
Information and Software Technology 56 (2014) 1183–1199
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
On strategies for testing software product lines: A systematic literature
review
http://dx.doi.org/10.1016/j.infsof.2014.04.002
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +55 71 9183 9735.
E-mail addresses: ivanmachado@dcc.ufba.br (I.d.C. Machado), johnmc@cs.clemson.edu (J.D. McGregor), ycc@cin.ufpe.br (Y.C. Cavalcanti), esa@dcc.ufba.br

Almeida).
Ivan do Carmo Machado a,⇑, John D. McGregor b, Yguaratã Cerqueira Cavalcanti c,
Eduardo Santana de Almeida a

a Computer Science Department, Federal University of Bahia, UFBA, Salvador, Brazil
b School of Computing, Clemson University, Clemson, SC, USA
c Federal Data Processing Service, SERPRO, Florianópolis, Brazil

a r t i c l e i n f o a b s t r a c t
Article history:
Received 4 December 2012
Received in revised form 5 March 2014
Accepted 2 April 2014
Available online 13 April 2014

Keywords:
Software product lines
Software testing
Software quality
Systematic literature review
Context: Testing plays an important role in the quality assurance process for software product line engi-
neering. There are many opportunities for economies of scope and scale in the testing activities, but tech-
niques that can take advantage of these opportunities are still needed.
Objective: The objective of this study is to identify testing strategies that have the potential to achieve
these economies, and to provide a synthesis of available research on SPL testing strategies, to be applied
towards reaching higher defect detection rates and reduced quality assurance effort.
Method: We performed a literature review of two hundred seventy-six studies published from the year
1998 up to the 1st semester of 2013. We used several filters to focus the review on the most relevant
studies and we give detailed analyses of the core set of studies.
Results: The analysis of the reported strategies comprised two fundamental aspects for software product
line testing: the selection of products for testing, and the actual test of products. Our findings indicate
that the literature offers a large number of techniques to cope with such aspects. However, there is a lack
of reports on realistic industrial experiences, which limits the inferences that can be drawn.
Conclusion: This study showed a number of leveraged strategies that can support both the selection of
products, and the actual testing of products. Future research should also benefit from the problems
and advantages identified in this study.

� 2014 Elsevier B.V. All rights reserved.
Contents
1. Introduction . 1184
2. The review methodology . 1185
2.1. Research questions . 1186
2.2. Identification of relevant literature . 1187
2.2.1. Phase 1: analysis of existing reviews . 1187
2.2.2. Phase 2: gathering recent publications . 1187
2.2.3. Primary study selection strategy . 1187
2.3. Data extraction . 1188
2.4. Quality assessment . 1188
3. Results. 1189

3.1. Characteristics of the studies . 1189
3.2. Strategies to handle the selection of products to test (RQ1) . 1189
3.3. Strategies to handle the test of end-product functionalities (RQ2) . 1191
3.4. Strength of evidence in support of available strategies (RQ3) . 1191
(E.S. de

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.04.002&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.04.002
mailto:ivanmachado@dcc.ufba.br
mailto:johnmc@cs.clemson.edu
mailto:ycc@cin.ufpe.br
mailto:esa@dcc.ufba.br
http://dx.doi.org/10.1016/j.infsof.2014.04.002
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

1184 I.d.C. Machado et al. / Information and Software Technology 56 (2014) 1183–1199
3.5. Implications for research and practice (RQ4) . 1192

4. Analysis and discussion . 1194
4.1. Limitations of this study . 1196

5. Related work. 1197
6. Concluding remarks . 1197

Acknowledgements . 1197
Appendix A. Venues manually searched. 1197
Appendix B. Primary studies . 1199
References . 1199
Test Cases

Test Case :

Products Requirements

SPL Variability Models (ready for testing)

...

Prod-A

REQ REQ

Prod-n

REQ REQ

...

Test Case :

TC-2TC-1 TC-n

...
TC-3TC-1 TC-n

...

...

Analysis of SPL Variability Models

...

Fig. 1. SPL Testing interest: selection of product instances to test.
1. Introduction

Software product line (SPL) engineering has proved to be an
efficient and effective strategy to achieve economies of scale and
scope, by exploiting commonalities and managing variation among
products [1]. It is based on the idea that assets, built on the basis of
a common design, can be configured and composed in different
ways, enabling the creation of a diversity of products, in a short-
ened building period. Such a software development paradigm leads
companies to achieve remarkable results such as substantial cost
savings, reduction of time to market, and large productivity gains
[2].

The systematic variability management is a fundamental char-
acteristic of a SPL. This practice is what mainly distinguishes this
from other software development strategies such as single system
development. Variation points identify places in design and code
where individual variants can be inserted. When assets designed
with variation points are composed, with specific variants selected
for use at each variation point, a large number of products can be
built leading to what is often referred to as a combinatorial explo-
sion in the number of variant products [3]. Therefore, managing
variations at different levels of abstraction and across all generic
development assets might be a cumbersome and complex task [4].

In a SPL, features are basic building blocks for specifying prod-
ucts. They can be defined as the distinctive characteristics of a sys-
tem [5]. Feature modeling has become the de facto standard
variability model, as it provides a compact representation of all
products of a SPL in terms of their features [6]. Feature models rep-
resent the products in a SPL by means of dependencies among fea-
tures and interrelationships among variation points [7].

Guaranteeing that every feature in a SPL will work as expected,
and ensuring that combinations of features will work in each prod-
uct is often problematic because of the high costs involved.
Exhaustive testing is seldom feasible in any development process.
This is particularly infeasible in SPL due to the variability in fea-
tures, due to the many input variables.

A scoping review, carried out as background to the present
review [8], revealed two independent but complementary interests
a SPL testing strategy should handle, as follows:

� Firstly, it is necessary to check the feature interaction coverage,
i.e., when checking the properties or configurations of a SPL,
every feature combination have to be consistent with the spec-
ification and must not violate the stated constraints.
� Secondly, it is necessary to check the set of correctness proper-

ties of each product. Given that a built software artifact can be
used by a range of products, an uncovered defect may be prop-
agated to the many products that include it.

The first interest considers testing generation as a systematic
selection of a representative set of product instances, comprising
a subset of all possible configurations in a SPL. The main idea is
to reduce the testing space. Fig. 1 illustrates the first interest. It
shows that test cases refer to product configurations, i.e., a test
case is responsible for testing whether an instance of the feature
model (or whatever represents the variability in a SPL) is valid or
not.

There are two main inputs to consider for this interest: a set of
product requirements and the quality of the variability model
under test. The role of requirements is to establish what function-
alities a product instance should encompass. Regarding the quality
of the variability model, through the analysis of its consistency, we
could ensure that the produced models are complete and correct,
in the sense that there are no conflicting restrictions between fea-
tures, and that all the important distinctions and differences in a
domain are covered by the model.

The second interest focuses on performing testing on end-prod-
uct functionalities. Such an interest deals with the systematic reuse
of test assets and results, as a means to reduce the overall effort,
and avoid retesting of already tested features, while being effective
at revealing faults. Test assets are designed to test the functional-
ities of features that will compose the products.

SPL Assets (Requirements, Design, etc)

REQ

......
REQ

SPL Variability Models

...

SPL Testing Assets

TC

TS

TC
TC

...

TC

Domain Engineering

Application Engineering

TC

Prod-n

REQ REQ

Prod-A

REQ REQ

TC TC TC

...

TC TC TC

...

...

Bound AssetsProduct Instances

Fig. 2. SPL Testing interest: actual test of products.

I.d.C. Machado et al. / Information and Software Technology 56 (2014) 1183–1199 1185
Fig. 2 illustrates how this interest works. It comprises the two
SPL processes [9]: domain engineering and application engineering.
The former defines variable test assets (test cases, test scenarios,
etc.), taking as input the variability defined for the SPL. In the later,
when a product variant is instantiated, the variable assets are
bound, according to the requirements expected for that particular
product instance. Existing testing assets are also bound, as it is
encouraged the reuse of test assets between product instances.

In both interests, a particular problem is the number of test
inputs to consider, which can increase exponentially with the
number of features that a SPL comprises [10]. Designing and/or
selecting an effective1 set of test cases, considering the likely
amount of test inputs, play an important role in SPL testing.

Considering the importance of knowing which test case design
and selection techniques the current SPL practice adopts, a detailed
insight from the point of view of the interests aforementioned
would be valuable. To this end, we conducted a systematic literature
review, aiming at identifying, assessing, and interpreting available
research evidence in the SPL testing research field, for the purpose
of clear categorization. We investigated how studies address the
1 By effective we mean the defect revealing ability of a test suite [11].
generation of representative sets of products, from domain models,
in order to sketch which techniques could be used and what their
properties are. Yet, we investigated the existing support for testing
end-product functions by taking advantage of the specific features
of a product line, i.e., commonality and variability. We intend to
collect evidence about current research that suggests implications
for practice, and to identify open problems and areas that need
attention.

In comparison with a previous review [8], this paper has been
substantially extended, in terms of methodological details and
findings, as follows: first, Section 2 is broadened and considerably
detailed to provide a much fuller account of the research method
employed. The results in Section 3 are considerably expanded with
new material related to the studies that were included and with
respect to the topics that were covered. Additionally, there is a dis-
cussion on appraisal methods employed in the studies, and their
implications. Finally, Section 4 is expanded with a deeper discus-
sion of the findings, their implications for research, and opportuni-
ties for future research.

The remainder of this article is structured as follows. Section 2
describes the research method used in this review. Section 3 pre-
sents the results of the review. The main findings are discussed
in Section 4, together with the threats to the validity of this study.
Section 5 discusses related work. Section 6 concludes the paper
and presents directions for future investigation.
2. The review methodology

A systematic literature review (SLR) is a rigorous, systematic,
and transparent method to identify, appraise, and synthesize all
available research relevant to a particular research question, or
topic area, or phenomenon of interest, which may represent the
best available evidence on a subject [12]. A SLR may serve as cen-
tral link between evidence and decision making. They provide the
decision-maker with best available evidence. This evidence, in
combination with field expertise and the customer-related values,
characteristics, and circumstances, are necessary ingredients for
making good decisions.

The importance of SLR for software engineering has been
addressed by a reasonable amount of studies, as deeply discussed
in [12–15]. Kitchenham and Charters [16] describe a set of reasons
for performing a SLR, as follows:

� to review the existing evidence concerning a treatment or
technology,
� to identify gaps in the existing research, which may indicate

areas for further investigation, and
� to provide a context/framework in order to properly position

new research activities.

In this study, we followed Kitchenham’s guidelines for perform-
ing SLRs in software engineering [16]. This SLR included the follow-
ing steps: development of a review protocol, conducting the review,
analyzing the results, reporting the results and discussing the findings.
The review protocol specifies all steps performed during the review
and increases its rigor, transparency, and repeatability, while
establishing a means to reduce risk of bias. The protocol includes:
(i) the strategy employed to define the research questions, based
upon an explicit research objective; (ii) the systematic searching
methods that reduce the risk of selective sampling of studies,
which may support preconceived conclusions, thus reducing risk
of bias, and (iii) the method employed to evaluate available
information.

Hence, the methodology used in this SLR included formulation
of research questions to attain the objective, as next detailed in

Table 1
Research questions as structured by the PICOC criteria.

