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Force evaluation in the lattice Boltzmann method involving curved geometry
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The present work investigates two approaches for force evaluation in the lattice Boltzmann equation: the
momentum-exchange method and the stress-integration method on the surface of a body. The boundary con-
dition for the particle distribution functions on curved geometries is handled with second-order accuracy based
on our recent works@Mei et al., J. Comput. Phys.155, 307 ~1999!; ibid. 161, 680 ~2000!#. The stress-
integration method is computationally laborious for two-dimensional flows and in general difficult to imple-
ment for three-dimensional flows, while the momentum-exchange method is reliable, accurate, and easy to
implement for both two-dimensional and three-dimensional flows. Several test cases are selected to evaluate
the present methods, including:~i! two-dimensional pressure-driven channel flow;~ii ! two-dimensional uni-
form flow past a column of cylinders;~iii ! two-dimensional flow past a cylinder asymmetrically placed in a
channel~with vortex shedding!; ~iv! three-dimensional pressure-driven flow in a circular pipe; and~v! three-
dimensional flow past a sphere. The drag evaluated by using the momentum-exchange method agrees well with
the exact or other published results.

DOI: 10.1103/PhysRevE.65.041203 PACS number~s!: 47.10.1g, 47.11.1j, 05.20.Dd
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I. INTRODUCTION

A. Background of the lattice Boltzmann equation method

The method of lattice Boltzmann equation~LBE! solves
the microscopic kinetic equation for particle distributio
function f (x,j,t), wherej is the particle velocity, in phase
space (x,j) and timet, from which the macroscopic quant
ties ~flow mass densityr and velocity u) are obtained
through moment integration off (x,j,t). Because the solu
tion procedure is explicit, easy to implement and paralleli
the LBE method has increasingly become an attractive a
native computational method for solving fluid dynami
problems in various systems@1–4#. The most widely used
lattice Boltzmann equation@1–4# is a discretized version o
the model Boltzmann equation with a single relaxation ti
approximation due to Bhatnagar, Gross, and Krook~BGK
model! @5#,

] t f 1j•“ f 5
1

l
@ f 2 f (0)#, ~1!

where f (0) is the Maxwell-Boltzmann equilibrium distribu
tion function andl is the relaxation time. The mass dens
r and momentum densityru are the first (D11) hydrody-
namic moments of the distribution functionf and f (0) in D
dimensions. It can be shown that the particle velocity spacj
can be discretized and reduced to a very small set of disc
velocities $jaua51,2, . . . ,b%, and the hydrodynamic mo
ments off and f (0) as well as their fluxes can be preserv
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exactly, because the moment integral can be replaced
quadrature exactly up to a certain order inj @6–9#. With
velocity spacej properly discretized, Eq.~1! reduces to a
discrete velocity model of the Boltzmann equation:

] t f a1ja•“ f a5
1

l
@ f a2 f a

(0)#. ~2!

In the above equation,f a(x,t)[ f (x,ja ,t) and f a
(0)(x,t)

[ f (0)(x,ja ,t) are the distribution function and the equilib
rium distribution function of theath discrete velocityja ,
respectively. Equation~2! is then discretized in spacex and
time t into

f a~xi1ead t ,t1d t!2 f a~xi ,t !52
1

t
@ f a~xi ,t !2 f a

(eq)~xi ,t !#,

~3!

wheret5l/d t is the dimensionless relaxation time andea is
a discrete velocity vector. The coherent discretization
space and time is done in such a way thatdx5ead t is always
the displacement vector from a lattice site to one of its nei
boring sites. The equilibrium distribution functionf a

(eq)(xi ,t)
in the lattice Boltzmann equation~3! is obtained by expand
ing the Maxwell-Boltzmann distribution function in Taylo
series ofu up to second order@6,7#, and can be expressed i
general as

f a
(eq)5warF11

3

c2
~ea•u!1

9

2c4
~ea•u!22

3

2c2
u2G , ~4!

wherec[dx /d t ; dx is the lattice constant of the underlyin
lattice space; and coefficientwa depends on the discrete ve
locity set $ea% in D spatial dimensions. In what follows, w
shall use the lattice units ofdx51 andd t51. The Appendix
©2002 The American Physical Society03-1
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provides the details of coefficientwa and the discrete veloc
ity set $ea% for the two-dimensional nine-velocity mode
~D2Q9! and the three-dimensional nineteen-velocity mo
~D3Q19! @10#. Figure 1 shows the discrete velocity sets
the two models. It should be pointed out that there exist ot
discrete velocity sets$ea% that have sufficient symmetry fo
the hydrodynamics@6,7#. A comparative study of three three
dimensional LBE models including the fifteen-veloci
model ~D3Q15!, the nineteen-velocity model~D3Q19!, and
the twenty-seven-velocity model~D3Q27!, in terms of accu-
racy and computational efficiency has been conducted
Mei et al. @28#. It was found that the nineteen-velocity mod
~D3Q19! offers a better combination of computational stab
ity and accuracy. The D2Q9 and D3Q19 models will be us
in this study for force evaluation in two-dimensional a
three-dimensional flows, respectively. Equation~3! is conven-
ienty solved in two steps:

collision: f̃ a~xi ,t !5 f a~xi ,t !2
1

t
@ f a~xi ,t !2 f a

(eq)~xi ,t !#,

~5a!

streaming: f a~xi1ead t ,t1d t!5 f̃ a~xi ,t !, ~5b!

which is known as the LBGK scheme@1,2#. The collision
step is completely local and the streaming step is unifo
and requires little computational effort, which makes Eq.~5!
ideal for parallel implementation. The simplicity and com
pact nature of the LBGK scheme, however, necessitate
use of the square lattices of constant spacing (dx5dy), and

FIG. 1. Discrete velocity set$ea%. Two-dimensional nine-
velocity ~D2Q9! model ~top!. Three-dimensional nineteen-velocit
~D3Q19! model ~bottom!.
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consequently lead to the unity of the local Coura
Friedrichs-Lewy number, becaused t5dx51.

B. Boundary condition for a curved geometry
in the LBE method

Consider a part of an arbitrary curved wall geometry,
shown in Fig. 2, where the filled small circles on the boun
ary, xw , denote the intersections of the boundary with va
ous lattice-to-lattice links. The fraction of an intersected li
in the fluid region,D, is defined by

D5
ixf2xwi
ixf2xbi . ~6!

