
CMU JAVELIN System for NTCIR5 CLQA1

Frank Lin Hideki Shima Mengqiu Wang Teruko Mitamura
Language Technologies Institute

School of Computer Science
Carnegie Mellon University

{frank+, hideki, mengqiu, teruko}@cs.cmu.edu

Abstract

In this paper, we describe the JAVELIN Cross Lan-
guage Question Answering system, which includes
modules for question analysis, keyword translation,
document retrieval, information extraction and an-
swer generation. In the NTCIR5 CLQA1 evaluation,
our system achieved 7.5% and 10.0% accuracy in
the English-to-Chinese and English-to-Japanese sub-
tasks, respectively. An overall analysis and a detailed
module-by-module analysis are presented.

Keywords: Multi-lingual Question Answering, Infor-
mation Retrieval, Named Entity Translation.

1 Introduction

The JAVELIN system is a modular, extensible archi-
tecture for building question-answering systems [7].
The JAVELIN architecture is language-independent,
and we have been working to extend the original Eng-
lish version of JAVELIN for cross-language question
answering in Chinese and Japanese. Our submissions
to the NTCIR5 CLQA1 evaluation represent the first
evaluation of the JAVELIN system on a CLQA task.
Out of 13 groups participating in the CLQA1 task, we
are the only group to submit formal runs for both the
English-to-Chinese (EC) and the English-to-Japanese
(EC) subtasks. The same overall architecture was used
for both systems, allowing us to compare the perfor-
mance of the two systems on a per-module basis. We
did not use any external resources for query expan-
sion or information extraction. After analyzing the ob-
served performance of each module on the evaluation
data, we created gold standard data (perfect input) for
each module in order to determine upper bounds on
module performance.

2 JAVELIN Architecture

The JAVELIN system is composed of five main mod-
ules: Question Analyzer (QA), Translation Module
(TM), Retrieval Strategist (RS), Information eXtractor

(IX) and Answer Generator (AG). Inputs to the sys-
tem are processed by these modules in the order listed
above.

The QA module is responsible for parsing the input
question, choosing the appropriate answer type, and
producing a set of keywords. The TM module trans-
lates the keywords into task-specific languages. The
RS module is responsible for finding relevant docu-
ments which might contain answers to the question,
using translated keywords produced by the TM. The
IX module extracts answers from the relevant docu-
ments. The AG module normalizes the answers and
ranks them in order of correctness. The overall archi-
tecture is shown in Figure 1.

Figure 1. System Architecture

2.1 Question Analyzer

The Question Analyzer (QA) is responsible for ex-
tracting information from the input question in order to
formulate a representation of the information required
to answer the question. Input questions are processed
using the RASP parser [6], and the module output con-
tains three main components: a) selected keywords;
b) the answer type (e.g. numeric-expression, person-
name, location); and c) the answer subtype (e.g. au-
thor, river, city). The selected keywords are words or
phrases which are expected to appear in documents
which contain a correct answer. In order to reduce
noise in the document retrieval phase, we use stop-
word lists to eliminate high-frequency terms; for ex-

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan

ample, the term “old” is not included as a keyword for
“how-old” questions.

For the EJ and EC subtasks, the QA module trans-
lates keywords by calling the Translation Module (see
Section 2.2), so that translated keywords can be used
to retrieve documents from multilingual corpora.

2.2 Translation Module

The Translation Module (TM) is used by the QA mod-
ule to translate keywords into the language of the
target corpus. In our approach, the TM selects the
best combination of translated keywords from sev-
eral sources: Machine Readable Dictionaries (MRDs),
Machine Translation systems (MTs) and Web-mining-
Based Keyword Translators (WBMTs). For the EJ
subtask, we used two MRDs, eight MTs and one
WBMT. If none of them return translation, the word
is tranliterated into kana. See the details of transliter-
ation in Section . For the EC subtask, we used one
MRD, three MTs and one WBMT. The TM uses a
noisy channel model for keyword translation, and es-
timates model statistics using the World Wide Web as
a resource. Details of the model are described below.

2.2.1 The Noisy Channel Model

In the noisy channel model, an undistorted signal
passes through a noisy channel and becomes distorted.
Given the distorted signal, we are to find the origi-
nal, undistorted signal. IBM applied the noisy chan-
nel model idea to translation of sentences from aligned
parallel corpora, where the source language sentence
is the distorted signal, and the target language sentence
is the original signal [4]. We adopt this model for key-
word translation, with the source language keyword
terms as the distorted signal and the target language
terms as the original signal. The TM’s job is to find
the target language terms given the source language
terms, by finding the probability of the target language
terms given the source language termsP (T |S).

