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Force evaluation in the lattice Boltzmann method involving curved geometry
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The present work investigates two approaches for force evaluation in the lattice Boltzmann equation: the
momentum-exchange method and the stress-integration method on the surface of a body. The boundary con-
dition for the particle distribution functions on curved geometries is handled with second-order accuracy based
on our recent work§Mei et al, J. Comput. Phys155 307 (1999; ibid. 161, 680 (2000]. The stress-
integration method is computationally laborious for two-dimensional flows and in general difficult to imple-
ment for three-dimensional flows, while the momentum-exchange method is reliable, accurate, and easy to
implement for both two-dimensional and three-dimensional flows. Several test cases are selected to evaluate
the present methods, including) two-dimensional pressure-driven channel fldii) two-dimensional uni-
form flow past a column of cylindergijii) two-dimensional flow past a cylinder asymmetrically placed in a
channel(with vortex shedding (iv) three-dimensional pressure-driven flow in a circular pipe; @andhree-
dimensional flow past a sphere. The drag evaluated by using the momentum-exchange method agrees well with
the exact or other published results.
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[. INTRODUCTION exactly, because the moment integral can be replaced by
quadrature exactly up to a certain order §ni6-9]. With
velocity spacef properly discretized, Eq.l) reduces to a
The method of lattice Boltzmann equatiOnBE) solves  discrete velocity model of the Boltzmann equation:

A. Background of the lattice Boltzmann equation method

the microscopic kinetic equation for particle distribution
function f(x, &,t), where & is the particle velocity, in phase

1
—_rf —£(0)
space X,£) and timet, from which the macroscopic quanti- difat&a Via= N [fa— "] 2

ties (flow mass densityp and velocity u) are obtained

through moment integration df(x,&t). Because the solu- In the above equationf,(x,t)=f(x,£,,t) and f{%(x,t)
tion procedure is explicit, easy to implement and parallelize=()(x, £, ,t) are the distribution function and the equilib-
the LBE method has increasingly become an attractive altefium distribution function of theath discrete velocityé,, ,
native computational method for solving fluid dynamics respectively. Equatiof2) is then discretized in spaceand

problems in various systenjd—4]. The most widely used timet into
lattice Boltzmann equatiofil—4] is a discretized version of
the model Boltzmann equation with a single relaxation time

1
_ - _= ) — f(ed) .
approximation due to Bhatnagar, Gross, and KrgBigK  e(Xit €00t 80 —fo(x,0)= = —[f,(x .0 = 5904, 0],
mode) [5], ©)

wherer= A/, is the dimensionless relaxation time agdis

a discrete velocity vector. The coherent discretization of
space and time is done in such a way that e, d, is always
where f© is the Maxwell-Boltzmann equilibrium distribu- the displacement vector from a lattice site to one of its neigh-
tion function and\ is the relaxation time. The mass density POring sites. The equilibrium distribution fL_mCtid'(ch)(Xi 1)

p and momentum densityu are the first D+1) hydrody-  in the lattice Boltzmann equatia) is obtained by expand-

c?tf+§~Vf=%[f—f(°)], (1)

namic moments of the distribution functidgrand f©) in D ing the Maxwell-Boltzmann distribution function in Taylor

dimensions. It can be shown that the particle velocity sgace Series ofu up to second orddi6,7], and can be expressed in
can be discretized and reduced to a very small set of discre@eneral as

velocities {€,|@=1,2, ... b}, and the hydrodynamic mo-

ments off and f(®) as well as their fluxes can be preserved (eq)_ 3 9 2 3
fo ' =Wep| 1+ (6 U)+204(ea u) usl, (4

2¢?
*Electronic address: rnm@aero.ufl.edu wherec= 6,/ ; 6y is the lattice constant of the underlying
TElectronic address: ydz@aero.ufl.edu lattice space; and coefficient, depends on the discrete ve-
*Electronic address: wss@aero.ufl.edu locity set{e,} in D spatial dimensions. In what follows, we
$Electronic address: luo@icase.edu; http://www.icase-eliia/ shall use the lattice units af,=1 and,=1. The Appendix
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consequently lead to the unity of the local Courant-

FIG. 1. Discrete velocity sefe,}. Two-dimensional nine- Friedrichs-Lewy number, becausp=,=1.

velocity (D2Q9 model (top). Three-dimensional nineteen-velocity

(D3Q19 model (bottom). B. Boundary condition for a curved geometry
in the LBE method
provides the details of coefficiemt, and the discrete veloc- Consider a part of an arbitrary curved wall geometry, as

ity set{e,} for the two-dimensional nine-velocity model shown in Fig. 2, where the filled small circles on the bound-
(D2Q9 and the three-dimensional nineteen-velocity modelary, x,,, denote the intersections of the boundary with vari-
(D3Q19 [10]. Figure 1 shows the discrete velocity sets of ous lattice-to-lattice links. The fraction of an intersected link
the two models. It should be pointed out that there exist othein the fluid region A, is defined by
discrete velocity setée,} that have sufficient symmetry for
the hydrodynamic§6,7]. A comparative study of three three- A (x5 =Xl
dimensional LBE models including the fifteen-velocity - [ =Xy
model (D3Q15, the nineteen-velocity modéD3Q19, and
the twenty-seven-velocity modéD3Q27, in terms of accu-  Obviously the horizontal or vertical distance betwegrand
racy and computational efficiency has been conducted by, is A, on the square lattice, and<QA<1. In Eq. (5b),
Mei et al.[28]. It was found that the nineteen-velocity model he value off ,(x ,t) needs to be constructed according to
(D3Q19 offers a better combination of computational stabil- ihe |ocation of the boundary and the boundary conditions, if
ity and accuracy. The D2Q9 and D3Q19 models will be useqpe grig pointx;=x, lies beyond the boundary. In the past,
in this study for force evaluation in two-dimensional andthe bounce-back boundary condition has been use to deal
three-dimensional flows, respectively. Equatidhis conven-  ith 5 solid boundary in order to approximate the no-slip
ienty solved in two steps: boundary condition at the solid bounddfji—23. However,
it is well understood that this bounce-back boundary condi-

o~ 3 1 (eq) tion satisfies the no-slip boundary condition with a second-
collision: f,,(xi,t) =fa(xi,t) = —[Ta(xi, =170, D], order accuracyfor the Couette and Poiseuille float the
(53 location one-half lattice spacingAE1/2) outside of a
boundary node where the bounce-back collision takes place;
and this is only true with simple boundaries of straight line
parallel to the lattice grid18—-20. For a curved geometry,
simply placing the boundary halfway between two nodes
which is known as the LBGK schenid,2]. The collision  will alter the geometry on the grid level and degrade the
step is completely local and the streaming step is unifornaccuracy of the flow field and the force on the body at finite
and requires little computational effort, which makes E).  and higher Reynolds number. To circumvent this difficulty,
ideal for parallel implementation. The simplicity and com- Mei and Shyy solved Ed2) in curvilinear coordinates using
pact nature of the LBGK scheme, however, necessitate the finite difference method to computk, [24]. He and
use of the square lattices of constant spacifig=(6,), and  Doolen used body-fitted curvilinear coordinates with interpo-

(6)

streaming: f (X, +€,8; ,t+ 8) =1 (X ,1), (5b)
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lation throughout the entire mesh, except at the boundarie: 1.5 ' ' '
where the bounce-back boundary condition is uss. In

the recent works of Filippova and Hal [26] and Meiet al.

[27,28, a second-order accurate boundary condition for
curved geometry was developed in conjunction with the use
of Cartesian grid in order to retain the advantages of the LBE
method. An interpolation scheme is employed only at the

boundaries to obtaiff ,(x;,t). The detailed assessment on 0.5
the impact of the boundary condition on the accuracy of the
flow field have been given in Ref27] for some two- -1.0
dimensional flows and in Ref[28] for some three-
dimensional flows.