Obviously the horizontal or vertical distance betweenxb and
xw is Ddx on the square lattice, and 0<D<1. In Eq. ~5b!,
the value of f̃ a(xi ,t) needs to be constructed according
the location of the boundary and the boundary conditions
the grid pointxi5xb lies beyond the boundary. In the pas
the bounce-back boundary condition has been use to
with a solid boundary in order to approximate the no-s
boundary condition at the solid boundary@11–23#. However,
it is well understood that this bounce-back boundary con
tion satisfies the no-slip boundary condition with a seco
order accuracy~for the Couette and Poiseuille flows! at the
location one-half lattice spacing (D51/2) outside of a
boundary node where the bounce-back collision takes pl
and this is only true with simple boundaries of straight li
parallel to the lattice grid@18–20#. For a curved geometry
simply placing the boundary halfway between two nod
will alter the geometry on the grid level and degrade t
accuracy of the flow field and the force on the body at fin
and higher Reynolds number. To circumvent this difficul
Mei and Shyy solved Eq.~2! in curvilinear coordinates using
a finite difference method to computef a @24#. He and
Doolen used body-fitted curvilinear coordinates with interp

FIG. 2. Layout of the regularly spaced lattices and curved w
boundary. The circles (s), discs (d), shaded discs (s), and dia-
monds (L) denote fluid nodes, boundary locations (xw), solid
nodes that are also boundary nodes (xb) inside solid, and solid
nodes, respectively.
3-2
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FORCE EVALUATION IN THE LATTICE BOLTZMANN . . . PHYSICAL REVIEW E65 041203
lation throughout the entire mesh, except at the bounda
where the bounce-back boundary condition is used@25#. In
the recent works of Filippova and Ha¨nel @26# and Meiet al.
@27,28#, a second-order accurate boundary condition
curved geometry was developed in conjunction with the
of Cartesian grid in order to retain the advantages of the L
method. An interpolation scheme is employed only at
boundaries to obtainf̃ a(xi ,t). The detailed assessment o
the impact of the boundary condition on the accuracy of
flow field have been given in Ref.@27# for some two-
dimensional flows and in Ref.@28# for some three-
dimensional flows.

Because the bounce-back type boundary conditions
an important role in lattice Boltzmann simulations, it is im
portant for us to understand how the boundary conditi
work. First of all, one must realize that it is impossible f
any kinetic numerical scheme to impose a given velocity~the
Dirichlet boundary condition! on a given grid node, becaus
the Knudsen layer type of phenomena@29–31# would be
manifested in kinetic schemes@18–20,32#. For example, in
the Poiseuille and the Couette flows, the location where
drodynamic boundary conditions are satisfied are one-
grid spacing away from the boundary grids where
bounce-back boundary conditions are imposed@18–20#. For
flows around an arbitrary shaped body analytical soluti
do not exist. Nevertheless, substantial evidence shows
the bounce-back boundary conditions combined with in
polations, and including the one-half grid spacing correct
at boundaries, are in fact second-order accurate and thu
pable of handling curved boundaries@22,23,25,33#. This
point is also demonstrated in the present work.

C. Force evaluation and related works

In spite of numerous improvements in the LBE meth
over the last several years, one important issue that has
been systematically studied is the accurate determinatio
the fluid dynamic force involving curved boundaries. Nee
less to say, accurate evaluation of the force is crucial to
study of fluid dynamics, especially in fluid-structure intera
tion. Several force evaluation schemes, includ
momentum-exchange@13,15# and integration of surface
stress@25,34#, have been used to evaluate the fluid dynam
force on a curved body in the context of the LBE method

He and Doolen@25# evaluated the force by integrating th
total stress on the surface of the cylinder and the compon
of the stress tensor were obtained by taking respective ve
ity gradients. Even though the body-fitted grid was used,
extrapolation was needed to obtain the stress in order to
rect the half-grid effect due to the bounce-back bound
condition. Filippova and Ha¨nel @26# also developed a
second-order accurate boundary condition for curved bou
aries. However, the fluid dynamics force on a circular cyl
der asymmetrically placed in a two-dimensional channel w
obtained by integrating the pressure and deviatoric stre
on the surface of the cylinder by extrapolating from t
nearby Cartesian grids to the solid boundary@26,34#. To gain
insight into the method of surface stress integration, it
instructive to examine the variation of the pressure on
04120
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surface of a circular cylinder at finite Reynolds number o
tained by using the LBE method for flow over a column
cylinders~see Ref.@27#, and Sec. III B!. Figure 3 shows the
pressure coefficient

CP5
p2p`

1
2 rU2

,

on the surface obtained by using second-order extrapola
wherep` is the far upstream pressure. Only those bound
points, xw , intersected by the horizontal or vertical veloc
ties, i.e.,e1 , e3 , e5, ande7, are considered in the result give
by Fig. 3. If the boundary points intersected by the links
the diagonal velocities, i.e.,e2 , e4 , e6, ande8, are also con-
sidered, the variation ofCP would be more noisy. The com
ponents of the deviatoric stress tensor show a similar no
pattern. It is not clear how the noise in the pressure a
stresses affect the accuracy of the fluid dynamic force in
stress-integration method. While the programing in the
trapolation and integration is manageable in two-dimensio
cases, it is rather laborious in three-dimensional~3D! cases.
In Fig. 3, the LBE result ofCP(u) ~indicated by symbol3)
is compared with that obtained by using a 3D multibloc
body-fitted coordinates, and pressure-based Navier-Sto
solver @35–37# with a much finer resolution: 201 point
around the cylinder and the smallest grid size along the
dial direction dr50.026 ~relative to the radiusr 51). Not
surprisingly, the result obtained by using the Navier-Stok
solver with body-fitted grids and a much finer resolution
smoother than the LBE result with a Cartesian grid
coarser resolution. Nevertheless, the LBE solution still
sentially agrees with the Navier-Stokes solution.

Instead of the stress-integration method, Ladd used
momentum-exchange method to compute the fluid force o
sphere in suspension flow@13#. In the flow simulation using
the bounce-back boundary condition, the body is effectiv
replaced by a series of stairs. Each segment on the sur

FIG. 3. Distribution of the pressure coefficientCP on the sur-
face of a 2D circular cylinder of radiusr 56.6, and center-to-cente
distanceH/r 520. The stagnation point is located atu5180°. The
LBE result denoted by symbol3 is obtained witht50.6 and Re
540. The solid line is the result obtained by using a 3D multiblo
body-fitted grid, and pressure-based Navier-Stokes solver wi
much finer resolution.
3-3
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has an area of unity for a cubic lattice. The force on each
@halfway between two lattices atxf and xb5(xf1ead t) in
which xb resides in the solid region# results from the
momentum-exchange~per unit time! between two opposing
directions of the neighboring lattices

1

d t
@ea f a~xf !2eā f ā~xf1ead t!#,

in which eā[2ea . Whereas the momentum-exchan
method is very easy to implement computationally, its ap
cability and accuracy for a curved boundary have not b
systematically studied. To recapitulate, there are two m
problems associated with the method of surface stress
gration. First, the components of the stress tensor are o
noisy on a curved surface due to limited resolution near
body and the use of Cartesian grids. The accuracy of su
method has not been addressed in the literature. Second
implementation of the extrapolation for the Cartesian co
ponents of the stress tensor to the boundary surface an
integration of the stresses on the surface of a thr
dimensional geometry are very laborious in comparison w
the intrinsic simplicity of the lattice Boltzmann simulation
for flow field. The problems associated with the method
the momentum-exchange are as follows.~a! The scheme was
proposed for the case withD51/2 at every boundary inter
sectionxw . Whether this scheme can be applied to the ca
where DÞ1/2, when, for example, the boundary is n
straight, needs to be investigated.~b! As in the case of stres
integration method, the resolution near a solid body is of
limited and the near wall flow variables can be noisy. If o
uses the momentum-exchange method to compute the
force, it is not clear what the adequate resolution is to ob
reliable fluid dynamic force on a bluff body at a given~mod-
erate! value of Reynolds number, say, Re'O(102).

