
Stanley: The Robot That Won
The DARPA Grand Challenge

Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens,
Andrei Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel

Hoffmann, Kenny Lau, Celia Oakley, Mark Palatucci, Vaughan Pratt, Pascal Stang
Stanford Artificial Intelligence Laboratory

Stanford University
Stanford, CA 94305

Sven Strohband, Cedric Dupont, Lars-Erik Jendrossek, Christian Koelen,
Charles Markey, Carlo Rummel, Joe van Niekerk, Eric Jensen, Philippe Alessandrini

Volkswagen of America
Electronics Research Laboratory

4009 Miranda Ave., Suite 100
Palo Alto, CA 94304

Gary Bradski, Bob Davies, Scott Ettinger, Adrian Kaehler, Ara Nefian
Intel Research

2200 Mission College Bvld.
Santa Clara, CA 95052

Pamela Mahoney
Mohr Davidow Ventures

3000 Sand Hill Road, Bldg. 3, Suite 290
Menlo Park, CA 94025

Abstract

This article describes the robot Stanley, which won the 2005 DARPA Grand Chal-
lenge. Stanley was developed for high-speed desert driving without manual inter-
vention. The robot’s software system relied predominately on state-of-the-art artifi-
cial intelligence technologies, such as machine learning and probabilistic reasoning.
This article describes the major components of this architecture, and discusses the
results of the Grand Challenge race.

(a) (b)

Figure 1: (a) At approximately 1:40pm on Oct 8, 2005, Stanley is the first robot to complete the
DARPA Grand Challenge. (b) The robot is being honored by DARPA Director Dr. Tony Tether.

1 Introduction

The Grand Challenge was launched by the Defense Advanced Research Projects Agency (DARPA)
in 2003 to spur innovation in unmanned ground vehicle navigation. The goal of the Challenge was
the development of an autonomous robot capable of traversing unrehearsed, off-road terrain. The
first competition, which carried a prize of $1M, took place on March 13, 2004. It required robots
to navigate a 142-mile long course through the Mojave desert in no more than 10 hours. 107 teams
registered and 15 raced, yet none of the participating robots navigated more than 5% of the entire
course. The challenge was repeated on October 8, 2005, with an increased prize of $2M. This
time, 195 teams registered and 23 raced. Of those, five teams finished. Stanford’s robot “Stanley”
finished the course ahead of all other vehicles in 6 hours 53 minutes and 58 seconds and was
declared the winner of the DARPA Grand Challenge; see Fig. 1.

This article describes the robot Stanley, and its software system in particular. Stanley was devel-
oped by a team of researchers to advance the state-of-the-art in autonomous driving. Stanley’s
success is the result of an intense development effort led by Stanford University, and involving
experts from Volkswagen of America, Mohr Davidow Ventures, Intel Research, and a number of
other entities. Stanley is based on a 2004 Volkswagen Touareg R5 TDI, outfitted with a 6 processor
computing platform provided by Intel, and a suite of sensors and actuators for autonomous driving.
Fig. 2 shows images of Stanley during the race.

The main technological challenge in the development of Stanley was to build a highly reliable
system capable of driving at relatively high speeds through diverse and unstructured off-road envi-
ronments, and to do all this with high precision. These requirements led to a number of advances in
the field of autonomous navigation, as surveyed in this article. New methods were developed, and
existing methods extended, in the areas of long-range terrain perception, real-time collision avoid-
ance, and stable vehicle control on slippery and rugged terrain. Many of these developments were
driven by the speed requirement, which rendered many classical techniques in the off-road driving
field unsuitable. In pursuing these developments, the research team brought to bear algorithms
from diverse areas including distributed systems, machine learning, and probabilistic robotics.

(a)

(b)

Figure 2: Images from the race.

1.1 Race Rules

The rules (DARPA, 2004) of the DARPA Grand Challenge were simple. Contestants were required
to build autonomous ground vehicles capable of traversing a desert course up to 175 miles long
in less than 10 hours. The first robot to complete the course in under 10 hours would win the
challenge and the $2M prize. Absolutely no manual intervention was allowed. The robots were
started by DARPA personnel and from that point on had to drive themselves. Teams only saw their
robots at the starting line and, with luck, at the finish line.

Both the 2004 and 2005 races were held in the Mojave desert in the southwest United States.
Course terrain varied from high quality, graded dirt roads to winding, rocky, mountain passes;
see Fig. 2. A small fraction of each course traveled along paved roads. The 2004 course started
in Barstow, CA, approximately 100 miles northeast of Los Angeles, and finished in Primm, NV,
approximately 30 miles southwest of Las Vegas. The 2005 course both started and finished in

Figure 3: A section of the RDDF file from the 2005 DARPA Grand Challenge. The corridor varies
in width and maximum speed. Waypoints are more frequent in turns.

Primm, NV.

The specific race course was kept secret from all teams until two hours before the race. At this
time, each team was given a description of the course on CD-ROM in a DARPA-defined Route
Definition Data Format (RDDF). The RDDF is a list of longitudes, latitudes, and corridor widths
that define the course boundary, and a list of associated speed limits; an example segment is shown
in Fig. 3. Robots that travel substantially beyond the course boundary risk disqualification. In the
2005 race, the RDDF contained 2,935 waypoints.

The width of the race corridor generally tracked the width of the road, varying between 3 and 30
meter in the 2005 race. Speed limits were used to protect important infrastructure and ecology
along the course and to maintain the safety of DARPA chase drivers who followed behind each
robot. The speed limits varied between 5 and 50 mph. The RDDF defined the approximate route
that robots would take, so no global path planning was required. As a result, the race was primarily
a test of high-speed road finding and obstacle detection and avoidance in desert terrain.

The robots all competed on the same course, starting one after another at 5 minute intervals. When
a faster robot overtook a slower one, the slower robot was paused by DARPA officials, allowing
the second robot to pass the first as if it were a static obstacle. This eliminated the need for robots
to handle the case of dynamic passing.

1.2 Team Composition

The Stanford Racing Team team was organized into four major groups. The Vehicle Group over-
saw all modifications and component developments related to the core vehicle. This included the
drive-by-wire systems, the sensor and computer mounts, and the computer systems. The group
was led by researchers from Volkswagen of America’s Electronics Research Lab. The Software
Group developed all software, including the navigation software and the various health monitor
and safety systems. The software group was led by researchers affiliated with Stanford University.
The Testing Group was responsible for testing all system components and the system as a whole,
according to a specified testing schedule. The members of this group were separate from any of
the other groups. The testing group was led by researchers affiliated with Stanford University. The
Communications Group managed all media relations and fund raising activities of the Stanford
Racing Team. The communications group was led by employees of Mohr Davidow Ventures, with
participation from all other sponsors. The operations oversight was provided by a steering board
that included all major supporters.

2 Vehicle

Stanley is based on a diesel-powered Volkswagen Touareg R5. The Touareg has four wheel drive,
variable-height air suspension, and automatic, electronic locking differentials. To protect the vehi-
cle from environmental impact, Stanley has been outfitted with skid plates and a reinforced front
bumper. A custom interface enables direct, electronic actuation of both throttle and brakes. A
DC motor attached to the steering column provides electronic steering control. A linear actuator
attached to the gear shifter shifts the vehicle between drive, reverse, and parking gears (Fig. 4c).
Vehicle data, such as individual wheel speeds and steering angle, are sensed automatically and
communicated to the computer system through a CAN bus interface.

The vehicle’s custom-made roof rack is shown in Fig. 4a. It holds nearly all of Stanley’s sensors.
The roof provides the highest vantage point from the vehicle; from this point the visibility of the
terrain is best, and the access to GPS signals is least obstructed. For environment perception, the
roof rack houses five SICK laser range finders. The lasers are pointed forward along the driving
direction of the vehicle, but with slightly different tilt angles. The lasers measure cross-sections of
the approaching terrain at different ranges out to 25 meters in front of the vehicle. The roof rack
also holds a color camera for long-range road perception, which is pointed forward and angled
slightly downwards. For long-range detection of large obstacles, Stanley’s roof rack also holds two
24 GHz RADAR sensors, supplied by Smart Microwave Sensors. Both RADAR sensors cover the
frontal area up to 200 meter, with a coverage angle in azimuth of about 20 degrees. Two antennae
of this system are mounted on both sides of the laser sensor array. The lasers, camera, and radar
system comprise the environment sensor group of the system. That is, they inform Stanley of the
terrain ahead, so that Stanley can decide where to drive, and at what speed.

Further back, the roof rack holds a number of additional antennae: one for Stanley’s GPS posi-
tioning system and two for the GPS compass. The GPS positioning unit is a L1/L2/Omnistar HP
receiver. Together with a trunk-mounted inertial measurement unit (IMU), the GPS systems are
the positioning sensor group, whose primary function is to estimate the location and velocity of

(a) (b) (c)

Figure 4: (a) View of the vehicle’s roof rack with sensors. (b) The computing system in the trunk
of the vehicle. (c) The gear shifter, control screen, and manual override buttons.

the vehicle relative to an external coordinate system.

Finally, a radio antenna and three additional GPS antennae from the DARPA E-Stop system are
also located on the roof. The E-Stop system is a wireless link that allows a chase vehicle following
Stanley to safely stop the vehicle in case of emergency. The roof rack also holds a signaling horn,
a warning light, and two manual E-stop buttons.

Stanley’s computing system is located in the vehicle’s trunk, as shown in Fig. 4b. Special air ducts
direct air flow from the vehicle’s air conditioning system into the trunk for cooling. The trunk
features a shock-mounted rack that carries an array of six Pentium M computers, a Gigabit Ethernet
switch, and various devices that interface to the physical sensors and the Touareg’s actuators. It also
features a custom-made power system with backup batteries, and a switch box that enables Stanley
to power-cycle individual system components through software. The DARPA-provided E-Stop is
located on this rack on additional shock compensation. The trunk assembly also holds the custom
interface to the Volkswagen Touareg’s actuators: the brake, throttle, gear shifter, and steering
controller. A six degree-of-freedom IMU is rigidly attached to the vehicle frame underneath the
computing rack in the trunk.