Using Bayes’ Rule, we can break the equation down
to several components:

P (T |S) =
P (T) · P (S|T)

P (S)

Because we are comparing probabilities of different
translations of the same source keyword terms, we can
simplify the problem to be:

P (T |S) = P (T) · P (S|T)

We can now reduce the equation down to two compo-
nents.P (T) is the language model andP (S|T) is the
translation model. If we assume independence among
the translations of individual terms, we can represent
the translation probability of a keyword by the product
of the probabilities of the individual term translations:

P (S|T) =
∏

i

P (si|ti)

2.2.2 Estimating Translation Model Probabilities

We make the assumption that terms that are trans-
lations of each other co-occur more often in mixed-
language webpages than terms that are not translations
of each other. We then define the translation probabil-
ity of each keyword translation as:

P (si|tt,j) =
log(co(si, ti,j))∑
j
log(co(si, ti,j))

Wheresi is thei-th term in the source language,ti,j is
thej-th translation candidate forsi, andco(si, ti,j) is
the number of web pages that contain bothsi andti,j ,
according to the search engine. Thelog function is
used to adjust the count so that translation probabilities
can still be comparable at higher counts.

2.2.3 Estimating Language Model Probabilities

In estimating the language model, we simply count the
number of pages in which all the terms in a set of tar-
get language term candidates co-occur, and divide that
count by the sum of the occurrences of the individual
terms:

P (T) =
co(t1, t2, ..., tn)∑

i
o(ti)

The final score of a translation candidate for a query
is the product of the translation model scoreP (S|T)
and the language model scoreP (T).

2.3 Retrieval Strategies

The Retrieval Strategist (RS) module retrieves docu-
ments from a corpus in response to a query. For doc-
ument retrieval, the RS uses the Lemur 3.0 toolkit [8].
Lemur supports structured queries using operators
such as Boolean AND, Synonym, Un-ordered and
NOT. An example of a structured query generated by
the RS is shown below:

#BAND (­ã×Æó�Ë9KÁüàµ�«ü
#SYN (*organization *person))

In deciding how to formulate a structured query,
the RS uses an incremental query relaxation tech-
nique, starting from an initial query that is highly con-
strained; the query formulation algorithm searches for
all the keywords and data types in close proximity to
each other. The priority is based on a function of
the likely answer type, keyword type (word, proper
name, or phrase) and the inverse document frequency
of each keyword. The query is gradually relaxed until
the desired number of relevant documents is retrieved
[7]. Language-specific corpus indexing is described in
Section 3.1 and Section 3.2.

2.4 Information Extraction

For the CLQA1 EC and EJ subtasks, we submitted
three formal runs using three different information ex-
tractors (IXes): FST IX, Light IX and Combo IX.

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan

FST IX is a trained pattern-based extractor. Light
IX uses simple distance-based algorithms on named-
entity-tagged corpora. Combo IX uses a combination
of the FST IX and Light IX modules. All of the IX
modules assume that the answer has been tagged with
the appropriate named entity tags in the corpus.

2.4.1 FST IX

The FST IX implements a set of finite state transduc-
ers which are modeled for each question type and cor-
responding answer sets drawn from training data [7].
Note that the pattern descriptions contains labels that
are expanded to synonyms which are created manu-
ally: e.g. “-Ë” can expanded to the regular expres-
sion “(-Ë|uË|u-|um|wm)”.

For each passage retrieved by the RS module, the
FST IX module applies all patterns in sequential or-
der, so that patterns with higher precision can be tried
earlier; the corresponding matched passages are there-
fore assigned higher confidence scores.

Table 1 shows an example of the trained FST model
(for “Who founded” questions), along with the num-
ber of times the pattern extracted the correct answer,
the number of times the pattern was matched, and the
corresponding precision score.

