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Abstract—Radio Tomographic Imaging (RTI) is an emerging technology for imaging the attenuation caused by physical objects in
wireless networks. This paper presents a linear model for using received signal strength (RSS) measurements to obtain images of
moving objects. Noise models are investigated based on real measurements of a deployed RTI system. Mean-squared error (MSE)
bounds on image accuracy are derived, which are used to calculate the accuracy of an RTI system for a given node geometry. The
ill-posedness of RTI is discussed, and Tikhonov regularization is used to derive an image estimator. Experimental results of an RTI
experiment with 28 nodes deployed around a 441 square foot area are presented.
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1 INTRODUCTION

WHEN an object moves into the area of a wireless
network, links which pass through that object

will experience shadowing losses. This paper explores
in detail the use of shadowing losses on links between
many pairs of nodes in a wireless network to image
the attenuation of objects within the network area. We
refer to this problem as radio tomographic imaging (RTI),
as depicted in Fig. 1.

RTI may be useful in emergencies, rescue operations,
and security breaches, since the objects being imaged
need not carry an electronic device. Using the images to
track humans moving through a building, for example,
provides a basis for new applications in security systems
and “smart” buildings.

The reduction in costs for radio frequency integrated
circuits (RFICs) and advances in peer-to-peer data net-
working have made realistic the use of hundreds or
thousands of simple radio devices in a single RTI de-
ployment. Since the relative cost of such devices is low,
large RTI networks are possible in applications that may
be otherwise impractical.

Radio tomography draws from the concepts of two
well-known and widely used types of imaging systems.
First, radar systems transmit RF probes and receive
echoes caused by the objects in an environment [1]. A de-
lay between transmission and reception indicates a dis-
tance to a scatterer. Phased array radars also compute an
angle of bearing. Such systems image an object in space
based on reflection and scattering. Secondly, computed
tomography (CT) methods in medical and geophysical
imaging systems use signal measurements along many
different paths through a medium. The measurements
along the paths are used to compute an estimate of the
spatial field of the transmission parameters throughout
the medium [2]. RTI is also a transmission-based imag-

Fig. 1. An illustration of an RTI network. Each node
broadcasts to the others, creating many projections that
can be used to reconstruct an image of objects inside the
network area.

ing method which measures signal strengths on many
different paths through a medium, but similar to radar
systems, it does so at radio frequencies. It also faces two
significant challenges:
• The system discussed in this paper measures only

signal strength. No information about the phase or
the time-domain of a signal is available.

• The use of RF, as opposed to much higher frequency
EM waves (e.g., x-rays), introduces significant non-
line-of-sight (NLOS) propagation in the transmis-
sion measurements. Signals in standard commercial
wireless bands do not travel in just the line-of-sight
(LOS) path, and instead propagate in many paths
from a transmitter to a receiver.
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1.1 Applications
Despite the difficulties of using RF, there is a major
advantage: RF signals can travel through obstructions
such as walls, trees, and smoke, while optical or infrared
imaging systems cannot. RF imaging will also work
in the dark, where video cameras will fail. Even for
applications where video cameras could work, privacy
concerns may prevent their deployment. An RTI system
provides current images of the location of people and
their movements, but cannot be used to identify a per-
son.

One main future application of RTI is to reduce injury
for correctional and law enforcement officers; many are
injured each year because they lack the ability to de-
tect and track offenders through building walls [3]. By
showing the locations of people within a building during
hostage situations, building fires, or other emergencies,
RTI can help law enforcement and emergency respon-
ders to know where they should focus their attention.

Another application is in automatic monitoring and
control in “smart” homes and buildings. Some building
control systems detect motion in a room and use it
to control lighting, heating, air conditioning, and even
noise cancellation [4]. RTI systems can further determine
how many people are in a room and where they are
located, providing more precise control.

RTI has application in security and monitoring sys-
tems for indoor and outdoor areas. For example, most
existing security systems are trip-wire based or camera-
based. Trip-wire systems detect when people cross a
boundary, but do not track them when they are within
the area. Cameras are ineffective in the dark and have
limited view angles. An RTI system could serve both as
a trip-wire, alerting when intruders enter into an area,
and a tracking system to follow their movements.

1.2 Related Work
RF-based imaging has been dominated in the commer-
cial realm by ultra-wideband (UWB) based through-the-
wall (TTW) imaging devices from companies like Time
Domain [5], Cambridge Consultants [6], and Camero
Tech [7]. These companies have developed products
using a phased array of radars that transmit UWB
pulses and then measure echoes to estimate a range and
bearing. These devices are accurate close to the device,
but inherently suffer from accuracy and noise issues at
long range due to mono-static radar scattering losses and
large bandwidths. Some initial attempts [8] allow 2-4 of
these high-complexity devices to collaborate to improve
coverage.

