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Abstract

The ability to continuously monitor workload in a real-world environment would have important implications for the
offline design of human machine interfaces as well as the real-time online improvement of interaction between humans
and machines. The present study explored the usefulness of combining electroencephalography (EEG) with the newer
technique of near infrared spectroscopy (NIRS), under data acquisition and processing conditions that could be applied
to real-time usage, for example as an input to adaptive automation. Eight EEG channels (Cz, Pz, FCz, Fz, C3, C4, F3,
and F4) and three NIRS channels over the left forehead were acquired simultaneously, during repetitions of blocks of
three difficulty conditions of the N-back task. The resulting data were separated into five-second windows and binary
classifications on condition were performed on bandpower-derived features for EEG, and average hemoglobin levels for
NIRS. Each type of data was classified independently, and in combination. In general, EEG could be used to reliably
classify workload condition for most subjects, whereas the NIRS signal was less helpful and did not contribute to

classification accuracies when combined with EEG. Implications and future directions are discussed.
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1. Introduction

The limited capacity of the human information pro-
cessing system may be expanded by redesigning the infor-
mation flow between humans and computers. An interdis-
ciplinary research approach known as ‘neuroergonomics’
seeks to integrate our understanding of the neural basis
of cognition with the design and development of technol-
ogy [I]. Subsets of this field known as ‘adaptive automa-
tion’ [2] and ‘augmented cognition’ involve using real-time
measurements of user states to permit machine systems
to detect and react appropriately to reduce errors and in-
crease performance. Research to date suggests that per-
formance in various tasks such as driving [3], monitoring
technical and security systems [4], and even learning [5]
can be enhanced, for example by alerting users to lapses
in attention or by modifying the user’s tasks in real-time
to prevent overload or underload. In the past, researchers
have mainly used measures of behavior, performance data,
or physiological parameters such as heart rate variability,
occulomotor activity, pupilometry, and galvanic skin re-
sponse as inputs to these systems [I]. While these mea-
sures have been somewhat successful, they are indirect in-
dicators of cognitive processes and show limited predictive
power. This has lead to a demand for more direct measures
of cognitive phenomena such as task engagement, cogni-
tive workload, surprise, satisfaction, or frustration [6, [7].

Research using brain-sensing technologies to determine
user states for human-machine interaction applications is
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currently in its initial phases. One research focus in which
progress has been made to distinguish differences in brain
states in real-time is that of brain-machine interfaces (BMIs;
also known as brain-computer interfaces). BMIs are de-
vices which obtain information for their operation through
the measurement of correlates of neural activity associated
with mental processes [§]. They are usually designed for
direct, intentional control of computer cursors, games, or
typing programs for clinical populations with extremely
limited motor control. Despite equipment and machine
learning algorithms of increasing complexity, modern non-
invasive BMIs have extremely low information transfer
rates (meaning only a few commands can be recognized per
minute) and have levels of accuracy that are highly vari-
able between subjects [9], while they require most of the
user’s attention. For healthy users, this is not a practical
alternative to conventional methods of human-computer
interaction. Instead of replacing traditional modes, BMI
tools and technology can help to fill the direct-measure
gap in neuroergonomics applications [7]. As use of these
BMIs does not demand effort or attention, they may be
practically employed to improve safety and efficiency in
many industrial, educational, and everyday environments
- both offline in the system design process and online dur-
ing operations.

Before these predictions can be realized, a number of
technical challenges must be overcome. The main obsta-
cles to advancement lie in identifying stable, robust sig-
nals of the cognitive state, in ecologically valid settings,
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and using relatively inexpensive, portable equipment that
does not interfere with the task [I]. If the device is to be
used for online adaptive automation, these signals must
also be obtained rapidly, therefore extracting information
from short windows of data and without recourse to data
processing techniques that require knowledge of the entire
data set.

EEG has been well-studied in the context of brain com-
puter interfaces, including several studies on workload, a
state of primary interest for safety and performance in
the workplace (e.g. [ [6]). EEG uses scalp electrodes
to record weak electrical signals generated by the post-
synaptic potentials of large groups of cortical neurons fir-
ing simultaneously. The signal is attenuated and distorted
by the skull and other tissue, and is easily contaminated
by artifacts from muscle activity and ambient electrical
noise. Temporal resolution is high (within the millisec-
ond range), but deriving the location of the active brain
region, particularly with few electrodes, is difficult or im-
possible. Nonetheless, even inexpensive EEG systems with
few channels in an electrically un-insulated room can be
used to distinguish between brain states induced by differ-
ent tasks [0 [7].

