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Abstract. In recent years, the theory of complex fuzzy sets has captured the attention
of many researchers, and research in this area has intensi�ed over the past �ve years. This
paper focuses on developing the algebraic structures pertaining to groups and subgroups for
the complex intuitionistic fuzzy soft set model. Besides examining some of the properties
of these structures, the relationship between these structures and corresponding structures
in fuzzy group theory is also examined.
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1. Introduction

Uncertainty, imprecision, and vagueness are character-
istics that are pervasive in problems occurring in the
real world, and these features cannot be handled e�ec-
tively using mathematical tools that are traditionally
used to deal with uncertainties and vagueness. Some
of the pioneering theories used to deal with these limi-
tations include fuzzy set theory [1], intuitionistic fuzzy
set theory [2], and soft set theory [3]. To overcome the
problems that are inherent in each of these theories,
researchers have chosen to combine these theories to
develop new fuzzy-based hybrid models. The more
well known among these include fuzzy soft sets [4],
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intuitionistic fuzzy soft sets [5], interval-valued fuzzy
soft sets [6], interval-valued intuitionistic fuzzy soft
sets [7], and vague soft sets [8]. Although all of
the above-mentioned theories are able to handle the
uncertainties and fuzziness that exist in the data, all
of these models are not able to handle the periodicity
or seasonality that exists in many real-life problems.
This led to the introduction of the complex fuzzy set
model in [9] and, subsequently, the development and
extension of this theory.

The notion of complex sets stems from the con-
cept of complex numbers, which is a primary con-
cept for solving problems, especially in the �eld of
engineering. Complex sets notion, in practice, has
the ability to solve many problems that cannot be
solved using traditional mathematical concepts such
as number theory, probability theory, and fuzzy set
theory. Examples of these instances include solving the
improper integrals that are used to represent resistance
in electrical engineering and also represent the phase or
wave-like qualities in two-dimensional problems. This
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led to the notion of complex fuzzy sets in [9], which
is an improved and extended version of ordinary fuzzy
sets. Kumar & Bajaj [10], then, proposed the notion
of Complex Intuitionistic Fuzzy Soft Sets (CIFSS)
that combines the characteristics and advantages of
complex sets, soft sets, and intuitionistic fuzzy sets
in a single set. The CIFSS is parametric in nature
and characterized by an amplitude term, which is
equivalent to the membership and non-membership
functions in an ordinary IFSS, and a phase term that
represents the seasonality and/or periodicity of the
elements. The novelty of CIFSS is manifested in
the additional dimension of membership, which is the
phase of the grade of membership. This feature gives
CIFSS the added advantage of being able to represent
data or information occurring repeatedly over a period
of time, which is often the case with problems that are
two-dimensional in nature.

Although research studies pertaining to the the-
ory of CFSs and other complex fuzzy-based models are
still in their infancy, they have been steadily gaining
momentum in recent years. As of now, almost all of
the work done in this area has revolved around the
study of the theoretical properties of CFSs, complex
fuzzy computing and modeling, complex fuzzy logic,
complex fuzzy optimization and decision-making, and
the application of these in solving time-periodic prob-
lems. The phase term in the structure of CFSs is the
key de�ning feature of this model and can be used
to model the seasonality and/or periodicity of time-
periodic phenomena. However, this is not the only
interpretation for the phase term. Instead, the phase
term can be used to represent di�erent aspects of the
information, depending on the context of the scope of
the problem or area that is being studied. In most
of the existing literature, the phase term has been
used to represent the time factor and seasonality of
the problems and has been applied to multi-attribute
decision-making problems in a myriad of areas includ-
ing supplier selection, economics, pattern recognition,
engineering, and arti�cial intelligence.

The phase term can also be used to accurately
represent the cycles present in fuzzy algebraic struc-
tures. In the study of complex fuzzy algebraic theory,
the fuzzy algebraic structures are de�ned in a complex
fuzzy setting; therefore, the structures consist of an
amplitude term and a phase term. The amplitude term
is equivalent to the membership function in ordinary
fuzzy sets, whereas the phase term can be used to aptly
represent the cycles of the algebraic structures. For
example, when dealing with fuzzy alternating groups,
di�erent cycles can be represented aptly and accurately
using the phase term if the fuzzy alternating groups are
de�ned in terms of CFSs or any complex fuzzy-based
models. This would make it easier to identify di�erent
cycles and their corresponding membership functions in

a systematic manner. The desire to utilize this unique
ability of the phase term present in the CFS model and
other complex fuzzy-based models in the study of fuzzy
algebra served as the main motivation to introduce and
develop the theory of complex intuitionistic fuzzy soft
groups in this paper. In this regard, the notion of CIFS
groups and other supporting algebraic structures for
CIFSGs are introduced and developed. The lack of
proper research pertaining to the algebraic theory of
complex fuzzy-based models in the literature served as
another motivation for the study done in this paper.

The rest of this paper is organized as follows.
In Section 2, some important background information
pertaining to the concepts introduced here is recapitu-
lated. In Section 3, the algebraic structures of complex
intuitionistic fuzzy subgroups and complex intuition-
istic fuzzy soft groups are derived, and the properties
and structural characteristics of these algebraic struc-
tures are proposed and, subsequently, veri�ed. The
relationship between the structures introduced here
and corresponding concepts in fuzzy group theory and
classical group theory are also examined and veri�ed in
this section. In Section 4, normal complex intuitionistic
fuzzy soft groups are proposed, and the properties of
this structure are discussed and veri�ed. Concluding
remarks are presented in Section 5, followed by ac-
knowledgments and a list of references.

2. Preliminaries

In this section, we recapitulate some of the important
background information pertaining to the development
of the algebraic structures that will be proposed here.

2.1. Intuitionistic fuzzy sets
An Intuitionistic Fuzzy Set (IFS) [2] is an extension
of the classical fuzzy set and is characterized by a
membership function and a non-membership function,
each of which describes the degree of belongingness
and non-belongingness of the elements with respect to
each attribute. The concept of IFS was then further
extended by incorporating the concept of soft set to
derive the concept of Intuitionistic Fuzzy Soft Set
(IFSS) [5].

In all that follows, U shall be used to denote a
universal set.

De�nition 2.1 [2]. Let A = f(x; �A(x); �A(x)) : x 2
Ug, where both �A and �A are functions from U to
[0; 1], satisfying 0 6 �A(x) + �A(x) 6 1 for all x 2 U .
Then, A is called an intuitionistic fuzzy set on U , where
�A is the membership function of A and �A is the non-
membership function of A.

De�ne �A(x)=1��A��A. Then, for each x0 2 U :

(i) The value of �A(x0) is called the degree of belong-
ingness of x0 to A;
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(ii) The value of �A(x0) is called the degree of non-
belongingness of x0 to A;

(iii) The value of �A(x0) is called the degree of uncer-
tainty or indeterminacy of x0 to A.