D. Scope of the present work

In what follows, two methods of force evaluation, i.e., t
stress-integration and the momentum-exchange meth
will be described in detail. The shear and normal stresse
the wall in a pressure driven channel flow will first be exa
ined to assess the suitability of the momentum-excha
method whenDÞ1/2 and analyze the errors incurred. T
results on the drag force for flow over a column of circu
cylinders using these two methods will be subsequently
sessed for the consistency. The drag coefficient at Re5100
will be compared with the result of Fornberg@38# obtained
by using a second-order accurate finite difference sch
with sufficient grid resolution. For flow over a cylinde
asymmetrically placed in a channel at Re5100, the unsteady
drag and lift coefficients were computed and compared w
the results in the literature. The momentum-exchan
method is further evaluated for three-dimensional fully d
veloped pipe flow and for a uniform flow over an two
dimensional array of spheres at finite Reynolds number.
found that the simple momentum-exchange method for fo
evaluation gives fairly reliable results for the two
dimensional and three-dimensional flows.
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II. METHODS FOR FORCE EVALUATION
IN THE LBE METHOD

A. Second-order accurate no-slip boundary condition
for curved geometry

The analysis of boundary conditions for a curved boun
ary in the lattice Boltzmann equation is accomplished
applying Chapman-Enskog expansion for the distribut
function at the boundary. The following approximation f
postcollision distribution function on the right-hand side
Eq. ~5b! can lead to a second-order accurate no-slip bou
ary condition@26–28#

f̃ ā~xb ,t !5~12x! f̃ a~xf ,t !1x f a* ~xb ,t !12war
3

c2
eā•uw ,

~7!

where

f a* ~xb ,t !5war~xf ,t !F11
3

c2
~ea•ub f!

1
9

2c4
~ea•uf !

22
3

2c2
uf

2G
5 f a

(eq)~xf ,t !1war~xf ,t !
3

c2
ea•~ub f2uf !, ~8!

and

ub f5uf f5uf~xf1eād t ,t !, x5
~2D21!

~t22!
, 0<D,

1

2
,

~9a!

ub f5
1

2D
~2D23!uf1

3

2D
uw , x5

~2D21!

~t11/2!
,

1

2
<D,1. ~9b!

The above treatment is applicable for both the tw
dimensional and three-dimensional lattice Boltzmann m
els.

By substitution of Eq.~8!, Eq. ~7! becomes

f̃ ā~xb ,t !5 f̃ a~xf ,t !2x@ f̃ a~xf ,t !2 f a
(eq)~xf ,t !#

1war~xf ,t !
3

c2
ea•~ub f2uf22uw!. ~10!

Thus, the above treatment of curved boundary can
thought as a modification of the relaxation~the viscous ef-
fect! near the wall~with the relaxation parameterx), in ad-
ditional to a forcing term accounting for the momentum
exchange effect due to the wall.
3-4
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B. Force evaluation based on stress integration

He and Doolen@25# evaluated the force by integrating th
total stresses on the boundary of the cylinder]V,

F5E
]V

dAn̂•$2pI1rn@~“:u!1~“:u!T#%, ~11!

wheren̂ is the unit out normal vector of the boundary]V. In
Ref. @25#, a body-fitted coordinate system together with g
stretching was used such that a large number of grids ca
placed near the body to yield reliable velocity gradient] iuj .
In general,u is not the primary variable in the LBE simula
tions and the evaluation ofu using (aea f a based onf a’s
suffers a loss of accuracy due to the cancellation of two cl
numbers inf a’s; consequently, the evaluation of the deriv
tive ] iuj will result in further degradation of the accurac
Filippova @34# used a similar integration scheme to obta
the dynamic force on the body for the force on a circu
cylinder @26# except that the deviatoric stresses were eva
ated using the nonequilibrium part of the particle distributi
function @see Eq.~13! below#. However, since the Cartesia
grid was used, the stress vectors on the surface of the b
~with arbitraryD) have to be computed through an extrap
lation procedure based upon the information in the flow fie
This leads to further loss of accuracy for finite lattice sizedx
when the shear layer near the wall is not sufficiently
solved.

In Eq. ~11!, the pressurep can be easily evaluated usin
the equation of statep5cs

2r. For D2Q9 and D3Q19 models
cs

251/3 so that p5r/3. The deviatoric stress for two
dimensional incompressible flow

t i j 5rn~] iuj1] jui !, ~12!

can be evaluated using the nonequilibrium part of the dis
bution functionf a

(neq)5@ f a2 f a
(eq)#

t i j 5S 12
1

2t D(
a

f a
(neq)~x,t !S ea,iea, j2

1

D
ea•ead i j D ,

~13!

whereea,i andea, j are i th and j th Cartesian component o
the discrete velocityea , respectively. For the flow past
circular cylinder, a separate set of surface points on the
inder can be introduced in order to carry out the numer
integration given by Eq.~11!. The values of the pressure an
each of the six components of the symmetric deviato
stress tensor on the surface points can be obtained us
second-order extrapolation scheme based on the valuesp
andt i j at the neighboring fluid lattices. The force exerting
the boundary]V is computed as

F5E
]V

dA n̂•$2pI1rn@~“:u!1~“:u!T#%extrapolated.

~14!

It is worth commenting here that for the two-dimension
flow past a cylinder, nearly half of the entire code was tak
up by the above force evaluation procedure.
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C. Method based on the momentum-exchange

In order to employ the momentum-exchange method e
ciently, two scalar arrays,w( i , j ) andwb( i , j ) are introduced.
A value of 0 is assigned tow( i , j ) for the lattice site (i , j )
that are occupied by fluid; a value of 1 is assigned tow( i , j )
for those lattice nodes inside the solid body. The ar
wb( i , j ) is set to zero everywhere except for those bound
nodes,xb , where a value of 1 is assigned. For a given no
zero velocityea ,eā denotes the velocity in opposite direc
tion, i.e.,eā[2ea ~see Fig. 2!. For a given boundary node
xb inside the solid region withwb( i , j )51 andw( i , j )51,
the momentum-exchange with all possible neighboring fl
nodes over a time stepd t51 is

(
aÞ0

ea@ f̃ a~xb ,t !1 f̃ ā~xb1eād t ,t !#@12w~xb1eād t!#.

Simply summing the contribution over all boundary nodesxb
belonging to the body, the total force~acted by the solid body
on the fluid! is obtained as

F5 (
all xb

(
aÞ0

ea@ f̃ a~xb ,t !1 f̃ ā~xb1eād t ,t !#

3@12w~xb1eād t!#. ~15!

In the momentum-exchange method the forceF is evaluated
after the collision step is carried out and the value off̃ ā at
boundary given by Eq.~7! has been evaluated. Th
momentum-exchange occurs during the subsequent stre
ing step whenf̃ ā(xb ,t1d t) and f̃ a(xf ,t1d t) move toxf and
xb , respectively. As mentioned in the introductory sectio
the effect of variableD is not explicitly included, but it is
implicitly taken into account in the determination o
f̃ ā(xb ,t1d t). The applicability of Eq.~15! will be examined
and validated.