Table 1. Excerpt of Trained FST Model for
Who-Founded Questions

Pattern Description Correct Matched Precision
ANSWERk�
f-ËU�_ 66 336 0.196
KEYWORDnANSWER�w 6 29 0.207
KEYWORD#%/nANSWER 7 26 0.270
KEYWORDoANSWERLum 44 188 0.234
ANSWERL-Ë 2 5 0.400

One disadvantage of the FST IX approach is that it
requires a significant amount of training data; perfor-
mance is reduced when there is only a small amount of
training data available (for this task, we had 200 and
300 training examples for the EC and EJ subtasks, re-
spectively). For example, if a pattern was matched and
the correct answer was returned in just one case, the
pattern precision score on the training data will be 1,
which may result in overfitting the model to the train-
ing data. For this reason, FST IX performance is likely
to improve as more training data is made available.

2.4.2 Light IX

The Light IX module uses simple, distanced-based al-
gorithms to find a named entity that matches the ex-
pected answer type and is “closest” to all the keywords
according to some distance measure. The algorithm
considers as answer candidates only those terms that
are tagged as named entities which match the desired

answer type. The score for an answer candidatea is
calculated as follows:

Score(a) = α · OccScore(a) + β · DistScore(a)

Whereα + β = 1, OccScore is the occurrence score
andDistScore is the distance score. BothOccScore
andDistScore return a number between zero and one,
and likewiseScore returns a number between zero and
one. Usually,α is much smaller thanβ. The occur-
rence score formula is:

OccScore(a) =

∑n

i=1
Exist(ki)

n

Wherea is the answer candidate andki is thei-th key-
word, andn is the number of keywords.Exist returns
1 if thei-th keyword exists in the document, and 0 oth-
erwise. The distance score for each answer candidate
is calculated according to the following formula:

DistScore(a) =

∑n

i=1
1

Dist(a,ki)

n

This formula produces a score between zero and one.
If the i-th keyword does not exist in a document, the
equation inside the summation will return zero. If the
i-th keyword appears more than once in the document,
the one closest to the answer candidate is considered.
An additional restriction is that the answer candidate
cannot be one of the keywords. The Dist function is
the distance measure, which has two definitions:

1. Dist(a, b) = TokensApart(a, b)

2. Dist(a, b) = log(TokensApart(a, b))

The first definition simply counts the number of to-
kens between two terms. The second definition is a
logarithmic measure. TheTokensApart function re-
turns the number of tokens froma to b; if a andb are
adjacent, the count is 1; ifa and b are separated by
one token, the count is 2, and so on. A token can ei-
ther be a character or a word; for the EC subtask, we
used character-based tokenization, whereas for the EJ
subtask, we use word-based tokenization. By heuris-
tics obtained from training results, we used the linear
Dist measure for EC and logarithmicDist measure
for EJ in the formal run.

2.4.3 Combo IX

The Combo IX module implements a combination of
the FST IX and Light IX modules. We first applied the
FST IX trained with tight1 patterns, and subsequently,
applied the Light IX for questions where no answer
was found using the FST IX. Our underlying assump-
tions were that a) the first IX module does not produce
false-positive answers (i.e., the combination is a form
of back-off), and b) the first IX to run should produce
fewer answer candidates, with higher precision.

1“Tightness” is the term we use for describing how generic a
pattern is. For example, pattern “KEYWORD is ANSWER” is tighter
than pattern “KEYWORD(,.{,30},)? isANSWER”.

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan

2.5 Answer Generator

The task of the Answer Generator (AG) module is to
produce a ranked list of answer candidates from the IX
output. The AG is designed to normalize answer can-
didates by resolving representational differences (e.g.
in how numbers, dates, names etc. are expressed in
surface text). This canonicalization makes it possible
to combine answer candidates that differ only in sur-
face form.

Even though the AG module plays an important role
in JAVELIN, we did not use the full potential of the
AG in our EC and EJ systems due to the lack of cer-
tain language-specific resources, more details are dis-
cussed in Section 5.3.

3 Corpus Preprocessing

In this section, we discuss some of the language spe-
cific issues that are related to named entity tagging in
corpus.

3.1 Chinese Specific

We first tagged the Chinese corpus using the Chi-
nese Identifinder [3] from BBN. We used the toolkit
directly off-the-shelf, without additional training be-
cause of the lack of corpus-specific training data. Chi-
nese Identifinder was used to tag the following named
entities: ORGANIZATION, PERSON, LOCATION,
ARTIFACT, TIME and PERCENT. For the DATE and
MONEY entities, we used our original rule-based tag-
ger. We automatically removed any single-character
named entities (for ORGANIZATION, PERSON, and
LOCATION), since these are very unlikely in Chinese
text and were assumed to be erroneous.