Population Software product line testing research
Intervention Approaches, i.e., methods, strategies, techniques, and so on,

that support testing in SPL engineering
Comparison N/A
Outcome The effectiveness of the testing approaches
Context Within the domain of SPL engineering, with a focus on testing

approaches

1186 I.d.C. Machado et al. / Information and Software Technology 56 (2014) 1183–1199
Section 2.1; identification of sources from where research papers
were to be extracted, described in Section 2.2; and also deciding
the search criteria and principles for selecting and assessing the
relevant studies, described in Section 2.3.
2.1. Research questions

We followed the Population, Intervention, Comparison, Outcome
and Context (PICOC) structure to define our research questions, as
defined by Petticrew and Roberts [17]. Such a structure enlists
the attributes to consider when defining the research question of
a SLR. Considering that in this review we do not sketch any com-
parison of interventions, the attribute comparison is not applicable.
Table 1 shows the PICOC structure.

Considering that the two SPL testing interests discussed in the
introduction section, hold different overarching goals, studies from
both categories should be analyzed in a proper manner. Hence, our
SLR aims to answer the following research questions:
Filtered studies
(125)

Included Studies
(49)

2.3 Manual Search
(7)

3.2

3.3

3.1
Potentially

Relevant: merge
(165)

Phase 2

Literature Reviews
(64)

Phase 1

LR-1
(45)

LR-2
(64)

LR-3
(23)

1.1 Retrieved
(132)

Duplicated studies
(49)

Out of Scope
[Title + Abstract]

(19)

Phase 3

1.2

Fig. 3. Study select
� RQ1. What SPL testing strategies are available to handle the
selection of products to test?
� RQ2. What SPL testing strategies are available to deal with the

test of end-product functionalities?
� RQ3. What is the strength of the evidence in support of these

proposed SPL testing strategies?
� RQ4. What are the implications of these findings for the soft-

ware industry and the research community?

We defined the RQ1 to get an in-depth view on how existing SPL
testing techniques cope with the selection of product instances for
testing (first SPL testing interest). It considers the configuration of
features as the main input for the design of test cases.

In addition, we are interested in the SPL strategies used to han-
dle the actual testing of SPL assets (second SPL testing interest). Such
an issue, covered by RQ2, is aimed at carrying out tests of end-
product functions. It considers core assets as the input for design-
ing the test cases. Core assets are those assets that form the basis
for the SPL. They often include, but are not limited to, the architec-
ture, domain models, requirements statements, reusable software
components, etc.

Within the set of strategies identified in RQ1 and RQ2, we
observed whether tool support was available to practitioners.

Furthermore, RQ3 helps researchers assess the quality of exist-
ing research. The results of this question are critical for researchers
to identify new topics for empirical studies, and for practitioners to
assess the maturity of a proposed strategy. RQ4 help us outline
directions for future research and identify areas that need work
in order to make strategies more applicable in industrial practice.
Inclusion/Exclusion
Criteria

(39)

Duplicated studies
(35)

Out of Scope
[Title + Abstract]

(279)

Literature Reviews
(6)

ACM DL
(84)

IEEE Xplore
(133)

SpringerLink
(74)

ScienceDirect
(116)

Retrieved
(407)

Automated
Search

(87)

2.1

2.2

Full-text reading/
Critical appraisal

(76)

Updating List
(101)

Source of Studies

Discarding Rationale

Process Step

LEGEND

Number of discarded
studies

(x)

Stage

Snowballing
(7)

2.4

Duplicated study
(1)

2.5

ion procedure.

I.d.C. Machado et al. / Information and Software Technology 56 (2014) 1183–1199 1187
2.2. Identification of relevant literature

The process of gathering and selecting relevant studies involved
three phases, as Fig. 3 shows. Our initial set of candidate papers
was provided by previously published literature reviews on SPL
testing [18–20]. Therefore, the first phase consisted of collecting
the primary studies listed in each of these literature reviews, which
include research papers published up to the year 2009. For the sec-
ond phase, we performed a search for studies published from the
year 2009 up to the year 2013. The third phase consisted of the
screening process to exclude studies that are not relevant to
answer the research questions.

Along this section, we expand on each gathering phase, and
detail the study selection procedure.

2.2.1. Phase 1: analysis of existing reviews
In earlier research, our team reported on a systematic mapping

study of SPL testing [18]. That is, most authors in this present paper
are also authors of such a literature review.

By analyzing existing research, we could leverage state-of-the-
art practices in the field, identifying clusters of studies that could
support a fuller review. The systematic mapping study investigated
45 unique publications. The findings were in accordance with an
analogous study [19], which also systematically mapped out the
existing literature on SPL testing, in order to identify useful
approaches and needs for future research. This latter analyzed a
set of 64 unique publications. In both reviews, the overall focus
was to enlighten researchers and practitioners with a broad picture
of research and practice in the field of SPL testing, without provid-
ing in-depth analysis of any nature whatsoever.

A third study was performed with similar goals [20]. In a sys-
tematic literature review, a group of reseachers analyzed 23

unique publications. Unlike the two previously mentioned map-
ping studies, published as journal papers, this review was pub-
lished as a conference paper, which, due to space constraints,
might have limited the treatment of some required details, as a
reader could expect.

These three studies complement each other in terms of research
questions investigated. All of them have in common their overall
goal, namely to provide an overview of the SPL testing field, pointing
out achievements, opportunities, problems and available resources.

Thus, the initial set of primary studies for this SLR was gathered
from these literature reviews, respectively LR-1 [18], LR-2 [19], and
LR-3 [20]. Given that they followed systematic processes of gather-
ing, selecting, and assessing the studies [16,21], we acknowledge
that they are a representative sampling of all primary studies in
the SPL testing field, for studies published up to early 2009.

Within the reviews, we identified 132 potentially relevant
papers, illustrated as stage (1.1) in Fig. 3. We read the titles and
abstracts of the publications, to identify and exclude those which
bear no relation to our investigation, i.e., studies that are not suit-
able to answer the RQs. This stage of screening was carried out by
two independent reviewers (ICM and YCC) who screened and then
met to compare their results. Any disagreement or uncertainty was
discussed and arbitrated by a third independent reviewer (JdM).

Besides, as some studies were included in more than one liter-
ature review, we removed the overlap. In the end of such a screen-
ing, we had a set of 64 studies, illustrated as stage (1.2).

2.2.2. Phase 2: gathering recent publications
The second phase of the search process consisted of an update on

the list of primary studies. We analyzed the literature published
between 2009 and 2013.2
2 It is worth mentioning that we considered papers published in the year 2013 that
were available by the time we performed the searches (early of September).
We performed an automated search in the following search
engines and indexing systems: ScienceDirect, ACM Digital Library,
IEEE Xplore, and SpringerLink. These are very useful online
databases, since they index IEEE, ACM, Springer and Elsevier pub-
lications which, together, provide many of the leading publications
in the Software Engineering field. Therefore, they are likely to
include major SPL testing-related venues. Here we use the word
venue as a generic name for journals or conferences (including
workshops).

From the stated research questions, and known terms of the SPL
testing domain, we identified the keywords to use in the search
process. We applied variants of the terms ‘‘software product lines’’,
‘‘software product family3’’, ‘‘software testing’’ and ‘‘testing tech-
niques’’, to compose the search query. This was coded to fit the syn-
tax requirements and capability of the search engines of each data
source used. Table 2 lists the search strings applied in each search
engine. The Table also shows the number of results retrieved from
each.

From this task, we obtained a set of 407 publications, depicted
as stage (2.1) in Fig. 3. As we considered studies retrieved from dif-
ferent search engines, 35 articles were excluded because they were
duplicates, i.e., retrieved in more than one search engine. This
search also retrieved related work, such as the literature reviews
analyzed, and similar studies. We discarded these 6 publications,
since they have been considered in other respects in this article.

Next task included reading the title and abstract of each remain-
ing paper, similarly as in the previous phase. In this sense, a set of
279 articles were found to be irrelevant, as they did not consider
testing from a SPL standpoint, but instead addressed issues from
single-system software development. In the end, we had a pool
of 87 publications from the automated search, depicted as stage
(2.2) in Fig. 3.

Upon completion of the automated search, we carried out a
manual search aiming at increasing coverage and quality [22,23],
considering the same time span as in the automated search. Some
important journals and conference proceedings were individually
searched. Table A.10 in Appendix A lists the venues, and their usual
abbreviations. They are clearly representative of the Software
Engineering field. Such a claim is grounded in observations in
related work, and also in discussions with colleagues. The task
retrieved an additional 7 publications, as shown as stage (2.3) in
Fig. 3.

In addition, reference lists of all identified publications were
manually scanned, in order to identify missing relevant papers. This
is the process called snowballing [24]. This task resulted in an addi-
tional 7 articles, as Fig. 3 illustrates in stage (2.4). With such a small
number of additional papers, we are convinced that we have a rep-
resentative sampling and, furthermore, that the pool of the papers
we have are relevant from a SPL engineering perspective. At the
end of Phase 2, we revealed a universe of 101 new publications.
2.2.3. Primary study selection strategy
By merging the results from Phases 1 and 2, the list of poten-

tially relevant studies was then composed of 165 publications.
Stage (3.1) in Fig. 3 shows such an amount. We identified one
duplicate, a study listed in LR-1 that was also retrieved in the auto-
mated search. This was due to the year 2009 was considered in
both LR-1 and in the automated search phase.

We established a set of inclusion and exclusion criteria to assess
each potential primary study. They were applied to the titles and
abstracts of identified articles.

The criteria were specified based on the analysis scope of found
papers to guarantee that only works really related to the context of
3 Software product family is a commonly used synonym for SPL [1].

Table 2
Detailed search strings applied in the automated search engines.

Engine URL Search string Resultsa

Raw Refined

IEEE Xplore http://
ieeexplore.ieee.org

(((software product line) OR software product family) AND test) 158 133

Springer http://
www.springerlink.com

‘software product line’ AND ‘(test, OR testing)’ within 2009–2013 77 74

ScienceDirect http://
www.sciencedirect.com

pub-date >2008 ((‘‘software product line’’ OR ‘‘software product lines’’ OR ‘‘software product family’’) AND
(‘‘testing’’ OR ‘‘test’’)) AND LIMIT-TO (topics, ‘‘software, product line’’) AND LIMIT-TO (yearnav, ‘‘2013,
2012, 2011, 2010, 2009’’)[All Sources (Computer Science)]

129 116

ACM DL http://dl.acm.org (‘‘software product lines test’’) OR (‘‘software product line test’’) OR (‘‘software product line testing’’) OR
(‘‘software product lines testing’’) OR (‘‘software product family testing’’) OR (‘‘software product family
test’’)

92 84

a Raw results means the whole set of entries listed by the search engines. Inasmuch as not only research papers are retrieved, but also cover letters, foreword, preface, guest
introductions, etc., hence, we filtered out those entries, and list the total number of research papers retrieved in the column refined results.

1188 I.d.C. Machado et al. / Information and Software Technology 56 (2014) 1183–1199
testing approaches4 for SPL should be selected as the primary stud-
ies of this SLR.