Near infrared spectroscopy (NIRS) is a non-invasive
optical technique which infers relative changes in the con-
centration of oxygenated and deoxygenated hemoglobin in
the cerebral cortex from scattering and absorption prop-
erties of light projected through the skull (see [I0] for a
description of the working priciples of NIRS). The result-
ing signal is similar to that obtained in blood oxygen level-
dependent functional magnetic resonance imaging (fMRI),
though only cortical regions can be accessed [10]. In con-
trast to fMRI, NIRS is relatively inexpensive, portable,
and allows for measurements during activities such as com-
puter use. NIRS has been successfully used for several pre-
liminary BMI studies, such as by Ogata and colleagues [11]
to classify signals from the prefrontal cortex related to dif-
ferent cognitive tasks (see [8] for a description of current
NIRS-based BMIs). NIRS can have reasonably good spa-
tial resolution, particularly if high numbers of optodes are
used. Temporal resolution is limited by the delayed na-
ture of the hemodynamic response. NIRS is insensitive
to electrical environmental noise, but may be disturbed
by excessive user movement, and contains artifacts from
breathing, heart rate, and a slow baroreceptor-related os-
cillation known as the Mayer wave (~0.1Hz). The amount
of light transmitted and absorbed is affected by the degree
of pigmentation of hair and skin, and the thickness of the
skull. Comparatively little research has been conducted
using NIRS and its full potential for real-time brain state
signal use is not yet known.

Because EEG and NIRS measure different physiologi-
cal correlates of neural activity and are susceptible to dif-
ferent noise sources, it has been suggested that using a
combination of both techniques could improve our abil-
ity to differentiate between brain states [I [§]. A hand-
ful of studies have been conducted using EEG and NIRS

simultaneously for neuroimaging studies, including event-
related designs (see [12] 13} [14]). To the best of our knowl-
edge, a combination of EEG and NIRS for use in real time
workload classification has not been attempted.

The focus of this research is to test the hypothesis
that the combination of electrophysiological and hemody-
namic information from the brain, obtained under con-
ditions conducive to future real-time use, might help to
classify a user’s workload level. Prior research has identi-
fied several neurophysiological correlates of workload level
change. For example, in EEG results, an increase in frontal
theta and a decrease in alpha frequency band activity
has been reported [6]. Hemodynamic studies generally
show increases in oxygenated blood in the dorsolateral pre-
frontal cortex with increasing cognitive workload [10] 15].

2. Materials and Methods

2.1. Participants

Twelve participants were recruited from a pool of vol-
unteers, consisting mostly of students and young profes-
sionals from the local area. The data from two subjects
was not included due to a technical problem which pre-
cluded complete data analysis; all results are reported for
the remaining ten subjects. All participants were fair-
skinned (favorable for near infrared light transmission).
All participants were unfamiliar with the N-back task.
The mean age was 23.5 (SD = 3.0). Five participants
were male, and three were left-handed. All participants
used the first two fingers of their right hand to respond
to the task, except for one who experienced discomfort
in the right hand and switched to the left hand after sev-
eral experimental cycles. The participants signed informed
consent forms and were compensated for their time.

2.2. Ezperimental Design and Task

The experiment was approved by the TNO internal
ethics committee. It was performed in an office environ-
ment, with the lights off to minimize extraneous light col-
lected by the NIRS system, resulting in dim lighting from
partially blocked daylight. The participant sat on an of-
fice chair at a computer desk in front of an LCD computer
screen and used a chin rest (see Figure [I).

As outlined by Berka et al. [1], it is necessary to define
a relatively pure task that consistently elicits the brain
state of interest in order to identify robust signal corre-
lates which are required to train a classifier. This classi-
fier can later be validated in more realistic task circum-
stances. In human computer interaction research, high
working memory load is recognized as predictive of er-
rors and of slowed procedural skill acquisition, and it is
considered a major component and reasonable approxi-
mation of workload [T} [6]. We therefore selected the ‘N-
back task’ as our workload manipulation, an experimental
paradigm which has been studied extensively in functional



Figure 1: Experimental set-up (participant photo used with permis-
sion)

neuroimaging studies of working memory and cognitive
load [15], [16].

