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0. Introduction 
Let R = ((5 y) E R2; xz+ y z  < 1). We look for a function u :  fi + R3 satisfying 

the H-system 

(H) A u = 2 H u X ~ u y  on R 

together with one of the following conditions: 
either Dirichlet: 

or Plateau: 

I u , ( ~ - - ( u ~ ( ~ = ~ ~ ~  u Y = o  on R, 

u(  JR) = r and u is non-decreasing on aR, 
(PI 

where H > 0 is a given constant, y :  dR + R3 is a given function and r c R3 is a 
given oriented Jordan curve. 

If u is a solution of (H)-(P), then u ( a )  represents a “soap bubble”, that is, 
a surface with mean curvature H (at all points x c R  where V u ( x ) # O )  
spanning r. 

Let us assume that y(aR) (respectively r) is contained in a closed ball of 
radius R. It was proved by S. Hildebrandt [8] that both the Dirichlet and Plateau 
problems have at least one solution if HR 4 1 (this was an improvement over 
earlier results of Heinz [6] and Werner [19]). Moreover this result is sharp when 
I‘ is a circle: there is no solution of (H)-(P) if HR > 1 (see Heinz [7]). In case 
r is a circle of radius R and H R c 1 ,  it is easy to check that there exist two 
solutions of (H)-(P), namely: 

1. the “small” spherical bubble B, of curvature H spanned by r, 
2. the “large” spherical bubble Bz of curvature H spanned by r; 

see Figure 1). 
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Figure 1 

This observation led Rellich to conjecture that for any curve r there exist at 
least two solutions of (H)-(P) for H small enough (see [9]). We prove that this 
is indeed true for every H > 0 with HR < l - s e e  Theorem 2 (previously Steffen 
[13] had established this fact for some sequence H, + 0). A similar result holds 
for the Dirichlet problem (H)-( D) provided y is not constant on all-see Theorem 
1. If y = C is a constant on ail, it was shown by Wente [17] that u = C is the 
only solution of (H)-(D). 

Our approach is the following. In section 1 we consider the Dirichlet problem 
(H)-( D). We recall Hildebrandt’s result: there exists a “small” solution g of 
(H)-(D) obtained by a simple minimization argument. We look for a second 
solution of (H)-(D) of the form u = g + u so that u satisfies 

(0.1) 
2~ = - A V  + 2 H ( g ,  A VY + V,  A g y )  = - 2 H (  U, A V y )  On a, 

v = O  on aR. 

This problem has a variational sfructure: 

1 ( 2 u ,  u) ,  where 
(i) the linear operator 2 is selfadjoint and corresponds to the functional 

1 

( 2 U , V ) = I  ~ v Z J ~ * + 4 ~ ~  g . V x A U y ;  

(ii) the nonlinear term u, A uy is the derivative of the volume functional f Q ( u ) ,  
where 

Q ( V )  = u ’ ( V ,  A uy) .  

The non-zero solutions of (0.1) are the nontrivial critical points of the functional 
(9u, v )  +;HQ( u ) .  Another view point-which we shall use-is to look for critical 
points of the functional (9u, u )  on the “manifold” Q(o) = 1. After “stretching 
out” the Lagrange multiplier we obtain a non-zero solution of (O.l).-In fact we 
prove that 

(0.2) Inf ( a u ,  u )  is achieved.’ 
“ .HAW)  
O(u)-l  

We denote by HA(CI) (or simply by HA) the Sobolev space Hi(0;  It3). 
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First we establish that 

(%A u )  1 6.11 ull5; for all u E Ht with 6 > 0, 
see Lemma 3. 

The major difficulty in proving (0.2) comes from the fact that Q ( u )  is not 
continuous under weak convergence in HA, To overcome this "luck of compact- 
ness" we use the Same strategy as in [3] (see also [l]). Namely we consider the 
isoperimetn'c inequality (see [ 161) 

(0.3) I I V ~ ~ ~ Z S I Q ( U ) ~ ~ / ~  for all u E H ;  

with the best constant S =Infu.H;(n,.o(u,~I IVuJ' (which is not achieved) and we 
prove that 

Inf (Zu, u) < S. 

(Here we use the fact that y is not a constant; otherwise when y SE C, then g 3 C 
and (%I, u )  =I IVu12). Next, we rely on (0.4) in order to establish (0.2). At this 
point we use an argument which is related to a method introduced by E. Lieb 

uaHA(n) 
O(u)-1 

(0.4) 

WI- 
In some ways problem (0.1) is reminiscent of the problem 

L T U = - A U - A U = U P  on sclwN, 
(0 .5 )  u > o  on 6, 1 u=O on as, 
where 9 is a bounded domain, N 2 4 and p = (N + 2 ) / ( N  - 2). It is proved in [3] 
that (0.5) has a solution for every O < A  < A ,  ( A ,  is the first eigenvalue of -A 
with zero Dirichiet data). The solutions of (0.5) correspond (after stretching) to 
the critical points of the functional (Uu, u )  = I  IVul'-A 1 u z  subject to the con- 
straint Iulp+' = 1. Here again the major difficulty comes from the fact that the 
Sobolev embedding H'c LP+' is continuous but nor compacr.' One uses the 
following technique (see [3]). 

Here, the Soboleu inequality 

)VU)  ~ ~ l l u I l i , + l  for all U E H &  I 2  
with the best constant S, plays the role of the isoperimetric inequality (0.3). First 
one proves that 

'The same difficulty occurs in Yamabe's conjecture (see [l]). 
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and then, using (0.6), one shows that 

Inf (au, u) is achieved. 

In case A = O  (and 6 is star-shaped) it has been proved by Pokhozaev [12] that 
(0.5) has no solution. This fact should be put in parallel with the “non existence” 
result of Wente [17] quoted above when y is a constant. 

v e x ;  
jI VIP+‘ - 1 

Our results concerning (HI-(D) remind one also of the problem 

(0.7) 
- A U = H ( ~ + U ) ~  on 6 c R N ,  

.~ 
u = o  on at?, 

for which there exists some constant H* such that 

solution _u and a large solution P ;  

point; 

see Crandall-Rabinowitz [5 ]  for the case where p < ( N + 2 ) / ( N - 2 )  and [3] for 
the case p = ( N + 2 ) / ( N - 2 ) .  