The total power requirement of the added instrumentation is approximately 500 W, which is pro-
vided through the Touareg’s stock alternator. Stanley’s backup battery system supplies an addi-
tional buffer to accommodate long idling periods in desert heat.

The operating system run on all computers is Linux. Linux was chosen due to its excellent net-
working and time sharing capabilities. During the race, Stanley executed the race software on
three of the six computers; a fourth was used to log the race data (and two computers were idle).
One of the three race computers was entirely dedicated to video processing, whereas the other two
executed all other software. The computers were able to poll the sensors at up to 100 Hz, and to
control the steering, throttle and brake at frequencies up to 20 Hz.

An important aspect in Stanley’s design was to retain street legality, so that a human driver could
safely operate the robot as a conventional passenger car. Stanley’s custom user interface enables a
driver to engage and disengage the computer system at will, even while the vehicle is in motion.
As a result, the driver can disable computer control at any time of the development, and regain
manual control of the vehicle. To this end, Stanley is equipped with several manual override but-
tons located near the driver seat. Each of these switches controls one of the three major actuators
(brakes, throttle, steering). An additional central emergency switch disengages all computer con-
trol and transforms the robot into a conventional vehicle. While this feature was of no relevance

to the actual race (in which no person sat in the car), it proved greatly beneficial during software
development. The interface made it possible to operate Stanley autonomously with people inside,
as a dedicated safety driver could always catch computer glitches and assume full manual control
at any time.

During the actual race, there was of course no driver in the vehicle, and all driving decisions were
made by Stanley’s computers. Stanley possessed an operational control interface realized through
a touch-sensitive screen on the driver’s console. This interface allowed Government personnel to
shut down and restart the vehicle, if it became necessary.

3 Software Architecture

3.1 Design Principles

Before both the 2004 and 2005 Grand Challenges, DARPA revealed to the competitors that a stock
4WD pickup truck would be physically capable of traversing the entire course. These announce-
ments suggested that the innovations necessary to successfully complete the challenge would be
in designing intelligent driving software, not in designing exotic vehicles. This announcement and
the performance of the top finishers in the 2004 race guided the design philosophy of the Stanford
Racing Team: treat autonomous navigation as a software problem.

In relation to previous work on robotics architectures, Stanley’s software architecture is related to
the well-known three layer architecture (Gat, 1998), albeit without a long-term symbolic planning
method. A number of guiding principles proved essential in the design of the software architecture:

Control and data pipeline. There is no centralized master-process in Stanley’s software system.
All modules are executed at their own pace, without inter-process synchronization mechanisms.
Instead, all data is globally time-stamped, and time stamps are used when integrating multiple data
sources. The approach reduces the risk of deadlocks and undesired processing delays. To max-
imize the configurability of the system, nearly all inter-process communication is implemented
through publish-subscribe mechanisms. The information from sensors to actuators flows in a sin-
gle direction; no information is received more than once by the same module. At any point in
time, all modules in the pipeline are working simultaneously, thereby maximizing the information
throughput and minimizing the latency of the software system.

State management. Even though the software is distributed, the state of the system is maintained
by local authorities. There are a number of state variables in the system. The health state is locally
managed in the health monitor; the parameter state in the parameter server; the global driving mode
is maintained in a finite state automaton; and the vehicle state is estimated in the state estimator
module. The environment state is broken down into multiple maps (laser, vision, and radar). Each
of these maps are maintained in dedicated modules. As a result, all other modules will receive
values that are mutually consistent. The exact state variables are discussed in later sections of
this article. All state variables are broadcast to relevant modules of the software system through a
publish-subscribe mechanism.

Reliability. The software places strong emphasis on the overall reliability of the robotic system.

Special modules monitor the health of individual software and hardware components, and auto-
matically restart or power-cycle such components when a failure is observed. In this way, the
software is robust to certain occurrences, such as crashing or hanging of a software modules or
stalled sensors.

Development support. Finally, the software is structured so as to aid development and debugging
of the system. The developer can easily run just a sub-system of the software, and effortlessly mi-
grate modules across different processors. To facilitate debugging during the development process,
all data is logged. By using a special replay module, the software can be run on recorded data. A
number of visualization tools were developed that make it possible to inspect data and internal
variables while the vehicle is in motion, or while replaying previously logged data. The develop-
ment process used a version control process with a strict set of rules for the release of race-quality
software. Overall, we found that the flexibility of the software during development was essential
in achieving the high level of reliability necessary for long-term autonomous operation.

3.2 Processing Pipeline

The race software consisted of approximately 30 modules executed in parallel (Fig. 5). The system
is broken down into six layers which correspond to the following functions: sensor interface,
perception, control, vehicle interface, user interface, and global services.

1. The sensor interface layer comprises a number of software modules concerned with re-
ceiving and time-stamping all sensor data. The layer receives data from each laser sensor at
75 Hz, from the camera at approximately 12 Hz, the GPS and GPS compass at 10 Hz, and
the IMU and the Touareg CAN bus at 100 Hz. This layer also contains a database server
with the course coordinates (RDDF file).

2. The perception layer maps sensor data into internal models. The primary module in this
layer is the UKF vehicle state estimator, which determines the vehicle’s coordinates, orien-
tation, and velocities. Three different mapping modules build 2-D environment maps based
on lasers, the camera, and the radar system. A road finding module uses the laser-derived
maps to find the boundary of a road, so that the vehicle can center itself laterally. Finally,
a surface assessment module extracts parameters of the current road for the purpose of
determining safe vehicle speeds.

3. The control layer is responsible for regulating the steering, throttle, and brake response of
the vehicle. A key module is the path planner, which sets the trajectory of the vehicle in
steering- and velocity-space. This trajectory is passed to two closed loop trajectory track-
ing controllers, one for the steering control and one for brake and throttle control. Both
controllers send low-level commands to the actuators that faithfully execute the trajectory
emitted by the planner. The control layer also features a top level control module, imple-
mented as a simple finite state automaton. This level determines the general vehicle mode
in response to user commands received through the in-vehicle touch screen or the wireless
E-stop, and maintains gear state in case backwards motion is required.

4. The vehicle interface layer serves as the interface to the robot’s drive-by-wire system. It
contains all interfaces to the vehicle’s brakes, throttle, and steering wheel. It also features
the interface to the vehicle’s server, a circuit that regulates the physical power to many of

Figure 5: Flowchart of Stanley Software System. The software is roughly divided into six main
functional groups: sensor interface, perception, control, vehicle interface, and user interface. There
are a number of cross-cutting services, such as the process controller and the logging modules.

the system components.

5. The user interface layer comprises the remote E-stop and a touch-screen module for start-
ing up the software.

6. The global services layer provides a number of basic services for all software modules.
Naming and communication services are provides through CMU’s Inter-Process Commu-
nication (IPC) toolkit (Simmons and Apfelbaum, 1998). A centralized parameter server
maintains a database of all vehicle parameters and updates them in a consistent manner.
The physical power of individual system components is regulated by the power server. An-
other module monitors the health of all systems components and restarts individual system
components when necessary. Clock synchronization is achieved through a time server. Fi-
nally, a data logging server dumps sensor, control, and diagnostic data to disk for replay
and analysis.

The following sections will describe Stanley’s core software processes in greater detail. The paper
will then conclude with a description of Stanley’s performance in the Grand Challenge.

(a) (b)

Figure 6: UKF state estimation when GPS becomes unavailable. The area covered by the robot is
approximately 100 by 100 meter. The large ellipses illlustrate the position uncertainty after losing
GPS. (a) Without integrating the wheel motion the result is highly erroneous. (b) The wheel motion
clearly improves the result.

4 Vehicle State Estimation

Estimating vehicle state is a key prerequisite for precision driving. Inaccurate pose estimation can
cause the vehicle to drive outside the corridor, or build terrain maps that do not reflect the state of
the robot’s environment, leading to poor driving decisions. In Stanley, the vehicle state comprises
a total of 15 variables. The design of this parameter space follows standard methodology (Farrell
and Barth, 1999; van der Merwe and Wan, 2004):

values state variable
3 position (longitude, latitude, altitude)
3 velocity
3 orientation (Euler angles: roll, pitch, yaw)
3 accelerometer biases
3 gyro biases

An unscented Kalman filter (UKF) (Julier and Uhlmann, 1997) estimates these quantities at an up-
date rate of 100Hz. The UKF incorporates observations from the GPS, the GPS compass, the IMU,
and the wheel encoders. The GPS system provides both absolute position and velocity measure-
ments, which are both incorporated into the UKF. From a mathematical point of view, the sigma
point linearization in the UKF often yields a lower estimation error than the linearization based on
Taylor expansion in the EKF (van der Merwe, 2004). To many, the UKF is also preferable from
an implementation standpoint because it does not require the explicit calculation of any Jacobians;
although those can be useful for further analysis.

While GPS is available, the UKF uses only a “weak” model. This model corresponds to a moving
mass that can move in any direction. Hence, in normal operating mode the UKF places no con-
straint on the direction of the velocity vector relative to the vehicle’s orientation. Such a model is
clearly inaccurate, but the vehicle-ground interactions in slippery desert terrain are generally diffi-
cult to model. The moving mass model allows for any slipping or skidding that may occur during

(a) (b)

Figure 7: (a) Illustration of a laser sensor: The sensor is angled downward to scan the terrain in
front of the vehicle as it moves. Stanley possesses five such sensors, mounted at five different
angles. (b) Each laser acquires a 3-D point cloud over time. The point cloud is analyzed for
drivable terrain and potential obstacles.

off-road driving.

However, this model performs poorly during GPS outages, however, as the position of the vehicle
relies strongly on the accuracy of the IMU’s accelerometers. As a consequence, a more restrictive
UKF motion model is used during GPS outages. This model constrains the vehicle to only move
in the direction it is pointed. Integration of the IMU’s gyroscopes for orientation, coupled with
wheel velocities for computing the position, is able to maintain accurate pose of the vehicle during
GPS outages of up to 2 minutes long; the accrued error is usually in the order of centimeters.
Stanley’s health monitor will decrease the maximum vehicle velocity during GPS outages to 10
mph in order to maximize the accuracy of the restricted vehicle model. Fig. 6a shows the result
of position estimation during a GPS outage with the weak vehicle model; Fig. 6b the result with
the strong vehicle model. This experiment illustrates the performance of this filter during a GPS
outage. Clearly, accurate vehicle modeling during GPS outages is essential. In an experiment
on a paved road, we found that even after 1.3 km of travel without GPS on a cyclic course, the
accumulated vehicle error was only 1.7 meters.

