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0. Introduction

Let 0 ={(x, y)eR? x>+ y><1}. We look for a function u:{} - R? satisfying
the H-system

(H) Au=2Hu,ru, on Q

together with one of the following conditions:
either Dirichlet:

(D) =y on aQ,

or Plateau:

®) lu~luP=u, - u,=0 on Q,

u(3Q) =T and u is non-decreasing on 342,

where H>0 is a given constant, y:9Q >R’ is a given function and <R’ is a
given oriented Jordan curve.

If u is a solution of (H)—(P), then u({l) represents a “‘soap bubble”, that is,
a surface with mean curvature H (at all points xeQ where Vu(x)#0)
spanning I

Let us assume that y(3Q2) (respectively I') is contained in a closed ball of
radius R. It was proved by S. Hildebrandt [8] that both the Dirichlet and Plateau
problems have at least one solution if HR =1 (this was an improvement over
earlier results of Heinz [6] and Werner [19]). Moreover this result is sharp when
I is a circle: there is no solution of (H)-(P) if HR > 1 (see Heinz [7]). In case
T is a circle of radius R and HR <1, it is easy to check that there exist two
solutions of (H)—(P), namely:

1. the “small” spherical bubble B, of curvature H spanned by T,

2. the “large’ spherical bubble B, of curvature H spanned by [';
see Figure 1).
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Figure 1

This observation led Rellich to conjecture that for any curve I' there exist at
least two solutions of (H)—(P) for H small enough (see [9]). We prove that this
is indeed true for every H >0 with HR < 1—see Theorem 2 (previously Steften
[13] had established this fact for some sequence H, - 0). A similar result holds
for the Dirichlet problem (H)-(D) provided v is not constant on d{}——see Theorem
1. If y=C is a constant on 3}, it was shown by Wente [17] that u = C is the
only solution of (H)~-(D).

Our approach is the following. In section 1 we consider the Dirichlet problem
(H)-(D). We recall Hildebrandt’s result: there exists a ‘“‘small”’ solution u of
(H)-(D) obtained by a simple minimization argument. We look for a second
solution of (H)~(D) of the form u = u+ v so that v satisfies

FLv=—Av+2H(u.nv,+v,Au)=—2H(v,Av,) on Q,
v=0 on Q.

(0.1)

This problem has a variational structure:

(i) the linear operator £ is selfadjoint and corresponds to the functional
1(&Lv, v), where

(&, v)=[ |Vo|*+4H J U* U A D

(ii) the nonlinear term v, A v, is the derivative of the volume functional 10(v),
where

Q(v) =J’ v (v, A D).

The non-zero solutions of (0.1) are the nontrivial critical points of the functional
(%o, v) +3HQ(v). Another view point—which we shall use—is to look for critical
points of the functional (£v, v) on the “manifold” Q(v)=1. After ‘“‘stretching
out” the Lagrange multiplier we obtain a non-zero solution of (0.1).-In fact we
prove that

(0.2) Inf (&v,v) is achieved.!

ve HH(Q)
Q(v)=1

! We denote by H3(Q) {or simply by H}) the Sobolev space HA(Q; R?).
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First we establish that
(Lv,v)z8{|v||}y forall veH) with §>0,

see Lemma 3.
The major difficulty in proving (0.2) comes from the fact that Q(v) is not
continuous under weak convergence in H{. To overcome this *“lack of compact-

ness” we use the same strategy as in [3] (see also [1]). Namely we consider the
isoperimetric inequality (see [16])

(0.3) J Vo2 S|Q(v)¥* forall veH)

with the best constant S = Inf, e ia).0(v)=1 | [V 0]? (Which is not achieved) and we
prove that
(0.4) Inf (&Lv,v)<S.

ve HYO)

Qu)=1
{Here we use the fact that ¥ is not a constant; otherwise when y= C, then u=C
and (&v, v) =[|Vv|?). Next, we rely on (0.4) in order to establish (0.2). At this
point we use an argument which is related to a method introduced by E. Lieb
[10].

In some ways problem (0.1) is reminiscent of the problem

PLuo=—Av-Av=0v" on J<R",
(0.5) v>0 on 9,
v=0 on 449,

where 9 is a bounded domain, N =4 and p=(N +2)/(N -2). It is proved in [3]
that (0.5) has a solution for every 0 <A <A, (A, is the first eigenvalue of —A
with zero Dirichlet data). The solutions of (0.5) correspond (after stretching) to
the critical points of the functional (£v, v)=][Vu[*~A [ v? subject to the con-
straint | |v]?*' = 1. Here again the major difficulty comes from the fact that the
Sobolev embedding H'< LP*' is continuous but not compact? One uses the
following technique (see [3]).
Here, the Sobolev inequality

I|V0|2§5||U||i'*' for all ve Hg,

with the best constant S, plays the role of the isoperimetric inequality (0.3). First
one proves that

(0.6) Inf (ZLv,v)<S
veHé
flof?* =1

2 The same difficulty occurs in Yamabe’s conjecture (see [1]).
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and then, using (0.6), one shows that

Inf (v, v) is achieved.
ueH},
flofP*t=1
In case A =0 (and ¥ is star-shaped) it has been proved by Pokhozaev [12] that
(0.5) has no solution. This fact should be put in parallel with the ““non existence”
result of Wente [17] quoted above when v is a constant.
Our results concerning (H)—(D) remind one also of the problem
—Au=H(1+u)® on 9<R",
(0.7)
u=0 on dd,

for which there exists some constant H* such that

(a) if 0< H < H*, there are at least two positive solutions of (0.7)—a small
solution u and a large solution #;

(b) if H=H™, there is exactly one positive solution of (0.7): H* is a turning
point;

(c) if H> H*, there is no positive solution of (0.7);
see Crandall-Rabinowitz [5] for the case where p<(N+2)/(N —2) and [3] for
the case p=(N+2)/(N-2).

In Section 2, we deal with the Plateau problem (H)-(P). Our approach is the
following. We introduce the class
€ ={y:30->R> y(3Q) =T and v is nondecreasing}.

For each y € € there is a large solution & of the Dirichlet problem (H)-(D). We
consider its “‘energy”

A(7) =j IVal* +3HQ(a).
Then we show that
Inif‘ A(7)=A(y" is achieved
ye

and we prove that the large solution @° of the Dirichlet problem (H)—(D) with
data y° is a solution of the Plateau problem (H)—(P).

After our results were announced in [2] we learned that Struwe [15] has
independently obtained some partial results in the same direction as ours. He
has proved that (H)-(P) has at least two solutions, for a class of ‘“‘admissible”
curves I if 0 < H < H*, where H* is some small constant which is not explicitly
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stated. Subsequently Steffen [14] was able to show that any Jordan curve is
admissible—but again without any explicit estimate for H*; they prove similar
results for (H)-(D).

Acknowledgments. We thank S. Hildebrandt and L. Nirenberg for drawing
our attention to this probiem.