Henceforth, A and B shall be used to denote two
intuitionistic fuzzy sets on U , which are de�ned below:

A = f(x; �A(x); �A(x)) : x 2 Ug ;
B = f(x; �B(x); �B(x)) : x 2 Ug :

De�nition 2.2 [2]. The subset and equality of A and
B are de�ned below:

(a) A � B, if �A(x) 6 �B(x) and �A(x) > �B(x) for
all x 2 U ;

(b) A = B, if A � B and B � A.

De�nition 2.3 [2]. The complement, union, and
intersection of A and B are de�ned below:

(a) A = f(x; �A(x); �A(x)) : x 2 Ug;
(b) A [ B = f(x;maxf�A(x); �B(x)g;minf�A(x);

�B(x)g) : x 2 Ug;
(c) A \ B = f(x;minf�A(x); �B(x)g;maxf�A(x);

�B(x)g) : x 2 Ug.
De�nition 2.4 [2]. The set fx 2 U : �A(x) > 0g
is called the support of A and is denoted by SA.
Moreover:

(a) A is said to be null if SA = ;; otherwise, it is said
to be non-null;

(b) A is said to be absolute if SA = U .

2.2. Soft sets and intuitionistic fuzzy soft sets
De�nition 2.5 [3]. Let E be a set of parameters.
Denote }(U) to be the power set of U , and let F be a
function from E to }(U). Then, the set of ordered pairs
f(";F(")) : " 2 E;F(") 2 }(U)g, denoted by (F ; E),
is called a soft set on U . Moreover, for each "0 2 E,
F("0) is called the set of "0-elements of (F ; E), or the
"0-approximate elements of (F ; E).

De�nition 2.6 [11]. Let E be a set of parameters.
Let (F ; E) be a soft set on U . Then, the set f" 2
E : F(") 6= ;g, denoted by S (F ; E), is called the
support of (F ; E). Moreover, (F ; E) is said to be null
if S (F ; E) = ;; otherwise, it is said to be non-null.

De�nition 2.7 [5]. Let E be a set of parameters.
IFS(U) denotes a collection of all intuitionistic fuzzy
sets on U and let F be a function from E to IFS(U).
Then, the set of ordered pairs f(";F(")) : " 2 E;F(") 2
IFS(U)g, denoted by (F ; E), is called an intuitionistic
fuzzy soft set on U .

De�nition 2.8 [5]. Let (F ; E) be an intuitionistic
fuzzy soft set on U . Then, the set f" 2 E : F(") 6= ;g,
denoted by S (F ; E), is called the support of (F ; E).
Moreover, (F ; E) is said to be null if S (F ; E) = ;;
otherwise, it is said to be non-null.

De�nition 2.9 [5]. Let (F1; E1) and (F2; E2) be two
intuitionistic fuzzy soft sets on U . Then, (F1; E1) is an
intuitionistic fuzzy soft subset of (F2; E2), denoted by
(F1; E1)e�(F2; E2), if:

(i) E1 � E2;
(ii) F1(") � F2(") for all " 2 S (F1; E1).

Remark. For each " 2 S (F1; E1), F1(") is non-null.
Thus, if (F1; E1)e�(F2; E2), then F1(") � F2("), and
we also have F2(") being non-null, which implies " 2
S (F2; E2). As a result, the condition S (F1; E1) �
S (F2; E2) follows.

De�nition 2.10 [5]. Let (F1; E1) and (F2; E2) be
two intuitionistic fuzzy soft sets on U . De�ne R =
E1[E2, S = E1\E2; for all " 2 S,H(") = F1(")[F2(")
and K(") = F1(") \ F2(").

H(") =

8><>:F1("); " 2 E1 � S
F2("); " 2 E2 � S
F1(") [ F2("); " 2 S

and:

K(") =

8><>:F1("); " 2 E1 � S
F2("); " 2 E2 � S
F1(") \ F2("); " 2 S

Then:

(i) (H; R) is called the union of (F1; E1) and (F2; E2)
and is denoted by (H; R) = (F1; E1)e[(F2; E2);

(ii) (K; R) is called the intersection of (F1; E1)
and (F2; E2) and is denoted by (K; R) =
(F1; E1)e\(F2; E2);

(iii) (H; S) is called the restricted union of (F1; E1)
and (F2; E2) and is denoted by (H; S) =
(F1; E1)b[(F2; E2);

(iv) (K; S) is called the restricted intersection of
(F1; E1) and (F2; E2) and is denoted by (K; S) =
(F1; E1)b\(F2; E2);

2.3. Complex fuzzy sets
In this section, an overview of the concept of Complex
Fuzzy Sets (CFS) [9] and Complex Intuitionistic Fuzzy
Soft Sets (CIFSS) [10] is presented. Since the introduc-
tion of CFS, attempts to improve and overcome the
drawbacks that are inherent in the CFS model have
led to the introduction of several complex fuzzy-based
hybrid models. We refer the readers to [10,12-18] for
more details on these models.
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De�nition 2.11 [9]. A complex fuzzy set A de�ned
on a universe of discourse U is characterized by a
membership function �A(x) that assigns a complex-
valued grade of membership in A toany element x 2
U . By de�nition, all values of �A(x) lie within the
unit circle on the complex plane and are expressed
by �A(x) = rA(x)ei!A(x), where i =

p�1, rA(x)
and !A(x) are both real-valued, rA(x) 2 [0; 1], and
!A(x) 2 (0; 2�]. A complex fuzzy set A is thus of the
following form:

A = f(x; �A(x)) : x 2 Ug
=
n�
x; rA(x)ei!A(x)

�
: x 2 Uo :

Henceforth, symbol i is used to denote the imaginary
unit

p�1, whereas symbol O1 is used to denote fz 2
C : jzj 6 1g. Up until Section 2.2, we have reached
the concept of Intuitionistic Fuzzy Soft Sets (IFSS),
involving the relations >, 6, max, min on the outcomes
of membership and non-membership functions of the
IFSS model. Such relations are inherently de�ned for
real numbers only. On the other hand, a CFS and all its
generalizations have membership and non-membership
functions that can lie anywhere in O1. We must,
therefore, generalize the concept of >, 6, max, min
for all complex numbers in O1. To achieve these, the
following de�nitions and lemmas are given.

De�nition 2.12. Let � = rei! and � = �ei , with
r; � 2 [0; 1] and !;  2 (0; 2�]. The relations > and 6
are given as follows:

(i) � > �, when both r > � and ! >  , or when
� = 0;

(ii) � 6 �, when both r 6 � and ! 6  , or when
� = 0.

Remark. The usual de�nition of > and 6 at the
real interval [0; 1] is a special case of this de�nition.
However, there remain pairs of elements of O1 such
that neither > nor 6 can be established between them,
such as 0:1e3i and 0:4e2i, because 0:1 < 0:4, but 3 > 2.
Nonetheless, 0 6 � 6 1 still holds for all � 2 O1.