Clearly, the force is proportional to the number of boun
ary nodesxb in the above formula ofF and the number of the
boundary nodes increase linearly with the size of the bod
a two-dimensional flow. However, since the force is norm
ized byrU2r in the formula forCD in two-dimensions@see
Eq. ~24!#, the drag coefficientCD should be independent o
r.

FIG. 4. The channel flow configuration in the LBE simulatio
with an arbitraryD.
3-5
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III. RESULTS AND DISCUSSIONS

For straight walls, there is no doubt that Eq.~11! together
with the equation of state for pressure and Eq.~13! for t i j
gives accurate results for the force provided thatf a’s are
accurately computed. To demonstrate the correctness o
~15! based on the momentum exchange for an arbitraryD,
we first consider the pressure driven channel flow~see Fig.
4! for which exact solutions for the velocity and stresses
known. The second case considered is the two-dimensi
flow past a column of circular cylinders at Reynolds numb
Re5100 andH/r 520, whereH is the distance between th
centers of two adjacent cylinders. The values of the d
computed using the two force evaluation methods are t
compared with the result of Fornberg@38#. The dependence
of the drag on the radiusr in the momentum-exchang
method is examined to assess the reliability of this meth
The third case is the two-dimensional flow over a circu
cylinder that is asymmetrically placed in a channel at
5100 ~with vortex shedding!. The time dependence of th
drag and lift coefficients is compared with results in liter
ture.

We also consider two cases of three-dimensional fl
The first case is the pressure driven flow in a circular pipe
which the exact solutions for both the velocity profile a
wall shear stresses are known. The assessment for
momentum-exchange method for three-dimensional flo
will be made first in this case. Finally, the momentum
exchange method will be evaluated by considering the d
on a sphere due to a uniform flow over a sphere in a fin
domain. The details of the flow field computation can
found in Refs.@27,28#.

A. Two-dimensional pressure-driven channel flow

In the case of the channel flow, the force on the top w
(y5H) at a given locationx ( i 5Nx /211, say! can be
evaluated using the momentum-exchange method as follo
The wall is located betweenj 5Ny andNy21 ~Fig. 4!. Thex
and y components of the force on the fluid at the top w
near thei th node are

Fx5@ f̃ 6~ i , j !1 f̃ 2~ i 21,j 21!#e6,x

1@ f̃ 8~ i , j !1 f̃ 4~ i 11,j 21!#e8,x , ~16a!

Fy5@ f̃ 6~ i , j !1 f̃ 2~ i 21,j 21!#e6,y

1@ f̃ 8~ i , j !1 f̃ 4~ i 11,j 21!#e8,y

1@ f̃ 7~ i , j !1 f̃ 3~ i , j 21!#e7,y , ~16b!

whereea, j denotes thej th Cartesian component of velocit
ea . Sincedx51, Fx andFy are, effectively, the total shea
and normal stresses,sxy andsyy , which include the pressur
and the deviatoric stresses, on the fluid element aty5H.

Based on Eq.~13!, the deviatoric component of the flui
shear stresses atj 5Ny21 ~or y5Ny231D) andNy22 ~or
y5Ny241D) can be exactly evaluated based on the n
equilibrium part of the distribution functions in the flow fiel
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if they are correctly given. A linear extrapolation of the d
viatoric shear stresses toy5H5Ny2312D yields

txy,w
(neq)5txy~ j 5Ny21!1D@txy~ j 5Ny21!

2txy~ j 5Ny22!#, ~17!

where the superscript ‘‘~neq!’’ denotes the value compute
from f a

(neq), the subscriptw refers to the value at the wall
The deviatoric normal stress,tyy,w

(neq), can be similarly com-
puted. In a fully developed channel flow, the normal comp
nent of the deviatoric stresstyy(y) is expected to be zero
while the total normal stresssyy(y) is equal to the negative
pressure (2p). It needs to be pointed out that this method
evaluating txy,w

(neq) given by Eq. ~17! for two-dimensional
channel flow is equivalent to the method of the surface str
integration based on the extrapolated pressure and the d
toric stresses on the solid wall except that no numerical
tegration on the solid surface is needed.

After the velocity profileux(y) is obtained fromf a , the
shear stresstxy on the wall can also be calculated using t
near wall velocity profile as

rn
dux

dy Uy5H5rn
~21D!

~11D!

@02ux~ j 5Ny21!#

D

2rn
D

~11D!
@ux~ j 5Ny21!

2ux~ j 5Ny22!#. ~18!

In the above, a linear extrapolation is employed to evalu
the velocity derivative (dux /dy)uy5H at the wall. Finally, the
exact solution for the fluid shear stress on the wall (y5H) is

txy,w
exact5

1

2

dp

dx
H, H5Ny2312D, ~19!

based on the parabolic velocity profile or simple control v
ume analysis. This exact result can be used to assess
accuracy of the aforementioned methods for the force ev
ation.

In the LBE simulations, the pressure gradient is enforc
through the addition of an equivalent body force after t
collision step@25,28#. While the velocity field given by the
LBE solution can be unique, the pressure field@thus the den-
sity field r(x,y)# can only be unique up to an arbitrary co
stant. In view of Eq.~18!, it is difficult to compare the
stresses for different cases ifr( i , j ) converges to different
values in each case. To circumvent this difficulty, the dens
field in the channel flow simulation is normalized byr( i
52, j 5Ny/2) at every time step. This normalization proc
dure results inr(x,y)51 throughout the entire computa
tional domain. It is also applied to the three-dimension
flow in a circular pipe.

Table I compares the numerical values of the shear st
for a typical case (Ny535, dp/dx521026 in the lattice
units, andt50.6) based on:txy,w

exact given by Eq. ~19!, Fx

given by Eq. ~16a!, txy,w
(neq) given by Eq. ~17!, and

rn(dux /dy)uy5H given by Eq.~18!. Also listed is the com-
3-6
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TABLE I. Comparison of fluid stresses aty5H in a two-dimensional pressure driven channel flow w
dp/dx521.031026 in the lattice units,Ny535 andt50.6 as a function ofD. Column 2,2txy,w

exact given by
Eq. ~19!; Column 3, 2Fx given by Eq. ~16a!; Column 4, 2txy,w

(neq) given by Eq. ~17!; Column 5,
2rn(dux /dy)uy5H Eq. ~18!; Column 6,2Fy given by Eq.~16b!; Column 7, pressurep obtained in the
simulation.