Because the bounce-back type boundary conditions play
an important role in lattice Boltzmann simulations, it is im-
portant for us to understand how the boundary conditions FIG. 3. Distribution of the pressure coefficieBt on the sur-
work. First of all, one must realize that it is impossible for face of a 2D circular cylinder of radius=6.6, and center-to-center
any kinetic numerical scheme to impose a given veloghg distanceH/r =20. The stagnation point is located &t 180°. The
Dirichlet boundary conditionon a given grid node, because LBE result denoted by symbok is obtained with7=0.6 and Re
the Knudsen layer type of phenomef29—31 would be ~ =40. The solid line is the result obtained by using a 3D multiblock,
manifested in kinetic schemé§48—20,32. For example, in body-leted grid, a_nd pressure-based Navier-Stokes solver with a
the Poiseuille and the Couette flows, the location where hymuch finer resolution.
drodynamic boundary conditions are satisfied are one-half . . -
grid spacing away from the boundary grids where thesu.n‘ace of aIC|rcuIar cylinder at finite Reynolds number ob-
bounce-back boundary conditions are impoEE&i-20. For talned by using the LBE method for floyv over a column of
flows around an arbitrary shaped body analytical solution§Ylinders(see Ref{27], and Sec. Il B. Figure 3 shows the
do not exist. Nevertheless, substantial evidence shows thRfessure coefficient
the bounce-back boundary conditions combined with inter-
polations, and including the one-half grid spacing correction szp_ P
at boundaries, are in fact second-order accurate and thus ca- ipu?’
pable of handling curved boundari¢g2,23,25,33 This
point is also demonstrated in the present work. on the surface obtained by using second-order extrapolation,
wherep.,, is the far upstream pressure. Only those boundary
points, x,,, intersected by the horizontal or vertical veloci-
ties, i.e.,e;, €3, 6, andey, are considered in the result given

In spite of numerous improvements in the LBE methodby Fig. 3. If the boundary points intersected by the links in
over the last several years, one important issue that has ntite diagonal velocities, i.ee,, €4, €5, andeg, are also con-
been systematically studied is the accurate determination afidered, the variation o would be more noisy. The com-
the fluid dynamic force involving curved boundaries. Need-ponents of the deviatoric stress tensor show a similar noisy
less to say, accurate evaluation of the force is crucial to theattern. It is not clear how the noise in the pressure and
study of fluid dynamics, especially in fluid-structure interac-stresses affect the accuracy of the fluid dynamic force in the
tion. Several force evaluation schemes, includingstress-integration method. While the programing in the ex-
momentum-exchang¢13,15 and integration of surface trapolation and integration is manageable in two-dimensional
stresg 25,34, have been used to evaluate the fluid dynamiccases, it is rather laborious in three-dimensidi3®) cases.
force on a curved body in the context of the LBE method. In Fig. 3, the LBE result ofZ,(6) (indicated by symbok)

He and Doolerj25] evaluated the force by integrating the is compared with that obtained by using a 3D multiblock,
total stress on the surface of the cylinder and the componentsody-fitted coordinates, and pressure-based Navier-Stokes
of the stress tensor were obtained by taking respective velosolver [35—37 with a much finer resolution: 201 points
ity gradients. Even though the body-fitted grid was used, amround the cylinder and the smallest grid size along the ra-
extrapolation was needed to obtain the stress in order to codial directiondr=0.026 (relative to the radius =1). Not
rect the half-grid effect due to the bounce-back boundarsurprisingly, the result obtained by using the Navier-Stokes
condition. Filippova and Heel [26] also developed a solver with body-fitted grids and a much finer resolution is
second-order accurate boundary condition for curved boundsmoother than the LBE result with a Cartesian grid of
aries. However, the fluid dynamics force on a circular cylin-coarser resolution. Nevertheless, the LBE solution still es-
der asymmetrically placed in a two-dimensional channel wasentially agrees with the Navier-Stokes solution.
obtained by integrating the pressure and deviatoric stresses Instead of the stress-integration method, Ladd used the
on the surface of the cylinder by extrapolating from themomentum-exchange method to compute the fluid force on a
nearby Cartesian grids to the solid boundgt§,34]. To gain  sphere in suspension floM3]. In the flow simulation using
insight into the method of surface stress integration, it isthe bounce-back boundary condition, the body is effectively
instructive to examine the variation of the pressure on theeplaced by a series of stairs. Each segment on the surface
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C. Force evaluation and related works
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has an area of unity for a cubic lattice. The force on each link [l. METHODS FOR FORCE EVALUATION
[halfway between two lattices at and x,= (X;+€,6;) in IN THE LBE METHOD

which x, resides in the solid regignresults from the
momentum-exchangg@er unit time¢ between two opposing
directions of the neighboring lattices

A. Second-order accurate no-slip boundary condition
for curved geometry

The analysis of boundary conditions for a curved bound-
1 ary in the lattice Boltzmann equation is accomplished by
5[eafa(xf)—e;fy(xf+ea5t)], applying Chapman-Enskog expansion for the distribution
t function at the boundary. The following approximation for
postcollision distribution function on the right-hand side of
. a: Whereas the momentum-exchang(_e Eq. (5b) can lead to a second-order accurate no-slip bound-
method is very easy to implement computationally, its appll—ar diti .
- y condition[26—-2§
cability and accuracy for a curved boundary have not been
systematically studied. To recapitulate, there are two major _ N 3
problems associated with the method of surface stress intef (xy ,t)=(1— x)fa(X;,1) + XT3 (Xp, 1) +2Wap — ;- Uy,
gration. First, the components of the stress tensor are often c
noisy on a curved surface due to limited resolution near the (7)
body and the use of Cartesian grids. The accuracy of such a
method has not been addressed in the literature. Second, théere
implementation of the extrapolation for the Cartesian com-
ponents of the stress tensor to the boundary surface and the
integration of the stresses on the surface of a three- £ (Xp, 1) =Wep(Xt 1)
dimensional geometry are very laborious in comparison with
the intrinsic simplicity of the lattice Boltzmann simulations 9 3
for flow field. The problems associated with the method of +—(ea~uf)2——u]?]
the momentum-exchange are as folloyas.The scheme was 4 2
proposed for the case with=1/2 at every boundary inter-
sectionx,, . Whether this scheme can be applied to the cases 3
where A#1/2, when, for example, the boundary is not = f(;Q)(xf )W, p(X¢ 1) = €, (Upg—Uy), 8
straight, needs to be investigatéd) As in the case of stress c
integration method, the resolution near a solid body is often
limited and the near wall flow variables can be noisy. If oneand
uses the momentum-exchange method to compute the total

in which e,=—¢

3
1+ — (€, Upy)
c

force, it is not clear what the adequate resolution is to obtain (2A—1)
reliable fluid dynamic force on a bluff body at a givémod- ~ Ups=Us=Ug(X; + €,0:,t),  x= =2 0<A<§,
erate value of Reynolds number, say, RO(107). (9a)

D. Scope of the present work

1 3 (2A-1)
ubf:ﬁ(ZA_s)uf"' o7 Y X= 5 1)

In what follows, two methods of force evaluation, i.e., the
stress-integration and the momentum-exchange methods,
will be described in detail. The shear and normal stresses on
the wall in a pressure driven channel flow will first be exam-
ined to assess the suitability of the momentum-exchange
method whenA#1/2 and analyze the errors incurred. The The above treatment is applicable for both the two-
results on the drag force for flow over a column of circulardimensional and three-dimensional lattice Boltzmann mod-
cylinders using these two methods will be subsequently ase|s.
sessed for the consistency. The drag coefficient at KO By substitution of Eq(8), Eq. (7) becomes
will be compared with the result of Fornbef88] obtained
by using a second-order accurate finite difference scheme
with sufficient grid resolution. For flow over a cylinder
asymmetrically placed in a channel atR&00, the unsteady 3
drag and lift coefficients were computed and compared with +W,p(Xs,t) 5€, (Ups—Us—2Uy).  (10)
the results in the literature. The momentum-exchange c
method is further evaluated for three-dimensional fully de-
veloped pipe flow and for a uniform flow over an two- Thus, the above treatment of curved boundary can be
dimensional array of spheres at finite Reynolds number. Wghought as a madification of the relaxatigie viscous ef-
found that the simple momentum-exchange method for forcéect) near the wall(with the relaxation parametey), in ad-
evaluation gives fairly reliable results for the two- ditional to a forcing term accounting for the momentum-
dimensional and three-dimensional flows. exchange effect due to the wall.

