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Transposable elements (TEs) are DNA sequences which are capable of moving from
one location to another and represent a large proportion (45%) of the human genome. TEs
have functional roles in a variety of biological phenomena such as cancer, neurodegenerative
disease, and aging. Rapid development in RNA-sequencing technology has enabled us, for
the first time, to study the activity of TE at the systems level.

However, efficient TE analysis tools are not yet developed. In this work, we developed
SalmonTE, a fast and reliable pipeline for the quantification of TEs from RNA-seq data. We
benchmarked our tool against TEtranscripts, a widely used TE quantification method,
and three other quantification methods using several RNA-seq datasets from Drosophila
melanogaster and human cell-line. We achieved 20 times faster execution speed without
compromising the accuracy. This pipeline will enable the biomedical research community
to quantify and analyze TEs from large amounts of data and lead to novel TE centric
discoveries.

Keywords: Transposable Element; Quasi-Mapping; RNA-seq; Next Generation Sequencing;
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1. Introduction

Transposable elements (TEs) are DNA elements which can be mobilized or inserted into the
genome and represent a significant proportion of most eukaryotic genomes.1 Most of the TEs
in the genome are not functional and had been considered as ‘junk DNA,’ except for a few that
retain intact functions such as transcription and mobilization.2 Furthermore, the mobilization
of TEs can disrupt normal gene structure in the genome, sometimes leading to disease such
as cancer3,4 neurodegenerative diseases,1 and aging.5

Recent development of high-throughput Next Generation Sequencing (NGS) technologies,
like RNA-seq, enables genome-wide study for TEs.6–9 Toward this end, several algorithms
and pipelines were proposed to analyze reads files from TE studies.10–16 However, most of the
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tools share some common limitations: 1) discordant read mapping due to increased chance of
multiple mapping in repetitive elements from TEs in the same clade, 2) limited scalability for
large-scale analysis, and 3) small coverage for the entire TEs defined in the human genome, i.e.,
a tool used in [16] only considered LINE 1 (Long Interspersed Nuclear Element 1) elements.17

Among the existing tools, TEtranscripts has performed well on various datasets.14

Nonetheless, The scalability of TEtranscripts is a critical limiting factor for large systems bi-
ology studies because it cannot handle FASTQ files directly and needs SAM (Sequence Alignment
Map)/BAM (Binary Sequence Alignment Map) files generated from raw FASTQ files. Since there
are many tuning parameters on handling repetitive sequence among different RNA-seq map-
ping algorithms, this step will be highly variable depending on the mapping parameters and
sometimes even generate artifactual results if a unique mapping parameter is superimposed
by a previous analyst who handled the mapping.

Although TEtranscripts is the fastest tool for TE quantification,14 the interval tree algo-
rithm,18 which is used to find the interval of genes or TEs on the reference genome, performed
poorly in terms of running time in practice, making TEtranscripts suboptimal for large-scale
TE analysis.

In recent studies, many large-scale analysis of public meta RNA-seq datasets offered new
insight and findings that cannot be discovered in each dataset alone.19 However, a meta-
study on TE without using a large number of high-performance computing cluster is not yet
feasible given the time complexity of current algorithms. Toward this end, we developed a new
pipeline called SalmonTE. It deploys a low time-complexity quantification method, Salmon,20

and contains various statistical models for TEs quantification. Moreover, SalmonTE provides a
rich set of built-in functions for data pre-processing from raw FASTQ files. In the results section,
we demonstrate the running speed of SalmonTE outperforms all other methods including
TEtranscripts and delivers a reliable quantification result as well.

2. Methods

The proposed pipeline consists of three parts: library preparation, quantification, and statisti-
cal analysis (Figure 1). To increase the usability and to enable parallel processing for multiple
RNA-seq reads files, we adopted the Snakemake workflow system and wrote a script based
on the execution rule of Snakemake for the TE quantification.21 In contrast to TEtranscripts,
SalmonTE starts with raw RNA-seq files, and does not need any additional pre-processing
for a given sequence file. Moreover, TEtranscripts requires a modified GTF files based on
RepeatMasker database.22 SalmonTE only needs the FASTA file of cDNA (complementary
DNA) sequences of each TE. The entire source code and executable scripts are available at
https://github.com/hyunhwaj/SalmonTE.