In the end, we analyzed a random document sam-
ple to assess the performance of tagging. In general,
we find our named entity tagging performed best in
LOCATION, DATE, PERCENT, and MONEY; not as
well in PERSON; worst in ORGANIZATION and AR-
TIFACT.

3.2 Japanese Specific

Named entities convey important information for
question answering but are difficult to recognize be-
cause entity names are less likely to appear in existing
MRDs. For example, questions like “When did Sumie
Tanaka turn 88?” will be more difficult to answer than
questions like “Who is the 26th U.S. president?”, be-
cause they contain person names written in romanized
form (romaji), which must be mapped to the native
representation (e.g., kanji for Japanese names) that is
likely to appear in the target language corpus. Foreign
person names (e.g. “Bill Clinton”) are mapped to a
different representation (katakana).

Japanese corpus was preprocessed first by annotat-
ing named entities with bar [2] and chunking mor-
phemes with ChaSen [1]. In addition, for each named

entity, we also used ChaSen to tag character readings
in kana.

Indexing kana readings in the corpus and query-
ing in kana is a useful strategy for CLQA. Given a
question sentence with named entities in romaji, we
are able to retrieve related documents by searching for
kana terms which are transliterated from romaji. This
approach allows us to avoid the much harder task of
mapping romaji to kanji characters2.

On the other hand, transliteration can generate noise
when: a) misclassifying an English term as a Japanese
romaji term (e.g. home), or b) the mapping is am-
biguous (e.g. Okuma Kodo in romaji→ { Ookuma
Koudou, Oukuma Koudou, Okuma Koudou, ...in kana
}).

4 Result and Analysis

Our overall submission to the NTCIR CLQA1 task
included three submissions for the English-Chinese
(EC) subtask, and three submissions for the English-
Japanese (EJ) subtask. The three runs for each subtask
were carried out using the three different IX strategies
described in Section 2.4. 200 input questions were
provided for each of the subtasks. For each ques-
tion, only the top answer candidate that was returned
by the system was judged. Correct answers that were
not properly supported by the returned document were
judged to be unsupported answers.

4.1 Formal Run Results

Formal run results are shown in Table 2. The highest
accuracies for the EC and EJ subtasks are 7.5% and
10.0%, respectively, and both were achieved using the
Light IX.

Table 2. Formal Run Performance
EC EJ

Corra Unsupb Corra Unsupb

FST14 (7.0%) 19 (9.5%)17 (8.5%) 20 (10.0%)
LIGHT 15 (7.5%) 19 (9.5%)20 (10.0%) 25 (12.5%)

COMBO10 (5.0%) 12 (6.0%)17 (8.5%) 20 (10.0%)

aCorr – Answer which are correct and supported
bUnsup – Unsupported correct answer

4.2 Overall Analysis

We analyzed the number of successfully returned an-
swers and answer accuracy with respect to answer
type. Nine categories of answer type are given in Ta-
ble 3, together with the corresponding performance of
the system using the three different IX strategies.

In the EC subtask, about 70%(139 out of 200) of the
questions are about PERSON, LOCATION and OR-
GANIZATION. In the EJ subtask, there were many

2Romaji to kana transliteration is much less ambiguous than
romaji to kanji.

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan

fewer questions for these three types. Instead, about
half(98 out of 200) of the questions were temporal or
numerical questions.

For the EC subtask, all three IX strategies achieved
relatively higher accuracy on PERSON and LOCA-
TION questions, but lower accuracy on temporal and
numerical questions. For the EJ subtask, the system
had much higher accuracy on PERSON, ARTIFACT,
LOCATION and ORGANIZATION questions in com-
parison to EC (Light IX achieved 25.0% accuracy),
but because of the higher frequency of temporal and
numerical questions in the EJ subtask, the overall ac-
curacy of the EJ system is only slightly higher than the
EC system.

To our surprise, both Light IX and FST IX
outperformed the Combo IX. There was only one
case(PERSON) in the EC subtask where Combo IX
out-performed the other two approaches. In the EJ
subtask, we observed more cases in which the Combo
IX out-performed or matched the highest accuracy of
the other two approaches, but there were more cases in
which it failed to do so. The possible reasons for the
unexpectedly low performance of the Combo IX in the
formal run3 are discussed in Section 5.4 .