In comparison, in this paper we discuss using dozens
to hundreds of low-capability collaborating nodes,
which measure transmission rather than scattering and
reflection. Further, UWB uses an extremely wide RF
bandwidth, which may limit its application to emer-
gency and military applications. RTI is capable of using
radios with relatively small bandwidths.

To emphasize the small required bandwidth compared
to UWB, some relevant research is being called “ultra-
narrowband” (UNB) radar [9], [10], [11]. These systems
propose using narrowband transmitters and receivers
deployed around an area to image the environment
within that area. Measurements are phase-synchronous
at the multiple nodes around the area. Such techniques
have been applied to detect and locate objects buried un-
der ground using what is effectively a synthetic aperture
array of ground-penetrating radars [12]. Experiments
have been reported which measure a static environment
while moving one transmitter or one receiver [11], and
measure a static object on a rotating table in an anechoic
chamber in order to simulate an array of transmitters
and receivers at many different angles [11], [12], [9].

Multiple-input-multiple-output (MIMO) radar is another
emerging field that takes advantage of multiple trans-
mitters and receivers to locate objects within a spatial
area [13]. In this framework, signals are transmitted into
the area of interest, objects scatter the signal, and the
reflections are measured at each receiver. The scattering
objects create a channel matrix which is comparable to
the channel matrix in MIMO communication theory. RTI
differs from MIMO radar in the same way that it differs
from traditional radar. Instead of measuring reflections,
RTI uses the shadowing caused by objects as a basis for
image reconstruction.

Recent research has also used measurements of sig-
nal strength on 802.11 WiFi links to detect and locate
a person’s location. Experiments in [14] demonstrate
the capability of a detector based on signal strength
measurements determine the location of a person who
is not carrying an electronic device. In this case, the
system is trained by a person standing at pre-defined
positions, and RSS measurements are recorded at each
location. When the system is in use, RSS measurements
are compared with the known training data, and the best
position is selected from a list.

Our approach is not based on point-wise detection.
Instead, we use tomographic methods to estimate an
image of the change in the attenuation as a function of
space, and use the image estimate for the purposes of
indicating the position of a moving object.

1.3 Overview
Section 2 presents a linear model relating RSS mea-
surements to the change in attenuation occurring in
a network area, and investigates statistics for noise in
dynamic multipath environments. Section 3 describes
an error bound on image estimation for a given node
geometry. This is useful to determine which areas of
a network can be accurately imaged for a given set of
node locations. Section 4 discusses the ill-posedness of
RTI, and derives a regularized solution for obtaining
an attenuation image. Section 5 describes the setup of
an actual RTI experiment, the resultant images, and a
discussion of the effect of parameters on the accuracy of
the images.
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2 MODEL

2.1 Linear Formulation
When wireless nodes communicate, the radio signals
pass through the physical area of the network. Objects
within the area absorb, reflect, diffract, or scatter some
of the transmitted power. The goal of an RTI system is
to determine an image vector of dimension RN that de-
scribes the amount of radio power attenuation occurring
due to physical objects within N voxels of a network
region. Since voxel locations are known, RTI allows one
to know where attenuation in a network is occurring,
and therefore, where objects are located.

If K is the number of nodes in the RTI network, then
the total number of unique two-way links is M = K2−K

2 .
Any pair of nodes is counted as a link, whether or
not communication actually occurs between them. The
signal strength yi(t) of a particular link i at time t is
dependent on:
• Pi: Transmitted power in dB.
• Si(t): Shadowing loss in dB due to objects that

attenuate the signal.
• Fi(t): Fading loss in dB that occurs from construc-

tive and destructive interference of narrow-band
signals in multipath environments.

• Li: Static losses in dB due to distance, antenna
patterns, device inconsistencies, etc.

• νi(t): Measurement noise.
Mathematically, the received signal strength is described
as

yi(t) = Pi − Li − Si(t)− Fi(t)− νi(t) (1)

The shadowing loss Si(t) can be approximated as
a sum of attenuation that occurs in each voxel. Since
the contribution of each voxel to the attenuation of a
link is different for each link, a weighting is applied.
Mathematically, this is described for a single link as

Si(t) =
N∑
j=1

wijxj(t). (2)

where xj(t) is the attenuation occurring in voxel j at
time t, and wij is the weighting of pixel j for link i. If
a link does not “cross” a particular voxel, that voxel is
removed by using a weight of zero. For example, Fig.
2 is an illustration of how a direct LOS link might be
weighted in a non-scattering environment.