2.1. Transposable Element Library Preparation

To build the index library for the quasi-mapping, SalmonTE takes the FASTA file of cDNA
sequences from TE databases such as Repbase (version 22.06).23 In the current version, the
index files for Homo sapiens and Drosophila melanogaster are available. We reasoned that it
is hard to estimate TEs which replicate without an RNA intermediate from RNA-seq sample.
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Name Clade Mean
Control

Mean
Treatment log2FC

MER74A ERV3 1.21 2.20 0.86
MER57E1 ERV1 7.07 6.24 1.30
AluYd2 SINE 0.77 3.37 0.83
LTR1C1 ERV1 1.87 9.63 0.77
AluSx1 SINE 6.28 4.51 0.75
LTR27D ERV1 2.16 8.17 0.73
AluSx SINE 0.92 4.63 0.71
MLT-int ERV3 7.03 2.71 0.66
MER54A ERV3 6.15 2.30 0.52
MER65D ERV1 1.28 0.72 0.51

Statistics	for	each	element

Fig. 1. An illustration of the SalmonTE pipeline. Left Panel: Input from Repbase to build the
mapping index, raw FASTQ file, and covariates for statistical testing. Middle Panel: The workflow of
SalmonTE consists of three parts: building the index based on Repbase or user-input cDNA sequences
of TEs, quantification based on FASTQ file, and statical test through the generalized linear model
or differential expression analysis. Right Panel: Example output including the statistical report and
box plot on estimated log2 fold-change.

Therefore, we excluded the following elements: simple repeats and multi-copy genes, and DNA
transposable. After collecting the cDNA sequences, we manually curated clades of each TE
based on the repeat class annotation from Repbase.
As a result, the generated TE library index database contains 687 TEs for Homo sapiens and
163 TEs for Drosophila melanogaster.

2.2. Salmon quantification algorithm

We adopted the Salmon [20] algorithm to estimate the relative TE abundance from a given
RNA-seq sample. Salmon enables a fast and accurate quantification of TE expression from
RNA-seq reads with a light-weight mapping, online initial expression estimation phase, and
offline inference for the estimation refinement.20,24–26 Salmon quantifies the relative abun-
dance of each TE given a set of TE sequences T and a set of sequenced fragments (reads)
F . Suppose that we have M TEs and the set of underlying true TE counts are given as
T = {(t1, . . . , tM ), (c1, . . . , cM )}, where ti is the nucleotide sequence of i-th TE in the set and ci
is the true count of the corresponding TE. If T contains a complete count, we can calculate
the nucleotide fraction ηi of each ti from (1),

ηi =
ci · l̃i∑M
j=1 cj · l̃j

(1)

where l̃i is the effective transcript length of ti.27
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We can also calculate the Transcripts Per Million (TPM) using (2),

TPMi =

ηi

l̃i∑M
j=1

ηj

l̃j

× 106 (2)

where TPMi is used as a relative abundance of each transposable element in a given sample.
It is difficult to directly estimate the η and TPM given T and F , so Salmon performs the

following processes. First, Salmon runs a quasi-mapping procedure which is initially proposed
in [24]. A quasi-mapping specifies the target of each given read and also determines the
position and the orientation of the read concerning the target by computing the Maximum
Mappable Prefix (MMP) [28] and Next Informative Position (NIP) [24] of the read. This
mapping procedure uses a generalized suffix array29 and enables a fast and accurate mapping
as compared to other mapping tools, such as Bowtie 2, STAR, and Kalisto.24 The mapping
also provides a possible mapping locations for each read.

The maximum-likelihood objective model for a set of reads F is defined as follows:

Pr{F |η, Z, T} =

N∏
j=1

M∑
i=1

Pr{ti|η} · Pr{fi|ti, zij = 1} (3)

where zij = 1 if j-th read in F is derived from i-th TE. Since Pr{fi|ti, zij = 1} is un-
known, Salmon uses the following auxiliary terms to define conditional model to estimate the
probability:

Pr{fj |ti} = Pr{l|ti} · Pr{p|ti, l} · Pr{o|ti} (4)

where Pr{l|ti} is the probability of drawing a read of the inferred length l given ti, Pr{p|ti, l}
is the probability of the read starting at position p on ti, Pr{o|ti} is the probability of obtaining
a read alignment with the given orientation o to ti, and this model accounts for sample-specific
parameters and biases.

