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1. INTRODUCTION

One of the main open problems in the area of particle physics is the understanding of the properties

of hadrons starting from the microscopic theory of strong interactions, namely quantum chromoﬂy-'

namics .(QCD). 1t is well known that cliral symmetry — one of the main claracteristics of QCD
— plays a special role to describe the low cnergy specira of hadrons. In this sense much effort has
been made studying chiral effective meson and, quark-meson lagrangians {1,2,3] which in.corporate
-the most relevant symmetries of QCD, and reproduce the features of that theory in the non per-

turbative phase. The weaknress of these models is that they do not possess the color confinement

and asymptotic freedom properties of QCD. Its applicability is therefore limited to those hadronic

phenomena which do not depend sensitively on details of the confinement mechanism. IHowever,
for many important aspects of low energy hadron physics, the symmetries of QCD are probably as
important a8 confinement, Jt is within this context that we shall discuss both the merits and tllg
limitations of approaches based on effective chiral models.

When using such simplified models, however, one has to make sure that the resulis are not very

sensitive o the high energy behaviour of the model which is known to deviate radically from the

_ behaviour of QCD. As pointed out by Perry and Cohen et al. [4,5}, the breakdown. of such theories

occur wlen the momentum séaie_ greatly exceeds other mass scales in the problem. In such regions
one cannot relly upon theoretical results whicil ignore the internal structuce of nucleons and mesons.

As far as asymptotic freedom is concerned, it is well known that pliencmenclogical models lacking
such property will present instabilities at the one loop level [6,7]-

Among the large variety of mo-dels currently used for the purpose of describing low lying hadronic
properties, the NJL model [8] seems to give a good deseription of light meson spectra [9,10]. More
recently, attempts have been made to include meson resonanc.es into such descriptions. The first pion
tesonance has been successfully accounted for in the vontext of the NJL model {11,12] by including
RPA continuum models (ref. [11]} or e:;m'va.lently by examining both pofes and cuts of the pion
propagator {ref. [12]).

In this paper westudy the mesonic sector of the linear sigma- model {13}. We present z quantitative

description of the pion and its {wo experimentally measured resonant states [14} N
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The Jagrangean of the chiral-symmetric sigma. model with linear breaking is known to be renor- |

malizable {13]. The first renormalization scheime for the sigma model without nucleons has been

formulated by B, W, Lee [15] and generalizations to include fermions have been proposed afterwards
‘ [16,17]. Explicit one loop renormalization of the model is given in ref. {18).

This important feature of the model guarantees that one can obtain quantitative results at the

one loop level, which are finite. However, as pointed out at the beginning of this introduction, due

to the lack of asymptotic freedom, one is not free from instabilites, even when working with L[u_:

renormalized version of the model [19]). We shall show in what follows that if one regards the linear

sigma model as an effective model in the same sense as the NJL (and therefore only valid within -

a restricted coufiguration space) it is possible to obtain an adequate quantitative deseription of the
discussed mesons and mesonic excitations. This is the philosophy behind our theoretical scheme.

The purpose of the preseut work is twofold: Firstly to introduce an effective hamiltonian based on
the original lincar sigmna model which contains a cutofl parameter and allows for a unified dcscriptiol.t
af the mesonic properties (mesons and their resonances}. Secondly to introduce a method to obtain a
complete set of stationary states corresponding to small amplitude motion. The method stems fgotil
iraditional many body techniques in which the continuum solutions are na'turally included, Energy
“.;e'ighled sum rules are introduced and used to study the collectivity of calculated states. Alth'ough
we shalf be working within the context of a particular model, the method is quite general.

In sectian 2 we present the effective chiral sigma model which will be described semiclassically

in the sense that fermions are treated quantum mechanically whereas meson fields are treated clas- -

sically. _The added counterterms and their significance will be discussed. We illustrate the method
in sections 3 and 4 where bound states and continuum states {for the scalar and pseudoscalar fields)
are ablained. In section 5 we present the main results for pion and their resonances with the help of
the energy weighted sum rule. .

