universibabepesiopasto PUBLICACOES

INSTITUTO DE FiSICA

CAIXA POSTAL 66318

05389-970 SAO PAULO -SP IFUSP/P-1206
BRASIL -

RPA APPROXIMATION FOR A CHIRAL
GROSS-NEVEU SYSTEM

P.L. Natti
Instituto de Fisica Teorica, Universidade Estadual Paulista,
Rua Pamplona, 145 01405-900 Sao Paulo, S.P., Brasil

. A.F.R.de Toledo Piza
Instituto de Fisica, Universidade de Sdo Paulo

Margo/1996




RPA approximation for a Chiral Gross-Neveu system

P.L. Natti *
Instituto de Fisica Teérica, Universidade Estadual Paulista,
Rua Pamplona,145 - 01405-900 Sao Paule, S.P., Brasil

A.F.R. de Toledo Piza
Instituto de Fisica, Universidade de S0 Paulo,
C.P. 66318, 05389-970 Sao Paulo, S.P., Brasil

Submitted to Phys. Rev. D.

March 17, 1996

Abstract

We linearize and study the small oscillations regime {(RPA approximation} of the
mean-field equations which describe the time evolution of the one-body dynamical vari-
ables of an uniform system described by Chiral Gross-Never model, obtained in a
previous work [1]. In this approximation we obtain an analytical solution for the time
evolution of the one-body dynamical variables. The two-fermion physics can be explored
through this solution, The condition for the existence of bound states is examined.
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1 Introduction

In a previous work [1] we obtained in mean-field (Gaussian) approximation the effecti
dynamics of one-fermion and pairing densities of a off-equilibrium spatially uniform (I+:
dimensional self-interacting fermion system described by chiral Gross-Neven model {CGNN
[2]. These dynamical equations acquire the structure of {colisionless) kinetic equations. The
determine the time evolution of the one-fermion densities of this system for a given initi
condition. Spatial uniformity (translation and parity invariance) is assumed in our derivatio:

Studing the static solutions of these equations in order to renormalize the theory [I
we found the well-known effective potential obtained from the 1/N expansion by Gross ar
Neveu [2]. We also showed that other static results which have been discussed in the literatu
(2, 3, 4] such as dynamical mass generation due to chiral symmetry breaking and dimension
transmutation phenomenoa can be retrieved from this formulation. Finally we caleul
numerically in [1] the mean-field time evolution of the one-body dynamical variables initial
displaced from equilibrivm.

In this work we explore a particular application of the renormalized nonlinear mean-fie
equations obtained in [1}. We consider the near equilibrium dynamics around the stationa
solution. From linearized version of these equations we show that the two-fermion (qua:
fermion} physics can be studied. In particular, one can solve this equations analytically a
find two-fermion {quasi-fermion) bound state solution.

This paper is organized as follows. In Sec.Il we lirearize the mean-field dynamical equ
tions which describe the time evolution of a off-equilibrium spatially uniform {1+1) dime
sional self-interacting fermion system described by chiral Gross-Neveu model (CGNM).
self-consistent rengrmalization scheme is necessary {1, 5]. In Sec.IIl, making use of an an:
ogy with scattering theory [6], we obtain a closed analytical solution for the time evoluti
of the one-fermion densities in this regime. Studyng the two-fermion physics in Sec.IV, 1
find the condition for the existence of bound states. Finally, the Sec.V is devoted to a fic
discussion and conclusions.

2 Linearization of the mean-field kinetic equations

We begin this section by reviewing our approach which describe a formal treatment of ¢
kinetics of a self-interating quantum field. This approach was developed earlier for the nc
relativistic nuclear many-body dynamics by Nemes and Toledo Piza [7] and was more recen’
applied in the quantum-field theoretical context to the self-interacting Aé* theory in (14
dimensions (8]. The generical ideia is to focus on the time evolution of the one-fermi
and pairing densities. These observables are kept under direct control when one works va




tionally using e Gaussian functional ansetr and will therefore be refered to as Gaussian
bservables.

