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Knowledge Discovery in Neural Networks With
Application to Transformer Failure Diagnosis
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Abstract—The paper describes a new methodology for mapping
a neural network into a rule-based fuzzy inference system. This
mapping makes explicit the knowledge implicitly captured by the
neural network during the learning stage, by transforming it into
a set of rules. The method is applied in transformer fault diagnosis
using dissolved gas-in-oil analysis. Studies on transformer failure
diagnosis are reported, illustrating the good results obtained and
the knowledge discovery made possible.

Index Terms—Fault diagnosis, fuzzy logic, neural networks.

I. INTRODUCTION

RANSFORMER faults, mainly in the form of overheating,

arcing or partial discharge, develop certain gaseous hydro-
carbons, which are retained by the insulating oil as dissolved
gases. Their concentration, relative proportion and generation
rate have been extensively used for the estimation of the condi-
tion of a transformer, and Dissolved gas-in-oil Analysis (DGA)
methods such as Dornenburg Ratios, Rogers Ratios, and IEC
Ratios are commonly used by utilities and manufacturers [1],
[2]. However, the characterization achieved so far still has a
large margin for improvement.

Fuzzy inference systems (FIS) [3] have been tried in devel-
oping fault diagnosis systems. These have been built according
to DGA methods and the efficiency of the models developed de-
pended on the completeness of the knowledge of the specialist.
Also, the rules in fuzzy logic based models could not be au-
tomatically adjusted through a self-learning process when new
knowledge was acquired.

Also, artificial neural networks (ANN) have been proposed
to deal with transformer fault diagnosis [4], [5]. However, it is
often argued that ANNs do not have explaining capability and
behave like black boxes. This is a drawback, because human un-
derstanding would be greatly enhanced if the relations between
the variables were explicit, and engineers or technicians would
also gain more confidence in the diagnoses produced. In short,
ANNSs adapt well to a problem of classification but the knowl-
edge they’ve captured remains hidden, and fuzzy systems make
an explicit display of knowledge but it is basically the knowl-
edge of experts and not really learned from the problem.
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This paper shows how we may build an ANN that captures
knowledge from a transformer fault diagnosis data and how
we may transform it into an equivalent FIS and expose, in the
form of rules, the knowledge captured by the ANN. This allows
knowledge discovery by human specialists and helps in under-
standing how the neural network arrives at a particular result.
The usefulness of this approach is illustrated with its application
to incipient transformer failure diagnosis. The necessary theory
will be presented and then results will be discussed. The model
corresponds to an evolution of a prior attempt [6], which still
did not exhibit the desired property of transparency of the rule
base as now achieved. Some concepts will be repeated for the
sake of clarity.

The work presented does not constitute a comprehensive
diagnosis system for incipient transformer failures. It does not
take in account evolving rates for dissolved gases, nor other
type of information that is not suited to be represented by
if-then rules. It also assumes that there is a single major failure
in a transformer and does not take in account the possibility of
multiple simultaneous failures, whose mixed symptoms would
eventually blur one another and confuse the diagnosis proce-
dure. However, it represents an important theoretical step into
building better and more robust diagnosis systems. And the fact
that, at the present level, the methodology has already allowed
obtaining better results than by using IEC 60599 publication
is encouraging. The reason why it gives better results may be
investigated by analyzing the rules generated by the process
of knowledge extraction described, and will be available for
further research.

II. NEURAL NETWORKS AND Fuzzy SYSTEMS

The multilayer feedforward neural network, also known as
multilayer perceptron (MLP), is well known. We will summa-
rize its characteristics in what is required for the swift under-
standing of the developments further described. A MLP basi-
cally consists of a finite number of successive layers (Fig. 1),
each having a finite number of processor units called neurons.
Each neuron of every layer is connected to every neuron of a fol-
lowing layer through synaptic weights. Every neuron in a hidden
layer calculates

sj=1[ (Z Tiwi; + 9]) (1
=1

where z; is the <th input to the net, w;; is the weight of the
connection from input neuron ¢ to hidden neuron j, ; is the
bias of the j#h hidden neuron, and f(.) is the activation function
of the neuron.
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Fig. 1. Multilayer feedforward neural network structure.