(a) if 0 < H < H * ,  there are at feast two positive solutions of (0.7)-a small 

(b) if H = H*, there is exactly one positive solution of (0 .7):  H* is a turning 

(c) if H >  H*, there is no positive solution of (0.7); 

In Section 2, we deal with the Plateau problem (H)-(P). Our approach is the 
following. We introduce the class 

8 ={y: aR + R3; y(dR) = r and y is nondecreasing). 

For each y E 8 there is a large solution P of the Dirichlet problem (H)-(D). We 
consider its “energy” 

A ( y )  =I IVPr+$HQ(ii). 

Then we show that 

Inf A( y )  = A( yo) is achieved 

and we prove that the large solution Po of the Dirichlet problem (HI-(D) with 
data yo is a solution of the Plateau problem (H)-(P). 

After our results were announced in [2]  we learned that Struwe [15] has 
independently obtained some partial results in the same direction as ours. He 
has proved that (H)-(P) has at least two solutions, for a class of “admissible” 
curves r if 0 < H < H*, where H* is some small constant .which is not explicitly 

Y E  sf 
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stated. Subsequently Steffen [14] was able to show that any Jordan curve is 
admissiblebut again without any explicit estimate for H*; they prove similar 
results for (H)-(D). 

Acknowledgments. We thank S. Hildebrandt and L. Nirenberg for drawing 
our attention to this problem. 

1. Tbe Dirichlet Problem 

Let R = { ( x ,  y )  E W2; x 2 +  y2 C 1) .  We consider the following problem: find 
u E H'(i2; !I3) satisfying 

(1) A u = 2 H u X ~ u y  on 0, 

(2) u = y  on aR, 

where H > 0 is a given constant and y is a given function on JR such that 

(3) 
Set 

Y E  H*'*(aR; Fa3) n L"(d0; R3). 

R =sup  I yl. 
an 

Our main result is the following. 

THEOREM 1. Assume (3), 

(4) HR<1 

and 

( 5 )  

Then there exist .at least two distinct solutions of (1)-(2).  

y is  not a constant on aR. 

Remark 1. It follows from Lemma A.l (see the appendix) that every solution 
u of (1)-(2) lies in L"(fl;R3)nC(n;R'); in addition, if Y E  C(aR;R3), then 
u E C(n; R3). By a result of Wente [16], extending an earlier classical theorem 
of Morrey [ 111 we know that every solution u of (1) lies in C"(R; R3). 

Remark 2. It has been known (see Hildebrandt [8]) that if Y E  
H"*(dQ; R3) n C(aQ; R3) and HR d 1, then there exists at least one solution of 
(1)-(2). We believe that if y(s y )  = (3 y, 0) (so that R = 1) and H = 1 ,  then there 
exists exactly one solution of (1) - (2) ;  this means that (4) is presumably sharp 
for such a y. 
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Remark 3. Assumption ( 5 )  can not be relaxed. In case y = C is a constant 
it was proved by Wente [17] that u = C is the unque solution of (1)-(2). 

The proof of Theorem 1 is divided into four steps: 

Step 1. We sketch the proof of the existence of a "small" solution u of 
(1)-(2) following an elegant argument due to S. Hildebrandt (see @I, [9]). 

Step 2. We prove that the small solution qc satisfies 

Step 3. We introduce the volume integral 

Q ( u )  = J u (u,  A u y )  for u E H:(R; 

and we prove that 

J =  U E  Inf H:, { 1 V u ~ ~ + 4 * ~ u . ( v , n u ~ ) } <  u e H A  Inf j l v u l z .  

We prove that the infimum which defines J is achieved by some uo 

Q ( u ) - l  Q ( v ) - l  

Step 4. 
and that P = qc - (J/2H) uo is another solution of (1)-(2). 

Step 1. Fix R ' >  R such that H R ' e  1. Let 

K = ( V E H ' ( ~ ~ ; R ~ ) ;  v = y  on dR and ~ I u ~ ~ ~ - S R ' } ,  

and 

E ( u ) =  IVu12+jH ~ . ( u , A u ~ )  for uEHlnL".  I f  
LEMMA 1. There exists some g E K such that 

E(_u)= Inf E ( u ) ;  
U P K  

moreouer every minimizing sequence is refutiuefy compact in H'(R; R ~ ) .  

Proof: Clearly we have 
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Let (u") be a minimizing sequence, that is U" E K and 

E (  u") = Inf €( u )  + o( 1). 
U € K  

(7) 

After extracting a subsequence we may assume that 

un - g in H' weakly, 

u" - g in L" weak*, 

U" -, g a.e. on R, 
with g E K. Set 9" = U" - g so that 4" E HA and 

9"- 0 in H' weakly, 

9" -0 in L" weak*, 

9"+0 a.e. on R, 

and 119"11L~S 2R'. We have 

But 

(9) 

On the other hand, 

U " ' 8 :  A _ U y = O ( l ) ;  
(10) J 
indeed 

U" ' 8; A gy =- 8: ' U" A gy J 
and 4: - 0 weakly in L2, while U" A gy+ I( A gy strongly in L2 (by dominated 
convergence). Similarly we have 

U".  g, A 8; = O( 1). 
(11) I 
Clearly, 

Un ' g, A g y =  ' Ex A gy+  O ( 1 )  
(12) J I 
since U" - g in L" weak*. Combining (7), (8), (9), (lo), (11) and (12) we find 
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Therefore, 

E ( g )  = Inf E ( v )  
ueK 

and moreover I IV6"IZ+ 0; thus U" + g strongly in H' 

LEMMA 2. Suppose g E K is  such that 

E ( g ) =  Inf E ( v ) ;  
ve K 

then g satisfies (1) and moreover IlgllL-S R. 

thus 

It follows that 

Proof: Let q E kd+(n; W) so that ( 1 - q ) ~  E K  for E > O  small enough and 

€((I-  E ? ) P ) .  

Using Lemma AS we deduce that 

that is, 

Hence 

and thus, by Stampacchia's maximum principle, we conclude that 

- f A ( g ( 2 + ( V g ( 2 + 2 H g -  g x ~ g y S O  in 9'(n>. 

-Alg12S0 in 9'(n) 

Sup (gl= Sup = R.  