5 Laser Terrain Mapping

5.1 Terrain Labeling

To safely avoid obstacles, Stanley must be capable of accurately detecting non-drivable terrain at
a sufficient range to stop or take the appropriate evasive action. The faster the vehicle is moving,
the farther away obstacles must be detected. Lasers are used as the basis for Stanley’s short and
medium range obstacle avoidance. Stanley is equipped with five single-scan laser range finders
mounted on the roof, tilted downward to scan the road ahead. Fig. 7a illustrates the scanning
process. Each laser scan generates a vector of 181 range measurements spaced 0.5 degrees apart.
Projecting these scans into the global coordinate frame according to the estimated pose of the
vehicle results in a 3-D point cloud for each laser. Fig. 7b shows an example of the point clouds
acquired by the different sensors. The coordinates of such 3-D points are denoted (X i

k Y i
k Zi

k);
here k is the time index at which the point was acquired, and i is the index of the laser beam.

(a)

unexplored terrain

obstaclesdrivable area
���

(b)

Figure 8: Examples of occupancy maps: (a) an underpass, and (b) a road.

(a) (b)

Figure 9: Small errors in pose estimation (smaller than 0.5 degrees) induce massive terrain clas-
sification errors, which if ignored could force the robot off the road. These images show two
consecutive snapshots of a map that forces Stanley off the road. Here obstacles are plotted in red,
free space in white, and unknown territory in gray. The blue lines mark the corridor as defined by
the RDDF.

Obstacle detection on laser point clouds can be formulated as a classification problem, assigning
to each 2-D location in a surface grid one of three possible values: occupied, free, and unknown.
A location is occupied by an obstacle if we can find two nearby points whose vertical distance
|Z i

k − Z
j
m| exceeds a critical vertical distance δ. It is considered drivable (free of obstacles) if no

such points can be found, but at least one of the readings falls into the corresponding grid cell. If no
reading falls into the cell, the drivability of this cell is considered unknown. The search for nearby
points is conveniently organized in a 2-D grid, the same grid used as the final drivability map that
is provided to the vehicle’s navigation engine. Fig. 8 shows the example grid map. As indicated in
this figure, the map assigns terrain to one of three classes: drivable, occupied, or unknown.

Unfortunately, applying this classification scheme directly to the laser data yields results inappro-
priate for reliable robot navigation. Fig. 9 shows such an instance, in which a small error in the
vehicle’s roll/pitch estimation leads to a massive terrain classification error, forcing the vehicle off
the road. Small pose errors are magnified into large errors in the projected positions of laser points

|k − m|, the time difference between two nearby measurements

|Zi
k − Z

j
m|

Figure 10: Correlation of time and vertical measurement error in the laser data analysis.

because the lasers are aimed at the road up to 30 meters in front of the vehicle. In our reference
dataset of labeled terrain, we found that 12.6% of known drivable area is classified as obstacle, for
a height threshold parameter δ = 15cm. Such situations occur even for roll/pitch errors smaller
than 0.5 degrees. Pose errors of this magnitude can be avoided by pose estimation systems that
cost hundreds of thousands of dollars, but such a choice was too costly for this project.

The key insight to solving this problem is illustrated in Fig. 10. This graph plots the perceived
obstacle height |Z i

k − Zj
m| along the vertical axis for a collection of grid cells taken from flat

terrain. Clearly, for some grid cells the perceived height is enormous—despite the fact that in
reality, the surface is flat. However, this function is not random. The horizontal axis depicts the
time difference ∆t |k−m| between the acquisition of those scans. Obviously, the error is strongly
correlated with the elapsed time between the two scans.

To model this error, Stanley uses a first order Markov model, which models the drift of the pose
estimation error over time. The test for the presence of an obstacle is therefore a probabilistic test.
Given two points (X i

k Y i
k Zi

k)
T and (Xj

m Y j
m Zj

m)T , the height difference is distributed according
to a normal distribution whose variance scales linearly with the time difference |k − m|. Thus,
Stanley uses a probabilistic test for the presence of an obstacle, of the type

p(|Z i
k − Z

j
m| > δ) > α (1)

Here α is a confidence threshold, e.g., α = 0.05.

When applied over a 2-D grid, the probabilistic method can be implemented efficiently so that only
two measurements have to be stored per grid cell. This is due to the fact that each measurement
defines a bound on future Z-values for obstacle detection. For example, suppose we observe a new
measurement for a cell which was previously observed. Then one or more of three cases will be
true:

1. The new measurement might be a witness of an obstacle, according to the probabilistic test.
In this case Stanley simply marks the cell as obstacle and no further testing takes place.

2. The new measurement does not trigger as a witness of an obstacle, but in future tests it
establishes a tighter lower bound on the minimum Z-value than the previously stored mea-
surement. In this case, our algorithm simply replaces the previous measurement with this
new one. The rationale behind this is simple: If the new measurement is more restrictive

no labels (white/gray)

?

?

obstacles (red)

?

drivable (blue)

6

Figure 11: Terrain labeling for parameter tuning: The area traversed by the vehicle is labeled
as “drivable” (blue) and two stripes at a fixed distance to the left and the right are labeled as
“obstacles” (red). While these labels are only approximate, they are extremely easy to obtain and
significantly improve the accuracy of the resulting map when used for parameter tuning.

than the previous one, there will not be a situation where a test against this point would
fail while a test against the older one would succeed. Hence, the old point can safely be
discarded.

3. The third case is equivalent to the second, but with a refinement of the upper value. A new
measurement may simultaneously refine the lower and the upper bounds.

The fact that only two measurements per grid cell have to be stored renders this algorithm highly
efficient in space and time.

5.2 Data-Driven Parameter Tuning

A final step in developing this mapping algorithm addresses parameter tuning. Our approach, and
the underlying probabilistic Markov model, possesses a number of unknown parameters. These
parameters include the height threshold δ, the statistical acceptance probability threshold α, and
various Markov chain error parameters (the noise covariances of the process noise and the mea-
surement noise).

Stanley uses a discriminative learning algorithm for locally optimizing these parameters. This
algorithm tunes the parameters in a way that maximizes the discriminative accuracy of the resulting
terrain analysis on labeled training data.

The data are labeled through human driving, similar in spirit to (Pomerleau, 1993). Fig. 11 illus-
trates the idea: A human driver is instructed to only drive over obstacle-free terrain. Grid cells
traversed by the vehicle are then labeled as “drivable.” This area corresponds to the blue stripe in
Fig. 11. A stripe to the left and right of this corridor is assumed to be all obstacles, as indicated by

the red stripes in Fig. 11. The distance between the “drivable” and “obstacle” is set by hand, based
on the average road width for a segment of data. Clearly, not all of those cells labeled as obstacles
are actually occupied by actual obstacles; however, even training against an approximate labeling
is enough to improve overall performance of the mapper.

The learning algorithm is now implemented through coordinate ascent. In the outer loop, the algo-
rithm performs coordinate ascent relative to a data-driven scoring function. Given an initial guess,
the coordinate ascent algorithm modifies each parameter one-after-another by a fixed amount. It
then determines if the new value constitutes an improvement over the previous value when evalu-
ated over a logged data set, and retains it accordingly. If for a given interval size no improvement
can be found, the search interval is cut in half and the search is continued, until the search interval
becomes smaller than a preset minimum search interval (at which point the tuning is terminated).

The probabilistic analysis paired with the discriminative algorithm for parameter tuning has a
significant effect on the accuracy of the terrain labels. Using an independent testing data set,
we find that the false positive rate (the area labeled as drivable in Fig. 11) drops from 12.6% to
0.002%. At the same time, the rate at which the area off the road is labeled as obstacle remains
approximately constant (from 22.6% to 22.0%). This rate is not 100% simply because most of the
terrain there is still flat and drivable. Our approach for data acquisition mislabels the flat terrain as
non-drivable. Such mislabeling however, does not interfere with the parameter tuning algorithm,
and hence is preferable to the tedious process of labeling pixels manually.

Fig. 12 shows an example of the mapper in action. A snapshot of the vehicle from the side il-
lustrates that part of the surface is scanned multiple times due to a change of pitch. As a result,
the non-probabilistic method hallucinates a large occupied area in the center of the road, shown
in Panel c of Fig. 12. Our probabilistic approach overcomes this error and generates a map that is
good enough for driving. A second example is shown in Fig. 13.

6 Computer Vision Terrain Analysis

The effective maximum range at which obstacles can be detected with the laser mapper is approx-
imately 22 meters. This range is sufficient for Stanley to reliably avoid obstacles at speeds up to
25 mph. Based on the 2004 race course, the development team estimated that Stanley would need
to reach speeds of 35 mph in order to successfully complete the challenge. To extend the sensor
range enough to allow safe driving at 35 mph, Stanley uses a color camera to find drivable surfaces
at ranges exceeding that of the laser analysis. Fig. 14 compares laser and vision mapping side-by-
side. The left diagram shows a laser map acquired during the race; here obstacles are detected at
approximately 22 meter range. The vision map for the same situation is shown on the right side.
This map extends beyond 70 meters (each yellow circle corresponds to 10 meters range).

Our work builds on a long history of research on road finding(Pomerleau, 1991; Crisman and
Thorpe, 1993); see also (Dickmanns, 2002). To find the road, the vision module classifies images
into drivable and non-drivable regions. This classification task is generally difficult, as the road
appearance is affected by a number of factors that are not easily measured and change over time,
such as the surface material of the road, lighting conditions, dust on the lens of the camera, and so
on. This suggests that an adaptive approach is necessary, in which the image interpretation changes

(a) Side view

(b) top view of point cloud (c) non-probabilistic method (d) probabilistic method

Figure 12: Example of pitching combined with small pose estimation errors: (a) shows the reading
of the center beam of one of the lasers, integrated over time. Some of the terrain is scanned twice.
Panel (b) shows the 3-D point cloud; panel (c) the resulting map without probabilistic analysis, and
(d) the map with probabilistic analysis. The map shown in Panel (c) possesses a phantom obstacle,
large enough to force the vehicle off the road.