The N-back task was presented using E-Prime (Psy-
chology Software Tools, Pittsburgh). White letters (font
style: Arial bold, approximately 3cm high) were presented
for 500ms on a black background, followed by a 2000ms
inter-stimulus interval during which a small white fixation
cross was presented. Responses were collected using the
‘1’ and ‘2’ buttons on the computer’s keyboard. Accuracy
and reaction time data were recorded by E-prime. Perfor-
mance data from the first three letters of each condition
were not collected, due the pre-loading requirement of the
2-back condition. In the 0-back condition, the target letter
was ‘X’; in the 1-back condition the letter was a target if
it was identical to the letter presented immediately before;
and in the 2-back condition the letter was a target if it was
identical to the letter presented two letters previously. A
3-back condition was not used, due to evidence that many
subjects find it too difficult and tend to give up [10} [17].
In all difficulty conditions, 33% of letters were targets.
Except for ‘X’ in the 0-back task, letters were randomly
selected from English consonants. Vowels were excluded
to reduce the likeliness of participants developing chunking
strategies which reduce mental effort, as suggested in [6].

Prior to beginning the experiment, the participants
performed one practice session on each of the 0 and 1-
back tasks, and two practice sessions on the more difficult
2-back task such that the average performance accuracy
in each condition was over 80%. Participants were asked
to avoid movement as much as possible while perform-
ing the task. Eight blocks of each of the three levels of
the N-back task were presented in pseudorandom order
(Figure [2). Each block lasted for about 100 seconds with
short breaks between them in which subjects were asked
to sit still and relax for the first and last 10 seconds, and
then were allowed to move, review the instructions for the
following condition, rest if necessary. Most subjects con-

Figure 3: Locations of the three NIRS channels, located between
three optode transmitter-receiver pairs. Note that channels 2 and 3
overlap. (Participant photo used with permission)

tinued with the next condition within about 20 seconds.
This procedure introduced some jitter in the block presen-
tations which reduced the possibility of confounding the
block presentation with low-frequency oscillatory physio-
logical noise such as the Mayer wave. After 4 blocks, par-
ticipants had a mandatory rest of about ten to fifteen min-
utes in which the lighting and airflow was increased, a non-
caffeinated beverage was provided, and participants were
encouraged to stretch and engage in conversation with the
experimenter. This was deemed necessary to reduce effects
of boredom with the repetitive nature of the task and mild
discomfort due to sitting still and wearing a cap reported
by some pilot study participants.

2.3. Equipment and Data Collection

The experiment used three interconnected computers.
The participant’s computer ran the N-back task in E-
Prime, which sent event markers to the EEG and NIRS
computers, allowing for accurate time calibration between
the EEG and NIRS data. A desktop computer recorded
EEG data using Simulink (The Mathworks, Natick, Mas-
sachusetts), and a laptop computer recorded NIRS and
converted raw optical density scores into oxy, deoxy, and
total haemoglobin concentrations (Artinis Medical Sys-
tems, Zetten, The Netherlands). Minor communication
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Figure 2: Graphic representation of the experimental design. Presentation order of N-back conditions is pseudorandomized

delays in the system were optically measured and accounted
for during data processing.

A custom-modified electrode cap containing holes po-
sitioned for NIRS use (Guger Technologies OEG, Graz,
Austria) was buttoned to a chest strap to reduce the risk
of movement. A G-Tec USBamp amplifier (Guger Tech-
nologies OEG) was used with eight passive electrodes: Cz,
Pz, FCz, Fz, C3, C4, F3, and F4, with a right-side forehead
ground and linked mastoid references (frontal sites are
strongly represented due to previous findings of changes
in frontal theta activity with increases in workload [I8]).
The impedance of each electrode site was reduced to less
than 5 kOhms prior to beginning the experiment. Data
was sampled at 256Hz. A notch filter at 50Hz and a band-
pass filter of 0.01 - 60Hz was applied during data collec-
tion. A continuous wave near infrared spectrometer (Oxy-
mon MKIII, Artinis Medical Systems) was used to measure
relative changes in oxyhemoglobin and deoxyhemoglobin
concentrations on the left forehead, above the dorsolateral
prefrontal cortex, a brain region strongly associated with
working memory-dependent tasks in both NIRS and fMRI
studies [I7, [15]. Three independent channels were used,
each with an inter-optode distance of 45mm. One was ap-
plied in a headband across the forehead, centred above the
left eye (see Figure |3)).