Finally, let v E 9(R; R3) so that g + tv E K for C E  W with It/ small enough. Then 
we have 

E( ,u) 5 E( g + t v )  

n an 

and consequently 

V g  * V v +  2H v g, A gY = 0, I I 
that is, (1) holds. 
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Step 2. The main result of Step 2 is the following: 

LEMMA 3. Suppose y E K satisfies 

E(y)  = Inf E ( u ) ;  
U € K  

then there is some 6 > 0 such that 

(13) IlvUlz+4H[g*UxAUy~6 l v U l z  f o r d  UEH;. I 
Proof: Let u E HA n L"; we have (using Lemma AS) 

E(_u+u)=E(y)+E(u)+2 V_u*Vu+4H 11-  gXA_uy+4H g -  U , A U ,  I I I 
and since y satisfies (1) we see that 

(14) E(y+u)=E(g)+E(u)+4H _ u s  U , A U ,  for all uEHAnL", 

For It1 small enough, y + tv E K, and thus we obtain 

s 
y - U, A u, + 4 Ht2 y * u, A uy 2 0; I 

hence 

~ ~ V u ~ z + 4 H ~ y ~ ~ x ~ ~ y ~ 0  forall  uEHAnL". 

It follows by density that 

We claim that 

(16) ~ ~ V u ~ ' + 4 H ~ ~ * u x ~ u y > 0  forall U E H &  uP0. 

Indeed suppose that 

we shall prove that _v = 0. Set, for u, W E  If;, 
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so that B is a bilinear symmetric form on H’ o; moreover, 

~ ( u ,  u )  B o for all v E H A  (by (15)) 

and 

B(p, p) =o. 
It follows that B(p, w )  = 0 for all w E HA. Using Lemma A.4 we obtain 

V p -  Vw+2H w -  [ ( g x  A p,)+(_v, A _uy)]=O for all W E  9, I 
that is 

(18) 
AY = 2H[( K A Yy) + (p, A !+,)I 

=2H[(u+Y),h(_u+_v),-_u,A FY-Yx Ag,]. 

We rely on Lemma A.l (or rather Remark A.l)  to conclude that pELw.  
Therefore, _u + t,u E K for It/ shall enough and we see, as above, that 

It follows from (17) that 

U ‘ p , A _ U y = O  
(19) J -  
and thus, by (141, 

E ( g  + tp) = E (  g ) .  

Applying Lemma 2 we see that for It1 small enough 

A( _u + t p )  = 2H( ,u + tp), A ( u  -t tp), 

and therefore 

p, A 9, = 0. 

Finally, we deduce from (17) that p = 0 and hence we have established (16). We 
turn now to the proof of (13). Assume, by contradiction, that there is a sequence 
( u ” )  in HA such that 

Ivvn12= 1, I 
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We may as well assume that u" - v' in HA weakly. In view of the lower semicon- 
tinuity of the function B( u, u ) ,  

I (Vv'I2+4H q C *  ;,A ;,so 

and thus (by (16)) v' = 0. Hence u" - 0 in HA weakly. We deduce from Lemma 
A.9 that 

(22) I ,Urn U: A U ; + o .  

Combining (20), (21) and (22) we obtain a contradiction. 

Remark 4. There is a unique element g E K such that 

€( g) = Inf E( u) .  

Indeed suppose g is another such element. Recall that (see (14)) for all u E HA A 

L" we have 

U E K  

E(g+U)=E(g)+E(U)+4H U *  U , h  U,, 
(23) I 
Choosing u = 5 - g and subtracting we obtain 

Going back to (23) we deduce that 

and thus (by Lemma 3) u = 0. Throughout the paper we shall say that g is the 
small solurion of Problem (1)-(2). 

Step 3. We set Q ( u )  = I  u s  U,A uy for U E H ; ~  La and we recall the 
isoperimetric inequality 

IQ( u ) \ ~ ' %  C I lVul* for all U E  HA n L" 

(see Lemma A.3). The best constant in (25) is given by 
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LEMMA 4. We have 

where S = ( 3 2 ~ ) ' ~ ~  prouides the best constant. 

For the proof of Lemma 4 we refer to Wente [16]; the argument in [16] relies 
essentially on some inequality due to Bononcini. 

Remark 5. We may extend by continuity the function Q to HA(51) (see 
Lemma A.lO) and we still have 

1 Q ( ~ ) 1 2 / 3 +  j 1vu12 for all u E H~(51) .  

However the best constant is not achieved in HA(Q); otherwise we would obtain 
a non-zero function u E HA(R) which satisfies A u  = u, A uy on R-a contradiction 
with Wente [17] (see also Remark 3). On the other hand, we may consider 

O( (p) = jRz (p * (px A (py defined for (p E H ' ( R 2 ;  R3) n L"(R2; R3). 

We deduce from Lemma 4 (by stretching variables) that 

and by density we obtain 

For later purpose, it is important to observe that the best constant in (26) is 
achieved when 

cp(x, y)=(1+r2)- ' (x ,y ,  1) with r 2 = x 2 + y 2 ,  

or more generally when 

( p ( x , y ) = c p , ( x , y ) = ( ~ ~ + r ~ ) - ' ( x , y , ~ )  with EER,  ~ $ 0 .  

A similar phenomenon occurs with the best constants of Sobolev inequalities 
(see [31). 

The main result of Step 3 is the following. 

LEMMA 5. Assume u is a given function such that u E C2(n; R3) n L"(51; R') 
and u is not constant on 51. Set 
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Proof: Fix a point (xg, yo) ER such that Vu(xo, yo) # 0. Set a'= u,(xg, yo) 
and 6= uy(xo, yo). We choose an orthonormal basis (i, j, E) in R 3  having the 
same orientation as the canonical basis of R' and such that 

(27) a'. i+6. j<O 
(for example, if a'# 0 we take i= -a'/la'l and then j such that 111 = 1, I'. /'= 0, 
6 * j = O ) .  Next we use a technique inspired by [3] (see also [l]). We set 

u'=[(p' for E > O ,  

where 5~ 9(n; R) is a fixed function such that 5' 1 near (XO.  yo) and 

(P'(5 Y)=f,(r)(x-xo,y-Yo, & )  

with f C ( r ) = ( E 2 + r 2 ) - l  and r * = ( x - ~ ~ ) ~ + ( y - y ~ ) ~  ((p' is written with respect to 
the basis I ; J  c). 