(a) Side view

(b) top view of point cloud (c) non-probabilistic method

error

(d) probabilistic method

Figure 13: A second example.

(a) Laser map (b) Vision map

Figure 14: Comparison of the laser-based (left) and the image-based (right) mapper. For scale,
circles are spaced around the vehicle at 10 meter distance. This diagram illustrates that the reach
of lasers is approximately 22 meters, whereas the vision module often looks 70 meters ahead.

(a) (b) (c) (d)

Figure 15: This figure illustrates the processing stages of the computer vision system: (a) a raw
image; (b) the processed image with the laser quadrilateral and a pixel classification; (c) the pixel
classification before thresholding; (d) horizon detection for sky removal.

as the vehicle moves and conditions change.

The camera images are not the only source of information about upcoming terrain available to
the vision mapper. Although we are interested in using vision to classify the drivability of terrain
beyond the laser range, we already have such drivability information from the laser in the near
range. All that is required from the vision routine is to extend the reach of the laser analysis. This
is different from the general-purpose image interpretation problem, in which no such data would
be available.

Stanley finds drivable surfaces by projecting drivable area from the laser analysis into the camera
image. More specifically, Stanley extracts a quadrilateral ahead of the robot in the laser map, so
that all grid cells within this quadrilateral are drivable. The range of this quadrilateral is typically
between 10 and 20 meters ahead of the robot. An example of such a quadrilateral is shown in
Fig. 14a. Using straightforward geometric projection, this quadrilateral is then mapped into the
camera image, as illustrated in Fig. 15a and b. An adaptive computer vision algorithm then uses
the image pixels inside this quadrilateral as training examples for the concept of drivable surface.

The learning algorithm maintains a mixture of Gaussians that model the color of drivable terrain.

Each such mixture is a Gaussian defined in the RGB color space of individual pixels; the total
number of Gaussians is denoted n. The learning algorithm maintains for each mixture a mean
RGB-color µi, a covariance Σi, and a count mi the total number of image pixels that were used to
train this Gaussian.

When a new image is observed, the pixels in the drivable quadrilateral are mapped into a smaller
number of k “local” Gaussians using the EM algorithm (Duda and Hart, 1973), with k < n (the
covariance of these local Gaussians are inflated by a small value so as to avoid overfitting). These k
local Gaussians are then merged into the memory of the learning algorithm, in a way that allows for
slow and fast adaptation. The learning adapts to the image in two possible ways; by adjusting the
previously found internal Gaussian to the actual image pixels, and by introducing new Gaussians
and discarding older ones. Both adaptation steps are essential. The first enables Stanley to adapt to
slowly changing lighting conditions; the second makes it possible to adapt rapidly to a new surface
color (e.g., when Stanley moves from a paved to an unpaved road).

In detail, to update the memory, consider the j-th local Gaussian. The learning algorithm de-
termines the closest Gaussian in the global memory, where closeness is determined through the
Mahalanobis distance.

d(i, j) = (µi − µj)
T (Σi + Σj)

−1 (µi − µj) (2)
Let i be the index of the minimizing Gaussian in the memory. The learning algorithm then chooses
one of two possible outcomes:

1. The distance d(i, j) ≤ φ, where φ is an acceptance threshold. The learning algorithm then
assumes that the global Gaussian j is representative of the local Gaussian i, and adaptation
proceeds slowly. The parameters of this global Gaussian are set to the weighted mean:

µi ←−
mi µi

mi +mj

+
mj µj

mi +mj

(3)

Σi ←−
mi Σi

mi +mj

+
mj Σj

mi +mj

(4)

mi ←− mi +mj (5)
Here mj is the number of pixels in the image that correspond to the j-th Gaussian.

2. The distance d(i, j) > φ for any Gaussian i in the memory. This is the case when none
of the Gaussian in memory are near the local Gaussian extracted form the image, where
nearness is measured by the Mahalanobis distance. The algorithm then generates a new
Gaussian in the global memory, with parameters µj , Σj , and mj . If all n slots are already
taken in the memory, the algorithm “forgets” the Gaussian with the smallest total pixel
count mi, and replaces it by the new local Gaussian.

After this step, each counter mi in the memory is discounted by a factor of γ < 1. This exponen-
tial decay term makes sure that the Gaussians in memory can be moved in new directions as the
appearance of the drivable surface changes over time.

For finding drivable surface, the learned Gaussians are used to analyze the image. The image
analysis uses an initial sky removal step defined in (Ettinger et al., 2003). A subsequent flood-fill
step then removes additional sky pixels not found by the algorithm in (Ettinger et al., 2003). The

Figure 16: These images illustrate the rapid adaptation of Stanley’s computer vision routines.
When the laser predominately screens the paved surface, the grass is not classified as drivable.
As Stanley moves into the grass area, the classification changes. This sequence of images also
illustrates why the vision result should not be used for steering decisions, in that the grass area is
clearly drivable, yet Stanley is unable to detect this from a distance.

remaining pixels are than classified using the learned mixture of Gaussian, in the straightforward
way. Pixels whose RGB-value is near one or more of the learned Gaussians are classified as
drivable; all other pixels are flagged as non-drivable. Finally, only regions connected to the laser
quadrilateral are labeled as drivable.

Fig. 15 illustrates the key processing steps. Panel a in this figure shows a raw camera image, and
Panel b shows the image after processing. Pixels classified as drivable are colored red, whereas
non-drivable pixels are colored blue. The remaining two panels on Fig. 15 show intermediate
processing steps: the classification response before thresholding (Panel c) and the result of the sky
finder (Panel d).

Due to the ability to create new Gaussians on-the-fly, Stanley’s vision routine can adapt to new
terrain within seconds. Fig. 16 shows data acquired at the National Qualification Event of the
DARPA Grand Challenge. Here the vehicle moves from a pavement to grass, both of which are
drivable. The sequence in Fig. 16 illustrates the adaptation at work: the boxed areas towards the
bottom of the image are the training region, and the red coloring in the image is the result of
applying the learned classifier. As is easily seen in Fig. 16, the vision module successfully adapts
from pavement to grass within less than a second while still correctly labeling the hay bales and
other obstacles.

Under slowly changing lighting conditions, the system adapts more slowly to the road surface,
making extensive use of past images in classification. This is illustrated in the bottom row of
Fig. 17, which shows results for a sequence of images acquired at the Beer Bottle pass, the most

Figure 17: Processed camera images in flat and mountainous terrain (Beer Bottle Pass).

Flat Desert Roads Mountain Roads
Discriminative Generative Discriminative Generative

training training training training
Drivable terrain detection rate, 10-20m 93.25% 90.46% 80.43% 88.32%
Drivable terrain detection rate, 20-35m 95.90% 91.18% 76.76% 86.65%
Drivable terrain detection rate, 35-50m 94.63% 87.97% 70.83% 80.11%
Drivable terrain detection rate, 50m+ 87.13% 69.42% 52.68% 54.89%
False positives, all ranges 3.44% 3.70% 0.50% 2.60%

Table 1: Road detection rate for the two primary machine learning methods, broken down into
different ranges. The comparison yields no conclusive winner.

difficult passage in the 2005 race. Here most of the terrain has similar visual appearance. The
vision module, however, still competently segments the road. Such a result is only possible because
the system balances the use of past images with its ability to adapt to new camera images.

Once a camera image has been classified, it is mapped into an overhead map, similar to the 2-D
map generated by the laser. We already encountered such a map in Fig. 14b, which depicted the
map of a straight road. Since certain color changes are natural even on flat terrain, the vision map is
not used for steering control. Instead, it is used exclusively for velocity control. When no drivable
corridor is detected within a range of 40 meters, the robot simply slows down to 25 mph, at which
point the laser range is sufficient for safe navigation. In other words, the vision analysis serves as
an early warning system for obstacles beyond the range of the laser sensors.

In developing the vision routines, the research team investigated a number of different learning
algorithms. One of the primary alternatives to the generative mixture of Gaussian method was
a discriminative method, which uses boosting and decision stumps for classification (Davies and
Lienhart, 2006). This method relies on examples of non-drivable terrain, which were extracted
using an algorithm similar to the one for finding a drivable quadrilateral. A performance evaluation,

(a) (b)

Figure 18: (a) Search regions for the road detection module: the occurrence of obstacles is deter-
mined along a sequence of lines parallel to the RDDF. (b) The result of the road estimator is shown
in blue, behind the vehicle. Notice that the road is bounded by two small berms.

carried out using independent test data gathered on the 2004 race course, led to inconclusive results.
Table 1 shows the classification accuracy for both methods, for flat desert roads and mountain
roads. The generative mixture of Gaussian methods was finally chosen because it does not require
training examples of non-drivable terrain, which can be difficult to obtain in flat open lake-beds.

7 Road Property Estimation

7.1 Road Boundary

One way to avoid obstacles is to detect them and drive around them. This is the primary function
of the laser mapper. Another effective method is to drive in such a way that minimizes the a
priori chances of encountering an obstacle. This is possible because obstacles are rarely uniformly
distributed in the world. On desert roads, obstacles such as rocks, brush, and fence posts exist most
often along the sides of the road. By simply driving down the middle of the road, most obstacles
on desert roads can be avoided without ever detecting them!

One of the most beneficial components of Stanley’s navigation routines, thus, is a method for
staying near the center of the road. To find the road center, Stanley uses probabilistic low-pass
filters to determine both road sides based using the laser map. The idea is simple; in expectation,
the road sides are parallel to the RDDF. However, the exact lateral offset of the road boundary
to the RDDF center is unknown and varies over time. Stanley’s low-pass filters are implemented
as one-dimensional Kalman filters. The state of each filter is the lateral distance between the road
boundary and the center of the RDDF. The KFs search for possible obstacles along a discrete search
pattern orthogonal to the RDDF, as shown in Fig. 18a. The largest free offset is the “observation”
to the KF, in that it establishes the local measurement of the road boundary. So if multiple parallel
roads exist in Stanley’s field of view separated by a small berm, the filter will only trace the
innermost drivable area.

