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ABSTRACT

Seidl and Lipas™™ have calculated the lifetime of the excited states of the hydrogen
atorn within an entirely classical framework, and obtained a good agreement with the
corresponding quantum results. Here we propose a physical explanation for thié good
agreement and show that the agreement can be significantly improved by including
the effects of the vacuum zeropoint electromagnetic fields in their classical model.
Moreover, we show that the zeropoint electromagnetic radiation provides a physical

mechanism for the atomic stability on classical grounds.

1. INTRODUCTION

Recent calculations!!! have shown that good numerical values for the lifetime of the
excited states of the hydrogen can be obtained within an entirely classical framework.
The classical lifetimes agree fairly well with the quantum calculations, through a wide
range of order of magnitude, varying from 10° sec o 1072 sec. In the present article,
we propose a physical explanation for the good agreement between the classical and the
quantum calculations. Moreover, we further refine this classical model for the hydrogen
atom transitions by introducing the random zeropoint electromagnetic radiation char-
acteristic of classical stochastic electrodynamicsi®. We will show that the zeropoint
“vacuum” electromagnetic radiation provides a physical mechanism that accounts for
the atomic stability on classical grounds3l,

Before we start our explanation, it is convenient to stress the differences of the
classical and the quantum scenarios for the hydrogen atom. For this purpose, we
briefly remind some historical steps of the transition from one scenario to the other.
After all, even Niels Bohr, the anthor of the first (ad hoe) quantum mode! of the atom,
was stunned by the constraints of this own theory. In a letter (September 1913) to a
colleague of his, Bohr wrotell: “In the necessity of new assumption, I think that we
agree; but do you think such horrid assumptions, as I have used, necessary?”

‘An important preliminary advance towards introducing quantum levels in atoms
was the hypothesis of A. W. Conway {1907) that atoms should be altered in a “dis-
turbed stote™®. During the return of the atoms to their normal state, monochromatic
alectromagnetic waves are emitted. This implies that an atom contributes to a single
spectral line at a time. Without this assumption, each individual atom would radiate
simultaneously all of the spectrum lines, and it would then possess a large number of
degrees of freedom. This would imply an exceedingly large number of electrons per
atom. Conway’s hypothesis gained further support with the discovery of the Rydberg-
Ritz combination rules, which were compatible with the existence of an enumerable set
of “disturbed states”.

In 1901, Perrin proposed a “nucleo planetary” model of the atom, a negative charge
rotating around a positively charged nucleus. This model does not explain the atom
stability, an important dynamical property of these microscopic assembly of charged

constituents.



Within the framework of the nucleo-planetary atom, Nagaoka proposed in 1904 &
model in which the electrons behave as uniformly charged rings, with a constant angular
velocity (Saturnian model), which is a radiationless motion (see ref [5], chapter I). In
this model the spectral lines cofrespond to the vibrational modes of the rotating ring.
Moreover, the ring angular momentum (in this radiationless motion) would prevent
the electron from collapsing into the nucleus. However, the spectrum produced by this
model does not agree with the experimental facts,

Another atternpt was made in 19111912 by Nicholson in a model that assumed an
ad koc quantization of the angular momentum of the orbiting electron!*®. The “nca-
pecity (of an atom) for radiating in a continuous way will secure the sharpness of the
fines”. However, in this model, the radiation frequencies are the classical frequencies
of the rotating electron.

Finally, in 1913, Bohr proposed his nucleo planetary model of the atom that suc-
cessfully reproduced the experimentally observed spectral lines of the hydrogen atom.
This was possible due to the introduction of various ad hoc hypothesis, including the
stability of the “ground” state and the instability of the “excited” states. The surpris-
ing feature of his model is that the radiated frequencies are not equal to the frequencies
of the orbital motion of the electron as expected from classical electrodynamics.

As mentioned in the beginning of this introduction, we shall calculate the lifetime
of excited states of the hydrogen atom, within a classical framework, taking into ac-
count the zeropoint eIectromagne.tic radiation. We shall show that the zeropoint field
improves the results of Seidl and Lipas!'! and provides the stability of the atom.

We shall present our spiraling electron atomic model in section 2. The basic dif-
ference from the Seidl and Lipas description is the fact that the atom is immersed in
the zeropoint electromagnetic radiation. The quantal transition rates are calculated
within section 3. The surmmary of results is presented in section 4 where we stress the
fundamental modifications due to the introduction of the zeropoint electromagnetic
background. Qur section § is devoted to a detailed justification of the physical mech-
anism underlying the agreement between the classical and the quantum calculations.

Finally, a brief discussion of our conclusions is presented in section 6.