De�nition 2.13. Let S = f�n : n 2 V g � O1. Then,
maxS and minS are as de�ned below:

(i) (a) maxS > �n for all n 2 V ;
(b) If � 2 O1 is such that � > �n for all n 2 V ,

then � > maxS;

(ii) (a) minS 6 �n for all n 2 V ;
(b) If � 2 O1 is such that � 6 �n for all n 2 V ,

then � 6 maxS.

Remark. Unlike subsets of R, maxS and minS may
not be in S, even if S is �nite. For example, if S0 =
f0:1e3i; 0:4e2ig, then maxS0 = 0:4e3i and minS0 =
0:1e2i.

De�nition 2.14. Let � = rei!, with r 2 [0; 1] and
! 2 (0; 2�]. The complement of �, denoted by 1 � �,
is de�ned as 1 � � = (1� r)ei!0 , where:

!0 =

(
2� � !; ! < 2�
!; ! = 2�

Remark. If � 2 [0; 1], then 1 � � = 1� �.

Lemma 2.1. For all � 2 O1, 1 � (1 � �) = �.

Remark. Let � = rei!, with r 2 [0; 1] and ! 2
(0; 2�]. Then, j�j = r.

Lemma 2.2. For all � 2 O1, j1 � �j = 1� j�j.
2.4. Complex intuitionistic fuzzy soft sets
The object of study in this paper is the CIFSS
model [10], which is an adaptation of the original CFS
model [9]. It is a hybrid composed of complex fuzzy
sets, intuitionistic fuzzy sets, and soft sets character-
ized by membership and non-membership functions
that represent the degree of belongingness and non-
belongingness of the elements with respect to the
attributes that are under consideration.

De�nition 2.15 [10]. Let E be a set of parameters,
CIFS(U) be the collection of all complex intuitionistic
fuzzy sets on U , and eF be a function from E to
CIFS(U). Then, the set of ordered pairs f("; eF(")) :
" 2 E; eF(") 2 CIFS(U)g, denoted by ( eF ; E), is called
a Complex Intuitionistic Fuzzy Soft Set (CIFSS) on U .
Note that, for each " 2 E:eF(") =

n�
x; � eF(")(x); � eF(")(x)

�
: x 2 Uo

=
n�
x; r eF(")(x)ei! eF(")(x); � eF(")(x)ei eF(")(x)

�
:x 2 Uo :

In all that follows, let CIFSS(U) denote the collection
of all complex intuitionistic fuzzy soft sets on a universe
U . Furthermore, we write ( eF ; E) 2 CIFSS(U) to
denote that ( eF ; E) is a complex intuitionistic fuzzy soft
set on U .

De�nition 2.16. Let ( eF ; E) 2 CIFSS(U). Then, the
set f" 2 E : eF(") is non-nullg, denoted by S ( eF ; E),
and is called the support of ( eF ; E). Moreover, ( eF ; E)
is said to be null if S ( eF ; E) = ;; otherwise, it is said
to be non-null.
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De�nition 2.17 [10]. Let ( eF1; E1); ( eF2; E2) 2
CIFSS(U). Then, ( eF1; E1) is a complex intuition-
istic fuzzy soft subset of ( eF2; E2), denoted as
( eF1; E1)e�( eF2; E2), if:

(i) E1 � E2;

(ii) eF1(") � eF2(") for all " 2 S ( eF1; E1).

Remark. When ( eF1; E1)e�( eF2; E2) for each " 2
S ( eF1; E1), eF1(") is non-null. Since eF1(") � eF2("),
we also have eF2(") being non-null, which implies " 2
S ( eF2; E2). As a result, the condition S ( eF1; E1) �
S ( eF2; E2) follows.

De�nition 2.18 [10]. Let ( eF ; E) 2 CIFSS(U).
Then, the complement of ( eF ; E), denoted by ( eF ; E)c, is
de�ned as ( eF ; E)c = ( eFc;:E), where eFc is a function
from :E to CIFS(U) given by:eFc(:") =

n�
x; � eF(::")(x); � eF(::")(x)

�
: x 2 Uo

=
n�
x; � eF(")(x); � eF(")(x)

�
: x 2 Uo ;

for all :" 2 :E.

Remark. De�nition 2.18 can be restated as follows.
Let ( eF ; E) 2 CIFSS(U). De�ne eT as a function

from E to CIFS(U), where eT (") is the complement
of eF(") for all " 2 E. Then, (eT ; E) is called the
complement of ( eF ; E) and this can be denoted as
(eT ; E) = ( eF ; E)c.

Note that, for each " 2 E, eT (") = f(x; � eF(")
(x); � eF(")(x)) : x 2 Ug in line with De�nition 2.3.

De�nition 2.19 [10]. Let ( eF1; E1); ( eF2; E2) 2
CIFSS(U). De�ne R = E1[E2, S = E1\E2; and for all
" 2 S, H(") = eF1(")[ eF2(") and K(") = eF1(")\ eF2(").

H(") =

8><>:
eF1("); " 2 E1 � SeF2("); " 2 E2 � SeF1(") [ eF2("); " 2 S

and:

K(") =

8><>:
eF1("); " 2 E1 � SeF2("); " 2 E2 � SeF1(") \ eF2("); " 2 S

Then:

(i) (H; R) is called the union of ( eF1; E1) and ( eF2; E2)
and is denoted by (H; R) = ( eF1; E1)e[( eF2; E2);

(ii) (K; R) is called the intersection of ( eF1; E1)
and ( eF2; E2) and is denoted by (K; R) =
( eF1; E1)e\( eF2; E2);

(iii) (H; S) is called the restricted union of ( eF1; E1)
and ( eF2; E2) and is denoted by (H; S) =
( eF1; E1)b[( eF2; E2);

(iv) (K; S) is called the restricted intersection of
( eF1; E1) and ( eF2; E2) and is denoted by (K; S) =
( eF1; E1)b\( eF2; E2).

We now de�ne two new operations for the CIFSS
model, namely the (�; �)-level set and the characteris-
tic set of a CIFSS, and provide some properties of these
operations. The formal de�nitions of these operations
and the properties of these operations are given below.

De�nition 2.20. Let ( eF ; E) 2 CIFSS(U), and
�; � 2 O1. The (�; �)-level set of ( eF ; E), denoted by
( eF ; E)(�;�), is a soft set on U de�ned below:�eF ; E�

(�;�)
=
n�
"; eF(�;�)(")

�
:"2E; eF(�;�)(")2}(U)

o
;

where eF(�;�)(") = fx 2 U : � eF(")(x) > �; � eF(")(x) 6
�g for all " 2 E.

If � = �, then ( eF ; E)(�;�) is called the �-level set
of ( eF ; E), denoted by ( eF ; E)�, and de�ned as:� eF ; E�

�
=
n�
"; eF�(")

�
: " 2 E; eF�(") 2 }(U)

o
;

where eF�(") = fx 2 U : � eF(")(x) > �; � eF(")(x) 6 �g
for all " 2 E.