4.3 Module-by-Module Analysis

In order to gain different perspectives on the tasks
and our systems’ performance, a module-by-module
analysis was performed. This analysis was based on
gold-standard answer data, which also provides infor-
mation about the documents that contain the correct
answer for each question. We judged the QA mod-
ule by the accuracy of its answer type classification,
and the TM module by the accuracy of its keyword
translation. For the RS and IX modules, if a correct
document or answer is returned, regardless of its rank-
ing, we consider the module to be successful. To sepa-
rate the effects of errors introduced by earlier modules,
we created gold-standard data by manually correcting
answer-type and keyword translation errors. We also
create “perfect” IX input using the gold-standard doc-
ument set.

The results are shown in Table 4. Note that because
Light IX performed best in the formal run, for both
EC and EJ, we will focus our discussion on Light IX
in this section. More discussion about Combo IX and
FST IX can be found in Section 5.4

4.3.1 QA Performance

The QA module performed well in identifying the an-
swer type in both subtasks. As we can see from the
QAATYPE column in Table 4, the QA achieved 86.5% for
the EC subtask and 93.5% for the EJ subtask. An addi-
tional analysis of accuracy by answer type is shown in

3On the training data set, the FST IX and Combo IX performed
better than the Light IX, partly because of overfitting in FSTIX.

Table 5. Compared to rowTM+QAATYPE in Table 4, we
can see that further improvement of the answer type
accuracy via manual correction did not make a signif-
icant difference.

4.3.2 TM Performance

The average precision of translation was 69.3% for the
EC subtask and 72.6% for the EJ subtask. By taking
advantage of translation by web-mining, we could suc-
cessfully translate some named entities. Table 7 shows
some sample input and output pairs.

4.3.3 RS Performance

The RS module achieved an accuracy of 30.5% in the
EC subtask and 44.5% in the EJ subtask, as shown in
columnRSin Table 4. After manual correction of key-
word translation errors, we immediately gained over
20.0% accuracy in the RS module performance for
both the EC and EJ subtasks, as shown in rowTM
in Table 4. This shows that translation errors have
a significant negative impact on keyword-based doc-
ument retrieval. To further illustrate the difference be-
fore and after manual translation of keywords, a CLIR-
style analysis of the RS module is provided in Table 6.

For all the questions that showed an improved MRR
score after manual correction of keyword translation
errors, the TM failed to translate 43 and 88 keywords
in the EJ and EC subtasks, respectively. Among these
keywords, 65.0% for the EJ subtask and 43.0% for
the EC subtask were classified as proper nouns and
phrases by the QA module. Most of the proper nouns
are person, location and organization names. Refer-
ring back to the observation at the beginning of Sec-
tion 4.2 that the majority of the questions are drawn
from these three types, this helps to explain the 20.0%
accuracy gain achieved from corrected key term trans-
lation. Accurate translation of these types of keywords
without adequate context and background knowledge
is a challenging problem, even for humans. We did
an experiment in which the human translator for the
EC subtask was not allowed to reference the official
translation of the questions. The translation accuracy
was 85.5% when compared to the gold standard trans-
lation. This is an on-going research topic which leaves
a lot of room for future improvement, and our analysis
shows that improvements in this area are likely to have
a significant position impact on overall CLQA perfor-
mance.

4.3.4 IX Performance

In the formal run data (rowNonein Table 4), we ob-
served big accuracy drops at the RS module and after
the IX module for both the EC and EJ subtasks, and
bigger accuracy drops at the IX module for the EJ sub-
task. The drop in RS accuracy is expected, but the

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan

Table 3. Accuracy by Answer Type
EC EJ

Answer type #a Fb Lc Cd #a Fb Lc Cd

PERSON 79 6 7.6% 6 7.6% 7 8.9% 34 5 14.7% 5 14.7% 2 5.9%
LOCATION 45 4 8.9% 4 8.9% 3 6.7% 34 4 11.8% 4 11.8% 6 17.6%
ORGANIZATION 15 1 6.7% 1 6.7% 0 0.0% 13 1 7.7% 3 23.1% 2 15.4%
ARTIFACT 26 1 3.9% 2 7.7% 0 0.0% 21 1 4.8% 3 14.3% 1 4.8%
DATE 19 2 10.5% 2 10.5% 0 0.0% 25 1 4.0% 4 16.0% 1 4.0%
TIME 1 0 0.0% 0 0.0% 0 0.0% 14 0 0.0% 0 0.0% 0 0.0%
MONEY 5 0 0.0% 0 0.0% 0 0.0% 20 3 15.0% 1 5.0% 3 15.0%
NUMEX 10 0 0.0% 0 0.0% 0 0.0% 31 1 3.2% 0 0.0% 1 3.2%
PERCENT 0 0 - 0 - 0 - 8 1 12.5% 0 0.0% 1 12.5%