2. THE EFFECTIVE CHIRAL MODEL

The & model is a field theoretical model originally introduced by Gell - Manu and Lévy [13).as an

eﬁ:ample of a phenomenological model which realizes one important characteristic feature of QCD,

chiral symmetry and pértial conservati_on of the axial current. It involves a fermionic iso-doublet
field of zero bare mass interacting with a triplet of pseudoscalar pions ¥ and a scalar field .

In the present section we present a semiclassical realization of the above mentioned model, and
introduce the corresponding effective hamiltonian describing a system of N fermions occupying either

positive or negative energy states, interacting with the classical fields corresponding to ¥ and ¢. Our

-effective hamiltonian is written as

~ _
H =Y [5;.8; + gb;(o(x;) + irs()F.¥{z;))]

Fe=t

3’ -
+%jd=’z(n§+€ra-\7a+n?,,+z:ﬁw‘-.v7w.-) + %jdax(a2+‘lf2~o§)2

=1

P e e e~ + 2oL [z e '
26 [ s P ot v et - ) + 2% [T, (2.1)

where & , § and 75 are the usual Dirac matrices, ¥ correspond to the matrices of the fundamental

flavor representation §U(2), 1T, and [ig are the conjugate momenta associated with the cassical
fields o an;l ¥ respectively, The coupling constant g and the constants K and gg will be fixed in the
calculations in order to attribute physically reasonable masses for quarks and mesons. The factor
£ stands for the degeneracy of the systern and will be taken equal to six {we shall be considering
three colours). The last two terms in eq.(2.1) are regularization terms, which depend on a cutofl
pararheter A. The first one assures the st;bility of the ground state and the second term which
crontains‘the parameter X allows for the definition of the scalar meson mass in the vacuum. Note that
our hamiltonian is adjusted to the configuration space spanned by | 5|< A and is invaziant under a

chiral rotation in the 75 — isospin space. More precisely, the replacements
8 — B+ i€lrsh0l,
iBysT — iB1sT + ieilvs7y, i077]
¢ — o —2¥ N
¥ ¥ 42,
where £is an infinetesimal constant vector, leave the hamilionian, including counterterms, invariant.

In what follows we shall be considering an extended system of fermions, which are treated quantum

mechanically in the mean field approximation, and interact with classical fields, as described above.
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The ground state of the model is determined variationally. For the fermions we choose the family

of Slater determinants | ¢ip >, or equivalently, of density matrices pp obtained by occupying single-

particle positive energy states with momentum lower than Pr and single-particle negative enargy

states with momentum lower than A (A > Pp). In homogeneous quark maller we can write

pml ( -+_ﬂM) o+ ) ( _ _w_) on -, (22)

1p‘}.‘-,2_|_114-9 ‘/P2+M-3
Here M*® is a variational parameter, representing the quark mass, to be fixed by the usual energy

minimization procedure. The ground state energy can be immediately caleulated and is given by

o P, M(gr—M*)\ A
E=2% Ve e Mf e ] T2 4
; ( VPt + M ) 2| 2

: R I e NN

P<A,
where E;, = P p<Pr = Lpea aid {1 is the normalization volume. Variations with re'spec‘t. to M*, 0

and ¥ in the static case give the following relations

M =ga, i ©(24)
252 = K(e? 49— ol)o + % Z g7 (2.5)
ity 2 TATAE T .
K(a + ¥ =)0 + EE g ¥ - (26)
—_— 0 N -
ph p’l + y2(0'2 + 11;2
The only-solution ofeq. (2.6)is ¥; =0,if o # 0. The corresponding energy density is
.E‘%E ' K e 330 - B .
_—— € + ——(.ﬂ! -q 0'0) E . . : (2'7)
& #<Fr 19" ‘
where go has been replaced by M*. We also get the sell-consisténcy condition ;
K, . WM 1
for - oy = EL 5 L (23)
g €
p<Pr

where ¢ = \/p? + M~1.  ° . "