Figure 19: The relationship between velocity and imparted acceleration from driving over a fixed
sized obstacle at varying speeds. The plot shows two distinct reactions to the obstacle, one up
and one down. While this relation is ultimately non-linear, it is well modeled by a linear function
within the range relevant for desert driving.

By virtue of KF integration, the road boundaries change slowly. As a result, small obstacles or
momentary situations without side obstacles affect the road boundary estimation only minimally;
however, persistent obstacles that occur over extended period of time do have a strong effect.

Based on the output of these filters, Stanley defines the road to be the center of the two boundaries.
The road center’s lateral offset is a component in scoring trajectories during path planning, as will
be discussed further below. In the absence of other contingencies, Stanley slowly converges to
the estimated road center. Empirically, we found that this driving technique stays clear of the vast
majority of natural obstacles on desert roads. While road centering is clearly only a heuristic, we
found it to be highly effective in extensive desert tests.

Fig. 18b shows an example result of the road estimator. The blue corridor shown there is Stanley’s
best estimate of the road. Notice that the corridor is confined by two small berms, which are both
detected by the laser mapper. This module plays an important role in Stanley’s ability to negotiate
desert roads.

7.2 Terrain Ruggedness

In addition to avoiding obstacles and staying centered along the road, another important component
of safe driving is choosing an appropriate velocity (Iagnemma et al., 2004). Intuitively speaking,
desert terrain varies from flat and smooth to steep and rugged. The type of the terrain plays an
important role in determining the maximum safe velocity of the vehicle. On steep terrain, driving
too fast may lead to fishtailing or sliding. On rugged terrain, excessive speeds may lead to extreme
shocks that can damage or destroy the robot. Thus, sensing the terrain type is essential for the safety
of the vehicle. In order to address these two situations, Stanley’s velocity controller constantly
estimates terrain slope and ruggedness and uses these values to set intelligent maximum speeds.

The terrain slope is taken directly from the vehicle’s pitch estimate, as computed by the UKF. Bor-

(a) (b) (c)

Figure 20: Smoothing of the RDDF: (a) adding additional points; (b) the trajectory after smooth-
ing (shown in red); (c) a smoothed trajectory with a more aggressive smoothing parameter. The
smoothing process takes only 20 seconds for the entire 2005 course.

rowing from (Brooks and Iagnemma, 2005), the terrain ruggedness is measured using the vehicle’s
z accelerometer. The vertical acceleration is band-pass filtered to remove the effect of gravity and
vehicle vibration, while leaving the oscillations in the range of the vehicle’s resonant frequency.
The amplitude of the resulting signal is a measurement of the vertical shock experienced by the ve-
hicle due to excitation by the terrain. Empirically, this filtered acceleration appears to vary linearly
with velocity. (See Fig. 19.) In other words, doubling the maximum speed of the vehicle over a
section of terrain will approximately double the maximum differential acceleration imparted on the
vehicle. In Section 9.1, this relationship will be used to derive a simple rule for setting maximum
velocity to approximately bound the maximum shock imparted on the vehicle.

8 Path Planning

As was previously noted, the RDDF file provided by DARPA largely eliminates the need for any
global path planning. Thus, the role of Stanley’s path planner is primarily local obstacle avoidance.
Instead of planning in the global coordinate frame, Stanley’s path planner was formulated in a
unique coordinate system: perpendicular distance, or “lateral offset” to a fixed base trajectory.
Varying lateral offset moves Stanley left and right with respect to the base trajectory, much like
a car changes lanes on a highway. By changing lateral offset intelligently, Stanley can avoid
obstacles at high speeds while making fast progress along the course.

The base trajectory that defines lateral offset is simply a smoothed version of the skeleton of the
RDDF corridor. It is important to note that this base trajectory is not meant to be an optimal
trajectory in any sense; it serves as a baseline coordinate system upon which obstacle avoidance
maneuvers are continuously layered. The following two sections will describe the two parts to
Stanley’s path planning software: the path smoother that generates the base trajectory before the
race, and the online path planner which is constantly adjusting Stanley’s trajectory.

8.1 Path Smoothing

Any path can be used as a base trajectory for planning in lateral offset space. However, certain
qualities of base trajectories will improve overall performance.

• Smoothness. The RDDF is a coarse description of the race corridor and contains many
sharp turns. Blindly trying to follow the RDDF waypoints would result in both signifi-
cant overshoot and high lateral accelerations, both of which could adversely affect vehicle
safety. Using a base trajectory that is smoother than the original RDDF will allow Stanley
to travel faster in turns and follow the intended course with higher accuracy.
• Matched curvature. While the RDDF corridor is parallel to the road in expectation, the

curvature of the road is poorly predicted by the RDDF file in turns, again due to the finite
number of waypoints. By default, Stanley will prefer to drive parallel to the base trajec-
tory, so picking a trajectory that exhibits curvature that better matches the curvature of the
underlying desert roads will result in fewer changes in lateral offset. This will also result
in smoother, faster driving.

Stanley’s base trajectory is computed before the race in a four-stage procedure.

1. First, points are added to the RDDF in proportion to the local curvature (see Fig. 20a).
2. The coordinates of all points in the upsampled trajectory are then adjusted through least

squares optimization. Intuitively, this optimization adjusts each waypoint so as to minimize
the curvature of the path while staying as close as possible to the waypoints in the original
RDDF. The resulting trajectory is still piecewise linear, but it is significantly smoother than
the original RDDF.
Let x1, . . . , xN be the waypoints of the base trajectory to be optimized. For each of these
points, we are given a corresponding point along the original RDDF, which shall be denoted
yi. The points x1, . . . , xN are obtained by minimizing the following additive function:

argmin
x1,...,xN

∑

i

|yi − xi|
2 − β

∑

n

(xn+1 − xn) · (xn − xn−1)

|xn+1 − xn| |xn − xn−1|
+

∑

n

fRDDF(xn) (6)

Here |yi − xi|
2 is the quadratic distance between the waypoint xi and the corresponding

RDDF anchor point yi; the index variable i iterates over the set of points xi. Minimizing
this quadratic distance for all points i ensures that the base trajectory stays close to the
original RDDF. The second expression in Eq. 6 is a curvature term; It minimizes the angle
between two consecutive line segments in the base trajectory by minimizing the dot product
of the segment vectors. Its function is to smooth the trajectory: the smaller the angle, the
smoother the trajectory. The scalar β trades off these two objectives and is a parameter in
Stanley’s software. The function fRDDF(xn) is a differentiable barrier function that goes to
infinity as a point xn approaches the RDDF boundary, but is near zero inside the corridor
away from the boundary. As a result, the smoothed trajectory is always inside the valid
RDDF corridor. The optimization is performed with a fast version of conjugate gradient
descent, which moves RDDF points freely in 2-D space.

3. The next step of the path smoother involves cubic spline interpolation. The purpose of this
step is to obtain a path that is differentiable. This path can then be resampled efficiently.

4. The final step of path smoothing pertains to the calculation of the speed limit attached to
each waypoint of the smooth trajectory. Speed limits are the minimum of three quantities:
(a) the speed limit from corresponding segment of the original RDDF, (b) a speed limit that
arises from a bound on lateral acceleration, and (c) a speed limit that arises from a bounded
deceleration constraint. The lateral acceleration constraint forces the vehicle to slow down

(a) (b)

Figure 21: Path planning in a 2-D search space: (a) shows paths that change lateral offsets with
the minimum possible lateral acceleration (for a fixed plan horizon); (b) shows the same for the
maximum lateral acceleration. The former are called “nudges,” and the latter are called “swerves.”

appropriately in turns. When computing these limits, we bound the lateral acceleration of
the vehicle to 0.75 m/sec2, in order to give the vehicle enough maneuverability to safely
avoid obstacles in curved segments of the course. The bounded deceleration constraint
forces the vehicle to slow down in anticipation of turns and changes in DARPA speed
limits.

Fig. 20 illustrates the effect of smoothing on a short segment of the RDDF. Panel a shows the
RDDF and the upsampled base trajectory before smoothing. Panels b and c show the trajectory
after smoothing (in red), for different values of the parameter β. The entire data pre-processing
step is fully automated, and requires only approximately 20 seconds of computational time on a 1.4
GHz laptop, for the entire 2005 race course. This base trajectory is transferred onto Stanley, and
the software is ready to go. No further information about the environment or the race is provided
to the robot.

It is important to note that Stanley does not modify the original RDDF file. The base trajectory
is only used as the coordinate system for obstacle avoidance. When evaluating whether particular
trajectories stay within the designated race course, Stanley checks against the original RDDF file.
In this way, the preprocessing step does not affect the interpretation of the corridor constraint
imposed by the rules of the race.

8.2 Online Path Planning

Stanley’s online planning and control system is similar to the one described in (Kelly and Stentz,
1998). The online component of the path planner is responsible for determining the actual tra-
jectory of the vehicle during the race. The goal of the planner is to complete the course as fast
as possible while successfully avoiding obstacles and staying inside the RDDF corridor. In the
absence of obstacles, the planner will maintain a constant lateral offset from the base trajectory.
This results in driving a path parallel to the base trajectory, but possibly shifted left or right. If
an obstacle is encountered, Stanley will plan a smooth change in lateral offset that avoids the ob-
stacle and can be safely executed. Planning in lateral offset space also has the advantage that it
gracefully handles GPS error. GPS error may systematically shift Stanley’s position estimate. The
path planner will simply adjust the lateral offset of the current trajectory to recenter the robot in

(a) (b)

Figure 22: Snapshots of the path planner as it processes the drivability map. Both snapshots show
a map, the vehicle, and the various nudges considered by the planner. The first snapshot stems
from a straight road (Mile 39.2 of the 2005 race course). Stanley is traveling 31.4 mph, hence can
only slowly change lateral offsets due to the lateral acceleration constraint. The second example is
taken from the most difficult part of the 2005 DARPA Grand Challenge, a mountainous area called
Beer Bottle Pass. Both images show only nudges for clarity.

the road.