We consider 

[ lVU'l2+4H [ U ' U: A U L  

(Q(u')(~'' 
R (  u ' )  = 

and we shall establish that 

(28) R ( u ' ) = s + s H ( ~ .  i+6.j)E+O(E2(log E ] )  as E - O .  

The conclusion of Lemma 5 follows from (28) by choosing E small enough. We 
have 

4 =5,(P'+Iv:, u;=[y;cpC+5vL 

and thus 

On the other hand, it is easy to check that 

(29) 1Vrp'lZ =2ff 
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and 

(30) 

Therefore we obtain 

(31) 

Next we have 

H. B R U I S  AND J.-M. CORON 

Hence 

7r O(U') = -+ O( E )  
2&3 

and thus 

From Lemma AS we deduce that 

(33) I=O. 
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We shall verify (see below) that 

(34) 
and 

(35) 1zz = O((l0g €1) 

ZI=(a’* r+b.j”$+0(1) 
2 E  

which imply that 

7r 
u * ( u :  A v ~ )  = ( i s  i+6-J3 -+ O(lIog &I). 

(36) J 2& 

Combining (31), (32) and (36) we obtain (28). 

Proof of (34): By Lemma AS, 

II=- 2 ‘ I v s * [ ( i A U ; ) + ( U : A 6 ) 1  

= J c2pe - [(a- A (P; ) + ( c p :  A 611 
2 

=I J c2qefs - [ i A j +  i~ 61 
2 

=I J c2ff[(al + -a3(x- xo) - M Y  - YO)]. 
2 

From (30) we deduce that 
7r I c’ff (a ,  + b2) E = ( a ,  + b,) 2~ + 0 ( E )  . 

2 
On the other hand, 

where B denotes a small ball centered at (xo,  yo), and then 
c 

Proof of (35): Using (29) we obtain 
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Step 4.  We consider the function Q defined on HA to be the continuous 
extension of Q( u )  = u - u, A u, ( u  E HA n L")-see Lemma A.lO. We set 

(37) 

LEMMA 6.  The infimum which defines J (see (37)) is achieved, i.e., there 
exists some U O E  HA such that 

Proof: It follows from Lemma 5 that J c S (recall that g E C2(R; R3)-see 
because of assumption ( 5 ) ) .  Remark 1-and moreover g is not constant on 

Let ( u " )  be a minimizing sequence, that is, 

(38) Q( u") = 1 

and 

(39) 
r r 

We deduce from Lemma 3 and (39) that (u" )  remains bounded in HA. We may 
assume, modulo a snbsequence, that U" - uo in HA weakly. In order to pass to 
the limit we use an argument which is related to a method introduced by E. Lieb 
[lo]. Set 

W " = U " - v O  

so that w" - 0 in HA weakly. Thus we have Q(uo+ w") = 1 and using Lemma 
A.12 we obtain 

(40) O(uo)+ Q( w") = 1 + o(1). 
On the other hand, we know (see Lemma A.9) that 

l @ * U : A U ; +  I _ U . U : A U :  

and therefore we deduce from (39) that 

From the definition of J (see (37)) we have 
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which, together with (41), implies that 

J I Q ( V ~ ) ~ ~ ' ~ +  IV w"I24J+ o(1). J (42) 

From (40) it follows that 

(43) 
Combining (42) and (43) we are led to 

1 5  la( 0~)1~'~+1Q( ~ ~ ) 1 ~ ' ~  + o( 1). 

I IVw"l'S J ( Q ( W " ) ( ~ ' ~ + O ( ~ )  

(by Lemma 4). Since J < S, we conclude that I IV wn12 + 0 and hence U" + uo in 
HA strongly. We complete the proof of Lemma 6 by passing to the limit in (38) 
and (39). 

We conclude the proof of Theorem 1 using 

LEMMA 7. Set 
n=g-- uo 

2H 

( J  and uo have been defined in Lemma 6 ) .  Then _u is a solution of (1)-(2) and, 
moreover, 

.13 
E (  n )  = E ( g )  +- 12H" 

Remark 6. Clearly, C f _u since J > 0 (note that, by Lemmas 3 and 4, J h 6s). 

Proof: Let w E HA n L"; set 

1 
Cr 

cp =- ( uo+ rw) with r E W and p = IQ (  uo+ r ~ ) l ' / ~  

Note that Q( uo+ tw) + 1 as + 0 and thus Q(p) = 1 for It1 small enough. From 
the definition of I (see (37)) we have 
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On the other hand (see Lemma A . l l ) ,  we have 

p3 = lQ(uo)+3tR( w, uo)+ O(t2)( = 1 +3tR( w, uo)+ O(tZ) 

and thus 
1 T =  1 - 2tR( W, v O )  + O(t2). 

P 
Finally we obtain 

Using Lemma A.4 we deduce that 

V U O - V W + ~ H  w . [ ( _ u x I \ U ~ ) + ( U ~ h _ U y ) ] - J  W ' ( U : I \ U O Y ) = o ,  I I I 
that is, 

Au"=2H[(gx  A U ; ) + ( U :  A g y ) ] - J ( ~ :  A ?I;). 

Hence we find 

J 2  
2H 2H 

= 2 HEx A ii, 

It follows that ii E L" (see Remark 1) and thus U'E L". In conclusion we have 

A ~ o = 2 H q ( x ~ ~ y - J [ ( _ u x ~ U ~ ) + ( U ~  A g y ) ] + - ( U t  A U;) 
J 

hii = A_u -- 

(see ( 1 4 ) )  

J 3  J 3  J 3  
= €( _u) +--- = E (  g) + 2. 4HZ 6 H 2  12H 

2. The Plateau Problem 

Let c R3 be a closed Jordan curve; more precisely we assume that r = a ( d f l ) ,  
where a: afl-* R3 is one-to-one and 

(44) 

We set 

a E C(a0; R3) n H"2(aR; R3). 

R =.Max 1.1. an 
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8 = y 1 

DEFINITION. We say that a continuous mapping 7: aR + aR is non-decreasing 
if there is a continuous non-decreasing function f: [ 0 , 2 ~ ] - *  R such that 

f(271) -f(O) = 271 and 7 ( e i 9 )  = eif(") for all 6 E [0,27r]. 