Optode sets for two channels were inserted into the
modified G-Tec electrode cap, using custom-made black
foam light baffles. The receptors and transmitters for these
channels overlapped, each being 22.5 mm from one another
and 45 mm from their counterpart (the Oxymon system
allows for this due to a time-encoded pattern of laser fir-
ing). Laser wavelengths of 766 and 860 nm were used, and
transmitter power and receiver gains were set to ensure
sufficient light was collected. The signal was also checked
visually during the training task, using the presence of the
effect of the heart beat on the oxyhemoglobin concentra-

tion as an indicator that the light was being transmitted
correctly through the head.

2.4. Data Analysis

The performance data was exported from E-prime and
processed in MatLab to obtain average accuracies and re-
action times for subject responses in each of the condi-
tions. A one-way ANOVA was performed to assess the
significance of differences between workload levels on the
accuracy and reaction times, averaged over targets and
non-targets for all subjects.

Custom-made MatLab (The Mathworks, Natick, Mas-
sachusetts) scripts were written to reconstruct the time
course of the event markers and identify the beginning and
end points of the experimental blocks within the EEG and
NIRS data sets. Exploratory analyses were performed to
visualize differences in the power spectra across conditions
for each subject at each electrode, and to investigate pat-
terns in the relative concentrations of oxy-, deoxy-, and
total hemoglobin in each subject and each NIRS chan-
nel over the course of the experiment. As others [6] have
found, we observed large differences in the patterns of the
response of the power spectra between subjects. This was
true also of the averages obtained from the NIRS data,
where agreement with previous results (e.g. [I7]) was only
found in some subjects and some channels. Together, this
reinforced the need for highly individually tailored classi-
fiers.

In literature, longer window sizes tend to produce bet-
ter classification results. For example, Grimes et al. [0
systematically varied the window size between 0 and 120
seconds for EEG data and found an improvement of about
15% with a 2-condition classifier between 2-second and 20-
second window sizes. However, larger window sizes also
increase the risk of overfitting of spectral details when us-
ing common spatial pattern filters, and reduce the cap-



tured trial-to-trial variation, which is undesirable (Chris-
tian Kothe, personal communication). Longer windows
also lower the number of trials available within a data set,
which is a problem when trying to estimate the accuracy of
the classifier and the significance of the results from a lim-
ited amount of data [19]. A window length size of 5 seconds
was selected with a view to making a real-time classifier
that could make decisions for use in adaptive automation
relatively rapidly. Thirty-six windows were obtained per
experimental block, meaning that some overlap existed be-
tween windows. This is in keeping with the expected us-
age, in which classification results would be calculated on
a moving window. Classification was carried out using a
Beta version of PhyPA Team’s MatLab based classifica-
tion toolbox (TU Berlin), which is designed as a powerful
classification platform for 2-class brain-computer interface
data. Using two functions, it is possible to pre-process
data for use by particular classifiers, and then to train and
test the classifier. A cross-validation is performed to es-
timate the classifier’s accuracy in which an entire block
is kept out of the classifier training and is then used for
testing. The standard deviation of a sequence of accuracy
estimates is also calculated.

Due to the 2-class restriction of the software, the main
analysis was done between the 0 and 2-back conditions,
based on the expectation that this would produce the great-
est workload difference. Classification was also performed
between the 1 and 2-back conditions for comparison, due
to concerns that the 0-back condition lacked the updat-
ing component of working memory, leading to a less pure
measure. Due to non-stationary effects observed in the al-
pha frequency range of some subjects during exploratory
analysis between the first and second sessions, three classi-
fications were performed, one for each session (four blocks)
separately and one for the entire experiment. In the case of
one-session data, an 8-fold chronological/blockwise cross-
validation was performed, and in the case of entire ex-
periment data, a 16-fold cross-validation was performed.
We report only the combined session results here, as it
is a more stringent and valid measure of the classifier’s
ability to handle data collected over multiple sessions in
which background signals related to other cognitive pro-
cesses may change.