2. SPIRALING ELECTRON ATOMIC MODEL WITH ZEROPOINT
RADIATION

From classical electrodynamics standpoint the hydrogen atom electron radiates en-

ergy at a rate given by the Larmor’s equation

S#H+a) (1)
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where #:1(t) and z,(t) are the cartesian coordinates associated to the plane of the

()= a2+t (2)

is the distance between the electron and the proton. In equation (1), e is the electron

orbit and

charge, and c is the velocity of light.

In the case of an attractive Coulomb force, an electron, moving in a circular orbit

of radius r , has energy e(r) given by

e2

elr) = ~5 - (3)

The instantaneous angular frequency w of the electron motion, which is also the fre-

quency of the classically emitted radiation, is such that

, | (4)
where m is the eleciron mass.

Likewise Seidl and Lipas, we shall discuss only the particular case in which the
electron orbit can be considered as almost circular. This special situation is simple
enough and also corresponds to a well known regimen of the classical trajectory of the
radiating electron. Due to the classical emission of radiation, any bounded orbit, which
is initially elliptical, becomes a.lmost- circular while the electron is spiraling towards the
nucleus (see for instance the text books by Jackson[™ and Landau®).

For a strictly circular motion, with angular frequency w (see(4)), each component

of the acceleration is such that

:.éj + w?'g:j =0 r (5)



7 = 1,2, Here, however, we want to consid.er radiative corrections to equation (5)
due to the fact that the electron is continuously emitting and absorbing radiation from
the environment. In other words, we shall assume that a strictly isolated hydrogen
atom does not exist. The atom is always immersed in a reservoir of random electro-
magnetic forces provided by the zeropoint radiationl?. Therefore, a natural framework
for our theoretical analysis is the so called classical stochastic electrodynamics, or sim-
ply SEDP19, This is the Lorentz's classical electron theory into which one introduces
random electromagnetic radiation (classical zeropoint radiation) as the boundary con-
ditions giving the homogeneous solution of Maxwell’s equations. The theory contains
one adjustable parameter setting the scale of random radiation, and this parameter
is Planck’s constant £ = 27/i. In accordance with the classical Wien law the energy

density spectral distribution associated with a cavity at zero temperature is:
w? N hw
polw) = (W -5 (6)

which corresponds to an average energy of Aw/2 per normal mode of angular frequency

w. Good and complementary reviews of SED are given by Boyer®!!l, Milonnil'® and

de la Pefia and Cettol.
Therefore, according te SED, the radiative corrections can be introduced into equa-
tion (5) which (in the dipole approximation) is modified tol?")

& twiz; o~ 5 -r;z% ; —i—% E;() (7)
where the first term in the right hand side is the radiation reaction force. The second
term is the contribution of the random electric field E;(#) in the dipole approximation.
These radiative corrections are small and only modify the circular motion slowly, that
is, one can consider that w ~ constant and r ~ constant (see (3} and {4)) for many
periods 2r/w of oscillation. However, the stochastic forces eE;(t) produces a slow,
but inevitable, diffusion of the circular orbit!
The ensemble average of the random field E;(1) is such that {E;{t)) = 0 and the
spectral density po{w) is related to the correlation function {E;(t) E;(0)), namely®
3
yi {E;(t) E;( / dw po{w) cos(wt) (8)

where po(w) is given by (6).

in what follows we shall assume that, for many periods, the random motion of the
electron can be described by the equations (7). From the solutions z;(t) of Eq. (7} it is
possible to show!®® that the electron absorbs energy from the background radiation.

The average rate of absorption is such thatt!
2
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in agreement with (6), (7) and (8). The frequency w is given by (4).
Therefore, according to our proposal, the equation of motion for the spiral orbit of

the electron will be:

dt  dt \2r
where FPope is given by (9) and Prarmar can be obtained from (1), (4) and (5) in a first

2
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approximation.
This procedure will lead to the following differential equation for »
dr 4 e a5\
—_— == —— —— 1 - - - 11
& 3 m3c®r? ( r (1)
The constant ap is the Bohr radius, namely
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where o = ﬁic = 1% is the fine structure constant.
Comparison of our equation (11) with equation (12) of Seidl and Lipast*! shows that
zeropoint electromagnetic radiation brings in the factor (1 —Jeg/r )

uz\/zml , (13)
ap

2
up e 2™y (14)

which can be easily integrated. The result can be written as

Introducing the variable u

equation (11) becomes

3 h

2 oSme?

tHr) = [ Plug) = Plu(r)) ], (15)
where '

5, 20, 15, 6, uf
Flu) =lnu+6u + —t? + oo + —u 4 o + = (16)
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and
o= (> =1 . (17)

Here g is value of the radins at # =0,

Equations (13), (15) and (16) allow us to obtain the radius r as function of the
time t. According to the result (11), the spiraling motion stops when r is approaching
the Bohr radius ag given by (12). This is a remarkable feature of SED29

In order to compare our numerical results with those obtained using the guantum
approach, we shall consider the time ¢(r%) it takes for the electron to go from the

initial distance ry (from the proton) to the Bohr radii,

B_ _ a_ B
., =ag i = w n y (18)
where n = 1,2,3... . We shall define the “lifetime” of a state n , which is immersed

in the zeropoint electromagnetic radiation, by
ZP _ (. B B
T =t(rn)—t(rn_l) . (19)

This is the definition used by Seidl and Lipas!™ in the case without the zeropoint
electromagnetic radiation.