D 2txy,w
exact3105 2Fx3105 2txy,w

(neq)3105
2rn

dux

dy uy5H3105 2Fy p

0.01 1.601 1.6333 1.6010 3.5294 0.3333 0.333

0.02 1.602 1.6333 1.6020 2.5555 0.3333 0.333

0.03 1.603 1.6333 1.6030 2.2309 0.3333 0.333

0.04 1.604 1.6333 1.6040 2.0685 0.3333 0.333

0.05 1.605 1.6333 1.6050 1.9710 0.3333 0.333

0.1 1.610 1.6333 1.6100 1.7760 0.3333 0.333

0.2 1.620 1.6333 1.6200 1.6781 0.3333 0.333

0.25 1.625 1.6333 1.6250 1.6583 0.3333 0.333

0.3 1.630 1.6333 1.6300 1.6451 0.3333 0.333

0.3333 1.633 1.6333 1.6330 1.6385 0.3333 0.333

0.35 1.635 1.6333 1.6350 1.6357 0.3333 0.333

0.4 1.640 1.6333 1.6400 1.6285 0.3333 0.333

0.5 1.650 1.6333 1.6500 1.6184 0.3333 0.333

0.6 1.660 1.6333 1.6600 1.6214 0.3333 0.333

0.7 1.670 1.6333 1.6700 1.6244 0.3333 0.333

0.8 1.680 1.6333 1.6800 1.6274 0.3333 0.333

0.9 1.690 1.6333 1.6900 1.6305 0.3333 0.333

0.95 1.695 1.6333 1.6950 1.6321 0.3333 0.333

0.99 1.699 1.6333 1.6990 1.6335 0.3333 0.333
E

il-

o

, a

ac
ti
ro
ive

,
that
s on

en

is a
ith

the
parison betweenFy given by Eq.~16b! and2p. All compu-
tations are carried out with double precision accuracy.

It is noted thattxy,w
(neq) is identical totxy,w

exact for all values of
D. A closer examination of the shear stress profile using
~13! across the channel reveals thattxy,w

(neq)(y) is also equal to
the exact shear stress profiletxy

exact(y), which is linear, despite
the errors in the velocity profileux(y) for all values ofD. A
linear extrapolation, Eq.~17!, for a linear profile therefore
gives the exact wall shear stress. Thus, the exactness oftxy,w

(neq)

in the LBE simulation of channel flow indicates the reliab
ity of the LBE solution for the stress fieldt i j

(neq)(x,y) by
using Eq.~13!. However, as Fig. 3 indicates, the accuracy
the integratingt i j

(neq)(x,y) to obtain the fluid dynamic force
in nontrivial geometries needs to be further investigated
will be discussed in the following sections.

For 0,D,1, the normal forceFy given by Eq.~16b!
based on the momentum-exchange method agrees ex
with the pressure on the wall. This is a rather special quan
since deviatoric component of the force is identically ze
Nevertheless, the momentum-exchange method does g
reliable value for the normal stress.
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For the shear~tangential! force, it is observed from Table
I that for fixed dp/dx, Fx does not change asD increases
from 0.01 to 0.99. On the other hand, the exact resulttxy,w

exact

5 1
2 (dp/dx)(Ny2312D), increases linearly withD. Further

computations were carried out over a range ofNy
(535, 67, 99, and 131) andt (50.505, 0.51, 0.52, 0.6
0.7, 0.8, 0.9, 1.0, 1.2, 1.4, and 1.6). The results indicate
the momentum-exchange method gives the shear stres
the top wall as

Fx5
1

2

dp

dx S Ny231
2

3D . ~20!

That is,Fx is independent oft andD. The error inFx is zero
whenD51/3. The absolute error attains the maximum wh
D51, which gives the relative error of 4/3H for Fx . Al-
though the frequently used momentum-exchange method
natural choice for the force evaluation in conjunction w
the bounce-back boundary condition forD51/2, one must be
aware of that this method is not exact and the error in
3-7
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force evaluation using the momentum-exchange method
pends onD and the resolution.

The error inFx is due to the fact that the derivatives of th
velocity field are not considered in the boundary conditio
This can be understood by analyzing Eq.~16a!. At the steady
state, and with the approximation that

f̃ a' f a
(eq)1 f a

(1)5 f a
(eq)2

1

t
war

3

c2
~ea•“ !~ea•u!, ~21!

Eq. ~16a! at the top wall becomes

Fx'2w2r
3

c2
e2•~ub f1uf22uw!, ~22!

where the substitution of Eq.~10! for f̃ 6 and f̃ 8 has been
made. The only term in the above equation which hasD
dependence isub f . When 0<D1/2,Fx is independent ofD,
and when 1/2<D,1,Fx weakly depends onD becauseuw
50 in this case@see Eqs.~9!#. In the case whereFx is ob-

FIG. 5. The LBE simulations of the channel flow, withD
50.2, 1/3, 0.5, and 0.7. The pressure drop is]xp521.031026 in
lattice units.~a! Ratio between the wall forcern]yuxuy5H evaluated
by using Eq.~18!, and the exact value2txy,w

exact52H]xp/2, given by
Eq. ~19! as a function oft. ~b! Normalized wall slip velocityuw /uc

as a function oft.
04120
e-

.

tained by summing over a set of symmetric lattice poin
cancellations in the summation may further weaken the
pendence ofFx on D.

Table I also shows that for the shear stress based on ta
the derivative of the velocity, the loss of accuracy is qu
significant for small values ofD (<0.05) for t50.6. For
other values ofD (>0.3), the accuracy is comparable wi
that of Fx . However, as shown in Fig. 5~a!, the accuracy of
rn(dux /dy)uy5H based on the near-wall velocity derivativ
deteriorates as the relaxation timet increases~from 0.51 to
1.6!. To see the cause of the increasing error
rn(dux /dy)uy5H , Fig. 5~b! shows dimensionless wall ve
locity, uw /uc , obtained by a three-point second-order L
grangian extrapolation of the near wall velocityux(y) as a
function of t. The increasing slip velocityuw on the wall
with the increasing relaxation timet was also observed in
Ref. @14#. It is the result of increasing particle mean free pa
that causes the deviation of the kinetic solution from t
hydrodynamic solution. It is clear that the poor performan
of rn(dux /dy)uy5H is associated with the increasing error
the near wall velocity profile ast increases. Since the stres
tensort i j can be calculated directly fromf a @see Eq.~13!#
without the need for directly computing velocity derivative
the force evaluation method based on the evaluation of
velocity gradient in the form of Eq.~12! is not recom-
mended.

B. Steady uniform flow over a column of cylinders

For a uniform flow over a column of circular cylinders o
radiusr and center-to-center distanceH ~see the left part of
Fig. 9 for illustration!, symmetry conditions forf a’s are im-
posed aty56H/2. Most of the details of flow field simula
tion can be found in Ref.@27#. The Reynolds number is
defined by the diameter of the cylinderd as Re5Ud/n,
whereU is the uniform velocity in the inlet. It must be note
that for a consistent determination of the force, the upstre
boundary must be placed far upstream. A shorter dista
between the cylinder and the boundary will result in high
drag. In this study, it is placed at about 20 radii to the left
the center of the cylinder. Reducing the distance between
boundary and the cylinder to 12.5 radii while keeping t
rest of the computational parameters fixed would incre
the drag coefficient by about 1.8% at Re5100. The down-
stream boundary is located about 25–30 radii behind
cylinder to allow sufficient wake development. The simu
tion is terminated when the following criterion based on t
relativeL2-norm error in the fluid regionV is satisfied,

E25A(
xiPV

iu~xi ,t11!2u~xi ,t !i2

(
xiPV

iu~xi ,t11!i2

<e. ~23!

In this case,e51026 was chosen for both Re510 and 100.
Following Fornberg@38#, the drag coefficient over a cir

cular cylinder of radiusr is defined as
3-8
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CD5
uFxu

rU2r
. ~24!