From eq. (2.8) we see that the vacuum state (Fr == 0) is characterized by A" = M = goy which
is the constituent quark mass. If we are dealing with extended quark matter (P # 0) this effective
mass will change according to the self consistency condition eq.{2.8). This lmplies that the energy

per volume will be a function of Pr (or the effective quark mass) for a fixed set of parameters K, 00

5

and g. In Fig. 1 we show the epergy per unit volume, eq.{2.7), as a [unction of M" for some values of
Pg. For small values of Pg, there are only two solutions for eq. (2.8}, one corresponding to M* =0
{which remains as a solution for any va.lues of Pr), and one correspondig to M* # 0 which i s L‘l}e
minimal energy solution. However, as Pr grows the situation changes and we come into a region
where eq. {2.8) provides three solutions. One of them corresponds to a maximum of the energy and
must be discarded, the other two solutions correspond to a local and an absolute minimum of the
ener‘gy. lf.We keep increasing Pr we will obtain only the solution M™ = 0. The symmetry is restored
at Pp = Ppc for which the two minima are degenerate,

The energy per particle represented in Fig. .2, relers to the absolute minimum solution. The
curve is continuous, in spite of the discontinuous behaviour of M* which is represented in Fig. 3 as
& Tunction of Pp. The reason for this becomes clear from Fig. 1, observing that at the point whete
the discontinuity in M™ occurs, namely Ppe, the two minima are degenerate and fro that point
onwards we have always M* = §. Note that the energy per particle exhibits a pronounced minimvm
at the Fermi momentum Pr = 1.55fm™! (for the values of the parameters given in the figure). This
value is compa;tible with the nucleon radius.

It is also important to emphasize that the inclusion of the Dirac sea plays an essential role in

insuring the stability of the vacuum against fluctuations of M* [20].

3."SCALAR AND PSEUDOSCALAR MESON SPECTRA FOR BOUND STATES

In this section we present the time evolution of small homogeneous excitations (carrying zero
momentum) around equilibrium. In considering this, the last counterterm in eq. (2.1) is very
iinportant to guarantee that the scalar meson mass in the vacuum corresponds to its physical mass
{or the mass we choose as physically reasonable).

The time evolution of a density matrix p(Z) corresponding to a Slater determinant slightly dis-

placed from'equilibrium can be written as

p(t) = 5 Wpoe=iS1 | (3.1)

where 5(} is a hermitian, one-body, time-dependent operator. For small amplitude motion, it is

sufficient to consider the effect of S(2) up to second order, Obviously, due {o the coupling térms in
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tke hamiltonian (eq. (2.1}) there will also be fiuctuations in the scalar and pseudoscalar classical lields,

"respectively fo and 87, which are non vanishing and time dependent. Consistently we shall treat .

these terms up to second order only. In order to obtain the equations of motion and correspoﬁding

eigenfrequencies and eigenvectors we follow the method presented in ref. [9].-

We are considering a mean field reduction. of the linear o model. This means ‘that the time

dependence of the system we are considering is providedAby the time—dependent.Hartree-Fock (TDHF)

equations. It is well known that these equations may be derived from 2 lagrangian formalism. The

TDilF lagrangia.n describing small amplitude oscillaﬁons around the equilibrium state is

L= trGoo$,81) - Se5als, [ho.sm-m(pofs o+ ((“"’ "’—“;)—’)

I\n “2 2y/512 2 2 7 1. s
[(3M — M*)(ba) +{M - M) (6%,)7 —.fg > (F(éa)2+:(6\h)2) , i(32)
P<A .

where hg, 6k are givgn by _
ho = F@+BM" ‘ ' (3.3)
5h = fgbo + ighysT6% . ‘ (3.4
The use of TDHF lagrangian eq.(3.2) is meaningful because the stability of the grouﬁd state pp is

insured by the inclusion of the Dirac sea, by appropriate counterterms and, as we will see, by a cutofl

Al

The generators of the scalar and pseudoscalar homogeneous excitations for zero momentum trans-

fer are respectively given by
So = FAB, 1) + iPE0PL ), o (3.5)

