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A significant challenge in metabolomics experimenss extracting biologically
meaningful data from complex spectral informatidm.this paper we compare two
techniques for representing 1D NMR spectra: “SpecBi@mning” and “Targeted
Profiling”. We use simulated 1D NMR spectra with Gfie characteristics to assess the
quality of predictive multivariate statistical mdsléuilt using both data representations.
We also assess the effect of different variabldirsgaechniques on the two data
representations. We demonstrate that models bsiiliguTargeted Profiling are not only
more interpretable than Spectral Binning modelg, dre more robust with respect to
compound overlap, and variability in solution cdfatis (such as pH and ionic strength).
Our findings from the synthetic dataset were vaéidausing a real-world dataset.

1. Introduction

Nuclear Magnetic Resonance (NMR) spectroscopy isicely-
used tool in the rapidly growing field of metabolgs) where the
measurement of small molecule metabolites provalehiemical
“snapshot” of an organism’s metabolic state [1]. Rl inherently
guantitative and non-selective, thus a wealth ofenuical
information can be extracted from single NMR sp@uctir
Metabolomics studies often couple NMR spectral duaitish
principal component analysis (PCA) and other pattecognition
techniques to uncover meaningful patterns in data [2]. Long-
term goals of such computational model building lude
automation of data analysis as part of an integraliagnostics
platform [3] and personalized therapies [4]. Builglistatistical
models from NMR spectra can be problematic howeagspectral
distortions present potentially confounding arti¢ato techniques
such as PCA [5, 6].
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These distortions have an origin in the hardwajethe type and
nature of the sample, and choice of acquisition pratessing
parameters [8]. For example, pre- and post-proegsaigorithms
and the signal-to-noise (S/N) in the time domairpaet data
quality. Metabolite signals in complex mixturesesftspan several
orders of magnitude, thus requiring a significayniamic range in
the receiver. Furthermore, aqueous samples suchirias or
plasma require suppression of the water solverk ybach is 7-8x
more concentrated than the metabolites of intemestlting in
distortions of the baseline and intensity of meliaddosignals.
Metabolites’ resonance frequencies, lineshapesliaedidths will
vary between samples within an NMR metabolomicsaskit
irrespective of hardware considerations. Factofisencing these
chemical modulations include sample pH, ionic cosijpan, and
inter-metabolite interactions [9]. As a result,tistical analyses
require some form of pre-processing or data redoctd ensure
that the variables of interest are representativth® underlying
chemical data [10].

In this paper, the impact of spectral distortiontbe quality of
predictive statistical models built upon two alt&ive
representations of NMR data is assessed. A sintbidétaset is
used to model various types of spectral distortiom systematic
manner, and two techniques for dimensionality rédac spectral
binning and targeted profiling, are used to represthese
simulated spectra. The results are assessed usheg t
regression/classification extension of P@aArtial least squares for
discriminant analysis (PLS-DA) [11]. We validateroaiindings
using a real-world data set of rat-brain extracts.

2. NMR Data Representations

An NMR spectrum is a linear combination of chargst& signals
for each compound that is present in a given samfye the
concentration of a particular compound changesckiagacteristic
signal for that compound responds in a linear fashirhus, an
NMR spectrum can be viewed from a theoretical peotpe as
follows:
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wheredqnsis a [1x] vector of the observed NMR datais a [1X]
vector representing the concentrationskdénown compounds in
the mixture, and represents a matrix of the spectral signatures
present in the solutiom is aspectrum calibration function that is
applied to each row afto account for changes in the sample’s pH,
ionic strength, etcu represents unknown contributions to the
signal from unknown metabolites, lipoproteins, amy aother
contributions to the signal that are not explicithpdeled using.
Finally, the observed spectrum contains noiseithettroduced by
the NMR hardware and processing algorithms,

2.1. Spectral Binning

Spectral binning [2] is a widely-used technique wehiiae spectrum
is subdivided into a number of regions, and thaltatea within
each bin is used as an abstracted representatidgheobriginal

spectrum. The area encapsulated by a bin wouldlyd=spture all

of the area associated with a given resonance satbspectra in
the dataset, thereby mitigating the effect of mipeak shift and
line width variations for a compound across sampAetypical 64k

NMR spectrum would be reduced using bin widths @40ppm,

resulting in ~250 bin integral values. Spectralniniig is agnostic
of the underlying generative model described in digm 1,

however it is commonly used due to the ease of @mphtation
and complete spectral coverage.

2.2. Targeted Profiling

Targeted profiling [8] is a technique that levermge reference
spectral database to directly recover the condsoriranatrix ¢
from Equation 1, which is then used as the inputpadtern
recognition techniques such as PCA or PLS-DA. Ttadyerofiling
can be viewed as a method of recovering the |atetidbles in the
form of underlying metabolite concentrations thanerated the
observed spectral data. Because of its reliancea ospectral
databases, targeted profiling does not directly model or dedth
the unknown ternu in Equation 1. Sinca may contain potentially
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important latent chemical information, it can bécakated directly
as the residual from Equation 1, and spectral da&agnostic
techniques such as spectral binning can be appbed for
subsequent analysis.

3. Methods

3.1.Synthetic Study

Several synthetic data sets were generated withcifepe
characteristics to simulate, in a systematicallgtcmled manner,
some of the key challenges inherent in working vitlR data.
The data for the synthetic study was generatedgu€inenomx
NMR Suite 4.5 (Chenomx Inc., Edmonton, Alberta, &ia)
compound database entries. Varying mixtures of tyen
compounds, with the addition of DSS at 0.5 mM, warulated.
Compound concentrations for the following compoungere
sampled randomly from a normal distribution: 2-oxbarate,
acetate, acetone, alanine, betaine, carnitineatejtr creatine,
dimethylamine, fumarate, glucose, lactate, maleaig-inositol,
taurine, tryptophan, tyrosine, ureajemethylhistidine, t-
methylhistidine. Biologically viable population s&dics of mean
and standard deviation were used for each comp¢Ghang,
Rankin, McGeer, Shah, Marrie, and Slupsky, subunfittexd these
concentrations remained fixed from simulation towdation.

Random uncorrelated noise was added to each spedtruhe
frequency domain. Each spectrum was generated e laam
equivalent amount of noise by an approximate sigmalbise ratio
(SNR) of 100:1.

The effect of pH variability was simulated by randg varying
compound resonance frequencies within an empiyicadlidated
range. This range reflects the compound’s NMR feeqy
response to pH levels ranging from pH 4 to 9 asrdehed from
pH curves of pure reference spectra. The magnitdidbis range
was controlled to test the effects of pH variatioa a transform
fraction parameter. A fraction of 1.0 allowed chrst to be
transformed over the entire pH 4 to 9 range, wahifeaction of 0.1
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would allow for clusters to be transformed over 16Pthe range,
centered at pH 7.0. The actual pH range that #psesents will be
different for each compound depending on the redatpH
sensitivity of the compound near pH 7.0.

In order to generate two classes of spectra, tpalption statistics
of one or more metabolites were changed for eaunhlation. The
parameters used in each simulation are outlinddiie 1.

Table 1. Simulation Parameters for Synthetic Study.

Transform Fraction
Group 1 Citrate/Tryptophan MeanStdev fimol)
Group 2 Citrate/Tryptophan MeanStdev fimol)

Simulation#  Parameters Value
1 Number of Files 200 (100 of each class)
SNR 100

0.1
2318+ 1496/ 5+ 2
1031+ 945/ 10+ 2

Number of Files

200 (100 of each class)

SNR 100
Transform Fraction 0.1
Group 1 Maleate Mea# Stdev umol) 30+ 15
Group 2 Maleate Meah Stdev imol) 60+ 20

Number of Files

SNR

Transform Fraction

Group 1 Citrate/Tryptophan MeanStdev imol)
Group 2 Citrate/Tryptophan MeanStdev imol)

200 (100 of each class)
100

1

2318+ 1496 / 5+ 2
1031+ 945/ 10+ 2

3.2. Rat Brain Extracts

This real-world dataset is based on a previouslyliged [12]
dataset and was kindly provided by Dr. Brent Mc@rahd Dr.
Peter Silverstone (Department of Psychiatry, Ursigr of
Alberta). Twelve adult male Sprague-Dawley ratsinsrawere
dissected into frontal (fcx) cortex, temporal cmr{ecx), occipital
cortex (ocx) and hippocampus (hipp) regions acogrdio
stereotaxic demarcation [12]. For spectral binnisigs widths of
0.04 ppm were used, with the following dark regidefined: DSS
(the internal standard): -0.1-0.1ppm, 0.6-0.7 ppnethanol (a
byproduct of the extraction process): 3.33-3.37 ppmater: 4.5-
5.5ppm; imidazole (the pH indicator): 7.13-7.5,Z2868 ppm.

The following compounds were identified and quasdifusing the
targeted profiling technique [8] as implementecCimenomx NMR
Suite 4.5: 4-aminobutyrate, acetate, adenosiaaine, aspartate,
betaine, choline, citrate, creatine, creagniformate, fumarate,
glutamate, glutamine, glycerol, glycine, hypatkame, isoleucine,
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lactate, leucine, lysine, methanol , N-acetydatsie, serine,
succinate, taurine, threonine, tyrosine, valkanthine, and myo-
inositol.

3.3. Multivariate Statistical Modeling

All multivariate modeling was performed using SIMR®+ 11.0
from Umetrics Inc. Permutations tests were perfarmsing 100
permutations. B and Ry are calculated as the fraction of the sum
of squares of all X and Y that the model can explasing the
latent variables. ©is the fraction of the total variation in Y that
can be predicted using the model via seven-foldssx@lidation.

4. Results

4.1. Synthetic Data

By systematically varying key properties of thetbytic data sets,
several aspects of building statistical models oMRN data

representations were assessed. The first issussassavas the
effect of noise on the spectra. Specifically, naises added to the
spectrum to see how robust both spectral binning) tangeted
profiing methods were at being able to recover fagent

information in the data in the presence of noisehatWwas

observed was that if the noise was completely uetaied, then
both methods are very robust to varying noise kevéData is
available from supplementary materials.)

The next issue we examined was the choice of Varstaling and
normalization methods, since this can have a largmct on the
quality of results obtained from multivariate stéital methods
such as PLS-DA. Normalization for all spectral bimghdata was to
the total area of the NMR spectrum. No normalizatiwas
necessary for the targeted profiling results, sindeect
guantification can be obtained with the addition aof internal
standard. Both the spectral binning data and tedgetofiling data
were mean centered and were scaled using unitneari@JV) or
Pareto scaling. UV scaling involves weighting eatthe variables
by the variables’ group standard deviation, andthasadvantage
of not biasing statistical models towards large cemtration
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compounds or high area bins. Pareto scaling ingaive weighting
each of the variables by the variables’ group veea which
minimizes the impact of noise. Data from simulatiihwas used
to evaluate the effects of these two scaling proc This
simulation encoded class differentiation throudinaté, present at
relatively high concentrations, and tryptophanspre at relatively
low concentrations. Figure 1a demonstrates that-BASON UV
scaled data can recover differences in both trypmopand citrate,
while the loadings plot of Pareto-scaled data (Fégib) is only
able to distinguish the intense citrate signal. 9taling was
superior to Pareto scaling in recovering a modat #@ccurately
reflected the variables of interest (both low- &igh-concentration
metabolites) for both targeted profiling and spediinning data.

Overlap of NMR resonances from different metabslige another
issue hampering the analysis of complex biofluidcsga. Further
complications arise from compound overlap with dwanit peaks
such as urea, where low intensity peaks are oftenin traditional
analyses due to the overwhelming magnitude of tiea signal.
Simulation #2 generated a dataset in which a singi¢abolite,
maleate, differentiates the two classes and ovendth the high
concentration urea signal, which varies randomlg. (urea does
not encode class discrimination). Figure 2 shows $cores,
loadings, and permutations tests for spectral himraind targeted
profiling methods. One can see from the loadings ipl Figure 2b,
that targeted profiling methods identify maleate aasignificant
metabolite even under severe overlap conditionslewdpectral
binning shown in Figure 2a fails. Spectral binniaglso prone to
generating highly overfit models as shown by themgation test
in Figure 2, whereas targeted profiling models shmwsigns of
overfitting. Permutation tests help assess oviditby randomly
permuting class labels and refitting a new moddhwihe same
number of components as the original model. An fitvarodel
will have similar B and @ to that of the randomly permuted data.
Well fit models will have Rand @ values that are always higher
than that of the permuted data.
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Figure 1. PLS-DA models (scores plot left, loadimdst right) of targeted profiling data usira)y
unit variance scaling) Pareto scaling.
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Figure 2. PLS-DA models (scores plot left, loadimst center, permutation plot right) fa
spectral binning ant) targeted profiling methods under conditions ofi¢aoverlap.
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Sample matrix conditions such as pH and ionic gtfeigan have
profound effects on metabolites’ NMR resonance Uesgies.
These shifts can directly influence the qualitytleé models that
are generated using NMR data, and were modeledsivithlation

#3. Both spectral binning and targeted profilingeyése to models
that were able to separate the data in the latariible space.
However, the quality of the model generated witke gpectral
binning data was low and resulted in overfitting s®wn in

permutation plots (Supplementary Figures). Thidus to the large
number of variable weights used in the loading&arge number of
variables share similar weights because the sarmeifisant

resonances are now migrating over adjacent binstalysd/ionic

strength variation. Models built on targeted gho§j data, which
accounts for the shifts in resonance locationsctirein the

modeling process, are able to separate the twgpgrand do not
overfit the data.

The final effect studied is the impact of limitedngple sizes on
predictive capacity, a typical problem in metabalmsrstudies. The
effect of sample size was shown using a subset fBamulation

#3. The size of the dataset was reduced from 1@D tsamples in
each class. Even with a limited sample size, thgetad profiling

approach resulted in well fit PLS-DA models, aseassd by the
permutations tests. While the descriptive featwksryptophan
and citrate are not as clearly distinguished inldiaglings plot, the
permutation plot indicates that even with a smalmber of

samples the data is not overfit. The results fictral binning,
however, are quite deceptive, as the PLS-DA mobeivs very
good separation of classes in the scores plot. Menvéhe model
generated has an extremely high degree of ove?ittir the
majority of the randomly permuted models generatev@lues

higher than that of the non-permuted model (Suppteary

Figures).

4.2. Rat Brain Extract

The rat brain extract dataset is a real-world datéisat exhibits
many of the phenomena we have seen in the syntieticet. The
spectra contain noise, have metabolite resonahe¢shift due to
pH, and have low-concentration metabolites thatirmumgortant in
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differentiating the different brain regions, thusking it a suitable
model dataset to validate our findings from thetlsgtic dataset.
This dataset was acquired at high resolution (80@Mldnd

contains ~30 NMR-visible compounds. We did not fihat the

choice of variable scaling affected the qualitytbé generated
models for this dataset. We therefore used uniamae scaling for
the results shown below.

We found that using spectral binning generated daiwwith lower
predictive accuracy than targeted profiling dat&: f@ spectral
binning was 0.468, wherea< @r targeted profiling was 0.522.

As in our synthetic dataset, we found that spedinahing-based
results were prone to overfitting. To test for diteng, we
randomly permuted the class labels for the PLS-DAlysis 100
times. With the spectral binning dataset, we fotlvad some of the
models generated with random permutations of tie lad higher
Q? and I%values than the non-permuted data. This is ikdstt in
Figure 3a. Internal validation of the model basedtlre targeted
profiling representation of the NMR data do not ibkhany
characteristics of an overfit model, as shown iguFé 3b. The
targeted profiling representation uses only 27aldeis to represent
the latent information in the dataset, therebyriesig the degrees
of freedom available in the construction of a modeld reducing
the capacity of the model to overfit the data.

Figure 3.a, Internal validation of spectral binning, showingeal evidence of overfitting with
random permutations of the data generating betteariR2Q2 values than the non-permuted data.
Internal validation of targeted profiling, showinlgar decrease in performance on permuted data.
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5. Conclusion

We have demonstrated how the inherent propertiedNMR

spectroscopy can impact the predictive ability afdels built upon
spectral binning and targeted profiling represemtat of NMR

data by using a novel method for synthetically gatieg NMR

spectra. The quality of predictive models built vepgntitatively
assessed, as was the relative robustness of thesenéthods.
Under the experimental design chosen, both metlamdsvery
robust with respect to noise. In contrast, variadgaling methods
can affect both the quality and interpretability thfe models
generated. W found for targeted profiling data,t weariance
scaling generates a more robust data representafiargeted
profiing was also found to be an effective dimenality

reduction technique that, overall, is more robugh wespect to
spectral distortions and high dynamic range mettdsolthan
spectral binning, and is less prone to overfittihgn spectral
binning models. These findings were validated orea-world

dataset of rat-brain extracts consisting of ~30 NM&ectable
metabolites, in which statistical models were lgg®ne to
overfitting based on a spectral profiling repreagoh of the data.
Spectral binning is a common method for data rednctue to the
speed of analysis, while current targeted profilimglementations
require interactive input and are relatively timéensive. While
the rat-brain extract study represents a relatisatyple dataset,
targeted profiling has successfully been applied etdensive
studies of serum [Weljie, Dowlatabadi, Miller, Vagelirik,

submitted] and urine [Chang, Rankin, McGeer, Shadrrie, and
Slupsky, submitted]. As increasingly automated rmeé¢h for

guantitative profiling of NMR data become availghlee expect
database-driven targeted profiling to become th&-teduction
method of choice.

6. Supplementary Information

Supplementary  Figures and Data is available
http://www.chenomx.com/publications/PSB2007

at
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