1. The Dirichlet Problem

Let Q={(x, y)eR? x*+y*<1}. We consider the following problem: find
ue H'(Q; R?) satisfying

(1) Au=2Hu,nu, on 1,
(2) u=1vy on 4,

where H >0 is a given constant and y is a given function on {2 such that

(3) ye H'2(3Q; R*) A L=(3Q; R).
Set

R =Sup|vl.
n
Our main result is the following.

THEOREM 1. Assume (3),

(4) HR <1
and
(5) v is not a constant on ).

Then there exist at least two distinct solutions of (1)~(2).

Remark 1. It follows from Lemma A.1 (see the appendix) that every solution
u of (1)~(2) lies in L=(Q;R%) n C(Q; R); in addition, if ye C(3Q;R?), then
u e C(1; R%). By a result of Wente [16], extending an earlier classical theorem
of Morrey [11] we know that every solution u of (1) lies in C*(Q; R?).

Remark 2. It has been known (see Hildebrandt [8]) that if vye
H'V*30; R*) 1 C(3Q; R*) and HR =1, then there exists at least one solution of
(1)-(2). We believe that if y(x, y) =(x, y, 0) (so that R =1) and H =1, then there
exists exactly one solution of (1)-(2); this means that (4) is presumably sharp
for such a ¥.
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Remark 3. Assumption (5) can not be relaxed. In case y=C is a constant
it was proved by Wente [17] that u = C is the unique solution of (1)-(2).

The proof of Theorem 1 is divided into four steps:

Step 1. We sketch the proof of the existence of a “small” solution u of
(1)-(2) following an elegant argument due to S. Hildebrandt (see [8], [9]).

Step 2. We prove that the small solution u satisfies
I |Vul*+4H J u-(v,a0,)28 J‘ Vo] forall ve H)Q;R?) forsome &>0.
Step 3. We introduce the volume integral

O(v)=Jv-(v,Av,) for ve HY(Q;R®)

and we prove that
J= Inf {|Vv|2+4H J' u- (v A u,)} < Inf J‘ Vol

veHq veHy
Qu)=1 Qu)=1

Step 4. We prove that the infimum which defines J is achieved by some v°
and that & = u—(J/2H)v° is another solution of (1)-(2).

Step 1. Fix R'> R such that HR’< 1. Let
K={ve H'(Q;R?); v=17 on aQ and |jv|.~= R'},

and

E(v)=J |Vv|2+§HI ve(v,av,) for veH'AL™.

LEMMA 1. There exists some u € K such that
E(u)=Inf E(v);
veK

moreover every minimizing sequence is relatively compact in H'(Q; R?).

Proof: Clearly we have

(6) E(v)=(1-3H|v||.=) I IVvlzgéj- Vo> forall vek.



MULTIPLE SOLUTIONS OF H-SYSTEMS AND RELLICH'S CONJECTURE 155
Let (u") be a minimizing sequence, that is u" € K and
(7) E(w")= In’f( E(v)+o(1).
veE

After extracting a subsequence we may assume that
u"—u in H' weakly,
u"—u in L™ weak®,
">y ae on {,

with ue K. Set 8" =u"—u so that 9" € H} and
4"—0 in H' weakly,
4" —0 in L% weak®,
4"—-0 ae on 0,

and ||9")|.~=2R’. We have
(8) E(u") =J IVy|2+j [Vo"+o(1)+3H I U™ (u+97) A (4, +37).

But

9) $H J’u"-ﬁ;‘/\ﬂ’,‘
On the other hand,

(10) J'u"'t";‘/\y,=0(l);
indeed

Ju"-o;‘Ay,=—J’0:-u"Ay,

and 9" — 0 weakly in L2, while u" Ay, u A u, strongly in L? (by dominated
convergence). Similarly we have

(11) J'u"-y,/\ﬂ',‘=o(l).
Clearly,
(12) Iu”-yxAy,=Iy-y,Ay,+0(1)

since u” — u in L® weak*. Combining (7), (8), (9), (10), (11) and (12) we find
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E(y)+§ J. Vo= Inf E(v)+0(1).

Therefore,
E(u)=Inf E(v)
vekK
and moreover [|V3"|*>0; thus u" - u strongly in H'.
LemMa 2. Suppose u e K is such that
E(u)=Inf E(v);
vekK

then u satisfies (1) and moreover |yl << R.

Proof: Let ne 2.(Q;R) so that (1—en)ue K for >0 small enough and
thus
E(u)S E((1-en)u).
It follows that

2va- V(w)+§H“ ny - yxwy’rj' y'(ny),Ayy+Iy- y,r\(n_u),]éa

Using Lemma A.5 we deduce that

J Vu-Vinu)+2H J‘ U Uy A yyéo’
that is,
—3A|ul+|Vul+2Hu  u, A u,=0 in 2'(Q).
Hence
-Alul*=0 in 2'(Q)

and thus, by Stampacchia’s maximum principle, we conclude that

Sup |u|=Sup |u|=R.
a an

Finally, let ve 9(Q; R®) so that u+tve K for teR with |¢| small enough. Then
we have

E(y)=E(u+w)
and consequently

va'Vv+2va-yxAyy=0,

that is, (1) holds.
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Step 2. The main result of Step 2 is the following:
LeMMA 3. Suppose u € K satisfies

E(y)='}g’§ E(v);

then there is some 8> 0 such that

(13) I Vo> +4H j U-0,AD,Z5 I Vo forall veH}.

Proof: Let ve Hin L™; we have (using Lemma A.5)

E(u+v)=E(g)+E(v)+2 I Vy-Vv+4HJv- U AU, +4H J eV A,

and since u satisfies (1) we see that

(14) E(y+v)=E(y)+E(u)+4Hjy-v,/\v, forall ve HiAL™.

For |t| small enough, u+tve K, and thus we obtain

£ I Vo2 +3Hr J v v, AU, +H4HE? J' u-v,A0,20;
hence

I Vo[> +4H J. u-v,Av,20 forall veHynL”
It follows by density that
(15) leu|2+4HJy' v, Av,20 forall veH;.
We claim that
(16) Jle|2+4HJy°v,Av,>0 forall veH) v%0.
Indeed suppose that
Y] J'VP|2+4HJB'P,‘A§,=O for some ve Hy;
we shall prove that v =0. Set, for v, we Hy,

B(v, W)=I Vo-Vw+2H j u-[(v.aw)+(weav,)]

157
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so that B is a bilinear symmetric form on H L; moreover,
B(v,v)=0 forall veH} (by (15))
and
B(p,p)=0.
It follows that B(y, w) =0 for all we Hj. Using Lemma A.4 we obtain

JVy-Vw+2HIw-[(y,/\y,)+(yx/\yy)]=0 forall we 3,

that is

(18) Ay =2H[(u, A v,))+ (v A uy)]
=2H[(u+0) A (Uu+0)y— U Aty— v A D]

We rely on Lemma A.1 (or rather Remark A.1) to conclude that vel™
Therefore, u+tve K for |¢| small enough and we see, as above, that

W

t"’J- |Vy|2+§Ht3J’ v y,Ap,+4Ht2J u v, A0, =0.

