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Abstract

We study the problem of modeling species
geographic distributions, a critical problem in

conservation biology. We propose the use
of maximum-entropy techniques for this prob-

lem, specifically, sequential-update algorithms
that can handle a very large number of fea-
tures. We describe experiments comparing max-
ent with a standard distribution-modeling tool,

called GARP, on a dataset containing observation
data for North American breeding birds. We also
study how well maxent performs as a function

of the number of training examples and train-

ing time, analyze the use of regularization to

avoid overfitting when the number of examples
is small, and explore the interpretability of mod-

els constructed using maxent.

1. Introduction

We study the problem of modeling the geographic dis-
tribution of a given animal or plant species. This is a crit-

known to be absent because of deforestation or other habi-
tat destruction. Although a species’ realized distribution
may exhibit some spatial correlation, the potential distri-
bution does not, so considering spatial correlation is not
necessarily desirable during species distribution modeling.

It is often the case that onjyresencealata is available
indicating the occurrence of the species. Natural history
museum and herbarium collections constitute the richest
source of occurrence localities (Ponder et al., 2001; Stock-
well & Peterson, 2002). Their collections typically have no
information about théailure to observe the species at any
given location; in addition, many locations have not been
surveyed. In the lingo of machine learning, this means that
we have only positive examples and no negative examples
from which to learn. Moreover, the number of sightings
(training examples) will often be very small by machine-
learning standards, say a hundred or less. Thus, the first
contribution of this paper is the introduction of a scientifi-
cally important problem as a challenging domain for study
by the machine learning community.

To address this problem, we propose the application of

ical problem in conservation biology: to save a threatenednaximum-entropy (maxent) techniques which have been
species, one first needs to know where the species prefe$ effective in other domains, such as natural language pro-
to live, and what its requirements are for survival, i.e., itscessing (Berger et al., 1996). Briefly, in maxent, one is
ecological niche (Hutchinson, 1957). given a set of samples from a distribution over some space,

The data available for this problem typically consistsas well as a set of features (real-valued functions) on this
of a list of georeferenced occurrence localities, i.e., a sespace. The idea of maxent is to estimate the target distribu-
of geographic coordinates where the species has been otion by finding the distribution of maximum entropy (i.e.,
served. In addition, there is data on a number of envithat is closest to uniform) subject to the constraint that the
ronmental variables, such as average temperature, aveaxpected value of each feature under this estimated distri-
age rainfall, elevation, etc., which have been measurefution matches its empirical average. This turns out to be
or estimated across a geographic region of interest. Thequivalent, under convex duality, to finding the maximum
goal is to predict which areas within the region satisfy”ke”hood Gibbs distribution (i.e., distribution that is exp
the requirements of the species’ ecological niche, and thugential in a linear combination of the features). For species
form part of the speciegiotential distribution(Anderson  distribution modeling, the occurrence localities of the spe-
& Martinez-Meyer, 2004). The potential distribution de- cies serve as the sample points, the geographical region of
scribes where conditions are suitable for survival of theinterest is the space on which this distribution is defined,
species, and is thus of great importance for conservatior@nd the features are the environmental variables (or func-
It can also be used to estimate the spediealized distri-  tions thereof). See Figure 1 for an example.
bution, for example by removing areas where the speciesis In Section 2, we describe the basics of maxentin greater
- ) . detail. Iterative scaling and its variants (Darroch & Ratcliff,
Appeann_g mProce_edlngs of the1®! International C_:onference 1972; Della Pietra et al., 1997) are standard algorithms
?hnel\gﬁtchhclnrr]se LearningBanff, Canada, 2004. Copyright 2004 by ¢4 computing the maximum entropy distribution. We use

: our own variant which iteratively updates the weights on



Figure 1.Left to right: Yellow-throated Vireo training localitiesdm the first random partition, an example environmentaiaée
(annual average temperature, higher values in red), maxediction using linear, quadratic and product featuned, GARP prediction.
Prediction strength is shown as white (weakest) to redr{gist); reds could be interpreted as suitable conditianthéospecies.