Figure 6~a! compares CD obtained from: momentum
exchange method, surface stress integration, and finite di
ence result of Fornberg@38# using a vorticity-stream function
formulation at Re5100,H/r 520, and radiusr ranging from
2.8 to 13.2. Forr .8, both methods of momentum-exchan
and the stress integration give satisfactory results forCD in
comparison with the value of 1.248 given in Ref.@38#. The
small differences inCD could be due to the fact that in Re
@38#, the computational domain is much larger in the dow
stream direction—the downstream boundary condition is
posed at 300 radii behind the cylinder in Ref.@38#, as op-
posed to 25–30 radii here. This adds credence to the val
of Eq. ~15! for evaluating the total force on a body. Th
values ofCD from the momentum-exchange method hav
little less variation than that from the stress integration. A
cepting an error of less than 5%, the reliable data forCD can
be obtained, using the momentum-exchange method, fr
.5. That is, ten lattice spacings across the diameter of

FIG. 6. The drag coefficient for a uniform flow past a column
cylinders over a range of radiusr. ~a! Re5100. The dashed line
indicates the value ofCD51.24 obtained in Ref.@38#. ~b! Re510.
The dashed lines indicate the values ofCD averaged over the fou
largest radii.
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cylinder are necessary to obtain reliable values of the fo
This is consistent with the finding by Ladd@13#. In the range
of 5,r ,7, the stress-integration method gives more sc
tered result than the method of momentum-exchange.
smaller radii, i.e., coarser lattice resolution, while both me
ods give poor results~due to insufficient resolution!, the
stress integration yields much larger errors.

Figure 6~b! comparesCD obtained from the methods o
momentum exchange and stress integration for Re510. The
momentum-exchange method seems to gives a converge
sult at largerr (.8). Based on the data forr .8, an average
values of CD'3.356 is obtained. In contrast, the stres
integration method has a larger fluctuation than the largr
result from the momentum-exchange method even forr .8.
Averaging over the results forr .8, the stress integration
givesCD'3.319. The difference between converged resu
of two methods is about 1%. Forr less than or around 5, th
fluctuation inCD from the stress-integration method is mu
larger than that in the momentum-exchange method.
conclusions from the comparisons in Fig. 6 are as follows:~i!
both methods for force evaluation can give accurate resu
~ii ! the momentum-exchange method gives more consis
drag; and~iii ! in the range of 10,Re,100, a resolution of
ten lattice spacings across the diameter of the cylinder
needed in order to obtain consistent and reliable drag val
In other words, the lattice~grid! Reynolds number Re*
(5U/n) should be less than 10 in the calculations.

In the above results presented in Figs. 6~a! and 6~b!, the
center of the cylinder is placed on a lattice grid, thus t
computational mesh is symmetric with respect to the geo
etry of the cylinder. To test the effect of the mesh symme
on the accuracy of the force evaluation, the calculation of
flow at Re510 is repeated with different values of the cy
inder center offsetLx in the x direction, or Ly in the y
direction. The radius of the cylinder is deliberately chosen
be only 6.4 lattice grids. In order to preserve the mirror sy
metry of the flow in they direction, we use different bound
ary conditions for upper and lower boundaries~at y
56H/2). ForLy50 while varyingLx , we use the symmet
ric boundary conditions, which maintain the flow symmet
with respect to the center line in thex direction. ForLx50
while varyingLy , we use the periodic boundary condition

TABLE II. The effect of the symmetry of computational mes
on the force evaluation for the steady uniform flow over a colu
of cylinders. The Reynolds number Re510 (t50.6), the radius of
the cylinderr 56.4 ~in the lattice unite ofdx51), andH/r 520.
The variation ofCD due to the change of the center of cylind
offset from a grid point is less than 1%.

Lx50, periodic BC aty56H/2

Ly 0 0.2 0.4 0.6 0.8

CD 3.3661 3.3637 3.3526 3.3526 3.3637

Ly50, symmetric BC iny56H/2

Lx 0 0.2 0.4 0.6 0.8

CD 3.3661 3.3666 3.3646 3.3667 3.3692
3-9
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at y56H/2, which are equivalent to the symmetric boun
ary conditions~BC! whenLy50, but better reflect the flow
symmetry whenLyÞ0. The results of the drag coefficien
CD are presented in Table II. The variation ofCD due to the
change of the center of cylinder offset from a grid point
less than 1% when the cylinder diameter is only about
lattice spacings. The outcome is consistent with the expe
truncation errors caused by mesh perturbation. We notice
the variation inCD due toLx is about one order of magni
tude smaller than that due toLy . This is precisely becaus
when Ly50 the mesh symmetry coincides with the flo
symmetry in they direction, and whenLyÞ0 the mesh sym-
metry is lost. This asymmetry due toLyÞ0 results in the
change of the lift coefficient fromO(10214) to O(1022),
which is the same order of magnitude of the variation inCD .
It is our observation that the accuracy of the force evalua
schemes used here is dictated by that of the boundary
ditions at the solid walls. The error due to the symmetry
the computational mesh with respect to the geometry of
object is well bounded. This is also observed in other in
pendent studies@22,33#.

It is worth noting that the wall shear stress in the chan
flow obtained by using the method of momentum-excha
has a relative error proportional to the resolution across
channel. For a resolution of 10–20 lattice spacings across
diameter considered here, the relative error in the drag
pears, however, smaller than in the channel flow case
Re5100, withr .10, the average value of the drag obtain
by using the method of momentum-exchange has a 1
relative error comparing with Fornberg’s data@38#. If the
boundary layer thickness is estimated roughly to
332r /ARe'6, there are only about six lattice spacin
across the boundary layer over which the velocity pro
changes substantially. Based on the insight from the cha
flow result, it is possible that the deviatoric shear stresse
the surface of the cylinder that are effectively incorporated
the method of momentum exchange suffer comparable l
of error as in the channel flow. The effective error cance
tion over the entire surface of the body may have contribu
to the good convergence behavior in the drag shown in F
6~a! and 6~b!.

C. Flow over an asymmetrically placed circular cylinder
in channel with vortex shedding

Schäfer and Turek@39# reported a set of benchmark re
sults for a laminar flow over a circular cylinder of radiusr
that is asymmetrically placed inside a channel. In the pres
study, r 512.8 is used and the center of the cylinder co
cides with a grid point. The distance from the center of
cylinder to the upper wall and lower wall ish154.2r and
h254.0r , respectively. This results inD150.76 for the up-
per wall andD250.2 for the lower wall, respectively. Th
channel inlet has a parabolic profile and it is placed at f
radii upstream of the cylinder center according to the sp
fication of the benchmark test@39#. This results inD50.2 for
the inlet boundary. A zeroth-order extrapolation forf a is
used at the exit boundary that is located 40 radii downstre
of the cylinder center. Thus there are a total of 5643105
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FIG. 7. The 2D flow past a cylinder asymmetrically placed in
channel. The variations of the lift coefficientCL , the drag coeffi-
cient CD , and the pressure differenceDP as functions of timet
~after an initial run timet0) are compared with the benchmark r
sults in Ref.@39#. At time t0, the lift coefficientCL(t) attains its
maximum valueCL

max. The dashed horizontal lines indicate the u
per and lower bounds in Ref.@39#. The solid and dashed curves a
the results obtained by using momentum-exchange and st
integration, respectively.~a! The lift coefficientCL(t). Note that the
results obtained by using the two methods are indistinguishable
the graph.~b! The drag coefficientCD(t). ~c! The pressure differ-
enceDP(t). The symbol3 indicates the value ofDP(t01T/2)
given in Table III, whereT ('1296.5) is the period ofCL(t).
3-10
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TABLE III. Values of St,CD
max, CD

min , CL
max, CL

min , andDP for the flow over a 2D cylinder asymmetricall
placed in a channel. ‘‘Momentum’’ and ‘‘Stress’’ denote, respectively, the momentum-exchange metho
the stress-integration method in the LBE calculations. The CFD results are the bounds in Ref.@39#, which
does not have data forCD

min andCL
min .