We consider the following problem: find u E H1(R; R3) n C(d; W') satisfying 

(45) du = 2Hux A uy on R, 

(46) l ~ ~ l ~ - I ~ ~ l ~ = u ~ ~  u Y = o  on R, 
(47) u(aR) = r and a-' 0 u is non-decreasing on an, 
where H > 0 is a given constant. 

Our main result is the following. 

invariant the 3 points eib with 6 = 0, 6 = 
a-' 0 y is non-decreasing and a-' 0 y 

Y E  c(an; R3) n H"'(aR; R'), y(aR) =I-, 

THEOREM 2. Assume (44) and 

(48) H R c 1 .  
Then there exist at leasr two distinct solutions3 of (45)-(46)-(47). 

Remark 7. It has been known (see Hildebrandt [8]) that if (44) is satisfied 
and HR 5 1 ,  then there exists at least one solution of (45)-(46)-(47). We believe 
that if l' is a circle of radius R and H =  1/R, then there exists exucffy one' 
solution of (45)-(46)-(47); this means that assumption (48) is presumably sharp 
for the circle. 

Remark 8. For the proof of Theorem 2 we shall not need the assumption 
that a E H1'2(aR; W3) but only the fact that €7 # 0. 

As before we fix R ' >  R with HR'< 1. Consider 

Inf{E(v)lvEH1(Cl; R3), Ilu[lL-SR' and UlanE 8). 

It may be shown (see Hildebrandt [8], [9]) that the infimum is achieved by some 
function -u, which is a "small" solution of the Plateau problem (45)-(46)-(47). 

In order to prove the existence of a second solution of the Plateau problem 
we proceed as follows. For each Y E  8 we have a "small" solution gr of the 

'We say that two solutions are distinct if one cannot pass from one to the other by a conformal 
diff eomorphism. 
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Dirichlet problem (1)-(2) which is uniquely defined (see Lemmas 1,2 and Remark 
4). We set 

(49) 

this infimum is achieved by some function Q" (not necessarily unique) and then 

provides a second solution for the Dirichlet problem (1)-(2) such that 

J 3  
E ( i i Y ) = E ( g , ) + -  

12H2 

(see Lemma 6 and 7). We set 

J 3  
(50)  A(Y) = a%)+&; 
notice that A ( y )  is uniquely defined although P" is not! 

The proof of Theorem 2 is divided into two steps. 

Step 1. We show that 

is achieved by some y o €  8. 

Step 2. W e  prove that .iiyo is a solution of the Plateau problem (45)-(46)- 
(47); moreover, E Y O Z  up since 

J30 J30 

E ( gYo) +-> E ( g p )  +A> E ( g p ) .  12H2= 12H2 
E ( 0 "O) 

Step 1. We shall need a technical lemma dealing with the dependence of 
the mapping y-gy under uniform convergence of the 7's. Suppose ( y " )  is a 
sequence such that 

yn~H'"(aR;R3)nL"(aR;IR3), ~ ~ ~ n ~ ~ L - ~ R ,  

and let y E H'"(t3Q; R3) n L"(aR; R3) with IlyllL-S R. Let g" (respectively g )  
denote the "small" solution of the Dirichlet problem (1)-(2) corresponding to 
the boundary data y" (respectively y) .  Assume 
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so that y"-y in 
problem 

weakly. Let h? E H'(R; R3) denote the solution of the 

Ah" = 0 on R, 

h " = y " - y  on aR. 

By the maximum principle we have 

(52) Ilhnll'-cn,417n - YllL-caa,+ 0; 
moreover, 

(53) h"-0 in H' weakly. 

LEMMA 8. Assume (51); then we haue 

(54) I l~"-h"-y l l "~+o 

and 

( 5 5 )  E ( g )  5 !inJ E (  y"). 

Proof: Set 

K " = { ~ ~ € f ' ( f l ; R ~ ) ; u = y "  on aR and Il&-PrR'}, 

K={uEH'(R;R3) ;  u = y  on aR and IIullL*SR'}. 

Since llgllL-5 R (see Lemma 2) it follows that y + h" E K" for n large enough; 
therefore we have 

(56)  E(_u")SE(_u+h") for all n (large enough). 

Set U" = y" - h", so that un = y on an; moreover, 

It  u" I L m  (= Ilg" l l ~ +  I I  h" Il L- 5 R + II h" II L- 
and thus Y "  E K for all n (large enough). We claim that 

(57) E ( u " )  S E ( y ) + o ( l ) ;  

this means that (u") is a minimizing sequence for E on K and, therefore, (see 
Lemma 1 and Remark 4), U" + g in Hi strongly, i.e., (54) holds. 

Proof of (57): Recall that (see (6)) 

since E ( y + h " )  remains bounded, it follows from (56)  and (58) that j IVy"(z 
remains bounded. Consequently, 

(59 )  II_U"llHldC, IJU"lJH15C. 
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On the other hand, we have 

Let us check that 

indeed we have 

with 

I =  u " - [ ( u :  ~ h y " ) + ( h :  A U ; ) ] = O ( ~ ) ,  by Lemma A.7, I 
and 

11 = h" (_U: A _U; ) = O( I), by (52) and (59). J 
Combining (56), (60), (611, (62) and (63) we obtain 

Finally we observe that 

V(_U-u")Vh" =o, 

since g - u" = 0 on a i l  and Ah* = 0; moreover, 

(_U-U")  * (h:  A hr)=O(l ) ,  by Lemma A.6. I 
This concludes the proof of (57) (and thus (54)). 

Proof of (55): Combining (62) and (63) we have 
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and thus 

E(#")h E(_u)+- Ivh"(*+o(l) 2 E(_u)+ o(1) 3 'I 
which implies ( 5 5 ) .  

We recall a well-known compactness result (see [4], Lemma 3.2, page 103). 

LEMMA 9. Let ( y " )  be a sequence in 8 such that l l ~ " l ( ~ 1 1 2  remains bounded. 
Then there exist a subsequence ( ynk) and some yo E Ip such that 

IlY"k - Yollr-(dn, + 0. 
The main existence result of Step 1 is the following. 