features sequentially (one by one) rather than in paralformance of maxent as a function of the number of sam-
lel (all at once), along the lines of Collins, Schapire andple points available, so as to determine the all important
Singer (2002). This sequential approach is analogous tquestion of how much data is enough; (2) the effective-
AdaBoost which modifies the weight of a single “feature” ness of regularization to avoid overfitting on small sample
(usually called a base or weak classifier in that context) orsizes; and (3) the effectiveness of our numerical accelera-
each round. As in boosting, this approach allows us to uséon methods.
very large feature spaces. Lastly, it is desirable for a species distribution model to
One would intuitively expect an oversize feature spaceallow interpretation to deduce the most important limiting
to be a problem for generalization since it increases the pogactors for the species. A noted limitation of GARP is the
sibility of overfitting, leading others to use feature selectiondifficulty of interpreting its models (Elith, 2002). We show
for maxent (Berger et al., 1996). We instead use a regulatiow the models generated by maxent can be put into a form
ization approach, introduced in a companion theoretical pathat is easily understandable and interpretable by humans.
per (Dudik et al., 2004), which allows one to prove bounds
on the performance of maxent using finite data, even whe2. The Maximum Entropy Approach
the number of features is very large or even uncountably |n this section, we describe our approach to modeling
infinite. Here we investigate in detail the practical efficacyspecies distributions. As explained above, we are given a
of the technique for species distribution modeling. We a|505paceX representing some geographic region of interest.
describe a numerical acceleration method that speeds Ugpically, X is a set of discrete grid cells; here we only
learning. assume thak is finite. We also are given a set of points
In Section 3, we describe an extensive set of experiz,,... ,z,, in X, each representing a locality where the
ments we conducted comparing maxent to a widely usedpecies has been observed and recorded. Finally, we are
existing distribution modeling algorithm; results of the ex- provided with a set of environmental variables defined on
periments are described in Section 4. Quite a number of apX, such as precipitation, elevation, etc.
proaches have been suggested for species distribution mod- Given these ingredients, our goal is to estimate the
eling including neural nets, genetic algorithms, generalizedange of the given species. In this paper, we formalize
linear models, generalized additive models, bioclimatic enthis rather vague goal within a probabilistic framework.
velopes and more; see Elith (2002) for a comparison. FronAlthough this will inevitably involve simplifying assump-
these, we selected the Genetic Algorithm for Ruleset Pretions, what we gain will be a language for defining the
diction (GARP) (Stockwell & Noble, 1992; Stockwell & problem with mathematical precision as well as a sensible
Peters, 1999), because it has seen widespread recent uggproach for applying machine learning.
to study diverse topics such as global warming (Thomas Unlike others who have studied this problem, we adopt
et al., 2004), infectious diseases (Peterson & Shaw, 2003he view that the localities,, . .. , ,,, were selected inde-
and invasive species (Peterson & Robins, 2003); many furpendently fromX according to some unknown probability
ther applications are cited in these references. GARP wadgistribution =, and that our goal is to estimate At the
also selected because it is one of the few methods availabfeundation of our approach is the premise that the distribu-
that does not require absence data (negative examples). tion = (or a thresholded version of it) coincides with the
We compare GARP and maxent using data de-biologists’ concept of the species’ potential distribution.
rived from the North American Breeding Bird Survey Superficially, this is not unreasonable, although it does ig-
(BBS) (Sauer et al., 2001), an extensive dataset consistingore the fact that some localities are more likely to have
of thousands of occurrence localities for North Americanbeen visited than others. The distributionmay therefore
birds and used previously for species distribution model-exhibit sampling bias, and will be weighted towards areas
ing, in particular for evaluating GARP (Peterson, 2001).and environmental conditions that have been better sam-
The comparison suggests that maxent methods hold grepted, for example because they are more accessible.
promise for species distribution modeling, often achiev- That being said, the problem becomes onealefisity
ing substantially superior performance in controlled ex-estimation givenx, ... ,z, chosen independently from
periments relative to GARP. In addition to comparisonssome unknown distributiorr, we must construct a distri-
with GARP, we performed experiments testing: (1) the perbution# that approximates.



Common name Abbreviation # examples coordinate-wise descent procedure since it is easily appli-

Gray Vireo GV 8 cable when the number of features is very large (or infinite).
Hutton’s Vireo HV 198 S e ; :

; pecifically, our very simple algorithm works as fol-
Plumbeous Vireo PV 256 - .
Philadelphia Vireo PhV 305 lows. Assume Wlth.OUt loss of generality that each fea-
Bell's Vireo BV 419 ture f; is bounded in[0,1]. On each of a sequence of
Cassin’s Vireo cvV 424 rounds, we choose the featufe to update for which
Blue-headed Vireo BhV 973 RE_(ir[fj] Il gxlf;]) is maximized, where\ is the current
White-eyed Vireo WeV 1271 weight vector (and wherBE(p || q), for p,q € R, is bi-
Yellow-throated Vireo YV 1611 nary relative entropy). We next update «— \; + a where
Loggerhead Shrike LS 1850 =111 _
Warbling Vireo wWv 2526 a=ln (M) ) 1)
Red-eyed Vireo RV 2773 (1 =7[f5Danlf5]