The EEG data was classified using five variations in
classifier training paradigm recommended by signal pro-
cessing experts from PhyPA Team for the specific experi-
mental design. Each used either linear discriminant anal-
ysis (LDA), which uses a linear combination of features
which best separate the two classes of data; or logistic
regression, which bases the classification decision on fit-
ting available data to a logistic curve. EEG features were
all related to band-power within the 2-25Hz range. Some
paradigms took the spatial location of the electrodes into
account (using common spatial filtering or multiclass com-
mon spatial filtering). Others used different numbers spa-
tial filters (6 or 8), or used a reduced frequency range cen-
tered around the alpha and theta peaks (3-6 and 9-12Hz).

The NIRS data were examined using an LDA classifier
which took as input the average oxy-, deoxy-, and total
hemoglobin concentration of the NIRS data in each chan-
nel after low-pass filtering at 0.14Hz. Only minor varia-
tions in classification accuracy were obtained by extending
the upper boundary of the low-pass filter incrementally to
10Hz on a subset of data, so the cut-off value suggested
most commonly in literature was retained.

A custom-written function by Christian Kothe of the
PhyPA Team was then used to combine two separate train-
ing paradigms, one for the EEG and one for the NIRS. The
single NIRS training paradigm was combined with each of
the EEG training paradigms in turn to assess the benefits
of the addition of NIRS data to EEG classifiers.

3. Results

8.1. Task performance

The results for the accuracy and reaction time of the
subject per condition is displayed in Figure (note that er-
ror bars display standard errors of the participant’s respec-
tive averages). Although significance was not reached us-
ing a one-way ANOVA between conditions (accuracy F(2,
27) = 1.15, p = 0.33; reaction time F(2,27) = 1.83, p =
0.18), this is likely because of insufficient statistical power
due to the low number of subjects and high variability be-
tween subjects in their accuracy and reaction time rather
than a failure of the N-back task to adequately manipulate
workload. Numerous studies have demonstrated the effec-
tiveness of the task under comparable conditions. Using
a similar N-back design, [6] only found an accuracy effect
between 3-back and others, which was not used in this ex-
periment. Reaction times were significantly different only
for non-adjacent conditions. In this experiment, this effect
seems to have been obscured by large variations between
subjects’average response times in the 2-back condition.
In comparison with Grimes’ study, subjects tended to be
much faster and somewhat less accurate in their responses,
possibly due to differences in the wording of the task in-
structions.

The trend indicates that accuracy decreases and re-
action time increases with increasing workload, although
there may be little difference in difficulty between the 0
and 1-back conditions, a result confirmed by the subjec-
tive reports of most participants and apparently found by
Grimes et al. [6], although only main effects across all con-
ditions are reported. The accuracy results for non-target
letter responses are likely higher than target letters due to
the difference in the frequency of their appearance. The
‘non-target’ response is likely to be the default option. It
should also be considered that subjects may partially com-
pensate for increasing task difficulty with a greater arousal
state and increased effort, in which case we could expect
bigger effects between conditions of the brain signals as
compared with the performance results.
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Figure 5: Sample data visualization from the subject with the great-
est classification accuracy (subject 2). a) A smoothed periodogram
averaged across all blocks from electrode position Fz shows an in-
crease in theta-band activity and a decrease in alpha-band activity
with increasing workload levels. b) Relative oxyhemoglobin concen-
trations across all blocks in a NIRS channel shows an increase with
increasing workload levels. Error bars represent the standard error
of the averages of the raw data within each block

3.2. Qualitative correlates of workload

In order to ascertain whether there are major and con-
sistent differences between conditions in the data prior to
classification, the data were visualized in various ways in-
cluding periodograms for EEG and averages over exper-
imental blocks for NIRS. Figure [5| shows an example of
‘good’ results. The power spectra averaged over all 8
experimental blocks for each condition are clearly distin-
guishable from one another, with theta activity increas-
ing and alpha activity decreasing with increased workload.
Similar EEG patterns were found at all electrode locations
for this subject, with theta differences more strongly rep-
resented in the frontal channels. The averages of the oxy-
hemoglobin concentrations within each condition are pre-
sented, showing the expected increase with higher work-
load. Quantitative analysis at this stage is less relevant for
our research question, which focuses on using short time
windows and real-time applicable filters rather than grand
averages over entire blocks after data cleaning, as was used
in [I7].