With these probabilistic models, Salmon performs online inference to estimate read counts
α and nucleotide fraction η using a variant of stochastic collapsed variational Bayesian infer-
ence (See Supplementary Algorithm in [20]).26 In addition to the inference algorithm, Salmon
constructs equivalence classes for a given F . We assign any pair of reads mapped to same set
of target TEs in the same equivalence class. This construction shrink the representation of
the sequencing experiment and greatly reduce the running time of offline phase.20

Next, Salmon starts the offline phase. Given the set of equivalence classes of F , an EM
algorithm was used to refine the previous estimation for each equivalence class with following
objective function L:

L{α|F,Z, T} =

N∏
j=1

M∑
i=1

η̂iPr{fj |ti} (5)

, where η̂i =
αi∑
j
αj
. Once the offline phase is done, Salmon outputs the estimation of each TE

abundance for F .
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2.3. Statistical tests

We provide a statistical analysis function to identify differentially expressed TEs from the
counts table as the last step of the pipeline. Differential analysis using DESeq2 can handle
binary covariates such as binary genotype: phenotype and gender.30 To handle quantitative
covariates such as age, we apply the General Linear Model (GLM).31 The statistical analysis
will produce two statistics to represent associations between the TEs and the covariates: the
first one is the test statistics for each TE, and the second one is the summary of the statistics
for each clade. The output files are provided with various file formats, such as tab-separated
values file (TSV), XML spreadsheet file format (XLS, XLSX), R object file (Rdata), and
Portable Document Format (PDF) file.

3. Results

3.1. Datasets

Two datasets were used for our comparison to other methods. The first dataset is the RNA-
seq data from Gene Expression Omnibus (accession no. GSE47006) which includes wild-type
and Piwi (P-element Induced WImpy testis) knockdown flies. This dataset was used as a
benchmark dataset in the TEtranscripts paper as well.6 We compared the performance in
terms of running time and quantification accuracy between our proposed pipeline and other
tools, including TEtranscripts, HTSeq-count, Cuffdiff and RepEnrich.14,32–34

In the second dataset, we seek to identify new TEs that are associated with Amyotrophic
Lateral Sclerosis (ALS). We applied our pipeline to a K562 cell-line RNA-seq dataset from
ENCODE (Encyclopedia of DNA Elements, http://encodeproject.org) Consortium (ac-
cession ID: ENCBS555BYH).35 The dataset consists of two biological replicates of shRNA
(short hairpin RNA) knockdown (KD) targeting TARDBP (TAR DNA Binding Protein, as
known as TDP-43) gene and two biological replicates of controls (a shRNA inserted but tar-
gets no genes). It has been reported that loss of TDP-43 function causes ALS.7,36 To measure
scalability with the dataset. we also ran TEtranscripts to compare running time of both
methods. We also performed an integrative analysis for highly differentially expressed TEs for
further understanding of any new mechanism of ALS.

3.2. Computational experiment setup

Generating BAM files from FASTQ files are mandatory to TEtranscripts, HTSeq-count,
Cuffdiff, and RepEnrich, we applied STAR [37] to generate the files with the following param-
eters: --outFilterMultimapNmax 100 and --winAnchorMultimapNmax 100. Sixteen threads
were used for both SalmonTE and STAR . We also used the same parameter setup for each
quantification tool similar to the TEtranscripts paper.

All of the computational experiments were done in a workstation with Intel(R) Xeon(R)

CPU E5-2630 v4 @ 2.20GHz (10 cores and maximum 40 threads) and 128GBytes RAM.
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3.3. SalmonTE guarantees a reliable TE expression estimation

For the quantification accuracy comparison, we first took estimated abundance of 8 TEs
from each quantification tool. To validate the results, Reverse Transcription-quantitative Poly-
merase Chain Reaction (RT-qPCR) was done on these 8 TEs [6]. We observed SalmonTE out-
performed all other tools (r2 = 0.98, Figure 2 and Table 1). We also found that SalmonTE iden-
tified a weak down-regulation of DM1731 I and HETA which was missed by TEtranscripts.