The path planner is implemented as a search algorithm that minimizes a linear combination of
continuous cost functions, subject to a fixed vehicle model. The vehicle model includes several
kinematic and dynamic constraints including maximum lateral acceleration (to prevent fishtailing),
maximum steering angle (a joint limit), maximum steering rate (maximum speed of the steering
motor), and maximum deceleration. The cost functions penalize running over obstacles, leaving
the RDDF corridor, and the lateral offset from the current trajectory to the sensed center of the
road surface. The soft constraints induce a ranking of admissible trajectories. Stanley chooses
the best such trajectory. In calculating the total path costs, unknown territory is treated the same
as drivable surface, so that the vehicle does not swerve around unmapped spots on the road, or
specular surfaces such as puddles.

At every time step, the planner considers trajectories drawn from a two-dimensional space of ma-
neuvers. The first dimension describes the amount of lateral offset to be added to the current
trajectory. This parameter allows Stanley to move left and right, while still staying essentially par-
allel to the base trajectory. The second dimension describes the rate at which Stanley will attempt
to change to this lateral offset. The lookahead distance is speed-dependent and ranges from 15 to
25 meters. All candidate paths are run through the vehicle model to ensure that obey the kinematic
and dynamic vehicle constraints. Repeatedly layering these simple maneuvers on top of the base
trajectory can result in quite sophisticated trajectories.

The second parameter in the path search allows the planner to control the urgency of obstacle
avoidance. Discrete obstacles in the road, such as rocks or fence posts often require the fastest
possible change in lateral offset. Paths that change lateral offset as fast as possible without violating
the lateral acceleration constraint are called “swerves.” Slow changes in the positions of road
boundaries require slow, smooth adjustment to the lateral offset. Trajectories with the slowest

?

Human driving

6

Stanley driving

Figure 23: Velocity profile of a human driver and of Stanley’s velocity controller in rugged terrain.
Stanley identifies controller parameters that match human driving. This plot compares human
driving with Stanley’s control output.

possible change in lateral offset for a given planning horizon are called “nudges.” Swerves and
nudges span a spectrum of maneuvers appropriate for high speed obstacle avoidance: fast changes
for avoiding head on obstacles, and slow changes for smoothly tracking the road center. Swerves
and nudges are illustrated in Fig. 21. On a straight road, the resulting trajectories are similar to
those of Ko and Simmons’s lane curvature method (Ko and Simmons, 1998).

The path planner is executed at 10 Hz. The path planner is ignorant to actual deviations from
the vehicle and the desired path, since those are handled by the low-level steering controller. The
resulting trajectory is therefore always continuous. Fast changes in lateral offset (swerves) will also
include braking in order to increase the amount of steering the vehicle can do without violating the
maximum lateral acceleration constraint.

Fig. 22 shows an example situation for the path planner. Shown here is a situation taken from Beer
Bottle Pass, the most difficult passage of the 2005 Grand Challenge. This image only illustrates one
of the two search parameters: the lateral offset. It illustrates the process through which trajectories
are generated by gradually changing the lateral offset relative to the base trajectory. By using the
base trajectory as a reference, path planning can take place in a low-dimensional space, which we
found to be necessary for real-time performance.

9 Real-time Control

Once the intended path of the vehicle has been determined by the path planner, the appropriate
throttle, brake, and steering commands necessary to achieve that path must be computed. This
control problem will be described in two parts: the velocity controller and steering controller.

9.1 Velocity Control

Multiple software modules have input into Stanley’s velocity, most notably the path planner, the
health monitor, the velocity recommender, and the low-level velocity controller. The low-level
velocity controller translates velocity commands from the first three modules into actual throttle

and brake commands. The implemented velocity is always the minimum of the three recommended
speeds. The path planner will set a vehicle velocity based on the base trajectory speed limits and
any braking due to swerves. The vehicle health monitor will lower the maximum velocity due to
certain preprogrammed conditions, such as GPS blackouts or critical system failures.

The velocity recommender module sets an appropriate maximum velocity based on estimated ter-
rain slope and roughness. The terrain slope affects the maximum velocity if the pitch of the vehicle
exceeds 5 degrees. Beyond 5 degrees of slope, the maximum velocity of the vehicle is reduced lin-
early to values that, in the extreme, restrict the vehicle’s velocity to 5 mph. The terrain ruggedness
is fed into a controller with hysteresis that controls the velocity setpoint to exploit the linear re-
lationship between filtered vertical acceleration amplitude and velocity; see Sect. 7.2. If rough
terrain causes a vibration that exceeds the maximum allowable threshold, the maximum velocity
is reduced linearly such that continuing to encounter similar terrain would yield vibrations exactly
meeting the shock limit. Barring any further shocks, the velocity limit is slowly increased linearly
with distance traveled.

This rule may appear odd, but it has great practical importance; it reduces the Stanley’s speed
when the vehicle hits a rut. Obviously, the speed reduction occurs after the rut is hit, not before.
By slowly recovering speed, Stanley will approach nearby ruts at a much lower speed. As a result,
Stanley tends to drive slowly in areas with many ruts, and only returns to the base trajectory speed
when no ruts have been encountered for a while. While this approach does not avoid isolated
ruts, we found it to be highly effective in avoiding many shocks that would otherwise harm the
vehicle. Driving over wavy terrain can be just as hard on the vehicle as driving on ruts. In bumpy
terrain, slowing down also changes the frequency at which the bumps pass, reducing the effect of
resonance.

The velocity recommender is characterized by two parameters: the maximum allowable shock,
and the linear recovery rate. Both are learned from human driving. More specifically, by record-
ing the velocity profile of a human in rugged terrain, Stanley identifies the parameters that most
closely match the human driving profile. Fig. 23 shows the velocity profile of a human driver in a
mountainous area of the 2004 Grand Challenge Course (the “Daggett Ridge”). It also shows the
profile of Stanley’s controller for the same data set. Both profiles tend to slow down in the same
areas. Stanley’s profile, however, is different in two ways: the robot deceleerates much faster than
a person, and its recovery is linear whereas the person’s recovery is nonlinear. The fast acceleration
is by design, to protect the vehicle from further impact.

Once the planner, velocity recommender, and health monitor have all submitted velocities, the
minimum of these speeds is implemented by the velocity controller. The velocity controller treats
the brake cylinder pressure and throttle level as two opposing, single-acting actuators that exert a
longitudinal force on the car. This is a very close approximation for the brake system, and was
found to be an acceptable simplification of the throttle system. The controller computes a single
error metric, equal to a weighted sum of the velocity error and the integral of the velocity error. The
relative weighting determines the trade-off between disturbance rejection and overshoot. When the
error metric is positive, the brake system commands a brake cylinder pressure proportional to the
PI error metric, and when it is negative, the throttle level is set proportional to the negative of the
PI error metric. By using the same PI error metric for both actuators, the system is able to avoid
the chatter and dead bands associated with opposing, single-acting actuators. To realize the com-

Figure 24: Illustration of the steering controller. With zero cross-track error, the basic implemen-
tation of the steering controller steers the front wheels parallel to the path. When cross-track error
is perturbed from zero, it is nulled by commanding the steering according to a non-linear feedback
function.

manded brake pressure, the hysteretic brake actuator is controlled through saturated proportional
feedback on the brake pressure, as measured by the Touareg, and reported through the CAN bus
interface.

9.2 Steering Control

The steering controller accepts as input the trajectory generated by the path planner, the UKF pose
and velocity estimate, and the measured steering wheel angle. It outputs steering commands at
a rate of 20 Hz. The function of this controller is to provide closed loop tracking of the desired
vehicle path, as determined by the path planner, on quickly varying, potentially rough terrain.

The key error metric is the cross-track error, x(t), as shown in Fig. 24, which measures the lateral
distance of the center of the vehicle’s front wheels from the nearest point on the trajectory. The
idea now is to command the steering by a control law that yields an x(t) that converges to zero.

Stanley’s steering controller, at the core, is based on a non-linear feedback function of the cross-
track error, for which exponential convergence can be shown. Denote the vehicle speed at time t
by u(t). In the error-free case, using this term, Stanley’s front wheels match the global orientation
of the trajectory. This is illustrated in Fig. 24. The angle ψ in this diagram describes the orientation
of the nearest path segment, measured relative to the vehicle’s own orientation. In the absence of
any lateral errors, the control law points the front wheels parallel to the planner trajectory.

The basic steering angle control law is given by

δ(t) = ψ(t) + arctan
k x(t)

u(t)
(7)

where k is a gain parameter. The second term adjusts the steering in (nonlinear) proportion to the
cross-track error x(t): the larger this error, the stronger the steering response toward the trajectory.

Using a linear bicycle model with infinite tire stiffness and tight steering limitations (see (Gillespie,

x ’ = u sin(max(min(− atan(k x/u) − ψ,24 π/180), − 24 π/180) + ψ)
ψ ’ = u/L tan(max(min(− atan(k x/u) − ψ,24 π/180), − 24 π/180))

L = 2.85
k = 1

u = 10

−10 −8 −6 −4 −2 0 2 4 6 8 10

−3

−2

−1

0

1

2

3

x

ψ
x ’ = u sin(max(min(− atan(k x/u) − ψ,24 π/180), − 24 π/180) + ψ)
ψ ’ = u/L tan(max(min(− atan(k x/u) − ψ,24 π/180), − 24 π/180))

L = 2.85
k = 1

u = 40

−10 −8 −6 −4 −2 0 2 4 6 8 10

−3

−2

−1

0

1

2

3

x

ψ

Figure 25: Phase portrait for k = 1 at 10 and 40 meter per second, respectively, for the basic
controller, including the effect of steering input saturation.

1992)) results in the following effect of the control law:

ẋ(t) = −u(t) sin arctan

(

kx(t)

u(t)

)

=
−kx(t)

√

1 +
(

kx(t)
u(t)

)2
(8)

and hence for small cross track error,

x(t) ≈ x(0) exp−kt (9)

Thus, the error converges exponentially to x(t) = 0. The parameter k determines the rate of
convergence. As cross track error increases, the effect of the arctan function is to turn the front
wheels to point straight toward the trajectory, yielding convergence limited only by the speed of
the vehicle. For any value of x(t), the differential equation converges monotonically to zero.
Fig. 25 shows phase portrait diagrams for Stanley’s final controller in simulation, as a function
of the error x(t) and the orientation ψ(t), including the effect of steering input saturation. These
diagrams illustrate that the controller converges nicely for the full range attitudes and a wide range
of cross-track errors, in the example of two different velocities.