Method St CD
max CD

min CL
max CL

min DP

Momentum 0.3033 3.2358 3.1771 1.0045 21.0347 2.4914
Stress 0.3033 3.2275 3.1708 1.0040 21.0340 2.4914
CFD 0.2950–0.3050 3.2200–3.2400 0.9900–1.0100 2.4600–2.5
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square lattices in the flow field. For Re52rŪ /n5100 based
on the average inlet velocityŪ, the use of relaxation time
t50.55 requiresŪ'0.0651.

At this Reynolds number, the flow becomes unsteady
periodic vortex shedding is observed. Figures 7~a!, 7~b!, and
7~c!, respectively, show time-dependent behaviors of the
coefficient

CL5
Fy

rŪ2r
,

and the drag coefficientCD @see Eq.~24!#, and the pressure
difference

DP5
pf2pb

r0Ū2
,

wherepf andpb are the pressures at the front and the back
the cylinder, respectively, andr0 is the constant density im
posed at the entrance. The data ofCL , CD , and DP are
compared with the benchmark results in Ref.@39#. We first
note that the present numerical value of Strouhal num
St52r /ŪT is about 0.3033, whereT is the period of the lift
curve. This agrees very well with the range of St valu
~0.2950–0.3050! given in Ref.@39#. We note that the differ-
ence inCL(t) between the momentum-exchange method
the surface stress-integration method is indiscernible gra
cally. For the drag coefficientCD(t), it is interesting to note
that although there is about 0.25% difference between
results given by momentum-exchange method and the
face stress-integration method, both methods of force ev
ation give two peaks in theCD(t) curves. Physically, thes
two peaks in theCD(t) curve correspond to the existence
a weaker vortex and a stronger vortex alternately shed
hind the cylinder. The difference in the strength of the vo
ces results from the difference:h1 /r 54.2 andh2 /r 54.0 in
the passages between the cylinder and the channel w
There is no report on the occurrence of these two peak
Ref. @39#. Instead, a range of the maximumCD ~from 3.22 to
3.24! by different researchers was given. The present va
of the higher peak is well within the range. It is interesting
note that both peaks ofCD(t) obtained by the momentum
exchange method are also within the range, as shown in
7~b!. A further refined computation of the present proble
using a multiblock procedure@40# with r 540 in the fine grid
region yield nearly the same results forCD(t) andCL(t).

We compile in Table III the values of Strouhal number S
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maximum and minimum drag coefficientCD
max and CD

min ,
maximum and minimum lift coefficientCL

max andCL
min , and

the pressure differenceDP obtained by the LBE method
and other computational fluid dynamics~CFD! schemes
given in Ref.@39#. The value ofDP is measure att01T/2,
where t0 is the moment whenCL(t) reaches its maximum
valueCL

max, andT is the periodicity ofCL(t). For the LBE
simulations,T is between 1296 and 1297~in the lattice unit
of d t51). We useT51296.5 in the determination of th
Strouhal number St. With a resolution much coarser th
those used in Ref.@39#, the LBE results are well within the
bounds given in Ref.@39#. This clearly demonstrates the a
curacy of the lattice Boltzmann method.

D. Pressure-driven flow in a circular pipe

The steady state flow field was obtained by using
D3Q19 model witht50.52@28#. Eq.~15! is used to evaluate
the force on the boundary points along the circumference
the pipe over a distance of one lattice in the axial directi
The resulting axial forceFx is, equivalently, the force given
by tw(2prdx) wheretw is the wall shear stress andr is the
pipe radius. For a fully developed flow inside a circular pip
the exact fluid shear stress at the pipe wall is given by

tw
exact~2pr !5pr 2

dp

dx
. ~25!

We examine the normalized axial force,

FIG. 8. The ratioh between the tangential forceFx on the pipe
and its exact value (pr 2dp/dx) over a range of pipe radiusr.
3-11
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h5
Fx

pr 2
dp

dx

. ~26!

Figure 8 shows the normalized coefficienth over a range of
r :3.5–23.5. Except forr<5,h is rather close to 1. It was
noticed in Ref.@28# that the accuracy of LBE solution for th
pipe flow is not as good as that for the two-dimensio
channel flow due to the distribution of values ofD around
the pipe. The accuracy of the drag is dictated by the accu
of the flow field if the force evaluation method is exact. F
the pipe flow, the error inFx results from the inaccuracy in
the flow field and the errors in the force evaluation sche
based on momentum exchange~as seen in the previous se
tion for the two-dimensional channel flow case!. For r .5,
the largest error inFx is about 3.5% and it occurs atr
515.5. Again, there is no systematic error inFx . Given the
complexity of the boundary in this three-dimensional flo
the results shown in Fig. 8 are satisfactory in the sense th
adds further credence to the momentum-exchange me
for force evaluation.

E. Steady uniform flow over a sphere

To limit the computational effort, a finite domain o
2H/2<y<H/2 and2H/2<z<H/2, with H/r 510 is used
to compute the flow past a sphere of radiusr ~see Fig. 9!.
Two cases are considered:~a! the flow past a single sphere
and~b! the flow over a two-dimensional array of spheres~all
located atx50) with the center of the spheres formin
square lattices. In the former case, the boundary condition
j y51 (y5H/2 corresponds toj y52) for f a’s are given by
the following linear extrapolation

f a~ j x ,1,j z!52 f a~ j x ,2,j z!2 f a~ j x ,3,j z!. ~27!

The velocity atj y52 is set as

u~ j x ,2,j z!5u~ j x ,3,j z!. ~28!

Similar treatment is applied aty5H/2 andz56H/2. In the
latter case, symmetry conditions are imposed onf a’s at j y
51 by using the values off a’s at j y53 ~see Ref.@27# for the
two-dimensional case!. At the inlet, a uniform velocity pro-

FIG. 9. Computational domain for the uniform flow past
sphere of radiusr. The dashed lines indicate boundaries of comp
tational domain.~left! Unbounded domain in thexy plane, and
~right! bounded domain in theyz plane.
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file is imposed atj x51.5 ~halfway between the first and
second lattices!. The upstream boundary is located at 7
radii to the left of the sphere center in all simulations.

For flow over a sphere, the drag coefficient is often e
pressed as

CD52
Fx

1
2 rU2pr 2

5
24

Re
f, f52

Fx

6prUrn
, ~29!

wheref accounts for the non-Stokesian effect of the dra
For two types of the boundary conditions at (y56H/2 and
z56H/2), fs denotes the non-Stokesian correction for t
case where the symmetry conditions are imposed at (y5
6H/2 andz56H/2) andf` denotes the results for the cas
where the extrapolation forf a is used at (y56H/2 andz
56H/2) in order to simulate the unbounded flow.