For the output layer, each neuron calculates:

Uk =g Zﬂjksj + b 2
i=1
where
B;r  weight of the connection from hidden neuron j to

output neuron k;

Yk kth output of the net;

0 bias of the kth output neuron;

g(.) activation function of the neuron.

ANNSs are universal approximators. It has been extensively
demonstrated that a MLP working with arbitrary squashing
functions in hidden neurons can approximate virtually any
function of interest to any desired degree of accuracy [7].

In problems where the concern is mainly with results, such as
in a control problem, then ANNs are satisfactory. However, in
problems where knowledge is important, the black box nature
of ANNs may undermine the confidence of specialists or system
operators in their results.

On the other hand, FIS or fuzzy rule based systems, unlike
ANN, are systems that have precisely the desired characteris-
tics of an explicit form of knowledge representation. In Takagi-
Sugeno (TS) fuzzy inference systems, the relationship between
variables of the system is represented by fuzzy IF-THEN rules in
the form

RuleR;: If 21 is Ci and ... and z,, is C’,IL

Then y' = t(z1,...,2,) 3)
where
C!  fuzzy sets that may represent linguistic values;
T input vector of the system;
t function of the inputs.

The consequent of the rule is an affine linear or nonlinear
function of the input variables and the output of the TS model
is computed as the weighted average of y'. When y' = #(x)
is a constant, the fuzzy inference system is called a zero-order
TS fuzzy model. Fig. 2 illustrates the reasoning mechanism for
such a model.

In spite of their capacity of explanation, TS-FIS have some
drawbacks, which greatly restrict their application.

1) There is no systematic method for the transformation of

expert knowledge or experience into the rule base of a
fuzzy inference system.
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Fig. 2. Zero-order TS model.

2) Even when human specialists exist, their knowledge is
often incomplete and episodic rather then systematic.

3) They suffer from the curse of dimensionality, meaning
that the number of rules of the system grows exponentially
when the number of inputs increases and computational
complexity in the implementation for practical problems
increases accordingly.

III. RULE EXTRACTION FROM NEURAL NETWORKS

Rule extraction from ANN may be organized under five pri-
mary classification criteria [8].

* The expressive power of the rules extracted.

* The quality of the extracted rule.

* Translucency.

e Algorithm complexity.

* Portability or generality.

In particular, translucency refers to the rule extraction tech-
nique based on the granularity of the underlying ANN; rule ex-
traction from ANN can be categorized as decompositional, ped-
agogical, and eclectic:

e The decompositional approach regards rule extraction
as a search process that maps the internal structure of a
neural network to a set of rules. The analysis of numerical
values of the network such as activation values of hidden
and output neurons and weights of connections between
them are used to extract the rules directly. We find exam-
ples of this approach in [9]-[12], just to name a few.

* The pedagogical approach does not disassemble the ar-
chitecture of the trained neural network. Instead, it regards
the ANN as an entity and tries to extract rules that could
explain its function. The ANN is treated as a “black-box”,
where the extracted rules describe the global relationship
between the variables of the input and output of the ANN.
Examples of this approach are in [13]-[16].

e The eclectic approach incorporates elements of both the
decompositional and the pedagogical models.