It follows from (17) that
(19) JP'P:APy=0

and thus, by (14),
E(u+tv)=E(u).
Applying Lemma 2 we see that for |¢| small enough
A(u+1t)=2H(u+1tv),n(uttv),
and therefore
LAv,=0.

Finally, we deduce from (17) that v =0 and hence we have established (16). We

turn now to the proof of (13). Assume, by contradiction, that there is a sequence
(v™) in H} such that

(20) J|Vv"|2=1,
and

(21) J']Vv"|2+4HJ u- vy avy->0.
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We may as well assume that v" — ¢ in Hy weakly. In view of the lower semicon-
tinuity of the function B(v, v),

j \Vo[2+4H I U 6,A5,=0

and thus (by (16)) =0. Hence v" — 0 in Hy weakly. We deduce from Lemma
A.9 that

(22) Jy-v:Av;'»O.

Combining (20), (21) and (22) we obtain a contradiction.

Remark 4. There is a unique element u € K such that
E(.u)=vlg,£ E(v).

Indeed suppose u is another such element. Recall that (see (14)) for all ve Hyn
L*® we have

(23) E(y+v)=E(y)+E(v)+4HJ’ U* U, AU,

(24) E(g—v)=E(g)+E(—v)+4H‘[y~vx/\v,.

Choosing v = u —u and subtracting we obtain

J vev. A, =0
Going back to (23) we deduce that
I [Vol*+4H J- u v, A0, =0

and thus (by Lemma 3) v=0. Throughout the paper we shall say that u is the
small solution of Problem (1)~(2).

Step 3. We set Q(v)=fv-v.av, for ve Hpn L™ and we recall the
isoperimetric inequality

(25) lQ(w)P?=C J‘ Vv forall veH{nL®

(see Lemma A.3). The best constant in (25) is given by
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LemMa 4. We have
1 ®
|O(v)|2’3§§ J Vo> forall ve HynL™,

where S =(32m)"/? provides the best constant.

For the proof of Lemma 4 we refer to Wente [16]; the argument in [16] relies
essentially on some inequality due to Bononcini.

Remark 5. We may extend by continuity the function Q to Hy(Q) (see
Lemma A.10) and we still have

|Q(v)|2/3§§JIVv|2 for all ve HMQ).

However the best constant is not achieved in H)(Q); otherwise we would obtain
a non-zero function v € H(Q) which satisfies Av = v, A v, on {}—a contradiction
with Wente [17] (see also Remark 3). On the other hand, we may consider

O(¢)=J’

,# - @xrp, defined for ge HY(R?; R%) n LP(R*; R%).
R

We deduce from Lemma 4 (by stretching variables) that
1
|O(¢)I2’3§-S-J Vel forall ¢ea(®R*;RY),
R

and by density we obtain

1
(26) [Q(o)f*=5 J Vel forall ¢eL™R*R%) with ¢, ¢, € L*(R%R),
R
For later purpose, it is important to observe that the best constant in (26) is

achieved when
e(x, Y)=(1+r>)""x,y,1) with r’=x*+y?
or more generally when
e(x, y) =0, (x, y)=(e*+r")"'(x,y,€) with eeR, e*0.
A similar phenomenon occurs with the best constants of Sobolev inequalities

(see [3]).

The main result of Step 3 is the following.

LEMMA 5. Assume u is a given function such that u € C*(); R*) n L™(Q; R?)
and u is not constant on (). Set
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I Vo2 +4H I U* U AD,
J=Inf

veHAAL® |Q(w)[¥?
Q(v)#0

1

then
J<S.

Pl:.OOfZ Fix a point (xo, yo) €  such that Vu(x,, yo)#q. Set @ = u,(xo, yo)
and b= u,(xo, yo). We choose an orthonormal basis (i, j, k) in R? having the
same orientation as the canonical basis of R and such that

(27 a-i+b-j<0

(for example, if a# 0 we take i=-d/|d] and then j such that ljl=1, 7 j=0,
b- j=0). Next we use a technique inspired by [3] (see also [1]). We set

vi=Lp® for >0,
where £ € 2(Q;R) is a fixed function such that { =1 near (xg, y;) and

0° (% y)=f.(r)(x= X0, Y= Yo, )

with £.(r) = (£2+r*) ™" and r*=(x—x0)*+(y — yo)? (9" is written with respect to
the basis 1, J, k).
We consider

J [Vo'|*+4H j u-vi A

R(v")= lo(vz)lz/s

and we shall establish that
(28) R(v)=S+SH(d-i+b-j)e+O(c’|loge]) as e-0.

The conclusion of Lemma 5 follows from (28) by choosing ¢ small enough. We
have

v =40t +log, y=4et Hie;
and thus _
j Vo> = I Ve F+o(1) = j |v¢'|2+‘f (L3F-D|Ve >+ 0O(1)

= J ]V¢"2+ o(1).
On the other hand, it is easy to check that
(29) Vot?=2f
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and
(30) I f =J f2+o(1)=5+0(1).
o) nl E .
Therefore we obtain
2
(31) I |vw|2=s—'2’+ o).

Next we have

v* (V3 A0))=L%0" - (i ngy) =el’fl = 6f 2 +e(LP - 1)f}

and
3 _ 3 =T
J;fa _In2f¢+o(1) 254+O(1)-
Hence
Q(v*) =575+ OCe)
and thus
(32) QP = (hm)* 25 (1+ O(e)).

Finally we write

u(x, y) = u(xo, yo) +d(x—xo) + b(y — yo) + O(r?)
and thus

J‘ u(viavy)=I+II+11,

where
.
I=1] u(xo, yo) - (vz A v}),

= | [a(x—x)+b(y—yo)]- (v:av?),

p

o=\ O - (v2 A v5).

o

From Lemma A.5 we deduce that
(33) I=0.
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We shall verify (see below) that

(34) =4 r+5-j)£+0(1)
and
(35) I = O(Jlog €)

which imply that
(36) J’u-(v;/\v;)=(d- x‘+5-j)£+0(]loge[).

Combining (31), (32) and (36) we obtain (28).
Proof of (34): By Lemma A.S,
1 r

=5 | o'+ [(d@ o))+ (054 5))

ot -[(dnrel)+(piab)]

.

~

o' [anj+inb)

Y

-

[}
= N N
N
y

Y (ay+ by)e —as(x—xp) — bs(y— yo) ).
From (30) we deduce that
% J fff (ay+b)e=(a,+by) {‘;“" O(e).