1
EsA<l. (9b)

Falxp 0 =Talx¢, 1) = x[Falxe, 1) — T ,1)]
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B. Force evaluation based on stress integration f L I
He and Doolenj25] evaluated the force by integrating the =Ny r
total stresses on the boundary of the cylindér, Ab,
Jj=Ny~-1 t
F=f dAn-{—pl+pr[(V:u)+(V:w)T]},  (12) y Vp \
a0 L' D1 " D2
T t
wheren is the unit out normal vector of the boundat$2. In / bz
Ref.[25], a body-fitted coordinate system together with grid j=2 %
stretching was used such that a large number of grids can be Aby
placed near the body to yield reliable velocity gradieus; . =1 .

In general,u is not the primary variable in the LBE simula-
tions and the evaluation af using 2 ,e,f, based onf,’s FIG. 4. The channel flow configuration in the LBE simulations
suffers a loss of accuracy due to the cancellation of two closeith an arbitraryA.

numbers inf ’'s; consequently, the evaluation of the deriva-

tive g;u; will result in further degradation of the accuracy. C. Method based on the momentum-exchange

Filippova [34] used a similar integration scheme to obtain | grder to employ the momentum-exchange method effi-
the_ dynamic force on the body.for t_he force on a cwcularcienﬂy, two scalar arraysy(i,j) andwy(i,j) are introduced.
cylinder [26] except that the deviatoric stresses were evaIuA value of 0 is assigned ta(i,j) for the lattice site i,j)
ated using the nonequilibrium part of the particle distributiony ¢ 4re occupied by fluid; a value of 1 is assigned(o,])

function[see Eq(13) below]. However, since the Cartesian ¢, those lattice nodes inside the solid body. The array
gnq Was_used, the stress vectors on the surface of the bo‘Wb(i ,j) is set to zero everywhere except for those boundary
(with arbitrary A) have to be computed through an eXtrapO'nodes,xb, where a value of 1 is assigned. For a given non-
lation procedure based upon the information in the flow field.,., . velocitye, ,e, denotes the velocity in opposite direc-

This leads to further loss of accuracy for finite lattice size 01 e e— e a(see Fig. 2 For a given boundary node

when the shear layer near the wall is not sufficiently re~ "' <iqd Hho solid region wittwy(i,j)=1 andw(i,j)=1
solved. b b ’ :

th -exch ith all ibl ighboring flui
In Eqg. (11), the pressur@ can be easily evaluated using e momentum-exchange with all possible neighboring fluid

, 2 nodes over a time steff=1 is
the equation of statp=cgp. For D2Q9 and D3Q19 models,
c§= 1/3 so thatp=p/3. The deviatoric stress for two-

dimensional incompressible flow ;o €l fa(Xp 1) + FalXp €6, ) J[1— WXy + €6 |-
7ij = pr(dilj+ i), (120 simply summing the contribution over all boundary nosgs

can be evaluated using the nonequilibrium part of the distri—beIonging to the body, the total for¢acted by the solid body

bution functionfMP=[f,— f(P] on the fluid is obtained as

1 F= e [T (%, 0)+ (X, + e85t
ea,iea,j_B ea‘eaéij)! a%b ;0 a[ a( b ) ;( b att )]

(13 X[1—W(xp+€;8,)]. (15)

1
T”:(l— Z—T)g £(ea x, t)

wheree,; ande,; areith andjth Cartesian component of |, the momentum-exchange method the fofcis evaluated

the dlscret_e velocitye, , respectively. For the_flow past a after the collision step is carried out and the valuef pfat
circular cylinder, a separate set of surface points on the cyIE1

inder can be introduced in order to carry out the numerica ounda:y glverr]] by E4.(7) zas_ betﬁn e\éaluated.t 'I;he
integration given by Eq(11). The values of the pressure and | omentum-exchange occurs during the subsequent stream-
each of the six components of the symmetric deviatorid"d Step wherf(xp,t+ &) andf,(x;,t+ &) move tox; and
stress tensor on the surface points can be obtained using¥a: "€Spectively. As mentioned in the introductory section,
second-order extrapolation scheme based on the valugs ofthe €ffect of variableA is not explicitly included, but it is
and;; at the neighboring fluid lattices. The force exerting onimplicitly taken into account in the determination of

the boundanpg ) is computed as fo (X, ,t+ 8;). The applicability of Eq(15) will be examined
and validated.

- _ _ Clearly, the force is proportional to the number of bound-
F= deAn«{— pl+pr[(V:u) +(V:U) Textapotated ary nodesy, in the above formula of and the number of the
(14) boundary nodes increase linearly with the size of the body in
a two-dimensional flow. However, since the force is normal-
It is worth commenting here that for the two-dimensionalized by pU?r in the formula forCp in two-dimensiongsee
flow past a cylinder, nearly half of the entire code was takerEq. (24)], the drag coefficien€y should be independent of
up by the above force evaluation procedure. r.
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ll. RESULTS AND DISCUSSIONS if they are correctly given. A linear extrapolation of the de-
For straight walls, there is no doubt that E#j1) together viatoric shear stresses yo=H=N,—3+2A yields
Wlth the equation of state for pressure and Ep) for 7 1.(er): T J =Ny = 1)+ A[ 7, (j=N,— 1)
gives accurate results for the force provided thgs are
accurately computed. To demonstrate the correctness of Eq. —Ty(i=Ny—2)], (17)

(15 based on the momentum exchange for an arbitfary

we first consider the pressure driven channel fleee Fig. Where the superscript(heg” denotes the value computed

4) for which exact solutions for the velocity and stresses ardrom f°?, the subscripw refers to the value at the wall.
known. The second case considered is the two-dimensiondlhe deviatoric normal stress§,§‘,’f“\,‘\‘), can be similarly com-
flow past a column of circular cylinders at Reynolds numbermputed. In a fully developed channel flow, the normal compo-
Re=100 andH/r =20, whereH is the distance between the nent of the deviatoric stress,,(y) is expected to be zero
centers of two adjacent cylinders. The values of the dragvhile the total normal stress,,(y) is equal to the negative
computed using the two force evaluation methods are thepressure { p). It needs to be pointed out that this method of
compared with the result of Fornbef88]. The dependence evaluating Tg;ev?,) given by Eg.(17) for two-dimensional

of the drag on the radius in the momentum-exchange channel flow is equivalent to the method of the surface stress
method is examined to assess the reliability of this methodintegration based on the extrapolated pressure and the devia-
The third case is the two-dimensional flow over a circulartoric stresses on the solid wall except that no numerical in-
cylinder that is asymmetrically placed in a channel at Retegration on the solid surface is needed.