No method is exact and most of them have identified draw-
backs, such as a curse of dimensionality (explosion of the
number of rules), approximation degree, limitations in their
applicability, etc. This paper presents an approach that may be
classified as decompositional and that relies on an exact math-
ematical correspondence between ANN and TS-FIS—which is
an advantage—no approximation is involved.
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Fig. 3. Positive-sigmoid function.
IV. MAPPING NEURAL NETWORKS INTO A
Fuzzy INFERENCE MODEL

A. Definition of the Topology of the ANN

In this paper we will consider an ANN with one hidden layer
and a single output neuron. We recall that it has been shown that
there is always an ANN with a single hidden layer equivalent to
another ANN with arbitrary number of hidden layers. The ac-
tivation function of the output neuron is linear and the hidden
neurons have the following particular activation sigmoidal func-
tion, which we will call positive sigmoid and whose graphic is
shown in Fig. 3

z >0

<0’ @

f(z)= {37_ €

B. Applying the Concept of f-Duality

To produce the mapping of an ANN such as defined above
into a TS-FIS, the concept of f-duality will be used [17]. This
concept allows us to consider a transform providing an equiva-
lent mathematical operation to (1)—the operation performed by
the hidden neurons in the ANN. The following propositions and
lemmas are useful:

Proposition 1: Let f : X — Y be a bijective function and
let & be an operation defined in X, the domain of f. Then there
is one and only one operation ®, defined in the range of f, Y,
verifying

/ <§1 a:) = & f(x). 5)

Definition 1: Let f be a bijective function and let & be an
operation defined in domain of f. The operation ® whose exis-
tence is proven in proposition 1 is called f-dual of &.

Lemma I: If @ is the f-dual of @ then @ is the f~! dual of
.
Proofs of Proposition 1 and Lemma 1 are in [17].

Applying (5) to the positive sigmoid function f (4) and
having & as the operation + in &, we are lead to:

Lemma 2 ( f-Duality): The f-dual of + is * and is defined as

f(:L’l —|—£L’2—|——|—.Tn)
= flzy) * f(xa) * ... f(zn)
== (1= f(e) (1= fw2)) . (1= Flwn))
fxy4+29+...4+2, >0 and =xz; >0. (6)

Proof of Lemma 2 is in the Appendix.

These proposition and lemmas allow us to write a new but
equivalent expression for the output of the ANN, which can
easily receive an interesting interpretation.
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Applying these concepts to (1), without bias #;, where the
activation function f is as in (4) and considering Z?Zl Tiw;5 >
0, the output signal of the hidden neurons can be calculated by

sj=f (inwij) = f(zrwij) * ... * f(zpwnj)
=1-(1 - f(z1wy)) ... (1 = f(@nwnj))

if inwij Z 0 and TiWij Z 0. (7)
i=1
We recognize in (7) a logic operator, well known in fuzzy
logic as an algebraic sum, which is an S-norm (OR-operator).
Function f(z;w;;) would be considered in Fuzzy Systems as
a membership function. However, function f(z) can only reach
1 asymptotically. To give it a linguistic translation, we arbitrarily
take the a-cut for o = 0.9 as the limit above which the linguistic
concept is fulfilled. Thus, f(z;w;;) may be considered as the
membership function of a fuzzy set representing “z; is greater
than 2.3/w;;”, where f(2.3/w;;) = 0.9.

C. Extracting Rules From ANN

Using (7) and f(z;w;;), a neural network (with some con-
straints) can be mapped into a rule-based system.

In an ANN as shown in Fig. 1, having the hidden neurons
without bias, 2?21 z,w;; > 0and z;w;; > 0, for each neuron
in hidden layer, one may state its output in fuzzy rule form as

Rule R; : If Z:v,;wq;j is A then y; = 3; ®)
i=1
where A is a fuzzy set whose membership function is the posi-
tive-sigmoid function.

There is nothing new here, except the aspect of (8), which is a
fuzzy set interpretation of (1) and (2). In fact, this is a rule char-
acteristic of a zero-order TS-FIS, because the weighting func-
tion is a constant (3. The output of the rule will be the product
of (3 with the membership value of the antecedent of the rule,
which is given by the activation function of the neuron—thus,
the result is the same as in the ANN.