Sy = By 5P 1) + 1575l 1) . (3.6)

Inserting eq. (3.5) in eq. (3.2) leads to the following equations of metion

G2+ 2078 =0, (3.72)
_ Md; - 2683, + gho =0, (3.78)

6_0 2 a2 2&7’60 +4 9*15 P
ML 7 K am? - rygo 4 K98 a m ;’ =0 {3.7¢)

The eigenfrequencies and ei;;enmodes are now easily obtained from the above equations. For the
ejgenfrequencies we get the following dispersion relation, corresponding to the scalar mode
%é = 1—2(3M" m+ =L 255, Z I Z’W (38)
When describing the vacuum state we should have w, = m,, the scalar meson mass. We choose
m, = 2M (the justification for this choice relies on the comparison with the results obtaingd [or the
same spectrum in the NJL model ref. [3-12]). This requirement fixes the relation between K and ¢*
to be |
. £ 2, (3.9)

and also determines the parameter A :

£g° 1
. A (3.10)
” w0 P<A %

3

where ¢o = +/p?+ M2 . From this equation we see that } may assume any value from 1 to —co

“depending on the chosen value for A (from 0 to oo respectivelly). Finally, the dispersion relation for

the scalar meson mass reads

Wi =om? —an? 4 5 Zj( ) 8’ ):6( = wz) (3.11)

" There are two types of solution of eq. (3.11) [21]. I w, = wyz, with 0 < wy < 2¢p,

Of We: > 2¢€p, there are two collective discrete modes (bound states). On the other hand, if

"%%p < wy < 264, there is a continuum of solutions analogous to those which will be discussed in

detail in section 4, in connection with the pseudoscalar excitation.

. This dispersion relation is independent of the cutoff parameter A in the limit A — co , but 1f A
is too large one imaginary root a.ppears [21} related to Perry's instability. Itowever for values ol' the
cutofl below a given critical value, of the order of 2M, % is positive (ci. (3.10)) and all roots are
real imp]ying dynamical stahiiit.y of the system. This is the main reason why we work with a cutoff.
Fig. 3 illustrates diagramatically the solutions for the dispersion relation (3.11) for Pr =0 and fora
suitable valug of A. -

“The discrete scalar mass spectrum is shown in Fig. 4 and exhibits a qualitative behaviour very

similar to the one found in ref. [9] for the NJL model. In particular, a reduction of the scalar'meson

8




effective mass in a hadronic medium is predicted.r This effect increases with the density. The main
difference is connected with the way in which chiral symmetry is restored in the two models: jn the
NIL model (see ref. ‘ [9], Fig. 5) chiral symmetry is restored in a continuous fashion as the quark
density matter increases, whereas in the present model & discontiﬁuous Bel:qviour may occur {sce
-Fig. 4). There remains however a small quantitative difference: whereas in the NJL model the
scalar meson mass is always given by w, = 2M", this is not the case any more in the present model,
a.[tho‘ugh the difference is not too large as shown in Fig. 4.

The scalar RPA eigenmode for the bound states is given by

@ _ _digwss ot |
& =T 4 “ L2’ )
+ 2 | | '
o = oo™ S
@, 1 - .
o , — (3.12¢)
, Ve wor |\ f1 - 5 S
TG = 252 o), (3.12d)

‘The modes are normalized according to

- 2 - . . . . .
in (a(*)llg*) — gl n'(,:l:) - %‘E’ p?@{*)?g*) - 'I’gﬂ @5*))) - iI_ML . (3.13)
P

Wog |
We turn now to the description of the pseudoscalar excitation. Its generator is given by eq. (3.6}
and a dispersion refation can be obtaired in a similar way 2s in the case of the scalar mode (note,

however that the pa.re-:.meter A has already been fixed), We get

. ..z.h ) fgﬂuar — ;1-_ 1 2632 _ . . . .
A=y S (S ) Lm0

p<Pr

For values of the Fermi momentum Pp such that Pr < Ppc the above equation has one collective

low-energy solution wy = 0." This solution corresponds to the psendoscalar Goldstone boson. For
Pp > Ppg, the chiral symelry is restored and the scalar meson and pion masses are degenerate as
expected. This result is also displayed in Fig. 4. '