Table 1.Studied species, with number of presence records 1€ output distributiorit is the one defined by the com-
puted weights, i.e.qx. Essentially, this algorithm works
In constructingt, we also make use of a given set of Py altering one weight; at a time so as to greedily max-
featuresfy,. .. , f, wheref; : X — R. These features imize the likelihood (or an approximation thereof). This
might consist of the raw environmental variables, or theyProcedure is guaranteed to converge to the optimal maxi-
might be higher level features derived from them (see Secum entropy distribution. The derivation _of th[s algorithm,
tion 3.3). Letf denote the vector of all features. along with its proof of convergence are given in a compan-
; : [ Dudik et al., 2004) and are based on techniques
For any functionf : X — R, let=[f] denote its expec- 10N Paper ( A .
tation undetr. Let7 denote thesmpiri[cz]il distributioni.e., explained by Della Pietra, Della Pietra and Lafferty (1997)
#(x) = {1 <i<m:x; =x}|/m. Ingeneral7 maybe &S well as Collins, Schapire and Singer (2002). _
quite distant. under any reasonable measure, fron®n To accelerate convergence, we do a line search in each
the other haﬁd, for a given functigh we do exr;ecﬁ[f], |terat|on: evaluate _the log loss when is mcrgmented by
the empirical average of, to be rather close to its true 2 @ fori=0,1,...inturn,and choose the lasbefore the
expectationr|f]. Itis natural, therefore, to seek an approx- log Iogs de_creases. This is similar to line search methods
imation7 under whichf;’s expectation is equal (or at least described in (Minka, 2001).
very close) tor[f;] for every f;. There will typically be 5 5 Regularization

many distributiqns_satisfying these constraints. W" . The basic approach described above computes the max-
mum entropy principlsuggests that, from among all distri- imum entropy distributioni for which #[f;] = #[f].

butions sa’usftylng thesetﬁonstrakrt:tst, we lchOOf(ta the_?ne owever, we do not expeétf,] to beequalto «[f;] but
maXImum en rIOE[’%" "e'i N or]]e d'at '.‘i‘) ct_osesXQ ugl OMnly close to it. Therefore, in keeping with our motivation,
1€ré, as usual, the entropy of a distributebn A 1S G- \ye'can soften these constraints to have the form

fined to bet(p) = — > . x p(z) Inp(z).

Thus, the idea is to estimate by the distribu- 7 f5] = 751l < B; )
tion # of maximum entropy subject to the condition whereg; is an estimate of how closg[f;], being an em-
that #[f;] = [f;] for all featuresf;. Alternatively, pirical average, must be to its true expectatidfy|. Maxi-

we can consider allGibbs distributionsof the form  mizing entropy subject to Eq. (2) turns out to be equivalent
a(z) = @ /Zy where Zy = Y, e*f@ is  tofinding the Gibbs distributiot = ¢x which minimizes
a normalizing constant, and € R". Then, follow- RE(7 || gx) + 32, B51Al- (3)
ing Della Pietra, Della Pietra and Lafferty (1997), it can other words, this approach is equivalent to maximizing
be proved that the maxent distribution described above i D ’ . o .

P #:e likelihood of the sought after Gibbs distribution with

the same as the maximum likelihood Gibbs distribution,; ™ | e . A
i.e., the distributiony that minimizesRE(7 || ¢») where (weighted){; -regularization. This form of regularization

_ : Iso makes sense because the number of training exam-
RE(p || ¢) = 3,y p(x)In(p(x)/q(z)) denotegelative : numoer ning ex
entEopll/oz Kullggici{(Legbl)er (gliv(er)g/er(m)eg\lote that the neg- Ples needed to approximate the “best” Gibbs distribution
ative log likelihood|— In(¢x )] (also called log loss) only €& be bounded when ttfg-norm of the weight vectoA

differs fromRE(7 || ¢x) by the constanH (7); we there- is bou_nded. (See (Dudik et al., 2004) for details.)_ Ina
fore use the two interchangeably as objective functions. Bayesian fr_amework, Eq. (3) _corresponds to a negative log
posterior given a Laplace prior. Other priors studied for