The numerical values of 12" will he compared with the values Tn , obtained by
Seidl and Lipas, and the values @™ which are the corresponding transition times

calculated according to the Quantum Mechanics prescriptionlt12),

- 3. THE QUANTAL TRANSITION RATES

If we consider two arbitrary states of energy €y and ¢ > ¢;, the transition times

7is are calculated according to the following prescription?

1 4w
— =g Er (20)

where o = 1/137 and |i} and |f) are the corresponding H-atom states of energy
¢; and e;. The frequencies w; ¢ will be defined below. Assuming that the states are
namely, [i) = [n,n~1,n—1) and

associated to circular orbits of radius rZ and 2, ,

[f} =In~1,n—2,n—2) (see ref. [1] for more details), the frequencies wi; can be

written as -
Therefore, according to (20) and (21), the quantum transition times 7@ = Tif are
given by \ . .

W= g a5:;c2 {nn(?izflil) ] [1 + 4n(n1— 1)] ’ (22)

The numerical values for 72 are shown in the last column of the TABLE presented

in the next section.

4. SUMMARY OF RESULTS

The numerical results of .2F (see (19) and (15)), ¥ (see (22)) and the corre-
sponding 7, obtained by Seidl and Lipas are shown in the TABLE presented below.
The values of the Bohr radii 72 are also shown.

From this TABLE we can see that taking into account the zeropoint radiation im-
proves significantly the agreement between the classical and the quantum lifetimes.

This improvement is specially significant in the case of small n values. For the tran-

sition n =3 to n =2, 7f" is approximately 8% larger than 75" , while the result
without the zeropoint radiation (73) is approximately 50% smaller than 7™ . Even

for the transition n = 10 to n = 9, 7o is 15% smaller than 72" whereas TZP

presents only a discrepancy of 2% as compared to TI%M . Notice, that the order of

magnitude has changed from 107® sec to 107 sec in the above transitions.



TABLE

n rZ (cm) T (seC) 77F (sec) | 9™ (sec)
3 (476 x107F [1.03% 10°° | 1.67 X 10°% | 155 x 10-F
4 846 x 1078 ) 0.52 x 1077 [ 0.72 x 107 | 0.73 x 10~7
5 | 132 %1077 | 179 x 1077 | 2.99 x 107 | 2.5 x 10-7
10 [5.29 x 2077 | 0.73 x 1075 | 0.82 x 105 | 0.84 x 10-5
20 [2.12x1076|2.64 x 10~* | 2.78 x 10~* | 2.84 x 10~
50 [ 1.32x 1075 | 2.78 x 1072 | 2.84 x 102 | 2.86 x 10-2
100 | 5.29 x 1075 | 8.11 x 10~" | 9.20 x 10~! | 9.94 x 10~
1000 | 5.29 x 1073 | 9.31 x 10* | 9.32 x 10¢ | 9.33 x 104

A remarkable similarity between the SED and the QM approach is that spiral orbit
becomes stable for r equal to the Bohr radius h*/me? (see (12) and (18}). This is
shown, in FIGURES 1 and 2, by the solid line. The dashed line corresponds to the
solution of equation {11) with ap =0, or 4 = 0, In this case the electron spiral is
inevitably associated with the collapse of the atom. In the FIGURE 3 we show the
solution for an initial radius vy < a¢z. In this case the electron absorbs more energy
from the zeropoint background radiation thaa it is lo_st by emission, that is, the last
term in equations (10) and (11) is dominant. Therefore, the solution (15) leads to a

. stationary orbit (stable) of radius equal to the Bohr radius.