This basic approach works well for lower speeds, and a variant of it can even be used for reverse
driving. However, it neglects several important effects. There is a discrete, variable time delay in
the control loop, inertia in the steering column, and more energy to dissipate as speed increases.
These effects are handled by simply damping the difference between steering command and the
measured steering wheel angle, and including a term for yaw damping. Finally, to compensate for
the slip of the actual pneumatic tires, the vehicle is commanded to have a steady state yaw offset
that is a non-linear function of the path curvature and the vehicle speed, based on a bicycle vehicle
model, with slip, that was calibrated and verified in testing. These terms combine to stabilize the
vehicle and drive the cross-track error to zero, when run on the physical vehicle. The resulting con-
troller has proven stable in testing on terrain from pavement to deep, off-road mud puddles, and on
trajectories with tight enough radii of curvature to cause substantial slip. It typically demonstrates
tracking error that is on the order of the estimation error of this system.

10 Development Process and Race Results

10.1 Race Preparation

The race preparation took place at three different locations: Stanford University, the 2004 Grand
Challenge Course between Barstow and Primm, and the Sonoran Desert near Phoenix, AZ. In the
weeks leading up to the race, the team permanently moved to Arizona, where it enjoyed the hospi-
tality of Volkswagen of America’s Arizona Proving Grounds. Fig. 26 shows examples of hardware
testing in extreme offroad terrain; these pictures were taken while the vehicle was operated by a
person.

In developing Stanley, the Stanford Racing Team adhered to a tight development and testing sched-
ule, with clear milestones along the way. Emphasis was placed on early integration, so that an end-
to-end prototype was available nearly a year before the race. The system was tested periodically in
desert environments representative of the team’s expectation for the Grand Challenge race. In the
months leading up to the race, all software and hardware modules were debugged and subsequently
frozen. The development of the system terminated well ahead of the race.

The primary measure of system capability was “MDBCF” – mean distance between catastrophic
failures. A catastrophic failure was defined as a condition under which a human driver had to in-
tervene. Common failures involved software problems such as the one shown in Fig. 9; occasional
failures were caused by the hardware, e.g., the vehicle power system. In December 2004, the MD-
BCF was approximately 1 mile. It increased to 20 miles in July 2005. The last 418 miles before the
National Qualification event were free of failures; this included a single 200-mile run over a cyclic
testing course. At that time the system development was suspended, Stanley’s lateral navigation
accuracy was approximately 30 cm. The vehicle had logged more than 1,200 autonomous miles.

In preparing for this race, the team also tested sensors that were not deployed in the final race.
Among them was an industrial strength stereo vision sensor with a 33 cm baseline. In early exper-
iments, we found that the stereo system provided excellent results in the short range, but lagged
behind the laser system in accuracy. The decision not to use stereo was simply based on the obser-
vation that it added little to the laser system. A larger baseline might have made the stereo more
useful at longer ranges, but was unfortunately not available.

The second sensor that was not used in the race was the 24 GHz RADAR system. The RADAR
uses a linear frequency shift keying modulated (LFMSK) transmit waveform; it is normally used
for adaptive cruise control (ACC). After carefully tuning gains and acceptance thresholds of the
sensor, the RADAR proved highly effective in detecting large frontal obstacles such as abandoned
vehicles in desert terrain. Similar to the mono-vision system in Sect. 6, the RADAR was tasked to
screen the road at a range beyond the laser sensors. If a potential obstacle was detected, the system
limits Stanley’s speed to 25 mph so that the lasers could detect the obstacle in time for collision
avoidance.

While the RADAR system proved highly effective in testing, two reasons that prevented its use
in the race. The first reason was technical: During the National Qualification Event (NQE), the
USB driver of the receiving computer repeatedly caused trouble, sometimes stalling the receiving

Figure 26: Vehicle testing at the Volkswagen Arizona Proving Grounds, manual driving.

computer. The second reason was pragmatical. During the NQE, it became apparent that the
probability of encountering large frontal obstacles was small in high-speed zones; and even if
those existed, the vision system would very likely detect them. As a consequence, the team felt
that the technical risks associated with the RADAR system outweigh its benefits, and made the
decision not to use RADAR in the race.

10.2 National Qualification Event

The National Qualification Event (NQE) took place September 27 to October 5 on the California
Speedway in Fontana, CA. Like most competitive robots, Stanley qualified after four test runs.
From the 43 semifinalists, 11 completed the course in the first run, 13 in the second run, 18 in
the third run, and 21 in the fourth run. Stanley’s times were competitive but not the fastest (Run
1: 10:38; run 2: 9:12; run 3: 11:06; run 4: 11:06). However, Stanley was the only vehicle that
cleared all 50 gates in every run, and avoided collisions with all of the obstacles. This flawless
performance earned Stanley the number two starting position, behind CMU’s H1ghlander robot
and ahead of the slightly faster Sandstorm robot, also by CMU.

10.3 The Race

At approximately 4:10am on October 8, 2005, the Stanford Racing Team received the race data,
which consisted of 2,935 GPS-referenced coordinates along with speed limits of up to 50 mph.
Stanley started the race at 6:35am on October 8, 2005. The robot immediately picked up speed and
drove at or just below the speed limit. 3 hours, 45 minutes and 22 seconds into the race, at Mile
73.5, DARPA paused Stanley for the first time, to give more space to CMU’s H1ghlander robot,
which had started five minutes ahead of Stanley. The first pause lasted 2 minutes and 45 seconds.
Stanley was paused again only 5 minutes and 40 seconds later, at Mile 74.9 (3 hours, 53 minutes,
and 47 seconds into the race). This time the pause lasted 6 minutes and 35 seconds, for a total
pause time of 9 minutes and 20 seconds. The locations of the pauses are shown in Fig. 27. From
this point on, Stanley repeatedly approached H1ghlander within a few hundred yards. Even though
Stanley was still behind H1ghlander, it was leading the race.

5 hours, 24 minutes and 45 seconds into the race, DARPA finally paused H1ghlander and allowed
Stanley to pass. The passing happened a Mile 101.5; the location is marked by a green circle in
Fig. 27. Fig. 28 shows processed camera images of the passing process acquired by Stanley, and

Pause 1

Pause 2

Passing -

Figure 27: This map shows Stanley’s path. The thickness of the trajectory indicates Stanley’s
speed (thicker means faster). At the locations marked by the red ’x’s, the race organizers paused
Stanley because of the close proximity of CMU’s H1ghlander robot. At Mile 101.5, H1ghlander
was paused and Stanley passed. This location is marked by a green ’x’.

Figure 28: Passing CMU’s H1ghlander robot: The left column shows a sequence of camera im-
ages, the center column the processed images with obstacle information overlayed, and the right
column the 2D map derived from the processed image. The vision routine detects H1ghlander as
an obstacle at a 40 meter range, approximately twice the range of the lasers.

Figure 29: Sensor image from the Beer Bottle Pass, the most difficult passage of the DARPA Grand
Challenge.

(a) Beer Bottle Pass (b) Map and GPS corridor

Figure 30: Image of the Beer Bottle pass, and snapshot of the map acquired by the robot. The two
blue contours in the map mark the GPS corridor provided by DARPA, which aligns poorly with
the map data. This analysis suggests that a robot that followed the GPS via points blindly would
likely have failed to traverse this narrow mountain pass.

0 20 40 60 80 100 120 14012

14

16

18

20

22

24

(a) Velocity averages for each 10-mile segment of the course

miles along the course

0 20 40 60 80 100 120 14015

20

25

(b) Average velocity as a function of total distance traveled

miles along the course

0 5 10 15 20 25 30 35 400

500

1000

1500

2000

2500
(c) Velocity histogram (counts are in seconds)

velocity in mph

Figure 31: Stanley’s cumulative velocity.

Figure 32: Laser model of CMU’s H1ghlander robot, taken at Mile 101.5.

Figure 33: This diagram shows where the road conditions forced Stanley to slow down along the
course. Slow-down predominately occurred in the mountains.

Fig. 32 depicts a 3-D model of H1ghlander as it is being passed. Since Stanley started in second
pole position and finished first, the top-seeded H1ghlander robot was the only robot encountered
by Stanley during the race.

As noted in the introduction of this article, Stanley finished first, at an unmatched finishing time of
6 hours 53 minutes and 58 seconds. Its overall average velocity was 19.1 mph. However, Stanley’s
velocity varied wildly during the race. Initially, the terrain was flat and the speed limits allowed
for much higher speeds. Stanley reached its top speed of 38.0 mph at Mile 5.43, 13 minutes and 47
seconds into the race. Its maximum average velocity during the race was 24.8 mph, which Stanley
attained after 16 minutes and 56 seconds, at Mile 7.00. Speed limits then forced Stanley to slow
down. Between Mile 84.9 and 88.1, DARPA restricted the maximum velocity to 10 mph. Shortly
thereafter, at Mile 90.6 and 4 hours, 57 minutes, and 7 seconds into the race, Stanley attained its
minimum average velocity of 18.3 mph. The total profile of velocities is shown in Fig. 31.

As explained in this paper, Stanley uses a number of strategies to determine the actual travel speed.
During 68.2% of the course, Stanley’s velocity was limited as pre-calculated, by following the
DARPA speed limits or the maximum lateral acceleration constraints in turns. For the remaining
31.8%, Stanley chose to slow down dynamically, as the result of its sensor measurements. In
18.1%, the slow-down was the result of rugged or steep terrain. The vision module caused Stanley
to slow down to 25 mph for 13.1% of the total distance; however, without the vision module Stanley
would have been forced to a 25 mph maximum speed, which would have resulted in a finishing
time of approximately 7 hours and 5 minutes, possibly behind CMU’s Sandstorm robot. Finally,
0.6% of the course Stanley drove slower because it was denied GPS readings. Fig. 33 illustrates the

(a) Mile 22.37

(b) Mile 34.69

Figure 34: Problems during the race caused by a stalling of the laser data stream. In both cases,
Stanley swerved around phantom obstacles; at Mile 22.37 Stanley drove on the berm. None of
these incidents led to a collision or an unsafe driving situation during the race.

effect of terrain ruggedness on the overall velocity. The curve on the top illustrates the magnitude
at which Stanley slowed down to accommodate rugged terrain; the bottom diagram shows the
altitude profile, as provided by DARPA. The terrain ruggedness triggers mostly in mountainous
terrain. We believe that the ability to adapt the speed to the ruggedness of the terrain was an
essential ingredient in Stanley’s success.