LEMMA 10. There exisrs some y o €  8 such that 

A( yo) = Inf A( y ) .  
y E  '6 

Proof: Let ( y " )  be a minimizing sequence for A, i.e., 

y" E 8 and A( y " )  = Inf A( y )  + o( 1). 
Y E  6 

(64) 

Let _u" denote the small solution of the Dirichlet problem (1)-(2) corresponding 
to the boundary data y". We have 

I J I V _ ~ " ~ ~ ~ E ( ~ " ) I A ( ~ " ) ~ C .  
3 

Since II_u"\lL-S R, it follows that 

and in particular 

Using Lemma 9 we may assume that 

for some y o €  %. 

ponding to the boundary data yo. Set 

II!"llH' 5 c 
IIy"lIH1" c. 

IlY" - YOll"+ 0 

We denote by go the small solution of the Dirichlet problem (1)-(2) corres- 
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Clearly we have 

(65)  J,, d C 

(use any fixed rp E 9 with Q(rp) = 1). It follows from Lemma 8 that 

(66)  €(go) S E ( g " ) +  o(1). 

On the other hand, we deduce from Lemma 6 that there exists some rp"EH; 
such that 

With the notations of Lemma 8 we have 

(here we have used Lemma A.3). We deduce from Lemma 8 that 

We recall (see Lemma 3) that there exists some S > 0 such that 

Combining (65), (68) and (69) we see that 

prp"12s c. I (70) 

From the definition of Jo we have 

Relations (68), (70) and (71) together yield 
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Finally from (66) and (72) it follows that 

A (  yo) =€(go) +Ji/12H2 d €(g") + J i  /12H2+ O( 1) =A(y") +o( 1). 

We conclude using (64) that A (  yo) = Inf,,sr A( y ) .  

Step 2. We start with some technical facts. 

LEMMA 11. Let y E 8 and let g be the small solution of rhe Dirichlet problem 
(1)-(2). Then 

Sup€(g+ru)BA(y) forall uEHAnL", u* 0. 
110 

Proof: Recall that 

(73) € ( g + r u ) = E ( u ) + t 2  uI2+4H u s  U , A U ~  +;Hr30(u)  [ / I v  I- 1 
(see (14)). Therefore, 

SupE(g+ru)=+co provided Q(u)LO and u*O. 
110 

We assume now that Q( u) < 0; a simple computation leads to 

2 E ( H ) + ~ =  A(y).  
12H2 

The next lemma is a slight generalization of Lemma 11. 

LEMMA 12. Let y E 8 and ler g be the small solution of the Dirichlet problem 
(1)-(2). Then 

C6 
Sup €(g + cp + tu) B A( y )  for all cp E Hhn L" with IIqlIH;Sw, 
120 

for all u E HA n L", U f O ,  

where C is some universal constant and 6 > 0 appears in Lemma 3.  

Proof: We distinguish two cases: 
(a) Q(u)ZO, 
(b) Q ( u ) < O .  
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Case (a). The leading terms in the expansion of € ( u  + rp + to) are 

If Q(u)>O, we have S~p, ,~E(_u+cp+tu)=+co;  if Q(u)=O, we still have 
E ( g  + rp + to)  = +a, provided IIrplln;s CS/H, (we use here Lemma A.3). 

Case (b). We may assume that 

cp+au#O forall a Z 0 ;  (74) 

otherwise if cp = -aOu for some aoZO we have 

Sup E( _u + cp + fu) = Sup €( 9 + ( t - ao) u )  t Sup E (_u + su) Z A( y ) ,  
1 1 0  I Z O  S S O  

by Lemma 11. For each a B 0 we know that 

Sup E ( y + t (  rp + a u ) )  2 A( y )  
I P O  

(75) 

(by Lemma 1 1 and (74)). Using (73) we see that the supremum in (75) is achieved 
when t = t (  a) with 

if Q(cp+au)BO, 

where T( w )  = J IV wI2 + 4H J _u w, A wy. Clearly the function a !-, t (  a) is con- 
tinuous from [O, +a,) into (0, +@]. Moreover, we have 

lim r ( a ) = O  
a-+co 

(note that Q( cp + au) C 0 for a large enough). On the other hand, we have 

if O(cp)hO, 

(here we have used Lemmas 3 and 4). 
In both cases, 

6 t(0) 2 1 provided (Jcplln;S C- 
H ’  
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We deduce from (76) and (77) that there exists some a. 2 0 such that t (  ao) = 1 ; 
using (75) we obtain 

E ( u  + cp +a,u) 2 A( y )  

and the conclusion of Lemma 12 follows. 

We recall now some variational techniques which are well known in the study 
of Plateau problems (see [41, pp. 107-1 15). Consider a family ( r , )  of perturbations 
of the identity depending on a parameter E L 0, E small enough. More precisely, 
we assume that 

(78) for each E Z 0, r, = 6 + ii' is a smooth diffeomorphism, 

re: an + an is non-decreasing and leaves invariant the 3 points eia 

with 19 = 0, 6 = * g ,  (79) { 
ro= Id and r, -+ Id uniformly on d. 

c -0 
(80) 

We denote by R' the operator 

R'w- war', 

where w is a function, w = fi + R3 (respectively w: aR + R'). It is well known that 
the volume integral Q is invariant under orientation preserving diffeomorphisms, 
i.e., 

Q(R'w)  = Q( w )  for all w E H' n L". 

The Dirichlet integral is not invariant under diffeomorphism but we shall assume 
that 

IVwl' for all W E H '  

which clearly implies 

It follows from (80) and (81) that 

R'W -, w strongly in H' n L" if w E H'(R) n qaj. 
a-0 

(83) 

In practice, we obtain a family ( r e )  in the following way. Fix a function a E 

C"(fiz; W) and consider the mapping q. : 6 + d defined (in complex notations) by 

q c ( ~ ) = t e i r P ( * ) .  
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If c is small enough, q. verifies (78) and (80). In order to satisfy (79) we introduce 
the (unique) homographic transformation ps = d + d such that q. 0 p ,  leaves 
invariant the 3 points eia with I9 = 0 ,  19 = *$r. Then r, = q. 0 p.  satisfies (781, 
(79) and (80). Moreover, (81) holds; for the verification of (81) we refer to [4], 
page 109, formula (3.161, whichgivesaprecise expansion of (VR'w12 = I  IVQ'w12 
as c+O. 