=100 (with vortex shedding The time dependence of the  After the velocity profileu,(y) is obtained fromf ,, the
drag and lift coefficients is compared with results in litera- shear stress,, on the wall can also be calculated using the

ture. near wall velocity profile as

We also consider two cases of three-dimensional flow.
The first case is the pressure driven flow in a circular pipe for duy (2+A4) [0—u,(j=Ny—1)]
which the exact solutions for both the velocity profile and PV ay y=HTPY(1¥A) A

wall shear stresses are known. The assessment for the
momentum-exchange method for three-dimensional flows
will be made first in this case. Finally, the momentum-
exchange method will be evaluated by considering the drag )
on a sphere due to a uniform flow over a sphere in a finite —u(j=Ny=2)]. (18)
domain. The details of the flow field computation can be
found in Refs[27,28.

A .
—Pvm[ux(l =N,—1)

In the above, a linear extrapolation is employed to evaluate
the velocity derivative duy/dy)|,_y at the wall. Finally, the
_ _ _ exact solution for the fluid shear stress on the walH) is
A. Two-dimensional pressure-driven channel flow
1d

In the case Qf the channel flpw, the force on the top wall i))(/av(\:/t:_ —pH, H=N,—3+24, (19)
(y=H) at a given locationx (i=N,/2+1, say can be W2 dx
evaluated using the momentum-exchange method as follows. ) ) . )
The wall is located betweejn=N, andN,— 1 (Fig. 4. Thex based on the parabolic velocity profile or simple control vol-
andy components of the force on the fluid at the top wallUme analysis. This exact result can be used to assess the

near theith node are accuracy of the aforementioned methods for the force evalu-
ation.
Fo=[Fe(i,j)+Ta(i—1,—1)]esy In the LBE simulations, the pressure gradient is enforced
~ ~ ' through the addition of an equivalent body force after the
+[fg(i,j)+T4(i+1j—1)]egy, (168  collision step[25,28. While the velocity field given by the
LBE solution can be unique, the pressure fighis the den-
CPE o NATE i sity field p(x,y)] can only be unique up to an arbitrary con-
= + : R
Fy=[Te(i,)) +Tali=1i —1)]esy stant. In view of Eq.(18), it is difficult to compare the
F[Tgli,j)+Ta(i+1j—1)]eq stresses for different casesfi,j) converges to different
Y values in each case. To circumvent this difficulty, the density
+[F2(,0)+Ta(,i—1)eqy, (16b  field in the channel flow simulation is normalized byi

=2, j=N,/2) at every time step. This normalization proce-

wheree, ; denotes thgth Cartesian component of velocity dure results inp(x,y)=1 throughout the entire computa-
e,. Sinces,=1, F, andF, are, effectively, the total shear tional domain. It is also applied to the three-dimensional
and normal stresses,, ando, , which include the pressure flow in a circular pipe.
and the deviatoric stresses, on the fluid element-aH. Table | compares the numerical values of the shear stress

Based on Eq(13), the deviatoric component of the fluid for a typical case i,=35, dp/dx=—10"° in the lattice
shear stresses g N, —1 (ory=N,—3+A) andNy,—2 (or  units, and7=0.6) based onzgyw given by Eq.(19), Fy
y=N,—4+A) can be exactly evaluated based on the nongiven by Eg. (163, rﬁ(’quv) given by Eqg. (17), and
equilibrium part of the distribution functions in the flow field pv(du,/dy)|,—y given by Eq.(18). Also listed is the com-
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TABLE I. Comparison of fluid stresses gt=H in a two-dimensional pressure driven channel flow with
dp/dx=—1.0x 10" in the lattice unitsN, =35 andr=0.6 as a function oA. Column 2,— 7% given by
Eq. (19); Column 3, —F, given by Eq.(16a; Column 4, — 7% given by Eq.(17); Column 5,

—pv(du,/dy)|,—y EQq. (18); Column 6,—F, given by Eq.(16b); Column 7, pressure obtained in the

simulation.
A —Taaex10° —Fx10° —r0edx10° - p,,d_”x X106 —Fy p
dy ¥
0.01 1.601 1.6333 1.6010 3.5294 0.3333 0.3333
0.02 1.602 1.6333 1.6020 2.5555 0.3333 0.3333
0.03 1.603 1.6333 1.6030 2.2309 0.3333 0.3333
0.04 1.604 1.6333 1.6040 2.0685 0.3333 0.3333
0.05 1.605 1.6333 1.6050 1.9710 0.3333 0.3333
0.1 1.610 1.6333 1.6100 1.7760 0.3333 0.3333
0.2 1.620 1.6333 1.6200 1.6781 0.3333 0.3333
0.25 1.625 1.6333 1.6250 1.6583 0.3333 0.3333
0.3 1.630 1.6333 1.6300 1.6451 0.3333 0.3333
0.3333 1.633 1.6333 1.6330 1.6385 0.3333 0.3333
0.35 1.635 1.6333 1.6350 1.6357 0.3333 0.3333
0.4 1.640 1.6333 1.6400 1.6285 0.3333 0.3333
0.5 1.650 1.6333 1.6500 1.6184 0.3333 0.3333
0.6 1.660 1.6333 1.6600 1.6214 0.3333 0.3333
0.7 1.670 1.6333 1.6700 1.6244 0.3333 0.3333
0.8 1.680 1.6333 1.6800 1.6274 0.3333 0.3333
0.9 1.690 1.6333 1.6900 1.6305 0.3333 0.3333
0.95 1.695 1.6333 1.6950 1.6321 0.3333 0.3333
0.99 1.699 1.6333 1.6990 1.6335 0.3333 0.3333
parison betweeft, given by Eq.(16b) and —p. All compu- For the sheaftangential force, it is observed from Table
tations are carried out with double precision accuracy. | that for fixed dp/dx, F, does not change a& increases
It is noted thatriy) is identical tor$ e for all values of  from 0.01 to 0.99. On the other hand, the exact resfjtc"

A. A closer examination of the shear stress profile using Eq= 3(d p/dx)(N,—3+2A), increases linearly with. Further
(13) across the channel reveals thﬁquv)(y) is also equal to computations were carried out over a range Wf
the exact shear stress profif§*(y), which is linear, despite (=35, 67,99, and 131) andr (=0.505,0.51,0.52, 0.6,
the errors in the velocity profile,(y) for all values ofA. A 0.7,0.8,0.9,1.0,1.2,1.4, and 1.6). The results indicate that
linear extrapolation, Eq(17), for a linear profile therefore the momentum-exchange method gives the shear stress on
gives the exact wall shear stress. Thus, the exactnes§ff  the top wall as
in the LBE simulation of channel flow indicates the reliabil-
ity of the LBE solution for the stress field*%(x,y) by 1 dp
using Eq.(13). However, as Fig. 3 indicates, the accuracy of Fx=5 &( Ny—3+ 5)- (20
the integratingr{™*¥(x,y) to obtain the fluid dynamic force
in nontrivial geometries needs to be further investigated, as
will be discussed in the following sections. That is,F, is independent of andA. The error inF, is zero

For 0<A<1, the normal forceF, given by Eq.(16h)  whenA=1/3. The absolute error attains the maximum when
based on the momentum-exchange method agrees exactly=1, which gives the relative error of 43 for F,. Al-
with the pressure on the wall. This is a rather special quantitghough the frequently used momentum-exchange method is a
since deviatoric component of the force is identically zero.natural choice for the force evaluation in conjunction with
Nevertheless, the momentum-exchange method does givetlae bounce-back boundary condition o= 1/2, one must be
reliable value for the normal stress. aware of that this method is not exact and the error in the
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N

1.1

—(pvdu.)/(H.p/2)

=
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FIG. 5. The LBE simulations of the channel flow, with
=0.2,1/3,0.5, and 0.7. The pressure drop,js=—1.0x10 8 in
lattice units.(a) Ratio between the wall forceva,uy|,—y evaluated
by using Eq(18), and the exact value rf’y‘j"‘vit: —Ha,p/2, given by
Eq. (19) as a function ofr. (b) Normalized wall slip velocityu,, /u,
as a function ofr.

force evaluation using the momentum-exchange method d

pends omA and the resolution.