BLOOD_I DM1731_I DM297_I Gypsy_I HETA I_DM MDG1_I ROO_I

0

2

4

6

8

lo
g2

F
C

method
RT−qPCR

SalmonTE

TEtranscript

HTSeq−count

Cuffdiff

RepEnrich

Fig. 2. Comparison of Drosophila TE expression estimation. Four computational methods were
compared to SalmonTE. RT-qPCR was used to validate the expression levels of the 8 TEs in the
Drosophila samples.

Table 1. Pearson Correlation between RT-qPCR and computational TE quan-
tification methods.

Method SalmonTE TEtranscripts HTSeq-count Cuffdiff RepEnrich
r2 0.98 0.97 0.85 NA NA

Next, we compared the estimated log2FC of SalmonTE to TEtranscriptson each trans-
posable element for a deeper investigation. Our data shows that the estimated TE abundance
of both methods are highly correlated (r2 = 0.98), and we also observed there is a high
concordance in the direction of fold-changes between SalmonTE and TEtranscripts (Fig-
ure 3). We also measured the correlations of normalized read counts between SalmonTE and
TEtranscripts, and we observed that the calculated read counts from those methods are
highly correlated in each sample as well (r2 = 0.92 for wild-type (WT) sample and r2 = 0.91 for
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Fig. 3. Correlation of log2FC (Piwi
WT ) for each transposable element between SalmonTE and

TEtranscripts. Red points represent TEs with the same fold change direction between SalmonTE and
TEtranscripts.

Piwi KD sample). From this observation, we conclude that both tools generate a similar esti-
mation result. It is not a surprising result because TEtranscripts deploys RSEM algorithm,38

and previous studies have demonstrated that transcripts count estimations from RSEM and
Salmon are very correlated.39,40

3.4. SalmonTE shows a better scalability in the speed benchmark dataset

We measured the speed of SalmonTE andTEtranscripts on two different datasets (Table 2).
Compared to TEtranscripts, SalmonTE showed a 19x to 27x fold increase in speed. In this
analysis, we demonstrate that SalmonTE outperformed TEtranscripts in processing speed.
Our pipeline finishes in less than 5 minutes, while TEtranscripts needs about 2 hours to
process a single sample. Moreover, our benchmark shows that estimated cost of our pipeline
in the cloud computing environment is for the thousands of samples 22 times cheaper than
TEtranscripts in the computing environment (Table 3).

3.5. Discover differentially expressed TEs in ALS cell line

Next, we applied SalmonTE pipeline to the TDP-43 knockdown dataset. We identified 23
transposable elements that are differential expressed between TARDBP knockdown and con-
trol cell lines (Table 4) with the threshold of |log2FC| ≥ 0.5. No statistical test were performed
because the number of replicates in the dataset are small.
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Fig. 4. Sample correlation of count for each transposable element between SalmonTE and
TEtranscripts. A. WT sample, B. Piwi KD sample.

Table 2. Running speed comparison between SalmonTE and TEtranscripts.

Dataset Piwi KD [6] K562 TDP-43
Total number of samples 2 4
RNA-seq file type Single end Paired ends
Total number of reads 90,411,467 309,701,182
SalmonTE runtime (hh:mm:ss) 0:05:33 0:17:13
TEtranscripts runtime (hh:mm:ss) 1:45:26 7:49:40
Speedup 19.00x 27.28x

Table 3. Price estimation of SalmonTE and TEtranscripts in cloud computing environment
(Amazon Elastic Compute Cloud (EC2), and Amazon Elastic Block Store (EBS)). We assume
that the size of a FASTQ file for a sample is 20GB for the calculations.