In order to generate normalizable RPA‘er states of the pionic excitation it is convenient to elimi-
nate zero-valued frequencies. This is achieved if we introduce a perturbative term in the hamiltonian

eq.(2.1) which explicitly breaks the chiral symmetry. This term is simply

W =Qoc. . o (315)

This term will not have any influence on the equilibrium valte of the ¥ field, but now the

expectation value of the scalar field in the vacuum will be given by
c
=M= — 3.16
M =M =goe+ 490_3 ) { )

as 3 consequence an extra c/agp term appears in the r.h.s. of eq. (3.14). We can adjust e/op in such
a way as to yield wy = 1384 eV the pion mass in the vacuum (Pr = 0). We get cfoa = 140MeV,
for the values of M and g used in the figures. The presence of this new term (eq.(3.15)} in the
hamiltor;ian has also the consequence 01" removing the degeneracy in the scalar and pseudoscalar

spectrim. ' : .

Again we have a discrete solution of eq. (3.14), vy = wx, and the pseudoscalar RPA eigenmodes

are given by
g - =8 1 o, (3.17)
VR we ] [y - BT ity :
Iey :'w,( BN -
i El' | . i...,i..,w( ), . (3.178)
£ igw:r T
O = gl (3.17¢)
1 i)
g _Zee ¥E (3.17d)
z M 4 — w2

fi being a.n.a.rbitrary unit isovector. These modes are normalized according to

o Stle | mipye i), M ol e ) ), @lEieyy o W 3.18
QU . G g 1 +—§—zpj (&8 s,' ¥y iiwwi (3.18)
We 4re now in a position to calculate the pion decay comstant by using the above presented

eigenmodes. This is done following 2 very simple and commonly used practice in nuclear structure

7 calculations, which is well suited for the calculation of such a quantity. The pion decay constant is

defined by the pion to vacuum transition amplitude induced by axial charges [22]

— (OIQélrk) = i;/%‘fxﬁﬁ, - (3.18)

where Qg- are the charge operators related to the time component of the axial current :
N s o )
= ~TF) M®
Q= E'rs(.v)—2 + f &z —g-—ﬂw . (3.20)

=1
for a static scalar field.

10




e

to ¥ is to be understood as the gencrator of a fluctuation of the ¥ field. The axial clarges are

therefore associated with a special form of the generator in eq. (3.6) given by

S = 58 : (3.21a)
Si=o0, ' (3.215)
and ¥, [iy fields given by
no M .
it = 2 g (3.2ic)
g
‘fe=0, (3.21d)

where j is associated with the component j of the axial charges (eq.{3.20)).

‘Buch 2 state may be expanded in our normal RPA modes according to

7 g+ )
. M wh wl
' 0/.4: nt 1w '
o |=er| dn fre] o | (3.22)
1/2 b (L
/ ) e

where the signs 4+ and — are related with positive and negative frequencies respectively, and e_ = €}
It should be stressed that in eq.(3.22} the amplitudes of the components over continuuin states vanish

when the chiral syminetry is resiored. Using eq. {3.18) we can write the coeflicient ¢, as

Q| wr | Mg ( 1 2% 1 '
[ = - -_——— E Ty I (323)
2z ‘/% — EE'ILE:"W'F A0 Sl —u)
This coefficient can be interpreted as follows
tw,

fe , (3.24)

. f=—i<0{Qi|nr>=

2

and it yields'the following expression for the pion decay constant (in the bound state we-have we € 2)

- 2
=Ml fefevl (3.25)

In the vacuum, and using eq. (3.10)
M ' (3.26)

holds exactly. Equation (3.26) agrees with the Goldberger-Treiman relation. In order to reproduce

the experimental pion decay constant, for instance Jr = 93MeV, for a constituent quark mass

11

In our description the fields [y, ¥ are classical fietds. The Iy field being canonically conjuga‘te‘

M,g = 320McV we get for the coupling coustant g = 8.44. Tlese were the values used in all

nutnerical calculalions.