Overall 20014 7.0%15 7.5%105.0%20017 8.5%2010.0%17 8.5%

a# stands for the number of questions for each answer type
bF stands for FST IX
cL stands for Light IX
dC stands for Combo IX

Table 4. Performance from Partially Gold Standard Input
Gold Standard QAATYPE

a TMb RSc IXd
(MRRe) Accuf

(Unsupg)

EC

None 86.5%69.3%30.5%30.0%(0.130) 7.5% (9.5%)

TM 86.5% — 57.5%50.0%(0.254) 9.5%(20.0%)

TM+QAATYPE — — 57.5%50.5%(0.260) 9.5%(20.5%)

TM+QAATYPE+RS — — — 63.0%(0.489)41.0%(43.0%)

EJ

None 93.5%72.6%44.5%31.5%(0.116)10.0%(12.5%)

TM 93.5% — 67.0%41.5%(0.154) 9.5%(15.0%)

TM+QAATYPE — — 68.0%45.0%(0.164)10.0%(15.5%)

TM+QAATYPE+RS — — — 51.5%(0.381)32.0%(32.5%)

aAverage presicion of answer-type detection
bAverage presicion of keyword translation over 200 formal runquestions
cAverage precision of document retrieval. Counted if correctdocument was ranked between 1st–15th
dAverage precision of answer extraction. Counted if correctanswer was ranked between 1st–100th
eThe MRR measure of IX performance, calculated by averaging thesum of the reciprocal of each answer’s rank
fOverall accuracy of the system
gAccuracy including unsupported answers

EC EJ
A-type # of Qcorrect % # of Qcorrect %
PER 79 64 81% 34 34 100%
LOC 45 44 98% 34 33 97%
ORG 15 12 80% 13 8 62%
ARTI 27 23 85% 21 19 90%
DATE 18 18 100% 25 25 100%
TIME 1 1 100% 14 13 93%
MONEY 5 4 80% 20 18 90%
NUMEX 10 7 70% 31 29 94%
PCNT 0 0 - 8 8 100%

Sum 200 17386.5% 200 18793.5%

Table 5. QA Performance by Answer Type

No man-transWith man-trans
Rank EC EJ EC EJ

1 11 29 44 52
2-5 30 31 38 53
6-9 14 12 20 15

10-15 6 17 13 14
no match 139 111 85 66

Sum 200 200 200 200
MRR 0.12 0.22 0.31 0.37

Success Rate30.5% 44.5%57.5% 67.0%

Table 6. RS Evaluation: Number of cor-
rect documents by retrieved rank

Table 7. Examples of Named Entity Translation
English Chinese English Japanese

Milosevic s�
­G Ichiritsu Funabashi �Ë9K
WTO �L¿�DT Suzakumon 1À�
NMD �¶ÛH2� Sumie Tanaka 0-�_
NHK å,ã­T� Werner Spies �§ëÊüû·åÔü¹
Pakistan Liberation Organization�ú¯fã>DT Leisure Development CenterY��z»ó¿ü

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan

difference between Light IX performance in the EC
and EJ subtasks is surprising. After eliminating errors
carried over from earlier modules, the IX in the EC
and the EJ subtasks show a performance difference of
11.5%(63.0%-51.5%); see rowTM+QAATYPE+RS.

The Light IX used the same algorithm in the EC
and EJ subtasks, but with different distance measure
functions and differentα and β parameter settings.
The IX in the EC subtask achieved a higher MRR
score in all cases, and better accuracy in most cases
(except in the formal run). But the EC system had
worse overall accuracy than the EJ system, except in
theTM+QAATYPE+RScase. We cannot conclude at this
point which Light IX setting is more effective, because
other factors such as corpus tagging precision differ-
ences are involved. In general however, we found the
Light IX in the EC system to be more accurate and
produced more answer candidates.