Imaging only the changing attenuation greatly simpli-
fies the problem, since all static losses can be removed
over time. The change in RSS 4yi from time ta to tb is

4yi ≡ yi(tb)− yi(ta)
= Si(tb)− Si(ta) + Fi(tb)− Fi(ta)

+νi(tb)− νi(ta), (3)

which can be written as

4yi =
N∑
j=1

wij4xj + ni, (4)

Fig. 2. An illustration of a single link in an RTI network that
travels in a direct LOS path. The signal is shadowed by
objects as it crosses the area of the network in a particular
path. The darkened voxels represent the image areas that
have a non-zero weighting for this particular link.

where the noise is the grouping of fading and measure-
ment noise

ni = Fi(tb)− Fi(ta) + νi(tb)− νi(ta) (5)

and
4xj = xj(tb)− xj(ta) (6)

is the difference in attenuation at pixel j from time ta to
tb.

If all links in the network are considered simultane-
ously, the system of RSS equations can be described in
matrix form as

4y = W4x + n (7)

where

4y = [4y1,4y2, ...,4yM ]T

4x = [4x1,4x2, ...,4xN ]T

n = [n1, n2, ..., nM ]T

[W]i,j = wij (8)

In summary, 4y is the vector of length M all link
difference RSS measurements, n is a noise vector, and
4x is the attenuation image to be estimated. W is the
weighting matrix of dimension M×N , with each column
representing a single voxel, and each row describing the
weighting of each voxel for that particular link. Each
variable is measured in decibels (dB).

To simplify the notation used throughout the rest of
this paper, x and y are used in place of 4x and 4y,
respectively.
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2.2 Weight Model
If knowledge of an environment were available, one
could estimate the weights {wij}j for link i which re-
flected the spatial extent of multiple paths between trans-
mitter and receiver. Perhaps calibration measurements
could aid in estimation of the linear transformation W.
However, with no site-specific information, we require
a statistical model that describes the linear effect of the
attenuation field on the path loss for each link.

An ellipsoid with foci at each node location can be
used as a method for determining the weighting for each
link in the network [15]. If a particular voxel falls outside
the ellipsoid, the weighting for that voxel is set to zero. If
a particular voxel is within the LOS path determined by
the ellipsoid, its weight is set to be inversely proportional
to the square root of the link distance. Intuitively, longer
links will provide less information about the attenua-
tion in voxels that they cross. When link distances are
very long, the signals reflect and defract around the
obstructions. A link with a distance of only a few feet
will experience more change in RSS when an obstruction
occurs than a link with a length of hundreds of feet.

Past studies have shown that the variance of link
shadowing does not change with distance. In accordance
with these studies, dividing by the square root of the link
distance ensures that the voxel weighting takes this into
account [16]. The weighting is described mathematically
as

wij =
1√
d

{
1 if dij(1) + dij(2) < d+ λ
0 otherwise (9)

where d is the distance between the two nodes, dij(1)
and dij(2) are the distances from the center of voxel j
to the two node locations for link i, and λ is a tunable
parameter describing the width of the ellipse.

The width parameter λ is typically set very low in
RTI, such that it is essentially the same as using the LOS
model as depicted in Fig. 2. The use of an ellipsoid is
primarily used to simplify the process of determining
which voxels fall along the LOS path.

2.3 Noise
To complete the model of (7), the statistics of the
noise vector n in (7) must be examined. Here, noise is
caused by time-varying measurement miscalibration of
the receiver, by the contribution of thermal noise to the
measured receiver signal strength, and time-variations
in the multipath channel not caused by changes to
the attenuation experienced by the line-of-sight path.
If these contributions are constant with time, then the
calibration (when moving attenuator existed in the field)
would have been able to establish it as the baseline.
Time variation in RSS measurement when no moving
attenuator is blocking the line-of-sight path is “noise”
for an RTI system.

Past studies have considered the time-variation of
RSS in fixed radio links. In particular, the work and
measurements of Bultitude [17] were used to design

indoor fixed wireless communications systems which
periodically experienced fading due to motion in the
area of the link. Bultitude found that RSS experienced
intervals of significant fading which were caused by
human motion in and around the area. Most of the time,
the measured RSS vary slowly around a nearly constant
mean, what we call a non-fading interval. When in a
fading interval, RSS varies up to 10 dB higher and 20 dB
below the non-fading interval mean, with a distribution
that can be characterized as a Rician distribution [17].
Other measurements find temporal fading statistics more
closely match a log-normal distribution [18]. The fading
/ non-fading interval process can be modeled as a two-
state Markov chain [19], which alternates between a low-
variance and high-variance distribution. Over all time,
measurements show a two-part mixture distribution for
the RSS on a fixed link.