Remark. Note that since eF(�;�)(") 2 }(U) for all
" 2 E, we have:� eF ; E�

(�;�)
=
n�
"; eF(�;�)(")

�
: " 2 Eo :

De�nition 2.21. Let ( eF ; E) 2 CIFSS(U) and S be
a non-null proper subset of U . If f� eF(") : " 2 Eg = �0

and f� eF(") : " 2 Eg = �0, in which:

�0(x) =

(
rei!; x 2 S
1 � rei!; x 2 U � S

and:

�0(x) =

(
�ei ; x 2 S
1 � �ei ; x 2 U � S

where ! +  2 f2�; 4�g and rei! > �ei , and then
( eF ; E) is said to be characteristic over S.
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Remark. Consider the particular case where U =
fp; qg and �0(x) = �0(x) = 1

2 for all x 2 U .
Note that rei! = �ei = rei! = �ei = 1

2 2 O1,
and !+ = 4�, r = � , and ! =  . However, S can be
either fpg or fqg. We now have an example of ( eF ; E)
as characteristic over more than one non-null proper
subset of U .

Proposition 2.1. Let ( eF ; E) 2 CIFSS(U), and
( eF ; E) be characteristic over S, in which:

�0(x) =

(
rei!; x 2 S
1 � rei!; x 2 U � S

and:

�0(x) =

(
�ei ; x 2 S
1 � �ei ; x 2 U � S

are the membership and non-membership functions ofeF("), respectively. Then:

(i) r + � = 1;
(ii) rei! > 1 � rei! and �ei 6 1 � �ei .

Proof.

(i) Note that �0 and �0 are the membership and
the non-membership functions of eF("), which is
a complex intuitionistic fuzzy set. Then, the
condition 0 6 j�0(x)j + j�0(x)j 6 1 holds for all
x 2 U . We now have both 0 6 r + � 6 1 and
0 6 j1 � rei!j+ j1 � �ei j 6 1 by De�nition 2.21.
From Lemma 2.2, it follows that:

j1 � rei!j+ j1 � �ei j = (1� r) + (1� �)

=2� (r + �);

causing 0 6 2�(r+�) 6 1; therefore, 1 6 r+� 6 2,
which implies r + � = 1;

(ii) As ( eF ; E) is characteristic over S, !+ 2 f2�; 4�g
and rei! > �ei . Since r > � and r + � = 1, it
follows that r > 1

2 and � 6 1
2 . Thus, we have

1�r 6 1
2 and 1�� > 1

2 . These further imply that
r > 1� r and � 6 1� � .

Now, suppose that ! +  = 2�. Since ! >  , it
follows that ! > � and  6 �. We now have 1�! 6 �
and 1 �  > �, implying that ! > 2� � ! and  6
2� �  . In addition, note that both !;  < 2�. By
De�nition 2.14, we have rei! > (1 � r)ei(2��!) = 1 �
rei! and �ei 6 (1� �)ei(2�� ) = 1 � �ei .

On the other hand, if ! +  = 4�, then ! =
 = 2�. Then, by De�nition 2.14, we have rei! >
(1� r)ei! = 1 � rei! and �ei 6 (1� �)ei = 1 � �ei .
�

3. Complex intuitionistic fuzzy soft groups

The study of soft algebra and fuzzy soft algebra was
initiated by Aktas & Cagman [19] and Aygunoglu &
Aygun [20], respectively. Other researchers such as
Feng et al. [11], Acar et al. [21], Inan and Ozturk [22],
and Ghosh et al. [23] also contributed to the devel-
opment of these areas. Besides, many more advanced
algebraic structures pertaining to groups, rings, and
hemirings of fuzzy soft sets have been introduced in
the literature. Some of the latest works include the
introduction of soft fuzzy rough rings and ideals by
Zhu [24], I-fuzzy soft groups by Vimala et al. [25],
soft union set characterizations of hemirings by Zhan
et al. [26], and neutrosophic normal soft groups by
Bera and Mahapatra [27]. Yamak et al. [28], Leoreanu-
Fotea et al. [29], and Selvachandran and Salleh [30-
34], on the other hand, were responsible for introducing
the algebraic structures of soft hypergroupoids, fuzzy
soft hypergroups as well as soft hyperrings, fuzzy soft
hyperrings, vague soft hypergroups, and hyperrings,
respectively. Khan et al. [35] proposed the notion of
soft interior hyperideals of ordered semihypergroups,
whereas Ma et al. [36] studied the concept of rough
soft hyperrings.

Research in the area of complex fuzzy algebra
is still in its infancy. The study of the complex
fuzzy algebraic theory was initiated by Al-Husban et
al. [37,38] through the introduction of the algebraic
structures of complex fuzzy subrings and complex
fuzzy rings in [37,38], respectively. Al-Husban and
Salleh [39], then, de�ned the notion of a complex
fuzzy group, which is de�ned in a complex fuzzy
space, instead of an ordinary universe of discourse.
Alsarahead and Ahmad [40,41], then, proposed the
structures of complex fuzzy subgroups and complex
fuzzy soft groups in [40,41], respectively. To the best
of our knowledge, these are the only published works
in this area of research at present.

The aim of this section is to establish the novel
concept of Complex Intuitionistic Fuzzy Soft groups
(CIFS-groups) in the Rosenfelds sense (i.e., using
the concept of a fuzzy subgroup of a group de�ned
by Rosenfeld [42]). The properties and structural
characteristics of the proposed algebraic structures are
examined and, subsequently, veri�ed.

Henceforth, symbol G will be used to denote a
group.

De�nition 3.1 [19]. Let (F ; E) be a non-null soft
set on G. Then, (F ; E) is said to be a soft group on G
if F(") 6 G for all " 2 S (F ; E).

Remark. As in classical group theory, a null set
cannot be a group, and a null soft set on G is not a
soft group on G.
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Now, de�ne the notion of a complex intuitionistic
fuzzy subgroup of group G and, then, use it to de�ne
the notion of a complex intuitionistic fuzzy soft group
of a group G.

De�nition 3.2. Let M = (x; �M (x); �M (x)) : x 2 G
be a complex intuitionistic fuzzy set on G. Then, M
is said to be a Complex Intuitionistic Fuzzy subgroup
(CIF-subgroup) of G, if the following conditions hold
for all x; y 2 G:

(i) �M (xy) > minf�M (x); �M (y)g;
(ii) �M (xy) 6 maxf�M (x); �M (y)g;
(iii) �M (x�1) > �M (x);
(iv) �M (x�1) 6 �M (x).

Moreover, let M and N be two complex intuitionistic
fuzzy subgroups of G with M � N . In this case, M
is said to be a complex intuitionistic fuzzy subgroup of
N .

De�nition 3.3. Let ( eF ; E) 2 CIFSS(G). Then,
( eF ; E) is said to be a Complex Intuitionistic Fuzzy
Soft group (CIFS-group) on G if eF(") is a complex
intuitionistic fuzzy subgroup of G for all " 2 S ( eF ; E).