Because the answer validation function was not yet
implemented in the AG module to filter out noise, the
overall accuracy of the EC and EJ systems is much
lower than the accuracy of the IX module in both
cases. We can see the degradation caused by the
noise in IX output by examining theTM+QAATYPE row
and TM+QAATYPE+RS row in the EC part of Table 4.
The accuracy of the IX differs only by 12.5%(63.0%-
50.5%), but this measure does not take into account
noise in other answer candidates. The effect of the
noise is delayed until the output of the AG module,
where a 31.5%(41.0%-9.5%) difference in overall an-
swer accuracies and a 22.5%(43.0%-20.5%) differ-
ence including unsupported answers are seen.

As the performance of the RS increased after
manual correction of keyword translation errors, the
IX module showed a similar increase in perfor-
mance of 20.0%(50.0%-30.0%) in the EC subtask and
10.0%(41.5%-31.5%) in the EJ subtask. But as we
increase the accuracy of RS from 57.5% in EC and
67.0% in EJ to 100.0%, by manually creating “per-
fect” RS output, the performance of the IX module did
not increase as much. The upper bound on IX perfor-
mance was 63.0% for the EC subtask and 51.5% for
the EJ subtask.

One observation regarding the differences between
the EC and EJ corpora drew our attention. We noticed
that although both subtasks had the same number of
questions(200), the EC corpus had more documents
(641) that contained an answer for some question(s)
when compared to the EJ corpus (314 documents). In
order to determine if this difference in document-to-
question density contributed to the performance differ-
ence in the IX modules, we did some additional analy-
sis. Although the document-to-question density differs
in the corpora for the EC and EJ subtasks, we found
that the numbers of retrieved correct documents were
very close – 133 documents in the EC task versus 134
documents in the EJ subtask. Therefore we can con-

clude that the difference we observed in the corpora
did not affect the performance of the IX module in our
evaluation.

5 Issues and Proposed Solutions

In this section, we discuss some issues that we ob-
served through our analysis, and propose possible
ways to improve the system.

5.1 Multiple Representations and Canonical-
ization

We noticed that multiple representations of the same
meaning sometimes occur in the corpus, and if we do
not treat them identically, it will affect retrieval and
extraction accuracy. A few examples are shown be-
low. Example (1) shows how the year is often writ-
ten in different ways in Japanese documents. Exam-
ple (2) shows how the dot symbol “Nakaguro” some-
times separates syllables in words written in katakana.
Example (3) is an example of orthographic variation
in the use of katakana to represent a proper name
(“Pinatubo”).

One way to tackle this issue would be to use
Lemur’s “SYN”(synonym) operator. To handle mul-
tiple representations of the year, we are able to gener-
ate and index different representations based on pre-
defined rules. For the “Nakaguro” problem, we may
be able to insert a Nakaguro between syllables (if we
can detect syllable boundaries using a lexicon). The
last problem is rather difficult to handle, because we
do not know whether automatically-generated repre-
sentational variants would have the same meaning as
original; any solution to this problem must take care
not to increase noise in document retrieval.

(1) (a)����t (2) (a)Æë¢ÓÖ (3) (a)ÔÊÄÜ
(b)��t (b)Æëû¢ÓÖ (b)ÔÊÈ¥Ü
(c)℄kt

5.2 Using answer subtype information in
Light IX

One type of information that the QA module produces
is the answer subtype information. Table 8 shows
some examples of questions and the subtype produced
by the QA module.

Table 8. Subtype examples
Question A-type Subtype
Which year did Nelson defeat the French navy?temporal year
What is the date of the World Asthma Day? temporal date
What is the height in meters of the Eiffel Tower?numerical length
How much in damages did Steven Herman claim?numerical money

This information is not being used in the current
Light IX module. To estimate the reliability of the

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan

subtype information, we collected all the subtype in-
formation produced by QA in both the training and
formal question set, for both EC and EJ subtasks, and
judged them by hand. There are in total 605 questions
in which subtype is given, and 586 of them(97%) were
judged correct.

Unlike FST IX, Light IX does not do any intelli-
gent semantic processing, and merely relies on cor-
pus tags and distance-based matching. Some of the
subtypes are too specific, e.g. “shrine” as a subtype
of ARTIFACT and “baseball fielder” as a subtype of
PERSON. Our tagger cannot tag these subtype infor-
mations in the corpus, and therefore are not very use-
ful for the Light IX. But we found that for numerical
and temporal questions, subtypes such as ‘year’ and
‘percentage’ are very informative and could be easily
tagged in the corpus. We plan to re-tag the corpus with
numerical and temporal subtypes and fine tune the pa-
rameters used in Light IX as a prelude to additional
experimentation.