This task aims to ensure that relevant studies are included and
no study is excluded without thorough evaluation. At the outset,
studies are only excluded if they clearly meet one or more of the
exclusion criteria.

To be included in the review, studies had to present an
approach to cope with SPL testing and at least one empirical eval-
uation to demonstrate its feasibility. It is worth mentioning that
only studies produced in English were included. Table 3 presents
the exclusion criteria.

At the end of the screening process, we ended up with a pool of
125 studies, to be subject of full-text reading, depicted as stage
(3.2) in Fig. 3.

2.3. Data extraction

After using the criteria to select relevant papers, a quality
assessment was performed on the remaining papers. We under-
took a comprehensive analysis of the 125 filtered studies, to collect
data necessary to answer the research questions, and to measure
their quality.

The data were extracted and stored in a spreadsheet after read-
ing each paper using a data extraction form. The form included the
following attributes: title, authors, corresponding email address,
year of publication, source of publication, publication type,
notes, and an additional set of attributes, as listed below:

� Research result. We analyzed the outcomes of each primary
study, and classified their main findings according to the types
of software engineering research results [25]: procedure or tech-
nique, qualitative or descriptive model, empirical model, analytic
model, notation or tool, specific solution, answer or judgment, or
report.
� Evidence gathering method. We evaluated the evidence level

(Lev1–6) reported in the study. Such assessment might lead
researchers to identify new topics for empirical studies, and
for practitioners to assess the maturity of a particular approach.
Kitchenham et al. classified six levels of study design, based on
the evidence hierarchy suggested from medical research [16].
On the basis of such a proposal, Alves et al. [26] described a tai-
lored classification that could be fully applicable to the interest
of this review. The classification includes the following hierar-
chy (from weakest to strongest):
4 We herein generalize the term approaches to include not only actual approaches
but also strategies, methods, techniques, and processes, given that authors sometimes
interchangeably use those terms to define their proposal.
1. No evidence.
2. Evidence obtained from demonstration or working out toy

examples.
3. Evidence obtained from expert opinions or observations.
4. Evidence obtained from academic studies.
5. Evidence obtained from industrial studies.
6. Evidence obtained from industrial practice.

� Industry. In case a study was evaluated in industry settings,
matching evidence levels 5 and/or 6 above, this attribute was
used to identify the application domain in which authors car-
ried out the evaluation.
� SPL testing interest. As a means to analyze techniques match-

ing either one of the SPL testing interests, earlier discussed in
this article, we decide to verify which interest is the main con-
cern in each analyzed primary study.

The procedure of reading and completing the extraction form
for each paper was again conducted by two independent reviewers
(ICM and YCC), and any discrepancies were resolved by calling
upon a third reviewer (JdM).
2.4. Quality assessment

We also quality appraised each study remained for data extrac-
tion, using a set of quality criteria. We extracted the criteria mainly
from the questionnaire for quality assessment proposed by Dybå
and Dingsøyr [27], which is based on principles of good practice
for conducting empirical research in Software Engineering [16],
and also on the Critical Appraisal Skills Programme (CASP).5

The questionnaire used to critically appraise the quality of the
selected studies contained 11 closed-questions, as listed in Table 4.
Taken together, the criteria provided a measure of the extent to
which we could be confident that findings of a particular study
could provide the review with a valuable contribution. The criteria
covered the four main issues pertaining to quality that need to be
considered when appraising the studies identified in the review
[27]:

� Reporting. Reporting of the study’s rationale, aims, and context.
� Rigor. Has a thorough and appropriate approach been applied

to key research methods in the study?
� Credibility. Are the findings well-presented and meaningful?
� Relevance. How useful are the findings to the software industry

and the research community?
5 http://www.casp-uk.net/.

http://ieeexplore.ieee.org
http://ieeexplore.ieee.org
http://www.springerlink.com
http://www.springerlink.com
http://www.sciencedirect.com
http://www.sciencedirect.com
http://dl.acm.org
http://www.casp-uk.net/

Table 3
Exclusion criteria and list of excluded studies.

Exclusion criteria Rationale

Related work Secondary studies were not considered in this review. Such a kind of study were analyzed as related work
Abstracts We excluded prefaces, editorials, and summaries of tutorials, panels and poster sessions
Doctoral

symposium
Studies published in doctoral symposia were also discarded. To the best of our knowledge, this kind of study do not bring information other than a
status report on the doctoral thesis work, and usually make reference to more complete studies, published elsewhere

Extended studies When several duplicated articles of a study exist in different versions that appear as books, journal papers, conference and workshop papers, we
include only the most complete version of the study and exclude the others

Position papers Position or philosophical papers, i.e., papers only presenting an anecdotal evidence of the SPL testing field, were excluded from the literature
review, but some of the position papers showing future directions are mentioned in the conclusion and future work section

Comparative
papers

Comparative papers, with no additional contribution, but rather only analyzing existing literature, that eventually were included in our primary
studies list

Out of scope By analyzing the introduction section of a study, it is possible to figure out what the topic under investigation is about. Based on this statement we
discarded studies which did not deal directly with testing, but instead that consider SPL in a general viewpoint

I.d.C. Machado et al. / Information and Software Technology 56 (2014) 1183–1199 1189
From the criteria obtained from [27], we only made a few
changes to customize the criteria for relevance assessment, as a
means to evaluate the relevance of the study for the software
industry at large and the research community.

Each of the 11 criteria was answered with either ‘‘yes’’ (1) or
‘‘no’’ (0). Then, a quality assessment score was given to a study
by summing up the scores for all the questions for a study. The
resulting total quality score for each study ranged from 0 (very
poor) to 11 (very good).

We used quality assessment criteria for both synthesis purposes
and filtering papers. For the second matter, the first criterion was
used as the minimum quality threshold of the review to exclude
non-empirical research papers. Hence, 76 papers were excluded
as part of this screening process.

Upon completion of the quality evaluation assessment, the set
of selected primary studies was composed of 49 studies, illustrated
as stage (3.3) in Fig. 3. See Table B.11 in Appendix B for a list of
selected primary studies.
3. Results

We used the extracted data to answer our research questions. In
this section, we initially give an overview of the selected studies
with respect to their publication venues. Then, we answer each
research question, based on the extracted information.

3.1. Characteristics of the studies

Table 5 shows the temporal distribution of the selected 49 pri-
mary studies, encompassing the years 2003 through 2013. The
table also shows the distribution of the studies based on their pub-
lication channels, along with the number of studies from each
source: workshops, conferences, journals, and the gray literature.6

We may observe that only 3 out of 49 studies were found in journals,
whereas most was published in conferences.

Such a distribution gives us the initial impression that most rel-
evant studies in the field were only found in recent publications,
i.e., as of the year 2010. Regardless the number of studies removed
from our final list for matching any of the exclusion criteria, we
should recall that we only included studies which presented any
kind of empirical evaluation. Thus, we may notice a trend curve
in the data, showing an increasing attention on the use of scientif-
ically rigorous evaluation methods as a means to assessing and
making explicit the value of the proposed approaches for the SPL
testing field.

The 49 selected primary studies were gathered from 20 confer-
ences, 6 workshops, 3 journals, 3 book chapters, and 1 technical
6 Gray literature herein includes technical reports and book chapters.
report. As expected, the greater amount of studies in a single vehi-
cle was found in the SPLC7 (10 studies), considered the most repre-
sentative conference for the SPL engineering area, followed by the
SPLiT8 (4 studies), a workshop dedicated to the SPL testing topic,
co-located with the SPLC. The workshop was held yearly for five
years, between 2004 and 2008.

During the data extraction process, we collected the SPL testing
interest each selected primary study addressed. As the both inter-
ests are not mutually exclusive, i.e., a comprehensive process for
testing SPL might encompass both of them, in this analysis we
could group the studies according to their central proposal. The
histogram in Fig. 4 shows the number of studies addressing each
interest by publication year, where Interest 1 means selection of
product instances to test, and the Interest 2 means the actual test
of products, as earlier discussed in this article. Table 6 shows what
studies addressed what SPL testing interest.

This histogram shows a recent growing interest in the proposals
towards overcoming the first SPL testing interest. Despite the
observed trend, we can state that both interests holds the same
importance. Regarding the second one, much has been proposed
along the years, so as to enable a detailed analysis of existing prac-
tices and describe the inherent challenges.

Besides, despite of the importance of both interests working
together in a same technique, only in the year 2013 we found stud-
ies dealing with both. Although this is a rather small number of
studies, it might be some indication that the research community
has realized the benefits of proposing approaches which encom-
pass both interests.

3.2. Strategies to handle the selection of products to test (RQ1)

Variability in features may lead to diverse products composition
possibilities [28,29]. Although it is necessary to test and analyze all
possible feature combinations, this is unrealistic for variability
models of a reasonable size. In this sense, the core problem of
the first SPL testing interest is to reduce the set of possibilities
to a reasonable and representative set of product configurations.
While keeping a small sample is critical to limit the effort neces-
sary for testing each selected configuration [30], this is particularly
a combinatorial problem, that should be handled accordingly.

Optimization techniques may be used to prune redundant con-
figurations that need not be explored. From the set of 24 selected
studies that cope with this SPL testing interest, we found combina-
torial interaction testing (CIT) to be the de facto standard to handle
test selection in such an interest. CIT enables the selection of a
small subset of products where the interaction faults are most
likely to occur. This is a cost-effective strategy for SPL engineering,
7 SPLC stands for International Software Product Line Conference.
8 SPLiT stands for International Workshop on Software Product Line Testing.

Table 4
Quality assessment questions.

No. Question Issue

QC1. Is the paper based on research and it is not merely a ‘‘lessons learned’’ report based on expert opinion? Reporting
QC2. Is there a clear statement of the aims of the research? Reporting
QC3. Is there an adequate description of the context in which the research was carried out? Reporting
QC4. Was the research design appropriate to address the aims of the research? Rigor
QC5. Was there a control group with which to compare treatments? Rigor
QC6. Was the data collected in a way that addressed the research issue? Rigor
QC7. Was the data analysis sufficiently rigorous? Rigor
QC8. Has the relationship between researcher and participants been considered to an adequate degree? Credibility
QC9. Is there a clear statement of findings? Credibility
QC10. Is the study value for research or practice? Relevance
QC11. Are there any practitioner-based guidelines? Relevance

Table 5
Summary of selected primary studies by publication type and publication year.

Venue 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Total

Workshop 1 – 1 3 2 – – 1 – – 3 11
Conference – 1 1 1 – 2 1 8 7 4 6 31
Journal – – – – – 1 – 1 – 1 – 3
Gray literature – – – 3 – 1 – – – – – 4

Total 1 1 2 7 2 4 1 10 7 5 9 49

Fig. 4. Distribution of studies by SPL testing interest and publication year.

1190 I.d.C. Machado et al. / Information and Software Technology 56 (2014) 1183–1199
aimed at reducing the test set by selecting the possible combina-
tions of features that will be present in most products. That is,
the representative subset of sample products under test. Within
the selected studies, this selection is usually based on combinatorial
criteria on feature models, coverage criteria on variable test models,
and coverage criteria on feature interactions.

