients from Table , is equal to (cpp = 8. This assure that
we can find better CPPs than QPPs for interleaver lengths of the form .

In Table [14] we give the values of p, ki, ks, ko, ky, and fi = p; (mod 8), defined in
Section [3| for CPPs from Table [I3] We can see that for all d,,;,,-optimal CPPs, values of
fi = p1 (mod 8) for the corresponding values of k3, ko, and k,, are found among those
from Table 10l

(82)

Table 14: Values of p, ki, k3, ko, kp, and f1 = p; (mod 8) for CPPs from Table .

A

592 || 37| 1 742> + 0x% 4 315z 11012 3
656 || 41| 1 | 822° +16422+ 185z | 1 | 2 | 2 1

25823 +02%24+323z | 30| 6 3
688 ) 431 1 8623 + 022 + 21x 11016 5
752 |47 1 | 9423 + 18822 +541x | 1 | 2 | 6 5

34x® +1022°+3992 | 1 | 1 | 2 7
816 171 3 342> + 022 + 192 11072 3
848 [[ 53 | 1 [ 31823 +21222+157x | 3 | 2 | 2 5
912 [[ 19| 3 [ 11423+ 11422 +287x | 3 | 1 | 6 7
944 |59 | 1 | 35423+ 022 +1792 | 3 | 0 | 6 3
976 || 61| 1 | 12222 +022+307z | 1 | 0 | 2 3

We have observed that choosing coefficients of CPP interleavers according to Table
and maximizing the spread factor, the most of CPPs lead to the optimal minimum
distance of 38. In Theorem 7 from [16], a procedure to efficiently compute the spread
factor for PP interleavers is shown. This procedure requires to know the nonlinearity
degree of the PP. For QPP interleavers, a closed mathematical formula for { of QPP
interleavers is achieved. Recently, in [17], we have obtained an algorithm to efficiently
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compute the nonlinearity degree of CPP interleavers. Thus, we easily can found d,,;,-
optimal CPP interleavers for interleaver lengths of the form .

5 Conclusions

In this paper we deal with minimum distance of turbo codes with CPP interleavers of
length of the form 16W or 48V, with W a product of different prime numbers greater than
three, fulfilling conditions () when 31 (p; — 1).

Firstly, we have shown that all these CPPs have an inverse true CPP.

Then, we have obtained three possible upper bounds of the minimum distance (38,
36, and 28) according to different classes of coefficients (as show Tables [10] [L1] and [12)).
Thus, to get d,.;,-optimal CPPs we require to restrict to a smaller class of coefficients,
which is beneficial because it fact saves the searching time. Some remarks about CPPs
better than QPPs from [13] are made. An insight which saves more of the searching
time is to search d,,;,-optimal CPPs among those with the largest spread factor, thus
restricting additionally the class of required CPP interleavers.
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Appendix 1

According to the results from [17] the nonlinearity degree of CPP interleavers of even
lengths is equal to

Ccpp = L/(ng (ng(3f37 L)7 ng(2f2> L)) + Nko,QNPl)v (83)
where Ny, onp, is the number of the common solutions kg of congruence equations
(2fa+ L/2)kg = L/2 (mod L).

For coefficients given in Table [L0} we have
ged(3fy, L) = ged((4 — ky) - kp - ks - 20, ky, - 160) = ky - 20. (85)

Because ged(3f3, L) | (L/2), the solutions of the first equation from (84) are of the
form

kO,eql(i) = ]f()}f3 + L . ’L/ ng(?)fg, L) = k'()’fg + 8 . Z', Wlth 1= 07 1, Ce ,ng(gfg, L) — 17
(86)
where kg 3 is equal to

3fs - L
= (o) it (04 (/53 )
=((4—kgz) k3)'-4 (mod 8) = (87)
[ 1-4(mod 8) =4, for ky =3 and k3 =1, or k;, =1 and k3 = 3,
| 3-4 (mod 8) =4, for kp, =1 and k3 =1, or k;, = 3 and k3 = 3.
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Thus, the solutions of the first equation from (84]) are
koeq(i) =4+8-4, withi=0,1,...,k-2¥ — 1. (88)
Similarly, we have

kp -4V, for ky € {1, 3},
ng(2f2 + L/Q, L) = ng(k’L -4 - (k’g + 2), kJL : 16\11) = ]fL . 8‘117 for ]{32 = 0,
kr - 16V, for ky = 2.
(89)
Because ged(2fy + L/2,L) | (L/2) only for ko € {0,1,3}, the second equation from
has solutions only for these three values of ky. These solutions are of the form

koeq2 (i) = ko, + L -1/ ged(2fo + L/2,L), withi=0,1,...,gcd(2fo + L/2,L) — 1,
(90)
where kg g, is equal to

P 2fs+L/2  \7' L

0.f2 = (gcd(2f2 +L/2,L)) " 2-ged(2fo + L/2, L)
B { (ke +2)71-2 (mod 4) = (ky +2) -2 (mod 4) = 2, for ky € {1,3},
1 11 (mod 2) =1, for ky = 0.

(mod (L/ ged(2f, + L/2, L)) =

(91)
Thus, the solutions of the second equation from are
Ko eaa(i) = 24+4-i, withi=0,1,... k-4¥ — 1, for ky € {1, 3}, (92)
0ea2\") = 1 4 9. withi=0,1,... kg -8U —1, for ky = 0.
Because
k07eq1('l.) (mod 8) :4,VZ :0,1,...,]{3L'2\I/— 1, (93)
and
koeq2(t) (mod 8) € {2,6},Vi =0,1,... kg -4V — 1, for ky € {1, 3}, (94)
ko’qu(’lf-) (mod 8) < {1,3,5, 7},V2 = O, 1, cey kL - 8W — 1, for ]fg = O,

it results that the two equations from have no common solutions, i.e. Ny, onp, = 0.
Because for k3 € {1,3}

ged (kr - 20, kp - 40) = ky, - 20, for ky € {1, 3},
ged (ged(3fs, L), ged(2f2, L)) = { ged (ki - 20, ky - 160) = k- 20, for ky = 0,
ng (k’L . 2‘1}, kL : 8\11) = ]{?L : 2\117 for k’g = 2,

(95)
from (83]) we have
L kr - 16W
Cepr ged (gcd(3f3, L), ged(2fs, L)) kr - 2W (96)
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