The error inF, is due to the fact that the derivatives of the
velocity field are not considered in the boundary conditions

This can be understood by analyzing Ef6a. At the steady
state, and with the approximation that

~ 1 3
F~ (V=100 —wp— (e, V)(e, 1), (20)
c
Eqg. (163 at the top wall becomes
3
Fyx~2w,p gez' (Ups+Us—2Uy), (22

where the substitution of Eq10) for T and g has been
made. The only term in the above equation which Bas
dependence ig,;. When 0<A1/2,F, is independent oA,
and when 1/Z2A<1,F, weakly depends ol becausau,
=0 in this casdsee Eqs(9)]. In the case wher&, is ob-
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tained by summing over a set of symmetric lattice points,
cancellations in the summation may further weaken the de-
pendence of, on A.

Table | also shows that for the shear stress based on taking
the derivative of the velocity, the loss of accuracy is quite
significant for small values of (<0.05) for r=0.6. For
other values ofA (=0.3), the accuracy is comparable with
that of F,. However, as shown in Fig.(8), the accuracy of
pv(d uX/dy)|y:H based on the near-wall velocity derivative
deteriorates as the relaxation timencreasegfrom 0.51 to
1.6). To see the cause of the increasing error in
pr(du,/dy)|,—y, Fig. 5b) shows dimensionless wall ve-
locity, u,,/u., obtained by a three-point second-order La-
grangian extrapolation of the near wall velocity(y) as a
function of 7. The increasing slip velocity,, on the wall
with the increasing relaxation time was also observed in
Ref.[14]. It is the result of increasing particle mean free path
that causes the deviation of the kinetic solution from the
hydrodynamic solution. It is clear that the poor performance
of pr(duy/dy)|,-y is associated with the increasing error in
the near wall velocity profile as increases. Since the stress
tensor;; can be calculated directly frorh, [see Eq.(13)]
without the need for directly computing velocity derivatives,
the force evaluation method based on the evaluation of the
velocity gradient in the form of Eq(12) is not recom-
mended.

B. Steady uniform flow over a column of cylinders

For a uniform flow over a column of circular cylinders of
radiusr and center-to-center distantk(see the left part of
Fig. 9 for illustration), symmetry conditions fof ,'s are im-
posed aty= *=H/2. Most of the details of flow field simula-
tion can be found in Ref[27]. The Reynolds number is
defined by the diameter of the cylinder as Re=Ud/v,
whereU is the uniform velocity in the inlet. It must be noted
that for a consistent determination of the force, the upstream

eD’oundary must be placed far upstream. A shorter distance

between the cylinder and the boundary will result in higher
drag. In this study, it is placed at about 20 radii to the left of
the center of the cylinder. Reducing the distance between the
boundary and the cylinder to 12.5 radii while keeping the
rest of the computational parameters fixed would increase
the drag coefficient by about 1.8% at R&00. The down-
stream boundary is located about 25—-30 radii behind the
cylinder to allow sufficient wake development. The simula-
tion is terminated when the following criterion based on the
relative L,-norm error in the fluid regiof) is satisfied,

EQ Jux; ,t+1)—u(x; b2

E,= <e. (23
> Ju(xi,t+1))2

XiE(2

In this casee=10 ¢ was chosen for both Re10 and 100.
Following Fornberd 38], the drag coefficient over a cir-
cular cylinder of radiug is defined as
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18, ~ "~ T T T ] TABLE II. The effect of the symmetry of computational mesh
C(a)O Re=100 ] . ,
C X momentum exchange ] on the force evaluation for the steady uniform flow over a column
L7r o O stress integration of cylinders. The Reynolds number R&0 (7=0.6), the radius of
L . the cylinderr=6.4 (in the lattice unite ofs,=1), andH/r=20.
1'6:_ B The variation ofCp due to the change of the center of cylinder
r 1 : . o
15F % ] offset from a grid point is less than 1%.
a [ ]
© 1afF .0 h A,=0, periodic BC aty=*H/2
Lab x xl>:<' - 0 ] Ay 0 0.2 0.4 0.6 0.8
:——————D——E————ﬁ—g———gmg—f Cp 3.3661  3.3637  3.3526  3.3526  3.3637
1.2 T
- o ] Ay=0, symmetric BC iny=*H/2
1.1 C L 1 L n 1 L 1 L n 1 n n 1 n n ]
2 4 6 8 10 12 14 A 0 0.2 0.4 0.6 0.8
T Co 3.3661 3.3666 3.3646 3.3667 3.3692
38y T T T T T T T T T T T T T T T T Re=10 |
X % momentum exchange cylinder are necessary to obtain reliable values of the force.
O stress integration | This is consistent with the finding by Ladid3]. In the range
3.4 0 x | of 5<r<7, the stress-integration method gives more scat-
-l X | tered result than the method of momentum-exchange. For
M xo X 3 X — smaller radii, i.e., coarser lattice resolution, while both meth-
Q - oX X & * X . . . .
© a | ods give poor resultgdue to insufficient resolution the
o T g B--- e stress integration yields much larger errors.
3.31 o I Figure b) comparesC obtained from the methods of
I momentum exchange and stress integration for R& The
momentum-exchange method seems to gives a converged re-
- sult at larger (>8). Based on the data for>8, an average
32 . L E T values of Cp~3.356 is obtained. In contrast, the stress-
2 4 6 8 10 12 14 integration method has a larger fluctuation than the large
T result from the momentum-exchange method ever fo8.

FIG. 6. The drag coefficient for a uniform flow past a column of Ayeraglng over the res.ults far>8, the stress integration
cylinders over a range of radius (3) Re=100. The dashed line 91V€S Cp~3.319. The difference between converged results

indicates the value o= 1.24 obtained in Ref38]. () Re=10.  Of two r_nethOdS is about 1%. Foﬂess th"’_‘n or around_ 5, the
The dashed lines indicate the valuesy averaged over the four fluctuation inCp, from the stress-integration method is much
largest radii. larger than that in the momentum-exchange method. The
conclusions from the comparisons in Fig. 6 are as follqws:
I both methods for force evaluation can give accurate regults;
Cpo=—2-. (24) (i) the momentum-exchange method gives more consistent
pU?r drag; and(iii) in the range of 18:Re<100, a resolution of
ten lattice spacings across the diameter of the cylinder are
Figure @a) compares Cp obtained from: momentum- needed in order to obtain consistent and reliable drag values.
exchange method, surface stress integration, and finite diffein other words, the latticgrid) Reynolds number Re
ence result of Fornbel@8] using a vorticity-stream function (=U/v) should be less than 10 in the calculations.
formulation at Re=100,H/r =20, and radius ranging from In the above results presented in Fig&)@and Gb), the
2.8 to 13.2. For >8, both methods of momentum-exchangecenter of the cylinder is placed on a lattice grid, thus the
and the stress integration give satisfactory result<fgrin computational mesh is symmetric with respect to the geom-
comparison with the value of 1.248 given in RE38]. The  etry of the cylinder. To test the effect of the mesh symmetry
small differences irCp could be due to the fact that in Ref. on the accuracy of the force evaluation, the calculation of the
[38], the computational domain is much larger in the down-flow at Re=10 is repeated with different values of the cyl-
stream direction—the downstream boundary condition is iminder center offsetA, in the x direction, or A, in the y
posed at 300 radii behind the cylinder in RE38], as op-  direction. The radius of the cylinder is deliberately chosen to
posed to 25—-30 radii here. This adds credence to the validitge only 6.4 lattice grids. In order to preserve the mirror sym-
of Eqg. (15 for evaluating the total force on a body. The metry of the flow in they direction, we use different bound-
values ofCp from the momentum-exchange method have aary conditions for upper and lower boundarig¢at y
little less variation than that from the stress integration. Ac-= +H/2). ForA,=0 while varyingA,, we use the symmet-
cepting an error of less than 5%, the reliable datadgrcan  ric boundary conditions, which maintain the flow symmetry
be obtained, using the momentum-exchange methody for with respect to the center line in thedirection. ForA,=0
>5. That is, ten lattice spacings across the diameter of thahile varying A, , we use the periodic boundary conditions
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aty=*+H/2, which are equivalent to the symmetric bound-
ary conditions(BC) when A =0, but better reflect the flow
symmetry whenA,#0. The results of the drag coefficient
Cp are presented in Table Il. The variation©f due to the
change of the center of cylinder offset from a grid point is
less than 1% when the cylinder diameter is only about 13
lattice spacings. The outcome is consistent with the expectet
truncation errors caused by mesh perturbation. We notice tha
the variation inCp due toA, is about one order of magni-
tude smaller than that due tb, . This is precisely because
when Ay=0 the mesh symmetry coincides with the flow
symmetry in they direction, and wher ,# 0 the mesh sym-
metry is lost. This asymmetry due tb,#0 results in the
change of the lift coefficient fronD(10 %4 to O(10 ?),
which is the same order of magnitude of the variatio€.
It is our observation that the accuracy of the force evaluation
schemes used here is dictated by that of the boundary cor gosF———— '
ditions at the solid walls. The error due to the symmetry of (b) ——— stl?gsl:nitﬁlfglgrea)i?gr?nge
the computational mesh with respect to the geometry of ar
object is well bounded. This is also observed in other inde-
pendent studieg22,33.