According to (7), rules as in (8) can be written as

Rule Rj : If (xlwlj is A) * ...k (x,iwij is A)
* ..ok (T, is A)
then Y = ﬂj. (9)
Expression “z;w;; is A” may also be interpreted as “z; is
A;;”, defining the fuzzy set A;; by a membership function
w(Ai;) = f(xyw;;), with the weight w;; as a scaling factor
of the slope of f(.). Once the operation x is the algebraic sum
operator (OR), we may rewrite (9) as
Rule R; : If (21 is Ay;) or...or (z; is A;;)
or...or (z,is A,;)

then y; = f; (10)

where the firing strength of such rule is calculated by the alge-
braic sum operator, as follows:

vi=p(Agj)*. . ok p(An) =1=((1 = p(Aj5)) - (1 = p(Agy)) -
(11)
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Finally, from the output neuron in Fig. 1, the output of the
fuzzy system can be expressed as

y = Zﬁjsj. (12)
J=1
Since s; = v; and B; = y;, (12) can be rewritten
y = Zijj. (13)
J=1

This has the form of an inference system, extracted from the
neural net, similar to a zero-order Takagi-Sugeno model, with
the difference that here the fuzzy logic operator used to calculate
the firing strength of each rule is a S-norm (OR) and not a T-norm
(AND).

However, for each S-norm there is a T-norm ‘“associated”
with it, where “associated” means that there is a fuzzy com-
plement such that the two together satisfy the DeMorgan’s Law
[18].

The T-norm associated with the algebraic sum operator
S(a,b) =1— (1 —a)(1 —b) is the algebraic product operator
T(a,b) = ab. Therefore, the rule system extracted in (10) can
be transformed into

Rule R; : If (z; is Not A;j)and. .. and(z; is Not A;;)
and...and(z, is Not 4,,,)

then y; = j3; (14)

where the firing strength for each I2; rule is now calculated by

the algebraic product operator (AND operator) and the system
output is as follows:

y=> Bi(l—u). (15)
j=1

Rearranging (16) leads to the output of the fuzzy system as

y:Zﬂj(l—Uj) :Z/ﬁj_zijj (16)
j=1 Jj=1 J=1

where 2311 B; is a default value of the fuzzy system output.

D. ANN With Bias

If a bias input is used in the hidden neurons, then (7) is
rewritten as

S =f (Z Twi; + 9J>
1=1

sj = f(rwij) * ... % f(wpwy;) * f(6)
87 =1 = ((1 = n(A15)) .- (1= u(Any)) (1 = f(6;))

if Y wiwi; >0, miwi; > 0andf; > 0. (17)
=1
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Considering the output of the system and (17), we have

m
Y= Z Bjsj
=

= iﬂj (1= ((1 = pu(A1y))
- M- 56

== YA (- 100 (1 - ()
T uaw

- iﬂj - iﬂj (1 - F6))v;

y=>_0 - B
j=1 j=1

(18)

If a bias is used in the hidden neuron, then the consequent of
rule R2; will change from y; = 3; toy; = 87 = B;(1 — f(6;))-
If a bias (f,,¢) is used in the output neuron, the output of the
system will change to

Y= Bi = yjvj + bou (19)
j=1 j=1

where Z’;;l B; + Oout is the new default value of the rule.

E. Comments

The process explained so far contains the basic idea to pro-
duce the mapping of ANNs into FIS. However, for the rule an-
tecedents extracted from ANNs to be meaningful and subject
to interpretation, we must be able to represent then in linguistic
form. Consider the following condition:

Condition 2: If the negation (NOT) is applied to the extracted
membership p(A4;) = f(z;w;;), we will have in (7) a new mem-
bership defined as (Fig. 4)

—TiWij
€ ?

f(ziwij) = { 1,

TiWsj Z 0
TiWi5 < 0’ (20)

Weight w;; acts as a scaling factor of f(.). Taking the a-cut
for a = 0.999, we can approximate (20) to

efmiwij. 171’ > 0.001
flai) = 1, T < 0.001

Wi 5

2y

where f(0.001/w;;) = 0.999 ~ 1.
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The linguistic interpretation of this new set fuzzy is
“smaller than 0.001/w;;” and it will only make sense if
0 < 0.001/w;; < 1, which leads to the need that w;; > 0.001.