Stanley also encountered some unexpected difficulties along the course. Early on in the race,
Stanley’s laser data stream repeatedly stalled for durations of 300 to 1,100 milliseconds. There
were a total of 17 incidents, nearly all of which occurred between Mile 22 and Mile 35. The
resulting inaccurate time stamping of the laser data led to the insertion of phantom obstacles into
the map. In four of those cases, those incidents resulted in a significant swerve. The two most
significant of these swerves are shown in Fig. 34. Both of those swerves were quite noticeable.
In one case, Stanley even drove briefly on the berm as shown in Fig. 34a; in the other, Stanley
swerved on an open lake bed without any obstacles, as shown in Fig. 34b. At no point was the
vehicle in jeopardy, as the berm that was traversed was drivable. However, as a result of these
errors, Stanley slowed down a number of times between Miles 22 and 35. Thus, the main effect
of these incidents was a loss of time early in the race. The data stream stalling problem vanished
entirely after Mile 37.85. It only reoccurred once at Mile 120.66, without any visible change of
the driving behavior.

During 4.7% of the Grand Challenge, the GPS reported 60 cm error or more. Naturally, this number
represents the unit’s own estimate, which may not necessarily be accurate. However, this raises the
question of how important online mapping and path planning was in this race.

Stanley frequently moved away from the center axis of the RDDF. On average, the lateral offset
was±74 cm. The maximum lateral offset during the race was 10.7 meters, which was the result of
the swerve shown in Fig. 34c. However, such incidents were rare, and in nearly all cases non-zero
lateral offsets were the results of obstacles in the robot’s path.

−100 −50 0 50 100 150 2000

1000

2000

3000

4000

5000

Figure 35: Histogram of lateral offsets on the beer bottle pass. The horizontal units are in centime-
ters.

An example situation is depicted in Fig. 29. This figure shows raw laser data from the Beer Bottle
Pass, the most difficult section of the course. An images of this pass is depicted in Fig. 30a. Of
interest is the map in Fig. 30b. Here the DARPA-provided corridor is marked by the two solid blue
lines. This image illustrates that the berm on Stanley’s left reaches well into the corridor. Stanley
drives as far left as the corridor constraint allows. Fig. 35 shows a histogram of lateral offsets for
the Beer Bottle Pass. On average, Stanley drove 66 cm to the right of the center of the RDDF in
this part of the race. We suspect that driving 66 cm further to the left would have been fatal in
many places. This sheds light on the importance of Stanley’s ability to react to the environment in
driving. Simply following the GPS points would likely have prevented Stanley from finishing this
race.

11 Discussion

This article provides a comprehensive survey of the winning robot of the DARPA Grand Challenge.
Stanley, developed by the Stanford Racing Team in collaboration with its primary supporters, relied
on a software pipeline for processing sensor data and determining suitable steering, throttle, brake,
and gear shifting commands.

From a broad perspective, Stanley’s software mirrors common methodology in autonomous vehicle
control. However, many of the individual modules relied on state-of-the-art Artificial Intelligence
techniques. The pervasive use of machine learning, both ahead and during the race, made Stanley
robust and precise. We believe that those techniques, along with the extensive testing that took
place, contributed significantly to Stanley’s success in this race.

While the DARPA Grand Challenge was a milestone in the quest for self-driving cars, it left open a
number of important problems. Most important among those was the fact that the race environment
was static. Stanley is unable to navigate in traffic. For autonomous cars to succeed, robots like
Stanley must be able to perceive and interact with moving traffic. While a number of systems have
shown impressive results (Dickmanns et al., 1994; Hebert et al., 1997; Pomerleau and Jochem,
1996), further research is needed to achieve the level of reliability necessary for this demanding
task. Even within the domain of driving in static environments, Stanley’s software can only handle
limited types of obstacles. For example, the present software would be unable to distinguish tall
grass from rocks, a research topic that has become highly popular in recent years (Dima and Hebert,

2005; Happold et al., 2006; Wellington et al., 2005).

Acknowledgment

The Stanford Racing Team (SRT) was sponsored through four Primary Supporters: Volkswagen
of America’s Electronics Research Lab, Mohr Davidow Ventures, Android, and Red Bull. The Pri-
mary Supporters together with the Stanford team leaders form the SRT Steering Committee, which
oversaw the SRT operations. The SRT has also received support from Intel Research, Honeywell,
Tyzx, Inc., and Coverity, Inc. Generous financial contributions were made by David Cheriton, the
Johnson Family, and Vint Cerf. A huge number of individuals at Stanford, Volkswagen, and related
facilities helped us in developing this robot, which is gratefully acknowledged.

The SRT also thanks DARPA for organizing this great race, and the many journalists who provided
press coverage. Our final gratitude goes to the many friends we made during the event, and the
many people who helped us and other teams along the way.

References
Brooks, C. and Iagnemma, K. (2005). Vibration-based terrain classification for planetary explo-

ration rovers. IEEE Transactions on Robotics, 21(6):1185–1191.
Crisman, J. and Thorpe, C. (1993). SCARF: a color vision system that tracks roads and intersec-

tions. IEEE Transactions on Robotics and Automation, 9(1):49–58.
DARPA (2004). Darpa grand challenge rulebook. On the Web at

http://www.darpa.mil/grandchallenge05/Rules 8oct04.pdf.
Davies, B. and Lienhart, R. (2006). Using CART to segment road images. In Proceedings SPIE

Multimedia Content Analysis, Management, and Retrieval, San Jose, CA.
Dickmanns, E. (2002). Vision for ground vehicles: history and prospects. International Journal of

Vehicle Autonomous Systems, 1(1):1–44.
Dickmanns, E., Behringer, R., Dickmanns, D., Hildebrandt, T., Maurer, M., Schiehlen, J., and

Thomanek, F. (1994). The seeing passenger car VaMoRs-P. In Proceedings of the Interna-
tional Symposium on Intelligent Vehicles, Paris, France.

Dima, C. and Hebert, M. (2005). Active learning for outdoor obstacle detection. In Thrun, S.,
Sukhatme, G., Schaal, S., and Brock, O., editors, Proceedings of the Robotics Science and
Systems Conference, Cambridge, MA.

Duda, R. and Hart, P. (1973). Pattern classification and scene analysis. Wiley, New York.
Ettinger, S., Nechyba, M., Ifju, P., and Waszak, M. (2003). Vision-guided flight stability and

control for micro air vehicles. Advanced Robotics, 17:617–640.
Farrell, J. and Barth, M. (1999). The Global Positioning System. McGraw-Hill.
Gat, E. (1998). Three-layered architectures. In Kortenkamp, D., Bonasso, R., and Murphy, R.,

editors, AI-based Mobile Robots: Case Studies of Successful Robot Systems, pages 195–210.
MIT Press, Cambridge, MA.

Gillespie, T. (1992). Fundamentals of Vehicle Dynamics. SAE Publications, Warrendale, PA.

Happold, M., Ollis, M., and Johnson, N. (2006). Enhancing supervised terrain classification with
predictive unsupervised learning. In Sukhatme, G., Schaal, S., Burgard, W., and Fox, D.,
editors, Proceedings of the Robotics Science and Systems Conference, Philadelphia, PA.

Hebert, M., Thorpe, C., and Stentz, A. (1997). Intelligent Unmanned Ground Vehicles: Au-
tonomous Navigation Research at Carnegie Mellon University. Kluwer Academic Publishers.

Iagnemma, K., and Dubowsky, S. (2004). Mobile Robots in Rough Terrain: Estimation, Motion
Planning, and Control with application to Planetary Rovers. Springer Tracts in Advanced
Robotics (STAR) Series, Berlin, Germany.

Julier, S. and Uhlmann, J. (1997). A new extension of the Kalman filter to nonlinear systems. In
International Symposium on Aerospace/Defense Sensing, Simulate and Controls, Orlando, FL.

Kelly, A. and Stentz, A. (1998). Rough terrain autonomous mobility, part 1: A theoretical analysis
of requirements. Autonomous Robots, 5:129–161.

Ko, N. and Simmons, R. (1998). The lane-curvature method for local obstacle avoidance. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Victoria, Canada.

Pomerleau, D. and Jochem, T. (1996). Rapidly adapting machine vision for automated vehicle
steering. IEEE Expert, 11(2):19–27.

Pomerleau, D. A. (1991). Rapidly adapting neural networks for autonomous navigation. In Lipp-
mann, R. P., Moody, J. E., and Touretzky, D. S., editors, Advances in Neural Information
Processing Systems 3, pages 429–435, San Mateo. Morgan Kaufmann.

Pomerleau, D. A. (1993). Knowledge-based training of artificial neural networks for autonomous
robot driving. In Connell, J. H. and Mahadevan, S., editors, Robot Learning, pages 19–43.
Kluwer Academic Publishers.

Simmons, R. and Apfelbaum, D. (1998). A task description language for robot control. In Pro-
ceedings of the Conference on Intelligent Robots and Systems (IROS), Victoria, CA.

van der Merwe, R. (2004). Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic
State-Space Models. PhD thesis, OGI School of Science & Engineering.

van der Merwe, R. and Wan, E. (2004). Sigma-point kalman filters for integrated navigation. In
Proceedings of the 60th Annual Meeting of The Institute of Navigation (ION), Dayton, OH.

Wellington, C., Courville, A., and Stentz, A. (2005). Interacting markov random fields for simul-
taneous terrain modeling and obstacle detection. In Thrun, S., Sukhatme, G., Schaal, S., and
Brock, O., editors, Proceedings of the Robotics Science and Systems Conference, Cambridge,
MA.