In linear terms, we could model this data as a mixture
of two Rician distributions as in [17]; we could also
model it as a mixture of log-normal terms as suggested
by results in [18]. We note that the logarithm of a Rician
random variable is often similar in distribution to the
log-normal, perhaps a cause of disagreement between
measurement studies. We choose to use the log-normal
mixture model for simplicity; in the (dB) scale, this is a
two-part Gaussian mixture model:

fni(u) =
∑

k∈{1,2}

pk√
2πσ2

k

exp
[
− u2

2σ2
k

]
, (10)

where pk is the probability of part k, p2 = 1−p1, σ2
k is the

variance of part k, and fni
(u) is the probability density

function of the noise random variable ni. Without loss
of generality, we let σ2 > σ1 so that part 2 is the higher
variance component of the mixture.

Past radio link measurements have not distinguished
between motion which shadows the line-of-sight path
(the signal in RTI), and motion which does not shadow
the line-of-sight path (the noise) [17], [18], [19], [14]. To
investigate the statistics of RTI noise, we present exper-
imental tests which measure the time-varying statistics
of links during motion which does not obstruct a link.

To collect experimental samples of noise, we set up 28
nodes in an indoor office area empty of people. While
the nodes are transmitting and measuring RSS on each
pairwise link, people move around the outside of the
perimeter of the deployment area. In no case did the
motion of a person obstruct the LOS path of any link.
From each link, about 66,000 measurements were taken.
For example, consider the data on a typical link, the
link (3, 20). The temporal fading plot in Figure 3(a)
shows similar results to [17], with alternating periods of
heavy fading and low fading. During low fading, data
is confined within a range of 2-3 dB around -84 dBm.
During high fading, variations at ± 10 dB from the mean
occur. The histogram shown in Fig. 3(b) correspondingly
shows a mixture of one high-variance and one low-
variance distribution.
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Fig. 3. Temporal fading on link (3, 20) during non-obstructing motion, showing (a) time plot and (b) histogram.

We also summarize the measured data on all
(
28
2

)
links.

The mean was removed from each link’s data, and the
data was merged. Fig. 4(a) is a quantile-quantile plot
comparing the removed-mean RSS measurements with a
Gaussian distribution N (0, σ2

d), where σ2
d is the empirical

variance of the measurements. The PDF is approximated
by a Gaussian within ±2.5 quantiles.

As described, the data seems to follow a mixture
distribution. From measured data, we estimate the mix-
ture parameters with an expectation-maximization (EM)
algorithm [20], and the results are shown in Table 1. Fig.
4(b) is a quantile-quantile plot comparing the removed-
mean RSS measurements with a mixture model with the
stated parameters.

Parameter Value
σ1 0.971
σ2 3.003
p1 0.548
p2 0.452

TABLE 1
Gaussian-Mixture Noise Model Parameters Estimated

From Measurements

3 ERROR BOUND
3.1 Derivation
This section presents a lower bound on estimation error
for the linear model (7) under the noise model discussed
in Section 2.3. The estimation error vector is defined as
ε = x̂− x, and the error correlation matrix is

Rε = E
[
εεT
]
. (11)

A well-known result in estimation theory known as the
MSE, Bayesian or Van Trees bound states that the error
correlation matrix is bounded by

Rε ≥ (JD + JP )−1 = J−1 (12)

where the inequality indicates that the matrix Rε − J−1

is positive semi-definite [21]. The matrix

JD = E[{∇x[lnP (y|x)]} {∇x[lnP (y|x)]}T ] (13)

is known as the Fisher information matrix and represents
the information obtained from the data measurements.
The matrix

JP = E[{∇x[lnP (x)]} {∇x[lnP (x)]}T ] (14)

represents the information obtained from a priori knowl-
edge about the random parameters.

We assume that the noise components n =
[n1, . . . , nM ]T are independent and identically dis-
tributed as two-component zero-mean Gaussian mixture
random variables as in (10). The noise is independent
because we assume nodes are placed at distances larger
than the coherence distance of the indoor fading channel.

From (13), we can derive that JD is given by [22, Eqn
10],

JD = γWTW

where γ =
∫ ∞
−∞

[f ′ni
(u)]2

fni
(u)

du (15)

and f ′ni
(u) is the derivative of fni

(u) with respect to u.
When p2 = 0, that is, the distribution of ni is purely
Gaussian, γ reverts to 1/σ2

1 , one over the variance of
the distribution. For two-component Gaussian mixtures,
we compute γ in (15) from numerical integration. For
example, for the Gaussian-mixture model parameters
calculated from the measurement experiment, as given
in Table 1, we find γ = 0.548.

To calculate JP , the prior image distribution P (x) must
be known or assumed. One possibility is to assume that
x is a zero-mean Gaussian random field with covariance
matrix Cx. Then

P (x) =
1√

(2π)N |Cx|
e−

1
2 (xT C−1

x x) (16)



6

−5 0 5

−20

−15

−10

−5

0

5

10

15

Gaussian Quantile

M
ea

su
re

d
D

at
a

Q
ua

nt
ile

(a) Gaussian Model

−10 −5 0 5 10

−20

−15

−10

−5

0

5

10

15

Gaussian Mixture Quantile

M
ea

su
re

d
D

at
a

Q
ua

nt
ile

(b) Mixture Model

Fig. 4. Quantile-quantile plots comparing measured RSS data with Gaussian and Mixture distributions.