This is related with the usual practice of training an ANN
with normalized inputs; therefore all memberships functions ex-
tracted have to be defined for the respective input interval.

With w;; > 0.001,0 < x; < 1 and 6 > 0, the correct use
of (8) is guaranteed since we will always have Y| z;w;; > 0
and z;w;; > 0. However, during the training of the neural net
the bias values can assume any value in [—oo 400]. To overcome
this problem, in the next section we show how to enforce the
constraints w;; > 0.001 and #; > 0 in such a way that we can
extract rules from the neural network as presented above.

F. Constrained Neural Network

In Section IV-C, we have seen that if we have 2?21 TiWi5 >
0 and z;w;; > 0 we will extract rules as in (14), and in Sec-
tion IV-E that, if w;; > 0.001 and §; > 0, we will always
extract rules that may make sense. To take in account the con-
straints w;; > 0.001 and #; > 0, let us transform the weights
and bias of (1) using the exponential function

sj=f in(0.00I + eid) 4 b
=1

(22)

Using this transformation, the new weight w’ ; = 0.001+e"i
will always be greater than 0.001 and the new bias 9;- = ef will
be greater than zero. These transformations will not change the
backpropagation algorithm commonly used for training a neural
network. The algorithm will adjust normally w;; and #; between
[-o0 + o] and the restrictions will be guaranteed through the
exponentiation of w;; and §;.

G. Extraction of a Transparent Fuzzy System

The interpretation of a fuzzy system is possible only if it sat-
isfies conditions of transparency. According to [19], a FIS is
transparent if all rules in the rule base are transparent. A rule
is considered transparent if at firing strength

vj = 0 pij(wi) =1 (23)

K2

the system output is

Y=Y (24)
where y; is the centre of the output membership associated with
the rule. For the case of zero-order Takagi-Sugeno models, y; is
equal to the constant consequent. This means that the effect of
a single rule may be isolated.

The transparency conditions are defined based on the over-
lapping degree of the input membership functions. For a fuzzy
system to be transparent, the overlapping of the input member-
ship functions must be smaller than 50%. This guarantees the
existence of transparency checkpoints, which are points in the
input-output space where an explicit contribution of a given rule
takes place and where it is fully activated. Fig. 5 gives an ex-
ample of a transparent fuzzy system, where the asterisks denote
transparency checkpoints.
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Fig. 5. Left: transparent fuzzy system [19]. X, Y axis represent two variables
and the fuzzy partition of their domains with triangular fuzzy sets. When a
single rule is activated, with both variables at membership level 1, its output
(line) coincides with a real case (asterisk). Right: nontransparent fuzzy system.
The activation of a single rule does not generate meaningful answers and
interpolation of rules is necessary.

Fig. 6. Example of membership extracted for one input. X axis: normalized
input values. Y axis: membership values.

If the overlapping is greater than 50%, however, at least two
rules contribute simultaneously for any given input, thus the
output is always the result of interpolation. This makes the con-
tribution of a given rule invisible in system output and the fuzzy
system cannot be considered transparent. Fig. 5 gives also an il-
lustration of a nontransparent fuzzy system.

Although the methodology presented so far in this paper pro-
vided the extraction of an interpretable rule-based system, the
rule base obtained cannot be considered transparent. This can
be easy verified, e.g., by considering an ANN with seven hidden
neurons. For each input, seven memberships will be extracted
like the ones showed in Fig. 6. The extracted rule-based system
will have at least two rules activated simultaneously, which leads
to the case of nontransparent fuzzy system.