On the other hand,

lj §2f5[as(x—xo)+b3()")’o)]=lI F2ay(x—%0) + byly— yo)1+ O(1),
2 n 2 B

where B denotes a small ball centered at (xo, ¥o), and then
j fAlx=x)=| fi(y—yo)=0.
B o B
Proof of (35): Using (29) we obtain

.

I|=c J PVu=C | Vet R+0(1)
o

=2C J. r*ff+o(1)=2C J. f.+0(1) = O(llog &|).



164 H. BREZIS AND J.-M. CORON

Step 4. We consider the function Q defined on H & to be the continuous
extension of Q(v)=fv- v, A v, (ve Hyn L®)—see Lemma A.10. We set

(37) J= Inf {IIVU[2+4HJy-v,Au,}.
Ou(v)-?l

LeMMA 6. The infimum which defines J (see (37)) is achieved, i.e., there
exists some v°e H} such that

Q(v®)=1 and J=J Vo2 +4H J u- oAl
Proof: It follows from Lemma 5 that J < S (recall that u € C*(Q; R®)—see

Remark 1—and moreover u is not constant on () because of assumption (5)).
Let (v") be a minimizing sequence, that is,

(38) Q(v")=1
and
(39) J |Vu"[2+4ij-v;'Av’,‘=J+o§1).

We deduce from Lemma 3 and (39) that (") remains bounded in Hj. We may
assume, modulo a subsequence, that v" — v® in H weakly. In order to pass to

the limit we use an argument which is related to a method introduced by E. Lieb
[10]. Set

wn=vn_vO

so that w" — 0 in Hj weakly. Thus we have Q(2°+ w")=1 and using Lemma
A.12 we obtain

(40) Q)+ Q(w")=1+0(1).
On the other hand, we know (see Lemma A.9) that

Jy-v:Av;»j u-vIavd
and therefore we deduce from (39) that
(41) JIVUOI2+J’|VW"I2+4HJ‘y' vIn =T +0(1).
From the definition of J (see (37)) we have

J. qu°|2+4HI u-v3 A0y 2JQ(O)?
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which, together with (41), implies that

(42) ]IO(v°)|2/3+J’ Vw™2=J+0(1).
From (40) it follows that

(43) 1=|Q(O)*+|Q(w™) 2 +0(1).
Combining (42) and (43) we are led to

f Vw>=JIQ(w™)[*3+0(1)

<l n|2
=SJ’|Vw [2+0(1)

(by Lemma 4). Since J < S, we conclude that [|[Vw"|>>0 and hence v" > in
H{ strongly. We complete the proof of Lemma 6 by passing to the limit in (38)
and (39).

We conclude the proof of Theorem 1 using

LEMMA 7. Set

(J and v° have been defined in Lemma 6). Then u is a solution of (1)-(2) and,

moreover,
3

1) = I
E(u)—E(y)+12Hz,

Remark 6. Clearly, & # u since J > 0 (note that, by Lemmas 3 and 4, J = 8S).
Proof: Let we Hyn L™; set
@ =1 (°+1tw) with teR and u=|Q(v°+tw)"/>
I

Note that Q(v°+tw)-1 as -0 and thus Q(¢) =1 for |t| small enough. From
the definition of J (see (37)) we have

J=J |Vo°F+4H I u- (19 vg)gj IVol*+4H J u (e no,)

=—12-[J Vo2 +2¢ j Voo -Vw+4H j u- (v3a09)
7

+4Htj u-[(0IAw)+(w, a0d)]+ O(tz)].
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On the other hand (see Lemma A.11), we have
1’ =|Q(v%) +31R(w, v°) + O(1})| = 1 + 3tR(w, v°) + O(1?)

and thus
;1-5= 1-2tR(w, 1)+ O(1?).
Finally we obtain

r ~

Vol Vw+2H | u-[(v] A w)+(wA v‘;)]-—JJ. we (03 A 09)=0.

o

Using Lemma A.4 we deduce that

~ r

Vol - Vw+2H | we[(u A 09)+(22n y,)]—JJ‘ we (v2a09)=0,

o

that is,
Av®=2H[(u, A 0))+ (02 A u,)]-T (03 A v9).
Hence we find

2

J J
Ad =Ay—§i Av®=2Hu, A u,—J[(u, A 05)+ (0] A y,)]+2—1_7(v?‘ A VS)

=2Hia, A &,

It follows that i€ L™ (see Remark 1) and thus v%e L™. In conclusion we have
(see (14))

E(ﬁ)=E(Ll"i v°> =E(IZ)+E(—L v°> +£J u-(v3a09)

2H 2H H
J? J? JZI
= + Vool - 0 0
E(u) 4H2J| v’ ety | v (weagy
3 3 3
= = + .

2. The Plateau Problem

Let T =R’ be a closed Jordan curve; more precisely we assume that [ = a(3Q2),
where :3Q - R? is one-to-one and

(44) ae C(3Q; R*) ~n HY2(3Q; R?).
We set
R =Max|al.
an
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DEFINITION.  We say that a continuous mapping 7: 3Q - 3Q is non-decreasing
if there is a continuous non-decreasing function f:[0, 27]- R such that

fQ2m)—f(0)=27 and n(e”)=e’™ forall 9€[0,27])
We consider the following problem: find ue H'(Q; R*) ~ C({}; R?) satisfying

(45) - Au=2Hu, A u, on {,
(46) qu|2—|uy'2=ux' u,=0 on {,
47 u(d)=I and & 'eu isnon-decreasing on aQ,

where H >0 is a given constant.
Our main result is the following.

THEOREM 2. Assume (44) and

(48) HR<1.
Then there exist at least two distinct solutions® of (45)-(46)~(47).

Remark 7. It has been known (see Hildebrandt [8]) that if (44) is satisfied
and HR =1, then there exists at least one solution of (45)-(46)—(47). We believe
that if [ is a circle of radius R and H =1/R, then there exists exactly one’
solution of (45)-(46)—(47); this means that assumption (48) is presumably sharp
for the circle.

We shall use the following notation:
vy e C(6Q; R*) n H%(3Q); R?), y(6Q) =T,
€={y|a'o y is non-decreasing and a "' ¢ y leaves
invariant the 3 points ¢’ with =0, 9= i
Clearly & # & since a € &.

Remark 8. For the proof of Theorem 2 we shall not need the assumption
that a € H'%(30; R®) but only the fact that & # .

As before we fix R’> R with HR’ <1. Consider

Inf{E(v)|ve H'(Q; R?), lv[l,== R’ and vpne €}

It may be shown (see Hildebrandt (8], [9]) that the infimum is achieved by some
function u, which is a “small” solution of the Plateau problem (45)—(46)-(47).