A prevalence of formal approches could be noted in those
selected studies. For instance, t-wise feature coverage has been
applied in conjunction with SAT solvers, by dividing the set of
clauses, transformed from a feature diagram, into solvable subsets.
The idea is to automatically generate the test products from a fea-
ture diagram that satisfy the t-wise SPL test adequacy criteria. Alloy
can be applied to generate the test cases, and works by capturing
all dependencies between features in a feature diagram as well
as the interactions that should be covered by the test cases. Some
algorithms to translate feature diagrams into Alloy specifications
have been proposed, e.g., FeatureDiagram2Alloy – P31 –, Kesit –
P36. Alloy specifications are used to examine the semantics of fea-
tures and their interactions, as a means to cope with the problem
of scale.

A number of studies – P05, P18, P19, P20, P23, P24, P28, P29,
P30, P38, P043, P044 (50% out of the total) – applied pairwise test-
ing, a specialized notion of t-wise coverage, as the main heuristic
both for designing and selecting test cases. Pairwise has proven
to be most effective when solving problems of large complexity.
The underlying assumption is that, by describing the input model
as a combination of two features each other, obeying the con-
straints between them, it might be easier to find inconsistencies,
rather than trying to combine all features at once. Establishing
pairwise as a test case reduction heuristic may lead to a practical
means of sampling all the relevant combination in features models.
As a test minimization technique, it aims at identifying and elimi-
nating redundant test cases from test suites in order to reduce the
total number of test cases to execute, thereby improving the effi-
ciency of testing.

Pairwise feature interactions serve as an input for the test gener-
ation based on constraint programming, i.e., a paradigm which
enables the design of a tailor-made pairwise constraint. This para-
digm is well suited for optimization problems such as those related
to the minimization of the size of test sets. It maps a feature model
into a finite domain constraint model.

All selected studies provide either a process or an algorithmic
implementation aimed at improving test coverage while reducing
the overall test effort. However, the observed heterogeneity pre-
vents us from sketching any kind of categorization.

We analyzed the tool support in the proposed approaches. In 17

studies, which represents 71% out of the total amount of selected
studies handling this first SPL testing interest, we found a descrip-
tive information about automated tool support. Among them, there
are 8 studies – P23, P24, P30, P33, P36, P37, P42, P44 – which pro-
vide details about the proposed tool support, in terms of their goals
and implemented requirements. They are aimed at analyzing fea-
ture models and automatically generate a set of test configurations
that cover interactions (usually pairwise) between features in a fea-
ture model. Furthermore, the study P42 handles test case selection.
In all of these studies it is possible to check the algorithm that
implement the approach.

While this was expected to be a relevant aspect to enhance
transparency in their proposals, an important downside might be
observed, that is, from such a set, only 2 studies make reader aware

Table 6
Selected studies vs. SPL testing interest addressed.

Interest Studies Count

1 [P05], [P15], [P18], [P19], [P20], [P21], [P23], [P24], [P25], [P26], [P28], [P29], [P30], [P31], [P33], [P36], [P37], [P38], [P40], [P43], [P44], [P47] 22
2 [P01], [P02], [P03], [P04], [P06], [P07], [P08], [P09], [P10], [P11], [P12], [P13], [P14], [P16], [P17], [P22], [P27], [P32], [P34], [P35], [P39], [P41], [P45],

[P48], [P49]
25

Both [P42], [P46] 2

I.d.C. Machado et al. / Information and Software Technology 56 (2014) 1183–1199 1191
of how the tool could be obtained. The main reason is that, the pro-
posed algorithms and tools are often developed solely to demon-
strate a particular nuance of a methodology, mostly within the
context of a research group.

Furthermore, in the remaining studies, authors from P05, P20,
P25, P28, P29, P31, and P38 claimed that their approaches should
be implemented in a tool support; however, they only described
the algorithms associated to the proposal. No other information
could be found. In one study – P18 –, carried out as an industrial
case study, authors stated that an in-house tool was used to sup-
port their proposal. For this reason, they could not provide readers
with further details. In P21, authors stated that their proposal
works in conjunction with a tool that was developed beforehand,
and discussed in a preceding publication.

3.3. Strategies to handle the test of end-product functionalities (RQ2)

Whereby research on configuration-aware software testing for
SPL focuses on the combinatorial problems during interaction test-
ing by detecting valid and invalid combinations of configuration
parameters, the SPL testing interest covered in the RQ2 reveals
testing practices and problems for the actual testing of
functionalities.

The leveraged techniques work either by performing testing at
the domain engineering, or testing the concrete assets at application
engineering. Domain engineering is by definition the SPL process
where commonality and variability analysis take place, leading to
the definition of reusable test assets, i.e., by representing the points
in which assets will accommodate different properties, that will be
further exploited during application engineering.

As software reuse plays a fundamental role in SPL engineering,
we analyzed the selected primary studies in the light of a set of
characteristics a technique should cover. Table 7 presents the char-
acteristics, and next Table 8 sketches a relationship between the
selected studies and the addressed characteristics.

Regarding the characteristic variability, we were interested in
understanding which, and how the approaches define test cases
(TC) and test scenarios (TS) by expressing variability from domain
models in such artifacts. We hypothesize that, for each feature,
there should be test cases present in the test suite to validate
whether the feature has been correctly implemented. We identi-
fied 12 out of 27 studies (44%) proposing strategies that use the
variability models to define reusable test assets.

In the following characteristic, asset reuse, the focus was to
understand whether the study explicitly provided a technique to
reuse test cases (TC), test scenarios (TS), test results (TR), and test
data (TD), either between products, or from a core asset base. This
was found to be the most common characteristic within the
selected studies. The amount of 23 out of 27 studies (85%) made
any contribution to this group of characteristics, with a larger
amount dedicated to establish strategies to handle TC and TS reuse.

There is an initiative to improve test asset reuse by focusing on
the differences between product instances, in a so-called delta-
oriented testing technique, based on regression testing principles
and delta modeling concepts. The idea behind the technique is that
a SPL can be represented by a core module and a set of delta
modules. While the core modules will provide an implementation
of a valid product, the delta modules specify changes to be applied
to the core module to implement further products, by adding,
modifying and removing code [31]. In this effect, test models for
a new product instance will be generated by considering the deltas
between this and the preceding product instances. That is, testing
will focus on the deltas, what enables an increased reuse of test
assets and test results between products. The tecnhique was inves-
tigated in both P41 and P48.

Next, we analyzed how the studies addressed the automated
generation of test cases (TC), test case selection (TCS), and test
inputs (TI). A small number of studies provided any description
on how they could automate such important tasks so as to make
SPL testing a feasible practical approach. Only 5 out of 27 studies
(19%) explicitly provide tool support to handle the listed character-
istics, as summarized in Table 8. They are: P01, P11, P27, P42, P49.
In all of them, the studies only state they developed a tool, but they
are not transparent in providing a means to make their tool avail-
able. Another 5 studies – P03, P12, P14, P17, P22 – point out the
need of tool support to handle those characteristics. However,
instead of proposing new tools, they use already established ones.

In another 7 studies (26%) – P06, P08, P32, P35, P39, P41, P45 –
authors state their proposed approaches are supported by auto-
mated tools. However, they do not provide readers with detailed
information about the tool, neither make clear whether the tool
was built for the particular purpose of the investigation.

The last characteristic observed in which SPL process the
approaches fit, domain engineering, application engineering, or
both. Testing the common aspects early in domain engineering is
essential, since an undetected error in the ‘‘framework’’ assets
can be spread to all instances depending on those assets. However,
as it is unfeasible to test all possible input values for the domain
assets, since different variants might depend on specific applica-
tions, testing must also be performed in application engineering.
Besides testing input data not covered yet in domain engineering,
even the common assets previously tested might not work prop-
erly when bound in a specific product instance. Thus, some of
domain assets should be retested again in application engineering,
considering the particular behavior of a product instance. In this
effect, we found 10 approaches working at domain engineering,
while 9 approaches handle testing at application engineering.
Finally, we found 8 approaches that can be applied in both SPL
processes.
3.4. Strength of evidence in support of available strategies (RQ3)

According to the evidence evaluation scheme described in Sec-
tion 2.3, Table 9 presents detailed results on how much evidence is
available to adopt the proposed approaches. Fig. 5 provide a sum-
marized data representation of the results.

Data showed that all selected studies present any kind of preli-
minary evaluation. However, this apparent benefit is diminished
when we consider the low level of evidence of the proposed
approaches. The most commonly employed evaluation methods
are academic studies (Lev4) – 53% out of the total, followed by dem-
onstration (Lev2) – 33%. Only a very small number of the
approaches claimed to be evaluated in industry – 14%, what lead

Table 7
Leveraged SPL testing characteristics.

Characteristic Rationale

Variability SPL test assets are explicitly designed and modeled using variation points, that express their behavioral diversity
Test reuse Test assets from domain engineering may be systematically reused in application engineering, as assets from a product instance may serve as input for

a next instance
Automation Employing an automated strategy for generating SPL test assets leads to significant effort reduction
SPL process Tests can be performed in domain engineering, application engineering, or both

Table 8
Relationship between selected studies and characteristics

Study Variability Asset reuse Automated gen. Process

TC TS TC TS TR TD TC TCS TI DE AE Both

P01 � � � � � � � � � � � �
P02 � � � � � � � � � � � �
P03 � � � � � � � � � � � �
P04 � � � � � � � � � � � �
P06 � � � � � � � � � � � �
P07 � � � � � � � � � � � �
P08 � � � � � � � � � � � �
P09 � � � � � � � � � � � �
P10 � � � � � � � � � � � �
P11 � � � � � � � � � � � �
P12 � � � � � � � � � � � �
P13 � � � � � � � � � � � �
P14 � � � � � � � � � � � �
P16 � � � � � � � � � � � �
P17 � � � � � � � � � � � �
P22 � � � � � � � � � � � �
P27 � � � � � � � � � � � �
P32 � � � � � � � � � � � �
P34 � � � � � � � � � � � �
P35 � � � � � � � � � � � �
P39 � � � � � � � � � � � �
P41 � � � � � � � � � � � �
P42 � � � � � � � � � � � �
P45 � � � � � � � � � � � �
P46 � � � � � � � � � � � �
P48 � � � � � � � � � � � �
P49 � � � � � � � � � � � �

Legend: [�] Characteristic clearly addressed by the study, [�] the study encourages the use of such characteristic, but do not provide any implementation (e.g., it states an
external tool is used, but no detail is provided), [�] characteristic not mentioned in the study, [TC] test case, [TI] test input, [TD] test data, [TCS] test case selection, [TR] test
result, [DE] Domain Engineering, [AE] Application Engineering.

1192 I.d.C. Machado et al. / Information and Software Technology 56 (2014) 1183–1199
us to consider an overall low-level of evidence in the SPL testing
field.

The scenario is even more worrying as data from the SPL testing
interests are considered in a separate way. Figs. 6 and 7 show data
from interests 1 and 2, respectively. Only one study from the first
interest set was evaluated in industry settings. We found no stud-
ies with both academic and industrial evidence.

It is worth mentioning that we found no studies applying more
than one evaluation method. The combination of empirical evalu-
ation methods to assess the feasibility of an approach is desirable
because it increases external validity for findings.

3.5. Implications for research and practice (RQ4)

To determine the implications of the approaches found in the
literature for both research and practice, we have to initially figure
out the limitations of selected studies. We used the quality criteria
established for appraising the selected studies, presented in
Table 4, to determine the strength of inferences.