4. PSEUDOSCALAR MESON SPECTRA IN THE CONTINUUM

In order to study the RPA normal modes including the continuum it is convenient to write the

Lagrangian eq.(3.2) in a dimensionless form. Inserting eq.{3.6) in eq.(3.2}, and using the dimensionless

quantities
fj =8F/M , {4.1a)
B=Tg/M? = §& /202, (1.16)
c= @M, =R+ M7 (1.1¢)
me AL (4.1d)
' f) = S22 (410
40? ='2(m2—1+2®ﬁ) + g?/:dzf(z). 4.1y

we get for the pscudoscalar-isovector excitation the TDHF lagrangian
Ly 1 = =% = . 7 £, - S Th 21 Z 2 = g2
s = g PGP @) - m [ def@)$ 5~ Si- S - 2 [ def(@)m® | 5 42 | )
TF - zF
s z o T | 3 (2 2502
rom@- [ daf@+ G- [ daf@)5 - FOFPH2IGF. ()
zF IF

wlere all time derivatives are related to v = Mot .

Frora the Euler-Lagrange equations, the following equations are obtained for the normal modes:

“iw@, = AB,, (4.34)

iwbB, = ~402(. + 2mg f " gz S (2)5lz) s (4.35)
L AR .

z'w.g"g:,(z) = g0 — 2mSru{z) , {1.3¢)

iwSh.(z) = ?15-5'.1..,(:} . (4-34)

As mentioned before, there are always two types of solutions of egs. (4.3). Two discrete modes,

w = wy, if w? < 4zp or w? > 4z, and a continuum of solutions if 4zF < w® < dzp. \
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T'he dispersion refation for bownd stales is

7 2 rx
ST I N _z .
G+ T [ ese =0 )

and the discrete modes are described by

CGe=1, o (4.50)

Wy,
Py = i, (4.50)
= iw, g fl
Sl#(’)=iszy (4.5¢)
i
Srifz) = (4-5d)

5; z-wifq’
il being an arbitrary unjt vector and the only difference with eqs.(3.17) is the fact that now the

cigenvectors are not normalized. In the continuum the normal modes are given by

~ o 2mn

, - Qo= -, | o " (460
" B = —%Ea(w [0, o (4.6b)

Siu(z) = iwﬂs,w(z), . (4.6e) -
Solz) = (.s(u‘-‘ Ja~z)+ %) , - (4.6d)

where a(w?/4) satisfies the equation

(2 /4) a -
a{w’/4) = P4t g TR daf{z) : {1.7)

In what follows and in eq.{4.7), integrals involving the factor 1/(:c'—w2/4) have to be interpreted as
principal value integrals.
1t can be scen from eqs.(4.3) that the normal modes are orthogonal, and using eqs.(4.5) and (4.6}

we get the following orthogonality relations:

i(P5-Gu- G B2 [ defe S-S - S S )) 2m? 1 / HCHIOPPIS
i (Q'i - P."w - ﬁi: * Qu‘w - zm/:A dzf(x)(s:li " 5:.“&!-‘“‘ §2:I: * 57‘,'”)) =0, (4'8'!')
H ( “.i: . P"g, - ﬁi -Q-"* - 2mjzﬂ dzf(z)(S"l* '5?'21; - ngi . S-.'u:)) =, (4.8¢)
7 . 7 _
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where
7,,_2uz( 4] dzf(e) w2/4)2) , (4.9)
Following the arguments of van Kampem [23), for the electron plasma, and of ref. [24] for the.

nuclear case, il may be shown that this set of solutions is complete.

5. THE PION RESONANCES

It is well known that sum rules can be defined within the RPA approximation {25, 26]. They are
very useful in providing a quantitative measure of the collectivity of physical states. We wish now to

investigate the excitation of the vacuum due to some operador D, which represents an external field.