In all that follows, CIFSG(G) denotes the collec-
tion of all complex intuitionistic fuzzy soft groups on a
group G, and ( eF ; E) 2 CIFSG(G) denotes that ( eF ; E)
is a complex intuitionistic fuzzy soft group on G.

Example 3.1. Consider the case where G is the
symmetric group of order 3, that is, G = S3 =
f1; (12); (23); (13); (123); (132)g. Next, consider a set of
parameters E = fa; bg. Herein, �1 = 0:4ei, �2 = 0:4e2i,
�3 = 0:7e2i; as well as �1 = 0:2e4i, �2 = 0:1e4i,
�3 = 0:1e3i are de�ned. Note that �1 6 �2 6 �3 and
�1 > �2 > �3. Now, two CIFSSs of G are considered,
which are de�ned as follows:

(i) ( eF ; E) = f eF(a); eF(b)g, where:

eF(a) =

8>>>><>>>>:
(1;�3; �3); ((12); �1; �1);

((13); �1; �1); ((23); �1; �1);

((123); �2; �2); ((132); �2; �2)

9>>>>=>>>>; ;

and:

eF(b) =

8>>>><>>>>:
(1;�3; �3); ((12); �2; �2);

((13); �1; �1); ((23); �1; �1);

((123); �1; �1); ((132); �1; �1)

9>>>>=>>>>; ;

(ii) (eG; E) = feG(a); eG(b)g, where:

eG(a) = eF(a);

and:

eG(b) =

8>>>><>>>>:
(1;�1; �1); ((12); �2; �2);

((13); �2; �2); ((23); �1; �1);

((123); �1; �1); ((132); �1; �1)

9>>>>=>>>>; :

Accordingly, it can be veri�ed that ( eF ; E) 2
CIFSS(G), whereas (eG; E) =2 CIFSS(G).

De�nition 3.4. Let ( eF1; E1); ( eF2; E2) 2 CIFSS(G).
Then, ( eF1; E1) is said to be a Complex Intuitionistic
Fuzzy Soft subgroup (CIFS-subgroup) of ( eF2; E2) if the
following conditions are satis�ed:

(i) E1 � E2;

(ii) For all " 2 E1, eF1(") is a complex intuitionistic
fuzzy subgroup of ( eF2").

Proposition 3.1. Let ( eF ; E) 2 CIFSS(G) and 1G
be the identity element of G. Then, the following results
hold for all " 2 E and for all x 2 G:

(i) � eF(")(x
�1) = � eF(")(x) and � eF(")(x

�1) = � eF(")(x),

(ii) � eF(")(1G) > � eF(")(x) and � eF(")(1G) 6 � eF(")(x).

Proof. Let " 2 E and x 2 G. By De�nition 3.3, eF(")
is a CIFS-subgroup of G, which enables us to utilize
De�nition 3.2 for proving both (i) and (ii):

(i) Both � eF(")(x
�1) > � eF(")(x) and � eF(")(x

�1) 6
� eF(")(x) directly follow from De�nition 3.2. Since
x 2 G, we also have x�1 2 G. Thus, it follows that:

� eF(")(x) = � eF(")

��
x�1��1

�
> � eF(")

�
x�1� ;

and:

� eF(")(x) = � eF(")

��
x�1��1

�
6 � eF(")

�
x�1� ;

due to De�nition 3.2.

(ii) Note that 1G = xx�1; thus, the conditions
� eF(") (1G) > minf� eF(")(x); � eF(")(x

�1)g, and � eF(")
(1G) 6 maxf� eF(")(x); � eF(")(x

�1)g, follow from
De�nition 3.2. By (i), we have:

min
n
� eF(")(x); � eF(")

�
x�1�o

= min
n
� eF(")M (x); � eF(")(x)

o
= � eF(")(x);
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and:

max
n
� eF(")(x); � eF(")

�
x�1�o

= max
n
� eF(")(x); � eF(")(x)

o
= � eF(")(x):

This completes the proof. �

Proposition 3.2. Let ( eF ; E) 2 CIFSS(G). Then,
( eF ; E) 2 CIFSG(G) if and only if the following condi-
tions are satis�ed for all " 2 E and for all x; y 2 G:

(i) � eF(")(xy
�1) > minf� eF(")(x); � eF(")(y)g;

(ii) � eF(")(xy
�1) 6 maxf� eF(")(x); � eF(")(y)g.

Proof. ()) Suppose that ( eF ; E) 2 CIFSG(G).
Let " 2 E and x; y 2 G. Then, y�1 2 G too, and

based on De�nition 3.3, eF(") is a CIF-subgroup of G.
The conditions:

� eF(")(xy
�1) > minf� eF(")(x); � eF(")(y

�1)g;
and:

� eF(")(xy
�1) 6 maxf� eF(")(x); � eF(")(y

�1)g;
directly follow from De�nition 3.2. Similarly, we have
� eF(")(y

�1) > � eF(")(y) and � eF(")(y
�1) 6 � eF(")(y),

which implies that:

min
n
� eF(")(x); � eF(")

�
y�1�o

> min
n
� eF(")(x); � eF(")(y)

o
;

and:

max
n
� eF(")(x); � eF(")

�
y�1�o

6 max
n
� eF(")(x); � eF(")(y)

o
:

Thus, conditions (i) and (ii) now hold.
(() Suppose that conditions (i) and (ii) are

satis�ed for all " 2 E and for all x; y 2 G.
By considering the case x = y, we have:

� eF(")(1G) = � eF(")

�
yy�1�

> min
n
� eF(")(y); � eF(")(y)

o
= � eF(")(y);

and:

� eF(")(1G) = � eF(")

�
xx�1�

6 max
n
� eF(")(x); � eF(")(x)

o
= � eF(")(x):

These imply that:

� eF(")

�
y�1� = � eF(")

�
1Gy�1�

> min
n
� eF(")(1G); � eF(")(y)

o
= � eF(")(y);

and:

� eF(")

�
y�1� = � eF(")

�
1Gy�1�

6 max
n
� eF(")(1G); � eF(")(y)

o
= � eF(")(y):

By considering y�1 2 G, it follows that:

� eF(")(xy) > min
n
� eF(")(x); � eF(")

�
y�1�o

> min
n
� eF(")(x); � eF(")(y)

o
;

� eF(")(xy) 6 max
n
� eF(")(x); � eF(")

�
y�1�o

6 max
n
� eF(")(x); � eF(")(y)

o
:

Thus, eF(") is proved to be a CIF-subgroup of G for all
" 2 E; hence, it follows that ( eF ; E) 2 CIFSG(G). �

Proposition 3.3. Let ( eF ; E) 2 CIFSG(G), and
�; � 2 O1. If ( eF ; E)(�;�) is non-null, then it is a soft
group of G.

Proof. The proof is straightforward. �

Proposition 3.4. Let S be a non-null subset of G
and ( eF ; E) 2 CIFSS(G), where ( eF ; E) is characteristic
over S. IF ( eF ; E) 2 CIFSG(G), then S is a classical
subgroup of G.