In order to prove the existence of a second solution of the Plateau problem
we proceed as follows. For each ye & we have a “small” solution u, of the

3 We say that two solutions are distinct if one cannot pass from one to the other by a conformal
diffeomorphism.
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Dirichlet problem (1)-(2) which is uniquely defined (see Lemmas 1, 2 and Remark
4). We set

(49) .I.,= Inf {J"V¢‘2+4HJ‘ ‘PxA‘Py}1

oeHy
Q(o)=1

this infimum is achieved by some function ¢” (not necessarily unique) and then

_ J
Y A

provides a second solution for the Dirichlet problem (1)—(2) such that
Iy 3 '
E(@)=E(u)+—=% B

(see Lemma 6 and 7). We set
3

J3
(50) AN =E)+ 52

notice that A(y) is uniquely defined although @ is not!

The proof of Theorem 2 is divided into two steps.

Step 1. We show that
Inf A(y)
ye®
is achieved by some y°€ €.

Step 2. We prove that @ is a solution of the Plateau problem (45)—(46)-
(47); moreover, a”’ # u, since
3 3

I

Step 1. We shall need a technical lemma dealing with the dependence of

the mapping y— 4, under uniform convergence of the y’s. Suppose (y") is a
sequence such that

y" e H2(3Q; R ) A L®(3Q;R%),  |v"l.~=R,

and let ye HY?(3Q; R®) n L™(5Q; R?) with ||y||,~= R. Let u" (respectively u)
denote the *“‘small” solution of the Dirichlet problem (1)-(2) corresponding to
the boundary data y" (respectively y). Assume

> E(up).

(51) 17" = Yli=eay»0 and [ly" |20y =C
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so that y"—1v in H'? weakly. Let h"e H'(Q;R>) denote the solution of the
problem

AR"=0 on {,
h"=9"-y on oM.

By the maximum principle we have

(52) HA™ =y = Y™ ~ Y=y > O;
moreover,
(53) h"—0 in H' weakly.

LeMMa 8. Assume (51); then we have

(54) " — B~ ully~> 0

and

(55) E(u)=lim E(u").
Proof: Set

K"={ve H'(Q;R%); v=19" on 3Q and ||v|l,== R},
K={ve H'(Q;R*; v=1y on 4Q and [jvf == R'}.

Since [Jull.== R (see Lemma 2) it follows that u+h" e K" for n large enough;
therefore we have

(56) E(u")SE(u+h") forall n (large enough).
Set v* =u"—h", so that v" =y on 8(); moreover,
fo"le==lu™ =+ | A== R+ A" =
and thus v" € K for all n (large enough). We claim that
(57) E(v")sS E(4)+o(1);
this means that (v") is a minimizing sequence for E on K and, therefore, (see

Lemma 1 and Remark 4), v” > u in H' strongly, i.e., (54) holds.

Proof of (57): Recali that (see (6))
(58) %J’ Vu"P=E(u");

since E(u+ h") remains bounded, it follows from (56) and (58) that {|Vu~|*
remains bounded. Consequently,

(59) lelw=C, o =
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On the other hand, we have

(60) E(u") =J IVu"*+3H J u"- ul Aus,
(61) E(y+h")=J’ [V(u+h")*+3H I (u+h") - (u,+hz)a(u,+hj),

(62) I |v4~|2=J V(0" + Ay = I Vh"[+ j Vo242 J Tor- VA

Let us check that

~ - ~

(63) e (uzauf)=| v (vxavy)+ | 0" (hx Ahj)+o(1);

o v

indeed we have
P o rd

uhe(uiauy)=| v (viavy)+ | v (R AR +I+I
J

with

I=J. v« [(vz ARJ)+(h: Av})]=0(1), by Lemma A.7,

and

I =J h™ -« (uz auj)=o0(1), by (52) and (59).
Combining (56), (60), (61), (62) and (63) we obtain

E(v)=E(u)=2 J V(u—v") - VhA"+3H J (u—v") - hZ ARy +0(1).
Finally we observe that
j V(x—v")Vh" =0,

since u—v" =0 on a2 and Ah" =0; moreover,

J.(y—v") «(hz Ahy)=0(1), by Lemma A.6.
This concludes the proof of (57) (and thus (54)).

Proof of (55): Combining (62) and (63) we have

E(u") =E(v")+J VA "*+3H I v" - (h; ahy)+o(1)
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and thus

E(y")gs(w% J IVh"[2+o(1) = E(u) +0(1)

which implies (55).
We recall a well-known compactness result (see [4], Lemma 3.2, page 103).

LemMMA 9. Let (y") be a sequence in € such that ||y"||;;/2 remains bounded.
Then there exist a subsequence (y™) and some y° € € such that
”7"" - 'Y_olll.”(an) ->0.

The main existence result of Step 1 is the following.
LeMMa 10. There exists some y° e € such that
A(y°) = Inf A(y).
yeé
Proof: Let (y") be a minimizing sequence for A, i.e.,
(64) y"e& and A(y")=1n£ A(y)+o(1).
YE

Let u" denote the small solution of the Dirichlet problem (1)—(2) corresponding
to the boundary data y". We have

%j Vu"P=E(w")=A(y")=C

Since [|u™] == R, it follows that
lu™ler =
and in particular
Iy lsr2=C.
Using Lemma 9 we may assume that

Iy" - ‘YOHL“"’ 0
for some y’¢ €.
We denote by u° the small solution of the Dirichlet problem (1)-(2) corres-
ponding to the boundary data y°. Set

Jo= Inf {J |Vo|*+4H j U @y A <p,},

weHp
Qp)=1

Jo= Inf {I{V¢Iz+4HJy°-¢,A<p,}.

peHy
Qe)=1
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Clearly we have

(65) L=C

(use any fixed ¢ € @ with Q(¢) =1). It follows from Lemma 8 that
(66) E(x®)=E(u")+o(1).

On the other hand, we deduce from Lemma 6 that there exists some ¢"€ H s
such that

(67) . Qlem=1 and J,.=J- |V<p"|2+4HJ u T Ap).

With the notations of Lemma 8 we have
I |V¢"|2+4HJ ueeing;
=J +4H I (®—u"+h") - pinp)—4H I h"-oire)
22,4+ Cl =4+ WLy | o421 m [ 9677

(here we have used Lemma A.3). We deduce from Lemma 8 that
(68) IIV¢"|2+4H J u’- o3 A¢;§JH+O(I)IIV¢"|2~
We recall (see Lemma 3) that there exists some 8 >0 such that
(69) JiV¢"i2+4HI y°'¢:A¢;§8J)V¢"|z for all n
Combining (65), (68) and (69) we see that

(70) J' VerPsC

From the definition of J; we have

(71) JO§J‘ Ve [>+4H J‘ ul i rel.

Relations (68), (70) and (71) together yield

(72) ]o§.’,.+0(1).
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Finally from (66) and (72) it follows that
A(Y)=E(u)+J3/12H* S E(u™) +J2 /12H+ 0(1) = A(¥") + 0(1).
We conclude using (64) that A(y%) =Inf,.¢ A(y).
Step 2. We start with some technical facts.