We consider an off-equilibrium, spatially uniform, (141) dimensional system of relativis-
ic, self-interacting fermions described by chiral Gross-Neveu model (CGNM) {2]. The Hamil-
onian density is given by

Hoome = 3o [-ima '} - £ { [}fw} ~e[S «E‘w‘]z} LW

i=1 i=1

vhere £ is a constant which indicates whether the model is invariant under discrete +; trans-
ormation (£ = 0) or under the Abelian chiral U(1) group (¢ = 1). In the form considered
iere, this is a massless fermion theory in (141) dimensions with quartic interaction. The
nodel contains NV species of fermions coupled symmetrically. In the Heisenberg picture, the
¥ are complex Dirac spinors
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vhere af and ay {c} and &) are fermion creation and annihilation operators associated to
rositive{negative)-energy solution u;{k) (u2(k)) of the Dirac equation.

This model is essentially equivalent to the Nambu-Jona-Lasinio model [9], except for the
act that in {1+1) dimensions it is renormalizable. Moreover, it is one of the very few known
ield theories which are assymptotically free. To leading order in 1/N expansion (2], the
>GNM exhibits a number of interesting phenomena, like spontaneous symmetzy breaking,
lynamical fermion mass generation and dimensional transmutation.

The state of this system (assumed spatially uniform) is given in terms of a many-body
lensity operator F of unit trace. Our implementation of the mean-field (Gaussian) approx-
mation consists in approximating this object by a truncated many-body density operator
Fa(t), also of unit trace, written as the most general hermitian Gaussian functional of the
ield operators consistent with the assumed uniformity of the system [10]. It will thus be
vritten as the exponential of a general quadratic form in the field operators which can be
educed to diagonal form by suitable canonical transformation. For this purpose we define
he transformed quasi-fermion operators from the Bogolyubov transformation below
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where we have used the parity symmetry of the uniform system to make the Bogoiyubov
parameters X 1(k) and Yia(k) for A = 1,2 dependent only on the magnitude of k. This
transformation is canonical if we impose the unitary condition to the Bogolyubov transfor-
mation Ax{i) defined in (3)

Xl =1 and XA =15 . (4)

The Bogclyubov transformation defined in Eq.(3) breaks both chiral and charge symme-
tries of the CGNM. We restrict the following development to a special Bogolyubov trans-
formation (to be called Nambu transformation [9]) which breaks the chiral symmetry of our
system only. The elements of this Nambu transformation, parameirized consistently with
unitary conditions (4}, are given by

X=Xy =0 and Y5 =Y=0 ;
(5)

X=Xy =cospx and Yy = ¥ =sinpee'™ .

Now, the Gaussian truncated density operator Fo(t) acquires a particularly simple form
when expressed in terms of the Nambu quasi-fermion operators, namely

Folt) = [T [eaBia(®)Biea(t) + (1 = ) Bea(t)BA(0)] (6)

Y

where 14 ) for A = 1,2 are the Nambu (quasi-fermion} occupation numbers.

With the help of Eq.(3) it is an easy task to express ¥(z) and ¥(z) {Eq.(2)] in terms
of ﬁf‘!’\(t} and Fa(t) for A = 1,2. In doing se, one finds that the plane waves of ¥(z)
and ¥(x) are modified by a complex, moment-dependent redefinition of m involving the
Nambu parameters ¢ (t) and 7 (¢). The complex character of these parameters is actually
crucial in dynamical situations, where the imaginary parts will allow for the deseription of




time-odd (velocity-like) properties. Finally, the mean values of the Gaussian observables
are parametrized in terms of the wy(t) and (¢) and of the occupation numbers vy x(t} =
Tr [BLA0Bea(®)F(2)] for A =1,2.

he next step is to obtain the mean-field time evolution for the mean values of the
Gaussian observables in the context of the initial-value problem. In other words, we want
the mean-field equations of motion for the Nambu parameters y(t) , m(t) and for the
quasi-particle occupation numbers 1 (2). In Ref. [1] we obtained

=0 and iyz=0 ; (7N
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Equation {7) shows that the occupation numbers of the Nambu quasi-particles are con-
stant. This is a general feature of the mean-field approximation. The complex equation of
motion {8) describes the time evolution of the Nambu parameters. From the right-hand side
of the Eq. (8), we see that to obtain the time evolution of the Nambu parameters, we have
to express the CGNM Hamiltonian in the Nambu basis.