Figure 10~a! shows the non-Stokesian coefficientf` for
r 53.0, 3.2, 3.4, 3.6, 3.8, 4.0, 5.1, 5.2, 5.4, 5.6, and 5.8,
H/r 510 at Re510. The relaxation time ist50.7. With this
range ofr, the number of the boundary nodes on the surfa
of the sphere increases roughly by a factor of (5.8/32

'3.74; the actual counts of the boundary nodesxb gives a
ratio 2370/54654.35. The largest difference is 1.9% betwe
r 53.0 andr 53.2 that have the least resolution in the cas
investigated. For a uniform flow over an unbounded sphe
an independent computation using finite difference meth
based on the vorticity-stream function formulation with hig
resolution gives a drag coefficientf'1.7986 at Re510. The
largest difference between this result and the LBE result
1.36% atr 53.2. If the LBE data for the drag is average
over the range ofr, one obtainsf'1.8086 that differs from
1.7986 by 0.54%. Hence, the LBE solutions with 3.0<r
<5.8 yield very consistent values for the drag force. Figu
10~b! shows the non-Stokesian correction factorfs for a
uniform flow over a planar array of spheres for 3.0<r<5.8
andH/r 510, at Re510. It is important to note that with the
improvement of the surface resolution by a factor of 4.3
there is little systematic variation infs(r ). The largest de-
viation from the average value,f̄s'1.963, is 1.1% atr
55.0. It is clear that the LBE solution gives reliable flu
dynamic force on a sphere atr'3.5 for a moderate value o
Re. The set of data forfs is inherently more consistent tha
that for f` since the symmetry boundary condition can
exactly specified aty56H/2 andz56H/2, while the ex-
trapolation conditions given by Eqs.~27! and ~28! do not
guarantee the free stream condition aty56H/2 and z
56H/2. Yet, both f` and fs exhibit remarkable self-
consistency from coarse to not-so-coarse resolutions.

IV. CONCLUSIONS

Two methods for evaluating the fluid force in conjunctio
with the method of lattice Boltzmann equation for solvin
fluid flows involving curved geometry have been examine
The momentum-exchange method is very simple to imp
ment. It is shown in the channel flow simulation that t
momentum-exchange method is not an exact method.
error in the wall shear stress is inversely proportional to
resolution. In two- and three-dimensional flows over a bl

-
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body, it can give accurate drag value when there are at l
ten lattice spacings across the body at Re;100. The method
of integrating the stresses on the surface of the body g
similar results when there is sufficient resolution but it e
hibits much larger fluctuations than that in the method
momentum exchange when the resolution is limited. In
dition, the stress-integration method requires considera
more efforts in implementing the extrapolation and integ
tion on the body surface in comparison with the method
momentum exchange.

It is interesting to note that the momentum-exchan
method is perhaps superior to the stress-integration me
because the former method is based directly on the distr
tion functions while the latter is derived from further pr
cessing of the distribution functions. In addition, th
momentum-exchange method uses interpolations while
stress-integration method uses extrapolations. Often extr
lations are more noisy and unstable than interpolations. E
with a coarse resolution that does not yield very accur
local information, accurate force evaluation can be acco
plished with the lattice Boltzmann method. Among the tw
force evaluation methods, the method of momentu
exchange is recommended for force evaluation on cur
boundaries for its simplicity, accuracy, and robustness.

FIG. 10. Flow past sphere. Variation of the non-Stokesian c
rection factorf52Fx /6prUrn as a function of sphere radiusr at
Re510. The dashed lines are values off(r ) averaged overr.
~a! The flow past a single sphere in an unbounded field (H/r 5`).
~b! The flow past a planer array of spheres (H/r 510).
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APPENDIX: LBE MODELS IN TWO AND THREE
DIMENSIONS

The nine-velocity LBE model on a two-dimension
square lattice, denoted as the D2Q9 model, has been wi
used for simulations of two-dimensional flows. For thre
dimensional flows, there are several cubic lattice mod
such as the fifteen-velocity~D3Q15!, nineteen-velocity
~D3Q19!, and twenty-seven-velocity~D3Q27! models,
which have been used in the literature@10#. All these models
have a rest particle~with zero velocity! in the discretized
velocity set $eaua50,1, . . . ,(b21)%. For athermal fluids,
the equilibrium distributions for the D2Q9, D3Q15, D3Q1
and D3Q27 models are all of the following form@6,7#:

f a
(eq)5warF11

3

c2
~ea•u!1

9

2c4
~ea•u!22

3

2c2
u2G ,

~A1!

wherewa is a weighting factor andea is a discrete velocity,
c[dx /d t is the unit speed, anddx and d t are the lattice
constant and the time step, respectively. The discrete ve
ties for the D2Q9 models are

ea5H ~0,0!, a50,

~61,0!c,~0,61!c, a51,3,5,7,

~61,61!c, a52,4,6,8,

~A2!

and the values of the weighting factorwa are

wa5H 4
9 , a50,
1
9 , a51,3,5,7,
1
36 , a52,4,6,8.

~A3!

For the D3Q19 model, the discrete velocities are

ea5H ~0,0!, a50,

~61,0,0!c,~0,61,0!c,~0,0,61!c, a51 –6,

~61,61,0!c,~0,61,61!c,~61,0,61!c, a57 –18,
~A4!

and the weighting factorwa is given by@7#

wa5H 1
3 , a50,
1
18 , a51 –6,
1
36 , a57 –18.

~A5!

The discrete velocity sets$ea% for the D2Q9 and D3Q19
models are shown in Fig. 1.

r-
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The density and velocity can be computed fromf a ,

r5(
a

f a5(
a

f a
(eq) , ~A6a!

ru5(
a

ea f a5(
a

ea f a
(eq) . ~A6b!

The speed of sound of the above LBE models is

cs5
1

A3
c,

and the equation of state is that of an ideal gas such tha

p5cs
2r. ~A7!

The viscosity of the fluid is

n5cs
2l,

for the discrete velocity model of Eq.~2!. It should be noted
that the equilibrium distribution functionf a

(eq) is in fact a
Taylor series expansion of the Maxwellianf (0) @6,7#. This
tt.

hy

04120
approximation off a
(eq) in algebraic form by making the LBE

method valid only in the incompressible flow limitu/c→0.
Equation~2! is often discretized in spacex and timet into

the lattice Boltzmann equation

f a~xi1ead t ,t1d t!2 f a~xi ,t !52
1

t
@ f a~xi ,t !2 f a

(eq)~xi ,t !#,

~A8!

wheret5l/d t . For this LBGK model@1,2#, the viscosity in
the Navier-Stokes equation derived from the above lat
Boltzmann equation is

n5S t2
1

2D cs
2d t . ~A9!

The21/2 correction in the above formula forn comes from
the second order derivatives off a when f a(xi1ead t ,t1d t)
in Eq. ~A8! is expanded in a Taylor series inu. This correc-
tion in n makes the lattice Boltzmann method formally
second-order method for solving incompressible flows@7#.
Obviously, the physical and computational stabilities requ
that t.1/2.
n
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