Methods SalmonTE TEtranscripts

Estimated using 1000 samples 90 hours 2,000 hours
The price of Amazon EC2 (m4.10xlarge, US Oregon region) [41] $180 $ 4,000
The price of Amazon EBS (gp2 40TB, US Oregon region) [42] $500 $ 11,111
Total price $680 $ 15,111

We can see that most of the differentially expressed features are Endogenous Retrovirus
(15 of 23) in TDP-43 cell-line sample, and we hypothesize that some of the differentially
Endogenous Retrovirus TEs are associated with ALS. TDP-43 is an established and well-
studied DNA and RNA binding protein, and could potentially regulate transposable elements
at multiple levels.43 To facilitate a mechanistic understanding of the underlying regulatory
mechanism of TDP-43 and to substantiate the identified differentially expressed transposable,
we performed an integrative analysis by combining RNA-seq and TDP-43 binding data. We
obtained DNA binding (ChIP-Seq [44] data) and RNA binding (CLIP-Seq [45] data) datasets
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of TDP-43 in the same K562 cell line from the ENCODE consortium. For illustration, we
choose MER74A and AluJo elements that are highly up and down regulated respectively
and are also found in Dfam database.46 We quantified the number of overlapping TDP-43
ChIP/CLIP peaks with MER74A and AluJo annotations from Dfam. We observed that AluJo
element which is down regulated in TDP-43 knockdown samples is enriched for TDP-43 ChIP
and CLIP peaks as shown in Figure 5, which might indicate that TDP-43 positively regulate
AluJo elements. On the other hand, we did not find any enrichment of TDP-43 binding
for MER74A elements. This preferential binding of TDP-43 substantiates the differentially
expressed transposable elements by our pipeline.

Table 4. 23 Differentially expressed transposable
elements in the ENCODE TARDBP data

Name Clade log2FC
MER74A ERV3 1.68
MER57E1 ERV1 1.30
AluYd2 SINE 0.83
LTR1C1 ERV1 0.77
AluSx1 SINE 0.75
LTR27D ERV1 0.73
AluSx SINE 0.71

MLT-int ERV3 0.66
MER54A ERV3 0.52
MER65D ERV1 0.51
LTR28 ERV1 -0.59
LTR1F ERV1 -0.63
FLAM SINE -0.64
MER21 ERV3 -0.68
MER101 ERV1 -0.69
LTR26B ERV1 -0.70
MER83C ERV1 -0.71
AluJo SINE -0.72
LTR06 ERV1 -0.73
MLT2D ERV3 -0.78
AluYf5 SINE -0.86
AluYd3 SINE -1.41
THER2 SINE -2.03

To identify if there is any general differential expression trend on subfamilies of TEs, we
grouped all the TEs based on their clade information. We excluded all of the CR1 (Chicken
Repeat 1) since the number of such elements in the clade is small. We found that SINE (Short
Interspersed Nuclear Elements) are mostly down expressed, and elements in L1 (Long inter-
spersed nuclear element 1) are generally over expressed in TDP-43 knockdown samples. This
result provides a working hypothesis that knocking-down of TDP-43 repress the expression
of SINE elements and induce the expression of L1 elements.
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Fig. 5. A. Showing down-regulation of AluJo with TDP-43 ChIP-seq peak, B. Showing down-
regulation of AluJo with TDP-43 CLIP-seq peak.

4. Conclusion

In this work, we developed SalmonTE, a fast and reliable pipeline for quantification of TEs
from NGS data. Our results of SalmonTE on the various datasets have shown a large speed-up
in computing time relative to TEtranscripts, while preserving an accurate quantification on
TEs. Therefore, we expect this pipeline will enable the biomedical research community to
rapidly quantify and analyze TEs from large amounts of data generated over the past years
that are otherwise lost due to genome-masking. Our tool could help the research community
to discovery many TE associated with diseases.

There are still several remaining features that could be implemented in the future to im-
prove the usability of SalmonTE. For example, prediction of genomic locations, which contain
the differentially expressed TEs, is useful in many TE studies. Several methods were developed
toward this end,15,47 but these tools share the scalability issue and require massive computing
power for a large-scale TE study. Moreover, alignment free algorithms are intrinsically lim-
ited to addressing this question. Therefore, we foresee a novel algorithm which extends and
improves the current alignment-free methods.
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