It is worth noting that the wall shear stress in the channelc
flow obtained by using the method of momentum-exchange—= 3.21
has a relative error proportional to the resolution across the
channel. For a resolution of 10—20 lattice spacings across th
diameter considered here, the relative error in the drag ap
pears, however, smaller than in the channel flow case. Al
Re=100, withr >10, the average value of the drag obtained
by using the method of momentum-exchange has a 1.7% 3-17
relative error comparing with Fornberg’'s d&tas]. If the
boundary layer thickness is estimated roughly to be
3x2r/\Re~6, there are only about six lattice spacings
across the boundary layer over which the velocity profile
changes substantially. Based on the insight from the channe
flow result, it is possible that the deviatoric shear stresses ot
the surface of the cylinder that are effectively incorporated in
the method of momentum exchange suffer comparable leve __ i
of error as in the channel flow. The effective error cancella-%> 2 48
tion over the entire surface of the body may have contributed< I
to the good convergence behavior in the drag shown in Figs

Cy(t)

2.50

2.49

6(a) and Gb). 2.47¢
C. Flow over an asymmetrically placed circular cylinder 2.46 I . .
in channel with vortex shedding 0 1000 2000 3000
Schder and Turek|{39] reported a set of benchmark re- t—ty

sults for a laminar flow over a circular cylinder of radius ) ) )
that is asymmetrically placed inside a channel. In the presen a?r?élYfrTer]e\/ jrliDaIilgnWsp;S:h?e C"ﬂ'Zizzfiﬁzame:r:gﬂléglig‘;?ﬁ'n a
study,r=12.8 is used and the center of the cylinder COIn-cientCD, and the pressure differenceP as functions of timet

cides with a grid point. The distance from the center of the L . )
. (after an initial run timety) are compared with the benchmark re-
cylinder to the upper wall and lower wall is, =4.2r and

- . . o sults in Ref.[39]. At time tq, the lift coefficientC,(t) attains its
h_=4.0r, respectively. This results i, =0.76 for the up- maximum valueC{"®. The dashed horizontal lines indicate the up-

per wall andA _=0.2 for the lower wall, respectively. The er and lower bounds in ReB9). The solid and dashed curves are
channel inlet has a parabolic profile and it is placed at foukpe results obtained by using momentum-exchange and stress-
radii upstream of the cylinder center according to the specimegration, respectivelya) The lift coefficientC, (t). Note that the
fication of the benchmark tef29]. This results i =0.2 for  yesults obtained by using the two methods are indistinguishable on
the inlet boundary. A zeroth-order extrapolation foy is  the graph.(b) The drag coefficien€(t). (c) The pressure differ-
used at the exit boundary that is located 40 radii downstrearance AP(t). The symbolX indicates the value oAP(ty+T/2)

of the cylinder center. Thus there are a total of 8805  given in Table Ill, whereT (~1296.5) is the period of (t).
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TABLE lII. Values of St,C3®, C"", C"*, C"", andA P for the flow over a 2D cylinder asymmetrically
placed in a channel. “Momentum” and “Stress” denote, respectively, the momentum-exchange method and
the stress-integration method in the LBE calculations. The CFD results are the bounds [[B9Refthich
does not have data f@3"™ andC"™".

Method St chax cyn cpax cpn AP
Momentum 0.3033 3.2358 3.1771 1.0045 —1.0347 2.4914
Stress 0.3033 3.2275 3.1708 1.0040 —1.0340 2.4914
CFD 0.2950-0.3050  3.2200-3.2400 0.9900-1.0100 2.4600-2.5000

square lattices in the flow field. For R@rU/»=100 based Maximum and minimum drag coefficie @™ and C{",
— ; imi ; i i max min
on the average inlet velocity, the use of relaxation time Maximum and minimum lift coefficien€ ™ andC™", and
=055 requiresU~0 0651 the pressure differencAP obtained by the LBE methods
At this Reynolds number, the flow becomes unsteady an('il.nd o.theF\[ ;:o;gpu_’:_e:}tmna: qun:A gy_namldSZFD) afc-t%es
periodic vortex shedding is observed. Figurés),77(b), and gl;]/en In e h[ . The va uhe I% IS meﬁsur_e 01 &
7(c), respectively, show time-dependent behaviors of the lift" ereto is the moment whert, (t) reaches its maximum

coefficient value C["™, andT is the periodicity ofC(t). For the LBE
simulations,T is between 1296 and 129ih the lattice unit
C = Fy of 6,=1). We useT=1296.5 in the determination of the
L pUZr’ Strouhal number St. With a resolution much coarser than

those used in Ref39], the LBE results are well within the

and the drag coefficier®, [see Eq(24)], and the pressure bounds given in Ref.39]. This clearly demonstrates the ac-
difference curacy of the lattice Boltzmann method.

Pt—Pb

AP= poUZ ! D. Pressure-driven flow in a circular pipe

The steady state flow field was obtained by using the
wherep; andpy, are the pressures at the front and the back 0D3Q19 model withr=0.52[28]. Eq.(15) is used to evaluate
the cylinder, respectively, angl, is the constant density im- the force on the boundary points along the circumference of
posed at the entrance. The data®f,Cp, and AP are the pipe over a distance of one lattice in the axial direction.
compared with the benchmark results in R&9]. We first  The resulting axial forc&, is, equivalently, the force given
note that the present numerical value of Strouhal numbeby 7,(27r 8,) wherer,, is the wall shear stress amds the
St=2r/UT is about 0.3033, wherE& is the period of the lift ~ pipe radius. For a fully developed flow inside a circular pipe,
curve. This agrees very well with the range of St valuesthe exact fluid shear stress at the pipe wall is given by
(0.2950-0.3050given in Ref.[39]. We note that the differ- exac 2dp
ence inC (t) between the momentum-exchange method and T 2mr)=ar ax (29
the surface stress-integration method is indiscernible graphi-
cally. For the drag coefficier@p(t), it is interesting to note
that althqugh there is about 0.25% difference between th@\e examine the normalized axial force,
results given by momentum-exchange method and the sur-
face stress-integration method, both methods of force evalu-
ation give two peaks in th€p(t) curves. Physically, these
two peaks in theC(t) curve correspond to the existence of
a weaker vortex and a stronger vortex alternately shed be-
hind the cylinder. The difference in the strength of the vorti-
ces results from the differenck:; /r=4.2 andh_/r=4.0in
the passages between the cylinder and the channel walls.
There is no report on the occurrence of these two peaks in
Ref.[39]. Instead, a range of the maximu®@y, (from 3.22 to
3.24) by different researchers was given. The present value
of the higher peak is well within the range. It is interesting to
note that both peaks d@(t) obtained by the momentum-
exchange method are also within the range, as shown in Fig. : ' ' '