LemMA 11, Let y€ & and let u be the small solution of the Dirichlet problem
(1)-(2). Then

SupE(u+tw)= A(y) forall veHInL™, v 0.

=0

Proof: Recall that
(73) E(u+1tv) =E(y)+tz[j |Vv|2+4HJ u- v A v,] +4HPQ(v)

(see (14)). Therefore,
SupE(u+tv)=+c0 provided Q(v)=0 and v=0.

=0

We assume now that Q(v) <0; a simple computation leads to

3
, [I|Vu|z+4HIy-v,Av,]
SupElu+w)=E(W)*+ 15 Q)P

3

ZE(w)+ 4

12H2 = A(‘Y)'

The next lemma is a slight generalization of Lemma 11.

LEMMA 12. Let y€ € and let u be the small solution of the Dirichlet problem
(1)=(2). Then

Ccé
SupE(u+e+tw)=A(y) forall peHonL™ with “‘P“H},éﬁ,
&0

forall veH{nL®, v#0,
where C is some universal constant and § >0 appears in Lemma 3.

Proof: We distinguish two cases:
(a) Q(v)=0,
(b) Q(v)<0.
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Case (a). The leading terms in the expansion of E(u+ ¢ +tv) are

%Ht’Q(v)+t2[J VolP+4H j u- v Av,+4H J @ UA v,].

If Q(v)>0, we have Sup,zo E(u+¢+tv)=+00; if Q(v)=0, we still have
Sup,zo E(u+ ¢ + tv) = +co provided ||¢[|x3 = C8/ H, (we use here Lemma A3).

Case (b). We may assume that
(74) ptav#0 forall a=0;
otherwise if ¢ =—aqyv for some ay =0 we have

Sup E(u+ @ +tv) =Sup E(u+(1—ap)v) ZSup E(u+sv) = A(v),
0

=0 = &0

by Lemma 11. For each « 20 we know that

(75) Sup E(u+t(¢+av))z A(Y)

=0

(by Lemma 11 and (74)). Using (73) we see that the supremum in (75) is achieved
when t=t(a) with

+00 if Qe+av)z=0,
He)=3 1 T(e+av)
2H Q¢ +av)

where T(w)={|Vw>+4H [u- w, aw,. Clearly the function a>t(a) is con-
tinuous from [0, +0) into (0, +o]. Moreover, we have

if Qle+av)<O,

(76) lim t(a)=0
a —»4+00
(note that Q(p +av) <0 for a large enough). On the other hand, we have
+c0 it Q(e)=0,
3/2
10) = T(¢) - 58S 1

2H|Q(¢)|~ 2H 7z if Q) <0.
([ter)
(here we have used Lemmas 3 and 4).
In both cases,

77 t(0)=1 provided [olms C%.
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We deduce from (76) and (77) that there exists some @, =0 such that t(a) =1;
using (75) we obtain
E(uto+agn)ZA(y)
and the conclusion of Lemma 12 follows.
We recall now some variational techniques which are well known in the study
of Plateau problems (see [4], pp. 107-115). Consider a family (r,) of perturbations

of the identity depending on a parameter £ =0, ¢ small enough. More precisely,
we assume that

(78) for each £ 20, r, ={1- ) is a smooth diffeomorphism,
. {r,: 302> a0 is non-decreasing and leaves invariant the 3 points e
with 9 =0, ¢ =},

(80) ro=Id and r, — Id uniformly on Q.
We denote by R* the operator

R'w=wor’,

where w is a function, w = > R* (respectively w:aQ - R?). It is well known that
the volume integral Q is invariant under orientation preserving diffeomorphisms,
1e.,

Q(R*w)=Q(w) forall weH'AL™.

The Dirichlet integral is not invariant under diffeomorphism but we shall assume
that

GO T S

which clearly implies

=Ce j [Vw* forall weH'

= Ce|Vu| Vw2 forall v, weH

(82) U VR'v: VR'w—J Vu-Vw
It follows from (80) and (81) that
(83) R*w - wstrongly in H'AL® if weH'(Q)nC(f).

In practice, we obtain a family (r,) in _the following way. Fix a function a €
C™(Q2; R) and consider the mapping g, : (2 -» Q) defined (in complex notations) by

qe(z) =z ei“(".
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If ¢ is small enough, g, verifies (78) and (80). In order to satisfy (79) we introduce
the (unique) homographic transformation p, ={1->{ such that g, ° p, leaves
invariant the 3 points '’ with ¢ =0, % =+3m Then r, = ¢, ° p. satisfies (78),
(79) and (80). Moreover, (81) holds; for the verification of (81) we refer to [4],
page 109, formula (3.16), which gives a precise expansion of [[VR*wP=J|vQ*w}?
as e>0.

LemMma 13. Let y€ €; let u be the small solution of (1), (2) corresponding
to the Dirichlet data y and let & be a large solution of (1), (2)—as given by Lemma
7—corresponding to the same Dirichlet data y. Then

(84) Sup E(R®u+tR*(a—u))= A(‘y)+j |VR'a|2—J. [Val*+ O(e?).

t=0

Proof: We have
E(R*u+tR"*(i—u))

=j [VR G+ (1—)V(R*u—Ra)*+3HQ(u+ t(a—u))

=I IVR®a[*+2(1-1) J VR®i-V(R'u—Rq)+(1-1)? I [V(R®u—Ra)|?

+3HQ(u+t(a—u))

= “ IVR‘aIZ—J lvalz] + U [Val?+2(1-1¢) Jva < V(u—a)

+(1-1)? J |V(y—ﬁ)|z]

+Cl1—tle + C(1-1t)%e +$HQ(u + (i — u))
= U ]VR'alz—J lvalz] +E(u+t(a—u))+ C|1—t|le+ C(1—1)%¢,

where C depends only on ¥ and i (here we use (81) and (82)). On the other
hand, a direct computation (based on (14) and Lemmas 6, 7) shows that

2

E(y+t(ﬁ—y))=A(7)“12]Hz

(t-1)%(2t+1) forall
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Therefore we obtain
E(Ru+1tR*(i—u))

3
= U IVR'ﬁlz—J- lvalz] +A(y)- J (t—1)*+Ce|t—1|+ Ce(t—1)?

12H?
= [J |VR’11|2—J |Vﬁ|2] +A(y)+Ce* for & small enough.
We are now in a position to conclude the proof.

Proof of Theorem 2: Let ¥°c & be such that

A(7°)=}g£ A(y)

177

(see Lemma 10). Let u° (respectively #°) be the small solution (respectively a
large solution) of (1)~(2) corresponding to the Dirichlet data ¥°. We claim that
@° is a solution of the Plateau problem (45)~(46)-(47). We already know that

i° verifies (45) and (47). We shall establish that i° satisfies

(85) J IVR‘ﬁ°|2-I Va"2z - Ce?;

then one can deduce (46) from (85) by a standard argument involving the
expansion of [|VR | (see [4], pages 107-115). Set y* =R“y%, so that y*€ &
and let u® be the small solution of (1)~(2) with Dirichlet data y*. We know (see

(83)) that

y*>y° strongly in H'?(aQ) n L™(aQ)
and

Ru®->u® stronglyin H'(Q)n L*(Q).
It follows from Lemma 8 that
(86) u*->u’ stronglyin HYQ).