Plugging (16) into (14) results in

JP = C−1
x . (17)

These derivations of JD and JP lead to the linear MSE
bound for RTI

Rε ≥ (γWTW + C−1
x )−1. (18)

An important result of the bound in (18) comes from
the following property [21]

E[(x− x̂)2i ] ≥ (γWTW + C−1
x )−1

ii = J−1
ii (19)

where E[(x− x̂)2i ] represents the mean-squared-error for
pixel i. In other words, the diagonal elements of J−1

are the lower bounds on the mean-squared-error for the
corresponding pixels.

3.2 Spatial Covariance Model

Previous work has shown that an exponential function
is useful in approximating the spatial covariance of an
attenuation field [23], [16]. The exponential covariance is
a close approximation to the covariance that results from
modeling the spatial attenuation as a Poisson process, a
common assumption for random placement of objects
in space. Applying this model, the a priori covariance
matrix Cx is generated by

[Cx]kl = σ2
xe
−dkl/δc , (20)

where dkl is the distance from pixel k to pixel l, δc is
a “space constant” correlation parameter, and σ2

x is the
variance at each pixel.

The exponential spatial covariance model is appealing
due to its simplicity and low number of parameters.
Other models based on different distributions of attenu-
ating objects could also be utilized.

3.3 Example Error Bounds

The bound in (19) provides a theoretical basis for deter-
mining the accuracy of an image over the network area.
The node locations affect which pixels are accurately
estimated, and which are not. To visualize how the node
locations affect the accuracy of the image estimation,
three examples are provided in Fig. 5. Table 2 shows the
parameters of the normalized ellipse weighting model
that were used to generate these bounds.

Parameter Value Description
∆p .1 Pixel width (m)
λ .007 Width of weighting ellipse in (9) (m)
δc 1.3 Pixel correlation constant in (20) (m)
σ2

x .1 Pixel variance in (20) (dB)2

γ .5483 Bound parameter in (19)

TABLE 2
Reconstruction parameters used to generate MSE

bound surfaces shown in Fig 5.

As seen in the surfaces of Fig. 5, voxels that are
crossed by many links have a higher accuracy than
voxels that are rarely or never crossed. The voxels in
the corners of the square deployment, the sides of the
front-back deployment, and the low-density areas in the
random deployment, are crossed only by a few links.
In some voxels, no links cross at all, and the bound
surface is limited only by the covariance of the prior
statistics. The known covariance of the image has the
effect of smoothing the bound surface, since knowledge
of the attenuation of a voxel is statistically related to its
neighbors.

3.4 Effect of Node Density

The node density plays a key role in the accuracy of an
RTI result. Imaging can be expected to be more accurate
in areas where nodes are placed closely together than in
areas where nodes are spaced at large distances. When
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many links pass through a particular area, more RSS
information can be used to reconstruct the attenuation
occurring in that area. This has the effect of averaging
out noise and other corruptions in the measurements.
Furthermore, when links are close together, the RSS
information is more concentrated on the voxels that are
crossed. This is due to the weighting function that is
inversely proportional to the square root of the link
distance.

To illustrate the effect of node density on the MSE
bound, Fig. 6 shows the lower bound on the average
MSE over all voxels for the three deployment geometries
shown in Fig. 5 as the density is increased. For each
point on the curves, the bound surface is calculated, then
averaged over all voxels. The parameters are equal to
those used previously in Table 2. Each geometry contains
the same number of nodes for each point on the curve,
and is deployed around the same area. In the square
geometry, nodes are placed uniformly around a square
area. In the front-back geometry, the same number of
nodes are placed along two sides of the square, resulting
in the same number of nodes per square foot. In the ran-
dom geometry, the same number of nodes are randomly
placed throughout the square.

In all three cases shown in Fig. 6, the lower bound
on average MSE for each deployment decreases rapidly
with increasing node density. The square geometry out-
performs the others, due to the fact that the entire area
of the square is surrounded by nodes. There are very
few voxels that are not crossed by at least a few links,
and many short links exist that cross the corners of the
square. The random geometry performs the worst out
of the three when density is low, largely due to the fact
that in a random deployment, many voxels will not be
crossed by any links. As density increases, the random
deployment out-performs the front-back geometry be-
cause nodes are closer together, and the density is such

that very few areas contain voxels that are not crossed
by at least some links.