7(b). A further refined computation of the present problem 0 5 10 15 =0 =5
using a multiblock procedur@O] with r =40 in the fine grid T
region yield nearly the same results 0p(t) andC (t). FIG. 8. The ratioy between the tangential fordg, on the pipe

We compile in Table Il the values of Strouhal number St,and its exact value#r2dp/dx) over a range of pipe radius
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y A file is imposed atj,=1.5 (halfway between the first and
- |l 71 outerboundary second lattices The upstream boundary is located at 7.5

! radii to the left of the sphere center in all simulations.
For flow over a sphere, the drag coefficient is often ex-

—u '\ : E | pressed as

— r > : e

— 2\/ x’ : < : Fx 24 Fx

— : ' Co=—7T"75— ¢ ¢p=——77—, (29

a %pUZﬂ-rzzR_e ' ~ 6mrUpy’

------------------------ il st where ¢ accounts for the non-Stokesian effect of the drag.
For two types of the boundary conditions gt +H/2 and
FIG. 9. Computational domain for the uniform flow past a Z= +H/2), ¢s denotes the non-Stokesian correction for the

sphere of radius. The dashed lines indicate boundaries of compu-ca@se where the symmetry conditions are imposedyat (
tational domain.(left) Unbounded domain in thay plane, and *=H/2 andz==H/2) and¢.. denotes the results for the case

(right) bounded domain in thgz plane. where the extrapolation fof, is used at y=*H/2 andz
=*+H/2) in order to simulate the unbounded flow.
E Figure 1Qa) shows the non-Stokesian coefficiefit, for
n=—. (26) r=3.0,3.2,3.4,3.6,3.8,4.0,5.1,5.2,5.4,5.6, and 5.8, for
Wrz@ H/r=10 at Re=10. The relaxation time is=0.7. With this
dx range ofr, the number of the boundary nodes on the surface

_ . o of the sphere increases roughly by a factor of (5.8/3)
Figure 8 shows the normalized coefficiepiover a range of  ~3.74; the actual counts of the boundary nodggjives a
r:3.5-23.5. Except for<5,7 is rather close to 1. It was ratio 2370/546-4.35. The largest difference is 1.9% between
noticed in Ref[28] that the accuracy of LBE solution for the r=3.0 andr=3.2 that have the least resolution in the cases
pipe flow is not as good as that for the two-dimensionalinvestigated. For a uniform flow over an unbounded sphere,
channel flow due to the distribution of values &faround  an independent computation using finite difference method
the pipe. The accuracy of the drag is dictated by the accuragyased on the vorticity-stream function formulation with high
of the flow field if the force evaluation method is exact. Forresolution gives a drag coefficiest~1.7986 at Re- 10. The
the pipe flow, the error irf, results from the inaccuracy in |argest difference between this result and the LBE results is
the flow field and the errors in the force evaluation scheme 369% atr=3.2. If the LBE data for the drag is averaged
pased on momentum exchan@es seen in the previous sec- gver the range of, one obtainsp~1.8086 that differs from
tion for the two-dimensional channel flow cas€&orr>5, 1.7986 by 0.54%. Hence, the LBE solutions with 210
the largest error inF, is about 3.5% and it occurs &t <58 yield very consistent values for the drag force. Figure
=15.5. Agaln, there is no SyStemaUC errorFiQ. Given the 10(b) shows the non-Stokesian correction factb{ for a
complexity of the boundary in this three-dimensional flow, yniform flow over a planar array of spheres for 810<5.8
the results shown in Fig. 8 are satisfactory in the sense that §,qH/r = 10, at Re=10. It is important to note that with the
adds further credence to the momentum-exchange methqghprovement of the surface resolution by a factor of 4.35,

for force evaluation. there is little systematic variation ig¢(r). The largest de-
. viation from the average valueps~1.963, is 1.1% atr
E. Steady uniform flow over a sphere =5.0. It is clear that the LBE solution gives reliable fluid

To limit the computational effort, a finite domain of dynamic force on a sphere e#3.5 for a moderate value of
—H/2<y<H/2 and —H/2<z<H/2, with H/r=10 is used Re. The set of data faps is inherently more consistent than
to compute the flow past a sphere of radiugsee Fig. 9. that for ¢.. since the symmetry boundary condition can be
Two cases are considere@) the flow past a single sphere, exactly specified ay=+H/2 andz=*=H/2, while the ex-
and(b) the flow over a two-dimensional array of sphetaf ~ trapolation conditions given by Eq$27) and (28) do not
located atx=0) with the center of the spheres forming guarantee the free stream condition yat *H/2 and z
square lattices. In the former case, the boundary conditions &t +H/2. Yet, both ¢.. and ¢, exhibit remarkable self-
jy=1 (y=H/2 corresponds tg,=2) for f,’s are given by consistency from coarse to not-so-coarse resolutions.
the following linear extrapolation

fo(ix: 1) =2F4(1x: 2 ) — falix.3J2). (27 IV. CONCLUSIONS

Two methods for evaluating the fluid force in conjunction
with the method of lattice Boltzmann equation for solving
U(jx, 202 =U(jx,3J2)- (28)  fluid flows involving curved geometry have been examined.
The momentum-exchange method is very simple to imple-
Similar treatment is applied 3t=H/2 andz= *H/2. Inthe  ment. It is shown in the channel flow simulation that the
latter case, symmetry conditions are imposedfgis at j, ~ momentum-exchange method is not an exact method. The
=1 by using the values df,’s atj,=3 (see Ref[27] for the  error in the wall shear stress is inversely proportional to the
two-dimensional cageAt the inlet, a uniform velocity pro- resolution. In two- and three-dimensional flows over a bluff

The velocity atj, =2 is set as
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3 4 5 6 APPENDIX: LBE MODELS IN TWO AND THREE
T DIMENSIONS
Y= s el o The nine-velocity LBE model on a two-dimensional
z.00r(®) Re=10 H/r=10 - square lattice, denoted as the D2Q9 model, has been widely

I O | used for simulations of two-dimensional flows. For three-

I = oU oo ] dimensional flows, there are several cubic lattice models,

R N ————g——| such as the fifteen-velocityD3Q19, nineteen-velocity

© 1.951 o o o | (D3Q19, and twenty-seven-velocity(D3Q27 models,

I =] o ] which have been used in the literatid®]. All these models
have a rest particléwith zero velocity in the discretized
velocity set{e,|a=0,1,...,0—1)}. For athermal fluids,

. ] the equilibrium distributions for the D2Q9, D3Q15, D3Q19,

1.90f O . and D3Q27 models are all of the following forf,7]:
3 9 3
3 4 5 6 (eq)_ ~ . 7 N2 22
- fo, /=W,p 1+Cz(ea u)+2c4(ea u) 202u ,
FIG. 10. Flow past sphere. Variation of the non-Stokesian cor- (A1)

rection factorp=—F, /67rU pv as a function of sphere radiust
Re=10. The dashed lines are values ¢{r) averaged over.
(a) The flow past a single sphere in an unbounded fiéldr & ).
(b) The flow past a planer array of spherés/{=10).

wherew,, is a weighting factor aneé, is a discrete velocity,
c=4,/6; is the unit speed, and, and &, are the lattice
constant and the time step, respectively. The discrete veloci-
ties for the D2Q9 models are

. , (0,0, a=0,
body, it can give accurate drag value when there are at least
ten lattice spacings across the body at-R€0. The method e,={ (£1,0)c,(0,x1)c, «@=1357, (A2
of integrating the stresses on the surface of the body gives (+1,=1)c, a=2,4,6,8,

similar results when there is sufficient resolution but it ex-
hibits much larger fluctuations than that in the method ofand the values of the weighting factar, are

momentum exchange when the resolution is limited. In ad- . a=0,

dition, the stress-integration method requires considerably 1 ,—1357 A3
more efforts in implementing the extrapolation and integra- Wa= i’ e (A3)
tion on the body surface in comparison with the method of 3, @=2,4,6,8.

momentum exchange.