From Hamiltonlan density (1} we can explicitly evaluate the Hamiltonian of the system
by integration over all one-dimensional space. This involves, in particular, choosing a repre-
sentation for the 4-matrices. Here we have to be careful, since & bad choice of representation
can spoil manifest translational invariance (see Appendix A of Ref.[1]). We choose the Pauli-
Dirac representation for the y-matrices, namely

To=o3 ; =10, and w=YpH =0y . (9)

Substituting the CGNM Hamiltonian written in Nambuy basis in the dynamical equation
{8}, we obtain an explicit dyramical equation which describes the time evolution of the
Nambu parameters, The calculation of traces is lengthy but straightforward. Taking the
case ¥ = 1 for simplicity and splitting the complex equation (8) into real and imaginary
parts we have

e = 0 and =0
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where [ and I; are the divergent integrals below
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We see that the above results contain divergent integrals. A renormalization procedu:
is therefore required. In general, renormalization procedures consist in combining diverges
terms with the bare mass and coupling constants of the theory to define finite {or renorma
ized) values of these quantities. In other words, the bare mass and coupling constants a;
chosen to be cut-off dependent in a way that will cancel the divergent terms. In the preser
case, however the divergent integrals {11) invelve the dynamical variables themselves in t!
integrand, s that their degree of divergence is not directly available. In order to handle th
situation we will use a self-consistent renormalization procedure inspired in Ref.[5].

This technique consist in sclve a self-consistency problem for the static solutions of tt
dynamical equations {10). The static solutions are determined by the solution to the equ
tions

i 7icfeg [1 - (f—;) (€ + 1)L+ 12)] =0 Q

ooy —lklm [l = (g/4m) (€ + 1)({s + )] ,
a2kl = e (@ /Am) (€ + (5 + )] ks (n

In order to proceed we introduce a regularizing momentum cut-off A and neglect contr
butions that vanish in the limit A — co. The renormalized coupling constant for the CGN)
can be obtained from the minimization of the CGNM vacuum energy density with respect f
m, namely % [T { Hoguu 3 ™(t))] = 0. From this calculation we obtain (see Refs.[1, 4]

s lo(m)] g
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We next assume that the integrals I) and I; have a logarithmic divergence of the type

2
.[1 = a+bln (;[J:,-E)

]
c+dln (i\—z) :
m

where a, b, c and d are finite, cut-off independent constants. Substituting (14) and the gnsatz
(15) in static equation (13) we obtain

(15)
I

=(=1)"mlk]|[l - (b + d)]
() +mib+d)]

tan Zpk'eq = {16)

where the divergence problem is controlled, since b and d are cut-off independent.

We now must verify if the integrals I; and I; are self-consistent with the ansatz (13).
Substituting (16} into (11) we verify that I; and J; really have a logarithmic divergence {see
Appendix C of Ref.[1]). Moreover, from this calculation, we obtain the values of the constants
a, b, c and d. We find b = 1, while d remains arbitrary. Substituting these resuits into (16}
we obtain the renormalized static solution which describes the broken chiral symrmetry phase
of our system in the mean-field approximation as

(~1)"mik|d
[k + (1 + d)m?]

with d# 0

e
=]

Tkleg =7 for n=0,%1,£2, ..