In order to provide the desired transparency for the extracted
rule-based system, an approximation process needs to be carried
out on all membership extracted from the ANN. In this work,
this process is performed by using a combination of the five
membership functions shown in Fig. 7. The membership func-
tions for “extremely small” and “very small” have been selected
to maintain the accuracy of the result. This option is not usual
but nothing prevents one to adopt it—in our case, we have ver-
ified that it was a necessary option.

The approximation given by each membership function is

/L(iﬂ) = alﬂsmll(x) + a2umed($) + a3uhigh($>

+a4,ufverysmll($) + as fbextsmll ('Z') (25)
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Fig. 8. Transformer fault diagnosis flowchart.

where z € [0,1] and [a1, ag, . . . as] are parameters that have to
be identified. In this work, the recursive least-squares algorithm
is used for this task.

For each rule, the approximated membership functions for
each input are then combined. As result, a new rule-based
system with a total number of rules equal to 5" is formed,
where 7 is the number of inputs of the system. Verifying (23)
and (24), this new extracted fuzzy system may be considered a
transparent fuzzy system.

V. TRANSFORMER FAULT DIAGNOSIS
A. The Transformer Fault Diagnosis System Proposed

The detection of incipient faults on transformers follows, in
general terms, the flow-chart presented in Fig. 8. The process
begins with the observation of the evolution of rates of com-
bustible gases that exceed “normal” quantities. If the evolution
rate per day is greater than a determined level then the trans-
former is suspected to have an active internal fault. The possible
fault is investigated by DGA methods.

After guessing the possible fault, in order to obtain confirma-
tion and more detailed information, such as the location of the
fault, other tests are needed. Many techniques for the detection
of possible faults of transformer using the measurement of gases
have been established. Table I presents the IEC 60 599 criteria,
which is widely used by utilities to interpret the DGA [2]. In
spite of all the criteria already developed, the search for a more
reliable method using DGA is still a topic of interest in many
utilities.

When applying an ANN to transformer incipient fault diag-
nosis, the diagnosis can be reduced to an association process of
inputs (pattern gases concentration) and output (fault type) since

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 20, NO. 2, MAY 2005

TABLE 1
IEC 60599 CRITERIA FOR THE INTERPRETATION OF DGA METHOD
CyH, CHy CyHy
Case Characteristic fault CyHy Hy CrHg
PD Partial discharge NS <0.1 <0.2
D1 Discharges of low energy >1 0.1-0.5 >1
D2 | Discharges of high energy | 0.6-2.5 0.1-1 >2
T1 | Thermal fault T <300 °C NS >], NS <]
T2 | Therm. f. 300 <T <700°C [ <0.1 >1 14
T3 | Thermal fault T >700°C <0.2 >] >4
NS = Non-significant whatever the value
TABLE II
CLASSIFICATION RESULTS
TR % T1%
ANN 100 97.84 (3 errors)
IEC 599 94.86 (1 error and 14 NI') 94.96 (7 NI)

TRY% - percentage of correct diagnosis for the training set
T1% - percent of correct diagnosis for the testing set
NI - non identified fault

it does not need a physical model. Neural networks are capable
of acquiring experiences from training data and interpolate from
it. However, for a proper training, the database has to be plen-
tiful and consistent.

In our work, we trained a neural network to receive as input
data the percentage of concentration of the gases Hydrogen
(Hs), Ethylene (CoHy), and Acetylene (CoHs) and then
classify the transformer fault as discharges, partial discharges
or thermal fault. Other data could have been used, such as
other gas concentrations or the gradients or increasing rates
of concentration of key gases but, as far as the classification
system is concerned, these three gases were enough as input for
the ANN to give good classification results.

The database of faulty equipment inspected in service, used in
Publication IEC 60 599 [2], [20], was used for training the ANN.
Additionally, a database derived from the literature and a data-
base obtained from CELPA (Power Stations of Pard, SA-Brazil)
were also used in the ANN training.