LEMMA 13. Let y E 8; let g be the small solution of ( l ) ,  (2) corresponding 
to the Dirichlet data y and let a be a large solution of (l), (2)-as given by Lemma 
7-corresponding to the same Dirichlet data y. Then 

(84) SUP E (Reg  + tR '( II - g ) )  5 A( 7) + IVR 'd12 - IV El2 + O( 8'). 
fZ0 J J 

s [  f IVR%l2-j Ivnl21 +[ f IVfi12+2(1-r) vn. V(g -ii) I 

= [I IVR'P12- I Ivnl21 + E ( g + t ( d . - g ) ) +  cp- t lc + C(1 - t )2c ,  

where C depends only on g and ii (here we use (81) and (82)). On the other 
hand, a direct computation (based on (14) and Lemmas 6, 7) shows that 

J 2  
12H2 

€ ( g + t ( O - g ) )  = A (  y)-- ( t  - 1)2(2t+ 1) for all t. 
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Therefore we obtain 

E ( R  "g + tR"( ii - g))  

5 [ / IVR"ii12- / lVSl'] + A ( y ) - s  J 3  ( I -  1)2+ Celt- lI+ C E ( ~ -  1)' 

5 [ ] (VReiilz-] lVzi12] +A(Y)+CE' for E small enough. 

We are now in a position to conclude the proof. 

Proof of Theorem 2: Let yo€ % be such that 

A( yo) = Inf A(  y )  
Y € g  

(see Lemma 10). Let go (respectively E0) be the small solution (respectively a 
large solution) of (1)-(2) corresponding to the Dirichlet data yo. We claim that 
Po is a solution of the Plateau problem (45)-(46)-(47). We already know that 
iio verifies (45) and (47). We shall establish that iio satisfies 

then one can deduce (46) from (85) by a standard argument involving the 
expansion of IVR'fio12 (see [4]; pages 107-115). Set y' = Rcyo, so that y c  E E4 
and let ge be the small solution of (1)-(2) with Dirichlet data y*. We know (see 
(83)) that 

y c  - yo strongly in H"*(~R) n  an) 

and 

R"g0+ go strongly in H ' ( 0 )  n L"(R). 

It follows from Lemma 8 that 

(86) g" + go strongly in H'(R). 

We deduce from Lemma 3 that there exists a So> 0 such that 

which implies that 
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provided E is small enough (use (86), (87) and Lemma A.8). Applying 
Lemma 12 we see that 

(89) A(r")SSupE(_u'+cp+tu) for all cpEHAnL" with Ilvlln;S2 
f r o  2H' 

cs 

for all u E HAn L", u+ 0. 

Choosing, in (89). 

cp=R"_uo-_u" and o=R"(iiO-_uo) 

we obtain 

A(y')SSup E ( R " g o + t R " ( f i o - ~ o ) ) .  
110 

On the other hand, we have (by definition of 7') 

(91) A(ro)  S N r " )  

and, by Lemma 13, 

(92) Sup E ( R  'go+ tR '( ii - go))  S A( 7') + IVR'ii012 - lVP'l' + O( E' ) .  
IPI)  I I  

Combining (go), (91) and (92) we obtain (85). 

Appendix 

We collect here a number of technical facts. Most of these facts are well 
known to the experts and have been used in various forms since the pioneering 
work of Wente [16]. As before, R = ( ( x , y ) ~ F t ' ;  x '+y '< l } .  

Throughout this appendix we deaf with functions defined on R with values in 
R3, except in Lemmas A. l  and A.2 where the functions are real-valued. 

LEMMA A.l. Assume u, v E H'(R) and letcp E WAS' (R) be the unique solution 
of 

- A ~ = u ~ v ~ - u ~ u ~  on R, 
on an. 

Then cp E C(6)  n HA(R) and 

IIvIIL-+IIvcpllL2~ C l l V ~ l l L 2 1 l V ~ l l r ~ .  

Proof: We follow essentially an argument due to Wente [18]. Assume first 
that u, u E 9(R2) and set 

JI=E * (uxuy-uyux) ,  
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where E ( x ,  y )  = ( 1 / 2 a )  log (l/.r), r =  ( . ~ ' + y ~ ) l ' ~ ,  is the fundamental solution of 
-A. Then 

(A.2) -A$ = U , U ~  - u ~ u , .  

In polar coordinates we have 
1 
r 

u,uy - UYUx = - ( urua - U&). 

Thus 

However, 

Joz" u u S d a =  JO2* (u-ii)u6d9, where a ( r ) = -  u(r ,  u) du 
27r 12" 0 

and thus 

Finally we obtain 
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Remark A.l. Assume ui, ui E H'(Q) ,  1 s i s  k, and let Q E WA*'(R) be the 
unique solution of 

- A c ~  = ( UixUiy - u ~ ~ u , )  on R, I p=o on dQ. 

Then Q E ~ ( f i )  n H A ( Q ) .  
LEMMA A.2. Assume y u E H'(R) and w E S(R). Then 

CllV UllL2llV 4lL2llV WllL'r 

by Lemma A.l. 
From now on all functions are defined on R with values in R3. 
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Proof: When w E 9(0), the conclusion follows from Lemma A.2 used on 
each component. In the general case where w E HA(R) n L"(R), we may choose 
a sequence W" E 9(0) such that W" + w in H ' ( a ) ,  w"+ w a.e. and Ilw"llL-S C; 
then we use dominated convergence. 

LEMMA A.4. Assume 

(A.3) u E H'(R) n Lm(0), u E ~ ' ( n )  n L"(R), w E H'(R). 

In  addition assume 

either U A U = O  on aa or w = O  on aR.4 

Jn u - [( ox A w y )  + ( w, A V,)I = u - [( u, A w y )  + ( wz uy)l. 

Then 

J n  

The same conclusion holds if instead of (A.3) we assume 

(A.3') u E c'(n), 0 E H'(R), w E H'(R). 