We also obtain in Ref.[1] that the connection between particle mase m and quasi-particie
mass m,y is given by

porm
(¥

mep = (1+d)m . {1

We observe that our results contain one free parameter, say ¢, This is alrogether rea-
sonable since our starting point was 2 massless fermjons theory which was determined by
one dimensionless coupling constant g. We end up with a theory determined by oze free pa-
rameter d after the self-consistent renormalization procedure. Therefore, the renormalization
procedure effectively replaces the dimensionless couplicg constant g by a free parameter d

associated to a mass scale [see Eq.(18)]. This is analogous to the phenomencn of dimensic
transmutation found by D. J. Gross and A. Neveu [2] in the case of an 1/N expansion.

Finally, we write the renormalized dynamical equations whick deseribe the mean-f
time evolution of our system in broken chiral phase (d # G or m.; # m)

wi = 0 e =0
T —l)mdi—’-!sin-\;k
¥k ( . ko
(
. Dsin 2y 1 5
fesinZoe = ==K +mi(1+d)] +
T

g
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iiztion regime of the kinetic equations about the vacu
tic equations around the static solution (17) with take 1y
lucing the displacement away from equilibrium of the dynam

Pk = Pkleq + oy

kaeq + J’Yk 1

=
[

where the static solution yyleq and vx|.q are obtained from the Eq.(17)

. mlkld
510 20k [eq Fo[k? 4+ (1 4+ d)sz}i/‘Z
[k + (L + d)m?]
€08 2k |eq kolk? + (1 + d)Pm2]172
"Yk'eq = 0 with d#£0 .

The quantities dy and dv, will be treated as (first-order) small displacements. F-
of the dynamical variables are expanded also to first-order around the equilibrium

8




21). Therefore, we must linearize the divergent integrala (11} around equilibrium. Taking
4,5 = 0 we have

L= I+ 1 4 0sen)?

dk’ dk’' |
[E €05 2k feq — Zf k_B 810 20yt |eq Sipxs

(22)
L o= L7+ 17+ O(Gen), (61, (Sendmel]
1L dk’ [k'|
'E,}“—rn— sin 2‘Pkleq -+ 2] _k?Tn- COoS Zgokleq Jw:pka .
The linearized form of kinetic equations for §ipy and d4x are then obtained as
k
Sy = —Ma-m (23)
ko
k
51T 4+ (14 dyrlog +
[¢]
(24}
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shere the renormalization procedure (14) controls the logarithmic divergence of the integral
ppearing in (24) {see below Eqs.(33), and (39)]. Substituting (24) into (23) we obtain finaily

&gy + 4k + (1 + dVPm?éey +
(25}
g : k| o

 usual in small oscillation treatments, these are a linear oscillator equation. Note that the
w5t term couples different momenta. The solution to this problem involves determining the
ormal modes of small oscillation and their frequencies. Tkhis is done by looking for solutions
f Eqs. (23), and (24) whick are of the form

J(Pk - 'I'k ex'wt
(26
6'71( - Fk eiwt ,

where Uy and 'y are time-independent amplitudes. Substituting Eq. (26) into Eqs. (23)
and (24) results in equations for these amplitudes:

mlkld

twily + o

=0 (27

Tw

mlk|d
k

g

T — 40k + (1 + d)’m?) Ty +

(28]
s e |k} _
™ (47) €+ lNkf/ (k2 +(+ d)zmz}”zmkr =0

3 Analytical solution for the linear mean-field motion
equations

In the last section, we have obtained the linearized version of the mean-field equations of
motion which describe the time evolution of one-fermion densities of our system in the broken
chiral symmetry phase {d # 0). They describe small amplitude motion of this system around
the vacuum. We will next show how this equations can be solved analytically.