Proof. Let x; y 2 S. Then, by De�nition 2.21,
f� eF(") : " 2 Eg = �0 and f� eF(") : " 2 Eg = �0,
in which there exist �; � 2 O1, with � > �, such
that �0(x) = �0(y) = � and �0(x) = �0(y) = �.
Thus, it follows that x; y 2 eF(�;�)(") for all " 2 E,
which further implies that eF(�;�)(") is not empty for all
" 2 E. Therefore, we have S ( eF ; E)(�;�) = E. Since
S ( eF ; E)(�;�) is not empty, ( eF ; E)(�;�) is non-null, and
( eF ; E)(�;�) is, therefore, a soft group of G.

Take "0 2 E. Based on De�nition 3.1, it follows
that eF(�;�)("0) is a subgroup of G; therefore, we
have xy�1 2 eF(�;�)("0). Then, by De�nition 2.20,
� eF("0)(xy

�1) > � and � eF("0)(xy
�1) 6 �.

Recall that f� eF(") : " 2 Eg = �0 and f� eF(") : " 2
Eg = �0. As a result, �0(xy�1) > � and �0(xy�1) 6 �.



1906 S.G. Quek et al./Scientia Iranica, Transactions E: Industrial Engineering 26 (2019) 1898{1912

We now show that both �0(xy�1) = � and
�0(xy�1) = �, which in turn implies that xy�1 2 S.
We write � = rei! and � = �ei , for some r; � 2
[0; 1] and !;  2 (0; 2�]. Then, ! +  2 f2�; 4�g
follows because of De�nition 2.21. Furthermore, recall
that r + � = 1 (and, thus, j�j + j�j = 1) due to
Proposition 2.1.

(a) By De�nition 2.21, it is either �0(xy�1) = � or
�0(xy�1) = 1 � �. Suppose that �0(xy�1) = 1 �
�; then, 1 � � > �. Since 1 � � = (1 � r)ei!0 >
rei! = �, it follows that j�j = 1� j�j = j1 � �j >
j�j > j�j. This further implies that j1 � �j = j�j
and, therefore, 1� r = r. Therefore, we now have
1 � � = rei!0 , and there are two cases to consider:
(i) If ! = 2�, then !0 = ! and, therefore, 1 �

� = rei!0 = rei! = �. Hence, �0(xy�1) = �
follows;

(ii) If ! < 2�, we have both !0 = (2� � !) and
! +  = 2�. Note that ! >  because of
� > �. As a result, ! > � follows. On the
other hand, since 1 � � = rei(2��!) > rei! =
�, we have (2� � !) > !, which implies that
� > !. Thus, we now have ! = �, resulting
in !0 = � = ! and, therefore, 1 � � = rei!0 =
rei! = �. Hence, �0(xy�1) = � again follows.

(b) Based on De�nition 2.21, it is either �0(xy�1) = �
or �0(xy�1) = 1 � �. Suppose that �0(xy�1) =
1 � �; then, 1 � � 6 �. Since 1 � � = (1 �
�)ei 0 6 �ei = �, it follows that j�j = 1 � j�j =
j1 � �j 6 j�j 6 j�j. This further implies that
j1 � �j = j�j and, therefore, 1 � � = � . Thus, we
now have 1 � � = �ei 0 ; there are two cases to
consider:
(i) If  = 2�, then  0 =  and, therefore, 1 �

� = �ei 0 = �ei = �. Hence, �0(xy�1) = �
follows;

(ii) If  < 2�, we have both  0 = (2� �  ) and
!+ = 2�. Note that ! 6  because of � 6
�. As a result,  6 � follows. On the other
hand, since 1 � � = �ei(2�� ) > �ei = �,
(2�� ) 6  which implies that � 6  . Thus,
we now have  = �, resulting in  0 = � =  
and, therefore, 1 � � = �ei 0 = �ei = �.
Hence, �0(xy�1) = � again follows.

Therefore, we obtain xy�1 2 S whenever x; y 2 S. As
such, it can be concluded that S is a classical subgroup
of G. �

Theorem 3.1. Let S be a non-null subset of G and
( eF ; E) 2 CIFSS(G), where ( eF ; E) is characteristic over
S. Then, ( eF ; E) 2 CIFSG(G) if and only if S is a
classical subgroup of G.

Proof. In Proposition 3.4, it has already been proved

that S is a classical subgroup of G whenever ( eF ; E) 2
CIFSG(G). Therefore, it su�ces to prove that ( eF ; E)
2 CIFSG(G) whenever S is a classical subgroup of G.

Since ( eF ; E) 2 CIFSS(G) and ( eF ; E) is charac-
teristic over S, by De�nition 2.21, we have f� eF(") : " 2
Eg = �0 and f� eF(") : " 2 Eg = �0, in which:

�0(x) =

(
rei!; x 2 S
1 � rei!; x 2 U � S

and:

�0(x) =

(
�ei ; x 2 S
1 � �ei ; x 2 U � S

with ! +  2 f2�; 4�g and rei! > �ei .
Now, let " 2 E and x; y 2 G. Then both:

f� eF(")(x); � eF(")(y); � eF(")(xy
�1)g � frei!; 1 � rei!g

and f� eF(")(x); � eF(")(y); � eF(")(xy
�1)g � f�ei ; 1 �

�ei g. Furthermore, by Proposition 2.1, rei! >
1 � rei! and �ei 6 1 � �ei , which imply that
minfrei!; 1 � rei!g = 1 � rei! and maxf�ei ; 1 �
�ei g = 1 � �ei , respectively.

Without loss of generality, suppose that x 2
G � S. Then, � eF(")(x) = 1 � rei! and � eF(")(x) =
1 � �ei which causes minf� eF(")(x); � eF(")(y)g = 1
� rei! and maxf� eF(")(x); � eF(")(y)g = 1 � �ei ,
respectively. Since � eF(")(xy

�1) 2 frei!; 1 � rei!g and
� eF(")(xy

�1) 2 f�ei ; 1 � �ei g, we conclude that:

� eF(")

�
xy�1� > min

�
rei!; 1 � rei!	 = 1 � rei!

= min
n
� eF(")(x); � eF(")(y)

o
;

and:

� eF(")

�
xy�1� 6 max

�
�ei ; 1 � �ei 	 = 1 � �ei 

= max
n
� eF(")(x); � eF(")(y)

o
:

Now, let x; y 2 S. Since S is a classical subgroup of G,
xy�1 2 S; therefore, it follows that:n

� eF(")(x); � eF(")(y); � eF(")

�
xy�1�o � �rei!	 ;

and:n
� eF(")(x); � eF(")(y); � eF(")

�
xy�1�o � ��ei 	 :

As a result, we have:

� eF(")(xy
�1) = rei! = minf� eF(")(x); � eF(")(y)g;

and:
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� eF(")(xy
�1) = �ei = maxf� eF(")(x); � eF(")(y)g:

Hence, the conditions:

� eF(")

�
xy�1� > min

n
� eF(")(x); � eF(")(y)

o
;

and:

� eF(")

�
xy�1� 6 max

n
� eF(")(x); � eF(")(y)

o
;

are shown to be satis�ed for all " 2 E and x; y 2 G.
This proves that ( eF ; E) 2 CIFSG(G).