2.1. A sequential-update algorithm maxent are Gaussian (Chen & Rosenfeld, 2000) and expo-
There are a number of algorithms for finding the max-nential (Goodman, 2003). Laplace priors have been studied
ent distribution, especially iterative scaling and its vari-in the context of neural networks by Williams (1995).
ants (Darroch & Ratcliff, 1972; Della Pietra et al., 1997)  The regularized formulation can be solved using a sim-
as well as the gradient and second-order descent metRl€ modification of the above algorithm. On each round,
ods (Malouf, 2002; Salakhutdinov et al., 2003). In this & featuref; and valuex are chosen so as to maximize the
paper, we used a sequential-update algorithm that modifiedange in (an approximation of) the regularized objective
one weight); at a time, as explored by Collins, Schapire functionin Eq. (3). This works out to be
and Singer (2002) in a similar setting. We chose this—az[f;] + In(1 + (e* — 1)ga[f;]) + 35 (IA; + o — |A\;]).



GARP threshold = 1 GARP threshold = 10

Bird | Area | L LQ LOQP T GARP| Area| L LQ LOQP T  GARP
GV 0.307 | 0.000 0.000 0.000 0.003 0.000f 0.144| 0.046 0.079 0.018 0.079 0.085
HV 0.595| 0.028 0.003 0.004 0.000 0.000| 0.314| 0.139 0.019 0.030 0.015 0.034
PV 0.428 | 0.004 0.005 0.002 0.006 0.003/ 0.149| 0.063 0.030 0.036 0.027 o0.067
PhV | 0.545| 0.096 0.000 0.000 0.004 0.000| 0.199| 0.423 0.036 0.034 0.055 0.069
BV 0.668 | 0.000 0.000 0.000 0.000 0.000/ 0.301| 0.036 0.010 0.004 0.012 0.048
CcVv 0.430| 0.060 0.018 0.008 0.015 0.067| 0.225| 0.242 0.123 0.092 0.088 0.149
BhV | 0.563| 0.060 0.006 0.005 0.008 0.009| 0.226 | 0.336 0.122 0.103 0.086 0.110
WeV | 0.433| 0.008 0.000 0.001 0.001 0.001] 0.141| 0.216 0.045 0.036 0.029 0.067
YV 0.472 | 0.008 0.000 0.000 0.000 0.005/ 0.201| 0.306 0.049 0.043 0.040 0.086
LS 0.724 | 0.005 0.000 0.000 0.001 0.000f 0.356| 0.135 0.080 0.063 0.071 0.112
WV | 0.780| 0.013 0.000 0.000 0.001 0.003 0.437| 0.355 0.053 0.046 0.049 0.121
RV 0.667 | 0.057 0.003 0.001 0.003 0.006| 0.326| 0.250 0.104 0.084 0.074 0.109
Avg 0.551 | 0.028 0.003 0.002 0.004 0.008] 0.252| 0.212 0.063 0.049 0.052 0.088

Table 2.0mission rates in the equalized area test for GARP thresbiold (left) and 10 (right). “Area” column is area of species’
potential distribution, as produced by GARP; other prédits are thresholded to give the same predicted area. THe{oas analyzed
are: maxent with linear (L); linear and quadratic (LQ); neguadratic and product (LQP); and threshold (T) feataed GARP.

Bird L LQ LQP T  GARP 1 1
GV 0.946 0.962 0.973 0.959 0.919 o

HV 0.870 0.957 0.955 0.963 0.835 =

PV 0.940 0.952 0.955 0.951 0.916 ; 05 05

PhV | 0.775 0.937 0.941 0.934 0.888 > '

BV 0.857 0.932 0.936 0.937 0.840 5

Ccv 0.846 0.916 0.929 0.924 0.831 8_ Loggerh. Sh. Yellow-th. V.

Bhv | 0.789 0.910 0.916 0.919 0.862 ) 0

WeV | 0.897 0.942 0.945 0.947 0.920 > 0 0.5 o 0.5 L

YV | 0849 0925 0.928 0.929 0.882 ~  false positive rate —EQP e [ — -~GARP
LS 0.789 0.837 0.850 0.847 0.794 - oo LlQ

WV | 0.644 0.836 0.840 0.840 0.742 Figure 2ROC curves for the first random partition of occur-
RV 0.761 0.858 0.865 0.869 0.805 rence localities of the Loggerhead Shrike and the Yelloredted
Avg 0.854 0910 0914 0919 0.862 Vireo. In both cases, maxent with linear features is the &we

curve, GARP is the second lowest, and the remaining three are

Table 3.AUC values averaged over 10 random partitions of oc-yery close together. Portions of LQ and T curves are obsduyed
currence localities. Predictions analyzed are as in Table 2 the LQP curve.