The criteria were categorized in four groups of issues: reporting
(QC1–3), rigor (QC4–7), credibility (QC8–9), and relevance (QC10–
11).

Quality assessment results show that most of the selected stud-
ies perform failry well on reporting issues. We recall that, as the
first criterion (QC1) was used as the basis for either including or
excluding a study, meaning that all selected studies are based on
research and not merely a ‘‘lessons learned’’ report based on expert
opinion. The same positive result could be observed in the QC2,
while roughly 98% of the selected studies clearly state the aims
of the research. While excelent results were obtained in the first
two criteria, only 71% of the studies provided an adequate descrip-
tion of the context in which the research was carried out. That is,
authors provide readers with limited information on the applica-
tion domain(s) in which the approach was used, or the software
process(es) involved, or even the skills of involved engineers, nec-
essary to seamlessly use the proposed approach, etc.

The rigor was analyzed in terms of four criteria. In roughly 49%
of the studies, the research design is appropriate to address the
aims of the research. In only 29% out of the total, there was a con-
trol group with which to compare treatments, so as to enable
authors to compare the outcomes of the proposed approach
against an external entity. In 43% of the studies, data was collected
in a way that addressed the research issue, and in only 16% of the
studies, data analysis was sufficiently rigorous. The results point
out to a frustrating lack of rigor, as it is likely that some of the find-
ings from the selected studies are probably accurate and usefully
generalisable. However, the apparent shortcomings in methodol-
ogy seriously limit their usefulness.

Table 9
Evidence level of selected studies.

Study Lev1 Lev2 Lev3 Lev4 Lev5 Lev6

P01 �
P02 �
P03 �
P04 �
P05 �
P06 �
P07 �
P08 �
P09 �
P10 �
P11 �
P12 �
P13 �
P14 �
P15 �
P16 �
P17 �
P18 �
P19 �
P20 �
P21 �
P22 �
P23 �
P24 �
P25 �
P26 �
P27 �
P28 �
P29 �
P30 �
P31 �
P32 �
P33 �
P34 �
P35 �
P36 �
P37 �
P38 �
P39 �
P40 �
P41 �
P42 �
P43 �
P44 �
P45 �
P46 �
P47 �
P48 �
P49 �

Fig. 5. Evidence available to adopt the proposed methods – all studies.

Fig. 6. Evidence available to adopt the proposed methods – interest 1.

Fig. 7. Evidence available to adopt the proposed methods – interest 2.

I.d.C. Machado et al. / Information and Software Technology 56 (2014) 1183–1199 1193
In relation to credibility of the study methods, for ensuring that
the findings are valid and meaningful, we found a rather small
amount of studies (12%), in which the relationship between
researcher and participants was considered in the evaluation.
However, for 65% of the studies the findings were explicitly stated,
in which they discussed the results on the basis of the research
questions, and an adequate discussion of the evidence, thus includ-
ing the limitation of the approach, was provided.

In terms of relevance for both research and practice, we consid-
ered that 84% of the selected studies as valuable, for they describe
the strengths and weaknesses of their proposal, and point out open
rooms for improvement. As opposed to this high value, only 16% of
the studies present any practitioner-based guidelines, which acts
as a barrier to providing optimal usage of the proposed approach,
especially for industry-scale application.

To understand the impact of the selected studies for the
research field, we gathered their citation counts. A simple way to
gather the citations is using the Google Scholar Citations.9 While
9 http://scholar.google.com.
some academics have been very critical of Google Scholar [32], as
it may lack the quality control needed for its use as a bibliometric
tool, other authors [33] argue that its coverage is very comprehen-
sive, and as such it might provide a less biased comparison across
disciplines than tools such as Web of Science or Scopus. These pres-
ent an insufficient coverage, as they barely include conferences and/
or workshops, but are focused on journals instead. Besides, Google
Scholar has displayed considerable stability over time, increasing
the coverage for disciplines that have traditionally been poorly
represented.

Figs. 8 and 9 shows scatterplots for the citation counts and qual-
ity scores, respectively for the set of included studies published

http://scholar.google.com

Fig. 8. Studies published between 2003 and 2009.

1194 I.d.C. Machado et al. / Information and Software Technology 56 (2014) 1183–1199
between 2003 and 2009, and the studies published between 2010
and 2012. Such a division was arbitrarily established as a means to
mitigate the likely timing effect in the analysis, i.e., as time passes,
it is likely that more citations a paper will hold. Hence, it would not
be fair to use observations from all studies in a same sample.

It is worth to mention that we excluded selected studies pub-
lished in the year 2013. The reason is that it usually takes time
for any automated citation engine to index all publications and
the citations thereof. In a briefly performed search, we barely
found a citation to any paper published in the year 2013 that
was considered in this systematic review.

The y-coordinate corresponds to the number of citations of a
paper. The x-coordinate corresponds to the quality score achieved
in our assessment. The point representing the observation for a
given paper is placed at the intersection of the two coordinates.
In the first set we list 14 observations (we found no results for 4
studies). In the latter, we list 23 observations.

In both sets we observe an uphill linear pattern, as we move
from left to right. It is a brief indication of a positive relationship
between the citation count and the quality score attributed to
the selected studies, especially in the second set. However, it is
hard to infer whether any cause-and-effect relationship exists,
due to the rather limited number of observations.
4. Analysis and discussion

This systematic review identified a set of testing approaches
that are relevant for the SPL engineering field. The main observa-
tion in this study is the emerging need of supporting future devel-
opment of an evidence-based and effective testing practice
designed to address the special SPL engineering quality needs
and thereby improve the overall SPL practice. Along with such this
observation, we describe throughout this section other important
aspects that may arise from this research.

This review has to do with software testing in SPL engineering.
We should recall that testing is a validation technique employed to
measure the product correctness and efficiency, identifying early in
the development life cycle points in the program that need fixes,
before delivering it to the final customer. An ideal purpose for
SPL testing is to evaluate the correctness of features’ assembly by
gathering information on the sources of faults and statistics on
how many errors are generated with certain volumes.

Much of the work on reducing test effort for SPLs has been per-
formed from the feature-based (first interest) or product-based
(second interest) perspectives. An overall impression we had is
that, while approaches in both interests are concerned about min-
imizing the test effort, there is little discussion on the subject of
achieving higher defect detection rates. There is rather limited evi-
dence describing which are the commonly found faults in either
interest. As each interest has a specific goal in the SPL testing task,
knowing common faults can be helpful. It might guide an engineer
to better identify the faults that are more likely to occur, and pro-
vide him/her with recommendations for the correct repair actions.

As our work attempts to provide research directions to SPL test-
ing engineers to design and develop more effective SPL testing
approaches, besides the previously stated observation, we next dis-
cuss the main open issues we found under each of the interests.

� First SPL testing interest

Within the challenges in this SPL testing interest, the main con-
cern is in how to establish a strategy to test all the feature interac-
tions that result in testing of all variations across all dimensions of
variation. As pointed out in P46, current techniques handling the
combinatorial problem can be categorized as sampling and exhaus-
tive exploration techniques. While the former emphasizes oh the
selection of configurations, likewise in pairwise coverage, to reduce
the combinatorial space involved, the latter intends to consider all
possible configurations, with the aid of specialized techniques to
eliminate – or even to minimize – redundant configurations that
do not need to be explored.

Within the selected studies, that fit into either one or another
category, we observed the use of diverse optimization algorithms.
Although the proposed solutions are usually claimed to achieve
better levels of effectiveness than others, it is usually hard to figure
out which can be suitable for an average scenario so as to enable
generalizations. Despite the large amount of algorithms, we could
not identify which could yield better results for a SPL project, due
to the lack of reliable comparative assessment.

Another important highlight is that comparative studies of
existing approaches are barely published. Perrouin et al. [3] empir-
ically analyzed the capabilities of studies P29 and P31, in an inves-
tigation that can be considered one of the few and relevant reports
providing comparisons between SPL testing techniques. Such a
nice endeavor in highlighting the strengths and weaknesses of
their approaches should be followed by other researchers, as a
means to make practitioners aware of which testing approaches
could be feasible to a given application domain and/or scenario.

A task strongly related to the automated generation of product
configurations involves determining the quality of the product line
variability models. For instance, in a feature model, it is necessary
to analyze the relationships among the features that determine the
composition rules and the cross-tree constraints, and some addi-
tional information, such as trade-offs, rationale, and justifications
for feature selection [34,35]. Such analysis determines which con-
figurations are feasible in practice.

SPL modeling approaches seek to better and more effective
strategies to ensuring consistency of the variability models. This
verification effort concerns the technical quality of the variability
structure, such as checking that two features that are mandatory
are not also mutually exclusive. This type of check usually employs
some forms of logic or rule checker on the constructs provided by
the methodology.

Fig. 1, earlier presented in Section 1, illustrates the role of the
analysis of variability models in the first SPL testing interest. The
analysis layer represents an input activity to the selection of prod-
uct configurations to test. That is, before selecting the test cases –
the valid and representative products – the SPL testing approaches
should perform a series of analysis operations on feature models,
such as finding if a product is valid, obtaining all products, calculat-
ing commonality and variability, and detecting dead and false
optional features [36], through the extraction and understanding
of the feature model semantics.

Fig. 9. Studies published between 2010 and 2012.

I.d.C. Machado et al. / Information and Software Technology 56 (2014) 1183–1199 1195
There are more complex analyses that can be made over feature
models. Benavides et al. [37] provide state-of-the-art information
on the analysis of feature models, leveraging the operations
employed in model verification. The operations are used to identify
anomalies in the models, and to detect structural and integrity
constraint violations as well. The operations both help verifying
the ability of the product line model to generate all the desired
products, and only them, and measure the quality of the model,
as a means to identify and correct the defects in the model, a vital
task for efficient management and exploitation of the SPL [38].

Despite of the importance of model verification for the SPL test-
ing field, the set of primary studies analyzed in this review, that dis-
cuss fundamental and practical aspects of testing in SPL engineering,
do not provide details about how they perform the model verifica-
tion task. They usually use the operations on feature models aimed
at generating sets of valid products from them, instead of using
the ones aimed at measuring the quality of the models. Therefore,
model verification aspects are not subject to discussion in this sys-
tematic review. Salinesi and Mazo [38] surveyed the literature on
verification of product line models, and as such their work can be
used as a means to understand the gaps and challenges ahead.

� Second SPL testing interest

Most of the approaches dealing with specification of variability
in the test assets work by annotating variability in test models.
UML activity and sequence diagrams have been used as the stan-
dard models. The variable scenarios include specifications to the
whole set of admissible products, plus other test cases which
instead will vary for each specific product, depending on how the
variant characteristics are instantiated. Indeed, not all admissible
test cases is derived, but rather they derive the SPL test specifica-
tion and leave it unfolded. The test cases will actually be derived
for a specific product after having instantiated the tags in each
SPL use case to the appropriate values.