We deduce from Lemma 3 that there exists a §,> 0 such that
(87 J|V0|2+4ij°-vav,§80J|Vv|2 for all veHj,
which implies that

(88) I |Vv|2+4HJ‘ Ut v A v,é%SOI|Vv|2 forall veHj
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provided £ is small enough (use (86), (87) and Lemma A.8). Applying
Lemma 12 we see that

Cé
(89) A(y*)=Sup E(u‘+¢+tv) forall ¢eHin L™ with ||<p||H5—<_=2—I_;,
1z0

forall ve Hin L™, v#0.
Choosing, in (89),
¢=R°u’—u* and v=R°(a°—u°

we obtain
(90) A(y*)=Sup E(R°u®+tR*(a°—u?).
=0

On the other hand, we have (by definition of y°)

(91) A(Y) = A(Y)

and, by Lemma 13,

(92) Sup E(R*u*+tR*(a—u") = A(¥)+ I [VR*a% - J V@’ + O(&?).

=0

Combining (90), (91) and (92) we obtain (85).

Appendix

We collect here a number of technical facts. Most of these facts are well
known to the experts and have been used in various forms since the pioneering
work of Wente [16]. As before, ={(x, y) e R?; x>+ y*< 1}.

Throughout this appendix we deal with functions defined on Q with values in
R>, except in Lemmas A.1 and A.2 where the functions are real-valued.

LemMma A.l.  Assumeu,ve H'(Q) and let o € W (Q) be the unique solution

of
-Ap=uv,—u,v, on 1,
(A1) { o
=0 on o).
Then ¢ € C(Q) " H}(Q) and
lellc=+Vell2= ClIVull AV v 2.

Proof: We follow essentially an argument due to Wente [18]. Assume first
that u, ve P(R?) and set

‘l/:E * (uxvy-uyvx)9
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where E(x, y)=(1/27)log (1/r), r=(x¥*+ y»)"?, is the fundamental solution of
—A. Then

(A.2) —A¢ = u,v,— u,,.

In polar coordinates we have

1
U, Uy — Uy, =; (u,v5 = usv,).

Thus
1 { 1
l»0(0)=__ (log')(u,v.,—u.,v,) drd?d
27 ) ) r
-l (10 )[( ). —(uv,) 5] drdd
e g~ |[(uvy),— (uv,) ] dr
=L . (lo )(uv ), drd?d
271" J g ] r
=—1— l(uv‘,) drd?d.
2w )] r
However,
27 2w 1 2w
J‘ uvy did = (u—a)v,dd, where E(r)=——J u(r,o) do
0 Jo 27 Jo
and thus

2m
J uvy dd . =lu—all 2o 2mvslLt02m = IUallLz02mllvell2i0.2m -
0

Finally we obtain

1 o0
l'ﬁ(o)légL lallez0.2mllVsllLz02m — dr

1
r
1 ® 1/2
§Z(J‘ ||uo“1. (021) ) (j‘ ||v‘,||,_(02,,) dr)

1
=—I|V \% .
2“,“ Ul 2@V ol
Similarly we have
1
¢l =my = Py IVull 2@ Voll 2wy

Moreover, from (A.1) and (A.2) we obtain
Aleg—y¢)=0 on
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and, by the maximum principle,

fle — dll=cqy = llo = ¥l =0y = ¥ llL=wan) -
Hence

1
lellL=w) = 2| ¥l L@ = p IVuliz@alIVeliwy
and, multiplying (A.1) through by ¢, we obtain
1
J‘n Vol* S llell=@llV ull 2oV ol = p IV ullZ2@ iV ol 2 2m2) -

In the general case where u, ve H'(), we can find &, & € H'(R?) extending u,
v with

@]ty = Cluliniay, ln@y=Clolaia-
A standard density argument shows that ¢ € C(€}) n H4(Q) and that
lell= + 1V el 2 = CIVE| 202 IV 5l 2%

= Cllull st allvll 4ty -

Finally, we note that ¢ is unchanged if we replace u by u—i, where 4=
(1/1Q)) J u (similarly for v) and then use Poincaré’s inequality.

Remark A.1. Assume u;, v,€ HY(Q), 1=i=k, and let ¢ € W5''(Q) be the
unique solution of

{‘A(P =3 (uzvy—uyv,) on Q,
=0 on Q.
Then ¢ € C({}) " H}(Q).

LEmMa A.2. Assume u, ve H'(Q) and we 2(Q). Then

= ClVull AV oll AV wil.2.

J‘ (u,0,—uyv,)w
a
Proof: Let ¢ be the solution of (A.1). We have

” (U0, — w0, )w) = ” Vo-Vw
4] 1}
= ClVull AV ol AV w2,

=|Vell AV w2

by Lemma A.1.
From now on all functions are defined on Q) with values in R
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LeEMMA A.3. Assume ue H'(Q) and we H) () A L™(Q2). Then

L we(u, Au)| =< CIVwl Vul?:

Proof: When we 2(Q), the conclusion follows from Lemma A.2 used on
each component. In the general case where w e Hy(Q) n L*(Q), we may choose
a sequence w” € 2(Q) such that w” > w in H'(Q), w” > w a.e. and [|w"| == C;
then we use dominated convergence.

LEMMA A.4. Assume
(A.3) ue H'(Q)NL*(Q), ve H'(Q)NL(Q), weH(Q).
In addition assume

either uanv=0 on 3Q or w=0 on Q4
Then

J us[(v A wy))+(w;n v,)]=j v [(un wy) + (W Ayl
0 n

The same conclusion holds if instead of (A.3) we assume

(A.3) ue CY(f)), veHY(Q), weH'(Q).

Proof: (a) Assume we Hi(Q) and let w" e @(Q) be such that w" > w in
H'(Q). We have

(oA wy)+H(wi av)=(vAw)),+(w;Av),
and thus

j u-[(v,Aw;)+(w:Av,>]=—J e (0 AW+, (WEAD)
n n

=j ve[(u A w))+(wiau)l
n

The conclusion follows easily as n > both in case (A.3) and in case (A.3).
(b) Assume u A v=0in 3 and let w" € C™({}) be such that w" > win H'().
We have

I u-[(ven w;)+(w:Av,)]=J v [(u A w))+(winu)l

+J (unv) - [w] cos (v, x)—w} cos (v y)],
an

* Note that (u A v)€ H'(Q) and therefore u A v has a trace on 9.
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where v denotes the outward normal to Q. The conclusion follows as n-,
both under (A.3) and (A.3').