The maximizingy, must be either-\; or Eq. (1) with7|[f;] stop, during which the observer records all birds heard or
replaced byr[f;] — 3; (provided\; +a > 0) or [ f;] + 5; seen within 0.25 mile of the stop. Data from all fifty stops
(provided\; +a < 0). Thus, the best (for a givenf;) can  are combined to obtain the set of species observed on the
be computed by trying all three possibilities. Onfgeand  route. There are 4161 routes within the region covered by
a have been selected, we only need updgte— \; + .  the environmental coverages described below.
As before, this algorithm can be proved to converge to a ) )
solution to the problem described above. 3.2. Environmental Variables
Throughout our study we reduced tie to a sin- The environmental variables (coverages) use a North
gle regularization paramete? as follows. ~We expect American grid with 0.2 degree square cells, and are
i[f;] — 7[f]| = olf;]//m, wheres[f;] is the standard all included with the GARP distribution, available at
deviation off; underr. We therefore approximatet|f;] http://www.lifemapper.org/desktopgarp. Some coverages
by the sample deviatioh|[f,] and used; = 35[f;]/vm. &€ derived from weather station readings during the period
1961t01990 (New et al., 1999). Out of these we use annual
3. Experimental Methods precipitation, number of wet days, average daily tempera-
. . ture and temperature range. The remaining coverages are
3.1. The Breeding Bird Survey , derived from a digital elevation model for North America,
The North American Breeding Bird Survey (Sauer anqg consist of elevation, aspect and slope. Each coverage

et al., 2001) is a data set with a large amount of highys gefined over a 386 286 grid, of which 58,065 points
quality location data. It is good for a first evaluation of paye data for all coverages.

maxent for species distribution modeling, as the generous

guantities of data allow for detailed experiments and sta3.3. Experimental Design

tistical analyses. It has also been used to demonstrate the We chose 12 out of the 421 species included in the
utility of GARP (Peterson, 2001). Roadside surveys areBreeding Bird Survey to model, and considered a route to
conducted on standard routes during the peak of the nesbe an occurrence locality for a species if it had a presence
ing season. Each route consists of fifty stops located at 0.&cord for any year of the survey. The chosen species and
mile intervals. A three-minute count is conducted at eachthe number of routes where each has occurrence localities