First, we rewrite the oscillation amplitiude equations {27) and (28} as

_ tw ko
k= ~d K] Uy, (29)
(k). _ (4 L] M g W

e 4 ) €+ g / Ay B = (30)

where (k3% = [k? + (1 + d)?m?] = [k? + m?].
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We look for a solution ¥y to the Eq. {30). The crucial point is to realize that we have a
Lippmann-Schwinger-like equation with separable potential term (11]

gz
(V1) = i) = (£ 6+ R0

|kl

where A(k) = pri
i

The solution of such an equatjon is well know from scattering theory [6], and the Lippmann-
Schwinger equation can be solved in closed form, A general solution to ¥y will have two terms,
The first one is the free solution (g = 0 vanishing potential) and represents an incident wave.
The second term is the non trivial part (when g 5 0) which couples different momenta, and
Is associated with the scattered wave.

Thus

||

Eflﬂk, qw) =ad(qg—k)+

(32)

1 2 k* , K ,
Ty —- w4 + i) (%) {E+1)Fgfdk&c?;7¢(k,q;w) ,

where q is interpreted as the relative momentum for two incident quasi-fermions and « is an
overall phese factor. We choose the outgoing wave condition (+ie) as solution of Eq.(30), but
we could have chosen e.g. the incoming wave condition {~i€) or Van Kampen wave condition
{12] or another condition.

Integrating the Eq.{32) with respect to k

o

(33}
¢ 72 -
L= @A) ] Bt )

/dk%%?{k, Q) = {

and substizuring this result back into (32) yields a general solution for W(k, q;«)

g o akg! kY 1 [k "
s et 0l () w () -

where A*(w) is given by

4r 1 dk k?
+ = — — ——
A7) = (gz) (E+1) f (R [(ksH)? —wifd +1¢] (
The oscillation amplitude I'(k, g;w) is obtained from the Eqs.(29) and (34) and read:

: iw&ko

Ik, qjw) = it {8(g - k)+

R —kfzm Tid (&fl) "ATI"(w_) (?)}

Finally, substituting {34) into (30) we obtain the oscillation frequencies w

w = 25 = 2[g? + m3]V? | {

where q is relative momentum for two incident quasi-fermion with mass Mer = (1 + d)m.

We observe that we can understand the factor 2 in the frequences of oscillation w [
Eq.(37)] as related to the treatment of harmonic oscillators in terms of the symplectic groi
given by Goshen and Lipkin [13]. It can be interpreted classically by noticing that, since
harmonic oscillators the frequency does not depend on the amplitude of the motion, if a
of independent particles in a harmonic field is symmetrically stretched out of equilibrium
will subsequently pulsate with frequency 2w, where w is the frequency of oscillation of
independent particles.

4 Bound states from the small oscillations regime

In this section we will examine the condition for existence of bound states in the s
oscillation regime around the stationary solution (vacwum) of our fermionic system.
From Eqs.(30) and (31} we verify that the potential term which describes the time eve
tion of our system in this regime is separable, Again, in analogy with scattering theory,
can evaluate the corresponding T matrix [6]. We find
1

Tk, kKw) o h(k’)mh(k) {:

12




with A(k} given by (31) and A¥(w) given by (35), The bound states are given by the poles
of the T matrix. Therefore, we search for the zeros of A*{w). If is clear that the integral in
At(w) contains a logarithmic divergence. To keep it under control, we use the renormalization
procedure of the coupling constant given by (14). Substituting (14) into (35) we get

A2 +A dk k?
+ —_ -
s = (53) - [\ T o

where we introduce the regularizing momentum cut-off A.
In the interval 0 < w < 2m.s the integral of A¥(w) is well defined and we can set ¢ = 0.
A straightforward calculation yields

AT (W) =2([f(w) - §(d)) (40)

2 1/2 2 ~1/2
where flw) = [ﬂ - 1] arctan { [%‘—f - 1] }

. 2
o =l

The Fig.l shows the zero of the A*(w) as function of d. In this calculation q = 0,
therefore w is the mass of the bound state. Obviously, when (1 4 d) = 0 (free system, see
Ref.{1]) there is no bound state. We see from Fig.l that a bound state of quasi-fermions
occurs when 0.74 < (1 +d) < 2, and that the mass of this bound state will vary in the
interval § < w < 2m,;.