While those approaches seems to work to any SPL project,
improving testing practice, no discussions on the maintenance
effort for those variable test assets is provided. A variable test suite
is typically developed to test the whole SPL and the test suite will
be modified as new products come into play, or the current prod-
ucts need to be improved. However, as the number of products
increases, the number of test cases for testing the SPL will also
increase. Therefore, it becomes practically impossible to execute
all the test cases of the product line due to limited available time
and resources for each new product. Therefore, it is essential to
seek a solution to minimize test suites for a specific product effi-
ciently before execution to reduce the cost of testing. Besides, an
efficient testing process should systematically exploits the reus-
ability of test artifacts between the products under test.
Besides, we observed a strong concern about handling test
design at a very high level of abstraction, regardless the importance
of also coping with variability at lower levels, such as at source
code. While the existing approaches can be applied to any SPL
project, with only minor adjustments, satisfying system testing of
end-product functionalities, no studies could be found that con-
sider the likely particularities of unit testing, performed in conjunc-
tion (either before, or right after) with the actual implementation of
features. We have no indications about the impact of employing dif-
ferent mechanisms to implement variability in the domain assets,
and its consequence for the unit testing, the lowest abstraction level
for testing. This observation proceeds from the fact that testing
techniques relevant to single-system engineering might not deal
with the variability intrinsic to the SPL domain. Thus, a deeper
evidence-based discussion on such an issue would be valuable.

Another important aspect to consider is the potential a SPL test-
ing strategy has to cope with traceability issues. In a SPL, establish-
ing traceability between feature models to actual implementation
artifacts is a key task to a number of tasks, such as program com-
prehension, maintenance, requirement tracing, impact analysis,
and reuse opportunities [39]. From a SPL testing perspective, the
links between problem space and solution space entities enable
both the definition of the test assets, and the capability to cope
with evolution, in a sense that it is possible to identify the work
products affected by a proposed change.

The selected primary studies address part of the aforemen-
tioned tasks. The use of annotated UML models (activity and
sequence diagrams), in which features are associated to stereo-
types, makes it possible to establish the relationship between a
given feature and its corresponding test models and implementa-
tion – P07, P09, P11, P12, P13, P14, P17, P34, P35. It is also possible
to use traceability-mining algorithms [40] to recover the tracing
information, even though no primary study discussed about this
feasible opportunity.

Traceability information between features and test source code
should also be established. For each product, it is important to
know the functionalities it provides and hence the features that
it contains and its source code [41]. However, such low-level trace-
ability information is barely mentioned in the analyzed primary
studies. The studies P45 and P46 propose a means to handle low-
level variability in test cases. Variability is implemented as simply
Java Boolean variables, i.e., a SPL is an ordinary program with
if-conditions. This known limitation prevents us to generalize such
a technique to scenarios in which other variability implementation
mechanisms are employed.

Furthermore, in practice, as systems evolve, traceability links
between the models and the test code artifacts may become broken
or outdated. Thus, it is necessary to keep the consistency between
the artifacts. The study P22 contributes an approach to provide
traceability links in a way that ensures consistency between the fea-
ture model and the code artifacts, enables the evolution of variability
in the feature model. The approach provides information on the arti-
facts that are actually impacted by a change, and provides immedi-
ate feedback on the actual impact of that change, reflecting on the
tracing between feature and code assets. In addition, in P49, test
cases are augmented with an attribute to associate it to the feature,
or to a set of features. This is a promising strategy that makes it pos-
sible to keep the tracing between both entities updated.

As a matter of fact, SPL testing strategies still have lots to do in
terms of traceability and evolution. Currently, external tools han-
dle most traceability and evolution aspects, as mentioned in P09.
Just a few research efforts could be retrieved that incorporate those
aspects into their proposals.

Another real concern in this SPL interest refers to the strength of
evidence in the selected studies, as earlier discussed in RQ3 and
reinforced hereinafter.

1196 I.d.C. Machado et al. / Information and Software Technology 56 (2014) 1183–1199
There is ample evidence that many SPL testing approaches are
methodologically weak. Despite the amount of approaches,
authors never benchmarked their results against other approaches.
It may hinder any inference on highlighting the benefits of select-
ing and/or using an approach over another. Good research requires
not only a result, but also clear and convincing evidence that the
result is sound. This evidence should be based on experience or
systematic analysis, not simply persuasive argument or small
examples [25].

Empirical studies comparing the effectiveness of existing
approaches, in a range of scenarios, thus involving project of differ-
ent sizes and domain, is encouraged. Furthermore, there are some
obstacles in the current tool support that should be addressed
before further empirical studies can be conducted. As earlier men-
tioned, although some studies attempt to describe their tool sup-
port, no tools are readily available. When some algorithms
describing how the approach would work in an automated sce-
nario, readers are not provided with any discussion on their real
benefits, and the required effort for its implementation.

The observed lack of empirical studies does not allow to evalu-
ate what are the best ways to test a SPL. This is an important
research issue for the area.

Besides, no guideline or methodology is provided to train test
engineers to handle test design and selection. This means the cur-
rent practice of test selection largely depends on the expertise of
test engineers and it might not scale when more components are
developed and are to be tested.

This analysis has considered individual research reports, but
major results that influence practice rely on accumulation of evi-
dence from many projects. Each individual paper thus provides
incremental knowledge, and collections of related research pro-
jects and reports provide both confirming and cumulative
evidence.

4.1. Limitations of this study

Our systematic review has some limitations. To the extent that
we performed a systematic literature review, the potential for
incomplete identification of relevant studies and publication bias
are always consideration.

A potential risk that we might have missed relevant papers is
due to lack of agreed terminology in the SPL field, leading to the
possible existence of relevant papers that do not explicitly mention
the keywords we specified. Hence, there is always a risk that
important studies are omitted. To minimize this possibility, the
search for potentially relevant studies encompassed a biblio-
graphic search of published literature reviews on the topic under
investigation, a search with multiple databases, and also biblio-
graphic searches of the reviewed articles to identify additional
studies. Thus, by combining the list of retrieved papers, we might
assume a good coverage of publications and venues in the SPL test-
ing field.

With respect to publication bias, the heterogeneity in studies’
design, interventions, and outcome measures, and the absence of
statistically reliable effects preclude any strong claims for the
effectiveness of the analyzed approaches. In most cases, data col-
lection and analysis were poorly described. Overall, empirical stud-
ies are not supported by rigorous evidence. Hence, due to there
being insufficient data in the papers, necessary for the computation
of effect sizes, we could not assess publication bias through meta-
analysis. However, we acknowledge that, given the goals of this
study, meta-analysis would not have been appropriate.

The effect of publication bias might have affected the data
extraction, in terms of inaccuracy and bias. We had some difficul-
ties to extract relevant information from the selected papers. For
instance, several papers do not explicitly mention in which
domain, the proposed approaches can be used, or there was a lack
of information regarding the empirical methods employed by the
studies to carry out their evaluation. In situations like these, we
had to make subjective interpretations of information. Therefore,
the researcher’s bias could affect the final extracted data. Hence,
we acknowledge that there is a possibility of having misunder-
standings in the way we have extracted data from the primary
studies. The data extraction form was designed to obtain consis-
tent and relevant information for answering the research ques-
tions. Besides, we performed quality assessment on relevant
studies to ensure that the identified findings and implications
came from a credible basis.

We next discuss the potential threats to the validity of this system-
atic literature review, in accordance with the following taxonomies:
construct validity, internal validity, external validity, and reliability [42].

� Construct validity concerns establishing a relationship between
the theory behind the study and the observations. It covers
issues that are related to the design of the study, to analyze
its ability to represent what reseachers have in mind, and what
is investigated according to the research questions. To avoid
threats to construct validity, we applied the concepts of ‘‘testing
in SPL’’ and ‘‘systematic literature review’’ as the main con-
structs. In the former, we leveraged the key characteristics in
the studies, following the division of interests. As for the second
construct, we followed the guidelines to design the research
questions, search and assessment criteria. Another important
aspect is to ensure the discovering of all relevant studies in
the topic under investigation. For this purpose, we combined
automated and manual searches, to increase the coverage.
� Internal validity concerns establishing a causal relationship,

whereby certain conditions are shown to lead to other condi-
tions. As threats to the internal validity we can consider the
subjective decisions that might have occurred during primary
studies selection and data extraction, and individual bias in
assessment. The decision process for including a study into
the analysis may be considered the most important influential
factor on the resulting conclusions. Given that some primary
studies did not provide a clear description or proper objectives
and results, it was difficult the objective application of the eligi-
bility criteria or the impartial data extraction. The strategy to
minimize selection and extraction mistakes was to consider
several stages in the review in order to incorporate the most
complete primary studies possible to increase reliability of the
conclusions. Besides, to minimize threats regarding data analy-
sis, that arise from individual researchers bias when assessing
her assigned primary studies, we followed a pre-defined proto-
col, carrying out several dry runs individually, and consolidating
the differences collaboratively. However, it is possible that
some papers that do not contribute to the understanding of
the study goals are included, as it is possible that some excluded
papers might present useful characteristics that might affect the
review conclusions.
� External validity concerns establishing the extent to which

results of the studies provide a correct basis for generalization
to other scenarios and application domains. Most of the papers
included in this investigation refers to approaches that have not
been used in industry. Even most of the evaluation and assess-
ment performed on the approaches do not refer to real-world
practice. This prevents us from asserting that the classification
provided in this analysis is fully generalizable.
� Reliability is concerned with issues that affect the ability to draw

that the operations of a study can be repeated with the same
results. To attain this goal, we defined the search strings and
procedures in such a way that other researchers could directly
and objectively replicate this study. However, we cannot

I.d.C. Machado et al. / Information and Software Technology 56 (2014) 1183–1199 1197
guarantee that other researchers could achieve the exact same
outcomes, as subjectivity is a major criticism levelled at pri-
mary studies analysis. However, we believe that the underlying
trends should remain unchanged.
Table A.10
Venues subject to manual search.

Journals
ACM TOSEM – Transactions on Software Engineering and Methodology
ASE – Automated Software Engineering
IEEE SW – Software
IEEE TSE – Transactions on Software Engineering
IET SW – Software
IST – Information & Software Technology
JSEP – Software: Evolution and Process
JSS – Systems & Software
SPE – Software: Practice and Experience
SQJ – Software Quality Journal
STVR – Software Testing, Verification & Reliability

Conferences
AOSD – Aspect-Oriented Software Development
ASE – Automated Software Engineering
CSMR – Software Maintenance and Reengineering
ENASE – Evaluation of Novel Approaches to Software Engineering
FASE – Fundamental Approaches to Software Engineering
ICSE – Software Engineering
ICSM – Software Maintenance
ICSR – Software Reuse
ICST – Software Testing
ICTSS – Testing Software and Systems
ISSRE – Software Reliability Engineering
ISSTA – Software Testing and Analysis
MODELS – Model-Driven Engineering and Software Development
SEFM – Software Engineering and Formal Methods
SPLC – Software Product Line Conference
QSIC – Quality Software

Workshops
A-MOST – Advances in Model Based Testing
AST – Automation of Software Test
FOSD – Feature Oriented Software Development
PLEASE – Product Line Approaches in Software Engineering
SPLiT – Software Product Lines Testing
VaMoS – Variability Modelling of Software-intensive Systems

10 INES - http://www.ines.org.br.
5. Related work

Early in 2003, Kolb and Muthig [43] published one of the initial
analysis of existing SPL testing practices, and pointed out a set of
directions for further improvement. Although the study was not
organized as a literature survey, the authors discussed about the
use of techniques that were commonly used to test a SPL, and also
highlighted the common problems of applying techniques from
traditional software development in the SPL scenario. Despite the
importance of such a study to the field, since its publication, much
more investigation has been carried out.