are shown in Table 1. The occurrence data was divided intover ten partitions for all four versions of maxent. Lastly,
ten random partitions: in each partition, 50% of the occurto measure the effect of our acceleration method, we per-
rence localities were randomly selected for the training setformed runs using the first random partition for the Logger-
while the remaining 50% were set aside for testing. head Shrike and the Yellow-throated Vireo, both with and
We chose four feature types for maxent to use: the rawvithout line search forv (as described in Section 2), and
environmental variabledifear features); squares of envi- measured the log loss on both training and test data as a
ronmental variablegyiadraticfeatures); products of pairs function of running time.
of environmental variablep(oductfeatures); and binary _ ) _
features derived by thresholding environmental variables-4- Algorithm implementations o .
(thresholdfeatures). The latter features are equal to one For the maxent runs, we ran the iterative algorithm de-
if an environmental variable is above some threshold, angcribed in Section 2 for 500 rounds, or until the change in
zero otherwise. Use of linear features constrains the meaiie objective function on a single round fell belaw°.
of the environmental variables in the maxent distribution,For the regularization parametey to avoid overfitting the
linear plus quadratic features constrain the variance, whiléest data, we used the same setting)dffor all feature
linear plus quadratic plus product features constrain the cdypPes, except threshold features for which we useédIn
variance of pairs of environmental variables. Section 4.4, we describe experiments showing how sensi-
On each training set, we ran maxent with four differenttive our results are to the choice 6f
subsets of the feature types: linear (L); linear and quadratic  To reduce the variability inherent in GARP’s random
(LQ); linear, quadratic and product (LQP); and thresholdse?ﬂCh procedure, we made composite GARP predictions
(T). We also ran GARP on each training set. using the “best-subsets” procedure (Anderson et al., 2003),
The output of GARP and maxent have quite differentds was done in recent applications (Peterson et al., 2003;
interpretations. Nevertheless, each can be used to (paRaxworthy etal., 2004). We generated 100 binary models,
tially) rank all locations according to their habitability. To using GARP version 1.1.3 with default parameter values,
compare these rankings, we used receiver operating chardéen eliminated models with more than 5% intrinsic omis-
teristic (ROC) curves. For each of the runs, we calculatedion (negative prediction of training localities). If at most
the AUC (area under the ROC curve), and determined thé0 models remained, they then constituted the best subset;
average AUC over the ten occurrence data partitions. Seetherwise, we selected the 10 models whose predicted area
Section 3.5 for further discussion of this metric. was closest to the median of the remaining models. The
The AUC comparison is somewhat biased in maxent'scomposite prediction gives the number of best-subset mod-
favor, as a continuous prediction will typically have a €IS in which each point is predicted suitable (0-10). For
higher AUC than a discrete prediction. We therefore doCassin's Vireo, the best subset was empty for most random
a second comparison, where we select operating thresRartitions .of occurrence localities, so we mcre_ased the in-
olds for GARP that have been widely used in practice, andrinsic omission threshold to 10% for that species.
compare the algorithms only at those operating points. W% 5. ROC curves
call this an “equalized area test”, and the details are as fol-"" -
lows. We applied two thresholds to each GARP predic- An ROC curve shows the performance of a classifier
tion, namely 1 and 10, corresponding to at least one, c’jzvhose output depends on a threshold parameter. It plots
all, best-subset models predicting presence (see Section Tye positive rate against false positive rate for each thresh-
for GARP details). These are the most-often used GARPID. A point (, y) indicates that for some threshold, the
thresholds (Anderson & Martinez-Meyer, 2004). For eactclassifier classifies a fractionof negative examples as pos-
of the two resulting predictions, we set thresholds for thetlve: a_nd a fractlory Of positive exameles as positive. The
maxent models that result in prediction of the same are§UrVe s obtained by *joining the dots™.
(geographic extent) as GARP. The predictions, now binary, _1h€ area under an ROC curve (AUC) has a natural sta-
and with the same predicted area, are then simply compardtftical interpretation. Pick a random positive example and
using omission rates (fraction of test localities not predicted® fandom negative example. The area under the curve is

present). Again, averages were taken over the 10 randofi€ Probability that the classifier correctly orders the two
partitions of the occurrence data. points (with random ordering in the case of ties). A perfect

Most applications of species distribution modeling haveclassifier therefore has an AUC of 1. However, to use ROC

much less data available than for North American birds CY"Ve€s with presence_—only dat"_i’ we must interpret as “neg-
itive examples” all grid cells with no occurrence localities,

Indeed, species of conservation importance may have Ve € X "
tremely few georeferenced locality records, often fewereven if they support good environmental conditions for the

than 10. To investigate the use of maxent in such limite pecies. The maximum AUC is there_fore less f[han one_(W|-
data settings, we perform experiments using limited subse gy etal., 2003), and is smaller for wider-ranging species.
of the Breeding Bird data. We selected increasing subseti
of training data in each partition, ran all four versions of 4- Results
maxent, and took an average AUC over ten partitions. ~ 4.1. Equalized Area Test

In order to determine sensitivity of maxent to the value  The results of the equalized area test are in Table 2.
of § and its interaction with sample size, we varigéind  With a threshold of 1, GARP predicts large areas as having
the number of training examples and took an average AUGuitable conditions for the species, and all algorithms have
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Figure 3.Learning curvesAUC averaged over 10 partitions for four versions of maxent.Q, LQP and T) as a function of the number
of training examples. Numbers of training examples aretgdobn a logarithmic scale. We also include the average AUGHARP on
all training examples. Curves for the remaining speciek tpalitatively similar.

very low average omission (with the exception of GARP Linear models do not capture species distribution very well
on Cassin’s Vireo). A threshold of 10 causes less overand are included only for completeness. With the exception
prediction, and reveals more differences between the algaf the Plumbeous Vireo, three remaining versions of max-
rithms. The best results are obtained by maxent with twaent outperform L models already for the smallest training
of the feature sets (LQP and T). These two are superior tsets. LQP models become better than LQ for 30-40 train-
GARP on all species, often very substantially; LQ is supeding examples; their performance, however, matches that of

rior to GARP for all species but BhV. LQ already for smaller training sets. T models perform
. worse than both LQ and LQP for small training sets, but
4.2. ROC analysis they slightly outperform LQP once training sets reach 400