5.3 Validation in the AG Module

In the JAVELIN system for English, the AG module
has a very important function – answer validation. An-
swer validation increases answer precision by elimi-
nating irrelevant answers produced by earlier modules.
It also boosts confidence scores for the correct answer
candidates, which raises their ranking in the candi-
date answer list. Quite often the correct answer is ex-
tracted, but not ranked as the top answer in our system.
Since only the topmost answer candidate is judged in
CLQA1, the answer validation step becomes crucial.
However, the validation process in JAVELIN utilizes
a set of knowledge-based and web-based approaches,
developed initially for English, which are not readily
applied to the CLQA task. To provide answer valida-
tion for CLQA is one of the key tasks in our future
work.

5.4 Integrating the JAVELIN Planner

Table 2 showed that the Combo IX module did not
work as effectively as we expected. One of the reasons
is that our initial assumption that the FST IX would
not produce many false-positive answers did not hold
in the formal run.

It is difficult to decide how much recall should be
sacrificed for accuracy when one IX module is used
in combination with others. In our experiment, sim-
ply combining the FST IX and the Light IX without
adjusting the “tightness” did not provide any improve-
ment. But for some question types, we observed in-
creases in performance when using the Combo IX.
This suggests that a selecting the best combination
of IX modules per question type might achieve better
overall performance. The JAVELIN system for Eng-
lish incorporates a Planner module which can select
among the set of available IX modules at run-time [5].

One of our future tasks involves adapting the Planner
for use in CLQA.

6 Conclusion

Our analysis of per-module performance from gold-
standard input shows that the QA module and the RS
module are already performing fairly well, but there is
still room in the IX module and the AG module for fu-
ture improvement. Also, we found that keyword trans-
lation accuracy greatly affects overall performance on
the CLQA task. We also discussed and presented so-
lutions to issues such as the canonicalization problem
in Japanese, the use of answer subtypes, and answer
validation.

Acknowledgements

This work was supported in part by the Advanced
Research and Development Activity (ARDA)’s
Advanced Question Answering for Intelligence
(AQUAINT) Program. We thank Matt Bilotti, Kerry
Hannan, Dave Svoboda, Jeongwoo Ko for their
assistance in building the CLQA JAVELIN system.
We also thank Eric Nyberg for his help in the final
preparation of this paper.

References
[1] M. Asahara and Y. Matsumoto. Extended Models and

Tools for High-performance Part-of-Speech Tagger.In
Proceedings of COLING 2000, July 2000.

[2] M. Asahara and Y. Matsumoto. Japanese Named En-
tity Extraction with Redundant Morphological Analy-
sis. HLT-NAACL, pages 8–15, 2003.

[3] D. Bikel, S. Miller, R. Schwartz, , and R. Weischedel.
Nymble: a High-Performance Learning Name-finder.
In Fifth Conference on Applied Natural Language
Processing, pages 194–201, 1997.

[4] P. Brown, J. Cocke, S. D. Pietra, V. D. Pietra, F. Jelinek.,
J. Lafferty, R. Mercer, and P. Roossin. A Statistical Ap-
proach to Machine Translation.In Computational Lin-
guistics, 16(2):38–45, 1990.

[5] L. S. Hiyakumoto. Planning in the JAVELIN QA Sys-
tem. Carnegie Mellon Computer Science Technical Re-
port CMU-CS-04-132, 2004.

[6] A. Korhonen and E. Briscoe. Extended Lexical-
Semantic Classification of English Verbs.Proceedings
of the HLT/NAACĹ04 Workshop on Computational Lex-
ical Semantics, pages 38–45, 2004.

[7] E. Nyberg, T. Mitamura, J. Callan, J. Carbonell,
R. Frederking, K. Collins-Thompson, L. Hiyakumoto,
Y. Huang, C. Huttenhower, S. Judy, J. Ko, A. Kupsc,
L. V. Lita, V. Pedro, D. Svoboda, and B. V. Durme. The
JAVELIN Question-Answering System at TREC 2003:
A Multi-Strategy Approach with Dynamic Planning.In
Proceedings of TREC 12, November 2003.

[8] P. Ogilvie and J. Callan. Experiments Using the Lemur
Toolkit. In Proceedings of the 2001 Text REtrieval Con-
ference (TREC 2001), pages 103–108, 2001.

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan

