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Electronic Health Records (EHRs) contain a wealth of patient data useful to biomedical 
researchers. At present, both the extraction of data and methods for analyses are frequently 
designed to work with a single snapshot of a patient’s record. Health care providers often perform 
and record actions in small batches over time. By extracting these care events, a sequence can be 
formed providing a trajectory for a patient’s interactions with the health care system. These care 
events also offer a basic heuristic for the level of attention a patient receives from health care 
providers. We show that is possible to learn meaningful embeddings from these care events using 
two deep learning techniques, unsupervised autoencoders and long short-term memory networks. 
We compare these methods to traditional machine learning methods which require a point in time 
snapshot to be extracted from an EHR. 
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1.  Introduction 

After the U.S. government mandated meaningful use of electronic health records (EHRs) by 2014, 
they have been widely adopted with 96% of health care providers implementing an EHR [1]. 
Patient interactions with the health care system are recorded in the EHR. Many research analyses 
treat the EHR as a static document by taking a snapshot of a patient`s EHR and using this for 
downstream analyses. This fails to account for the way a patient changes over time, their 
trajectory. 

  Jensen et al. [2] proposed the idea of temporal disease trajectories to model expected 
progression for a patient over time. This study uses billing codes as disease labels, which may 
introduce biases inherent to the billing process. Patients may be assigned a billing code before 
being diagnosed for a disease in order to receive a diagnostic test. Billing codes place also binary 
rules on the presence of disease. Perhaps most importantly for this work billing codes are 
frequently assigned after a visit and are thus not helpful for tracking patient trajectories over the 
course of an inpatient admission or rapid series of visits. 

Interactions between patients and the health care system tend to occur in bursts, related to a 
specific visit or a series of visits. We label these periods of activity as care events and group these 
actions together. These care events represent changes over time and can capture longitudinal 
changes of a patient`s state. 

Denny et al. [3] first showed the ability to use autoencoders to model clinical measures in an 
unsupervised manner. More recently, several groups have used autoencoders to learn high level 
features useful for classification [4,5] and imputation [6]. Tan et al. also showed the ability to 
extract meaningful features from gene expression data using autoencoders [7]. We use 
autoencoders to represent patient care events in a low dimensional vector space that is useful for 
visualization. Positions in this vector space represent the patient`s condition at a point in time. By 
connecting these positions, or care events, in order, it is possible to see how a patient`s condition 
changes over time and how they move through the health system. It is also possible to cluster 
patients in this low dimensional space and examine when patient outcomes diverge, one group 
having high survival and the other having high mortality. 

This care event representation also provides a natural sequence of events. Recurrent neural 
networks have shown an impressive ability to model sequences to solve problems in many 
domains including object recognition in computer vision [8], image [9] and text generation [10]. 
Long short-term memory networks (LSTMs) [11] are a type of recurrent neural network that have 
recently been applied to clinical data to learn low dimension representations of medical concepts 
[12] and to make classifications using time series of specific clinical measures [13,14]. 

Trajectories have been used to model multistage dynamic decision processes (DMP) in 
discrete optimization problems [15]. In Algebraic Logical Meta-Model (ALMM) the state of the 
system in a certain time depends on the previous state, undertaken decision and transition 
function. This concept allows to easily describe the state of the patient at a particular time, with 
specific actions taken (e.g. application of medication) to manage the response to previous events 
within the progression of a disease. 
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In this work, we first demonstrate that deep learning approaches can (1) learn patient 
embeddings useful for both interpretable expert analysis via visualization and (2) do this we use 
the Medical Information Mart for Intensive Care III (MIMIC) database and apply both 
unsupervised deep autoencoders and LSTMs. 

2.  Methods 

2.1.  Source Code and Analysis Availability 

Source code to reproduce the analyses in this work are provided in our repository 
(https://github.com/EpistasisLab/MIMIC_trajectories) under a permissive open source license.  In 
addition, Continuous Analysis [16] was used to generate docker images matching the environment 
of the original analysis.  

2.2.  Care Event Extraction 

2.2.1.  Medical Information Mart for Intensive Care III (MIMIC) Critical Care Database 

MIMIC [17] is a publicly available database composed of 46,297 critical care de-identified 
electronic health records for patients at Beth Israel Deaconess Medical Center. It includes all 
charted data (demographics, vital signs, medications, procedures, diagnoses, patient outputs, 
laboratory tests, physician notes, and treatment details) for patients from 2001 to 2012. 

2.2.2.  Extracting Care Events from MIMIC 

We divided the MIMIC database into 4 groups: 
1.   Static data that does not change over the course of an admission (i.e. demographic data). 
2.   Actions performed by health care providers that have a specific time associated with them (i.e. 

laboratory events). 
3.   Actions performed by health care providers that only have a date associated with them (i.e. 

oral medications). 
4.   Streaming data measured on a per-minute basis (i.e. heart rate). 

 

Table 1.  Categories and examples of Care Event Actions. 

Category (MIMIC Database Table) Example 
DATETIMEEVENT Changing equipment or standard repeated treatments (i.e. dialysis). 
ICUSTAYS Transfer to or from the Intensive Care Unit. 
INPUTEVENTS_CV & 
INPUTEVENTS_MV 

Any fluids given to the patient (i.e. an IV solution, CV and MV stand for 
the two systems used to track these events Philips Carevue and iMDSoft 
Metavision). 

LABEVENTS All lab measurements for a patient (i.e. Creatinine level). 
PROCEDUREEVENTS All procedures performed on a patient (i.e. Extubation). 
SERVICES Changes in which service a patient is under (i.e. Cardiac Surgery) 
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To define care events, we included all actions initiated, or charted, by health care providers 
that have a specific time associated with them (Table 1). These actions were placed in sequential 
order and grouped together until there was a gap greater than the margin time (Figure 1). Because 
this is critical care data, the timeline between events is much smaller than typical EHR data. We 
found a 59 minute margin time yielded care events that had a good balance of inclusiveness while 
not including extended time periods. This yielded 1,566,026 total care events and an average of 
26.80 care events per admission. In outpatient datasets, we expect a margin time of several days 
may better capture the concept of a care event. 

 

 
Fig. 1.  Example of care event extraction. Green circles indicate actions taken by health care providers. 

Lines and numbers below indicate care events. 

2.2.3.  Stratification of Patient Attention based on type of Insurance Provider  

Care events can provide a useful heuristic to the level of interaction between the health care 
provider and a patient. To evaluate attention, we compared the time spent in the hospital per 
admission with the number of care events per admission and the average number of care events 
per day. We then performed Welch’s t-test between patients with private insurance and each of the 
other types of insurance (Medicare, Medicaid, Government, Self-Payment) to see if there were 
significant differences between patients with differing insurance types. 

2.3.  Unsupervised learning to learn embeddings of extracted Care Events 

2.3.1.  Applying Autoencoders to Extracted Care Events to cluster in a low dimensional space. 

We used the Keras library [18] to construct autoencoders with 7 hidden layers in (1196, 512, 256, 
128, 64, 128, 256, and 512 nodes per layer). We used dropout to mask 20% of the connections 
between the input layer and the first hidden layer. The model was trained using binary cross 
entropy loss with Adam [19]. The middle, hidden layer (64 nodes) was used as an output for 
visualization using t-Stochastic Neighbor Embedding [20]. The resulting visualizations were 
labeled for enrichment of 1-year patient survival. Survival data was based on the date of death 
variable in the MIMIC dataset, a merger between the hospital and social security data. 

2.4.  Predicting Survival Using Care Events 

We evaluated how effectively different machine learning methods could predict patient survival 
over a 1-year period (as measured from the original admission date). The 1-year survival period 
began on the date of admission.  
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For this analysis, we performed 5-fold cross validation providing a training set of 46,751 
admissions and a test set of 11,687 admissions chosen via stratified cross validation [21]. Survival 
was predicted using several classifiers: (1) a standard feed forward or multi-layer perceptron deep 
neural network [18], (2) a random forest, (3) logistic regression and (4) support vector machine 
(linear kernel) [21] after various numbers (N) of care events: 1, 3, 5, 10, 20, 30 and 50. Area under 
the curve of the receiver operating characteristic was used for evaluation and comparison. 

2.4.1.  Traditional machine learning methods to predict survival from an EHR Snapshot. 

To build a snapshot vector useable for traditional machine learning methods. We took the mean of 
each value from a set of care events, up to the Nth care event.  If the patient had less than N care 
events, we took the mean for all of their care events. Feature selection was then performed on this 
aggregate vector using ReliefF [22,23] to choose the top 100 features. These 100 features were 
then provided as input to each of the machine learning classifiers.  

2.4.2.  Long Short Term Memory Networks (LSTMs) to predict survival with Care Events 
Sequences. 

To build the sequence vector from a set of care events we first truncated sequences longer than N. 
Sequences shorter than N were post-padded with zeros. The model was comprised of 3 types of 
layers, an initial embedding layer, three LSTM layers (with 100, 50 and 50 nodes respectively) 
and a fully connected (Dense) output layer. We trained the model using rmsprop [24] with a 
binary cross entropy loss function.  

3.  Results 

The MIMIC dataset includes 58,438 admissions from 46,297 unique patients. This was extracted 
to form 1,566,026 care events (Table 2). Medicare patients were double the age of other patients 
on average. Patients using private or government insurance and Medicaid had relatively equal 
mortalities during the initial admission and the next 6 months. Patients using Medicare had 
significantly higher mortality in the 6 months after admission as their time under critical care and 
self-payment patients had high mortality during the admission but lower admission after leaving 
critical care.  

3.1.  Treatment and Outcome Comparison 

Table 2.  Summary statistics for MIMIC Critical Care database. 

 Total Male Female Private Medicare Medicaid Government Self 

Patients 46,297 26,121 20,399 19,663 21,002 4,570 1,614 600 
Admissions 58,438 32,950 26,026 22,250 28,103 5,713 1,767 605 
Admissions per Patient 1.26 1.26 1.28 1.13 1.34 1.25 1.09 1.01 
Average Age at Admission 56.01 54.95 57.34 37.82 75.95 37.91 35.15 39.11 
Care Events 1,566,026 867,941 698,085 637,968 693,254 179,182 46,722 8,900 
Care Events per Admission 26.80 26.34 26.82 28.67 24.67 31.36 26.44 14.71 
Visit Survival 90.84% 90.38% 89.56% 95.24% 86.40% 94.60% 95.87% 85.2% 
6-Month Survival 79.81% 79.63% 78.39% 89.84% 69.47% 87.61% 91.62% 83.31% 
12-Month Survival 76.28% 76.19% 74.82% 87.90% 64.33% 84.75% 90.32% 82.81% 
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We examined the length of stay per admission by insurance type (Figure 2A) and found that 

patients using Medicare had the longest stays but that all groups differed significantly via an 
ANOVA test (p-value 5.02E-28). In addition, we compared each type of insurance against the 
private group using Welch’s t-test. It is not surprising that patients using self-payment had the 
shortest stays and the least number of care events per stay (Figure 2B). Interestingly, patients with 
private insurance had significantly lower care events per day than the most similar (by age) other 
groups, government-based insurance and Medicaid (Figure 2B). 

 
 

 
Fig. 2. Association testing between different insurance types. A.) Length of admission. C) Number of care 
events per day of each admission. Labels at the top indicate p-values via Welch’s t-test to private group. 

3.2.  Unsupervised modeling of patient care events 

To test whether unsupervised autoencoders could learn meaningful embeddings from individual 
care vents, we plotted the innermost hidden layer using t-Stochastic Neighbor Embedding (t-SNE) 
and overlaid 1-year survival labels (Figure 3). Figure 3 shows an unsupervised clustering, where 
the X and Y axes do not have an explicit meaning or interpretation. This clustering process yielded 
several clusters with high enrichment for either mortality or survival indicating the ability to learn 
meaningful embeddings. t-SNE does not maintain global similarity structure and as such this 
process is useful for visualizing single care events but not for understanding patient trajectories. 
To examine patient trajectories, it is necessary to look at the value of the innermost hidden layer 
before t-SNE was applied or to use a method designed to model sequential data. Recurrent neural 
networks, and specifically LSTMs are well suited at this task.  
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Fig. 3. Unsupervised Care Event Embedding by applying t-SNE to the innermost layer of autoencoder 

(1000 care events shown to prevent overplotting).  

3.3.  Supervised prediction of patient survival 

Next, we preformed the supervised classification task of predicting whether a patient survived one 
year from the date of their admission. We measured classification accuracy with differing numbers 
of care events to evaluate whether the care event-based approach had advantages over traditional 
single point in time measurements (Figure 4). The Pearson correlation of the number of care 
events to 1-year mortality rate was 0.062. Of the methods predicting based on a snapshot, the 
random forest was by far the most effective. Despite this, it did not increase in performance as 
more information about an admission was added. This indicates that much of its predictive power 
comes from the initial presentation. Both, linear methods and a traditional feed-forward neural 
network barely outperformed random chance. This may have been due to the high dimensionality 
of the dataset. The care event-based LSTM increases in performance as more care events are 
provided. This is particularly evident when more than the median number of care events (26.8) are 
provided as input to the LSTM. Including more than 50 care events yielded weaker results for the 
LSTM. This is likely because most patients have fewer than 50 care events so most of the signal is 
captured in the first 50 care events. Going beyond 50 leads to a high level of padding to signal. 
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Fig. 4. Comparison of machine learning methods and the number of care events provided for 1-year 

survival prediction (AUROC). 

4.  Discussion and Conclusions 

By limiting the usage of summary statistics to small time periods, we offer a granular method for 
modeling longitudinal clinical data. The care event extraction method provides a simple data 
driven approach to extracting temporal data for use in time series analyses. It allows summary 
statistics to be computed over short time windows as opposed to an entire patient history or 
arbitrary timestamps. Care events also offer a heuristic to allow comparison of the level of 
attention different patients receive from health care providers. We demonstrated the ability to learn 
embeddings enriched for different endpoints using unsupervised deep learning and were able to 
more accurately predict patient survival using supervised long short-term memory networks.  

Though our approach showed strong performance for several tasks in this dataset, this method 
currently has limitations in terms of generalization. Long-short term memory networks, like many 
deep learning approaches, require many patients to outperform other methods. This can present a 
challenge when studying a single phenotype instead of a wide variety of critical care patients. The 
greatest benefits are likely to be seen when patients have many care events, making this approach 
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particularly well suited for chronic diseases like type 2 diabetes and Crohn’s disease or for 
diseases that are hard to subtype such as multiple sclerosis. An additional challenge is if a patient 
with a disease like type 2 diabetes suffers an unrelated acute injury (i.e. broken rib in a vehicle 
accident) this acute injury may introduce too much noise to capture the type 2 diabetes trajectory.  

In future work, we hope to introduce filtering techniques to exclude or deemphasize unrelated 
diagnoses. We also plan to increase the dimensionality of the encoders and applying additional 
techniques of visual clustering [25]. This includes using Shared-Nearest Neighbors (SNN) 
clustering to find groups of patients with similar stage of the disease in noisy data and Mukres 
algorithm to map groups of patients resembling a state of the disease to clusters found in the data. 

Another challenge we would like to take is including streaming data in the simulation. Some 
measurements, e.g. heart rate or blood pressure, are performed every minute for each patient. The 
information about sudden changes of patient’s condition is especially relevant for intensive-care 
patients. While our method aggregates patient data over shorter time periods than are commonly 
used, we plan to adapt our model by adding more detailed relevant information extracted from 
streaming sources. 
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