One year later, Tevanlinna et al. [44] published a survey on
product family testing. In the light of available studies at the time
of publication, the authors provided research community with an
overview on the established practices and the challenges sur-
rounding the SPL testing field. Authors focused on discussing
methods developed for or that could be applied to test product
families, while disregarding particular characteristics of a given
method. The paper served for a long time as a good roadmap for
researchers intended to investigate the field.

Johansen et al. [45] presented a survey of product line testing,
focusing on the investigation of strategies employed towards
developing test suites for a SPL. They followed a formalized litera-
ture review process [46]. After analyzing existing publications, the
authors focused on the analysis of three studies that contained
empirical evaluations on their data. The authors claimed that the
reason to only include and analyze empirically assessed studies
was to perform a more reliable assessment of SPL testing practices.
However, the small amount of studies prevents the generalization
of research findings.

There are some other related research we could include in this
section, such as a series of literature reviews on the topic [18–20].
Such studies provide state-of-the-art evidence on the SPL testing
field. In a systematic way, these surveyed existing research trying
to identify useful approaches, and synthesize the achievements,
identify gaps, and propose research directions, based on studies
published up to the year 2009. They complement each other well
in terms of research questions addressed.

As a next step, in this present study, we go further, and analyze
the current research on strategies for handling testing in SPL, by
assessing provided evidence about current research regarding
how far it can convince practitioners, and also try to identify open
problems and areas for improvement.

6. Concluding remarks

The goal of SPL engineering is to optimize effectiveness and effi-
ciency by capitalizing on the commonality and managing the var-
iation that exists between multiple software systems. In order to
achieve the benefits of a software product line, testing of the assets
that will compose the products is a critical activity. Given that an
asset can be reused by multiple products, it is not economically
meaningful to test every interaction between assets in every prod-
uct instance derived from the product line. A new paradigm
demands new strategies that result in new improvements.

This paper reports on the results of a systematic literature review
of testing in software product line engineering. It aims at under-
standing how products are selected from the very large set of possi-
ble products for asset testing, and how each selected product is
tested. Twenty-four papers were found to provide the material for
the discussion surrounding the first research question, while
twenty-seven papers described strategies that matched the second.
Despite an observed increasing interest in the SPL testing topic, the
study led us to claim the need for more effective methods and tech-
niques for testing SPL, issue stated a decade ago by Kolb and Muthig
[43], that still holds true as probably the main rationale for current
research. Given the current available evidence, we noted that
research has advanced in terms of strategies to handle testing each
selected product, but it is still in its initial stages when considering
strategies to cope with the selection of representative products.
Additionally, in either topic, we observed a lack of generalization of
existing techniques, which demands further investigation.

Based on the findings of this systematic literature review we
suggest that research be undertaken to expand on the strategies
that have been investigated. Further research into this topic should
include some form of empirical assessment of existing strategies,
as a means to improve their accuracy, and enable generalizations.
This may entail investigating more than just small usage scenarios,
but rather large-scale and industry-side scenarios.

Acknowledgements

This work was partially supported by the National Institute of
Science and Technology for Software Engineering (INES)10, funded
by CNPq and FACEPE, Grants 573964/2008- 4 and APQ-1037-1.03/
08 and CNPq Grants 305968/2010-6, 559997/2010-8, 474766/
2010-1 and FAPESB.

Appendix A. Venues manually searched

See Table A.10.

http://www.ines.org.br

Table B.11
Selected primary studies.

ID Title Author(s) Venue

P01 Testing software assets of framework-based product families during application engineering stage J. Al-Dallal, P.G. Sorenson JSW 3 (5): 11–25,
2008

P02 On extracting tests from a testable model in the context of domain engineering S. Bashardoust-Tajali, J.-P.
Corriveau

ICECCS’08: 98–107

P03 Product line use cases: Scenario-based specification and testing of requirements A. Bertolino, A. Fantechi, S. Gnesi,
G. Lami

Book Chapter: 425–
445, 2006

P04 Towards generating acceptance tests for product lines B. Geppert, J.J. Li, F. Roessler, D.M.
Weiss

ICSR’04: 35–48

P05 An approach for selecting software product line instances for testing T. Gustafsson SPLC’07: 81–86
P06 Specification-based testing for software product lines T. Kahsai, M. Roggenbach, B.-H.

Schlingloff
SEFM’08: 149–158

P07 Testing variabilities in use case models E. Kamsties, K. Pohl, S. Reis, A.
Reuys

PFE’03: 6–18

P08 Reuse execution traces to reduce testing of product lines J.J. Li, B. Geppert, F. Roessler, D.
Weiss

SPLiT’07: 1–8

P09 A reuse technique for performance testing of software product lines A.P.K. Reis, S. Metzger SPLiT’06: 5–10
P10 Specification based software product line testing: A case study S. Mishra CS&P’06: 243–254
P11 System testing of product lines: From requirements to test cases C. Nebut, Y. Traon, J.-M. Jézéquel Book Chapter: 447–

477, 2006
P12 Model-based testing for applications derived from software product lines E.M. Olimpiew, H. Gomaa A-MOST’05: 1–7
P13 Customizable requirements-based test models for software product lines E.M. Olimpiew, H. Gomaa SPLiT’06: 17–22
P14 Reusable model-based testing E. M. Olimpiew, H. Gomaa ICSR’09: 76–85
P15 Towards software product line testing using story driven modeling S. Oster, A. Schürr, I. Weisemöller T.Report: 48–51, 2008
P16 Production-testing of embedded systems with aspects J. Pesonen, M. Katara, T.

Mikkonen
HVC’05: 90–102

P17 The SCENTED method for testing software product lines A. Reuys, S. Reis, E. Kamsties, K.
Pohl

Book Chapter: 479–
520, 2006

P18 Optimizing the selection of representative configurations in verification of evolving product lines of
distributed embedded systems

K. Scheidemann SPLC’06: 75–84

P19 Improving the testing and testability of software product lines I. Cabral, M. B. Cohen, G.
Rothermel

SPLC’10: 241–255

P20 Model-based coverage-driven test suite generation for software product lines H. Cichos, S. Oster, M. Lochau, A.
Schürr

MODELS’11: 425–439

P21 Goal-oriented test case selection and prioritization for product line feature models A. Ensan et al. ITNG’11: 291–298
P22 Linking feature models to code artifacts using executable acceptance tests Y. Ghanam, F. Maurer SPLC’10: 211–225
P23 PACOGEN: Automatic generation of pairwise test configurations from feature models A. Hervieu, B. Baudry, A. Gotlieb ISSRE’11: 120 –129
P24 Properties of realistic feature models make combinatorial testing of product lines feasible M. F. Johansen, Ø. Haugen, F.

Fleurey
MODELS’11: 638–652

P25 Reducing combinatorics in testing product lines C.H.P. Kim, D.S. Batory, S.
Khurshid

AOSD’11: 57–68

P26 Testing product generation in software product lines using pairwise for features coverage B.P. Lamancha, M.P. Usaola ICTSS’10: 111–125
P27 A model based testing approach for model-driven development and software product lines B.P. Lamancha, M.P. Usaola, M.P.

Velthius
ENASE’10: 193–208

P28 Model-based pairwise testing for feature interaction coverage in software product line engineering M. Lochau, S. Oster, U. Goltz, A.
Schürr

SQJ 20(3): 567–604,
2012

P29 Automated incremental pairwise testing of software product lines S. Oster, F. Markert, P. Ritter SPLC’10: 196–210
P30 Pairwise feature-interaction testing for SPLs: potentials and limitations S. Oster, M. Lochau, M. Zink, M.

Grechanik
SPLC’11: 1–8

P31 Automated and scalable t-wise test case generation strategies for software product lines G. Perrouin et al. ICST’10: 459–468
P32 Modelling requirements to support testing of product lines C. Robinson-Mallett et al. A-MOST’10: 11–18
P33 Integration testing of software product lines using compositional symbolic execution J. Shi, M. Cohen, M. Dwyer FASE’12: 270–284
P34 A regression testing approach for software product lines architectures P.A.M.S. Neto et al. SBCARS’10: 41–50
P35 Avoiding redundant testing in application engineering V. Stricker, A. Metzger, K. Pohl SPLC’10: 226–240
P36 Incremental test generation for software product lines E. Uzuncaova, S. Khurshid, D.

Batory
TSE 36 (3): 309–322,
2010

P37 Model-Driven Software Product Line Testing: An Integrated Approach A. Schürr, S. Oster, F. Markert SOFSEM’10: 112–131
P38 Combinatorial Testing for Feature Models Using CitLab A. Calvagna, A. Gargantini, P.

Vavassori
IWCT’13: 338–347

P39 Continuous test suite augmentation in software product lines Z. Xu, M.B. Cohen, W. Motycka, G.
Rothermel

SPLC’13: 52–61

P40 Evolutionary Search-Based Test Generation for Software Product Line Feature Models F. Ensan, E. Bagheri, and D.
Gašević

CAiSE’12: 613–628

P41 Incremental Model-Based Testing of Delta-Oriented Software Product Lines M. Lochau, I. Schaefer, J.
Kamischke, S. Lity

TAP’12: 67–82

P42 Minimizing test suites in software product lines using weight-based genetic algorithms S. Wang, S. Ali, A. Gotlieb GECCO’13: 1493–
1500

P43 Multi-objective test generation for software product lines C. Henard et al. SPLC’13: 62–71
P44 Practical pairwise testing for software product lines D. Marijan, A. Gotlieb, S. Sen, A.

Hervieu
SPLC’13: 227–235

P45 Shared Execution for Efficiently Testing Product Lines C.H. Kim, S. Khurshid, D. Batory ISSRE’12: 221–230
P46 SPLat: lightweight dynamic analysis for reducing combinatorics in testing configurable systems C.H. Kim et al. ESEC/FSE’13: 257–267
P47 Towards efficient SPL testing by variant reduction M. Kowal, S. Schulze, I. Schaefer VariComp’13: 1–6
P48 Requirements-based Delta-oriented SPL Testing M. Dukaczewski et al. PLEASE’13: 49–52
P49 Automated Test Case Selection Using Feature Model: An Industrial Case Study S. Wang, A. Gotlieb, S. Ali, M.

Liaaen
MODELS’13: 237–253

1198 I.d.C. Machado et al. / Information and Software Technology 56 (2014) 1183–1199

I.d.C. Machado et al. / Information and Software Technology 56 (2014) 1183–1199 1199
Appendix B. Primary studies

See Table B.11.

References

[1] P. Clements, L. Northrop, Software Product Lines: Practices and Patterns,
Addison-Wesley, Boston, MA, USA, 2001.

[2] P. Clements, J.D. McGregor, Better, faster, cheaper: Pick any three, Bus. Hor. 55
(2) (2012) 201–208.

[3] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, Y. le Traon, Pairwise testing for
software product lines: comparison of two approaches, Soft. Qual. J. (2011) 1–39.