LeEMMA A.5. Assume

(A.4) ue H(Q)NL2(Q), veH(Q)nLZ),
(A.5) urv=0 on 8.
Then

ZI u-(v,Av,)=j v [(ue A vy)+ (v, A uy)l
0 n

The same conclusion holds if instead of (A.4) we assume

(A.4") ueCY(Q)) and ve H'(Q).
Proof: Use Lemma A.4 with w=uv.

LeMMA A.6. Assume (u”) and (v") are sequences such that
u"e H(Q)NLO(Q), v"eHY(Q)ALZ(Q), u"av"=0 on 8Q,
fulw=C, o™ m=C, No*|=-0.

Then
J’ u"- (v; Avy)->0.

a

Proof: By Lemma A.5 we have
1 .

J u" - (v; Avy) =—J' v [(uy Avy)+(vs Auj)]-0.
n 2 [y}
LEmMMA A.7. Assume (u") and (v") are sequences such that
u"e H'(Q) A L>(Q), v e H(Q) N L*(Q),

luer =C, Mo lin=C, Jlo"l=>0,

u" =1y on 3Q for some fixed function ye H'(Q) A L°(Q). Then
w, =J' u - [(ux avy)+(ve auy)]->0.
Q
Proof. Set ¢"=u"—1v so that ¢" e Hg () and |l¢"||;;» = C. We have

w,.=‘[ (¢"+7) ez ty)avy+uia(e]+7,)]
1]
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=L " [(px Avy)+(v] A p))]

+ n<p’"[(7x/~v’,‘)"’(v;' A Yy)]

+ nv'[(wi' Avy)+(v5 A e})]
.

+ . Y [(yav))+ (03 A y)]

o

Using Lemma A.4 we obtain

m,.=2J'n v [(ez A @})+ (v re))+(0% A yy)]

+I Y [(yea 09} + (07 A )]
o
The conclusion follows since lo"[ ;=0 and v" — 0 in H'(Q) weakly.

LEMMmAa A.8. Assume
ue H(Q)AL®(Q)) and ve HYQ);

then

= C|[Vull AV o] 2.

J’ u-(veavy)
a

Proof: Assume first that ve $(Q2). By Lemma A.5 we have

I u.(v,w,)=lj 0+ [ty 1 9,) + (v, A 11)]
o 2 )a

=-;-I ve[(ut0) A(u+v),—u Auy—v A 0)
0N

We deduce from Lemma A.3 that

J s (v A 0)| S CVol (| Vul| 2+ Vol Z2).
0
Replacing v by Av with A ={Vul2/||Vv| .2 we obtain
J’ u-(v av,)| SC|Vul2Vo||i: forall ve2(Q).
[

For the general case where v e Hj () we argue by density.
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LemMa 1.9. Assume ue H'(Q)AL*(Q) and let (v"*) be a sequence such
that v" e Hy(Q) and

v"—v in H}Q) weakly.
Then

J- u-(v;'/\v';)»". u-(veAvy).

a

Q

Proof: _Clearly it suffices to consider the case where v =0. Given £¢>0 we
fix & e C*({) such that |ju—i|;» <e. By Lemma A.8 we have

=Ces.

J u-(via u;)—j - (v;avy)
0 n
On the other hand (see Lemma A.5), we have

J i- (v AU;)=1J v"-[(G, A vy)+(v; A 4,)]->0
a 2

since v" >0 in L*(Q) strongly. Thus

J u:(vyavy)
1)

lim sup =Ce

n—+wx

and hence
‘[ u-(viavy)->0.
0

LemMa A.10. There is a unique continuous map
R:H)(Q)xHY(Q)->R
such that

R(u,u)=j u-(v.av,)) forall ue HYQ)AL™(Q), andforall ve H'(Q).
Q

Moreover,
|R(u, v)| S CIVullVo|2: forall ueHL(Q), and forall ve H'(Q).

Proof: Fix ve H'(Q) and consider the mapping

ueE’Z(Q)»—»J‘ u-(v.Avy)eR.
a
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Using Lemma A.3 we may extend it by continuity to H} and we denote it by
R(u, v). In particular we have

[R(4, )| = C|Vullf|Vo?: forall ueHL(Q) andforall veH'(Q).

On the other hand, in case ue Hy(Q2) n L®(Q) we choose a sequence (u") in
D(Q) such that u" > u in Hy(D), u" > u a.e. and |u"|,== C. We have

R(u", v) =J u"-(vAv,);
n

clearly R(u", v)-> R(u,v), while Ju"-(v,Av,)-»J‘ u-(v,Av,)
n 13

by dominated convergence.
Hence

R(u,v)=J u-(v,av,) forall ue HYQ)NL®(Q) andforall ve H'(Q).
Qi

We check now that R is continuous on H5(Q) X H'(Q). Let u™ - u in Hy(Q),
v" - v in H'(Q) strongly. We have

IR(u", v")—R(u, v)| =|R(u"~u, v")|+|R(u, v") - R(u, v)|
= CIV(u" = )|V oli2+|R(w, 0™) = Ry, v)|.

Given £ >0 we fix ue 2 such that J|u— i), < . Clearly,

J ﬁ-(v:/\v',')-bj u-(v,nv,).
n

Q
Hence
[R(u, v") = R(u, v)|=|R(u— 4, v")|+|R(d, v") — R(&, v)]+|R (i —u, v)|
= Ce+o(1).
Therefore, |R(u", v") — R(x, v)| > 0.

DEefFINITION. We set
Q(v)=R(v,v) for ve H)(Q)
so that Q is continuous on H}(f), |Q(v)|= C||Vv|3: for all ve H}(Q) and

Q(v) =J v-(v,a0,) forall veHy(Q)nL2(Q).
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LemMma A.11. We have
Q(v+w)=Q(v)+Q(w)+3R(v, w)+3R(w,v) forall veHyQ)
and for all we Hy(Q).

Proof: By continuity it suffices to consider the case where v, we 2({1) and
then use Lemma A.S.

LEMMA A.12. Assume ve H(Q) and let (w") be a sequence in Hy(Q) such
that

wh'—0 in HyQ) weakly.
Then
|Q(v+w")=Q(v)— Q(w")|->0.

Proof: In view of Lemma A.11 it suffices to verify that R(v, w,)>0 and
R(w", v) > 0. The second point is clear since for fixed v the mapping w— R(w, v)
is a continuous linear form on H} (Q). We check now that R(v, w,) = 0. Given
e>0 we fix 7€ D(0) such that |v— ||y, <e. We have (by Lemma A.5)

jsww:w;)%j W [(B, A Wh)+(wh A 5,)]>0
a

since w" -0 in L?(Q2) strongly. Finally we have
IR(0, w,) =[R(v—15, w,)|+|R(%, w,)| = Ce +o(1)
and thus R(v, w,)>0.
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