Theorem 3.2. Let ( eF ; E) 2 CIFSS(G), where
( eF ; E) is non-null. Then, the following statements are
equivalent:

(i) ( eF ; E) 2 CIFSG(G);

(ii) For all �; � 2 O1, either ( eF ; E)(�;�) is null, or
( eF ; E)(�;�) is a soft group of G.

Proof.

(i))(ii) Take any arbitrary �; � 2 O1. By Proposi-
tion 3.3, if ( eF ; E)(�;�) is non-null, then it is
a soft group of G. Thus, statement (ii) is
proved true;

(ii))(i) Let " 2 E and x; y 2 G, and note that
� eF(")(x); � eF(")(y); � eF(")(x); � eF(")(y) 2 O1.

Take � = minf� eF(")(x); � eF(")(y)g and � = maxf
� eF(")(x); � eF(")(y)g. Then, we have � eF(")(x); � eF(")(y)
> � and � eF(")(x); � eF(")(y) 6 �, which means that
x; y 2 eF(�;�)("). This implies that ( eF ; E)(�;�) is not
null; therefore, it is a soft group of G. Thus, we now
have eF(�;�)(") 6 G and, therefore, xy�1 2 eF(�;�)("),
which in turn implies that:

� eF(")

�
xy�1� > � = min

n
� eF(")(x); � eF(")(y)

o
;

and:

� eF(")

�
xy�1� 6 � = max

n
� eF(")(x); � eF(")(y)

o
:

Hence, by Proposition 3.2, statement (i) now follows.
�

Theorem 3.3. Let ( eF1; E1); ( eF2; E2) 2 CIFSG(G).
Then, ( eF1; E1)e\( eF2; E2) 2 CIFSG(G) too.

Proof. The proof is straightforward by De�ni-
tion 2.19 and is, therefore, omitted. �

Remark. This property also holds for the restricted
intersection operation between CIFSSs.

De�nition 3.5. Let U1, U2 be two universal sets, ' :
U1 ! U2 be a function, E;B be two sets of parameters:

(eT ; E) 2 CIFSS(U1) and ( eF ; B) 2 CIFSS(U2). De�ne
('(eT ); E) 2 CIFSS(U2) and ('�1( eF); B) 2 CIFSS(U1)
as follows:

(i) ('(eT ); E) is such that for all y 2 U2 and " 2 E:

�'(eT )(")(y)

=max
nn
�eT (")(u) :u2U1; '(u)=y

o[f0go ;
and:

�'(eT )(")(y)

=min
nn
�eT (")(u) :u2U1; '(u)=y

o[f1go :
(ii) ('�1( eF); B) is such that, for all x 2 U1 and s 2 B,

�'�1( eF)(s)(x) = � eF(s)('(x)) and �'�1( eF)(s)(x) =
� eF(s)('(x)).

Theorem 3.4. Let ' : G! G0 be a surjective group
homomorphism. Let (eT ; E) 2 CIFSG(G) and ( eF ; B) 2
CIFSG(G0). Then:

(i) ('(eT ); E) 2 CIFSG(G0) provided that:

max
�

min
n
�eT (")(p); �eT (")(q)

o
: p; q 2 G'(p)=x; '(q)=y

�
> min

n
�eT (")(x); �eT (")(y)

o
and:

min
�

max
n
�eT (")(p); �eT (")(q)

o
: p; q 2 G'(p)=x; '(q)=y

�
6 max

n
�eT (")(x); �eT (")(y)

o
;

for all x; y 2 G0;
(ii) ('�1( eF); B) 2 CIFSG(G).

Proof.

(i) Let x; y 2 G0 and " 2 E. Then, by De�ni-
tion 3.5, we have ('(eT ); E) 2 CIFSS(G0), where
�'(eT )(")(xy

�1) = maxff�eT (")(u) : u 2 G;'(u) =
xy�1g [ f0gg. Since ' is surjective, we have:

max
nn

�eT (")(u) : u 2 G;'(u) = xy�1
o [ f0go

= max
n
�eT (")(u) : u 2 G;'(u) = xy�1

o
:

Moreover, since ' is also a homomorphism, we
have:
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max
n
�eT (")(u) : u 2 G;'(u) = xy�1

o
> max

n
�eT (")

�
pq�1� : p; q 2 G;'(p)

= x; '(q) = y
o
:

Since (eT ; E) 2 CIFSG(G), �eT (")(pq
�1) > minf

�eT (")(p); �eT (")(q)g for all p; q 2 G. This implies
that:

max
n
�eT (")

�
pq�1� : p; q2G;'(p)=x; '(q)=y

o
> max

n
min

n
�eT (")(p); �eT (")(q)

o
: p; q

2 G;'(p) = x; '(q) = y
o

> min
n
�eT (")(x); �eT (")(y)

o
:

Similarly, for the non-membership function, we
have the following:

�'(eT )(")(xy
�1)

=min
nn

�eT (")(u) :u2G;'(u)=xy�1
o[f0go

= min
n
�eT (")(u) : u 2 G;'(u) = xy�1

o
6min

n
�eT (")(pq

�1) :p; q2G;'(p)=x; '(q)=y
o

6 min
n

max
n
�eT (")(p); �eT (")(q)

o
: p; q

2 G;'(p) = x; '(q) = y
o

6 max
n
�eT (")(x); �eT (")(y)

o
:

(ii) Let x; y 2 G and s 2 B. Then, ('�1( eF); B) 2
CIFSS(G) by De�nition 3.5. As ( eF ; B) 2
CIFSG(G0), by applying Proposition 3.2, along-
side with De�nition 3.5, we obtain the following:

�'�1( eF)(s)(xy
�1) = � eF(s)

�
'
�
xy�1��

= � eF(s)

�
'(x)('(y))�1�

> min
n
� eF(s)('(x)); � eF(s)('(y))

o
= min

n
�'�1( eF)(s)(x); �'�1( eF)(s)(y)

o
�'�1( eF)(s)(xy

�1) = � eF(s)

�
'
�
xy�1��

= � eF(s)

�
'(x)('(y))�1�

6 max
n
� eF(s)('(x)); � eF(s)('(y))

o
= max

n
�'�1( eF)(s)(x); �'�1( eF)(s)(y)

o
:

This completes the proof. �

4. Normal complex intuitionistic fuzzy soft
groups

In this section, the notion of CIFS-groups is extended
by adding the normality condition to the existing
conditions. Aygunoglu & Aygun [20] introduced
the conditions for normality in the context of fuzzy
soft sets. Here, these conditions are generalized for
normality to be compatible with the CIFSS model;
subsequently, these conditions are used to de�ne the
notion of normal CIFS-groups.