In our formalism the operator D is the generator of the initial fluctuation. The energy weighted

sum tule (EWSR) m; states that [27]

>

my = 3 enltrIDIO = S 1D, U1, DI (5:1)

r=0
where [} represent an exact cigenstate of the hamillonian 7, w, the excitation encrgies {w, = E,—FEg)

and [0} is the vacuum state. The sum includes the discrete as well as continuum states.

We chose some initial condition

QW 1 [ @
_ PO | A
Y= Sz | T i) | {5.2)
) 5x{z,0) Jiriz)

and identify this generator with a transition operator b.

Since the set of the normal modes is complete we can expand Wg in that base. There is a function-

" e{w) and numbers C,, C_ - such that,

(ZO f— (z(.: q+ Q::_

Fo P ) P, Ty -
Hizy |~ 2 /2 e(w) §u(2) dua+ )_'“ Cys §4(2) +C-; 5i-(2) . (63)
iiy(z) * L Sl For(2) 1, Si(a) ),

The factor 2 in the first term in the right hand side of eq. (5.3} appear because we have to consider

the expansion in the ranges 2./zF <w < 2/7) and —2/7p < w < —2/FF. Thesum ¥, means

that we have to consider the two discrete normal modes each one corrcsponding to the discrete

energies w, < 2,/ZF and w; > 2/EL. The quantities /7(w) e(w), ,/ﬁ;C“, where g{w), 7:

14




denotes the sorms of the eigensolutions, reprosent niatrix elements of D, {r|D[0Y = €, /iy, The
EWSR (5.1) is preserved in the mean field approximation and may be written as

(-]
nyp = Z wr Tr IC:'|2 =

+=0

5 1D, 11, D] 0) 6

For completeness sake, we observe that the solution of the initial value prollem defined by éq.(5.2)

is
Q:(T) éw Q.-I- Q‘—
_‘P(T) — WER ﬁw —twr F ~fwyr F— i
El(I.T) = 2/;‘/5 c(w} n?:[u(:c) e dw-i"g Chs S‘.:.:(-I) e T+ Cos 5—,-]“(:) eiwzT
Salz,7) Sau(z) : Sul2) L&) ],

.

Following van Kampen {23] and making use of appropriate auxiliary functions [28] it may be

shown that the function c(w)

I - C) B
) C(u) (l + 7;202(u2/4) %) ’ ey (54)
. iw? 4 o o o o za - . - .
{w) = ;ﬁ’@ﬂw (G0 5- Gz [ "z f2) (i) - Sike) - o) - Site)))

(55)
and '
N S R A o 7 -
Cas =t (B Qo= Qi Fom2mn [ 2 10} (I1(2) - Siale) - I@)-5i(@)) . 60)
. rp
The coeflicients é(w), Cy. satisly, therefore, the EWSR [28]:

i [ oA )
o S w7 Wi/ 16) 6% (W /4))

+ X2 (iCul+ICLl) =

1 =9 - -rTh . - T A "
= 5 (MR +402G8) +2 fx e {21} + 2) — 2gm o ./: Ca@inm e
The strength function representing the pienic mode in the 4q continuum is -

16n2%[(w))? f(w?/4)
w(l+ n?(wif16) a*(w?/4))

$x{w) = (5.8)

We investigate now the mesﬁn mass spectra, which we identify with the excitations of the vacuum,
We take, thereflore, in our expressions Pr =0 and m = M*/M = 1.