While the alpha and theta band patterns occurred fre-
quently amongst the subjects, it is not a generalizable
finding. Other idiosyncratic frequency band differences
were observed, such as a shift of the peak alpha towards
the low frequencies with increasing workload, or even pat-
terns of alpha and theta band powers inverse to those ex-
pected. The results reported in literature of increased oxy-
hemoglobin for the NIRS data were only apparent in some
subjects’ data, with others showing inverse or simply in-
consistent results. This could not be improved by bias-
ing each block’s average to the resting period immediately



prior, taking a subset of the block where a peak hemody-
namic response would be expected as a time window, or
various smoothing techniques. In general, a high degree of
variability made significant differences between conditions
rare, with differences more likely to be found between the
0 and 2-back conditions for most subjects.

3.8. Classification

The classification paradigms are designed to optimize
the weighting of specific features in order to produce the
highest classification accuracy possible. This implies a
high level of customization which makes group statistics
on the effectiveness of a particular classifier less mean-
ingful. No consistency between subjects was observed in
which EEG classification paradigm gave the best result.
Most EEG classification results for the same data set were
within the range of about 5% from the average classifi-
cation accuracy. We therefore extend this subject-wise
customization to selecting the most effective of the classi-
fication paradigms for each subject in order to assess the
effectiveness of the addition of NIRS data. Mueller-Putz
and colleagues [19] emphasize the need to adequately de-
termine if a classifier performs above chance by using confi-
dence limits considering the number of classes, the number
of trials per class, and the desired alpha value. Given our
two-condition classifications, 36 windows per testing block,
and an alpha level of 0.05, we can set the upper confidence
limit for single tests at approximately 60% accuracy. Since
the same data are used for two classifications (EEG or
NIRS independently as well as a combined result), a Bon-
ferroni correction is appropriate (alpha = 0.025), which
according to experimental results [I9] means a confidence
interval cut-off of approximately 63% accuracy.

The classification results are presented in Figure[6] In
the 0 vs. 2-back classification, 8 out of 10 subjects’ EEG
data and only 5 out of 10 subjects’ NIRS data was classifi-
able above chance level. For those who had both EEG and
NIRS above chance level, three showed a small increase in
classification accuracy with the addition of NIRS, in the
order of 2%. The relatively large standard deviations of
classification accuracy during the cross-validation process
(in the order of 15-20%) imply that this is not a substan-
tial increase. The results for the 1 vs. 2-back classification
are similar, with an even lower number of subjects’ NIRS
classification above chance levels.

4. Discussion

The results of this experiment do not promote the use
of NIRS for the real-time recognition of correlates of work-
load. However, the results suggest several areas in which
further investigation would help to clarify whether and un-
der what circumstances NIRS signals could be helpful.

The classifiers showed a high standard deviation, mean-
ing that the classifier performance varies considerably dur-
ing iterations of cross-validation testing. This could result

from a combination of several factors: the classifier may
be overfitting the data, the data may not allow for the
formation of a good/stable model, or the data set may be
insufficiently large (Christian Kothe, personal communica-
tion). It is difficult to interpret the standard deviations in
the context of published BCI results, as most publications
to date have not reported this important information [19].

The classification results also show a decrease in ac-
curacy after the addition of NIRS data, which demon-
strates that the classifiers are not performing well, since
data which does not contribute to the classification should
ideally be ignored. When the degrees of freedom are too
high relative to the class information available in the data,
many classifiers (including those used here) deal with the
situation by enforcing simplicity, which also has the effect
of simplifying the parts of the data which are informative,
leading to lower classification accuracies. This could be
improved by recording much more data per subject. Alter-
nately, more advanced machine learning techniques could
be used such as relevance vector machines can theoretically
handle this nature of problem very well (Christian Kothe,
personal communication). A systematic examination of
the how the features selected for classification vary with
related yet distinct aspects of the user’s cognitive state
(e.g. boredom, distraction, drowsiness, and stress levels)
would also be highly informative for guiding feature selec-
tion.