4 IMAGE RECONSTRUCTION

4.1 Ill-posed Inverse Problem
Linear models for many physical problems, including
RTI, take the form of

y = Wx + n (21)

where y ∈ RM is measured data, W ∈ RM×N is a transfer
matrix of the model parameters x ∈ RN , and n ∈ RM is
a measurement noise vector. When estimating an image
from measurement data, it is common to search for a
solution that is optimal in the least-squared-error sense.

xLS = arg min
x
||Wx− y||22 (22)

In other words, the least-squares solution minimizes the
noise energy required to fit the measured data to the
model. The least-square solution can be obtained by
setting the gradient of (22) equal to zero, resulting in

xLS = (WTW)−1WTy (23)

which is only valid if W is full-rank. This is not the case
in an RTI system.

RTI is an ill-posed inverse problem, meaning that
small amounts of noise in measurement data are am-
plified to the extent that results are meaningless. This is
due to very small singular values in the transfer matrix
W that cause certain spectral components to grow out of
control upon inversion. To see this, W is replaced by its
singular value decomposition (SVD):

W = UΣVT (24)

where U and V are unitary matrices, and Σ is a diagonal
matrix of singular values. Plugging (24) into (23), the
least squares solution can be written as

xLS = VΣ−1UTy =
N∑
i=1

1
σi

uTi yvi (25)

where ui and vi are the ith columns of U and V,
and σi is the ith diagonal element of Σ. It is evident
that when singular values are zero or close to zero,
the corresponding singular basis vectors are unbounded
upon inversion.

The heuristic explanation for the ill-posedness of the
RTI model lies in the fact that many pixels are estimated
from relatively few nodes. There are multiple possible
attenuation images that can lead to the same set of
measurement data. For example, assume a particular
pixel is not crossed by any link in the network. This
would result in the same measurement data for every
possible attenuation value of that pixel, so inversion of
the problem would be impossible.

Regularization involves introducing additional infor-
mation into the mathematical cost model to handle the
ill-posedness. In some methods, a regularization term
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J(x) is added to the minimization objective function of
the original problem as

freg = f(x) + αJ(x), (26)

where α is the weighting parameter. Small values of α
lead to solutions that fit the data, while large values
favor the solution that matches prior information.

Some regularization techniques follow from a
Bayesian approach, where a certain prior distribution
is imposed on the model parameters. Other forms of
regularization modify or eliminate small singular values
of the transfer matrix. An overview of regularization
and image reconstruction in general can be found in
[24] and [25].

4.2 Tikhonov Regularization

In Tikhonov regularization [24], an energy term is added
to the least squares formulation, resulting in the objective
function

f(x) =
1
2
||Wx− y||2 + α||Qx||2, (27)

where Q is the Tikhonov matrix that enforces a solution
with certain desired properties.

In this paper, we use a difference matrix approxi-
mating the derivative operator as the Tikhonov matrix
Q. By minimizing the energy found within the image
derivative, noise spikes are suppressed and a smooth
image is produced. This form of Tikhonov regularization
is known as H1 regularization.

Since the image is two dimensional, the regularization
should include the derivatives in both the vertical and
horizontal directions. The matrix DX is the difference
operator for the horizontal direction, and DY is the
difference operator for the vertical direction. The reg-
ularized function can be written in this case as

f(x) =
1
2
||Wx− y||2 + α(||DXx||2 + ||DY x||2). (28)

Taking the derivative and setting equal to zero results in
the solution

x̂ = (WTW + α(DT
XDX + DT

Y DY ))−1WTy. (29)

One major strength of Tikhonov regularization lies in
the fact that the solution is simply a linear transforma-
tion Π of the measurement data.

Π = (WTW + α(DT
XDX + DT

Y DY ))−1WT (30)
x̂ = Πy (31)

Since the transformation does not depend on instan-
taneous measurements, it can be pre-calculated, and
then applied for various measurements for fast image
reconstruction. This is very appealing for realtime RTI
systems that require frequent image updates [15], [26].

The total number of multiplications Nmult required to
transform the measurements into the image is the total

number of voxels N times the number of unique links
M in the network

Nmult = NM =
N(K2 −K)

2
(32)

where K is the number of nodes in the network. We
see that complexity increases linearly as the number of
voxels increases, and quadratically as the number of
nodes in the network increases.

5 EXPERIMENTAL RESULTS

5.1 Physical Description of Experiment

A wireless peer-to-peer network containing 28 nodes is
deployed for the purpose of testing the capability of RTI
to image changed attenuation. Each node is placed three
feet apart along the perimeter of a 21x21 foot square,
surrounding a total area of 441 square feet. The network
is deployed on a grassy area approximately 15 feet away
from the Merrill Engineering Building at the University
of Utah. Each radio is placed on a stand at three feet off
the ground.