Proof: (a) Assume WEH;(R)  and let w " ~ 9 ( R )  be such that w n +  w in 
H'(R). We have 

(U,A w ; ) + ( w :  A U ~ ) = ( U A  w : ) , + ( w ~ A u ) ~  
and thus 

I, u - [ (vz  A w;>+ ( w :  A v,)] = - u, - ( u  A w ; )  + uy - ( w :  A 0 )  

U. [(U, A W:)+ ( W :  A U,)]. 

The conclusion follows easily as n +a both in case (A.3) and in case (A.3'). 

We have 
(b) Assume u A u = 0 in dR and let W" E C"(n) be such that W" + w in H ' ( n ) .  

I. In 24 ' [( V x  A W i )  -t ( W l  A U,)] = U * [ (U, A W;) + ( W l  A by)] 

( U  A U) ' [W," COS (V, 1)- W," COS (V, )')I, 
+ I, 

- 
Note that (u A u) E H'(R) and therefore u A u has a trace on aR. 
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where Y denotes the outward normal to R. The conclusion follows as n + m ,  
both under (A.3) and (A.3'). 

LEMMA A S .  Assume 

(A.4) 
(A.5) U A U = O  on an. 
Then 

u E H'(R) n L"(R), u E H'(R) n ~"(n), 

2 In * ( UX A u y )  = In u * [( 4 A u y )  4- ( 0, A uy )I. 

The same conclusion holds if instead of (A.4) we assume 

(A.4') u E C ' ( h )  and u E H'(R). 

Proof: Use Lemma A.4 with w = u. 

LEMMA A.6. Assume (u") and ( u " )  are sequences such fhat 

U" E H'(R) n L"(R), U" E H'(R) n L"(R), U" A u" = O on aR, 

I I  ~ " I I d S  c, I1 U"I1"IS c, IlU"IIL-+ 0. 

Then 
P 

Proof: By Lemma A S  we have 

LEMMA A.7. Assume ( u " )  and ( u " )  are sequences such that 

U" E H'(R) n L"(R), u" E H'(R) n L"(R), 

II~"IIH1 c, IlU"llH1 c, Il~"llL-+ 0, 
U" = y on aR for some fixed function y E H'(R) n L"(R). Then 

-,,=In U " ' [ ( U l  A U y ) + ( U :  A U y ) ] + o .  

Proof. Set (p" = U" - y so that (p" E HA (a) and II(p"ll,.p S C. We have 
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Using Lemma A.4 we obtain 

The conclusion follows since Ilu"llL-+O and u" - 0 in H ' ( 0 )  weakly. 

LEMMA A.8. Assume 

u E H ' ( 0 )  n L"(0) and u E HA(R); 

then 

Proof: 

We deduce from Lemma A.3 that 

Replacing u by Au with A = IIVullLz/IlVullL2 we obtain 

For the general case where u E HA (Q) we argue by density. 
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lim sup I I, u (u:  A u y )  
n-m 

LEMMA 1.9. Assume u E H'(i2) n L"(R) and let (u")  be a sequence such 
that u" E H A  (a) and 

un-u in HA(0) weakly. 

Then 

5 CE 

" c 

Proof: Clearly it suffices to consider the case where u = 0. Given E > 0 we 
fix GE C'(fi) such that Ilu - u ' l l H l  -= E. By Lemma A.8 we have 

LEMMA A.lO. There is a unique continuous map 

R : HA (a) X H'(R) -* R 

such that 

Moreover, 

[R(u,  u ) l S  CI(VullL211Vulli2 for all u E HA (a), and for all u ;H'(a).  

Proof: Fix u E H'(R) and consider the mapping 

r 

u E 9 (a) w J u - ( U, A u,) E W. 
n 
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Using Lemma A.3 we may extend it by continuity to Hi and we denote it by 
R(u,  u ) .  In particular we have 

IR(u, u)I 4 CllVull~zllVull:~ for all u E HA(R) and for all v E H'(R). 
On the other hand, in case u E HA(R) n L"(R) we choose a sequence ( u " )  in 
9(0) such that U" + u in HA(R), U" + u a.e. and IIunllL-4 C. We have 

RW, u )  = I, U n -  (ox A u,); 

clearly R(u", u) -* R( u, u) ,  while 

by dominated convergence. 
Hence 

R(u, u) = u -  (u,  A uy)  for all u E HA(fl)  n L."(R) and for all u E H'(R). 

We check now that R is continuous on HA(Q) x H ' ( 0 ) .  Let U" + u in HA(R), 
u" + u in H'(fl) strongly. We have 

I, 

Given E > 0 we fix u' E 9 such that IIu - &I < E. Clearly, 

u " ( V ~ A U ~ ) +  u " ( U , A U y ) .  I, I. 
Hence 

J R ( u ,  u " ) - R ( ~  u ) ~ ~ I R ( u - G  v")(+JR(& u")-R(u', u)(+IR(G-u,  0 ) 1  
s CE + o( 1). 

Therefore, (R(  u", u")  - R (  u, u ) (  -B 0. 

DEFINITION. We set 

Q ( u ) = R ( u ,  u )  for u~HA(f2) 

so that Q is continuous on HA(R), lQ(u)ls CllVo11:z for all U E  HA(fl) and 

Q ( v )  = I u - (u, A u,) for all u E H;(R) n LYR). 
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LEMMA A.11. We h u e  

Q ( u + w ) = Q ( u ) + Q ( w ) + 3 R ( u ,  w ) + 3 R ( w , u )  fo ra l l  UEH;(R) 

w E HA(0). and for all 

Proof: By continuity it suffices to consider the case where u, w E 9(n) and 
then use Lemma AS. 

LEMMA A.12. Assume u E H;(Q) and let ( w " )  be a sequence in HA(R) such 
that 

w " - O  in Hh(n)  weakly. 

Then 

lw+ w " )  - o(u)- a ( w n ) l + o .  

Proof: In view of Lemma A . l l  it suffices to verify that R(u ,  w,,)+O and 
R ( w", u )  + 0.  The second point is clear since for fixed u the mapping w I+ R ( w, u )  
is a continuous linear form on HA (0). We check now that R (u ,  w,,) + 0. Given 
E > 0 we fix IJE 9(a) such that l]u - IJl lH;< E.  We have (by Lemma AS) 

since w n  + 0 in L2(0) strongly. Finally we have 

and thus R (  u, w,) + 0. 
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