A related problem is the paucity of tools and methods,
including classifier training paradigms, available to handle
the classification of NIRS data. For example, in keeping
with current practice of using EEG for BClIs, the PhyPA
toolbox’s classifiers have been designed and built primar-
ily around EEG data, focusing on techniques for extracting
bandpower and event-related potential features. Only one
of the included functions was appropriate for NIRS data,
and the analysis was based on a simple low-pass filter and
averaged hemoglobin levels. It is likely that dedicated ef-
forts by the machine learning and signal processing re-
search community will develop better ways to handle the
high degree of variability found in the NIRS data, allowing
for better identification of robust features. Related efforts
are already underway, as demonstrated by the recent re-
lease of a statistical parametric mapping tool for NIRS
data [20]. Luu et al. have also experimented with using a
large number of NIRS channels at multiple depths (differ-
ent inter-optode distances) to mathematically reduce the
effects of superficial hemodynamic changes from the deep
sources, thus obtaining a cleaner signal from the brain area
of interest [21].

It is also possible that a more extensive search through
parameters such as window size, bandwidth filters, and
others, would increase the accuracy of the NIRS classifica-
tion results. Unfortunately, the classification as described
for a single subject took approximately five hours of pro-
cessing time on a high-end desktop computer, for which it
was not possible to systematically vary all available clas-
sification parameters within the scope of the project.



0 vs. 2-back classification (% accuracy)

EEG sD NIRS sD BOTH sD

1 89.6 9.4 74.3 22,8 727 340
2 89.6 91 73.6 15.0 913 146
3 783 7i3 79.7 21.0 79.2 220
4 77.6 17.7 63.2 229 67.0 29.1
5 71.9 143 545 19.7 514 22,7
6 68.6 9.3 50.7 7.2 554 24.5
7 456 139 488 138 311 22.2
8 65.6 259 526 137 401 36.4
9 566 23.7 363 232 338 236
10 87.0 10.9 79.7 153 89.6 17.7

1vs. 2-back classification (% accuracy)

EEG sD NIRS sSD BOTH sD
83.7 2.4 63.4 226 646 315
813 214 70.8 146 83.7 233
68.8 145 550 184 46,0 317
70.1 136 50.7 238 536 269
67.0 106 583 181 585 27.6
64.1 15.6 365 l6.2 49.7 15.0
83.7 142 420 164 743 220
55.9 268 427 272 384 385
49.1 22,5 438 6.1 16.3 16.8
83.9 125 72,0 122 80.2 174

Figure 6: Classification accuracies and standard deviations of repeated accuracy measurements using cross-validation. Results from two binary
classifications are reported. Results higher than the 63% confidence interval cut off are highlighted in bold font (blue). Results supporting

the hypotheses are underlined (green)

Only three NIRS channels were available, leading to
an increased risk of missing a region of workload-related
activity. This problem could be resolved either by us-
ing a more extensive network of NIRS channels (e.g. [17]
used 16 channels over the forehead region), which would
also allow classifiers to take spatial relationships into con-
sideration when selecting features. The area of interest
could first be functionally localized using a short session
in an fMRI scanner in which a working memory task is
performed in a block design. The resulting fMRI acti-
vation map could then be used with a stereotactic guid-
ance system to pinpoint the appropriate scalp region over
which to measure NIRS. Other signals such as the deacti-
vation of the brain’s resting state network, which is found
to be negatively correlated with frontal theta activity [22],
may yield more robust workload-correlated hemodynamic
signals (Dr. Sander Daselaar, personal communication).
Hemodynamic signals originating in more posterior regions
such as components of the default state network in the
parietal cortex may be less susceptible to contamination
from superficial blood flow changes, and classification fea-
tures made up of combinations of positively and negatively
correlated regions might further improve the classifier per-
formance.

A last consideration for future work is that EEG mea-
surements may be more practically combined with the
physiological parameters mentioned in the introduction
than with NIRS. For example, Igbal et al. [23] have found a
relationship between task difficulty and pupillary response.
If further testing with NIRS systems fail to produce suf-
ficiently powerful classifiers, workload measurement may
be improved by combining this or other approaches with
EEG measurement.
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