The area surrounded by the nodes contains two trees
with a circumference of approximately three feet. The
network is intentionally placed around the trees so that
static objects exist in the tested RTI system. RTI should
only image attenuation that has changed from the time
of calibration within the deployment area. Markers are
measured and placed in 35 locations within the network
so that the humans’ locations are known and can be
utilized in the subsequent error analysis. A map and
photo of the experiment are shown in Fig. 7.

The network is comprised of TelosB wireless nodes
made by Crossbow. Each node operates in the 2.4GHz
frequency band, and uses the IEEE 802.15.4 standard
for communication. A base station node listens to all
network traffic, then feeds the data to a laptop computer
via a USB port for the processing of the images. Since
the base station node is within range of all nodes,
the latency of measurement retrieval to the laptop is
low, on the order of a few milliseconds. If a multi-hop
RTI network were to be deployed, this latency would
certainly increase.

To avoid network transmission collisions, a simple
token passing protocol is used. Each node is assigned
an ID number and programmed with a known order
of transmission. When a node transmits, each node that
receives the transmission examines the sender identifi-
cation number. The receiving nodes check to see if it is
their turn to transmit, and if not, they wait for the next
node to transmit. If the next node does not transmit, or
the packet is corrupted, a timeout causes each receiver to
move to the next node in the schedule so that the cycle
is not halted.

At the arrival of each packet to the laptop, the RTI
program running on the laptop updates a link RSS mea-
surement vector. At each update, the base station hears
from only one node in the network, so only RSS values
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Fig. 7. The network geometry and links that correspond to Fig. 8 are illustrated in (a). (b) is a photo of the deployed
network with an experimenter standing at location (3,9).

on links involving that particular node are updated.
Each link’s RSS measurement is an average of the two
directional links from i to j and j to i.

In this experiment, the system is calibrated by taking
RSS measurements while the network is vacant from
moving objects. The RSS vector is averaged over a
30 second period, which results in approximately 100
RSS samples from each link. The calibration RSS vector
provides a baseline against which all other RSS measure-
ments are differenced, as discussed in Section 2. Other
methods of calibration could be used in situations where
it is impossible to keep the network vacant from moving
objects. For example, a single past measurement or a
sliding window average of RSS measurement history
could be used as the baseline.

5.2 Effect of Human Obstruction
Since RTI is based on the assumption that objects shadow
individual links in a wireless network, it is helpful to
examine the effect of obstructions on a single link. In
Fig. 8, a human stands at position (9,9) and RSS measure-
ments for each link are collected. These measurements
are compared with the calibration measurements that
were taken when the network was vacant.

The top plot in Fig. 8 shows that a significant decrease
in RSS, anywhere from 5 to 10 dB, is experienced by
link (0,18) to (18,0) as it travels through the obstruction.
The middle plot shows that even though the link (9,0)
to (9,21) passes through the tree, it still experiences
significant loss when the human is present on the LOS
path. The bottom plot in the figure shows an example
of a link that does not pass through the obstruction,
resulting in very little difference in RSS.

In environments where links travel over long dis-
tances, or when many objects block the direct LOS
path, we expect the effect of a human obstruction to
be lessened. In those cases, certain links may experi-
ence losses, while others may not. Future research will
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Fig. 8. A comparison of the effect of human obstruction
on three links. In the unobstructed case, the network
is vacant from human experimenters. In the obstructed
case, a human stands at coordinate (9,9).

investigate the effect of human obstruction on a link’s
RSS when a link passes through walls or other major
static obstructions. This will be essential in making the
technology practical for the future applications of RTI as
previously discussed.

5.3 Cylindrical Human Model
To assess the accuracy of RTI images, one must first
know or assume the “true” attenuation field that is being
estimated. Since imaging the location of humans is the
primary goal of RTI, a model for the size, shape, and
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(a) Cylindrical model image
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Fig. 9. Images of attenuation in a wireless network where each human is modeled as a uniformly attenuating cylinder
of radius RH = 1.3 feet. In (a) and (b), a human stands at coordinate (9,9) and the total squared error is ε = .021. In
(c) and (d), two humans stand at coordinates (3,15) and (18,15) and the total squared error is ε = .036.

attenuation of the human body at the frequencies of
interest would be required. This information is difficult
to model, since it is dependent on body types, the plane
of intersection, and other variables.

For simplicity, a human is modeled as a uniformly
attenuating cylinder with radius RH . In this case, the
“true” image xc for a human positioned at location cH
can be described as

xcj =
{

1 if ||xj − cH || < RH
0 otherwise (33)

where xcj is the center location of voxel j.
By scaling the image such that the maximum equals

one, resulting in the normalized image x̂N , we can define

the mean-squared error of the normalized image to be

ε =
||xc − x̂N ||2

N
(34)

where N is the number of voxels in the image.