The conditions for intuitionistic fuzzy soft nor-
mality are described in Lemma 4.1, whereas the notion
of a normal CIFS-group is proposed in De�nition 4.1.

Lemma 4.1. Let ( eF ; E) 2 CIFSG(G) and " 2 E.
Then, the following statements are equivalent:

(i) � eF(")(xyx
�1) > � eF(")(y) and � eF(")(xyx

�1) 6
� eF(")(y), for all x; y 2 G;

(ii) � eF(")(xyx
�1) = � eF(")(y) and � eF(")(xyx

�1) =
� eF(")(y), for all x; y 2 G;

(iii) � eF(")(xy) = � eF(")(yx) and � eF(")(xy) = � eF(")(yx),
for all x; y 2 G.

Proof.

(i))(ii) Let x; y 2 G. Then, y = x�1(xyx�1)(x�1)�1,
and both x�1; xyx�1 2 G. As a result, we
have:

� eF(")(y) = � eF(")(x
�1(xyx�1)(x�1)�1)

> � eF(")(xyx
�1);

and:

� eF(")(y) = � eF(")(x
�1(xyx�1)(x�1)�1)

6 � eF(")(xyx
�1):

Hence, statement (ii) now follows;
(ii))(iii) Let x; y 2 G. Then, xy = x(yx)x�1 and yx 2

G. As a result, we now have:

� eF(")(xy) = � eF(")(x(yx)x�1) = � eF(")(yx);

and:
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� eF(")(xy) = � eF(")(x(yx)x�1) = � eF(")(yx):

Hence, statement (iii) now follows;

(iii))(i) Let x; y 2 G. Then (x�1)(xy) = y, where
xy; x�1 2 G. Thus, we obtain:

� eF(")((xy)x�1)=� eF(")(x
�1(xy))=� eF(")(y);

and:

� eF(")((xy)x�1)=� eF(")(x
�1(xy))=� eF(")(y):

Hence, statement (i) now follows. �

De�nition 4.1. Let ( eF ; E) 2 CIFSG(G). Then
( eF ; E) is said to be a Normal Complex Intuitionistic
Fuzzy Soft Group on G (( eF ; E) 2 NCIFSG(G)), if the
conditions:

� eF(")(xyx
�1) > � eF(")(y);

and:

� eF(")(xyx
�1) 6 � eF(")(y);

are satis�ed for all " 2 E and x; y 2 G.

Example 4.1. Consider the example described in
Example 3.1. We de�ne an ( eH; E) 2 CIFSS(G) as
( eH; E) = f eH(a); eH(b)g, where eH(a) = eF(a), and eF(a)
is as de�ned in Example 3.1. and:

eH(b) =

8>>>><>>>>:
(1; �3; �3);((12); �1; �1); ((13); �1; �1);

((23); �1; �1); ((123); �1; �1);

((132); �1; �1)

9>>>>=>>>>; :

Then, ( eH; E) 2 CIFSG(G) and it also satis�es the
conditions for normality described in De�nition 4.1.
Hence, ( eH; E) 2 NCIFSG(G).

Theorem 4.1. Let ( eF ; E) 2 CIFSG(G). Then, the
following statements are equivalent:

(i) ( eF ; E) 2 NCIFSG(G);

(ii) � eF(")(xyx
�1) > � eF(")(y) and � eF(")(xyx

�1) 6
� eF(")(y), for all " 2 E and x; y 2 G;

(iii) � eF(")(xyx
�1) = � eF(")(y) and � eF(")(xyx

�1) =
� eF(")(y), for all " 2 E and x; y 2 G;

(iv) � eF(")(xy) = � eF(")(yx) and � eF(")(xy) =
� eF(")(yx), for all " 2 E and x; y 2 G.

Proof.

(i))(ii) This follows directly from De�nition 4.1;
(ii) ) (iii) and (iii) ) (iv) These follow directly from

Lemma 4.1;
(iv))(i) Statement (ii) follows directly from Def-

inition 4.1 and, therefore, statement (i)
follows by Lemma 4.1. �

Proposition 4.1. Let ( eF ; E) 2 NCIFSG(G) and
; � D � E. Then ( eF ; D) 2 NCIFSG(G) as well.

Proof. Let x; y 2 G. By Theorem 4.1, it follows that
� eF(")(xyx

�1) > � eF(")(y) and � eF(")(xyx
�1) 6 � eF(")(y),

for all " 2 E. Since ; � D � E, such statement holds
for all " 2 D too. This completes the proof. �

Theorem 4.2. Let:
( eF1; E1); ( eF2; E2) 2 NCIFSG(G):

Then:
( eF1; E1)e\( eF2; E2) 2 NCIFSG(G):

Proof. The proof is straightforward by De�ni-
tions 2.14 and 4.1. �

Remark. Similar to Theorem 3.3, this property also
holds for the restricted intersection operation between
CIFSSs.

Theorem 4.3. Let ' : G ! G0 be a surjective
group homomorphism. Let (eT ; E) 2 NCIFSG(G) and
( eF ; B) 2 NCIFSG(G0). Then:

(i) ('(eT ); E) 2 NCIFSG(G0) provided that:

max
�

min
n
�eT (")(p); �eT (")(q)

o
: p; q 2 G'(p)=x; '(q)=y

�
> min

n
�eT (")(x); �eT (")(y)

o
;

and:

min
�

max
n
�eT (")(p); �eT (")(q)

o
: p; q 2 G'(p)=x; '(q)=y

�
6 max

n
�eT (")(x); �eT (")(y)

o
for all x; y 2 G0,

(ii) ('�1( eF); B) 2 NCIFSG(G).

Proof. The proof can be derived from Theorem 3.4,
Lemma 4.1, and De�nition 4.1. �

5. Conclusion

This paper presented the initial theory of complex
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fuzzy algebra. We de�ned and developed the algebraic
structures pertaining to groups and subgroups for the
Complex Intuitionistic Fuzzy Soft Set (CIFSS) model.
The notions of CIF-subgroups, CIFS-groups, and nor-
mal CIFS-groups were introduced. The fundamental
properties and structural characteristics of these al-
gebraic structures were then examined and veri�ed.
All of these were accomplished by carefully de�ning
some important concepts pertaining to the structure
of the CIFSS model and also carefully generalizing
some of the well-known operations and relations that
exist between intuitionistic fuzzy soft sets to be made
compatible with the structure of the CIFSS model, in
which the membership and non-membership functions
are de�ned in terms of complex numbers. Furthermore,
in this paper, we contextualized the phase term by
using it to represent the di�erent cycles of alternating
groups, thereby proposing a new way of interpreting
the phase term.

6. Further direction of this work

Our research in this area is still ongoing. We
are currently in the midst of extending the CIFSG
structure introduced in this paper to introduce more
advanced algebraic structures, such as CIFS cyclic
groups, abelian groups, dihedral groups, symmetric
groups, and alternating groups, using the concepts and
theory developed in this paper. The work presented in
this paper can also be used as a basis to develop other
algebraic theories of complex fuzzy based models.
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