D. Gross and A. Neveu obtain M, = 2My [2] for the mass of the o particle in leading-1/N
aproximation, where MF is equivalent to m.;. They argue that in higher order they might
find that

M, =2Mp[1 + O(1/N)] .

From Fig.1 we verify that w = 2m,s corresponds to (14d} = 2. Observing that {1 <d = 2} =
0, we may conclude that j(d) can be see as a contribuition of higher czder o the Gross-Neven
result,

We believe that in the limit N — co the function j{d) = §. On the otker hard, when
N is finite (¥ =1 for instance), the mass w of the bound state depends of 1he renormalized
coupling constant d as shown in Fig.l. This dependence cap not he obtzined from 17V
approximation, '

13

Therefore, we can conclure that to N — oo the 1/N approximation and our mean
approXimation are equivalents. On the other hand, when N is finite our approxima
permits to obtain the higher order contribution to the Gross-Neveu result [2].

It is important to observe that the higher order term obtained in the Egs.(40),
{41) from our approach contains no necessarily all terms of 1/ order, since the mean-|
approximation is not an 1/N expansion,

Surprisingly, in Ref.[11] A. Kerman and C-Y. Lin, while studyicg the bosonic Ag* the
through a time-dependent variational approach, have obtained for the A*(w) funetion
analogous strycture as the one we have found.

Finally, when w > 2m,; the integrand of A*{w) has a singularity at k = +\/w?/4 —
From theory of residyes we obtain

2\ /2 2 7 2\1/2
Atw) = (1_%) 1n{1+(1—4m,f/w) }Jr

1— (1 - 4m? /w2

2 4m?1'?
2| —— ] —ir il — ot
n(l1+d|) i {1 o J

Now A*(w) does not have any zeros. The interesting point here is to observe that

2
erz;A+{w)—)ln (:3) — o, [
of

so that in the large frequency limit (w — oo) the T matrix goes asymptotically to zero.
thus recover, in the present approximation, the assymptotically free character of the CG}

5 Discussion and conclusions

Iz Ref.{1] we showed a way to treat the initial-values problem in quantum field theory, bot
mean-field approximation and in a richer approximation allowing for dynamical correlati
effects. Although the formalism is quite general, we have specialized it to the treatment
relativistic many-fermion system described by Chiral Gross-Neveu model (CGNM).

We obtained the renormalized kinetic equations which describe the effective dynamic
the set of one-body variables in the mean-field approximation and in broken chiral symm
phase to a relativistic uniform (1+1) dimensional fermion system described by CGNM.

14




thowed that previous static results such as dynamical mass generation dye the chiral symme-
xry breaking and an analogous phenomenon of dimensional transmutation, can be retrieved
romn this formalism in mean-field approximation.

In this work, we have linearized the mean-field kinetic equations obtained in Ref.[1] around
:he stationary solution {vacuum). The two-quasi-fermion physics can be analytically inves-
sigated from this approach. In particular, we have solved this equations completely, From
:hese solutions, we have reinterpreted the near equilibrium physics of our system as a problem
»f quasi-fermion scattering and have found the condition for the existence of a quasi-fermion
bound state.

We verify that for NV finite (in this work N = 1) the bound state mass obtained from
our approach contains a term which depends of the renormalized coupling constant as can
be seen in the Fig.1. In the case of an 1/N expansion (2] this dependence can not be found,
50 in the limit N = oo this term goes to zero. Therefore, to small ¥, our approach permits
to obtain the higher order contribuition to the 1/N expansion.

Finally, it is important to observe that the higher order term obtained to the bound state
mass from our approach contains no necessarily all terms of 1/N order, since the mean-field
approximation is not an 1/N expansion.
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Figure Captions

Figure 1 - The curve represents the mass w of the quasi-fermion bound state in sma
ascillation regime for our system as a function of the rencrmalized coupling constant d.
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