[4] L. Chen, M.A. Babar, A systematic review of evaluation of variability
management approaches in software product lines, Inform. Soft. Technol. 53
(4) (2011) 344–362.

[5] K. Lee, K.C. Kang, J. Lee, Concepts and guidelines of feature modeling for
product line software engineering, in: Proceedings of the 7th International
Conference on Software Reuse (ICSR), Springer-Verlag, 2002, pp. 62–77.

[6] D. Beuche, H. Papajewski, W.S. Preikschat, Variability management with
feature models, Sci. Comp. Program. 53 (3) (2004) 333–352.

[7] M.F. Johansen, Ö. Haugen, F. Fleurey, Properties of realistic feature models
make combinatorial testing of product lines feasible, in: 14th International
Conference on Model Driven Engineering Languages and Systems (MODELS),
Springer, 2011, pp. 638–652.

[8] I.C. Machado, J.D. McGregor, E.S. Almeida, Strategies for testing products in
software product lines, ACM SIGSOFT Soft. Eng. Notes 37 (6) (2012) 1–8.

[9] K. Pohl, G. Böckle, F.J.v.d. Linden, Software Product Line Engineering:
Foundations, Principles and Techniques, Springer-Verlag New York, Inc.,
2005.

[10] G. Perrouin, S. Sen, J. Klein, B. Baudry, Y. le Traon, Automated and scalable
t-wise test case generation strategies for software product lines, in:
Proceedings of the Third International Conference on Software Testing,
Verification and Validation (ICST), IEEE, 2010, pp. 459–468.

[11] K. Naik, P. Tripathy, Software Testing and Quality Assurance: Theory and
Practice, John Wiley & Sons, Inc., 2008.

[12] D.S. Cruzes, T. Dybä, Research synthesis in software engineering: a tertiary
study, Inform. Soft. Technol. 53 (5) (2011) 440–455.

[13] B. Kitchenham, P. Brereton, D. Budgen, M. Turner, J. Bailey, S.G. Linkman,
Systematic literature reviews in software engineering – a systematic literature
review, Inform. Softw. Technol. 51 (1) (2009) 7–15.

[14] T. Dybå, T. Dingsøyr, Strength of evidence in systematic reviews in software
engineering, in: Proceedings of the Second International Symposium on
Empirical Software Engineering and Measurement (ESEM), ACM, 2008, pp.
178–187.

[15] P. Brereton, B.A. Kitchenham, D. Budgen, M. Turner, M. Khalil, Lessons from
applying the systematic literature review process within the software
engineering domain, J. Syst. Soft. 80 (4) (2007) 571–583.

[16] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature
Reviews in Software Engineering, Keele University and Durham University
Joint Report, Tech. Rep. EBSE 2007-001, 2007.

[17] M. Petticrew, H. Roberts, Systematic Reviews in the Social Sciences: A practical
guide, Blackwell Publishing, Oxford, 2006.

[18] P.A.M.S. Neto, I.C. Machado, J.D. McGregor, E.S. Almeida, S.R.L. Meira, A
systematic mapping study of software product lines testing, Inform. Soft.
Technol. 53 (5) (2011) 407–423.

[19] E. Engström, P. Runeson, Software product line testing – a systematic mapping
study, Inform. Softw. Technol. 53 (1) (2011) 2–13.

[20] B.P. Lamancha, M.P. Usaola, M.P. Velthius, Software product line testing – a
systematic review, in Proceedings of the 4th International Conference on
Software and Data Technologies (ICSOFT), INSTICC Press, Sofia, Bulgaria, 2009,
pp. 23–30.

[21] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping studies in
software engineering, in Proceedings of the 12th International Conference on
Evaluation and Assessment in Software Engineering (EASE), University of Bari,
Bari, Italy, 2008.

[22] H. Zhang, M.A. Babar, P. Tell, Identifying relevant studies in software
engineering, Inform. Soft. Technol. 53 (6) (2011) 625–637.

[23] B.A. Kitchenham, P. Brereton, M. Turner, M. Niazi, S.G. Linkman, R. Pretorius, D.
Budgen, Refining the systematic literature review process – two participant-
observer case studies, Emp. Soft. Eng. 15 (6) (2010) 618–653.
[24] J. Webster, R.T. Watson, Analyzing the past to prepare for the future: writing a
literature review, MIS Quart. 26 (2) (2002) xiii–xxiii.

[25] M. Shaw, What makes good research in software engineering?, Int J. Soft. Tools
Technol. Transf. 4 (1) (2002) 1–7.

[26] V. Alves, N. Niu, C. Alves, G. Valena, Requirements engineering for software
product lines: a systematic literature review, Inform. Soft. Technol. 52 (8)
(2010) 806–820.

[27] T. Dybå, T. Dingsøyr, Empirical studies of agile software development: a
systematic review, Inform. Soft. Technol. 50 (9–10) (2008) 833–859.

[28] F. Dordowsky, R. Bridges, H. Tschope, Implementing a software product line for
a complex avionics system, in: Proceedings of the 15th International
Conference on Software Product Lines (SPLC)., ACM, Munich, Germany, 2011,
pp. 241–250.

[29] C. Tischer, A. Muller, T. Mandl, R. Krause, Experiences from a large scale
software product line merger in the automotive domain, in: Proceedings of the
15th International Conference on Software Product Lines (SPLC), ACM, Munich,
Germany, 2011, pp. 267–276.

[30] A. Hervieu, B. Baudry, A. Gotlieb, PACOGEN: automatic generation of pairwise
test configurations from feature models, in: 22nd IEEE International
Symposium on Software Reliability Engineering (ISSRE), IEEE Computer
Society, Hiroshima, Japan, 2011, pp. 120–129.

[31] I. Schaefer, L. Bettini, F. Damiani, N. Tanzarella, Delta-oriented programming of
software product lines, in: Proceedings of the 14th International Conference
on Software Product Lines (SPLC), Springer-Verlag, Berlin, Heidelberg, 2010,
pp. 77–91.

[32] I.F. Aguillo, Is google scholar useful for bibliometrics? a webometric analysis,
Scientometrics 91 (2) (2012) 343–351.

[33] A.-W. Harzing, A preliminary test of google scholar as a source for citation
data: a longitudinal study of nobel prize winners, Scientometrics 94 (3) (2013)
1057–1075.

[34] C. Thörn, A quality model for evaluating feature models, in: 11th International
Conference on Software Product Lines, SPLC, vol. 2 (Workshops), Kyoto, Japan,
2007, pp. 184–190.

[35] R. Pohl, K. Lauenroth, K. Pohl, A performance comparison of contemporary
algorithmic approaches for automated analysis operations on feature models,
in: Proceedings of the 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE), IEEE Computer Society, Washington, DC, USA,
2011, pp. 313–322.

[36] L. Rincón, G. Giraldo, R. Mazo, C. Salinesi, An ontological rule-based approach
for analyzing dead and false optional features in feature models, Electron.
Notes Theoret. Comp. Sci. 302 (2014) 111–132.

[37] D. Benavides, S. Segura, A. Ruiz-Cortés, Automated analysis of feature models
20 years later: a literature review, Inform. Syst. 35 (6) (2010) 615–636.

[38] C. Salinesi, R. Mazo, Software Product Line – Advanced Topic, InTech, April
2012, ch. Defects in Product Line Models and How to Identify Them, pp. 97–
122.

[39] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, E. Merlo, Recovering
traceability links between code and documentation, IEEE Trans. Soft. Eng. 28
(10) (2002) 970–983.

[40] L. Linsbauer, E.R. Lopez-Herrejon, A. Egyed, Recovering traceability between
features and code in product variants, in: Proceedings of the 17th International
Software Product Line Conference (SPLC), ACM, 2013, pp. 131–140.

[41] I.C. Machado, A.R. Santos, Y.a.C. Cavalcanti, E.G. Trzan, M.M.a. Souza, E.S.
Almeida, Low-level variability support for web-based software
product lines, in: Proceedings of the Eighth International Workshop
on Variability Modelling of Software-Intensive Systems (VaMoS), ACM, 2014,
pp. 15:1–15:8.

[42] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, Experimentation in
Software Engineering, Springer, 2012.

[43] R. Kolb, D. Muthig, Challenges in testing software product lines, in:
Proceedings of the 7th Conference on Quality Engineering in Software
Technology (CONQUEST), Fraunhofer Publica, 2003, pp. 81–95.

[44] A. Tevanlinna, J. Taina, R. Kauppinen, Product family testing: a survey, ACM
SIGSOFT Soft. Eng. Notes 29 (2) (2004) 12.

[45] M. Johansen, O. Haugen, F. Fleurey, A survey of empirics of strategies for
software product line testing, in: IEEE Fourth International Conference on
Software Testing, Verification and Validation Workshops, IEEE Computer
Society Press, Berlin, Germany, 2011, pp. 266–269.

[46] T. Dyba, B.A. Kitchenham, M. Jorgensen, Evidence-based software engineering
for practitioners, IEEE Soft. 22 (1) (2005) 58–65.

http://refhub.elsevier.com/S0950-5849(14)00083-4/h0035
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0035
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0035
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0040
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0040
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0045
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0045
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0050
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0050
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0050
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0055
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0055
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0055
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0055
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0060
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0060
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0065
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0065
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0065
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0065
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0065
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0070
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0070
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0075
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0075
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0075
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0075
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0080
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0080
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0080
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0080
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0080
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0085
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0085
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0085
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0090
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0090
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0095
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0095
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0095
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0100
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0100
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0100
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0100
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0100
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0105
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0105
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0105
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0110
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0110
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0110
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0115
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0115
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0115
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0120
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0120
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0125
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0125
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0130
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0130
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0130
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0135
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0135
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0140
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0140
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0145
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0145
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0145
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0150
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0150
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0155
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0155
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0155
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0155
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0155
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0160
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0160
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0160
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0160
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0160
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0165
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0165
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0165
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0165
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0165
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0170
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0170
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0170
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0170
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0170
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0175
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0175
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0180
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0180
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0180
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0185
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0185
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0185
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0185
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0185
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0185
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0190
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0190
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0190
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0195
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0195
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0200
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0200
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0200
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0205
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0205
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0205
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0205
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0210
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0210
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0210
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0210
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0210
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0210
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0215
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0215
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0215
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0220
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0220
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0225
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0225
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0225
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0225
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0225
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0230
http://refhub.elsevier.com/S0950-5849(14)00083-4/h0230

	On strategies for testing software product lines: A systematic literature review
	1 Introduction
	2 The review methodology
	2.1 Research questions
	2.2 Identification of relevant literature
	2.2.1 Phase 1: analysis of existing reviews
	2.2.2 Phase 2: gathering recent publications
	2.2.3 Primary study selection strategy

	2.3 Data extraction
	2.4 Quality assessment

	3 Results
	3.1 Characteristics of the studies
	3.2 Strategies to handle the selection of products to test (RQ1)
	3.3 Strategies to handle the test of end-product functionalities (RQ2)
	3.4 Strength of evidence in support of available strategies (RQ3)
	3.5 Implications for research and practice (RQ4)

	4 Analysis and discussion
	4.1 Limitations of this study

	5 Related work
	6 Concluding remarks
	Acknowledgements
	Appendix A Venues manually searched
	Appendix B Primary studies
	References