Table 3 shows the AUC for each species, averaged ovesxamples. Learning curves for species with large numbers
the 10 random partitions of the occurrence localities. EXof examples indicate that for both LQ and LQP about 50-

ample ROC curves used in computing the averages can b0 examples suffice for a prediction that is close to opti-
seen in Figure 2, which shows the performance of the almal for those models.

gorithms on the first random partition for the Loggerhead
Shrike and Yellow-throated Vireo. 4.4. Sensitivity to Regularization

The AUC for maxentimproves dramatically going from Figure 4 shows the sensitivity of maxent to the regu-
linear (L) to linear plus quadratic (LQ) features, with larization values for LQP and T versions of maxent. Due
a small further improvement when product features ardo the lack of space we do not present results for L and
added (LQP). The AUC for threshold features (T) is similarLQ versions, and give sensitivity curves for only four spe-
to LQP. For all species, the AUC for GARP is lower than cies. Curves for the remaining species look gualitatively
for all maxent feature sets except sometimes L. Note thasimilar. Note the remarkably consistent pealGat: 1.0
GARP is disadvantaged in AUC comparisons by not disfor threshold feature curves; theoretical reasons for this
tinguishing between points in its highest rank (those pointphenomenon require further investigation. For LQP runs,
predicted present in all best-subset models), as can be sepaaks are much less pronounced and do not appear at the
in Figure 2, where GARP loses area at the left end of thesame value off across different species. Benefits of regu-
ROC curve. Nevertheless, wherever GARP has data point&grization in LQP runs diminish as the number of training
maxent with the better feature sets is quite consistently agxamples increases (this is even more so for LQ and L runs,

good as or better than GARP. not presented here). This is because the relatively small
i _ number of features (compared with threshold features) nat-
4.3. Learning Curve Experiments urally prevents overfitting large training sets.

Figure 3 shows the AUC averaged over 10 partitions
for an increasing number of training examples on eight of4.5. Feature Profiles
the species. We also include GARP results for full train-  Maxent as we have described it returns a veatdinat
ing sets as a base line. As expected, models with a largaharacterizes the Gibbs distributigR(z) = e*f(*)/Zy
number of features tend to overfit small training sets, buminimizing the (regularized) log loss. When each feature
they give more accurate predictions for large training setsis derived from one environmental variable then the linear
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Figure 5.Feature profiles learned on the first partition of the Yelltweated Vireo. For every environmental variable, its additive
contribution to the exponent of the Gibbs distribution igegi as a function of its value. This contribution is the surfeatures derived
from that variable weighted by the corresponding lambdasfilBs for three types of maxent runs have been shifted foitgl— this
corresponds to adding a constant in the exponent; it hass\ewno effect on the resulting model since constants iexpenent cancel
out with the normalization factor.

value of environmental variable

additive contribution
to exponent

combination in the exponent gf can be decomposed into insufficiently regularized T model overfits heavily. Note
a sum of terms each of which depends on a single envirorthe rough agreement between LQ profiles and regularized
mental variable. Plotting the value of each term as a funcT profiles. Peaks in these profiles can be interpreted as in-
tion of the corresponding environmental variable we obtaintervals of environmental conditions favored by a species.
feature profiles for the respective variables. This decompoHowever, from a flat profile we may not conclude that the
sition can be carried out for L, LQ and T models, but notspecies distribution does not depend on the corresponding
for LQP models. Note that adding a constant to a profilevariable since variables may be correlated and maxent will
has no impact on the resulting distribution as constants isometimes pick only one of the correlated variables.

the exponent cancel out with,. For L models profiles )

are linear functions, for LQ models profiles are quadratict-6- Acceleration _

functions, and for T models profiles can be arbitrary step  For the LQP version of maxent, line search@sub-

functions. These profiles provide an easier to understanﬁ}almial"y a%celﬁrated gqnverg%nce wher& mealliredlin terms
characterization of the distribution than the veckor of log loss both on training and on test data. Log loss on
: . test data in the first partition decreased with running time
Figure 5 shows feature profiles for an LQ run on the(measured on a 1GHz Pentium) as follows:

first partition of the Yellow-throated Vireo and two T runs ~ .

with different values of3. The value ofg = 0.01 only Blgi Line search?  10s 50s ~ 100s  300s

prevents components dffrom becoming extremely large, no 10.424 10.205 10.131  10.068