5.4 Example Images

Using the model and reconstruction algorithms de-
scribed in Sections 2 and 4, we present some typical
image results for humans standing inside the exper-
imental RTI network. A human stands at coordinate
(9,9) and RSS data is measured for a few seconds.
The data is averaged for 10 samples per link, and this
measurement differenced with the calibration data taken
while the network is vacant. Figure 9 displays both the
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“true” attenuation based on the cylindrical model, and
the RTI reconstruction using H1 regularization with the
parameters listed in Table 3.

Parameter Value Description
∆p .5 Pixel width (feet)
λ .01 Width of weighting ellipse (feet)
α 5 Regularization parameter
RH 1.3 Human radius for cylindrical model (feet)

TABLE 3
Image reconstruction parameters

Using the cylindrical human model with a radius of
RH = 1.3, the squared error for the single-human image
standing at (9,9) was measured to be ε = .021. The
squared error for the two-person image was measured to
be ε = .036. These error values are in general agreement
with the bounds derived in Section 3.

There are many areas in the images of Fig. 9 where
estimated attenuation is above zero, even where no
obstruction exists. This is due to the fact that a human
not only attenuates a wireless signal, it reflects and
scatters it. The simple LOS model used in this paper
does not take into account the changes in RSS values due
to multipath caused by the obstructions being imaged.
For example, a link may be bouncing off the human and
destructively interfering with itself on a path that does
not cross through the obstruction, thus leading to error
in the estimated attenuation. Future research will seek
to refine the weighting model used in RTI such that this
modeling error is lessened.

5.5 Effect of Parameters on Image Accuracy
The weighting and regularization parameters play an
important role in generating accurate RTI images. If the
problem is regularized too strongly, the resultant images
may be too smooth to provide a good indication of
obstruction boundaries. If the regularization parameter
is set too low, noise may corrupt the results, making it
difficult to know if a bright spot is an obstruction or
noise.

Another parameter effecting the accuracy of an image
is the width of the weighting ellipse. If the ellipse is too
wide, the detail of where attenuation is occurring within
the network may be obscured. If the ellipse is too narrow,
voxels that do in fact attenuate a link’s signal may not
be captured by the model. This may result in a loss of
information that degrades the final image quality.

In this paper, we empirically identify the parameters
that provide the most accurate images using the cylin-
drical human model. For each parameter, images are
formed from data measured while a human is standing
at one of the known positions, as indicated in Fig.
7(a). Such an image is formed for each of the possible
human positions shown in Fig. 7(a). The squared error
is calculated for each image, and averaged over the
entire set. This is performed for a varying regularization

parameter, while the weighting ellipse parameter is held
constant at λ = .1. Then, it is repeated for varying ellipse
parameters while holding the regularization constant at
α = 4.5. The resultant error curves are shown in Fig. 10.

The curves shown in Fig. 10 show that the choice of
regularization and weighting parameters is important
in obtaining accurate images. Future research possibly
will explore the automatic calculation and adjustment of
these parameters. It should be noted that the error curves
and optimal values presented are dependent upon the
pixel size used in generating the images. The general
shape of the curves, however, is similar for different pixel
sizes. In this study, pixel size is held constant at .5 feet
for all experiments.
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Fig. 10. Error vs. parameter curves. In the first plot, the
weighting ellipse width parameter is held constant at λ =
.1 while the regularization parameter α is varied. In the
second, α = 4.5 and the width of the weighting ellipse is
varied.

6 CONCLUSION

Radio tomographic imaging is a new and exciting
method for imaging the attenuation of physical objects
with wireless networks operating at RF wavelengths.
This paper discusses a basic model and image recon-
struction technique that has low computational com-
plexity. Experimental results show that RTI is capable
of imaging the RF attenuation caused by humans in
dense wireless networks with inexpensive and standard
hardware.

Future research will be important to make RTI real-
istic in security, rescue, military, and other commercial
applications. First, new models and experiments must
be developed for through-wall imaging. In this case,
the shadowing and fading caused by many objects in
the environment may cause the LOS weighting model
to be inaccurate. New and possibly adaptive weighting
models will need to be investigated and tested.

Wireless protocols, customized hardware, and signal
design are also important for improving RTI. Protocols
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that are capable of delivering low-latency RSS informa-
tion for large networks will be essential when deploying
the technology over large areas. Antennas that direct the
RF energy through an area may reduce the effects of
multipath and increase the effect of human presence on
signal strength. Custom signals, perhaps taking advan-
tage of frequency diversity may improve the quality of
RTI results.

Radio tomographic imaging may provide a low-cost
and flexible alternative to existing technologies like
ultra-wideband radar. This would enable many appli-
cations in the areas of security, search and rescue, po-
lice/military, and others.
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