The ANN was trained with a common backpropagation algo-
rithm. It had 25 hidden neurons and three normalized inputs for
gas concentration: CoHs, CoHy, and Ho, and one output neuron.
The output of the ANN is a real value. The target values defined,
discriminating the type of fault, were: 0—thermal fault, 1—par-
tial discharge, and 2—discharge fault. Around each value, a
crisp band has been defined of size +0.5, and an output result
falling in a band was labeled according to its central value.

We have used 292 training and 139 testing patterns. The av-
erage square error (MSE) for training patterns was 0.0054 and
for testing was 0.017. The control of the convergence of the
ANN has taken in account not only the MSE but also the actual
success in classification. In fact, the ANN performs an interpo-
lation and the real objective is not so much reducing MSE but
achieving accurate classification results.

B. ANN Results

Table II shows the results of the ANN trained with the restric-
tions necessary for the rule extraction process, namely w;; >
0.001 and 8 > 0.

The result presented corresponds to the best one after some
training. The table also shows, for comparison, the diagnosis
results using the IEC criteria. One may observe that the IEC
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TABLE III
TEST RESULTS

H CHs | CoHa | CoHg | CoHg | ANN | IEC ]

13 17 0.3 4.7 42 T T T

39 1.7 0.1 0.1 0.6 PD PD PD
1600 | 3600 0 14 670 PD NI PD

95 10 39 11 0 D NI D
1570 | 1110 [ 1830 | 1780 175 D D D

41 112 4536 | 254 0 D T D
835 76 16 10 29 T NI D

10 13 0.1 25 7 T T T
33046 | 619 0 2 58 PD PD PD

T=Thermal Fault, PD=Partial Discharge, D=Discharge, NI=not identified
ANN= Classification with ANN, IEC=Classification according to IEC 60599
I=results of inspection — All values of gases are in ppm

method fails to identify a certain percentage of faults, but these
have all been correctly classified by the ANN. Also, the IEC
method is not exempt of error and ANN provided a more reliable
classification of faults. Table IIT shows a sample of the results
for the testing data, each line representing a case. The reader will
notice some cases where the ANN made a correct identification
while the IEC table failed, and one case of failure of the ANN
where also the IEC table was not useful.

C. Rule Extraction From the Neural Network

Once the ANN trained, the process of extraction of rules from
the ANN could be initiated.

The extracted FIS has, as the ANN, three normalized inputs
(percentage of gases concentration: CoHs, CoHy, and CH,) and
one output (fault); as the trained ANN has 25 neurons in its
hidden layer, 25 rules were extracted. Each rule extracted is ex-
pressed as

R; : IF (CyHjy is smaller than a)AND
(CoHy is smaller than b) AN D(Hj is smaller than c)
then y; = d.

To guarantee the transparency of the fuzzy systems, all mem-
bership values extracted from the ANN were approximated by
the combination of the five membership functions shown in
Fig. 5. With this combination, the number of the rules is 53 =
125, and each input has five membership values associated.

After membership approximation (as in Section IV-G), the
new average squared error of the system for training patterns is
0.0056 and for testing pattern is 0.0201. By comparison with the
results obtained by the ANN, we may conclude that the fidelity
between the ANN and the extracted FIS is guaranteed.

Examples of the approximate rules are

Ry : IF (Hy is Small) AND (C2Hs is Small)
AND (CyHy is small) THEN y; = 3.89
F (H; is Small) AND (C2Hj is Small)
AND (CoHy is Medium) THEN yy = 4.53
F (Hs is Small) AN D (C3Hs is Small)
AND (CyHy is High) THEN g3 = 4.38
F (H; is Small) AND (C2Hs is Small)
AND (CoHy is Extremely Small) THEN y, = —0.19

Rys5 : IF (Hy is Small) AND (CoHs is Very Small)
AND (CyHy is Very Small) THEN y;95 = 0.002.
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The output of the fuzzy system is given by
125
y=4226888 - ;1. (26)
j=1

If we take in account the FIS default value, we can uncover
the meaning of a rule. For instance, take rule Rs: if it could be
fired isolated, in a condition where its antecedent would have
membership value of 1, the FIS output would be of y = 0.15,
clearly indicating a thermal fault (value close to 0). This conclu-
sion, by the way, is not in contradiction with IEC 60 599 criteria
in Table I. What is surprising is that we could reach better quality
results with less information (using a smaller number of gases).