-

but it does little to prevent heavy overfitting with numer- '\;\S/ ?/]?)S igégg 18-82; 18-3;; 190'4(,)513?
ous peaks capturing single training examples. Raisitmy YV yes 9540 9358 9339  9.334

1.0 completely eliminates these peaks. This is especially
prominent for the aspect variable where the regularized TThe observed acceleration is similar to that obtained by
as well as the LQ model show no dependence while th&oodman (2002). Line search made no discernible dif-



ference for threshold features. Indeed, while there is armlith, J. (2002). Quantitative methods for modeling spetiabitat: Com-
approximation made in the derivation afin Sections 2 parative performance and an application to Australiantpldn S. Fer-
and 2.2, the derivation is exact for binary features, hence son and M. Burgman (Eds.Ruantitative methods for conservation

. . . biology, 39-58. New York: Springer-Verlag.
line search is not needed. Maxent was much faster W|tréoodman, J. (2002). Sequential conditional generalizdtive scaling.

_thl‘eSh0|d features: log loss was With_in .001 of convergence Proceedings of the 40th Annual Meeting of the AssociatioiCtam-
in at most 50 seconds for both species. putational Linguistic{pp. 9-16).
Goodman, J. (2003).Exponential priors for maximum entropy models
lusi (Technical Report). Microsoft Research. (Available frottpti/re-
5. Conclusions search.microsoft.com/“joshuago/longexponentialgr&r
Species distribution modeling represents a scientificallyutchinson, G. E. (1957). CO_”:?'UO““Q remark€old Spring Harbor
important area that deserves the attention of the machine Symposia on Quantitative Biologh2, 415-427.

. . - L . alouf, R. (2002). A comparison of algorithms for maximuntrepy
learning community while presenting it with some interest- " parameter estimatiorRroceedings of the Sixth Conference on Natural

ing challenges. Language Learningpp. 49-55).
In this work, we have shown how to use maxent toMinka, T. (2001). Algorithms for maximum-likelihood logistic re-

. - T : :_ gression (Technical Report). ~CMU CALD. (Available from
predict species distributions. Maxent only requires posi hitp:/fwww.stat.cmu.edurminka/papers/fiogreg.htmi).

tive examples, and in our study, is substantially superior tQyew, M., Hulme, M., & Jones, P. (1999). Representing tweitentury
the standard method, performing well with fairly few ex-  space-time climate variability. Part 1: Development of 81:80 mean
amples, particularly when regularization is employed. The monthly terrestrial climatologyJournal of Climate 12, 829-856.

iliati~ idPeterson, A. T. (2001). Predicting species’ geographitibigions based
models generated by maxent have a natural probabilistic ir? on ecological niche modelinghe Condor 103 599605,

terpretation, giving a smooth gradation from most to Ieas;aeterson‘ A.T., Papes, M., & Kluza, D. A. (2003). Predicting poten-
suitable conditions. We have also shown that the models tia invasive distributions of four alien plant species iorth America.
can be easily interpreted by human experts, a property of Weed Sciencé&1, 863-868.

great practical importance. Peterson, A. T., & Robins, C. R. (2003). Using ecologicahkei model-

. . . T ing to predict barred owl invasions with implications forosied ow!
While maxent fits the problem of species distribution . \cervationConservation Biologyl7, 1161-1165.

modeling cleanly and effectively, there are many otherpeterson, A. T., & Shaw, J. (2003)utzomyiavectors for cutaneous leish-
techniques that could be used such as Markov random maniasis in southern Brazil: ecological niche models, jsted geo-
fields or mixture models. Alternatively, some of our as- graphic distribution, and climate change effedtgernational Journal

: : : _ of Parasitology 33, 919-931.
sumptions could be relaxed, mainly that of the indepen Ponder, W, F., Carter, G. A., Flemons, P., & Chapman, R. RI(REval-

dence. of sqmpling. .ln our fL_thre work, we plan to addre§S uation of museum collection data for use in biodiversityeasment.
sampling bias and include it in the maxent framework in  Conservation Biologyl5, 648-657.
a principled manner. We leave the question of alternativéraxworthy, C. J., Martinez-Meyer, E., Horning, N., NussbaR. A.,

techniques to attack this problem open for future research. Schneider, G.E., Ortega-Huerta, M. A., & Peterson, A. TO@0 Pre-
dicting distributions of known and unknown reptile spediedada-

gascarNature 426, 837-841.
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