We choose three iritial conditions which as we said before, represent different transition operators
D. For each operator D, we calculate the expansion coeflicients given by (5.4) to (5.6}, and obtain

the EWSR and the strength exhausted by each mode (the discrete and.continuum}.
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In table 1, we display our results for pseucloscalarfiéovecbor excitations corresponding lo three
different transition operators. 7

As discussed before, we must work with a finite cutoff A < 2.018M in order to avoid the
imaginary eigenfrequency and to insure stability. In this situation we not only have the Lw;) 1ow
discrete eigenfrequencies (w, = £ 138MeV.) but also two new discrete eigenfrequencies lying above
the continnum, w = +w, with w§ > 4. The energy of these new modes are very semsitive to
the‘cutloﬂ'. If we fix A = 1.57M we get wy, = 1771 MeV. As we can see in table 1 it is possible to
identily the low discrete eigenfrequency. with the experimental mass of the pion (m, = 138 MeV'}
and the high discret eigenfrequency with the m;xss of the pion’s second resonance « (1776). In all
these three initial conditions we have a distribution of strength in the continuum. We identify the
maximum of the strength fanction with the first pion resonance x (1300). The percentage of the
EWSR exhausted by the continuum and the position of the maximum depends on the transition

operator. The operator which does excite the first pion resonance more strongly is D = ifys7T and

‘we get 14.2% of EWSR in the contiruum states. Such results agree with the one obtained in the

context of the NJL n;odel [11,12]. Fig. 5 shows the strength distribution. It is very broad but most of
the strength is concentrated in 2 energy range (800 < w < 1200} which covers the experimental value
{(1300 £ 100) M eV).

We may say that the pion particle is a very collective bound state because with the axial charge
;as tle transition operator, 98.3% of EWSR lies in this low energy mode wy = 138 MeV. The reason
for that is clear, because in our Hamiltonian, chiral symmetry is almost exact and so Js has a sirong

overlap with the corresponding RPA operator. We also remark that the EWSR for the operator (s

" is closely related to the so called GMOR relation [10, 11}

Moreover, we can identify the high energy discrete mode with the second pion resonance: the
transition operator D= #75¥ exhausts almost all the EWSR for this state.

We have obtained a unified description of the pion and of its resonances.
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FIGURE CAPTIONS

Fig.1 - The energy per volume in homogencous quark malter in units of Af4 {the vacuum quark
mass) for different values of the Fermi momentum for the parameter values: g = 3.44 and

K = 2g?. The curves are in diflerent scales so that details can be observed.

Fig.2 - The energy per particle as a [unction of the Fermi momentum for the parameter values:

g=3.44, ) = 92g%, M = 320MeV.

Fig.3 - Diagrammatical illustration of the solutions for the dispersion relation corresponding to the
scalar-isoscalar excitation for the \;acuum {Pr = 0) and with a suitable value of cutofl

A.  The straight line represents the function (w?/A) — 4M? and the curves the func-

| tion —(£4%/20)w” 3o, cp PP/(¥(€ — (w?/4)))- The circles correspand to t.ht’z two collective

diserete solutions and the points to the continuum solutions.

Fig.4 — The elfective quark mass {dotted linc), the scalar dispersion relation (sofid line) and the
pseudoscalar dispersion relation {dashed line) as 2 function of the Fermi momentum for the
parameter values : g = 3.44, K = 2g°, M = 320MeV. The point Prc indicates the value

of Pr for which the chiral symmetry is restored.

Fig.5 — Strength function representing the first pion resonance as a function of w for the transition

operalor D= ifysT with A = 2M. The arrow indicates the experimental mass.
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" TABLE CAPTION

Table I - Energy of the pseudoscalar-isovector excitations carrespondin g to three different transition

operators for the parameter values: M = 320MeV, g = 344, K = 2¢%, eJa =

140MeV . A is the cutoff.
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. Table 1
TRANSITION A e (138) (1300} w{1770)
OPERATOR U | T | ENERGY | EWSR |ENERGY | EWSR |ENERGY | EWSR
' ] [MaV) % (MaV) % (Mev) o

Qg 1.57 138 08.3 767 0.3 1771 1.4
o 1.57 138 64. 4 786 3.3 1771 | 32.3
BYsT 2.00 | 138 | 84.5 | 952 | 14.2 | 10035 | 4.3

Y5 © 1.57 | 138 4.5 | 1150 1.4 | 1771 | 97. 1
: A
N
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