5. PHYSICAL MECHANISM UNDERLYING THE AGREEMENT BE-
TWEEN THE CLASSICAL AND THE QUANTUM CALCULATIONS

The standard quantum mechanical expression for the instantaneous power of the
electromagnetic radiation, associated to the transition |#) — |f}, and the consequent
emission of radiation with frequency wyy, is (see (20))

hw,-f _ 4 ¢2

Pl =="=33

Wiy [P P (23)
This formula can also be written as
4 82 .
Ploy) = 5 S HIFIP (24)
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if we consider that the approximate equality, namely

R e? o 3
T‘:—mTE"-LUUT (25)

is valid for the transitions associated to the “circular”!V states |3} = |n,n — 1,n — 1)
and |f) = |n—1,n — 2,7 —2) used in section 3. A related observation is that (for
n 3 1) we can write equation (21) in the form
2,2\ 2 2
2  [mca 4 e
e ( 20 ) n m(rBp (26)
where r2 is the Bohr radius introduced in equation (18). This approximate result (26)
is, therefore, equivalent to our previous equation (4).
An important remark should be made at this point. Let us consider the expec-
tation value of the Larmor formula, introduced by Dalibard, Dupont-Roc and Cohen

Tannoudjil'® within the Quantum Electrodynamics (QED) context, namely

2 -
S = 5 S0P =
2 = -
= 2C S GRNURD | )

i
which is entirely analogous to the Larmor formula of classical radiation theory. The
identity in the second expression in {27) follows from the fact that
0 =1.

Within the QED approach the electron alsc absorbs energy from the vacuum electro-

magnetic fluctuations. According to the anthors of reference [13] the rate of absorption

is such

PpRED

abs

S GIRAIRD +

S er>ei)

w2
%l T

> <z'|%|f><f|%|e')] . (28)

f(e,(c.')
The first term contains the wpward transitions [{) — |f} induced by the zeropoint ra-

diation with spectral distribution po(ew) as given by (6). The second term is associated

to downwerd transitions |¢) = |f) stimulated by the same zeropoint radiation. The

10



derivation of these results for the motion in the Coulomb field is rather lengthy!?]. How-
ever, a more simple derivation can be obtained in the case of a harmonic oscillatorl?4,
According to Dalibard et al.l% the total rate of variation of the energy ¢ is given

by (see our equation (10) for comparison)

de;
—d—i = Plime — PP (29)
Using (27) and (28) we get
de; 4 ¢? o 2
—Z=t3s L AAUEN = Y Pl (30)
Her<es) Hep<u)

where P(wis) is given by equation (24).

6. DISCUSSION

The result (30} is very suggestive and deserves a few comments. According to
Dalibard, Dupont-Roc and Cohen Tannoudji’®, “Such a result is extremely simple and
exactly coincides with that found in classical radiation theory. The rate of radiation of
electromagnetic energy is proportional to the square of the acceleration of the radiating
charge, the proportionality coefficient being just the one appearing in (24). We note
also that, if self reaction was alone, the atomic ground state would not be stable, since
the square of the acceleration (see (27)) has a non zero average value in such a state”.

According to Dalibard et al.'®l: “The previous discussion clearly shows that the
(atomic) ground state cannot be stable in the absence of vacuum fuctuations which
exactly halance the energy loss due to self reaction. ... . When applied to the case
of an atomic electron interacting with the vacuum field, such a procedure gives results
in complete agreement with the usual picture associated with vacuum fluctuations
and self reaction. All self reaction effects, which are independent of %, are strictly
identical to those derived from classical radiation theory. All vacuum fluctuation effects,
which are proportional to A, can be interpreted by considering the vibration of the
electron induced by a random field having a spectral power density equal to fw/2
per mode”. Similar conclusions were reached, more recently, by Franca, Marshall

and Santos!'s) which have described classicaly the modifications in the spontaneous

11

emission observed in the excited (“circular”) states of Cesium atoms passing between
two parallel mirrors('l.

Finally we would like to stress that the present approach can shed some light on
the difficult (not solved yet in a satisfactory manner('”l) problem of the stability of the
H-atom when immersed in thermal radiation. In this case our equation (9) is modified

fo

' 2 ¢? 2
Pre=c—he® [1+ ——c—[ , 31

where T' is the temperature, and & is the Boltzmann constant. A calculation related

to this problem, and based on our equations (10) and (31), is in progress.
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Figure 1: Spiraling motion starting at ro = P (see equation(18)). Solid lire: classi-

cal model including the zeropoint electromagnetic radiation. Dashed line: Seidl and
Lipas®!) classical model (without the zeropoint electromagnetic radiation). The dotted
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Figure 2: Tlustrating the atom stability due to the inclusion of the Zeropoint elec-
tromagnetic radiation (solid line). The dashed line is the spiraling motion using the
model of Seid] and Lipas. Initial condition: ro = TZB . When rg > agp the spiraling

motion is inward in both models. The time unit is the same of figure 1. The dotted
line corresponds to r = ap.

1.0

- 0.8 1

—

o
tn

o

O F-mmmmeme e

0.5

10 15 20 25

Figure 3: Spiraling motion of the electron for r¢ < ag. The electron spirals outward
in the case with the zeropoint electromagnetic radiation (solid line) while in the case
of the model of Seidl and Lipas the spiraling is inward (dashed line). The time unit is

the same of figure 1.
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