The new rules extracted may now be subject to examination
by experts. Because transparency is assured, an expert may ex-
amine the individual merits of each rule. Two consequences
may derive: the rule may match previous expert knowledge, and
therefore the soundness of the action of the ANN/FIS is con-
firmed; or the rule represents new knowledge, or a new way of
presenting it, and therefore we face a knowledge discovery mo-
ment. In any case, the process allows one to make explicit the
hidden knowledge captured by an ANN.

VI. CONCLUSION

This paper has been inspired by the problem of early diag-
nosis of transformer incipient faults by dissolved gas analysis.
Although there are guidelines from IEC (rules organized in a
table) in order to help in classifying faults, many cases are still
subject to doubt and error and, therefore, this problem is still a
concern for utilities and manufacturers.

We have shown that ANNs could give good results in such
task. In fact, the results in the paper demonstrate that in 431
cases analyzed, from a diversity of origins, we had only three
errors in classification, compared to 22 cases nonclassified or
wrongly classified by applying IEC 60 599 recommendation.

But we have provided an answer to another concern: the black
box characteristic of an ANN. In fact, the paper described how
to build a mathematical transform for an ANN and represent it
by an equivalent zero order TS-FIS, with explicit rules of the
IF-THEN type. The model presented, inspired in the f-duality
concept developed by other researchers, evolves in a different
direction and represents a further advance because it allows a
clear and classic linguistic representation of rules with the use
of the AND connective.

Once rules are available, knowledge is made explicit. How-
ever, its interpretability can only be fully achieved if the rule
base exhibits the property of transparency, allowing the inspec-
tion of the merits of each rule individually. The paper presents
a solution to this aspect.

The application of the method to the transformer fault diag-
nosis problem showed that not only an ANN could be used to
produce better results than IEC standard method but also that
rules governing fault classification could be extracted from the
ANN. We have not shown that the TS-FIS generated from the
ANN gives exactly the same results as the ANN itself, because
this is an obvious result from the fact that they are mathemati-
cally equivalent. We have, however, shown that the FIS with a
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transparent fuzzy rule base is a very good approximation to the
ANN.

The work with transformer fault diagnosis is not complete. In
fact, we believe that this paper may open a new path of research
and eventually allow the development of better and more accu-
rate diagnosis systems. In real-world applications, one should
not rely on a single technique, and a clever blend usually is the
best engineering solution.

However, the work reported opens a new way to knowledge
discovery. One may now follow the procedure of first, training
an ANN on a problem, then using our f-duality transform to
convert it into a fuzzy inference system, apply the described
technique to generate transparent rules and subject these rules
to expert examination in order to confirm established knowledge
and discover new knowledge.

APPENDIX

Proof of Lemma 2

Only two input variables in domain of X will be considered
to prove Lemma 2.

Let a,b € [0,1[. Let 1,22 € R such that a = f(z1) and
b = f(x2). For the positive-sigmoid function defined in (6), we
have then

For z=uz1,21=—In(1— f(z1)) = —In(1 —a)
T =x9,59 =—In(l— f(z2)) — = —1n(l —b)

then =z +z2 = —In(1—a)—In(1l —b)
=—In(l1-a)(1-10)
For z=z1+22, z1+2z2=-In(1- f(z1+22))
then —In(l—a)(1—-0)=—In(1— f(z1+ x2))
(=)l =b) =1~ f(a +2)
and  f(z1+x2)=1-(1—-a)(1-0)
thus  f(z14z2)=f(21) * f(z2)=axb=1—(1—a)(1-0)

and generalizing for n inputs, we have proved Lemma 2.
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