It is interesting to note that the momentum—exchangé:Or the D3Q19 model, the discrete velocities are

method is perhaps superior to the stress-integration method [ (0,0), a=0,
because the former method is based directly on the distribLba: (+1,0,0)c,(0,+1,0)c,(0,0+1)c, a=1-6,
tion functlons Whlle' the Igtter is dgrlved from fur't.her pro- (+1+1,0¢,(0+1+1)c,(+1,0+1)c, a=7-18,
cessing of the distribution functions. In addition, the (Ad)

momentum-exchange method uses interpolations while the
stress-integration method uses extrapolations. Often extrapand the weighting factow,, is given by[7]

lations are more noisy and unstable than interpolations. Even L 4=0

with a coarse resolution that does not yield very accurate f ’

local information, accurate force evaluation can be accom- w,={ 180 @=1-6, (AS)
plished with the lattice Boltzmann method. Among the two L, a=7-18.

force evaluation methods, the method of momentum-
exchange is recommended for force evaluation on curved@he discrete velocity setée,} for the D2Q9 and D3Q19
boundaries for its simplicity, accuracy, and robustness. models are shown in Fig. 1.
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The density and velocity can be computed from

p=2 f,=2 159, (ABa)

pu=2; e,f,=> e, fle. (ABb)

The speed of sound of the above LBE models is

1
Cs=—=C,
RE]
and the equation of state is that of an ideal gas such that
p=cp. (A7)
The viscosity of the fluid is
_ A2
V=Cg\,

for the discrete velocity model of E¢R). It should be noted
that the equilibrium distribution functiofi®® is in fact a
Taylor series expansion of the Maxwellid®) [6,7]. This

PHYSICAL REVIEW E 65 041203

approximation off *® in algebraic form by making the LBE
method valid only in the incompressible flow limifc—0.

Equation(2) is often discretized in spaceand timet into
the lattice Boltzmann equation

i+ €80+ 80— a0 = ~ 2[1a(x,0~ 1590 ],
(A8)

wherer=\/6;. For this LBGK model[1,2], the viscosity in
the Navier-Stokes equation derived from the above lattice
Boltzmann equation is

1

T— 5) c26;. (A9)

v=

The — 1/2 correction in the above formula fercomes from
the second order derivatives f whenf (x;+e,6;,t+ &)

in Eq. (A8) is expanded in a Taylor series in This correc-
tion in » makes the lattice Boltzmann method formally a
second-order method for solving incompressible flgwk
Obviously, the physical and computational stabilities require
that 7>1/2.

[1] H. Chen, S. Chen, and W.H. Matthaeus, Phys. ReW5A
R5339(1992.

[2] Y.H. Qian, D. d’Humiees, and P. Lallemand, Europhys. Lett.
17, 479(1992.

[3] R. Benzi, S. Succi, and M. Vergassola, Phys. R&2, 145
(1992.

[4] S. Chen and G.D. Doolen, Annu. Rev. Fluid Me@&®, 329
(1998.

[5] P.L. Bhatnagar, E.P. Gross, and M. Krook, Phys. Rdy511
(1954).

[6] X. He and L.-S. Luo, Phys. Rev. &5, R6333(1997).

[7] X. He and L.-S. Luo, Phys. Rev. &6, 6811(1997).

[8] T. Abe, J. Comput. Phy<.31, 241 (1997.

[9] X. Shan and X. He, Phys. Rev. Le80, 65 (1998.

[10] Y.H. Qian, S. Succi, and S.A. Orszag, Annual Reviews of
Computational Physi¢sedited by D. Stauffer(World Scien-
tific, Singapore, 1995 \Vol. lll, pp. 195-242.

[11] D.P. Ziegler, J. Stat. Phy31, 1171(1993.

[12] I. Ginzbourg and P.M. Alder, J. Phys. 4] 191 (1994.

[13] A.J.C. Ladd, J. Fluid Mech271, 311(1994).

[23] A.J.C. Ladd and R. Verberg, J. Stat. Ph¥84, 1191(2002J.

[24] R. Mei and W. Shyy, J. Comput. Phys43 426 (1998.

[25] X. He and G. Doolen, J. Comput. Phyk34, 306 (1997.

[26] O. Filippova and D. Hael, J. Comput. Phy<.47, 219(1998.

[27] R. Mei, L.-S. Luo, and W. Shyy, J. Comput. Phy®5 307
(1999.

[28] R. Mei, W. Shyy, D. Yu, and L.-S. Luo, J. Comput. Ph§$§1,
680 (2000.

[29] M.N. Kogan, Rarefied Gas Dynamicglenum, New York,
1969.

[30] S. Harris, An Introduction to the Theory of the Boltzmann
Equation(Holt, Rinehart and Winston, New York, 19171

[31] C. Cercignani,The Boltzmann Equation and its Applications
(Springer-Verlag, New York, 1988

[32] R. Cornubert, D. d’Humiess, and D. Levermore, Physica D
47, 241(199)).

[33] D. d’Humieres, M. Bouzidi, and P. Lallemand, Phys. Rev. E
63, 066702(2002).

[34] O. Filippova(private communication

[35] W. Shyy, Computational Modeling for Fluid Flow and Inter-

[14] D.R. Noble, S. Chen, J.G. Georgiadis, and R.O. Buckius, Phys.  facial Transport(Elsevier, Amsterdam, 1994

Fluids 7, 203 (1995.

[15] O. Behrend, Phys. Rev. &2, 1164(1995.

[16] T. Inamuro, M. Yoshino, and F. Ogino, Phys. Fluids2928
(1995.

[17] S. Chen, D. Marhez, and R. Mei, Phys. Fluid 2527(1996.

[18] I. Ginzburg and D. d’Humiges, J. Stat. Phy84, 927 (1996.

[19] X. He, Q. Zou, L.-S. Luo, and M. Dembo, J. Stat. Ph§g,
115 (1997).

[20] L.-S. Luo, J. Stat. Phys38, 913(1997.

[21] Q. Zou and X. He, Phys. Fluidg 1591(1997.

[22] M. Bouzidi, M. Firdaouss, and P. Lallemand, Phys. Flui@s
3452(2001).

[36] W. Shyy, S.S. Thakur, H. Ouyang, J. Liu, and E. Bloschm-
putational Techniques for Complex Transport Phenomena
(Cambridge University Press, Cambridge, 1997

[37] S. Thakur, W. Shyy, H.S. Udaykumar, and L. Hill, Numer.
Heat Transfer, Part B3, 367 (1998.

[38] B. Fornberg, J. Fluid Mech225, 655(1991).

[39] M. Schder and S. Turek, inFlow Simulation with High-
Performance Computers,ledited by E.H. Hirschel, Notes in
Numerical Fluid MechanicgVieweg, Braunschweig, 1996
Vol. 52, pp. 547-566.

[40] D. Yu, R. Mei, and W. Shyy, Int. J. Numer. Methods Fluits
be published

041203-14



